ld:
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
CommitLineData
96309189
MS
1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
9b254dd1 3 Copyright 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
96309189
MS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
96309189
MS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
96309189
MS
19
20#include "defs.h"
21
22#include <stdarg.h>
23
24#if defined (HAVE_STRING_H)
25#include <string.h>
26#endif
27
28#include "gdb_assert.h"
29#include "elf-bfd.h"
30#include "elf/m32c.h"
31#include "gdb/sim-m32c.h"
32#include "dis-asm.h"
33#include "gdbtypes.h"
34#include "regcache.h"
35#include "arch-utils.h"
36#include "frame.h"
37#include "frame-unwind.h"
38#include "dwarf2-frame.h"
39#include "dwarf2expr.h"
40#include "symtab.h"
41#include "gdbcore.h"
42#include "value.h"
43#include "reggroups.h"
44#include "prologue-value.h"
45#include "target.h"
46
47\f
48/* The m32c tdep structure. */
49
50static struct reggroup *m32c_dma_reggroup;
51
52struct m32c_reg;
53
54/* The type of a function that moves the value of REG between CACHE or
55 BUF --- in either direction. */
56typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
57 struct regcache *cache,
58 void *buf);
59
60struct m32c_reg
61{
62 /* The name of this register. */
63 const char *name;
64
65 /* Its type. */
66 struct type *type;
67
68 /* The architecture this register belongs to. */
69 struct gdbarch *arch;
70
71 /* Its GDB register number. */
72 int num;
73
74 /* Its sim register number. */
75 int sim_num;
76
77 /* Its DWARF register number, or -1 if it doesn't have one. */
78 int dwarf_num;
79
80 /* Register group memberships. */
81 unsigned int general_p : 1;
82 unsigned int dma_p : 1;
83 unsigned int system_p : 1;
84 unsigned int save_restore_p : 1;
85
86 /* Functions to read its value from a regcache, and write its value
87 to a regcache. */
88 m32c_move_reg_t *read, *write;
89
90 /* Data for READ and WRITE functions. The exact meaning depends on
91 the specific functions selected; see the comments for those
92 functions. */
93 struct m32c_reg *rx, *ry;
94 int n;
95};
96
97
98/* An overestimate of the number of raw and pseudoregisters we will
99 have. The exact answer depends on the variant of the architecture
100 at hand, but we can use this to declare statically allocated
101 arrays, and bump it up when needed. */
102#define M32C_MAX_NUM_REGS (75)
103
104/* The largest assigned DWARF register number. */
105#define M32C_MAX_DWARF_REGNUM (40)
106
107
108struct gdbarch_tdep
109{
110 /* All the registers for this variant, indexed by GDB register
111 number, and the number of registers present. */
112 struct m32c_reg regs[M32C_MAX_NUM_REGS];
113
114 /* The number of valid registers. */
115 int num_regs;
116
117 /* Interesting registers. These are pointers into REGS. */
118 struct m32c_reg *pc, *flg;
119 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
120 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
121 struct m32c_reg *sb, *fb, *sp;
122
123 /* A table indexed by DWARF register numbers, pointing into
124 REGS. */
125 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
126
127 /* Types for this architecture. We can't use the builtin_type_foo
128 types, because they're not initialized when building a gdbarch
129 structure. */
130 struct type *voyd, *ptr_voyd, *func_voyd;
131 struct type *uint8, *uint16;
132 struct type *int8, *int16, *int32, *int64;
133
134 /* The types for data address and code address registers. */
135 struct type *data_addr_reg_type, *code_addr_reg_type;
136
137 /* The number of bytes a return address pushed by a 'jsr' instruction
138 occupies on the stack. */
139 int ret_addr_bytes;
140
141 /* The number of bytes an address register occupies on the stack
142 when saved by an 'enter' or 'pushm' instruction. */
143 int push_addr_bytes;
144};
145
146\f
147/* Types. */
148
149static void
150make_types (struct gdbarch *arch)
151{
152 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
153 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
154 int data_addr_reg_bits, code_addr_reg_bits;
155 char type_name[50];
156
157#if 0
158 /* This is used to clip CORE_ADDR values, so this value is
159 appropriate both on the m32c, where pointers are 32 bits long,
160 and on the m16c, where pointers are sixteen bits long, but there
161 may be code above the 64k boundary. */
162 set_gdbarch_addr_bit (arch, 24);
163#else
164 /* GCC uses 32 bits for addrs in the dwarf info, even though
165 only 16/24 bits are used. Setting addr_bit to 24 causes
166 errors in reading the dwarf addresses. */
167 set_gdbarch_addr_bit (arch, 32);
168#endif
169
170 set_gdbarch_int_bit (arch, 16);
171 switch (mach)
172 {
173 case bfd_mach_m16c:
174 data_addr_reg_bits = 16;
175 code_addr_reg_bits = 24;
176 set_gdbarch_ptr_bit (arch, 16);
177 tdep->ret_addr_bytes = 3;
178 tdep->push_addr_bytes = 2;
179 break;
180
181 case bfd_mach_m32c:
182 data_addr_reg_bits = 24;
183 code_addr_reg_bits = 24;
184 set_gdbarch_ptr_bit (arch, 32);
185 tdep->ret_addr_bytes = 4;
186 tdep->push_addr_bytes = 4;
187 break;
188
189 default:
190 gdb_assert (0);
191 }
192
193 /* The builtin_type_mumble variables are sometimes uninitialized when
194 this is called, so we avoid using them. */
195 tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
196 tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8,
197 TYPE_FLAG_UNSIGNED, NULL, NULL);
198 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
199 tdep->func_voyd = lookup_function_type (tdep->voyd);
200
201 sprintf (type_name, "%s_data_addr_t",
202 gdbarch_bfd_arch_info (arch)->printable_name);
203 tdep->data_addr_reg_type
204 = init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8,
205 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
206 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207
208 sprintf (type_name, "%s_code_addr_t",
209 gdbarch_bfd_arch_info (arch)->printable_name);
210 tdep->code_addr_reg_type
211 = init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8,
212 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
213 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
214
215 tdep->uint8 = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
216 "uint8_t", NULL);
217 tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
218 "uint16_t", NULL);
219 tdep->int8 = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL);
220 tdep->int16 = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL);
221 tdep->int32 = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL);
222 tdep->int64 = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL);
223}
224
225
226\f
227/* Register set. */
228
229static const char *
d93859e2 230m32c_register_name (struct gdbarch *gdbarch, int num)
96309189 231{
d93859e2 232 return gdbarch_tdep (gdbarch)->regs[num].name;
96309189
MS
233}
234
235
236static struct type *
237m32c_register_type (struct gdbarch *arch, int reg_nr)
238{
239 return gdbarch_tdep (arch)->regs[reg_nr].type;
240}
241
242
243static int
e7faf938 244m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
96309189 245{
e7faf938 246 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
96309189
MS
247}
248
249
250static int
d3f73121 251m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
96309189 252{
d3f73121 253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
254 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
255 && tdep->dwarf_regs[reg_nr])
256 return tdep->dwarf_regs[reg_nr]->num;
257 else
258 /* The DWARF CFI code expects to see -1 for invalid register
259 numbers. */
260 return -1;
261}
262
263
264int
265m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
266 struct reggroup *group)
267{
40a6adc1 268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
269 struct m32c_reg *reg = &tdep->regs[regnum];
270
271 /* The anonymous raw registers aren't in any groups. */
272 if (! reg->name)
273 return 0;
274
275 if (group == all_reggroup)
276 return 1;
277
278 if (group == general_reggroup
279 && reg->general_p)
280 return 1;
281
282 if (group == m32c_dma_reggroup
283 && reg->dma_p)
284 return 1;
285
286 if (group == system_reggroup
287 && reg->system_p)
288 return 1;
289
290 /* Since the m32c DWARF register numbers refer to cooked registers, not
291 raw registers, and frame_pop depends on the save and restore groups
292 containing registers the DWARF CFI will actually mention, our save
293 and restore groups are cooked registers, not raw registers. (This is
294 why we can't use the default reggroup function.) */
295 if ((group == save_reggroup
296 || group == restore_reggroup)
297 && reg->save_restore_p)
298 return 1;
299
300 return 0;
301}
302
303
304/* Register move functions. We declare them here using
305 m32c_move_reg_t to check the types. */
306static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
307static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
308static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
309static m32c_move_reg_t m32c_part_read, m32c_part_write;
310static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
311static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
312
313
314/* Copy the value of the raw register REG from CACHE to BUF. */
315static void
316m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
317{
318 regcache_raw_read (cache, reg->num, buf);
319}
320
321
322/* Copy the value of the raw register REG from BUF to CACHE. */
323static void
324m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
325{
326 regcache_raw_write (cache, reg->num, (const void *) buf);
327}
328
329
330/* Return the value of the 'flg' register in CACHE. */
331static int
332m32c_read_flg (struct regcache *cache)
333{
334 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
335 ULONGEST flg;
336 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
337 return flg & 0xffff;
338}
339
340
7830cb4f
CV
341/* Evaluate the real register number of a banked register. */
342static struct m32c_reg *
343m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
344{
345 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
346}
347
348
96309189
MS
349/* Move the value of a banked register from CACHE to BUF.
350 If the value of the 'flg' register in CACHE has any of the bits
351 masked in REG->n set, then read REG->ry. Otherwise, read
352 REG->rx. */
353static void
354m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
355{
7830cb4f 356 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189
MS
357 regcache_raw_read (cache, bank_reg->num, buf);
358}
359
360
361/* Move the value of a banked register from BUF to CACHE.
