Remove regcache_raw_read
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
931aecf5 4
ffe1f3ee 5 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 6
a9762ec7
JB
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 21
78073dd8 22
82c230c2
SC
23#include "defs.h"
24#include "frame.h"
1ea653ae
SC
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "dwarf2-frame.h"
28#include "trad-frame.h"
82c230c2
SC
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
82c230c2
SC
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "arch-utils.h"
4e052eda 39#include "regcache.h"
b631436b 40#include "reggroups.h"
78073dd8 41
82c230c2
SC
42#include "target.h"
43#include "opcode/m68hc11.h"
81967506
SC
44#include "elf/m68hc11.h"
45#include "elf-bfd.h"
78073dd8 46
7df11f59
SC
47/* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59 58
025bb325 59#define MSYMBOL_SET_RTC(msym) \
b887350f 60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
7df11f59 61
025bb325 62#define MSYMBOL_SET_RTI(msym) \
b887350f 63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
7df11f59
SC
64
65#define MSYMBOL_IS_RTC(msym) \
b887350f 66 MSYMBOL_TARGET_FLAG_1 (msym)
7df11f59
SC
67
68#define MSYMBOL_IS_RTI(msym) \
b887350f 69 MSYMBOL_TARGET_FLAG_2 (msym)
7df11f59 70
7df11f59
SC
71enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75};
76
77
7157eed4 78/* Register numbers of various important registers. */
78073dd8 79
82c230c2
SC
80#define HARD_X_REGNUM 0
81#define HARD_D_REGNUM 1
82#define HARD_Y_REGNUM 2
83#define HARD_SP_REGNUM 3
84#define HARD_PC_REGNUM 4
85
86#define HARD_A_REGNUM 5
87#define HARD_B_REGNUM 6
88#define HARD_CCR_REGNUM 7
5706502a
SC
89
90/* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
f57d151a 93 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
94 For this it has the same number as Z register (which is not used). */
95#define HARD_PAGE_REGNUM 8
96#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
97
98/* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101#define SOFT_Z_REGNUM 8
102
103/* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106#define SOFT_FP_REGNUM 9
107#define SOFT_TMP_REGNUM 10
108#define SOFT_ZS_REGNUM 11
109#define SOFT_XY_REGNUM 12
f91a8b6b
SC
110#define SOFT_UNUSED_REGNUM 13
111#define SOFT_D1_REGNUM 14
82c230c2
SC
112#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113#define M68HC11_MAX_SOFT_REGS 32
114
a714b0d6 115#define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
82c230c2
SC
116#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119#define M68HC11_REG_SIZE (2)
120
548bcbec
SC
121#define M68HC12_NUM_REGS (9)
122#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
908f682f 125struct insn_sequence;
82c230c2
SC
126struct gdbarch_tdep
127 {
5d1a66bd
SC
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
908f682f
SC
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
81967506 136
7df11f59
SC
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
81967506
SC
141 /* ELF flags for ABI. */
142 int elf_flags;
82c230c2
SC
143 };
144
be8626e0
MD
145#define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146#define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
5d1a66bd 147
1ea653ae
SC
148struct m68hc11_unwind_cache
149{
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165};
166
82c230c2
SC
167/* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
a121b7c1 169static const char *
82c230c2
SC
170m68hc11_register_names[] =
171{
172 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179};
78073dd8 180
82c230c2
SC
181struct m68hc11_soft_reg
182{
183 const char *name;
184 CORE_ADDR addr;
185};
78073dd8 186
82c230c2 187static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 188
82c230c2 189#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 190
82c230c2
SC
191static int soft_min_addr;
192static int soft_max_addr;
193static int soft_reg_initialized = 0;
78073dd8 194
82c230c2
SC
195/* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198static void
199m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200{
3b7344d5 201 struct bound_minimal_symbol msymbol;
78073dd8 202
82c230c2 203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
3b7344d5 204 if (msymbol.minsym)
82c230c2 205 {
77e371c0 206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
82c230c2
SC
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220}
78073dd8 221
82c230c2
SC
222/* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225m68hc11_initialize_register_info (void)
226{
227 int i;
78073dd8 228
82c230c2
SC
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 244
82c230c2
SC
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
78073dd8 248
