gdb/testsuite: restore configure script
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
3666a048 3 Copyright (C) 1999-2021 Free Software Foundation, Inc.
931aecf5 4
ffe1f3ee 5 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 6
a9762ec7
JB
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 21
78073dd8 22
82c230c2
SC
23#include "defs.h"
24#include "frame.h"
1ea653ae
SC
25#include "frame-unwind.h"
26#include "frame-base.h"
82ca8957 27#include "dwarf2/frame.h"
1ea653ae 28#include "trad-frame.h"
82c230c2
SC
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
82c230c2
SC
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "arch-utils.h"
4e052eda 39#include "regcache.h"
b631436b 40#include "reggroups.h"
78073dd8 41
82c230c2
SC
42#include "target.h"
43#include "opcode/m68hc11.h"
81967506
SC
44#include "elf/m68hc11.h"
45#include "elf-bfd.h"
78073dd8 46
7df11f59
SC
47/* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59 58
025bb325 59#define MSYMBOL_SET_RTC(msym) \
dda83cd7 60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
7df11f59 61
025bb325 62#define MSYMBOL_SET_RTI(msym) \
dda83cd7 63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
7df11f59
SC
64
65#define MSYMBOL_IS_RTC(msym) \
b887350f 66 MSYMBOL_TARGET_FLAG_1 (msym)
7df11f59
SC
67
68#define MSYMBOL_IS_RTI(msym) \
b887350f 69 MSYMBOL_TARGET_FLAG_2 (msym)
7df11f59 70
7df11f59
SC
71enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75};
76
77
7157eed4 78/* Register numbers of various important registers. */
78073dd8 79
82c230c2
SC
80#define HARD_X_REGNUM 0
81#define HARD_D_REGNUM 1
82#define HARD_Y_REGNUM 2
83#define HARD_SP_REGNUM 3
84#define HARD_PC_REGNUM 4
85
86#define HARD_A_REGNUM 5
87#define HARD_B_REGNUM 6
88#define HARD_CCR_REGNUM 7
5706502a
SC
89
90/* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
f57d151a 93 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
94 For this it has the same number as Z register (which is not used). */
95#define HARD_PAGE_REGNUM 8
96#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
97
98/* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101#define SOFT_Z_REGNUM 8
102
103/* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106#define SOFT_FP_REGNUM 9
107#define SOFT_TMP_REGNUM 10
108#define SOFT_ZS_REGNUM 11
109#define SOFT_XY_REGNUM 12
f91a8b6b
SC
110#define SOFT_UNUSED_REGNUM 13
111#define SOFT_D1_REGNUM 14
82c230c2
SC
112#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113#define M68HC11_MAX_SOFT_REGS 32
114
a714b0d6 115#define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
82c230c2
SC
116#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119#define M68HC11_REG_SIZE (2)
120
548bcbec
SC
121#define M68HC12_NUM_REGS (9)
122#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
908f682f 125struct insn_sequence;
82c230c2
SC
126struct gdbarch_tdep
127 {
5d1a66bd
SC
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
908f682f
SC
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
81967506 136
7df11f59
SC
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
81967506
SC
141 /* ELF flags for ABI. */
142 int elf_flags;
82c230c2
SC
143 };
144
be8626e0
MD
145#define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146#define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
5d1a66bd 147
1ea653ae
SC
148struct m68hc11_unwind_cache
149{
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
098caef4 164 trad_frame_saved_reg *saved_regs;
1ea653ae
SC
165};
166
82c230c2
SC
167/* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
a121b7c1 169static const char *
82c230c2
SC
170m68hc11_register_names[] =
171{
172 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179};
78073dd8 180
82c230c2
SC
181struct m68hc11_soft_reg
182{
183 const char *name;
184 CORE_ADDR addr;
185};
78073dd8 186
82c230c2 187static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 188
82c230c2 189#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 190
82c230c2
SC
191static int soft_min_addr;
192static int soft_max_addr;
193static int soft_reg_initialized = 0;
78073dd8 194
82c230c2
SC
195/* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198static void
199m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200{
3b7344d5 201 struct bound_minimal_symbol msymbol;
78073dd8 202
82c230c2 203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
3b7344d5 204 if (msymbol.minsym)
82c230c2 205 {
77e371c0 206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
82c230c2
SC
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
dda83cd7 211 soft_min_addr = reg->addr;
82c230c2 212 if (reg->addr > (CORE_ADDR) soft_max_addr)
dda83cd7 213 soft_max_addr = reg->addr;
82c230c2
SC
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220}
78073dd8 221
82c230c2
SC
222/* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225m68hc11_initialize_register_info (void)
226{
227 int i;
78073dd8 228
82c230c2
SC
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 244
82c230c2
SC
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
78073dd8 248
08850b56 249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
82c230c2