362 If the value of the 'flg' register in CACHE has any of the bits
363 masked in REG->n set, then write REG->ry. Otherwise, write
364 REG->rx. */
365static void
366m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
367{
7830cb4f 368 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189
MS
369 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
370}
371
372
373/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
374 banked register; on bfd_mach_m16c, it's not. */
375static void
376m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
377{
378 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
379 m32c_raw_read (reg->rx, cache, buf);
380 else
381 m32c_banked_read (reg, cache, buf);
382}
383
384
385/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
386 banked register; on bfd_mach_m16c, it's not. */
387static void
388m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
389{
390 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
391 m32c_raw_write (reg->rx, cache, buf);
392 else
393 m32c_banked_write (reg, cache, buf);
394}
395
396
397/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
398 and *LEN_P to the offset and length, in bytes, of the part REG
399 occupies in its underlying register. The offset is from the
400 lower-addressed end, regardless of the architecture's endianness.
401 (The M32C family is always little-endian, but let's keep those
402 assumptions out of here.) */
403static void
404m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
405{
406 /* The length of the containing register, of which REG is one part. */
407 int containing_len = TYPE_LENGTH (reg->rx->type);
408
409 /* The length of one "element" in our imaginary array. */
410 int elt_len = TYPE_LENGTH (reg->type);
411
412 /* The offset of REG's "element" from the least significant end of
413 the containing register. */
414 int elt_offset = reg->n * elt_len;
415
416 /* If we extend off the end, trim the length of the element. */
417 if (elt_offset + elt_len > containing_len)
418 {
419 elt_len = containing_len - elt_offset;
420 /* We shouldn't be declaring partial registers that go off the
421 end of their containing registers. */
422 gdb_assert (elt_len > 0);
423 }
424
425 /* Flip the offset around if we're big-endian. */
426 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
427 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
428
429 *offset_p = elt_offset;
430 *len_p = elt_len;
431}
432
433
434/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
435 to BUF. Treating the value of the register REG->rx as an array of
436 REG->type values, where higher indices refer to more significant
437 bits, read the value of the REG->n'th element. */
438static void
439m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
440{
441 int offset, len;
442 memset (buf, 0, TYPE_LENGTH (reg->type));
443 m32c_find_part (reg, &offset, &len);
444 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
445}
446
447
448/* Move the value of a banked register from BUF to CACHE.
449 Treating the value of the register REG->rx as an array of REG->type
450 values, where higher indices refer to more significant bits, write
451 the value of the REG->n'th element. */
452static void
453m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
454{
455 int offset, len;
456 m32c_find_part (reg, &offset, &len);
457 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
458}
459
460
461/* Move the value of REG from CACHE to BUF. REG's value is the
462 concatenation of the values of the registers REG->rx and REG->ry,
463 with REG->rx contributing the more significant bits. */
464static void
465m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
466{
467 int high_bytes = TYPE_LENGTH (reg->rx->type);
468 int low_bytes = TYPE_LENGTH (reg->ry->type);
469 /* For address arithmetic. */
470 unsigned char *cbuf = buf;
471
472 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
473
474 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
475 {
476 regcache_cooked_read (cache, reg->rx->num, cbuf);
477 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
478 }
479 else
480 {
481 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
482 regcache_cooked_read (cache, reg->ry->num, cbuf);
483 }
484}
485
486
487/* Move the value of REG from CACHE to BUF. REG's value is the
488 concatenation of the values of the registers REG->rx and REG->ry,
489 with REG->rx contributing the more significant bits. */
490static void
491m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
492{
493 int high_bytes = TYPE_LENGTH (reg->rx->type);
494 int low_bytes = TYPE_LENGTH (reg->ry->type);
495 /* For address arithmetic. */
496 unsigned char *cbuf = buf;
497
498 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
499
500 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
501 {
502 regcache_cooked_write (cache, reg->rx->num, cbuf);
503 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
504 }
505 else
506 {
507 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
508 regcache_cooked_write (cache, reg->ry->num, cbuf);
509 }
510}
511
512
513/* Copy the value of the raw register REG from CACHE to BUF. REG is
514 the concatenation (from most significant to least) of r3, r2, r1,
515 and r0. */
516static void
517m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
518{
519 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
520 int len = TYPE_LENGTH (tdep->r0->type);
521
522 /* For address arithmetic. */
523 unsigned char *cbuf = buf;
524
525 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
526 {
527 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
528 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
529 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
530 regcache_cooked_read (cache, tdep->r3->num, cbuf);
531 }
532 else
533 {
534 regcache_cooked_read (cache, tdep->r0->num, cbuf);
535 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
536 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
537 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
538 }
539}
540
541
542/* Copy the value of the raw register REG from BUF to CACHE. REG is
543 the concatenation (from most significant to least) of r3, r2, r1,
544 and r0. */
545static void
546m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
547{
548 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
549 int len = TYPE_LENGTH (tdep->r0->type);
550
551 /* For address arithmetic. */
552 unsigned char *cbuf = buf;
553
554 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
555 {
556 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
557 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
558 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
559 regcache_cooked_write (cache, tdep->r3->num, cbuf);
560 }
561 else
562 {
563 regcache_cooked_write (cache, tdep->r0->num, cbuf);
564 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
565 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
566 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
567 }
568}
569
570
571static void
572m32c_pseudo_register_read (struct gdbarch *arch,
573 struct regcache *cache,
574 int cookednum,
575 gdb_byte *buf)
576{
577 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
578 struct m32c_reg *reg;
579
580 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
581 gdb_assert (arch == get_regcache_arch (cache));
582 gdb_assert (arch == tdep->regs[cookednum].arch);
583 reg = &tdep->regs[cookednum];
584
585 reg->read (reg, cache, buf);
586}
587
588
589static void
590m32c_pseudo_register_write (struct gdbarch *arch,
591 struct regcache *cache,
592 int cookednum,
593 const gdb_byte *buf)
594{
595 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
596 struct m32c_reg *reg;
597
598 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
599 gdb_assert (arch == get_regcache_arch (cache));
600 gdb_assert (arch == tdep->regs[cookednum].arch);
601 reg = &tdep->regs[cookednum];
602
603 reg->write (reg, cache, (void *) buf);
604}
605
606
607/* Add a register with the given fields to the end of ARCH's table.
608 Return a pointer to the newly added register. */
609static struct m32c_reg *
610add_reg (struct gdbarch *arch,
611 const char *name,
612 struct type *type,
613 int sim_num,
614 m32c_move_reg_t *read,
615 m32c_move_reg_t *write,
616 struct m32c_reg *rx,
617 struct m32c_reg *ry,
618 int n)
619{
620 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
621 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
622
623 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
624
625 r->name = name;
626 r->type = type;
627 r->arch = arch;
628 r->num = tdep->num_regs;
629 r->sim_num = sim_num;
630 r->dwarf_num = -1;
631 r->general_p = 0;
632 r->dma_p = 0;
633 r->system_p = 0;
634 r->save_restore_p = 0;
635 r->read = read;
636 r->write = write;
637 r->rx = rx;
638 r->ry = ry;
639 r->n = n;
640
641 tdep->num_regs++;
642
643 return r;
644}
645
646
647/* Record NUM as REG's DWARF register number. */
648static void
649set_dwarf_regnum (struct m32c_reg *reg, int num)
650{
651 gdb_assert (num < M32C_MAX_NUM_REGS);
652
653 /* Update the reg->DWARF mapping. Only count the first number
654 assigned to this register. */
655 if (reg->dwarf_num == -1)
656 reg->dwarf_num = num;
657
658 /* Update the DWARF->reg mapping. */
659 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
660}
661
662
663/* Mark REG as a general-purpose register, and return it. */
664static struct m32c_reg *
665mark_general (struct m32c_reg *reg)
666{
667 reg->general_p = 1;
668 return reg;
669}
670
671
672/* Mark REG as a DMA register, and return it. */
673static struct m32c_reg *
674mark_dma (struct m32c_reg *reg)
675{
676 reg->dma_p = 1;
677 return reg;
678}
679
680
681/* Mark REG as a SYSTEM register, and return it. */
682static struct m32c_reg *
683mark_system (struct m32c_reg *reg)
684{
685 reg->system_p = 1;
686 return reg;
687}
688
689
690/* Mark REG as a save-restore register, and return it. */
691static struct m32c_reg *
692mark_save_restore (struct m32c_reg *reg)
693{
694 reg->save_restore_p = 1;
695 return reg;
696}
697
698
699#define FLAGBIT_B 0x0010
700#define FLAGBIT_U 0x0080
701
702/* Handy macros for declaring registers. These all evaluate to
703 pointers to the register declared. Macros that define two
704 registers evaluate to a pointer to the first. */
705
706/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
707#define R(name, type, sim_num) \
708 (add_reg (arch, (name), (type), (sim_num), \
709 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
710
711/* The simulator register number for a raw register named NAME. */
712#define SIM(name) (m32c_sim_reg_ ## name)
713
714/* A raw unsigned 16-bit data register named NAME.
715 NAME should be an identifier, not a string. */
716#define R16U(name) \
717 (R(#name, tdep->uint16, SIM (name)))
718
719/* A raw data address register named NAME.
720 NAME should be an identifier, not a string. */
721#define RA(name) \
722 (R(#name, tdep->data_addr_reg_type, SIM (name)))
723
724/* A raw code address register named NAME. NAME should
725 be an identifier, not a string. */
726#define RC(name) \
727 (R(#name, tdep->code_addr_reg_type, SIM (name)))
728
729/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
730 NAME should be an identifier, not a string. */
731#define RP(name, type) \
732 (R(#name "0", (type), SIM (name ## 0)), \
733 R(#name "1", (type), SIM (name ## 1)) - 1)
734
735/* A raw banked general-purpose data register named NAME.
736 NAME should be an identifier, not a string. */
737#define RBD(name) \
738 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
739 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
740
741/* A raw banked data address register named NAME.
742 NAME should be an identifier, not a string. */
743#define RBA(name) \
744 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
745 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
746
747/* A cooked register named NAME referring to a raw banked register
748 from the bank selected by the current value of FLG. RAW_PAIR
749 should be a pointer to the first register in the banked pair.
