Add casts to memory allocation related calls
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
32d0add0 3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
931aecf5 4
ffe1f3ee 5 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 6
a9762ec7
JB
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 21
78073dd8 22
82c230c2
SC
23#include "defs.h"
24#include "frame.h"
1ea653ae
SC
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "dwarf2-frame.h"
28#include "trad-frame.h"
82c230c2
SC
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
82c230c2
SC
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "arch-utils.h"
4e052eda 39#include "regcache.h"
b631436b 40#include "reggroups.h"
78073dd8 41
82c230c2
SC
42#include "target.h"
43#include "opcode/m68hc11.h"
81967506
SC
44#include "elf/m68hc11.h"
45#include "elf-bfd.h"
78073dd8 46
7df11f59
SC
47/* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59 58
025bb325 59#define MSYMBOL_SET_RTC(msym) \
b887350f 60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
7df11f59 61
025bb325 62#define MSYMBOL_SET_RTI(msym) \
b887350f 63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
7df11f59
SC
64
65#define MSYMBOL_IS_RTC(msym) \
b887350f 66 MSYMBOL_TARGET_FLAG_1 (msym)
7df11f59
SC
67
68#define MSYMBOL_IS_RTI(msym) \
b887350f 69 MSYMBOL_TARGET_FLAG_2 (msym)
7df11f59 70
7df11f59
SC
71enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75};
76
77
7157eed4 78/* Register numbers of various important registers. */
78073dd8 79
82c230c2
SC
80#define HARD_X_REGNUM 0
81#define HARD_D_REGNUM 1
82#define HARD_Y_REGNUM 2
83#define HARD_SP_REGNUM 3
84#define HARD_PC_REGNUM 4
85
86#define HARD_A_REGNUM 5
87#define HARD_B_REGNUM 6
88#define HARD_CCR_REGNUM 7
5706502a
SC
89
90/* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
f57d151a 93 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
94 For this it has the same number as Z register (which is not used). */
95#define HARD_PAGE_REGNUM 8
96#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
97
98/* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101#define SOFT_Z_REGNUM 8
102
103/* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106#define SOFT_FP_REGNUM 9
107#define SOFT_TMP_REGNUM 10
108#define SOFT_ZS_REGNUM 11
109#define SOFT_XY_REGNUM 12
f91a8b6b
SC
110#define SOFT_UNUSED_REGNUM 13
111#define SOFT_D1_REGNUM 14
82c230c2
SC
112#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113#define M68HC11_MAX_SOFT_REGS 32
114
115#define M68HC11_NUM_REGS (8)
116#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119#define M68HC11_REG_SIZE (2)
120
548bcbec
SC
121#define M68HC12_NUM_REGS (9)
122#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
908f682f 125struct insn_sequence;
82c230c2
SC
126struct gdbarch_tdep
127 {
5d1a66bd
SC
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
908f682f
SC
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
81967506 136
7df11f59
SC
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
81967506
SC
141 /* ELF flags for ABI. */
142 int elf_flags;
82c230c2
SC
143 };
144
be8626e0
MD
145#define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146#define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
5d1a66bd 147
1ea653ae
SC
148struct m68hc11_unwind_cache
149{
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165};
166
82c230c2
SC
167/* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169static char *
170m68hc11_register_names[] =
171{
172 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179};
78073dd8 180
82c230c2
SC
181struct m68hc11_soft_reg
182{
183 const char *name;
184 CORE_ADDR addr;
185};
78073dd8 186
82c230c2 187static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 188
82c230c2 189#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 190
82c230c2
SC
191static int soft_min_addr;
192static int soft_max_addr;
193static int soft_reg_initialized = 0;
78073dd8 194
82c230c2
SC
195/* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198static void
199m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200{
3b7344d5 201 struct bound_minimal_symbol msymbol;
78073dd8 202
82c230c2 203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
3b7344d5 204 if (msymbol.minsym)
82c230c2 205 {
77e371c0 206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
82c230c2
SC
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220}
78073dd8 221
82c230c2
SC
222/* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225m68hc11_initialize_register_info (void)
226{
227 int i;
78073dd8 228
82c230c2
SC
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 244
82c230c2
SC
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
78073dd8 248
08850b56 249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
82c230c2
SC
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
78073dd8 252
82c230c2 253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
82c230c2
SC
256 soft_reg_initialized = 1;
257}
78073dd8 258
82c230c2
SC
259/* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261static int
262m68hc11_which_soft_register (CORE_ADDR addr)
263{
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275}
78073dd8 276
82c230c2
SC
277/* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
05d1431c 280static enum register_status
46ce284d
AC
281m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 struct regcache *regcache,
ff1e98b9 283 int regno, gdb_byte *buf)
82c230c2 284{
e17a4113
UW
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
548bcbec
SC
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
4db73d49 291 ULONGEST pc;
df4df182 292 const int regsize = 4;
05d1431c 293 enum register_status status;
548bcbec 294
05d1431c
PA
295 status = regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
297 return status;
548bcbec
SC
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