SC
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
78073dd8 252
82c230c2 253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
82c230c2
SC
256 soft_reg_initialized = 1;
257}
78073dd8 258
82c230c2
SC
259/* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261static int
262m68hc11_which_soft_register (CORE_ADDR addr)
263{
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
dda83cd7 272 return i;
82c230c2
SC
273 }
274 return -1;
275}
78073dd8 276
82c230c2
SC
277/* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
05d1431c 280static enum register_status
46ce284d 281m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 282 readable_regcache *regcache,
ff1e98b9 283 int regno, gdb_byte *buf)
82c230c2 284{
e17a4113
UW
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
548bcbec
SC
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
4db73d49 291 ULONGEST pc;
df4df182 292 const int regsize = 4;
05d1431c 293 enum register_status status;
548bcbec 294
11f57cb6 295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
05d1431c
PA
296 if (status != REG_VALID)
297 return status;
548bcbec 298 if (pc >= 0x8000 && pc < 0xc000)
dda83cd7
SM
299 {
300 ULONGEST page;
4db73d49 301
11f57cb6 302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
dda83cd7
SM
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
e17a4113 307 store_unsigned_integer (buf, regsize, byte_order, pc);
05d1431c 308 return REG_VALID;
548bcbec
SC
309 }
310
82c230c2
SC
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
05d1431c
PA
322
323 return REG_VALID;
82c230c2 324}
78073dd8 325
82c230c2
SC
326/* Store a pseudo register. Translate the register store
327 into a memory write. */
328static void
46ce284d
AC
329m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
ff1e98b9 331 int regno, const gdb_byte *buf)
82c230c2 332{
e17a4113
UW
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
548bcbec
SC
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
df4df182 339 const int regsize = 4;
224c3ddb 340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
548bcbec
SC
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
e17a4113 344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
548bcbec 345 if (pc >= 0x1000000)
dda83cd7
SM
346 {
347 pc -= 0x1000000;
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
350 pc &= 0x03fff;
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
353 }
548bcbec 354 else
dda83cd7 355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
356 return;
357 }
358
82c230c2 359 m68hc11_initialize_register_info ();
78073dd8 360
82c230c2
SC
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
46ce284d 364 const int regsize = 2;
224c3ddb 365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
46ce284d
AC
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
368 }
369}
78073dd8 370
fa88f677 371static const char *
d93859e2 372m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 373{
be8626e0 374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec 375 return "pc";
be8626e0 376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec
SC
377 return "ppc";
378
82c230c2
SC
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
65760afb
SC
384 m68hc11_initialize_register_info ();
385
82c230c2
SC
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391}
78073dd8 392
04180708 393constexpr gdb_byte m68hc11_break_insn[] = {0x0};
78073dd8 394
04180708 395typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
908f682f 396\f
025bb325 397/* 68HC11 & 68HC12 prologue analysis. */
908f682f 398
908f682f
SC
399#define MAX_CODES 12
400
401/* 68HC11 opcodes. */
402#undef M6811_OP_PAGE2
b94a41a1
SC
403#define M6811_OP_PAGE2 (0x18)
404#define M6811_OP_LDX (0xde)
405#define M6811_OP_LDX_EXT (0xfe)
406#define M6811_OP_PSHX (0x3c)
407#define M6811_OP_STS (0x9f)
408#define M6811_OP_STS_EXT (0xbf)
409#define M6811_OP_TSX (0x30)
410#define M6811_OP_XGDX (0x8f)
411#define M6811_OP_ADDD (0xc3)
412#define M6811_OP_TXS (0x35)
413#define M6811_OP_DES (0x34)
908f682f
SC
414
415/* 68HC12 opcodes. */
b94a41a1
SC
416#define M6812_OP_PAGE2 (0x18)
417#define M6812_OP_MOVW (0x01)
418#define M6812_PB_PSHW (0xae)
419#define M6812_OP_STS (0x5f)
420#define M6812_OP_STS_EXT (0x7f)
421#define M6812_OP_LEAS (0x1b)
422#define M6812_OP_PSHX (0x34)
423#define M6812_OP_PSHY (0x35)
908f682f
SC
424
425/* Operand extraction. */
426#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431/* Identification of the sequence. */
432enum m6811_seq_type
433{
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440};
441
442struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446};
447
448/* Sequence of instructions in the 68HC11 function prologue. */
449static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
dda83cd7 452 M6811_OP_PSHX } },
908f682f 453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
dda83cd7 454 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1 455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
dda83cd7 456 M6811_OP_PSHX } },
b94a41a1 457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
dda83cd7 458 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