750 NAME must be an identifier, not a string. */
751#define CB(name, raw_pair) \
752 (add_reg (arch, #name, (raw_pair)->type, 0, \
753 m32c_banked_read, m32c_banked_write, \
754 (raw_pair), (raw_pair + 1), FLAGBIT_B))
755
756/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
757 access the top and bottom halves of the register pointed to by
758 NAME. NAME should be an identifier. */
759#define CHL(name, type) \
760 (add_reg (arch, #name "h", (type), 0, \
761 m32c_part_read, m32c_part_write, name, NULL, 1), \
762 add_reg (arch, #name "l", (type), 0, \
763 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
764
765/* A register constructed by concatenating the two registers HIGH and
766 LOW, whose name is HIGHLOW and whose type is TYPE. */
767#define CCAT(high, low, type) \
768 (add_reg (arch, #high #low, (type), 0, \
769 m32c_cat_read, m32c_cat_write, (high), (low), 0))
770
771/* Abbreviations for marking register group membership. */
772#define G(reg) (mark_general (reg))
773#define S(reg) (mark_system (reg))
774#define DMA(reg) (mark_dma (reg))
775
776
777/* Construct the register set for ARCH. */
778static void
779make_regs (struct gdbarch *arch)
780{
781 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
782 int mach = gdbarch_bfd_arch_info (arch)->mach;
f79b9530
DJ
783 int num_raw_regs;
784 int num_cooked_regs;
785
786 struct m32c_reg *r0;
787 struct m32c_reg *r1;
788 struct m32c_reg *r2;
789 struct m32c_reg *r3;
790 struct m32c_reg *a0;
791 struct m32c_reg *a1;
792 struct m32c_reg *fb;
793 struct m32c_reg *sb;
794 struct m32c_reg *sp;
795 struct m32c_reg *r0hl;
796 struct m32c_reg *r1hl;
797 struct m32c_reg *r2hl;
798 struct m32c_reg *r3hl;
799 struct m32c_reg *intbhl;
800 struct m32c_reg *r2r0;
801 struct m32c_reg *r3r1;
802 struct m32c_reg *r3r1r2r0;
803 struct m32c_reg *r3r2r1r0;
804 struct m32c_reg *a1a0;
96309189
MS
805
806 struct m32c_reg *raw_r0_pair = RBD (r0);
807 struct m32c_reg *raw_r1_pair = RBD (r1);
808 struct m32c_reg *raw_r2_pair = RBD (r2);
809 struct m32c_reg *raw_r3_pair = RBD (r3);
810 struct m32c_reg *raw_a0_pair = RBA (a0);
811 struct m32c_reg *raw_a1_pair = RBA (a1);
812 struct m32c_reg *raw_fb_pair = RBA (fb);
813
814 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
815 We always declare both raw registers, and deal with the distinction
816 in the pseudoregister. */
817 struct m32c_reg *raw_sb_pair = RBA (sb);
818
819 struct m32c_reg *usp = S (RA (usp));
820 struct m32c_reg *isp = S (RA (isp));
821 struct m32c_reg *intb = S (RC (intb));
822 struct m32c_reg *pc = G (RC (pc));
823 struct m32c_reg *flg = G (R16U (flg));
824
825 if (mach == bfd_mach_m32c)
826 {
827 struct m32c_reg *svf = S (R16U (svf));
828 struct m32c_reg *svp = S (RC (svp));
829 struct m32c_reg *vct = S (RC (vct));
830
831 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
832 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
833 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
834 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
835 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
836 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
837 }
838
f79b9530 839 num_raw_regs = tdep->num_regs;
96309189 840
f79b9530
DJ
841 r0 = G (CB (r0, raw_r0_pair));
842 r1 = G (CB (r1, raw_r1_pair));
843 r2 = G (CB (r2, raw_r2_pair));
844 r3 = G (CB (r3, raw_r3_pair));
845 a0 = G (CB (a0, raw_a0_pair));
846 a1 = G (CB (a1, raw_a1_pair));
847 fb = G (CB (fb, raw_fb_pair));
96309189
MS
848
849 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
850 Specify custom read/write functions that do the right thing. */
f79b9530
DJ
851 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
852 m32c_sb_read, m32c_sb_write,
853 raw_sb_pair, raw_sb_pair + 1, 0));
96309189
MS
854
855 /* The current sp is either usp or isp, depending on the value of
856 the FLG register's U bit. */
f79b9530
DJ
857 sp = G (add_reg (arch, "sp", usp->type, 0,
858 m32c_banked_read, m32c_banked_write,
859 isp, usp, FLAGBIT_U));
96309189 860
f79b9530
DJ
861 r0hl = CHL (r0, tdep->int8);
862 r1hl = CHL (r1, tdep->int8);
863 r2hl = CHL (r2, tdep->int8);
864 r3hl = CHL (r3, tdep->int8);
865 intbhl = CHL (intb, tdep->int16);
96309189 866
f79b9530
DJ
867 r2r0 = CCAT (r2, r0, tdep->int32);
868 r3r1 = CCAT (r3, r1, tdep->int32);
869 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
96309189 870
f79b9530 871 r3r2r1r0
96309189
MS
872 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
873 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
874
96309189
MS
875 if (mach == bfd_mach_m16c)
876 a1a0 = CCAT (a1, a0, tdep->int32);
877 else
878 a1a0 = NULL;
879
f79b9530 880 num_cooked_regs = tdep->num_regs - num_raw_regs;
96309189
MS
881
882 tdep->pc = pc;
883 tdep->flg = flg;
884 tdep->r0 = r0;
885 tdep->r1 = r1;
886 tdep->r2 = r2;
887 tdep->r3 = r3;
888 tdep->r2r0 = r2r0;
889 tdep->r3r2r1r0 = r3r2r1r0;
890 tdep->r3r1r2r0 = r3r1r2r0;
891 tdep->a0 = a0;
892 tdep->a1 = a1;
893 tdep->sb = sb;
894 tdep->fb = fb;
895 tdep->sp = sp;
896
897 /* Set up the DWARF register table. */
898 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
899 set_dwarf_regnum (r0hl + 1, 0x01);
900 set_dwarf_regnum (r0hl + 0, 0x02);
901 set_dwarf_regnum (r1hl + 1, 0x03);
902 set_dwarf_regnum (r1hl + 0, 0x04);
903 set_dwarf_regnum (r0, 0x05);
904 set_dwarf_regnum (r1, 0x06);
905 set_dwarf_regnum (r2, 0x07);
906 set_dwarf_regnum (r3, 0x08);
907 set_dwarf_regnum (a0, 0x09);
908 set_dwarf_regnum (a1, 0x0a);
909 set_dwarf_regnum (fb, 0x0b);
910 set_dwarf_regnum (sp, 0x0c);
911 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
912 set_dwarf_regnum (sb, 0x13);
913 set_dwarf_regnum (r2r0, 0x15);
914 set_dwarf_regnum (r3r1, 0x16);
915 if (a1a0)
916 set_dwarf_regnum (a1a0, 0x17);
917
918 /* Enumerate the save/restore register group.
919
920 The regcache_save and regcache_restore functions apply their read
921 function to each register in this group.
922
923 Since frame_pop supplies frame_unwind_register as its read
924 function, the registers meaningful to the Dwarf unwinder need to
925 be in this group.
926
927 On the other hand, when we make inferior calls, save_inferior_status
928 and restore_inferior_status use them to preserve the current register
929 values across the inferior call. For this, you'd kind of like to
930 preserve all the raw registers, to protect the interrupted code from
931 any sort of bank switching the callee might have done. But we handle
932 those cases so badly anyway --- for example, it matters whether we
933 restore FLG before or after we restore the general-purpose registers,
934 but there's no way to express that --- that it isn't worth worrying
935 about.
936
937 We omit control registers like inthl: if you call a function that
938 changes those, it's probably because you wanted that change to be
939 visible to the interrupted code. */
940 mark_save_restore (r0);
941 mark_save_restore (r1);
942 mark_save_restore (r2);
943 mark_save_restore (r3);
944 mark_save_restore (a0);
945 mark_save_restore (a1);
946 mark_save_restore (sb);
947 mark_save_restore (fb);
948 mark_save_restore (sp);
949 mark_save_restore (pc);
950 mark_save_restore (flg);
951
952 set_gdbarch_num_regs (arch, num_raw_regs);
953 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
954 set_gdbarch_pc_regnum (arch, pc->num);
955 set_gdbarch_sp_regnum (arch, sp->num);
956 set_gdbarch_register_name (arch, m32c_register_name);
957 set_gdbarch_register_type (arch, m32c_register_type);
958 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
959 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
960 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
961 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
962 set_gdbarch_dwarf_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
963 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
964 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
965
966 reggroup_add (arch, general_reggroup);
967 reggroup_add (arch, all_reggroup);
968 reggroup_add (arch, save_reggroup);
969 reggroup_add (arch, restore_reggroup);
970 reggroup_add (arch, system_reggroup);
971 reggroup_add (arch, m32c_dma_reggroup);
972}
973
974
975\f
976/* Breakpoints. */
977
978static const unsigned char *
67d57894 979m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
96309189
MS
980{
981 static unsigned char break_insn[] = { 0x00 }; /* brk */
982
983 *len = sizeof (break_insn);
984 return break_insn;
985}
986
987
988\f
989/* Prologue analysis. */
990
991struct m32c_prologue
992{
993 /* For consistency with the DWARF 2 .debug_frame info generated by
994 GCC, a frame's CFA is the address immediately after the saved
995 return address. */
996
997 /* The architecture for which we generated this prologue info. */
998 struct gdbarch *arch;
999
1000 enum {
1001 /* This function uses a frame pointer. */
1002 prologue_with_frame_ptr,
1003
1004 /* This function has no frame pointer. */
1005 prologue_sans_frame_ptr,
1006
1007 /* This function sets up the stack, so its frame is the first
1008 frame on the stack. */
1009 prologue_first_frame
1010
1011 } kind;
1012
1013 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1014 CFA to where the frame pointer points. This is always zero or
1015 negative. */
1016 LONGEST frame_ptr_offset;
1017
1018 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1019 the stack pointer --- always zero or negative.