08850b56 249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
82c230c2
SC
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
78073dd8 252
82c230c2 253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
82c230c2
SC
256 soft_reg_initialized = 1;
257}
78073dd8 258
82c230c2
SC
259/* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261static int
262m68hc11_which_soft_register (CORE_ADDR addr)
263{
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275}
78073dd8 276
82c230c2
SC
277/* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
05d1431c 280static enum register_status
46ce284d 281m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 282 readable_regcache *regcache,
ff1e98b9 283 int regno, gdb_byte *buf)
82c230c2 284{
e17a4113
UW
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
548bcbec
SC
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
4db73d49 291 ULONGEST pc;
df4df182 292 const int regsize = 4;
05d1431c 293 enum register_status status;
548bcbec 294
11f57cb6 295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
05d1431c
PA
296 if (status != REG_VALID)
297 return status;
548bcbec
SC
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
4db73d49
SC
300 ULONGEST page;
301
11f57cb6 302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
548bcbec
SC
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
e17a4113 307 store_unsigned_integer (buf, regsize, byte_order, pc);
05d1431c 308 return REG_VALID;
548bcbec
SC
309 }
310
82c230c2
SC
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
05d1431c
PA
322
323 return REG_VALID;
82c230c2 324}
78073dd8 325
82c230c2
SC
326/* Store a pseudo register. Translate the register store
327 into a memory write. */
328static void
46ce284d
AC
329m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
ff1e98b9 331 int regno, const gdb_byte *buf)
82c230c2 332{
e17a4113
UW
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
548bcbec
SC
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
df4df182 339 const int regsize = 4;
224c3ddb 340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
548bcbec
SC
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
e17a4113 344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
548bcbec
SC
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
4db73d49
SC
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
548bcbec 350 pc &= 0x03fff;
4db73d49
SC
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
548bcbec
SC
353 }
354 else
4db73d49 355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
356 return;
357 }
358
82c230c2 359 m68hc11_initialize_register_info ();
78073dd8 360
82c230c2
SC
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
46ce284d 364 const int regsize = 2;
224c3ddb 365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
46ce284d
AC
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
368 }
369}
78073dd8 370
fa88f677 371static const char *
d93859e2 372m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 373{
be8626e0 374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec 375 return "pc";
be8626e0 376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec
SC
377 return "ppc";
378
82c230c2
SC
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
65760afb
SC
384 m68hc11_initialize_register_info ();
385
82c230c2
SC
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391}
78073dd8 392
04180708 393constexpr gdb_byte m68hc11_break_insn[] = {0x0};
78073dd8 394
04180708 395typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
908f682f 396\f
025bb325 397/* 68HC11 & 68HC12 prologue analysis. */
908f682f 398
908f682f
SC
399#define MAX_CODES 12
400
401/* 68HC11 opcodes. */
402#undef M6811_OP_PAGE2
b94a41a1
SC
403#define M6811_OP_PAGE2 (0x18)
404#define M6811_OP_LDX (0xde)
405#define M6811_OP_LDX_EXT (0xfe)
406#define M6811_OP_PSHX (0x3c)
407#define M6811_OP_STS (0x9f)
408#define M6811_OP_STS_EXT (0xbf)
409#define M6811_OP_TSX (0x30)
410#define M6811_OP_XGDX (0x8f)
411#define M6811_OP_ADDD (0xc3)
412#define M6811_OP_TXS (0x35)
413#define M6811_OP_DES (0x34)
908f682f
SC
414
415/* 68HC12 opcodes. */
b94a41a1
SC
416#define M6812_OP_PAGE2 (0x18)
417#define M6812_OP_MOVW (0x01)
418#define M6812_PB_PSHW (0xae)
419#define M6812_OP_STS (0x5f)
420#define M6812_OP_STS_EXT (0x7f)
421#define M6812_OP_LEAS (0x1b)
422#define M6812_OP_PSHX (0x34)
423#define M6812_OP_PSHY (0x35)
908f682f
SC
424
425/* Operand extraction. */
426#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431/* Identification of the sequence. */
432enum m6811_seq_type
433{
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440};
441
442struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446};
447
448/* Sequence of instructions in the 68HC11 function prologue. */