dda83cd7
SM
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
908f682f 466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
dda83cd7
SM
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
908f682f
SC
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
478 { P_LAST, 0, { 0 } }
479};
480
481
482/* Sequence of instructions in the 68HC12 function prologue. */
483static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
dda83cd7 485 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
491 { P_LAST, 0 }
492};
493
494
495/* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 497 the optional value (constant/address) associated with it. */
908f682f 498static struct insn_sequence *
e17a4113
UW
499m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
dda83cd7 501 CORE_ADDR *val)
908f682f 502{
e17a4113 503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908f682f
SC
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
dda83cd7
SM
515 {
516 if (bufsize < j + 1)
517 {
518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
519 1, byte_order);
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
562 }
563 cur_val = v;
564 break;
565 }
566 }
908f682f
SC
567
568 /* We have a full match. */
569 if (j == seq->length)
dda83cd7
SM
570 {
571 *val = cur_val;
572 return seq;
573 }
908f682f
SC
574 }
575 return 0;
576}
577
7df11f59
SC
578/* Return the instruction that the function at the PC is using. */
579static enum insn_return_kind
580m68hc11_get_return_insn (CORE_ADDR pc)
581{
7cbd4a93 582 struct bound_minimal_symbol sym;
7df11f59
SC
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 588 if (sym.minsym == 0)
7df11f59
SC
589 return RETURN_RTS;
590
7cbd4a93 591 if (MSYMBOL_IS_RTC (sym.minsym))
7df11f59 592 return RETURN_RTC;
7cbd4a93 593 else if (MSYMBOL_IS_RTI (sym.minsym))
7df11f59
SC
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597}
598
78073dd8
AC
599/* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
1ea653ae 604static CORE_ADDR
be8626e0
MD
605m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
78073dd8 607{
1ea653ae 608 LONGEST save_addr;
78073dd8 609 CORE_ADDR func_end;
78073dd8
AC
610 int size;
611 int found_frame_point;
82c230c2 612 int saved_reg;
908f682f
SC
613 int done = 0;
614 struct insn_sequence *seq_table;
1ea653ae
SC
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
78073dd8
AC
621 size = 0;
622
82c230c2 623 m68hc11_initialize_register_info ();
1ea653ae 624 if (pc == 0)
78073dd8 625 {
1ea653ae
SC
626 info->size = 0;
627 return pc;
78073dd8
AC
628 }
629
be8626e0 630 seq_table = gdbarch_tdep (gdbarch)->prologue;
908f682f 631
78073dd8
AC
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
025bb325
MS
671 prologue (as generated by gcc 2.95, 2.96). */
672
78073dd8 673 func_end = pc + 128;
78073dd8 674 found_frame_point = 0;
1ea653ae
SC
675 info->size = 0;
676 save_addr = 0;
908f682f 677 while (!done && pc + 2 < func_end)
78073dd8 678 {
908f682f
SC
679 struct insn_sequence *seq;
680 CORE_ADDR val;
1ea653ae 681
e17a4113 682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
908f682f 683 if (seq == 0)
dda83cd7 684 break;
78073dd8 685
c8a7f6ac 686 /* If we are within the instruction group, we can't advance the
dda83cd7
SM
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
c8a7f6ac 689 if (pc + seq->length > current_pc)
dda83cd7 690 break;
c8a7f6ac
SC
691
692 pc = pc + seq->length;
908f682f 693 if (seq->type == P_SAVE_REG)
dda83cd7
SM
694 {
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
700
701 save_addr -= 2;
702 if (info->saved_regs)
098caef4 703 info->saved_regs[saved_reg].set_addr (save_addr);
dda83cd7
SM
704 }
705 else
706 {
707 size += 2;
708 }
709 }
908f682f 710 else if (seq->type == P_SET_FRAME)
dda83cd7
SM
711 {
712 found_frame_point = 1;
713 info->size = size;
714 }
908f682f 715 else if (seq->type == P_LOCAL_1)
dda83cd7
SM
716 {
717 size += 1;
718 }
908f682f 719 else if (seq->type == P_LOCAL_2)
dda83cd7
SM
720 {
721 size += 2;
722 }
908f682f 723 else if (seq->type == P_LOCAL_N)
dda83cd7
SM
724 {
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
730 }
78073dd8 731 }
1ea653ae
SC
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
78073dd8
AC
737}
738
82c230c2 739static CORE_ADDR
6093d2eb 740m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
78073dd8
AC
741{
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
1ea653ae 744 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 745
82c230c2
SC
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
78073dd8
AC
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
be8626e0 756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
757 return pc;
758}
759
1ea653ae
SC
760/* Put here the code to store, into fi->saved_regs, the addresses of
761 the saved registers of frame described by FRAME_INFO. This
762 includes special registers such as pc and fp saved in special ways
763 in the stack frame. sp is even more special: the address we return
025bb325 764 for it IS the sp for the next frame. */
1ea653ae 765
63807e1d 766static struct m68hc11_unwind_cache *
94afd7a6 767m68hc11_frame_unwind_cache (struct frame_info *this_frame,