1020
1021 Calling this a "size" is a bit misleading, but given that the
1022 stack grows downwards, using offsets for everything keeps one
1023 from going completely sign-crazy: you never change anything's
1024 sign for an ADD instruction; always change the second operand's
1025 sign for a SUB instruction; and everything takes care of
1026 itself.
1027
1028 Functions that use alloca don't have a constant frame size. But
1029 they always have frame pointers, so we must use that to find the
1030 CFA (and perhaps to unwind the stack pointer). */
1031 LONGEST frame_size;
1032
1033 /* The address of the first instruction at which the frame has been
1034 set up and the arguments are where the debug info says they are
1035 --- as best as we can tell. */
1036 CORE_ADDR prologue_end;
1037
1038 /* reg_offset[R] is the offset from the CFA at which register R is
1039 saved, or 1 if register R has not been saved. (Real values are
1040 always zero or negative.) */
1041 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1042};
1043
1044
1045/* The longest I've seen, anyway. */
1046#define M32C_MAX_INSN_LEN (9)
1047
1048/* Processor state, for the prologue analyzer. */
1049struct m32c_pv_state
1050{
1051 struct gdbarch *arch;
1052 pv_t r0, r1, r2, r3;
1053 pv_t a0, a1;
1054 pv_t sb, fb, sp;
1055 pv_t pc;
1056 struct pv_area *stack;
1057
1058 /* Bytes from the current PC, the address they were read from,
1059 and the address of the next unconsumed byte. */
1060 gdb_byte insn[M32C_MAX_INSN_LEN];
1061 CORE_ADDR scan_pc, next_addr;
1062};
1063
1064
1065/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1066 all went well, or non-zero if simulating the action would trash our
1067 state. */
1068static int
1069m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1070{
1071 if (pv_area_store_would_trash (state->stack, state->sp))
1072 return 1;
1073
1074 state->sp = pv_add_constant (state->sp, -size);
1075 pv_area_store (state->stack, state->sp, size, value);
1076
1077 return 0;
1078}
1079
1080
1081/* A source or destination location for an m16c or m32c
1082 instruction. */
1083struct srcdest
1084{
1085 /* If srcdest_reg, the location is a register pointed to by REG.
1086 If srcdest_partial_reg, the location is part of a register pointed
1087 to by REG. We don't try to handle this too well.
1088 If srcdest_mem, the location is memory whose address is ADDR. */
1089 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1090 pv_t *reg, addr;
1091};
1092
1093
1094/* Return the SIZE-byte value at LOC in STATE. */
1095static pv_t
1096m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1097{
1098 if (loc.kind == srcdest_mem)
1099 return pv_area_fetch (state->stack, loc.addr, size);
1100 else if (loc.kind == srcdest_partial_reg)
1101 return pv_unknown ();
1102 else
1103 return *loc.reg;
1104}
1105
1106
1107/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1108 all went well, or non-zero if simulating the store would trash our
1109 state. */
1110static int
1111m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1112 pv_t value, int size)
1113{
1114 if (loc.kind == srcdest_mem)
1115 {
1116 if (pv_area_store_would_trash (state->stack, loc.addr))
1117 return 1;
1118 pv_area_store (state->stack, loc.addr, size, value);
1119 }
1120 else if (loc.kind == srcdest_partial_reg)
1121 *loc.reg = pv_unknown ();
1122 else
1123 *loc.reg = value;
1124
1125 return 0;
1126}
1127
1128
1129static int
1130m32c_sign_ext (int v, int bits)
1131{
1132 int mask = 1 << (bits - 1);
1133 return (v ^ mask) - mask;
1134}
1135
1136static unsigned int
1137m32c_next_byte (struct m32c_pv_state *st)
1138{
1139 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1140 return st->insn[st->next_addr++ - st->scan_pc];
1141}
1142
1143static int
1144m32c_udisp8 (struct m32c_pv_state *st)
1145{
1146 return m32c_next_byte (st);
1147}
1148
1149
1150static int
1151m32c_sdisp8 (struct m32c_pv_state *st)
1152{
1153 return m32c_sign_ext (m32c_next_byte (st), 8);
1154}
1155
1156
1157static int
1158m32c_udisp16 (struct m32c_pv_state *st)
1159{
1160 int low = m32c_next_byte (st);
1161 int high = m32c_next_byte (st);
1162
1163 return low + (high << 8);
1164}
1165
1166
1167static int
1168m32c_sdisp16 (struct m32c_pv_state *st)
1169{
1170 int low = m32c_next_byte (st);
1171 int high = m32c_next_byte (st);
1172
1173 return m32c_sign_ext (low + (high << 8), 16);
1174}
1175
1176
1177static int
1178m32c_udisp24 (struct m32c_pv_state *st)
1179{
1180 int low = m32c_next_byte (st);
1181 int mid = m32c_next_byte (st);
1182 int high = m32c_next_byte (st);
1183
1184 return low + (mid << 8) + (high << 16);
1185}
1186
1187
1188/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1189static int
1190m32c_get_src23 (unsigned char *i)
1191{
1192 return (((i[0] & 0x70) >> 2)
1193 | ((i[1] & 0x30) >> 4));
1194}
1195
1196
1197/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1198static int
1199m32c_get_dest23 (unsigned char *i)
1200{
1201 return (((i[0] & 0x0e) << 1)
1202 | ((i[1] & 0xc0) >> 6));
1203}
1204
1205
1206static struct srcdest
1207m32c_decode_srcdest4 (struct m32c_pv_state *st,
1208 int code, int size)
1209{
1210 struct srcdest sd;
1211
1212 if (code < 6)
1213 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1214 else
1215 sd.kind = srcdest_mem;
1216
d56874a7
DD
1217 sd.addr = pv_unknown ();
1218 sd.reg = 0;
1219
96309189
MS
1220 switch (code)
1221 {
1222 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1223 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1224 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1225 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1226
1227 case 0x4: sd.reg = &st->a0; break;
1228 case 0x5: sd.reg = &st->a1; break;
1229
1230 case 0x6: sd.addr = st->a0; break;
1231 case 0x7: sd.addr = st->a1; break;
1232
1233 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1234 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1235 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1236 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1237
1238 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1239 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1240 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1241 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1242
1243 default:
1244 gdb_assert (0);
1245 }
1246
1247 return sd;
1248}
1249
1250
1251static struct srcdest
1252m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1253{
1254 struct srcdest sd;
1255
d56874a7
DD
1256 sd.addr = pv_unknown ();
1257 sd.reg = 0;
1258
96309189
MS
1259 switch (code)
1260 {
1261 case 0x12:
1262 case 0x13:
1263 case 0x10:
1264 case 0x11:
1265 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1266 break;
1267
1268 case 0x02:
1269 case 0x03:
1270 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1271 break;
1272
1273 default:
1274 sd.kind = srcdest_mem;
1275 break;
1276
1277 }
1278
1279 switch (code)
1280 {
1281 case 0x12: sd.reg = &st->r0; break;
1282 case 0x13: sd.reg = &st->r1; break;
1283 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1284 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1285 case 0x02: sd.reg = &st->a0; break;
1286 case 0x03: sd.reg = &st->a1; break;
1287
1288 case 0x00: sd.addr = st->a0; break;
1289 case 0x01: sd.addr = st->a1; break;
1290 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1291 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1292 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1293 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1294 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1295 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1296 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1297 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1298 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1299 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1300 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1301 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1302 default:
1303 gdb_assert (0);
1304 }
1305
1306 if (ind)
1307 {
1308 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1309 sd.kind = srcdest_mem;
1310 }
1311
1312 return sd;
1313}
1314
1315
1316/* The r16c and r32c machines have instructions with similar
1317 semantics, but completely different machine language encodings. So
1318 we break out the semantics into their own functions, and leave
1319 machine-specific decoding in m32c_analyze_prologue.
1320
1321 The following functions all expect their arguments already decoded,
1322 and they all return zero if analysis should continue past this
1323 instruction, or non-zero if analysis should stop. */
1324
1325
1326/* Simulate an 'enter SIZE' instruction in STATE. */
1327static int
1328m32c_pv_enter (struct m32c_pv_state *state, int size)
1329{
1330 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1331
1332 /* If simulating this store would require us to forget
1333 everything we know about the stack frame in the name of
1334 accuracy, it would be better to just quit now. */
1335 if (pv_area_store_would_trash (state->stack, state->sp))
1336 return 1;
1337
1338 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1339 return 1;
1340 state->fb = state->sp;
1341 state->sp = pv_add_constant (state->sp, -size);
1342
1343 return 0;
1344}
1345
1346
1347static int
1348m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1349 int bit, int src, int size)
1350{
1351 if (bit & src)
1352 {
1353 if (m32c_pv_push (state, reg, size))
1354 return 1;
1355 }
1356
1357 return 0;
1358}
1359
1360
1361/* Simulate a 'pushm SRC' instruction in STATE. */
1362static int
1363m32c_pv_pushm (struct m32c_pv_state *state, int src)
1364{
1365 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1366
1367 /* The bits in SRC indicating which registers to save are:
1368 r0 r1 r2 r3 a0 a1 sb fb */
1369 return
1370 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1371 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1372 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1373 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1374 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1375 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1376 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1377 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1378}
1379
1380/* Return non-zero if VALUE is the first incoming argument register. */
1381
1382static int
1383m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1384{
1385 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1386 return (value.kind == pvk_register
1387 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1388 ? (value.reg == tdep->r1->num)
1389 : (value.reg == tdep->r0->num))
1390 && value.k == 0);
1391}
1392
1393/* Return non-zero if VALUE is an incoming argument register. */
1394
1395static int
1396m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1397{
1398 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1399 return (value.kind == pvk_register
1400 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1401 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1402 : (value.reg == tdep->r0->num))
1403 && value.k == 0);
1404}
1405
1406/* Return non-zero if a store of VALUE to LOC is probably spilling an
1407 argument register to its stack slot in STATE. Such instructions
1408 should be included in the prologue, if possible.