449static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
478 { P_LAST, 0, { 0 } }
479};
480
481
482/* Sequence of instructions in the 68HC12 function prologue. */
483static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
491 { P_LAST, 0 }
492};
493
494
495/* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 497 the optional value (constant/address) associated with it. */
908f682f 498static struct insn_sequence *
e17a4113
UW
499m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
501 CORE_ADDR *val)
502{
e17a4113 503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908f682f
SC
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
c8a7f6ac 518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
e17a4113 519 1, byte_order);
908f682f
SC
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
e17a4113 555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
908f682f
SC
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
e17a4113 561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
908f682f
SC
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
908f682f
SC
572 return seq;
573 }
574 }
575 return 0;
576}
577
7df11f59
SC
578/* Return the instruction that the function at the PC is using. */
579static enum insn_return_kind
580m68hc11_get_return_insn (CORE_ADDR pc)
581{
7cbd4a93 582 struct bound_minimal_symbol sym;
7df11f59
SC
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 588 if (sym.minsym == 0)
7df11f59
SC
589 return RETURN_RTS;
590
7cbd4a93 591 if (MSYMBOL_IS_RTC (sym.minsym))
7df11f59 592 return RETURN_RTC;
7cbd4a93 593 else if (MSYMBOL_IS_RTI (sym.minsym))
7df11f59
SC
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597}
598
78073dd8
AC
599/* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
1ea653ae 604static CORE_ADDR
be8626e0
MD
605m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
78073dd8 607{
1ea653ae 608 LONGEST save_addr;
78073dd8 609 CORE_ADDR func_end;
78073dd8
AC
610 int size;
611 int found_frame_point;
82c230c2 612 int saved_reg;
908f682f
SC
613 int done = 0;
614 struct insn_sequence *seq_table;
1ea653ae
SC
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
78073dd8
AC
621 size = 0;
622
82c230c2 623 m68hc11_initialize_register_info ();
1ea653ae 624 if (pc == 0)
78073dd8 625 {
1ea653ae
SC
626 info->size = 0;
627 return pc;
78073dd8
AC
628 }
629
be8626e0 630 seq_table = gdbarch_tdep (gdbarch)->prologue;
908f682f 631
78073dd8
AC
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
025bb325
MS
671 prologue (as generated by gcc 2.95, 2.96). */
672
78073dd8 673 func_end = pc + 128;
78073dd8 674 found_frame_point = 0;
1ea653ae
SC
675 info->size = 0;
676 save_addr = 0;
908f682f 677 while (!done && pc + 2 < func_end)
78073dd8 678 {
908f682f
SC
679 struct insn_sequence *seq;
680 CORE_ADDR val;
1ea653ae 681
e17a4113 682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
908f682f
SC
683 if (seq == 0)
684 break;
78073dd8 685
c8a7f6ac
SC
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
908f682f 693 if (seq->type == P_SAVE_REG)
78073dd8 694 {
908f682f
SC
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
78073dd8 700
908f682f 701 save_addr -= 2;
ff1e98b9
SC
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
704 }
705 else
706 {
707 size += 2;
708 }
78073dd8 709 }
908f682f 710 else if (seq->type == P_SET_FRAME)
78073dd8
AC
711 {
712 found_frame_point = 1;
1ea653ae 713 info->size = size;
78073dd8 714 }
908f682f 715 else if (seq->type == P_LOCAL_1)
78073dd8 716 {
6148eca7
SC
717 size += 1;
718 }
908f682f 719 else if (seq->type == P_LOCAL_2)
78073dd8 720 {
908f682f 721 size += 2;
78073dd8 722 }
908f682f 723 else if (seq->type == P_LOCAL_N)
78073dd8 724 {
908f682f
SC
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
78073dd8
AC
730 }
731 }
1ea653ae
SC
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
78073dd8
AC
737}
738
82c230c2 739static CORE_ADDR
6093d2eb 740m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
78073dd8
AC
741{
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
1ea653ae 744 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 745
82c230c2
SC
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
78073dd8
AC
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
be8626e0 756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
757 return pc;
758}
759
1ea653ae
SC
760static CORE_ADDR
761m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
762{
763 ULONGEST pc;
764
025bb325
MS
765 pc = frame_unwind_register_unsigned (next_frame,
766 gdbarch_pc_regnum (gdbarch));
1ea653ae
SC
767 return pc;
768}
769
770/* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
025bb325 774 for it IS the sp for the next frame. */