4db73d49
SC
300 ULONGEST page;
301
302 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
e17a4113 307 store_unsigned_integer (buf, regsize, byte_order, pc);
05d1431c 308 return REG_VALID;
548bcbec
SC
309 }
310
82c230c2
SC
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
05d1431c
PA
322
323 return REG_VALID;
82c230c2 324}
78073dd8 325
82c230c2
SC
326/* Store a pseudo register. Translate the register store
327 into a memory write. */
328static void
46ce284d
AC
329m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
ff1e98b9 331 int regno, const gdb_byte *buf)
82c230c2 332{
e17a4113
UW
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
548bcbec
SC
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
df4df182 339 const int regsize = 4;
224c3ddb 340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
548bcbec
SC
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
e17a4113 344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
548bcbec
SC
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
4db73d49
SC
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
548bcbec 350 pc &= 0x03fff;
4db73d49
SC
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
548bcbec
SC
353 }
354 else
4db73d49 355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
356 return;
357 }
358
82c230c2 359 m68hc11_initialize_register_info ();
78073dd8 360
82c230c2
SC
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
46ce284d 364 const int regsize = 2;
224c3ddb 365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
46ce284d
AC
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
368 }
369}
78073dd8 370
fa88f677 371static const char *
d93859e2 372m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 373{
be8626e0 374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec 375 return "pc";
be8626e0 376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec
SC
377 return "ppc";
378
82c230c2
SC
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
65760afb
SC
384 m68hc11_initialize_register_info ();
385
82c230c2
SC
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391}
78073dd8 392
f4f9705a 393static const unsigned char *
67d57894
MD
394m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
395 int *lenptr)
78073dd8 396{
82c230c2 397 static unsigned char breakpoint[] = {0x0};
67d57894 398
82c230c2
SC
399 *lenptr = sizeof (breakpoint);
400 return breakpoint;
78073dd8
AC
401}
402
908f682f 403\f
025bb325 404/* 68HC11 & 68HC12 prologue analysis. */
908f682f 405
908f682f
SC
406#define MAX_CODES 12
407
408/* 68HC11 opcodes. */
409#undef M6811_OP_PAGE2
b94a41a1
SC
410#define M6811_OP_PAGE2 (0x18)
411#define M6811_OP_LDX (0xde)
412#define M6811_OP_LDX_EXT (0xfe)
413#define M6811_OP_PSHX (0x3c)
414#define M6811_OP_STS (0x9f)
415#define M6811_OP_STS_EXT (0xbf)
416#define M6811_OP_TSX (0x30)
417#define M6811_OP_XGDX (0x8f)
418#define M6811_OP_ADDD (0xc3)
419#define M6811_OP_TXS (0x35)
420#define M6811_OP_DES (0x34)
908f682f
SC
421
422/* 68HC12 opcodes. */
b94a41a1
SC
423#define M6812_OP_PAGE2 (0x18)
424#define M6812_OP_MOVW (0x01)
425#define M6812_PB_PSHW (0xae)
426#define M6812_OP_STS (0x5f)
427#define M6812_OP_STS_EXT (0x7f)
428#define M6812_OP_LEAS (0x1b)
429#define M6812_OP_PSHX (0x34)
430#define M6812_OP_PSHY (0x35)
908f682f
SC
431
432/* Operand extraction. */
433#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
434#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
435#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
436#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
437
438/* Identification of the sequence. */
439enum m6811_seq_type
440{
441 P_LAST = 0,
442 P_SAVE_REG, /* Save a register on the stack. */
443 P_SET_FRAME, /* Setup the frame pointer. */
444 P_LOCAL_1, /* Allocate 1 byte for locals. */
445 P_LOCAL_2, /* Allocate 2 bytes for locals. */
446 P_LOCAL_N /* Allocate N bytes for locals. */
447};
448
449struct insn_sequence {
450 enum m6811_seq_type type;
451 unsigned length;
452 unsigned short code[MAX_CODES];
453};
454
455/* Sequence of instructions in the 68HC11 function prologue. */
456static struct insn_sequence m6811_prologue[] = {
457 /* Sequences to save a soft-register. */
458 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PSHX } },
460 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
461 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
462 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PSHX } },
464 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
466
467 /* Sequences to allocate local variables. */
468 { P_LOCAL_N, 7, { M6811_OP_TSX,
469 M6811_OP_XGDX,
470 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
471 M6811_OP_XGDX,
472 M6811_OP_TXS } },
473 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
476 M6811_OP_PAGE2, M6811_OP_XGDX,
477 M6811_OP_PAGE2, M6811_OP_TXS } },
478 { P_LOCAL_1, 1, { M6811_OP_DES } },
479 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
480 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
481
482 /* Initialize the frame pointer. */
483 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 484 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
485 { P_LAST, 0, { 0 } }
486};
487
488
489/* Sequence of instructions in the 68HC12 function prologue. */
490static struct insn_sequence m6812_prologue[] = {
491 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
492 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
493 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
494 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 495 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
496 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
497 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
498 { P_LAST, 0 }
499};
500
501
502/* Analyze the sequence of instructions starting at the given address.