1409
1410 The store is a spill if:
1411 - the value being stored is the original value of an argument register;
1412 - the value has not already been stored somewhere in STACK; and
1413 - LOC is a stack slot (e.g., a memory location whose address is
1414 relative to the original value of the SP). */
1415
1416static int
1417m32c_is_arg_spill (struct m32c_pv_state *st,
1418 struct srcdest loc,
1419 pv_t value)
1420{
1421 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1422
1423 return (m32c_is_arg_reg (st, value)
1424 && loc.kind == srcdest_mem
1425 && pv_is_register (loc.addr, tdep->sp->num)
1426 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1427}
1428
1429/* Return non-zero if a store of VALUE to LOC is probably
1430 copying the struct return address into an address register
1431 for immediate use. This is basically a "spill" into the
1432 address register, instead of onto the stack.
1433
1434 The prerequisites are:
1435 - value being stored is original value of the FIRST arg register;
1436 - value has not already been stored on stack; and
1437 - LOC is an address register (a0 or a1). */
1438
1439static int
1440m32c_is_struct_return (struct m32c_pv_state *st,
1441 struct srcdest loc,
1442 pv_t value)
1443{
1444 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1445
1446 return (m32c_is_1st_arg_reg (st, value)
1447 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1448 && loc.kind == srcdest_reg
1449 && (pv_is_register (*loc.reg, tdep->a0->num)
1450 || pv_is_register (*loc.reg, tdep->a1->num)));
1451}
1452
1453/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1454 was a register save:
1455 - all the named registers should have their original values, and
1456 - the stack pointer should be at a constant offset from the
1457 original stack pointer. */
1458static int
1459m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1460{
1461 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1462 /* The bits in SRC indicating which registers to save are:
1463 r0 r1 r2 r3 a0 a1 sb fb */
1464 return
1465 (pv_is_register (st->sp, tdep->sp->num)
1466 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1467 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1468 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1469 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1470 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1471 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1472 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1473 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1474}
1475
1476
1477/* Function for finding saved registers in a 'struct pv_area'; we pass
1478 this to pv_area_scan.
1479
1480 If VALUE is a saved register, ADDR says it was saved at a constant
1481 offset from the frame base, and SIZE indicates that the whole
1482 register was saved, record its offset in RESULT_UNTYPED. */
1483static void
1484check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1485{
1486 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1487 struct gdbarch *arch = prologue->arch;
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1489
1490 /* Is this the unchanged value of some register being saved on the
1491 stack? */
1492 if (value.kind == pvk_register
1493 && value.k == 0
1494 && pv_is_register (addr, tdep->sp->num))
1495 {
1496 /* Some registers require special handling: they're saved as a
1497 larger value than the register itself. */
1498 CORE_ADDR saved_size = register_size (arch, value.reg);
1499
1500 if (value.reg == tdep->pc->num)
1501 saved_size = tdep->ret_addr_bytes;
7b9ee6a8 1502 else if (register_type (arch, value.reg)
96309189
MS
1503 == tdep->data_addr_reg_type)
1504 saved_size = tdep->push_addr_bytes;
1505
1506 if (size == saved_size)
1507 {
1508 /* Find which end of the saved value corresponds to our
1509 register. */
1510 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1511 prologue->reg_offset[value.reg]
1512 = (addr.k + saved_size - register_size (arch, value.reg));
1513 else
1514 prologue->reg_offset[value.reg] = addr.k;
1515 }
1516 }
1517}
1518
1519
1520/* Analyze the function prologue for ARCH at START, going no further
1521 than LIMIT, and place a description of what we found in
1522 PROLOGUE. */
1523void
1524m32c_analyze_prologue (struct gdbarch *arch,
1525 CORE_ADDR start, CORE_ADDR limit,
1526 struct m32c_prologue *prologue)
1527{
1528 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1529 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1530 CORE_ADDR after_last_frame_related_insn;
1531 struct cleanup *back_to;
1532 struct m32c_pv_state st;
1533
1534 st.arch = arch;
1535 st.r0 = pv_register (tdep->r0->num, 0);
1536 st.r1 = pv_register (tdep->r1->num, 0);
1537 st.r2 = pv_register (tdep->r2->num, 0);
1538 st.r3 = pv_register (tdep->r3->num, 0);
1539 st.a0 = pv_register (tdep->a0->num, 0);
1540 st.a1 = pv_register (tdep->a1->num, 0);
1541 st.sb = pv_register (tdep->sb->num, 0);
1542 st.fb = pv_register (tdep->fb->num, 0);
1543 st.sp = pv_register (tdep->sp->num, 0);
1544 st.pc = pv_register (tdep->pc->num, 0);
1545 st.stack = make_pv_area (tdep->sp->num);
1546 back_to = make_cleanup_free_pv_area (st.stack);
1547
1548 /* Record that the call instruction has saved the return address on
1549 the stack. */
1550 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1551
1552 memset (prologue, 0, sizeof (*prologue));
1553 prologue->arch = arch;
1554 {
1555 int i;
1556 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1557 prologue->reg_offset[i] = 1;
1558 }
1559
1560 st.scan_pc = after_last_frame_related_insn = start;
1561
1562 while (st.scan_pc < limit)
1563 {
1564 pv_t pre_insn_fb = st.fb;
1565 pv_t pre_insn_sp = st.sp;
1566
1567 /* In theory we could get in trouble by trying to read ahead
1568 here, when we only know we're expecting one byte. In
1569 practice I doubt anyone will care, and it makes the rest of
1570 the code easier. */
1571 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1572 /* If we can't fetch the instruction from memory, stop here
1573 and hope for the best. */
1574 break;
1575 st.next_addr = st.scan_pc;
1576
1577 /* The assembly instructions are written as they appear in the
1578 section of the processor manuals that describe the
1579 instruction encodings.
1580
1581 When a single assembly language instruction has several
1582 different machine-language encodings, the manual
1583 distinguishes them by a number in parens, before the
1584 mnemonic. Those numbers are included, as well.
1585
1586 The srcdest decoding instructions have the same names as the
1587 analogous functions in the simulator. */
1588 if (mach == bfd_mach_m16c)
1589 {
1590 /* (1) ENTER #imm8 */
1591 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1592 {
1593 if (m32c_pv_enter (&st, st.insn[2]))
1594 break;
1595 st.next_addr += 3;
1596 }
1597 /* (1) PUSHM src */
1598 else if (st.insn[0] == 0xec)
1599 {
1600 int src = st.insn[1];
1601 if (m32c_pv_pushm (&st, src))
1602 break;
1603 st.next_addr += 2;
1604
1605 if (m32c_pushm_is_reg_save (&st, src))
1606 after_last_frame_related_insn = st.next_addr;
1607 }
1608
1609 /* (6) MOV.size:G src, dest */
1610 else if ((st.insn[0] & 0xfe) == 0x72)
1611 {
1612 int size = (st.insn[0] & 0x01) ? 2 : 1;
f79b9530
DJ
1613 struct srcdest src;
1614 struct srcdest dest;
1615 pv_t src_value;
96309189
MS
1616 st.next_addr += 2;
1617
f79b9530 1618 src
96309189 1619 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
f79b9530 1620 dest
96309189 1621 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
f79b9530 1622 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1623
1624 if (m32c_is_arg_spill (&st, dest, src_value))
1625 after_last_frame_related_insn = st.next_addr;
1626 else if (m32c_is_struct_return (&st, dest, src_value))
1627 after_last_frame_related_insn = st.next_addr;
1628
1629 if (m32c_srcdest_store (&st, dest, src_value, size))
1630 break;
1631 }
1632
1633 /* (1) LDC #IMM16, sp */
1634 else if (st.insn[0] == 0xeb
1635 && st.insn[1] == 0x50)
1636 {
1637 st.next_addr += 2;
1638 st.sp = pv_constant (m32c_udisp16 (&st));
1639 }
1640
1641 else
1642 /* We've hit some instruction we don't know how to simulate.
1643 Strictly speaking, we should set every value we're
1644 tracking to "unknown". But we'll be optimistic, assume
1645 that we have enough information already, and stop
1646 analysis here. */
1647 break;
1648 }
1649 else
1650 {
1651 int src_indirect = 0;
1652 int dest_indirect = 0;
1653 int i = 0;
1654
1655 gdb_assert (mach == bfd_mach_m32c);
1656
1657 /* Check for prefix bytes indicating indirect addressing. */
1658 if (st.insn[0] == 0x41)
1659 {
1660 src_indirect = 1;
1661 i++;
1662 }
1663 else if (st.insn[0] == 0x09)
1664 {
1665 dest_indirect = 1;
1666 i++;
1667 }
1668 else if (st.insn[0] == 0x49)
1669 {
1670 src_indirect = dest_indirect = 1;
1671 i++;
1672 }
1673
1674 /* (1) ENTER #imm8 */
1675 if (st.insn[i] == 0xec)
1676 {
1677 if (m32c_pv_enter (&st, st.insn[i + 1]))
1678 break;
1679 st.next_addr += 2;
1680 }
1681
1682 /* (1) PUSHM src */
1683 else if (st.insn[i] == 0x8f)
1684 {
1685 int src = st.insn[i + 1];
1686 if (m32c_pv_pushm (&st, src))
1687 break;
1688 st.next_addr += 2;
1689
1690 if (m32c_pushm_is_reg_save (&st, src))
1691 after_last_frame_related_insn = st.next_addr;
1692 }
1693
1694 /* (7) MOV.size:G src, dest */
1695 else if ((st.insn[i] & 0x80) == 0x80
1696 && (st.insn[i + 1] & 0x0f) == 0x0b
1697 && m32c_get_src23 (&st.insn[i]) < 20
1698 && m32c_get_dest23 (&st.insn[i]) < 20)
1699 {
f79b9530
DJ
1700 struct srcdest src;
1701 struct srcdest dest;
1702 pv_t src_value;
96309189
MS
1703 int bw = st.insn[i] & 0x01;
1704 int size = bw ? 2 : 1;
96309189
MS
1705 st.next_addr += 2;
1706
f79b9530 1707 src
96309189
MS
1708 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1709 size, src_indirect);
f79b9530 1710 dest
96309189
MS
1711 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1712 size, dest_indirect);
f79b9530 1713 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1714
1715 if (m32c_is_arg_spill (&st, dest, src_value))
1716 after_last_frame_related_insn = st.next_addr;
1717
1718 if (m32c_srcdest_store (&st, dest, src_value, size))
1719 break;
1720 }
1721 /* (2) LDC #IMM24, sp */
1722 else if (st.insn[i] == 0xd5
1723 && st.insn[i + 1] == 0x29)
1724 {
1725 st.next_addr += 2;
1726 st.sp = pv_constant (m32c_udisp24 (&st));
1727 }
1728 else
1729 /* We've hit some instruction we don't know how to simulate.