1ea653ae 775
63807e1d 776static struct m68hc11_unwind_cache *
94afd7a6 777m68hc11_frame_unwind_cache (struct frame_info *this_frame,
1ea653ae
SC
778 void **this_prologue_cache)
779{
94afd7a6 780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1ea653ae
SC
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
9a3c8263 788 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
1ea653ae
SC
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
94afd7a6 792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1ea653ae 793
94afd7a6 794 info->pc = get_frame_func (this_frame);
1ea653ae
SC
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
94afd7a6 802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
94afd7a6 809 current_pc = get_frame_pc (this_frame);
1ea653ae 810 if (info->pc != 0)
be8626e0 811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
1ea653ae
SC
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
94afd7a6 818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
1ea653ae 819 prev_sp = this_base + info->sp_offset + 2;
be8626e0 820 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
be8626e0 828 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
025bb325 850 instruction. */
1ea653ae
SC
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
f57d151a 857 for (i = 0;
be8626e0
MD
858 i < gdbarch_num_regs (gdbarch)
859 + gdbarch_num_pseudo_regs (gdbarch) - 1;
f57d151a 860 i++)
1ea653ae
SC
861 if (trad_frame_addr_p (info->saved_regs, i))
862 {
863 info->saved_regs[i].addr += this_base;
864 }
865
866 /* The previous frame's SP needed to be computed. Save the computed
867 value. */
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
869
870 return info;
871}
872
873/* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
875
876static void
94afd7a6 877m68hc11_frame_this_id (struct frame_info *this_frame,
1ea653ae
SC
878 void **this_prologue_cache,
879 struct frame_id *this_id)
880{
881 struct m68hc11_unwind_cache *info
94afd7a6 882 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae
SC
883 CORE_ADDR base;
884 CORE_ADDR func;
885 struct frame_id id;
886
887 /* The FUNC is easy. */
94afd7a6 888 func = get_frame_func (this_frame);
1ea653ae 889
1ea653ae
SC
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
894 if (base == 0)
895 return;
896
897 id = frame_id_build (base, func);
1ea653ae
SC
898 (*this_id) = id;
899}
900
94afd7a6
UW
901static struct value *
902m68hc11_frame_prev_register (struct frame_info *this_frame,
903 void **this_prologue_cache, int regnum)
1ea653ae 904{
94afd7a6 905 struct value *value;
1ea653ae 906 struct m68hc11_unwind_cache *info
94afd7a6 907 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae 908
94afd7a6 909 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1ea653ae 910
94afd7a6
UW
911 /* Take into account the 68HC12 specific call (PC + page). */
912 if (regnum == HARD_PC_REGNUM
913 && info->return_kind == RETURN_RTC
914 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
1ea653ae 915 {
94afd7a6
UW
916 CORE_ADDR pc = value_as_long (value);
917 if (pc >= 0x08000 && pc < 0x0c000)
1ea653ae 918 {
1ea653ae
SC
919 CORE_ADDR page;
920
94afd7a6 921 release_value (value);
94afd7a6
UW
922
923 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
924 HARD_PAGE_REGNUM);
925 page = value_as_long (value);
926 release_value (value);
94afd7a6
UW
927
928 pc -= 0x08000;
929 pc += ((page & 0x0ff) << 14);
930 pc += 0x1000000;
931
932 return frame_unwind_got_constant (this_frame, regnum, pc);
1ea653ae
SC
933 }
934 }
94afd7a6
UW
935
936 return value;
1ea653ae
SC
937}
938
939static const struct frame_unwind m68hc11_frame_unwind = {
940 NORMAL_FRAME,
8fbca658 941 default_frame_unwind_stop_reason,
1ea653ae 942 m68hc11_frame_this_id,
94afd7a6
UW
943 m68hc11_frame_prev_register,
944 NULL,
945 default_frame_sniffer
1ea653ae
SC
946};
947
1ea653ae 948static CORE_ADDR
94afd7a6 949m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
950{
951 struct m68hc11_unwind_cache *info
94afd7a6 952 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
953
954 return info->base;
955}
956
957static CORE_ADDR
94afd7a6 958m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
959{
960 CORE_ADDR addr;
961 struct m68hc11_unwind_cache *info
94afd7a6 962 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
963
964 addr = info->base + info->size;
965 if (info->return_kind == RETURN_RTC)
966 addr += 1;
967 else if (info->return_kind == RETURN_RTI)
968 addr += 7;
969
970 return addr;
971}
972
973static const struct frame_base m68hc11_frame_base = {
974 &m68hc11_frame_unwind,
975 m68hc11_frame_base_address,
976 m68hc11_frame_base_address,
977 m68hc11_frame_args_address
978};
979
980static CORE_ADDR