dda83cd7 768 void **this_prologue_cache)
1ea653ae 769{
94afd7a6 770 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1ea653ae
SC
771 ULONGEST prev_sp;
772 ULONGEST this_base;
773 struct m68hc11_unwind_cache *info;
774 CORE_ADDR current_pc;
775 int i;
776
777 if ((*this_prologue_cache))
9a3c8263 778 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
1ea653ae
SC
779
780 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
781 (*this_prologue_cache) = info;
94afd7a6 782 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1ea653ae 783
94afd7a6 784 info->pc = get_frame_func (this_frame);
1ea653ae
SC
785
786 info->size = 0;
787 info->return_kind = m68hc11_get_return_insn (info->pc);
788
789 /* The SP was moved to the FP. This indicates that a new frame
790 was created. Get THIS frame's FP value by unwinding it from
791 the next frame. */
94afd7a6 792 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
793 if (this_base == 0)
794 {
795 info->base = 0;
796 return info;
797 }
798
94afd7a6 799 current_pc = get_frame_pc (this_frame);
1ea653ae 800 if (info->pc != 0)
be8626e0 801 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
1ea653ae 802
098caef4 803 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size);
1ea653ae
SC
804
805 if (info->sp_offset != (CORE_ADDR) -1)
806 {
098caef4 807 info->saved_regs[HARD_PC_REGNUM].set_addr (info->sp_offset);
94afd7a6 808 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
1ea653ae 809 prev_sp = this_base + info->sp_offset + 2;
be8626e0 810 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
811 }
812 else
813 {
814 /* The FP points at the last saved register. Adjust the FP back
dda83cd7 815 to before the first saved register giving the SP. */
1ea653ae
SC
816 prev_sp = this_base + info->size + 2;
817
be8626e0 818 this_base += STACK_CORRECTION (gdbarch);
1ea653ae 819 if (soft_regs[SOFT_FP_REGNUM].name)
098caef4 820 info->saved_regs[SOFT_FP_REGNUM].set_addr (info->size - 2);
1ea653ae
SC
821 }
822
823 if (info->return_kind == RETURN_RTC)
824 {
825 prev_sp += 1;
098caef4
LM
826 info->saved_regs[HARD_PAGE_REGNUM].set_addr (info->size);
827 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 1);
1ea653ae
SC
828 }
829 else if (info->return_kind == RETURN_RTI)
830 {
831 prev_sp += 7;
098caef4
LM
832 info->saved_regs[HARD_CCR_REGNUM].set_addr (info->size);
833 info->saved_regs[HARD_D_REGNUM].set_addr (info->size + 1);
834 info->saved_regs[HARD_X_REGNUM].set_addr (info->size + 3);
835 info->saved_regs[HARD_Y_REGNUM].set_addr (info->size + 5);
836 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 7);
1ea653ae
SC
837 }
838
839 /* Add 1 here to adjust for the post-decrement nature of the push
025bb325 840 instruction. */
1ea653ae
SC
841 info->prev_sp = prev_sp;
842
843 info->base = this_base;
844
845 /* Adjust all the saved registers so that they contain addresses and not
846 offsets. */
f6efe3f8 847 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
a9a87d35 848 if (info->saved_regs[i].is_addr ())
1ea653ae 849 {
098caef4 850 info->saved_regs[i].set_addr (info->saved_regs[i].addr () + this_base);
1ea653ae
SC
851 }
852
853 /* The previous frame's SP needed to be computed. Save the computed
854 value. */
a9a87d35 855 info->saved_regs[HARD_SP_REGNUM].set_value (info->prev_sp);
1ea653ae
SC
856
857 return info;
858}
859
860/* Given a GDB frame, determine the address of the calling function's
861 frame. This will be used to create a new GDB frame struct. */
862
863static void
94afd7a6 864m68hc11_frame_this_id (struct frame_info *this_frame,
dda83cd7
SM
865 void **this_prologue_cache,
866 struct frame_id *this_id)
1ea653ae
SC
867{
868 struct m68hc11_unwind_cache *info
94afd7a6 869 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae
SC
870 CORE_ADDR base;
871 CORE_ADDR func;
872 struct frame_id id;
873
874 /* The FUNC is easy. */
94afd7a6 875 func = get_frame_func (this_frame);
1ea653ae 876
1ea653ae
SC
877 /* Hopefully the prologue analysis either correctly determined the
878 frame's base (which is the SP from the previous frame), or set
879 that base to "NULL". */
880 base = info->prev_sp;
881 if (base == 0)
882 return;
883
884 id = frame_id_build (base, func);
1ea653ae
SC
885 (*this_id) = id;
886}
887
94afd7a6
UW
888static struct value *
889m68hc11_frame_prev_register (struct frame_info *this_frame,
dda83cd7 890 void **this_prologue_cache, int regnum)
1ea653ae 891{
94afd7a6 892 struct value *value;
1ea653ae 893 struct m68hc11_unwind_cache *info
94afd7a6 894 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae 895
94afd7a6 896 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1ea653ae 897
94afd7a6
UW
898 /* Take into account the 68HC12 specific call (PC + page). */
899 if (regnum == HARD_PC_REGNUM
900 && info->return_kind == RETURN_RTC
901 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
1ea653ae 902 {
94afd7a6
UW
903 CORE_ADDR pc = value_as_long (value);
904 if (pc >= 0x08000 && pc < 0x0c000)
dda83cd7
SM
905 {
906 CORE_ADDR page;
1ea653ae 907
94afd7a6 908 release_value (value);
94afd7a6
UW
909
910 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