503 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 504 the optional value (constant/address) associated with it. */
908f682f 505static struct insn_sequence *
e17a4113
UW
506m68hc11_analyze_instruction (struct gdbarch *gdbarch,
507 struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
508 CORE_ADDR *val)
509{
e17a4113 510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908f682f
SC
511 unsigned char buffer[MAX_CODES];
512 unsigned bufsize;
513 unsigned j;
514 CORE_ADDR cur_val;
515 short v = 0;
516
517 bufsize = 0;
518 for (; seq->type != P_LAST; seq++)
519 {
520 cur_val = 0;
521 for (j = 0; j < seq->length; j++)
522 {
523 if (bufsize < j + 1)
524 {
c8a7f6ac 525 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
e17a4113 526 1, byte_order);
908f682f
SC
527 bufsize++;
528 }
529 /* Continue while we match the opcode. */
530 if (seq->code[j] == buffer[j])
531 continue;
532
533 if ((seq->code[j] & 0xf00) == 0)
534 break;
535
536 /* Extract a sequence parameter (address or constant). */
537 switch (seq->code[j])
538 {
539 case OP_DIRECT:
540 cur_val = (CORE_ADDR) buffer[j];
541 break;
542
543 case OP_IMM_HIGH:
544 cur_val = cur_val & 0x0ff;
545 cur_val |= (buffer[j] << 8);
546 break;
547
548 case OP_IMM_LOW:
549 cur_val &= 0x0ff00;
550 cur_val |= buffer[j];
551 break;
552
553 case OP_PBYTE:
554 if ((buffer[j] & 0xE0) == 0x80)
555 {
556 v = buffer[j] & 0x1f;
557 if (v & 0x10)
558 v |= 0xfff0;
559 }
560 else if ((buffer[j] & 0xfe) == 0xf0)
561 {
e17a4113 562 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
908f682f
SC
563 if (buffer[j] & 1)
564 v |= 0xff00;
565 }
566 else if (buffer[j] == 0xf2)
567 {
e17a4113 568 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
908f682f
SC
569 }
570 cur_val = v;
571 break;
572 }
573 }
574
575 /* We have a full match. */
576 if (j == seq->length)
577 {
578 *val = cur_val;
908f682f
SC
579 return seq;
580 }
581 }
582 return 0;
583}
584
7df11f59
SC
585/* Return the instruction that the function at the PC is using. */
586static enum insn_return_kind
587m68hc11_get_return_insn (CORE_ADDR pc)
588{
7cbd4a93 589 struct bound_minimal_symbol sym;
7df11f59
SC
590
591 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
592 function is stored by elfread.c in the high bit of the info field.
593 Use this to decide which instruction the function uses to return. */
594 sym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 595 if (sym.minsym == 0)
7df11f59
SC
596 return RETURN_RTS;
597
7cbd4a93 598 if (MSYMBOL_IS_RTC (sym.minsym))
7df11f59 599 return RETURN_RTC;
7cbd4a93 600 else if (MSYMBOL_IS_RTI (sym.minsym))
7df11f59
SC
601 return RETURN_RTI;
602 else
603 return RETURN_RTS;
604}
605
78073dd8
AC
606/* Analyze the function prologue to find some information
607 about the function:
608 - the PC of the first line (for m68hc11_skip_prologue)
609 - the offset of the previous frame saved address (from current frame)
610 - the soft registers which are pushed. */
1ea653ae 611static CORE_ADDR
be8626e0
MD
612m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
613 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
78073dd8 614{
1ea653ae 615 LONGEST save_addr;
78073dd8 616 CORE_ADDR func_end;
78073dd8
AC
617 int size;
618 int found_frame_point;
82c230c2 619 int saved_reg;
908f682f
SC
620 int done = 0;
621 struct insn_sequence *seq_table;
1ea653ae
SC
622
623 info->size = 0;
624 info->sp_offset = 0;
625 if (pc >= current_pc)
626 return current_pc;
627
78073dd8
AC
628 size = 0;
629
82c230c2 630 m68hc11_initialize_register_info ();
1ea653ae 631 if (pc == 0)
78073dd8 632 {
1ea653ae
SC
633 info->size = 0;
634 return pc;
78073dd8
AC
635 }
636
be8626e0 637 seq_table = gdbarch_tdep (gdbarch)->prologue;
908f682f 638
78073dd8
AC
639 /* The 68hc11 stack is as follows:
640
641
642 | |
643 +-----------+
644 | |
645 | args |
646 | |
647 +-----------+
648 | PC-return |
649 +-----------+
650 | Old frame |
651 +-----------+
652 | |
653 | Locals |
654 | |
655 +-----------+ <--- current frame
656 | |
657
658 With most processors (like 68K) the previous frame can be computed
659 easily because it is always at a fixed offset (see link/unlink).
660 That is, locals are accessed with negative offsets, arguments are
661 accessed with positive ones. Since 68hc11 only supports offsets
662 in the range [0..255], the frame is defined at the bottom of
663 locals (see picture).
664
665 The purpose of the analysis made here is to find out the size
666 of locals in this function. An alternative to this is to use
667 DWARF2 info. This would be better but I don't know how to
668 access dwarf2 debug from this function.
669
670 Walk from the function entry point to the point where we save
671 the frame. While walking instructions, compute the size of bytes
672 which are pushed. This gives us the index to access the previous
673 frame.