981m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
982{
983 ULONGEST sp;
11411de3 984 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
985 return sp;
986}
987
94afd7a6
UW
988/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
989 frame. The frame ID's base needs to match the TOS value saved by
990 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1ea653ae
SC
991
992static struct frame_id
94afd7a6 993m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1ea653ae
SC
994{
995 ULONGEST tos;
94afd7a6 996 CORE_ADDR pc = get_frame_pc (this_frame);
1ea653ae 997
94afd7a6 998 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
999 tos += 2;
1000 return frame_id_build (tos, pc);
1001}
78073dd8 1002
e286caf2
SC
1003\f
1004/* Get and print the register from the given frame. */
78073dd8 1005static void
e286caf2
SC
1006m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
78073dd8 1008{
e286caf2
SC
1009 LONGEST rval;
1010
1011 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1012 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1013 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1014 else
7f5f525d 1015 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1016
1017 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1018 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1019 {
e286caf2
SC
1020 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1021 if (regno != HARD_CCR_REGNUM)
1022 print_longest (file, 'd', 1, rval);
7df11f59 1023 }
e286caf2
SC
1024 else
1025 {
1026 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1027 {
1028 ULONGEST page;
7df11f59 1029
7f5f525d 1030 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1031 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1032 (unsigned) rval);
1033 }
1034 else
1035 {
1036 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1037 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1038 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1039 print_longest (file, 'd', 1, rval);
1040 }
1041 }
1042
1043 if (regno == HARD_CCR_REGNUM)
78073dd8 1044 {
e286caf2
SC
1045 /* CCR register */
1046 int C, Z, N, V;
1047 unsigned char l = rval & 0xff;
1048
1049 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1050 l & M6811_S_BIT ? 'S' : '-',
1051 l & M6811_X_BIT ? 'X' : '-',
1052 l & M6811_H_BIT ? 'H' : '-',
1053 l & M6811_I_BIT ? 'I' : '-',
1054 l & M6811_N_BIT ? 'N' : '-',
1055 l & M6811_Z_BIT ? 'Z' : '-',
1056 l & M6811_V_BIT ? 'V' : '-',
1057 l & M6811_C_BIT ? 'C' : '-');
1058 N = (l & M6811_N_BIT) != 0;
1059 Z = (l & M6811_Z_BIT) != 0;
1060 V = (l & M6811_V_BIT) != 0;
1061 C = (l & M6811_C_BIT) != 0;
1062
025bb325 1063 /* Print flags following the h8300. */
e286caf2
SC
1064 if ((C | Z) == 0)
1065 fprintf_filtered (file, "u> ");
1066 else if ((C | Z) == 1)
1067 fprintf_filtered (file, "u<= ");
1068 else if (C == 0)
1069 fprintf_filtered (file, "u< ");
1070
1071 if (Z == 0)
1072 fprintf_filtered (file, "!= ");
1073 else
1074 fprintf_filtered (file, "== ");
1075
1076 if ((N ^ V) == 0)
1077 fprintf_filtered (file, ">= ");
1078 else
1079 fprintf_filtered (file, "< ");
1080
1081 if ((Z | (N ^ V)) == 0)
1082 fprintf_filtered (file, "> ");
78073dd8 1083 else
e286caf2 1084 fprintf_filtered (file, "<= ");
78073dd8 1085 }
e286caf2
SC
1086}
1087
1088/* Same as 'info reg' but prints the registers in a different way. */
1089static void
1090m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1091 struct frame_info *frame, int regno, int cpregs)
1092{
1093 if (regno >= 0)
1094 {
1095 const char *name = gdbarch_register_name (gdbarch, regno);
1096
1097 if (!name || !*name)
1098 return;
1099
1100 fprintf_filtered (file, "%-10s ", name);
1101 m68hc11_print_register (gdbarch, file, frame, regno);
1102 fprintf_filtered (file, "\n");
1103 }
1104 else
1105 {
1106 int i, nr;
1107
1108 fprintf_filtered (file, "PC=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1110
1111 fprintf_filtered (file, " SP=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1113
1114 fprintf_filtered (file, " FP=");
1115 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1116
1117 fprintf_filtered (file, "\nCCR=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1119
1120 fprintf_filtered (file, "\nD=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1122
1123 fprintf_filtered (file, " X=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1125
1126 fprintf_filtered (file, " Y=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1128
1129 if (gdbarch_tdep (gdbarch)->use_page_register)
1130 {
1131 fprintf_filtered (file, "\nPage=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1133 }
1134 fprintf_filtered (file, "\n");
1135
1136 nr = 0;