911 HARD_PAGE_REGNUM);
912 page = value_as_long (value);
913 release_value (value);
94afd7a6 914
dda83cd7
SM
915 pc -= 0x08000;
916 pc += ((page & 0x0ff) << 14);
917 pc += 0x1000000;
94afd7a6
UW
918
919 return frame_unwind_got_constant (this_frame, regnum, pc);
dda83cd7 920 }
1ea653ae 921 }
94afd7a6
UW
922
923 return value;
1ea653ae
SC
924}
925
926static const struct frame_unwind m68hc11_frame_unwind = {
a154d838 927 "m68hc11 prologue",
1ea653ae 928 NORMAL_FRAME,
8fbca658 929 default_frame_unwind_stop_reason,
1ea653ae 930 m68hc11_frame_this_id,
94afd7a6
UW
931 m68hc11_frame_prev_register,
932 NULL,
933 default_frame_sniffer
1ea653ae
SC
934};
935
1ea653ae 936static CORE_ADDR
94afd7a6 937m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
938{
939 struct m68hc11_unwind_cache *info
94afd7a6 940 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
941
942 return info->base;
943}
944
945static CORE_ADDR
94afd7a6 946m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
947{
948 CORE_ADDR addr;
949 struct m68hc11_unwind_cache *info
94afd7a6 950 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
951
952 addr = info->base + info->size;
953 if (info->return_kind == RETURN_RTC)
954 addr += 1;
955 else if (info->return_kind == RETURN_RTI)
956 addr += 7;
957
958 return addr;
959}
960
961static const struct frame_base m68hc11_frame_base = {
962 &m68hc11_frame_unwind,
963 m68hc11_frame_base_address,
964 m68hc11_frame_base_address,
965 m68hc11_frame_args_address
966};
967
94afd7a6
UW
968/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
969 frame. The frame ID's base needs to match the TOS value saved by
970 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1ea653ae
SC
971
972static struct frame_id
94afd7a6 973m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1ea653ae
SC
974{
975 ULONGEST tos;
94afd7a6 976 CORE_ADDR pc = get_frame_pc (this_frame);
1ea653ae 977
94afd7a6 978 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
979 tos += 2;
980 return frame_id_build (tos, pc);
981}
78073dd8 982
e286caf2
SC
983\f
984/* Get and print the register from the given frame. */
78073dd8 985static void
e286caf2 986m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
dda83cd7 987 struct frame_info *frame, int regno)
78073dd8 988{
e286caf2
SC
989 LONGEST rval;
990
991 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
992 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 993 rval = get_frame_register_unsigned (frame, regno);
e286caf2 994 else
7f5f525d 995 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
996
997 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
998 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 999 {
e286caf2
SC
1000 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1001 if (regno != HARD_CCR_REGNUM)
dda83cd7 1002 print_longest (file, 'd', 1, rval);
7df11f59 1003 }
e286caf2
SC
1004 else
1005 {
1006 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
dda83cd7
SM
1007 {
1008 ULONGEST page;
7df11f59 1009
dda83cd7
SM
1010 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1011 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1012 (unsigned) rval);
1013 }
e286caf2 1014 else
dda83cd7
SM
1015 {
1016 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1017 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1018 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1019 print_longest (file, 'd', 1, rval);
1020 }
e286caf2
SC
1021 }
1022
1023 if (regno == HARD_CCR_REGNUM)
78073dd8 1024 {
e286caf2
SC
1025 /* CCR register */
1026 int C, Z, N, V;
1027 unsigned char l = rval & 0xff;
1028
1029 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
dda83cd7
SM
1030 l & M6811_S_BIT ? 'S' : '-',
1031 l & M6811_X_BIT ? 'X' : '-',
1032 l & M6811_H_BIT ? 'H' : '-',
1033 l & M6811_I_BIT ? 'I' : '-',
1034 l & M6811_N_BIT ? 'N' : '-',
1035 l & M6811_Z_BIT ? 'Z' : '-',
1036 l & M6811_V_BIT ? 'V' : '-',
1037 l & M6811_C_BIT ? 'C' : '-');
e286caf2
SC
1038 N = (l & M6811_N_BIT) != 0;
1039 Z = (l & M6811_Z_BIT) != 0;
1040 V = (l & M6811_V_BIT) != 0;
1041 C = (l & M6811_C_BIT) != 0;
1042
025bb325 1043 /* Print flags following the h8300. */
e286caf2
SC
1044 if ((C | Z) == 0)
1045 fprintf_filtered (file, "u> ");
1046 else if ((C | Z) == 1)
1047 fprintf_filtered (file, "u<= ");
1048 else if (C == 0)
1049 fprintf_filtered (file, "u< ");
1050
1051 if (Z == 0)
1052 fprintf_filtered (file, "!= ");
1053 else
1054 fprintf_filtered (file, "== ");
1055
1056 if ((N ^ V) == 0)
1057 fprintf_filtered (file, ">= ");
1058 else
1059 fprintf_filtered (file, "< ");
1060
1061 if ((Z | (N ^ V)) == 0)
1062 fprintf_filtered (file, "> ");
78073dd8 1063 else
e286caf2 1064 fprintf_filtered (file, "<= ");
78073dd8 1065 }
e286caf2
SC
1066}
1067
1068/* Same as 'info reg' but prints the registers in a different way. */
1069static void
1070m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
dda83cd7 1071 struct frame_info *frame, int regno, int cpregs)
e286caf2
SC
1072{
1073 if (regno >= 0)
1074 {
1075 const char *name = gdbarch_register_name (gdbarch, regno);
1076
1077 if (!name || !*name)
dda83cd7 1078 return;
e286caf2