674
675 We limit the search to 128 bytes so that the algorithm is bounded
676 in case of random and wrong code. We also stop and abort if
677 we find an instruction which is not supposed to appear in the
025bb325
MS
678 prologue (as generated by gcc 2.95, 2.96). */
679
78073dd8 680 func_end = pc + 128;
78073dd8 681 found_frame_point = 0;
1ea653ae
SC
682 info->size = 0;
683 save_addr = 0;
908f682f 684 while (!done && pc + 2 < func_end)
78073dd8 685 {
908f682f
SC
686 struct insn_sequence *seq;
687 CORE_ADDR val;
1ea653ae 688
e17a4113 689 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
908f682f
SC
690 if (seq == 0)
691 break;
78073dd8 692
c8a7f6ac
SC
693 /* If we are within the instruction group, we can't advance the
694 pc nor the stack offset. Otherwise the caller's stack computed
695 from the current stack can be wrong. */
696 if (pc + seq->length > current_pc)
697 break;
698
699 pc = pc + seq->length;
908f682f 700 if (seq->type == P_SAVE_REG)
78073dd8 701 {
908f682f
SC
702 if (found_frame_point)
703 {
704 saved_reg = m68hc11_which_soft_register (val);
705 if (saved_reg < 0)
706 break;
78073dd8 707
908f682f 708 save_addr -= 2;
ff1e98b9
SC
709 if (info->saved_regs)
710 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
711 }
712 else
713 {
714 size += 2;
715 }
78073dd8 716 }
908f682f 717 else if (seq->type == P_SET_FRAME)
78073dd8
AC
718 {
719 found_frame_point = 1;
1ea653ae 720 info->size = size;
78073dd8 721 }
908f682f 722 else if (seq->type == P_LOCAL_1)
78073dd8 723 {
6148eca7
SC
724 size += 1;
725 }
908f682f 726 else if (seq->type == P_LOCAL_2)
78073dd8 727 {
908f682f 728 size += 2;
78073dd8 729 }
908f682f 730 else if (seq->type == P_LOCAL_N)
78073dd8 731 {
908f682f
SC
732 /* Stack pointer is decremented for the allocation. */
733 if (val & 0x8000)
734 size -= (int) (val) | 0xffff0000;
735 else
736 size -= val;
78073dd8
AC
737 }
738 }
1ea653ae
SC
739 if (found_frame_point == 0)
740 info->sp_offset = size;
741 else
742 info->sp_offset = -1;
743 return pc;
78073dd8
AC
744}
745
82c230c2 746static CORE_ADDR
6093d2eb 747m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
78073dd8
AC
748{
749 CORE_ADDR func_addr, func_end;
750 struct symtab_and_line sal;
1ea653ae 751 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 752
82c230c2
SC
753 /* If we have line debugging information, then the end of the
754 prologue should be the first assembly instruction of the
78073dd8
AC
755 first source line. */
756 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
757 {
758 sal = find_pc_line (func_addr, 0);
759 if (sal.end && sal.end < func_end)
760 return sal.end;
761 }
762
be8626e0 763 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
764 return pc;
765}
766
1ea653ae
SC
767static CORE_ADDR
768m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
769{
770 ULONGEST pc;
771
025bb325
MS
772 pc = frame_unwind_register_unsigned (next_frame,
773 gdbarch_pc_regnum (gdbarch));
1ea653ae
SC
774 return pc;
775}
776
777/* Put here the code to store, into fi->saved_regs, the addresses of
778 the saved registers of frame described by FRAME_INFO. This
779 includes special registers such as pc and fp saved in special ways
780 in the stack frame. sp is even more special: the address we return
025bb325 781 for it IS the sp for the next frame. */
1ea653ae 782
63807e1d 783static struct m68hc11_unwind_cache *
94afd7a6 784m68hc11_frame_unwind_cache (struct frame_info *this_frame,
1ea653ae
SC
785 void **this_prologue_cache)
786{
94afd7a6 787 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1ea653ae
SC
788 ULONGEST prev_sp;
789 ULONGEST this_base;
790 struct m68hc11_unwind_cache *info;
791 CORE_ADDR current_pc;
792 int i;
793
794 if ((*this_prologue_cache))
795 return (*this_prologue_cache);
796
797 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
798 (*this_prologue_cache) = info;
94afd7a6 799 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1ea653ae 800
94afd7a6 801 info->pc = get_frame_func (this_frame);
1ea653ae
SC
802
803 info->size = 0;
804 info->return_kind = m68hc11_get_return_insn (info->pc);
805
806 /* The SP was moved to the FP. This indicates that a new frame
807 was created. Get THIS frame's FP value by unwinding it from
808 the next frame. */
94afd7a6 809 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
810 if (this_base == 0)
811 {
812 info->base = 0;
813 return info;
814 }
815
94afd7a6 816 current_pc = get_frame_pc (this_frame);
1ea653ae 817 if (info->pc != 0)
be8626e0 818 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
1ea653ae
SC
819
820 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
821
822 if (info->sp_offset != (CORE_ADDR) -1)
823 {
824 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
94afd7a6 825 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
1ea653ae 826 prev_sp = this_base + info->sp_offset + 2;
be8626e0 827 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
828 }
829 else
830 {
831 /* The FP points at the last saved register. Adjust the FP back
832 to before the first saved register giving the SP. */
833 prev_sp = this_base + info->size + 2;
834
be8626e0 835 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
836 if (soft_regs[SOFT_FP_REGNUM].name)
837 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
838 }
839
840 if (info->return_kind == RETURN_RTC)
841 {
842 prev_sp += 1;