1137 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1138 {
1139 /* Skip registers which are not defined in the symbol table. */
1140 if (soft_regs[i].name == 0)
1141 continue;
1142
1143 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1144 m68hc11_print_register (gdbarch, file, frame, i);
1145 nr++;
1146 if ((nr % 8) == 7)
1147 fprintf_filtered (file, "\n");
1148 else
1149 fprintf_filtered (file, " ");
1150 }
1151 if (nr && (nr % 8) != 7)
1152 fprintf_filtered (file, "\n");
1153 }
1154}
1155
82c230c2 1156static CORE_ADDR
7d9b040b 1157m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1158 struct regcache *regcache, CORE_ADDR bp_addr,
1159 int nargs, struct value **args, CORE_ADDR sp,
1160 int struct_return, CORE_ADDR struct_addr)
78073dd8 1161{
e17a4113 1162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
82c230c2
SC
1163 int argnum;
1164 int first_stack_argnum;
82c230c2 1165 struct type *type;
948f8e3d 1166 const gdb_byte *val;
e362b510 1167 gdb_byte buf[2];
82c230c2 1168
82c230c2
SC
1169 first_stack_argnum = 0;
1170 if (struct_return)
1171 {
ff1e98b9 1172 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1173 }
1174 else if (nargs > 0)
1175 {
4991999e 1176 type = value_type (args[0]);
3dc990bf 1177
82c230c2 1178 /* First argument is passed in D and X registers. */
744a8059 1179 if (TYPE_LENGTH (type) <= 4)
82c230c2 1180 {
3dc990bf
SC
1181 ULONGEST v;
1182
e17a4113 1183 v = extract_unsigned_integer (value_contents (args[0]),
744a8059 1184 TYPE_LENGTH (type), byte_order);
82c230c2 1185 first_stack_argnum = 1;
3dc990bf
SC
1186
1187 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
744a8059 1188 if (TYPE_LENGTH (type) > 2)
82c230c2
SC
1189 {
1190 v >>= 16;
3dc990bf 1191 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1192 }
1193 }
1194 }
82c230c2 1195
3dc990bf 1196 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1197 {
4991999e 1198 type = value_type (args[argnum]);
82c230c2 1199
744a8059 1200 if (TYPE_LENGTH (type) & 1)
22df305e 1201 {
948f8e3d 1202 static gdb_byte zero = 0;
22df305e 1203
3dc990bf
SC
1204 sp--;
1205 write_memory (sp, &zero, 1);
22df305e 1206 }
948f8e3d 1207 val = value_contents (args[argnum]);
744a8059
SP
1208 sp -= TYPE_LENGTH (type);
1209 write_memory (sp, val, TYPE_LENGTH (type));
82c230c2 1210 }
3dc990bf
SC
1211
1212 /* Store return address. */
1213 sp -= 2;
e17a4113 1214 store_unsigned_integer (buf, 2, byte_order, bp_addr);
3dc990bf
SC
1215 write_memory (sp, buf, 2);
1216
1217 /* Finally, update the stack pointer... */
be8626e0 1218 sp -= STACK_CORRECTION (gdbarch);
3dc990bf
SC
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1220
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1223
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1225 frame's CFA. */
1226 return sp + 2;
78073dd8
AC
1227}
1228
1229
4db73d49
SC
1230/* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1232
82c230c2 1233static struct type *
4db73d49 1234m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1235{
5706502a
SC
1236 switch (reg_nr)
1237 {
1238 case HARD_PAGE_REGNUM:
1239 case HARD_A_REGNUM:
1240 case HARD_B_REGNUM:
1241 case HARD_CCR_REGNUM:
df4df182 1242 return builtin_type (gdbarch)->builtin_uint8;
5706502a 1243
548bcbec 1244 case M68HC12_HARD_PC_REGNUM:
df4df182 1245 return builtin_type (gdbarch)->builtin_uint32;
548bcbec 1246
5706502a 1247 default:
df4df182 1248 return builtin_type (gdbarch)->builtin_uint16;
5706502a 1249 }
82c230c2
SC
1250}
1251
82c230c2 1252static void
4db73d49 1253m68hc11_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1254 const gdb_byte *valbuf)
82c230c2 1255{
22df305e
SC
1256 int len;
1257
1258 len = TYPE_LENGTH (type);
1259
1260 /* First argument is passed in D and X registers. */
4db73d49
SC
1261 if (len <= 2)
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1263 else if (len <= 4)
22df305e 1264 {
4db73d49
SC
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1266 len - 2, valbuf);
948f8e3d 1267 regcache_raw_write (regcache, HARD_D_REGNUM, valbuf + (len - 2));
22df305e
SC
1268 }
1269 else
8a3fe4f8 1270 error (_("return of value > 4 is not supported."));
82c230c2
SC
1271}
1272
1273
ef2b8fcd 1274/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1275 extract and copy its value into `valbuf'. */
1276
82c230c2 1277static void
ef2b8fcd
SC
1278m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1279 void *valbuf)
78073dd8 1280{
e362b510 1281 gdb_byte buf[M68HC11_REG_SIZE];
ef2b8fcd 1282
0b883586 1283 regcache->raw_read (HARD_D_REGNUM, buf);
744a8059 1284 switch (TYPE_LENGTH (type))
82c230c2 1285 {
22df305e 1286 case 1:
ef2b8fcd 1287 memcpy (valbuf, buf + 1, 1);
22df305e 1288 break;
ef2b8fcd 1289
22df305e 1290 case 2:
ef2b8fcd 1291 memcpy (valbuf, buf, 2);
22df305e 1292 break;
ef2b8fcd 1293
22df305e 1294 case 3:
ef2b8fcd 1295 memcpy ((char*) valbuf + 1, buf, 2);
0b883586 1296 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1297 memcpy (valbuf, buf + 1, 1);
22df305e 1298 break;
ef2b8fcd 1299
22df305e 1300 case 4:
ef2b8fcd 1301 memcpy ((char*) valbuf + 2, buf, 2);
0b883586 1302 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1303 memcpy (valbuf, buf, 2);
22df305e
SC
1304 break;
1305
1306 default:
8a3fe4f8 1307 error (_("bad size for return value"));
82c230c2
SC
1308 }
1309}
1310
63807e1d 1311static enum return_value_convention
6a3a010b 1312m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1313 struct type *valtype, struct regcache *regcache,
1314 gdb_byte *readbuf, const gdb_byte *writebuf)
82c230c2 1315{
97092415
AC
1316 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1317 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1318 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1319 || TYPE_LENGTH (valtype) > 4)
1320 return RETURN_VALUE_STRUCT_CONVENTION;
1321 else
1322 {
1323 if (readbuf != NULL)
1324 m68hc11_extract_return_value (valtype, regcache, readbuf);
1325 if (writebuf != NULL)
1326 m68hc11_store_return_value (valtype, regcache, writebuf);
1327 return RETURN_VALUE_REGISTER_CONVENTION;
1328 }
82c230c2
SC
1329}
1330
7df11f59
SC
1331/* Test whether the ELF symbol corresponds to a function using rtc or
1332 rti to return. */
1333
1334static void
1335m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1336{
1337 unsigned char flags;
1338
1339 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1340 if (flags & STO_M68HC12_FAR)
1341 MSYMBOL_SET_RTC (msym);
1342 if (flags & STO_M68HC12_INTERRUPT)
1343 MSYMBOL_SET_RTI (msym);
1344}
b631436b
SC
1345\f
1346
1347/* 68HC11/68HC12 register groups.
1348 Identify real hard registers and soft registers used by gcc. */
1349
1350static struct reggroup *m68hc11_soft_reggroup;
1351static struct reggroup *m68hc11_hard_reggroup;
1352
1353static void
1354m68hc11_init_reggroups (void)
1355{
1356 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1357 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1358}
1359
1360static void
1361m68hc11_add_reggroups (struct gdbarch *gdbarch)
1362{
1363 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1364 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1365 reggroup_add (gdbarch, general_reggroup);
1366 reggroup_add (gdbarch, float_reggroup);
1367 reggroup_add (gdbarch, all_reggroup);
1368 reggroup_add (gdbarch, save_reggroup);
1369 reggroup_add (gdbarch, restore_reggroup);
1370 reggroup_add (gdbarch, vector_reggroup);
1371 reggroup_add (gdbarch, system_reggroup);
1372}
1373
1374static int
1375m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1376 struct reggroup *group)
1377{
1378 /* We must save the real hard register as well as gcc
1379 soft registers including the frame pointer. */
1380 if (group == save_reggroup || group == restore_reggroup)
1381 {
1382 return (regnum <= gdbarch_num_regs (gdbarch)
1383 || ((regnum == SOFT_FP_REGNUM
1384 || regnum == SOFT_TMP_REGNUM
1385 || regnum == SOFT_ZS_REGNUM
1386 || regnum == SOFT_XY_REGNUM)
d93859e2 1387 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1388 }
1389
1390 /* Group to identify gcc soft registers (d1..dN). */
1391 if (group == m68hc11_soft_reggroup)
1392 {
d93859e2
UW
1393 return regnum >= SOFT_D1_REGNUM
1394 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1395 }
1396
1397 if (group == m68hc11_hard_reggroup)
1398 {
1399 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1400 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1401 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1402 }
1403 return default_register_reggroup_p (gdbarch, regnum, group);
1404}
1405
82c230c2
SC
1406static struct gdbarch *
1407m68hc11_gdbarch_init (struct gdbarch_info info,
1408 struct gdbarch_list *arches)
1409{
82c230c2
SC
1410 struct gdbarch *gdbarch;
1411 struct gdbarch_tdep *tdep;
81967506 1412 int elf_flags;
82c230c2
SC
1413
1414 soft_reg_initialized = 0;
81967506
SC
1415
1416 /* Extract the elf_flags if available. */
1417 if (info.abfd != NULL
1418 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1419 elf_flags = elf_elfheader (info.abfd)->e_flags;
1420 else
1421 elf_flags = 0;
1422
025bb325 1423 /* Try to find a pre-existing architecture. */
82c230c2
SC
1424 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1425 arches != NULL;
1426 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1427 {
81967506
SC
1428 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1429 continue;
1430
82c230c2
SC
1431 return arches->gdbarch;
1432 }
1433