SC
1079
1080 fprintf_filtered (file, "%-10s ", name);
1081 m68hc11_print_register (gdbarch, file, frame, regno);
1082 fprintf_filtered (file, "\n");
1083 }
1084 else
1085 {
1086 int i, nr;
1087
1088 fprintf_filtered (file, "PC=");
1089 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1090
1091 fprintf_filtered (file, " SP=");
1092 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1093
1094 fprintf_filtered (file, " FP=");
1095 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1096
1097 fprintf_filtered (file, "\nCCR=");
1098 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1099
1100 fprintf_filtered (file, "\nD=");
1101 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1102
1103 fprintf_filtered (file, " X=");
1104 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1105
1106 fprintf_filtered (file, " Y=");
1107 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1108
1109 if (gdbarch_tdep (gdbarch)->use_page_register)
dda83cd7
SM
1110 {
1111 fprintf_filtered (file, "\nPage=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1113 }
e286caf2
SC
1114 fprintf_filtered (file, "\n");
1115
1116 nr = 0;
1117 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
dda83cd7
SM
1118 {
1119 /* Skip registers which are not defined in the symbol table. */
1120 if (soft_regs[i].name == 0)
1121 continue;
1122
1123 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1124 m68hc11_print_register (gdbarch, file, frame, i);
1125 nr++;
1126 if ((nr % 8) == 7)
1127 fprintf_filtered (file, "\n");
1128 else
1129 fprintf_filtered (file, " ");
1130 }
e286caf2 1131 if (nr && (nr % 8) != 7)
dda83cd7 1132 fprintf_filtered (file, "\n");
e286caf2
SC
1133 }
1134}
1135
82c230c2 1136static CORE_ADDR
7d9b040b 1137m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
dda83cd7
SM
1138 struct regcache *regcache, CORE_ADDR bp_addr,
1139 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1140 function_call_return_method return_method,
1141 CORE_ADDR struct_addr)
78073dd8 1142{
e17a4113 1143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
82c230c2
SC
1144 int argnum;
1145 int first_stack_argnum;
82c230c2 1146 struct type *type;
948f8e3d 1147 const gdb_byte *val;
e362b510 1148 gdb_byte buf[2];
82c230c2 1149
82c230c2 1150 first_stack_argnum = 0;
cf84fa6b
AH
1151 if (return_method == return_method_struct)
1152 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1153 else if (nargs > 0)
1154 {
4991999e 1155 type = value_type (args[0]);
3dc990bf 1156
82c230c2 1157 /* First argument is passed in D and X registers. */
744a8059 1158 if (TYPE_LENGTH (type) <= 4)
dda83cd7
SM
1159 {
1160 ULONGEST v;
3dc990bf 1161
dda83cd7 1162 v = extract_unsigned_integer (value_contents (args[0]),
744a8059 1163 TYPE_LENGTH (type), byte_order);
dda83cd7
SM
1164 first_stack_argnum = 1;
1165
1166 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1167 if (TYPE_LENGTH (type) > 2)
1168 {
1169 v >>= 16;
1170 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1171 }
1172 }
82c230c2 1173 }
82c230c2 1174
3dc990bf 1175 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1176 {
4991999e 1177 type = value_type (args[argnum]);
82c230c2 1178
744a8059 1179 if (TYPE_LENGTH (type) & 1)
dda83cd7
SM
1180 {
1181 static gdb_byte zero = 0;
22df305e 1182
dda83cd7
SM
1183 sp--;
1184 write_memory (sp, &zero, 1);
1185 }
948f8e3d 1186 val = value_contents (args[argnum]);
744a8059
SP
1187 sp -= TYPE_LENGTH (type);
1188 write_memory (sp, val, TYPE_LENGTH (type));
82c230c2 1189 }
3dc990bf
SC
1190
1191 /* Store return address. */
1192 sp -= 2;
e17a4113 1193 store_unsigned_integer (buf, 2, byte_order, bp_addr);
3dc990bf
SC
1194 write_memory (sp, buf, 2);
1195
1196 /* Finally, update the stack pointer... */
be8626e0 1197 sp -= STACK_CORRECTION (gdbarch);
3dc990bf
SC
1198 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1199
1200 /* ...and fake a frame pointer. */
1201 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1202
1203 /* DWARF2/GCC uses the stack address *before* the function call as a
1204 frame's CFA. */
1205 return sp + 2;
78073dd8
AC
1206}
1207
1208
4db73d49
SC
1209/* Return the GDB type object for the "standard" data type
1210 of data in register N. */
1211
82c230c2 1212static struct type *
4db73d49 1213m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1214{
5706502a
SC
1215 switch (reg_nr)
1216 {
1217 case HARD_PAGE_REGNUM:
1218 case HARD_A_REGNUM:
1219 case HARD_B_REGNUM:
1220 case HARD_CCR_REGNUM:
df4df182 1221 return builtin_type (gdbarch)->builtin_uint8;
5706502a 1222
548bcbec 1223 case M68HC12_HARD_PC_REGNUM:
df4df182 1224 return builtin_type (gdbarch)->builtin_uint32;
548bcbec 1225
5706502a 1226 default:
df4df182 1227 return builtin_type (gdbarch)->builtin_uint16;
5706502a 1228 }
82c230c2
SC
1229}
1230
82c230c2 1231static void
4db73d49 1232m68hc11_store_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1233 const gdb_byte *valbuf)
82c230c2 1234{
22df305e
SC
1235 int len;
1236
1237 len = TYPE_LENGTH (type);
1238
1239 /* First argument is passed in D and X registers. */
4db73d49 1240 if (len <= 2)
4f0420fd 1241 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf);