1730 Strictly speaking, we should set every value we're
1731 tracking to "unknown". But we'll be optimistic, assume
1732 that we have enough information already, and stop
1733 analysis here. */
1734 break;
1735 }
1736
1737 /* If this instruction changed the FB or decreased the SP (i.e.,
1738 allocated more stack space), then this may be a good place to
1739 declare the prologue finished. However, there are some
1740 exceptions:
1741
1742 - If the instruction just changed the FB back to its original
1743 value, then that's probably a restore instruction. The
1744 prologue should definitely end before that.
1745
1746 - If the instruction increased the value of the SP (that is,
1747 shrunk the frame), then it's probably part of a frame
1748 teardown sequence, and the prologue should end before
1749 that. */
1750
1751 if (! pv_is_identical (st.fb, pre_insn_fb))
1752 {
1753 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1754 after_last_frame_related_insn = st.next_addr;
1755 }
1756 else if (! pv_is_identical (st.sp, pre_insn_sp))
1757 {
1758 /* The comparison of the constants looks odd, there, because
1759 .k is unsigned. All it really means is that the SP is
1760 lower than it was before the instruction. */
1761 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1762 && pv_is_register (st.sp, tdep->sp->num)
1763 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1764 after_last_frame_related_insn = st.next_addr;
1765 }
1766
1767 st.scan_pc = st.next_addr;
1768 }
1769
1770 /* Did we load a constant value into the stack pointer? */
1771 if (pv_is_constant (st.sp))
1772 prologue->kind = prologue_first_frame;
1773
1774 /* Alternatively, did we initialize the frame pointer? Remember
1775 that the CFA is the address after the return address. */
1776 if (pv_is_register (st.fb, tdep->sp->num))
1777 {
1778 prologue->kind = prologue_with_frame_ptr;
1779 prologue->frame_ptr_offset = st.fb.k;
1780 }
1781
1782 /* Is the frame size a known constant? Remember that frame_size is
1783 actually the offset from the CFA to the SP (i.e., a negative
1784 value). */
1785 else if (pv_is_register (st.sp, tdep->sp->num))
1786 {
1787 prologue->kind = prologue_sans_frame_ptr;
1788 prologue->frame_size = st.sp.k;
1789 }
1790
1791 /* We haven't been able to make sense of this function's frame. Treat
1792 it as the first frame. */
1793 else
1794 prologue->kind = prologue_first_frame;
1795
1796 /* Record where all the registers were saved. */
1797 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1798
1799 prologue->prologue_end = after_last_frame_related_insn;
1800
1801 do_cleanups (back_to);
1802}
1803
1804
1805static CORE_ADDR
1806m32c_skip_prologue (CORE_ADDR ip)
1807{
1808 char *name;
1809 CORE_ADDR func_addr, func_end, sal_end;
1810 struct m32c_prologue p;
1811
1812 /* Try to find the extent of the function that contains IP. */
1813 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1814 return ip;
1815
1816 /* Find end by prologue analysis. */
1817 m32c_analyze_prologue (current_gdbarch, ip, func_end, &p);
1818 /* Find end by line info. */
1819 sal_end = skip_prologue_using_sal (ip);
1820 /* Return whichever is lower. */
1821 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1822 return sal_end;
1823 else
1824 return p.prologue_end;
1825}
1826
1827
1828\f
1829/* Stack unwinding. */
1830
1831static struct m32c_prologue *
1832m32c_analyze_frame_prologue (struct frame_info *next_frame,
1833 void **this_prologue_cache)
1834{
1835 if (! *this_prologue_cache)
1836 {
93d42b30 1837 CORE_ADDR func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
96309189
MS
1838 CORE_ADDR stop_addr = frame_pc_unwind (next_frame);
1839
1840 /* If we couldn't find any function containing the PC, then
1841 just initialize the prologue cache, but don't do anything. */
1842 if (! func_start)
1843 stop_addr = func_start;
1844
1845 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1846 m32c_analyze_prologue (get_frame_arch (next_frame),
1847 func_start, stop_addr, *this_prologue_cache);
1848 }
1849
1850 return *this_prologue_cache;
1851}
1852
1853
1854static CORE_ADDR
1855m32c_frame_base (struct frame_info *next_frame,
1856 void **this_prologue_cache)
1857{
1858 struct m32c_prologue *p
1859 = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1860 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1861
1862 /* In functions that use alloca, the distance between the stack
1863 pointer and the frame base varies dynamically, so we can't use
1864 the SP plus static information like prologue analysis to find the
1865 frame base. However, such functions must have a frame pointer,
1866 to be able to restore the SP on exit. So whenever we do have a
1867 frame pointer, use that to find the base. */
1868 switch (p->kind)
1869 {
1870 case prologue_with_frame_ptr:
1871 {
1872 CORE_ADDR fb
1873 = frame_unwind_register_unsigned (next_frame, tdep->fb->num);
1874 return fb - p->frame_ptr_offset;
1875 }
1876
1877 case prologue_sans_frame_ptr:
1878 {
1879 CORE_ADDR sp
1880 = frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1881 return sp - p->frame_size;
1882 }
1883
1884 case prologue_first_frame:
1885 return 0;
1886
1887 default:
1888 gdb_assert (0);
1889 }
1890}
1891
1892
1893static void
1894m32c_this_id (struct frame_info *next_frame,
1895 void **this_prologue_cache,
1896 struct frame_id *this_id)
1897{
1898 CORE_ADDR base = m32c_frame_base (next_frame, this_prologue_cache);
1899
1900 if (base)
93d42b30
DJ
1901 *this_id = frame_id_build (base,
1902 frame_func_unwind (next_frame, NORMAL_FRAME));
96309189
MS
1903 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1904}
1905
1906
1907static void
1908m32c_prev_register (struct frame_info *next_frame,
1909 void **this_prologue_cache,
1910 int regnum, int *optimizedp,
1911 enum lval_type *lvalp, CORE_ADDR *addrp,
1912 int *realnump, gdb_byte *bufferp)
1913{
1914 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1915 struct m32c_prologue *p
1916 = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1917 CORE_ADDR frame_base = m32c_frame_base (next_frame, this_prologue_cache);
1918 int reg_size = register_size (get_frame_arch (next_frame), regnum);
1919
1920 if (regnum == tdep->sp->num)
1921 {
1922 *optimizedp = 0;
1923 *lvalp = not_lval;
1924 *addrp = 0;
1925 *realnump = -1;
1926 if (bufferp)
1927 store_unsigned_integer (bufferp, reg_size, frame_base);
1928 }
1929
1930 /* If prologue analysis says we saved this register somewhere,
1931 return a description of the stack slot holding it. */
1932 else if (p->reg_offset[regnum] != 1)
1933 {
1934 *optimizedp = 0;
1935 *lvalp = lval_memory;
1936 *addrp = frame_base + p->reg_offset[regnum];
1937 *realnump = -1;
1938 if (bufferp)
1939 get_frame_memory (next_frame, *addrp, bufferp, reg_size);
1940 }
1941
1942 /* Otherwise, presume we haven't changed the value of this
1943 register, and get it from the next frame. */
1944 else
5efde112
DJ
1945 {
1946 *optimizedp = 0;
1947 *lvalp = lval_register;
1948 *addrp = 0;
1949 *realnump = regnum;
1950 if (bufferp)
1951 frame_unwind_register (next_frame, *realnump, bufferp);
1952 }
96309189
MS
1953}
1954
1955
1956static const struct frame_unwind m32c_unwind = {
1957 NORMAL_FRAME,
1958 m32c_this_id,
1959 m32c_prev_register
1960};
1961
1962
1963static const struct frame_unwind *
1964m32c_frame_sniffer (struct frame_info *next_frame)
1965{
1966 return &m32c_unwind;
1967}
1968
1969
1970static CORE_ADDR
1971m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1972{
1973 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1974 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1975}
1976
1977
1978static CORE_ADDR
1979m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1980{
1981 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1982 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1983}
1984
1985\f
1986/* Inferior calls. */
1987
1988/* The calling conventions, according to GCC:
1989
1990 r8c, m16c
1991 ---------
1992 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1993 HImode), (2) is named, and (3) is an integer or pointer type (no
1994 structs, floats, etc). Otherwise, it's passed on the stack.
1995
1996 Second arg may be passed in r2, same restrictions (but not QImode),
1997 even if the first arg is passed on the stack.
1998
1999 Third and further args are passed on the stack. No padding is
2000 used, stack "alignment" is 8 bits.