843 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
845 }
846 else if (info->return_kind == RETURN_RTI)
847 {
848 prev_sp += 7;
849 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
850 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
851 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
852 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
853 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
854 }
855
856 /* Add 1 here to adjust for the post-decrement nature of the push
025bb325 857 instruction. */
1ea653ae
SC
858 info->prev_sp = prev_sp;
859
860 info->base = this_base;
861
862 /* Adjust all the saved registers so that they contain addresses and not
863 offsets. */
f57d151a 864 for (i = 0;
be8626e0
MD
865 i < gdbarch_num_regs (gdbarch)
866 + gdbarch_num_pseudo_regs (gdbarch) - 1;
f57d151a 867 i++)
1ea653ae
SC
868 if (trad_frame_addr_p (info->saved_regs, i))
869 {
870 info->saved_regs[i].addr += this_base;
871 }
872
873 /* The previous frame's SP needed to be computed. Save the computed
874 value. */
875 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
876
877 return info;
878}
879
880/* Given a GDB frame, determine the address of the calling function's
881 frame. This will be used to create a new GDB frame struct. */
882
883static void
94afd7a6 884m68hc11_frame_this_id (struct frame_info *this_frame,
1ea653ae
SC
885 void **this_prologue_cache,
886 struct frame_id *this_id)
887{
888 struct m68hc11_unwind_cache *info
94afd7a6 889 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae
SC
890 CORE_ADDR base;
891 CORE_ADDR func;
892 struct frame_id id;
893
894 /* The FUNC is easy. */
94afd7a6 895 func = get_frame_func (this_frame);
1ea653ae 896
1ea653ae
SC
897 /* Hopefully the prologue analysis either correctly determined the
898 frame's base (which is the SP from the previous frame), or set
899 that base to "NULL". */
900 base = info->prev_sp;
901 if (base == 0)
902 return;
903
904 id = frame_id_build (base, func);
1ea653ae
SC
905 (*this_id) = id;
906}
907
94afd7a6
UW
908static struct value *
909m68hc11_frame_prev_register (struct frame_info *this_frame,
910 void **this_prologue_cache, int regnum)
1ea653ae 911{
94afd7a6 912 struct value *value;
1ea653ae 913 struct m68hc11_unwind_cache *info
94afd7a6 914 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae 915
94afd7a6 916 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1ea653ae 917
94afd7a6
UW
918 /* Take into account the 68HC12 specific call (PC + page). */
919 if (regnum == HARD_PC_REGNUM
920 && info->return_kind == RETURN_RTC
921 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
1ea653ae 922 {
94afd7a6
UW
923 CORE_ADDR pc = value_as_long (value);
924 if (pc >= 0x08000 && pc < 0x0c000)
1ea653ae 925 {
1ea653ae
SC
926 CORE_ADDR page;
927
94afd7a6
UW
928 release_value (value);
929 value_free (value);
930
931 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
932 HARD_PAGE_REGNUM);
933 page = value_as_long (value);
934 release_value (value);
935 value_free (value);
936
937 pc -= 0x08000;
938 pc += ((page & 0x0ff) << 14);
939 pc += 0x1000000;
940
941 return frame_unwind_got_constant (this_frame, regnum, pc);
1ea653ae
SC
942 }
943 }
94afd7a6
UW
944
945 return value;
1ea653ae
SC
946}
947
948static const struct frame_unwind m68hc11_frame_unwind = {
949 NORMAL_FRAME,
8fbca658 950 default_frame_unwind_stop_reason,
1ea653ae 951 m68hc11_frame_this_id,
94afd7a6
UW
952 m68hc11_frame_prev_register,
953 NULL,
954 default_frame_sniffer
1ea653ae
SC
955};
956
1ea653ae 957static CORE_ADDR
94afd7a6 958m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
959{
960 struct m68hc11_unwind_cache *info
94afd7a6 961 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
962
963 return info->base;
964}
965
966static CORE_ADDR
94afd7a6 967m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
968{
969 CORE_ADDR addr;
970 struct m68hc11_unwind_cache *info
94afd7a6 971 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
972
973 addr = info->base + info->size;
974 if (info->return_kind == RETURN_RTC)
975 addr += 1;
976 else if (info->return_kind == RETURN_RTI)
977 addr += 7;
978
979 return addr;
980}
981
982static const struct frame_base m68hc11_frame_base = {
983 &m68hc11_frame_unwind,
984 m68hc11_frame_base_address,
985 m68hc11_frame_base_address,
986 m68hc11_frame_args_address
987};
988
989static CORE_ADDR
990m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
991{
992 ULONGEST sp;
11411de3 993 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
994 return sp;
995}
996
94afd7a6
UW
997/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
998 frame. The frame ID's base needs to match the TOS value saved by
999 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1ea653ae
SC
1000
1001static struct frame_id
94afd7a6 1002m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1ea653ae
SC
1003{
1004 ULONGEST tos;
94afd7a6 1005 CORE_ADDR pc = get_frame_pc (this_frame);
1ea653ae 1006
94afd7a6 1007 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
1008 tos += 2;
1009 return frame_id_build (tos, pc);
1010}
78073dd8 1011
e286caf2
SC
1012\f
1013/* Get and print the register from the given frame. */
78073dd8 1014static void
e286caf2
SC
1015m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1016 struct frame_info *frame, int regno)
78073dd8 1017{
e286caf2
SC
1018 LONGEST rval;