4db73d49 1242 else if (len <= 4)
22df305e 1243 {
4f0420fd 1244 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf);
10eaee5f 1245 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
22df305e
SC
1246 }
1247 else
8a3fe4f8 1248 error (_("return of value > 4 is not supported."));
82c230c2
SC
1249}
1250
1251
ef2b8fcd 1252/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1253 extract and copy its value into `valbuf'. */
1254
82c230c2 1255static void
ef2b8fcd 1256m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1257 void *valbuf)
78073dd8 1258{
e362b510 1259 gdb_byte buf[M68HC11_REG_SIZE];
ef2b8fcd 1260
0b883586 1261 regcache->raw_read (HARD_D_REGNUM, buf);
744a8059 1262 switch (TYPE_LENGTH (type))
82c230c2 1263 {
22df305e 1264 case 1:
ef2b8fcd 1265 memcpy (valbuf, buf + 1, 1);
22df305e 1266 break;
ef2b8fcd 1267
22df305e 1268 case 2:
ef2b8fcd 1269 memcpy (valbuf, buf, 2);
22df305e 1270 break;
ef2b8fcd 1271
22df305e 1272 case 3:
ef2b8fcd 1273 memcpy ((char*) valbuf + 1, buf, 2);
0b883586 1274 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1275 memcpy (valbuf, buf + 1, 1);
22df305e 1276 break;
ef2b8fcd 1277
22df305e 1278 case 4:
ef2b8fcd 1279 memcpy ((char*) valbuf + 2, buf, 2);
0b883586 1280 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1281 memcpy (valbuf, buf, 2);
22df305e
SC
1282 break;
1283
1284 default:
8a3fe4f8 1285 error (_("bad size for return value"));
82c230c2
SC
1286 }
1287}
1288
63807e1d 1289static enum return_value_convention
6a3a010b 1290m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1291 struct type *valtype, struct regcache *regcache,
1292 gdb_byte *readbuf, const gdb_byte *writebuf)
82c230c2 1293{
78134374
SM
1294 if (valtype->code () == TYPE_CODE_STRUCT
1295 || valtype->code () == TYPE_CODE_UNION
1296 || valtype->code () == TYPE_CODE_ARRAY
97092415
AC
1297 || TYPE_LENGTH (valtype) > 4)
1298 return RETURN_VALUE_STRUCT_CONVENTION;
1299 else
1300 {
1301 if (readbuf != NULL)
1302 m68hc11_extract_return_value (valtype, regcache, readbuf);
1303 if (writebuf != NULL)
1304 m68hc11_store_return_value (valtype, regcache, writebuf);
1305 return RETURN_VALUE_REGISTER_CONVENTION;
1306 }
82c230c2
SC
1307}
1308
7df11f59
SC
1309/* Test whether the ELF symbol corresponds to a function using rtc or
1310 rti to return. */
1311
1312static void
1313m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1314{
1315 unsigned char flags;
1316
1317 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1318 if (flags & STO_M68HC12_FAR)
1319 MSYMBOL_SET_RTC (msym);
1320 if (flags & STO_M68HC12_INTERRUPT)
1321 MSYMBOL_SET_RTI (msym);
1322}
b631436b
SC
1323\f
1324
1325/* 68HC11/68HC12 register groups.
1326 Identify real hard registers and soft registers used by gcc. */
1327
1328static struct reggroup *m68hc11_soft_reggroup;
1329static struct reggroup *m68hc11_hard_reggroup;
1330
1331static void
1332m68hc11_init_reggroups (void)
1333{
1334 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1335 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1336}
1337
1338static void
1339m68hc11_add_reggroups (struct gdbarch *gdbarch)
1340{
1341 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1342 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1343 reggroup_add (gdbarch, general_reggroup);
1344 reggroup_add (gdbarch, float_reggroup);
1345 reggroup_add (gdbarch, all_reggroup);
1346 reggroup_add (gdbarch, save_reggroup);
1347 reggroup_add (gdbarch, restore_reggroup);
1348 reggroup_add (gdbarch, vector_reggroup);
1349 reggroup_add (gdbarch, system_reggroup);
1350}
1351
1352static int
1353m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
dda83cd7 1354 struct reggroup *group)
b631436b
SC
1355{
1356 /* We must save the real hard register as well as gcc
1357 soft registers including the frame pointer. */
1358 if (group == save_reggroup || group == restore_reggroup)
1359 {
1360 return (regnum <= gdbarch_num_regs (gdbarch)
dda83cd7
SM
1361 || ((regnum == SOFT_FP_REGNUM
1362 || regnum == SOFT_TMP_REGNUM
1363 || regnum == SOFT_ZS_REGNUM
1364 || regnum == SOFT_XY_REGNUM)
1365 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1366 }
1367
1368 /* Group to identify gcc soft registers (d1..dN). */
1369 if (group == m68hc11_soft_reggroup)
1370 {
d93859e2
UW
1371 return regnum >= SOFT_D1_REGNUM
1372 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1373 }
1374
1375 if (group == m68hc11_hard_reggroup)
1376 {
1377 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
dda83cd7
SM
1378 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1379 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
b631436b
SC
1380 }
1381 return default_register_reggroup_p (gdbarch, regnum, group);
1382}
1383
82c230c2
SC
1384static struct gdbarch *
1385m68hc11_gdbarch_init (struct gdbarch_info info,
dda83cd7 1386 struct gdbarch_list *arches)
82c230c2 1387{
82c230c2
SC
1388 struct gdbarch *gdbarch;
1389 struct gdbarch_tdep *tdep;
81967506 1390 int elf_flags;
82c230c2
SC
1391
1392 soft_reg_initialized = 0;
81967506
SC
1393
1394 /* Extract the elf_flags if available. */
1395 if (info.abfd != NULL