025bb325 1434 /* Need a new architecture. Fill in a target specific vector. */
cdd238da 1435 tdep = XCNEW (struct gdbarch_tdep);
82c230c2 1436 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1437 tdep->elf_flags = elf_flags;
ed99b3d0 1438
5d1a66bd
SC
1439 switch (info.bfd_arch_info->arch)
1440 {
1441 case bfd_arch_m68hc11:
1442 tdep->stack_correction = 1;
7df11f59 1443 tdep->use_page_register = 0;
908f682f 1444 tdep->prologue = m6811_prologue;
548bcbec
SC
1445 set_gdbarch_addr_bit (gdbarch, 16);
1446 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1447 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1448 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1449 break;
82c230c2 1450
5d1a66bd
SC
1451 case bfd_arch_m68hc12:
1452 tdep->stack_correction = 0;
7df11f59 1453 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1454 tdep->prologue = m6812_prologue;
548bcbec
SC
1455 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1456 set_gdbarch_num_pseudo_regs (gdbarch,
1457 elf_flags & E_M68HC12_BANKS
1458 ? M68HC12_NUM_PSEUDO_REGS
1459 : M68HC11_NUM_PSEUDO_REGS);
1460 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1461 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1462 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1463 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1464 break;
1465
1466 default:
1467 break;
1468 }
7d32ba20
SC
1469
1470 /* Initially set everything according to the ABI.
1471 Use 16-bit integers since it will be the case for most
1472 programs. The size of these types should normally be set
1473 according to the dwarf2 debug information. */
82c230c2 1474 set_gdbarch_short_bit (gdbarch, 16);
81967506 1475 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1476 set_gdbarch_float_bit (gdbarch, 32);
f92589cb
TS
1477 if (elf_flags & E_M68HC11_F64)
1478 {
1479 set_gdbarch_double_bit (gdbarch, 64);
1480 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1481 }
1482 else
1483 {
1484 set_gdbarch_double_bit (gdbarch, 32);
1485 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1486 }
2417dd25 1487 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1488 set_gdbarch_long_bit (gdbarch, 32);
1489 set_gdbarch_ptr_bit (gdbarch, 16);
1490 set_gdbarch_long_long_bit (gdbarch, 64);
1491
b2a02dda
SC
1492 /* Characters are unsigned. */
1493 set_gdbarch_char_signed (gdbarch, 0);
1494
1ea653ae
SC
1495 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1496 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1497
82c230c2
SC
1498 /* Set register info. */
1499 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1500
82c230c2 1501 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1502 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1503 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1504 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1506
3dc990bf
SC
1507 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1508
97092415 1509 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1510 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1511 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
1512 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1513 m68hc11_breakpoint::kind_from_pc);
1514 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1515 m68hc11_breakpoint::bp_from_kind);
82c230c2 1516
b631436b
SC
1517 m68hc11_add_reggroups (gdbarch);
1518 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1519 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1520
1ea653ae 1521 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6 1522 dwarf2_append_unwinders (gdbarch);
1ea653ae 1523
94afd7a6 1524 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1ea653ae
SC
1525 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1526
1527 /* Methods for saving / extracting a dummy frame's ID. The ID's
1528 stack address must match the SP value returned by
1529 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1530 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1ea653ae
SC
1531
1532 /* Return the unwound PC value. */
1533 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1534
7df11f59
SC
1535 /* Minsymbol frobbing. */
1536 set_gdbarch_elf_make_msymbol_special (gdbarch,
1537 m68hc11_elf_make_msymbol_special);
1538
82c230c2 1539 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1540
1541 return gdbarch;
78073dd8
AC
1542}
1543
1544void
fba45db2 1545_initialize_m68hc11_tdep (void)
78073dd8 1546{
82c230c2 1547 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1548 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1549 m68hc11_init_reggroups ();
78073dd8
AC
1550}
1551
This page took 1.608849 seconds and 4 git commands to generate.