1019
1020 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1021 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1022 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1023 else
7f5f525d 1024 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1025
1026 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1027 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1028 {
e286caf2
SC
1029 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1030 if (regno != HARD_CCR_REGNUM)
1031 print_longest (file, 'd', 1, rval);
7df11f59 1032 }
e286caf2
SC
1033 else
1034 {
1035 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1036 {
1037 ULONGEST page;
7df11f59 1038
7f5f525d 1039 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1040 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1041 (unsigned) rval);
1042 }
1043 else
1044 {
1045 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1046 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1047 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1048 print_longest (file, 'd', 1, rval);
1049 }
1050 }
1051
1052 if (regno == HARD_CCR_REGNUM)
78073dd8 1053 {
e286caf2
SC
1054 /* CCR register */
1055 int C, Z, N, V;
1056 unsigned char l = rval & 0xff;
1057
1058 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1059 l & M6811_S_BIT ? 'S' : '-',
1060 l & M6811_X_BIT ? 'X' : '-',
1061 l & M6811_H_BIT ? 'H' : '-',
1062 l & M6811_I_BIT ? 'I' : '-',
1063 l & M6811_N_BIT ? 'N' : '-',
1064 l & M6811_Z_BIT ? 'Z' : '-',
1065 l & M6811_V_BIT ? 'V' : '-',
1066 l & M6811_C_BIT ? 'C' : '-');
1067 N = (l & M6811_N_BIT) != 0;
1068 Z = (l & M6811_Z_BIT) != 0;
1069 V = (l & M6811_V_BIT) != 0;
1070 C = (l & M6811_C_BIT) != 0;
1071
025bb325 1072 /* Print flags following the h8300. */
e286caf2
SC
1073 if ((C | Z) == 0)
1074 fprintf_filtered (file, "u> ");
1075 else if ((C | Z) == 1)
1076 fprintf_filtered (file, "u<= ");
1077 else if (C == 0)
1078 fprintf_filtered (file, "u< ");
1079
1080 if (Z == 0)
1081 fprintf_filtered (file, "!= ");
1082 else
1083 fprintf_filtered (file, "== ");
1084
1085 if ((N ^ V) == 0)
1086 fprintf_filtered (file, ">= ");
1087 else
1088 fprintf_filtered (file, "< ");
1089
1090 if ((Z | (N ^ V)) == 0)
1091 fprintf_filtered (file, "> ");
78073dd8 1092 else
e286caf2 1093 fprintf_filtered (file, "<= ");
78073dd8 1094 }
e286caf2
SC
1095}
1096
1097/* Same as 'info reg' but prints the registers in a different way. */
1098static void
1099m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1100 struct frame_info *frame, int regno, int cpregs)
1101{
1102 if (regno >= 0)
1103 {
1104 const char *name = gdbarch_register_name (gdbarch, regno);
1105
1106 if (!name || !*name)
1107 return;
1108
1109 fprintf_filtered (file, "%-10s ", name);
1110 m68hc11_print_register (gdbarch, file, frame, regno);
1111 fprintf_filtered (file, "\n");
1112 }
1113 else
1114 {
1115 int i, nr;
1116
1117 fprintf_filtered (file, "PC=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1119
1120 fprintf_filtered (file, " SP=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1122
1123 fprintf_filtered (file, " FP=");
1124 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1125
1126 fprintf_filtered (file, "\nCCR=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1128
1129 fprintf_filtered (file, "\nD=");
1130 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1131
1132 fprintf_filtered (file, " X=");
1133 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1134
1135 fprintf_filtered (file, " Y=");
1136 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1137
1138 if (gdbarch_tdep (gdbarch)->use_page_register)
1139 {
1140 fprintf_filtered (file, "\nPage=");
1141 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1142 }
1143 fprintf_filtered (file, "\n");
1144
1145 nr = 0;
1146 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1147 {
1148 /* Skip registers which are not defined in the symbol table. */
1149 if (soft_regs[i].name == 0)
1150 continue;
1151
1152 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1153 m68hc11_print_register (gdbarch, file, frame, i);
1154 nr++;
1155 if ((nr % 8) == 7)
1156 fprintf_filtered (file, "\n");
1157 else
1158 fprintf_filtered (file, " ");
1159 }
1160 if (nr && (nr % 8) != 7)
1161 fprintf_filtered (file, "\n");
1162 }
1163}
1164
82c230c2 1165static CORE_ADDR
7d9b040b 1166m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1167 struct regcache *regcache, CORE_ADDR bp_addr,
1168 int nargs, struct value **args, CORE_ADDR sp,
1169 int struct_return, CORE_ADDR struct_addr)
78073dd8 1170{
e17a4113 1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
82c230c2
SC
1172 int argnum;
1173 int first_stack_argnum;
82c230c2 1174 struct type *type;
948f8e3d 1175 const gdb_byte *val;
e362b510 1176 gdb_byte buf[2];
82c230c2 1177
82c230c2
SC
1178 first_stack_argnum = 0;
1179 if (struct_return)
1180 {
ff1e98b9 1181 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1182 }
1183 else if (nargs > 0)
1184 {
4991999e 1185 type = value_type (args[0]);
3dc990bf 1186
82c230c2 1187 /* First argument is passed in D and X registers. */
744a8059 1188 if (TYPE_LENGTH (type) <= 4)
82c230c2 1189 {
3dc990bf
SC
1190 ULONGEST v;
1191
e17a4113 1192 v = extract_unsigned_integer (value_contents (args[0]),
744a8059 1193 TYPE_LENGTH (type), byte_order);
82c230c2 1194 first_stack_argnum = 1;
3dc990bf
SC
1195