1396 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1397 elf_flags = elf_elfheader (info.abfd)->e_flags;
1398 else
1399 elf_flags = 0;
1400
025bb325 1401 /* Try to find a pre-existing architecture. */
82c230c2
SC
1402 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1403 arches != NULL;
1404 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1405 {
81967506
SC
1406 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1407 continue;
1408
82c230c2
SC
1409 return arches->gdbarch;
1410 }
1411
025bb325 1412 /* Need a new architecture. Fill in a target specific vector. */
cdd238da 1413 tdep = XCNEW (struct gdbarch_tdep);
82c230c2 1414 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1415 tdep->elf_flags = elf_flags;
ed99b3d0 1416
5d1a66bd
SC
1417 switch (info.bfd_arch_info->arch)
1418 {
1419 case bfd_arch_m68hc11:
1420 tdep->stack_correction = 1;
7df11f59 1421 tdep->use_page_register = 0;
908f682f 1422 tdep->prologue = m6811_prologue;
548bcbec
SC
1423 set_gdbarch_addr_bit (gdbarch, 16);
1424 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1425 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1426 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1427 break;
82c230c2 1428
5d1a66bd
SC
1429 case bfd_arch_m68hc12:
1430 tdep->stack_correction = 0;
7df11f59 1431 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1432 tdep->prologue = m6812_prologue;
548bcbec
SC
1433 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1434 set_gdbarch_num_pseudo_regs (gdbarch,
dda83cd7
SM
1435 elf_flags & E_M68HC12_BANKS
1436 ? M68HC12_NUM_PSEUDO_REGS
1437 : M68HC11_NUM_PSEUDO_REGS);
548bcbec 1438 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
dda83cd7 1439 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
548bcbec 1440 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
dda83cd7 1441 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1442 break;
1443
1444 default:
1445 break;
1446 }
7d32ba20
SC
1447
1448 /* Initially set everything according to the ABI.
1449 Use 16-bit integers since it will be the case for most
1450 programs. The size of these types should normally be set
1451 according to the dwarf2 debug information. */
82c230c2 1452 set_gdbarch_short_bit (gdbarch, 16);
81967506 1453 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1454 set_gdbarch_float_bit (gdbarch, 32);
f92589cb
TS
1455 if (elf_flags & E_M68HC11_F64)
1456 {
1457 set_gdbarch_double_bit (gdbarch, 64);
1458 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1459 }
1460 else
1461 {
1462 set_gdbarch_double_bit (gdbarch, 32);
1463 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1464 }
2417dd25 1465 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1466 set_gdbarch_long_bit (gdbarch, 32);
1467 set_gdbarch_ptr_bit (gdbarch, 16);
1468 set_gdbarch_long_long_bit (gdbarch, 64);
1469
b2a02dda
SC
1470 /* Characters are unsigned. */
1471 set_gdbarch_char_signed (gdbarch, 0);
1472
82c230c2
SC
1473 /* Set register info. */
1474 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1475
82c230c2 1476 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1477 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1478 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1479 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1480 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1481
3dc990bf
SC
1482 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1483
97092415 1484 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1485 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1486 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
1487 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1488 m68hc11_breakpoint::kind_from_pc);
1489 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1490 m68hc11_breakpoint::bp_from_kind);
82c230c2 1491
b631436b
SC
1492 m68hc11_add_reggroups (gdbarch);
1493 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1494 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1495
1ea653ae 1496 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6 1497 dwarf2_append_unwinders (gdbarch);
1ea653ae 1498
94afd7a6 1499 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1ea653ae
SC
1500 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1501
1502 /* Methods for saving / extracting a dummy frame's ID. The ID's
1503 stack address must match the SP value returned by
1504 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1505 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1ea653ae 1506
7df11f59
SC
1507 /* Minsymbol frobbing. */
1508 set_gdbarch_elf_make_msymbol_special (gdbarch,
dda83cd7 1509 m68hc11_elf_make_msymbol_special);
7df11f59 1510
82c230c2 1511 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1512
1513 return gdbarch;
78073dd8
AC
1514}
1515
6c265988 1516void _initialize_m68hc11_tdep ();
78073dd8 1517void
6c265988 1518_initialize_m68hc11_tdep ()
78073dd8 1519{
82c230c2 1520 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1521 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1522 m68hc11_init_reggroups ();
78073dd8
AC
1523}
1524
This page took 1.891578 seconds and 4 git commands to generate.