* gdb.dwarf2/dw2-basic.exp, gdb.dwarf2/dw2-intercu.exp: Run tests
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
0fd88904 3 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5
AC
4 Foundation, Inc.
5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
78073dd8 24
82c230c2
SC
25#include "defs.h"
26#include "frame.h"
1ea653ae
SC
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "dwarf2-frame.h"
30#include "trad-frame.h"
82c230c2
SC
31#include "symtab.h"
32#include "gdbtypes.h"
33#include "gdbcmd.h"
34#include "gdbcore.h"
35#include "gdb_string.h"
36#include "value.h"
37#include "inferior.h"
38#include "dis-asm.h"
39#include "symfile.h"
40#include "objfiles.h"
41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
b631436b 43#include "reggroups.h"
78073dd8 44
82c230c2
SC
45#include "target.h"
46#include "opcode/m68hc11.h"
81967506
SC
47#include "elf/m68hc11.h"
48#include "elf-bfd.h"
78073dd8 49
7df11f59
SC
50/* Macros for setting and testing a bit in a minimal symbol.
51 For 68HC11/68HC12 we have two flags that tell which return
52 type the function is using. This is used for prologue and frame
53 analysis to compute correct stack frame layout.
54
55 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
56
57 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
58 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
59 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 60 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
61
62#define MSYMBOL_SET_RTC(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66#define MSYMBOL_SET_RTI(msym) \
67 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
68 | 0x40000000)
69
70#define MSYMBOL_IS_RTC(msym) \
71 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
72
73#define MSYMBOL_IS_RTI(msym) \
74 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
75
7df11f59
SC
76enum insn_return_kind {
77 RETURN_RTS,
78 RETURN_RTC,
79 RETURN_RTI
80};
81
82
78073dd8
AC
83/* Register numbers of various important registers.
84 Note that some of these values are "real" register numbers,
85 and correspond to the general registers of the machine,
86 and some are "phony" register numbers which are too large
87 to be actual register numbers as far as the user is concerned
88 but do serve to get the desired values when passed to read_register. */
89
82c230c2
SC
90#define HARD_X_REGNUM 0
91#define HARD_D_REGNUM 1
92#define HARD_Y_REGNUM 2
93#define HARD_SP_REGNUM 3
94#define HARD_PC_REGNUM 4
95
96#define HARD_A_REGNUM 5
97#define HARD_B_REGNUM 6
98#define HARD_CCR_REGNUM 7
5706502a
SC
99
100/* 68HC12 page number register.
101 Note: to keep a compatibility with gcc register naming, we must
102 not have to rename FP and other soft registers. The page register
103 is a real hard register and must therefore be counted by NUM_REGS.
104 For this it has the same number as Z register (which is not used). */
105#define HARD_PAGE_REGNUM 8
106#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
107
108/* Z is replaced by X or Y by gcc during machine reorg.
109 ??? There is no way to get it and even know whether
110 it's in X or Y or in ZS. */
111#define SOFT_Z_REGNUM 8
112
113/* Soft registers. These registers are special. There are treated
114 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
115 They are physically located in memory. */
116#define SOFT_FP_REGNUM 9
117#define SOFT_TMP_REGNUM 10
118#define SOFT_ZS_REGNUM 11
119#define SOFT_XY_REGNUM 12
f91a8b6b
SC
120#define SOFT_UNUSED_REGNUM 13
121#define SOFT_D1_REGNUM 14
82c230c2
SC
122#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
123#define M68HC11_MAX_SOFT_REGS 32
124
125#define M68HC11_NUM_REGS (8)
126#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
127#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
128
129#define M68HC11_REG_SIZE (2)
130
548bcbec
SC
131#define M68HC12_NUM_REGS (9)
132#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
133#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
134
908f682f 135struct insn_sequence;
82c230c2
SC
136struct gdbarch_tdep
137 {
5d1a66bd
SC
138 /* Stack pointer correction value. For 68hc11, the stack pointer points
139 to the next push location. An offset of 1 must be applied to obtain
140 the address where the last value is saved. For 68hc12, the stack
141 pointer points to the last value pushed. No offset is necessary. */
142 int stack_correction;
908f682f
SC
143
144 /* Description of instructions in the prologue. */
145 struct insn_sequence *prologue;
81967506 146
7df11f59
SC
147 /* True if the page memory bank register is available
148 and must be used. */
149 int use_page_register;
150
81967506
SC
151 /* ELF flags for ABI. */
152 int elf_flags;
82c230c2
SC
153 };
154
5d1a66bd
SC
155#define M6811_TDEP gdbarch_tdep (current_gdbarch)
156#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 157#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 158
1ea653ae
SC
159struct m68hc11_unwind_cache
160{
161 /* The previous frame's inner most stack address. Used as this
162 frame ID's stack_addr. */
163 CORE_ADDR prev_sp;
164 /* The frame's base, optionally used by the high-level debug info. */
165 CORE_ADDR base;
166 CORE_ADDR pc;
167 int size;
168 int prologue_type;