1196 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
744a8059 1197 if (TYPE_LENGTH (type) > 2)
82c230c2
SC
1198 {
1199 v >>= 16;
3dc990bf 1200 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1201 }
1202 }
1203 }
82c230c2 1204
3dc990bf 1205 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1206 {
4991999e 1207 type = value_type (args[argnum]);
82c230c2 1208
744a8059 1209 if (TYPE_LENGTH (type) & 1)
22df305e 1210 {
948f8e3d 1211 static gdb_byte zero = 0;
22df305e 1212
3dc990bf
SC
1213 sp--;
1214 write_memory (sp, &zero, 1);
22df305e 1215 }
948f8e3d 1216 val = value_contents (args[argnum]);
744a8059
SP
1217 sp -= TYPE_LENGTH (type);
1218 write_memory (sp, val, TYPE_LENGTH (type));
82c230c2 1219 }
3dc990bf
SC
1220
1221 /* Store return address. */
1222 sp -= 2;
e17a4113 1223 store_unsigned_integer (buf, 2, byte_order, bp_addr);
3dc990bf
SC
1224 write_memory (sp, buf, 2);
1225
1226 /* Finally, update the stack pointer... */
be8626e0 1227 sp -= STACK_CORRECTION (gdbarch);
3dc990bf
SC
1228 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1229
1230 /* ...and fake a frame pointer. */
1231 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1232
1233 /* DWARF2/GCC uses the stack address *before* the function call as a
1234 frame's CFA. */
1235 return sp + 2;
78073dd8
AC
1236}
1237
1238
4db73d49
SC
1239/* Return the GDB type object for the "standard" data type
1240 of data in register N. */
1241
82c230c2 1242static struct type *
4db73d49 1243m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1244{
5706502a
SC
1245 switch (reg_nr)
1246 {
1247 case HARD_PAGE_REGNUM:
1248 case HARD_A_REGNUM:
1249 case HARD_B_REGNUM:
1250 case HARD_CCR_REGNUM:
df4df182 1251 return builtin_type (gdbarch)->builtin_uint8;
5706502a 1252
548bcbec 1253 case M68HC12_HARD_PC_REGNUM:
df4df182 1254 return builtin_type (gdbarch)->builtin_uint32;
548bcbec 1255
5706502a 1256 default:
df4df182 1257 return builtin_type (gdbarch)->builtin_uint16;
5706502a 1258 }
82c230c2
SC
1259}
1260
82c230c2 1261static void
4db73d49 1262m68hc11_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1263 const gdb_byte *valbuf)
82c230c2 1264{
22df305e
SC
1265 int len;
1266
1267 len = TYPE_LENGTH (type);
1268
1269 /* First argument is passed in D and X registers. */
4db73d49
SC
1270 if (len <= 2)
1271 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1272 else if (len <= 4)
22df305e 1273 {
4db73d49
SC
1274 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1275 len - 2, valbuf);
948f8e3d 1276 regcache_raw_write (regcache, HARD_D_REGNUM, valbuf + (len - 2));
22df305e
SC
1277 }
1278 else
8a3fe4f8 1279 error (_("return of value > 4 is not supported."));
82c230c2
SC
1280}
1281
1282
ef2b8fcd 1283/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1284 extract and copy its value into `valbuf'. */
1285
82c230c2 1286static void
ef2b8fcd
SC
1287m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1288 void *valbuf)
78073dd8 1289{
e362b510 1290 gdb_byte buf[M68HC11_REG_SIZE];
ef2b8fcd
SC
1291
1292 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
744a8059 1293 switch (TYPE_LENGTH (type))
82c230c2 1294 {
22df305e 1295 case 1:
ef2b8fcd 1296 memcpy (valbuf, buf + 1, 1);
22df305e 1297 break;
ef2b8fcd 1298
22df305e 1299 case 2:
ef2b8fcd 1300 memcpy (valbuf, buf, 2);
22df305e 1301 break;
ef2b8fcd 1302
22df305e 1303 case 3:
ef2b8fcd
SC
1304 memcpy ((char*) valbuf + 1, buf, 2);
1305 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1306 memcpy (valbuf, buf + 1, 1);
22df305e 1307 break;
ef2b8fcd 1308
22df305e 1309 case 4:
ef2b8fcd
SC
1310 memcpy ((char*) valbuf + 2, buf, 2);
1311 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1312 memcpy (valbuf, buf, 2);
22df305e
SC
1313 break;
1314
1315 default:
8a3fe4f8 1316 error (_("bad size for return value"));
82c230c2
SC
1317 }
1318}
1319
63807e1d 1320static enum return_value_convention
6a3a010b 1321m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1322 struct type *valtype, struct regcache *regcache,
1323 gdb_byte *readbuf, const gdb_byte *writebuf)
82c230c2 1324{
97092415
AC
1325 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1326 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1327 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1328 || TYPE_LENGTH (valtype) > 4)
1329 return RETURN_VALUE_STRUCT_CONVENTION;
1330 else
1331 {
1332 if (readbuf != NULL)
1333 m68hc11_extract_return_value (valtype, regcache, readbuf);
1334 if (writebuf != NULL)
1335 m68hc11_store_return_value (valtype, regcache, writebuf);
1336 return RETURN_VALUE_REGISTER_CONVENTION;
1337 }
82c230c2
SC
1338}
1339
7df11f59
SC
1340/* Test whether the ELF symbol corresponds to a function using rtc or
1341 rti to return. */
1342
1343static void
1344m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1345{
1346 unsigned char flags;
1347
1348 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1349 if (flags & STO_M68HC12_FAR)
1350 MSYMBOL_SET_RTC (msym);
1351 if (flags & STO_M68HC12_INTERRUPT)
1352 MSYMBOL_SET_RTI (msym);
1353}
1354
ea3881d9
SC
1355static int
1356gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1357{
9dae60cc 1358 if (info->arch == bfd_arch_m68hc11)
ea3881d9
SC
1359 return print_insn_m68hc11 (memaddr, info);
1360 else
1361 return print_insn_m68hc12 (memaddr, info);
1362}
1363
b631436b
SC
1364\f
1365
1366/* 68HC11/68HC12 register groups.