2001
2002 m32cm, m32c
2003 -----------
2004
2005 First arg may be passed in r0l or r0, same restrictions as above.
2006
2007 Second and further args are passed on the stack. Padding is used
2008 after QImode parameters (i.e. lower-addressed byte is the value,
2009 higher-addressed byte is the padding), stack "alignment" is 16
2010 bits. */
2011
2012
2013/* Return true if TYPE is a type that can be passed in registers. (We
2014 ignore the size, and pay attention only to the type code;
2015 acceptable sizes depends on which register is being considered to
2016 hold it.) */
2017static int
2018m32c_reg_arg_type (struct type *type)
2019{
2020 enum type_code code = TYPE_CODE (type);
2021
2022 return (code == TYPE_CODE_INT
2023 || code == TYPE_CODE_ENUM
2024 || code == TYPE_CODE_PTR
2025 || code == TYPE_CODE_REF
2026 || code == TYPE_CODE_BOOL
2027 || code == TYPE_CODE_CHAR);
2028}
2029
2030
2031static CORE_ADDR
2032m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2033 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2034 struct value **args, CORE_ADDR sp, int struct_return,
2035 CORE_ADDR struct_addr)
2036{
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2038 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2039 CORE_ADDR cfa;
2040 int i;
2041
2042 /* The number of arguments given in this function's prototype, or
2043 zero if it has a non-prototyped function type. The m32c ABI
2044 passes arguments mentioned in the prototype differently from
2045 those in the ellipsis of a varargs function, or from those passed
2046 to a non-prototyped function. */
2047 int num_prototyped_args = 0;
2048
2049 {
2050 struct type *func_type = value_type (function);
2051
2052 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2053 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2054
2055#if 0
2056 /* The ABI description in gcc/config/m32c/m32c.abi says that
2057 we need to handle prototyped and non-prototyped functions
2058 separately, but the code in GCC doesn't actually do so. */
2059 if (TYPE_PROTOTYPED (func_type))
2060#endif
2061 num_prototyped_args = TYPE_NFIELDS (func_type);
2062 }
2063
2064 /* First, if the function returns an aggregate by value, push a
2065 pointer to a buffer for it. This doesn't affect the way
2066 subsequent arguments are allocated to registers. */
2067 if (struct_return)
2068 {
2069 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2070 sp -= ptr_len;
2071 write_memory_unsigned_integer (sp, ptr_len, struct_addr);
2072 }
2073
2074 /* Push the arguments. */
2075 for (i = nargs - 1; i >= 0; i--)
2076 {
2077 struct value *arg = args[i];
2078 const gdb_byte *arg_bits = value_contents (arg);
2079 struct type *arg_type = value_type (arg);
2080 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2081
2082 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2083 if (i == 0
2084 && arg_size <= 2
2085 && i < num_prototyped_args
2086 && m32c_reg_arg_type (arg_type))
2087 {
2088 /* Extract and re-store as an integer as a terse way to make
2089 sure it ends up in the least significant end of r1. (GDB
2090 should avoid assuming endianness, even on uni-endian
2091 processors.) */
2092 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
2093 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2094 regcache_cooked_write_unsigned (regcache, reg->num, u);
2095 }
2096
2097 /* Can it go in r2? */
2098 else if (mach == bfd_mach_m16c
2099 && i == 1
2100 && arg_size == 2
2101 && i < num_prototyped_args
2102 && m32c_reg_arg_type (arg_type))
2103 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2104
2105 /* Everything else goes on the stack. */
2106 else
2107 {
2108 sp -= arg_size;
2109
2110 /* Align the stack. */
2111 if (mach == bfd_mach_m32c)
2112 sp &= ~1;
2113
2114 write_memory (sp, arg_bits, arg_size);
2115 }
2116 }
2117
2118 /* This is the CFA we use to identify the dummy frame. */
2119 cfa = sp;
2120
2121 /* Push the return address. */
2122 sp -= tdep->ret_addr_bytes;
2123 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
2124
2125 /* Update the stack pointer. */
2126 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2127
2128 /* We need to borrow an odd trick from the i386 target here.
2129
2130 The value we return from this function gets used as the stack
2131 address (the CFA) for the dummy frame's ID. The obvious thing is
2132 to return the new TOS. However, that points at the return
2133 address, saved on the stack, which is inconsistent with the CFA's
2134 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2135 .debug_frame info uses the address immediately after the saved
2136 return address. So you end up with a dummy frame whose CFA
2137 points at the return address, but the frame for the function
2138 being called has a CFA pointing after the return address: the
2139 younger CFA is *greater than* the older CFA. The sanity checks
2140 in frame.c don't like that.
2141
2142 So we try to be consistent with the CFA's used by DWARF 2.
2143 Having a dummy frame and a real frame with the *same* CFA is
2144 tolerable. */
2145 return cfa;
2146}
2147
2148
2149static struct frame_id
2150m32c_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2151{
2152 /* This needs to return a frame ID whose PC is the return address
2153 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2154 m32c_push_dummy_call returned.
2155
2156 m32c_unwind_sp gives us the CFA, which is the value the SP had
2157 before the return address was pushed. */
2158 return frame_id_build (m32c_unwind_sp (gdbarch, next_frame),
2159 frame_pc_unwind (next_frame));
2160}
2161
2162
2163\f
2164/* Return values. */
2165
2166/* Return value conventions, according to GCC:
2167
2168 r8c, m16c
2169 ---------
2170
2171 QImode in r0l
2172 HImode in r0
2173 SImode in r2r0
2174 near pointer in r0
2175 far pointer in r2r0
2176
2177 Aggregate values (regardless of size) are returned by pushing a
2178 pointer to a temporary area on the stack after the args are pushed.
2179 The function fills in this area with the value. Note that this
2180 pointer on the stack does not affect how register arguments, if any,
2181 are configured.
2182
2183 m32cm, m32c
2184 -----------
2185 Same. */
2186
2187/* Return non-zero if values of type TYPE are returned by storing them
2188 in a buffer whose address is passed on the stack, ahead of the
2189 other arguments. */
2190static int
2191m32c_return_by_passed_buf (struct type *type)
2192{
2193 enum type_code code = TYPE_CODE (type);
2194
2195 return (code == TYPE_CODE_STRUCT
2196 || code == TYPE_CODE_UNION);
2197}
2198
2199static enum return_value_convention
2200m32c_return_value (struct gdbarch *gdbarch,
2201 struct type *valtype,
2202 struct regcache *regcache,
2203 gdb_byte *readbuf,
2204 const gdb_byte *writebuf)
2205{
2206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2207 enum return_value_convention conv;
2208 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2209
2210 if (m32c_return_by_passed_buf (valtype))
2211 conv = RETURN_VALUE_STRUCT_CONVENTION;
2212 else
2213 conv = RETURN_VALUE_REGISTER_CONVENTION;
2214
2215 if (readbuf)
2216 {
2217 /* We should never be called to find values being returned by
2218 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2219 unless we made the call ourselves. */
2220 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2221
2222 gdb_assert (valtype_len <= 8);
2223
2224 /* Anything that fits in r0 is returned there. */
2225 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2226 {
2227 ULONGEST u;
2228 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2229 store_unsigned_integer (readbuf, valtype_len, u);
2230 }
2231 else
2232 {
2233 /* Everything else is passed in mem0, using as many bytes as
2234 needed. This is not what the Renesas tools do, but it's
2235 what GCC does at the moment. */
2236 struct minimal_symbol *mem0
2237 = lookup_minimal_symbol ("mem0", NULL, NULL);
2238
2239 if (! mem0)
2240 error ("The return value is stored in memory at 'mem0', "
2241 "but GDB cannot find\n"
2242 "its address.");
2243 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2244 }
2245 }
2246
2247 if (writebuf)
2248 {
2249 /* We should never be called to store values to be returned
2250 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2251 finding the buffer, unless we made the call ourselves. */
2252 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2253
2254 gdb_assert (valtype_len <= 8);
2255
2256 /* Anything that fits in r0 is returned there. */
2257 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2258 {
2259 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
2260 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2261 }
2262 else
2263 {
2264 /* Everything else is passed in mem0, using as many bytes as
2265 needed. This is not what the Renesas tools do, but it's
2266 what GCC does at the moment. */
2267 struct minimal_symbol *mem0
2268 = lookup_minimal_symbol ("mem0", NULL, NULL);
2269
2270 if (! mem0)
2271 error ("The return value is stored in memory at 'mem0', "
2272 "but GDB cannot find\n"
2273 " its address.");
2274 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2275 (char *) writebuf, valtype_len);
2276 }
2277 }
2278
2279 return conv;
2280}
2281
2282
2283\f
2284/* Trampolines. */
2285
2286/* The m16c and m32c use a trampoline function for indirect function
2287 calls. An indirect call looks like this:
2288
2289 ... push arguments ...
2290 ... push target function address ...
2291 jsr.a m32c_jsri16
2292
2293 The code for m32c_jsri16 looks like this:
2294
2295 m32c_jsri16:
2296
2297 # Save return address.
2298 pop.w m32c_jsri_ret
2299 pop.b m32c_jsri_ret+2
2300
2301 # Store target function address.
2302 pop.w m32c_jsri_addr
2303
2304 # Re-push return address.
2305 push.b m32c_jsri_ret+2
2306 push.w m32c_jsri_ret
2307
2308 # Call the target function.
2309 jmpi.a m32c_jsri_addr
2310
2311 Without further information, GDB will treat calls to m32c_jsri16
2312 like calls to any other function. Since m32c_jsri16 doesn't have
2313 debugging information, that normally means that GDB sets a step-
2314 resume breakpoint and lets the program continue --- which is not
2315 what the user wanted. (Giving the trampoline debugging info
2316 doesn't help: the user expects the program to stop in the function
2317 their program is calling, not in some trampoline code they've never
2318 seen before.)
2319
e76f05fa 2320 The gdbarch_skip_trampoline_code method tells GDB how to step
96309189
MS
2321 through such trampoline functions transparently to the user. When
2322 given the address of a trampoline function's first instruction,
e76f05fa 2323 gdbarch_skip_trampoline_code should return the address of the first
96309189
MS
2324 instruction of the function really being called. If GDB decides it
2325 wants to step into that function, it will set a breakpoint there
2326 and silently continue to it.