1367 Identify real hard registers and soft registers used by gcc. */
1368
1369static struct reggroup *m68hc11_soft_reggroup;
1370static struct reggroup *m68hc11_hard_reggroup;
1371
1372static void
1373m68hc11_init_reggroups (void)
1374{
1375 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1376 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1377}
1378
1379static void
1380m68hc11_add_reggroups (struct gdbarch *gdbarch)
1381{
1382 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1383 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1384 reggroup_add (gdbarch, general_reggroup);
1385 reggroup_add (gdbarch, float_reggroup);
1386 reggroup_add (gdbarch, all_reggroup);
1387 reggroup_add (gdbarch, save_reggroup);
1388 reggroup_add (gdbarch, restore_reggroup);
1389 reggroup_add (gdbarch, vector_reggroup);
1390 reggroup_add (gdbarch, system_reggroup);
1391}
1392
1393static int
1394m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1395 struct reggroup *group)
1396{
1397 /* We must save the real hard register as well as gcc
1398 soft registers including the frame pointer. */
1399 if (group == save_reggroup || group == restore_reggroup)
1400 {
1401 return (regnum <= gdbarch_num_regs (gdbarch)
1402 || ((regnum == SOFT_FP_REGNUM
1403 || regnum == SOFT_TMP_REGNUM
1404 || regnum == SOFT_ZS_REGNUM
1405 || regnum == SOFT_XY_REGNUM)
d93859e2 1406 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1407 }
1408
1409 /* Group to identify gcc soft registers (d1..dN). */
1410 if (group == m68hc11_soft_reggroup)
1411 {
d93859e2
UW
1412 return regnum >= SOFT_D1_REGNUM
1413 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1414 }
1415
1416 if (group == m68hc11_hard_reggroup)
1417 {
1418 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1419 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1420 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1421 }
1422 return default_register_reggroup_p (gdbarch, regnum, group);
1423}
1424
82c230c2
SC
1425static struct gdbarch *
1426m68hc11_gdbarch_init (struct gdbarch_info info,
1427 struct gdbarch_list *arches)
1428{
82c230c2
SC
1429 struct gdbarch *gdbarch;
1430 struct gdbarch_tdep *tdep;
81967506 1431 int elf_flags;
82c230c2
SC
1432
1433 soft_reg_initialized = 0;
81967506
SC
1434
1435 /* Extract the elf_flags if available. */
1436 if (info.abfd != NULL
1437 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1438 elf_flags = elf_elfheader (info.abfd)->e_flags;
1439 else
1440 elf_flags = 0;
1441
025bb325 1442 /* Try to find a pre-existing architecture. */
82c230c2
SC
1443 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1444 arches != NULL;
1445 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1446 {
81967506
SC
1447 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1448 continue;
1449
82c230c2
SC
1450 return arches->gdbarch;
1451 }
1452
025bb325 1453 /* Need a new architecture. Fill in a target specific vector. */
8d749320 1454 tdep = XNEW (struct gdbarch_tdep);
82c230c2 1455 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1456 tdep->elf_flags = elf_flags;
ed99b3d0 1457
5d1a66bd
SC
1458 switch (info.bfd_arch_info->arch)
1459 {
1460 case bfd_arch_m68hc11:
1461 tdep->stack_correction = 1;
7df11f59 1462 tdep->use_page_register = 0;
908f682f 1463 tdep->prologue = m6811_prologue;
548bcbec
SC
1464 set_gdbarch_addr_bit (gdbarch, 16);
1465 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1466 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1467 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1468 break;
82c230c2 1469
5d1a66bd
SC
1470 case bfd_arch_m68hc12:
1471 tdep->stack_correction = 0;
7df11f59 1472 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1473 tdep->prologue = m6812_prologue;
548bcbec
SC
1474 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1475 set_gdbarch_num_pseudo_regs (gdbarch,
1476 elf_flags & E_M68HC12_BANKS
1477 ? M68HC12_NUM_PSEUDO_REGS
1478 : M68HC11_NUM_PSEUDO_REGS);
1479 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1480 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1481 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1482 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1483 break;
1484
1485 default:
1486 break;
1487 }
7d32ba20
SC
1488
1489 /* Initially set everything according to the ABI.
1490 Use 16-bit integers since it will be the case for most
1491 programs. The size of these types should normally be set
1492 according to the dwarf2 debug information. */
82c230c2 1493 set_gdbarch_short_bit (gdbarch, 16);
81967506 1494 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1495 set_gdbarch_float_bit (gdbarch, 32);
f92589cb
TS
1496 if (elf_flags & E_M68HC11_F64)
1497 {
1498 set_gdbarch_double_bit (gdbarch, 64);
1499 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1500 }
1501 else
1502 {
1503 set_gdbarch_double_bit (gdbarch, 32);
1504 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1505 }
2417dd25 1506 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1507 set_gdbarch_long_bit (gdbarch, 32);
1508 set_gdbarch_ptr_bit (gdbarch, 16);
1509 set_gdbarch_long_long_bit (gdbarch, 64);
1510
b2a02dda
SC
1511 /* Characters are unsigned. */
1512 set_gdbarch_char_signed (gdbarch, 0);
1513
1ea653ae
SC
1514 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1515 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1516
82c230c2
SC
1517 /* Set register info. */
1518 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1519
82c230c2 1520 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1521 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1522 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1523 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1524 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1525
3dc990bf
SC
1526 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1527
97092415 1528 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1529 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1530 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1531 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1532 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1533
b631436b
SC
1534 m68hc11_add_reggroups (gdbarch);
1535 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1536 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1537
1ea653ae 1538 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6 1539 dwarf2_append_unwinders (gdbarch);
1ea653ae 1540
94afd7a6 1541 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1ea653ae
SC
1542 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1543
1544 /* Methods for saving / extracting a dummy frame's ID. The ID's
1545 stack address must match the SP value returned by
1546 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1547 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1ea653ae
SC
1548
1549 /* Return the unwound PC value. */
1550 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1551
7df11f59
SC
1552 /* Minsymbol frobbing. */
1553 set_gdbarch_elf_make_msymbol_special (gdbarch,
1554 m68hc11_elf_make_msymbol_special);
1555
82c230c2 1556 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1557
1558 return gdbarch;
78073dd8
AC
1559}
1560
025bb325
MS
1561/* -Wmissing-prototypes */
1562extern initialize_file_ftype _initialize_m68hc11_tdep;
a78f21af 1563
78073dd8 1564void
fba45db2 1565_initialize_m68hc11_tdep (void)
78073dd8 1566{
82c230c2 1567 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1568 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1569 m68hc11_init_reggroups ();
78073dd8
AC
1570}
1571
This page took 1.3716 seconds and 4 git commands to generate.