2327
2328 We recognize the trampoline by name, and extract the target address
2329 directly from the stack. This isn't great, but recognizing by its
2330 code sequence seems more fragile. */
2331
2332static CORE_ADDR
52f729a7 2333m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
96309189
MS
2334{
2335 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2336
2337 /* It would be nicer to simply look up the addresses of known
2338 trampolines once, and then compare stop_pc with them. However,
2339 we'd need to ensure that that cached address got invalidated when
2340 someone loaded a new executable, and I'm not quite sure of the
2341 best way to do that. find_pc_partial_function does do some
2342 caching, so we'll see how this goes. */
2343 char *name;
2344 CORE_ADDR start, end;
2345
2346 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2347 {
2348 /* Are we stopped at the beginning of the trampoline function? */
2349 if (strcmp (name, "m32c_jsri16") == 0
2350 && stop_pc == start)
2351 {
2352 /* Get the stack pointer. The return address is at the top,
2353 and the target function's address is just below that. We
2354 know it's a two-byte address, since the trampoline is
2355 m32c_jsri*16*. */
2356 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2357 CORE_ADDR target
2358 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
2359
2360 /* What we have now is the address of a jump instruction.
2361 What we need is the destination of that jump.
2362 The opcode is 1 byte, and the destination is the next 3 bytes.
2363 */
2364 target = read_memory_unsigned_integer (target + 1, 3);
2365 return target;
2366 }
2367 }
2368
2369 return 0;
2370}
2371
2372
2373/* Address/pointer conversions. */
2374
2375/* On the m16c, there is a 24-bit address space, but only a very few
2376 instructions can generate addresses larger than 0xffff: jumps,
2377 jumps to subroutines, and the lde/std (load/store extended)
2378 instructions.
2379
2380 Since GCC can only support one size of pointer, we can't have
2381 distinct 'near' and 'far' pointer types; we have to pick one size
2382 for everything. If we wanted to use 24-bit pointers, then GCC
2383 would have to use lde and ste for all memory references, which
2384 would be terrible for performance and code size. So the GNU
2385 toolchain uses 16-bit pointers for everything, and gives up the
2386 ability to have pointers point outside the first 64k of memory.
2387
2388 However, as a special hack, we let the linker place functions at
2389 addresses above 0xffff, as long as it also places a trampoline in
2390 the low 64k for every function whose address is taken. Each
2391 trampoline consists of a single jmp.a instruction that jumps to the
2392 function's real entry point. Pointers to functions can be 16 bits
2393 long, even though the functions themselves are at higher addresses:
2394 the pointers refer to the trampolines, not the functions.
2395
2396 This complicates things for GDB, however: given the address of a
2397 function (from debug info or linker symbols, say) which could be
2398 anywhere in the 24-bit address space, how can we find an
2399 appropriate 16-bit value to use as a pointer to it?
2400
2401 If the linker has not generated a trampoline for the function,
2402 we're out of luck. Well, I guess we could malloc some space and
2403 write a jmp.a instruction to it, but I'm not going to get into that
2404 at the moment.
2405
2406 If the linker has generated a trampoline for the function, then it
2407 also emitted a symbol for the trampoline: if the function's linker
2408 symbol is named NAME, then the function's trampoline's linker
2409 symbol is named NAME.plt.
2410
2411 So, given a code address:
2412 - We try to find a linker symbol at that address.
2413 - If we find such a symbol named NAME, we look for a linker symbol
2414 named NAME.plt.
2415 - If we find such a symbol, we assume it is a trampoline, and use
2416 its address as the pointer value.
2417
2418 And, given a function pointer:
2419 - We try to find a linker symbol at that address named NAME.plt.
2420 - If we find such a symbol, we look for a linker symbol named NAME.
2421 - If we find that, we provide that as the function's address.
2422 - If any of the above steps fail, we return the original address
2423 unchanged; it might really be a function in the low 64k.
2424
2425 See? You *knew* there was a reason you wanted to be a computer
2426 programmer! :) */
2427
2428static void
2429m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
2430{
f79b9530 2431 enum type_code target_code;
96309189
MS
2432 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2433 TYPE_CODE (type) == TYPE_CODE_REF);
2434
f79b9530 2435 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2436
2437 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2438 {
f79b9530
DJ
2439 char *func_name;
2440 char *tramp_name;
2441 struct minimal_symbol *tramp_msym;
2442
96309189
MS
2443 /* Try to find a linker symbol at this address. */
2444 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2445
2446 if (! func_msym)
2447 error ("Cannot convert code address %s to function pointer:\n"
2448 "couldn't find a symbol at that address, to find trampoline.",
2449 paddr_nz (addr));
2450
f79b9530
DJ
2451 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2452 tramp_name = xmalloc (strlen (func_name) + 5);
96309189
MS
2453 strcpy (tramp_name, func_name);
2454 strcat (tramp_name, ".plt");
2455
2456 /* Try to find a linker symbol for the trampoline. */
f79b9530 2457 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
96309189
MS
2458
2459 /* We've either got another copy of the name now, or don't need
2460 the name any more. */
2461 xfree (tramp_name);
2462
2463 if (! tramp_msym)
2464 error ("Cannot convert code address %s to function pointer:\n"
2465 "couldn't find trampoline named '%s.plt'.",
2466 paddr_nz (addr), func_name);
2467
2468 /* The trampoline's address is our pointer. */
2469 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2470 }
2471
2472 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
2473}
2474
2475
2476static CORE_ADDR
2477m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
2478{
f79b9530
DJ
2479 CORE_ADDR ptr;
2480 enum type_code target_code;
2481
96309189
MS
2482 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2483 TYPE_CODE (type) == TYPE_CODE_REF);
2484
f79b9530 2485 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
96309189 2486
f79b9530 2487 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2488
2489 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2490 {
2491 /* See if there is a minimal symbol at that address whose name is
2492 "NAME.plt". */
2493 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2494
2495 if (ptr_msym)
2496 {
2497 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2498 int len = strlen (ptr_msym_name);
2499
2500 if (len > 4
2501 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2502 {
f79b9530 2503 struct minimal_symbol *func_msym;
96309189
MS
2504 /* We have a .plt symbol; try to find the symbol for the
2505 corresponding function.
2506
2507 Since the trampoline contains a jump instruction, we
2508 could also just extract the jump's target address. I
2509 don't see much advantage one way or the other. */
2510 char *func_name = xmalloc (len - 4 + 1);
2511 memcpy (func_name, ptr_msym_name, len - 4);
2512 func_name[len - 4] = '\0';
f79b9530 2513 func_msym
96309189
MS
2514 = lookup_minimal_symbol (func_name, NULL, NULL);
2515
2516 /* If we do have such a symbol, return its value as the
2517 function's true address. */
2518 if (func_msym)
2519 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2520 }
2521 }
2522 }
2523
2524 return ptr;
2525}
2526
7830cb4f 2527void
a54fba4c 2528m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
7830cb4f
CV
2529 int *frame_regnum,
2530 LONGEST *frame_offset)
2531{
2532 char *name;
2533 CORE_ADDR func_addr, func_end, sal_end;
2534 struct m32c_prologue p;
2535
594f7785 2536 struct regcache *regcache = get_current_regcache ();
a54fba4c 2537 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7830cb4f
CV
2538
2539 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2540 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2541
a54fba4c 2542 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
7830cb4f
CV
2543 switch (p.kind)
2544 {
2545 case prologue_with_frame_ptr:
594f7785 2546 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
7830cb4f
CV
2547 *frame_offset = p.frame_ptr_offset;
2548 break;
2549 case prologue_sans_frame_ptr:
594f7785 2550 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2551 *frame_offset = p.frame_size;
2552 break;
2553 default:
594f7785 2554 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2555 *frame_offset = 0;
2556 break;
2557 }
2558 /* Sanity check */
a54fba4c 2559 if (*frame_regnum > gdbarch_num_regs (gdbarch))
7830cb4f
CV
2560 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2561}
96309189
MS
2562
2563\f
2564/* Initialization. */
2565
2566static struct gdbarch *
2567m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2568{
2569 struct gdbarch *arch;
2570 struct gdbarch_tdep *tdep;
2571 unsigned long mach = info.bfd_arch_info->mach;
2572
2573 /* Find a candidate among the list of architectures we've created
2574 already. */
2575 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2576 arches != NULL;
2577 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2578 return arches->gdbarch;
2579
2580 tdep = xcalloc (1, sizeof (*tdep));
2581 arch = gdbarch_alloc (&info, tdep);
2582
2583 /* Essential types. */
2584 make_types (arch);
2585
2586 /* Address/pointer conversions. */
2587 if (mach == bfd_mach_m16c)
2588 {
2589 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2590 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2591 }
2592
2593 /* Register set. */
2594 make_regs (arch);
2595
2596 /* Disassembly. */
2597 set_gdbarch_print_insn (arch, print_insn_m32c);
2598
2599 /* Breakpoints. */
2600 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2601
2602 /* Prologue analysis and unwinding. */
2603 set_gdbarch_inner_than (arch, core_addr_lessthan);
2604 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2605 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2606 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2607#if 0
2608 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2609 They may be in the dwarf2 cfi code in GDB, or they may be in
2610 the debug info emitted by the upstream toolchain. I don't
2611 know which, but I do know that the prologue analyzer works better.
2612 MVS 04/13/06
2613 */
2614 frame_unwind_append_sniffer (arch, dwarf2_frame_sniffer);
2615#endif
2616 frame_unwind_append_sniffer (arch, m32c_frame_sniffer);
2617
2618 /* Inferior calls. */
2619 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2620 set_gdbarch_return_value (arch, m32c_return_value);
2621 set_gdbarch_unwind_dummy_id (arch, m32c_unwind_dummy_id);
2622
2623 /* Trampolines. */
2624 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2625
7830cb4f
CV
2626 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2627
96309189
MS
2628 return arch;
2629}
2630
2631
2632void
2633_initialize_m32c_tdep (void)
2634{
2635 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2636
2637 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2638}
This page took 0.259016 seconds and 4 git commands to generate.