169 CORE_ADDR return_pc;
170 CORE_ADDR sp_offset;
171 int frameless;
172 enum insn_return_kind return_kind;
173
174 /* Table indicating the location of each and every register. */
175 struct trad_frame_saved_reg *saved_regs;
176};
177
82c230c2
SC
178/* Table of registers for 68HC11. This includes the hard registers
179 and the soft registers used by GCC. */
180static char *
181m68hc11_register_names[] =
182{
183 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 184 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
185 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
186 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
187 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
188 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
189 "d29", "d30", "d31", "d32"
190};
78073dd8 191
82c230c2
SC
192struct m68hc11_soft_reg
193{
194 const char *name;
195 CORE_ADDR addr;
196};
78073dd8 197
82c230c2 198static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 199
82c230c2 200#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 201
82c230c2
SC
202static int soft_min_addr;
203static int soft_max_addr;
204static int soft_reg_initialized = 0;
78073dd8 205
82c230c2
SC
206/* Look in the symbol table for the address of a pseudo register
207 in memory. If we don't find it, pretend the register is not used
208 and not available. */
209static void
210m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
211{
212 struct minimal_symbol *msymbol;
78073dd8 213
82c230c2
SC
214 msymbol = lookup_minimal_symbol (name, NULL, NULL);
215 if (msymbol)
216 {
217 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
218 reg->name = xstrdup (name);
219
220 /* Keep track of the address range for soft registers. */
221 if (reg->addr < (CORE_ADDR) soft_min_addr)
222 soft_min_addr = reg->addr;
223 if (reg->addr > (CORE_ADDR) soft_max_addr)
224 soft_max_addr = reg->addr;
225 }
226 else
227 {
228 reg->name = 0;
229 reg->addr = 0;
230 }
231}
78073dd8 232
82c230c2
SC
233/* Initialize the table of soft register addresses according
234 to the symbol table. */
235 static void
236m68hc11_initialize_register_info (void)
237{
238 int i;
78073dd8 239
82c230c2
SC
240 if (soft_reg_initialized)
241 return;
242
243 soft_min_addr = INT_MAX;
244 soft_max_addr = 0;
245 for (i = 0; i < M68HC11_ALL_REGS; i++)
246 {
247 soft_regs[i].name = 0;
248 }
249
250 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
251 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
252 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
253 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
254 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 255
82c230c2
SC
256 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
257 {
258 char buf[10];
78073dd8 259
82c230c2
SC
260 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
261 m68hc11_get_register_info (&soft_regs[i], buf);
262 }
78073dd8 263
82c230c2
SC
264 if (soft_regs[SOFT_FP_REGNUM].name == 0)
265 {
266 warning ("No frame soft register found in the symbol table.\n");
267 warning ("Stack backtrace will not work.\n");
268 }
269 soft_reg_initialized = 1;
270}
78073dd8 271
82c230c2
SC
272/* Given an address in memory, return the soft register number if
273 that address corresponds to a soft register. Returns -1 if not. */
274static int
275m68hc11_which_soft_register (CORE_ADDR addr)
276{
277 int i;
278
279 if (addr < soft_min_addr || addr > soft_max_addr)
280 return -1;
281
282 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
283 {
284 if (soft_regs[i].name && soft_regs[i].addr == addr)
285 return i;
286 }
287 return -1;
288}
78073dd8 289
82c230c2
SC
290/* Fetch a pseudo register. The 68hc11 soft registers are treated like
291 pseudo registers. They are located in memory. Translate the register
292 fetch into a memory read. */
46ce284d
AC
293static void
294m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
295 struct regcache *regcache,
296 int regno, void *buf)
82c230c2 297{
548bcbec
SC
298 /* The PC is a pseudo reg only for 68HC12 with the memory bank
299 addressing mode. */
300 if (regno == M68HC12_HARD_PC_REGNUM)
301 {
4db73d49 302 ULONGEST pc;
548bcbec 303 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 304
4db73d49 305 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
306 if (pc >= 0x8000 && pc < 0xc000)
307 {
4db73d49
SC
308 ULONGEST page;
309
310 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
311 pc -= 0x8000;
312 pc += (page << 14);
313 pc += 0x1000000;
314 }
315 store_unsigned_integer (buf, regsize, pc);
316 return;
317 }
318
82c230c2
SC
319 m68hc11_initialize_register_info ();
320
321 /* Fetch a soft register: translate into a memory read. */
322 if (soft_regs[regno].name)
323 {
324 target_read_memory (soft_regs[regno].addr, buf, 2);
325 }
326 else
327 {
328 memset (buf, 0, 2);
329 }
82c230c2 330}
78073dd8 331
82c230c2
SC
332/* Store a pseudo register. Translate the register store
333 into a memory write. */
334static void
46ce284d
AC
335m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
336 struct regcache *regcache,
337 int regno, const void *buf)
82c230c2 338{
548bcbec
SC
339 /* The PC is a pseudo reg only for 68HC12 with the memory bank
340 addressing mode. */
341 if (regno == M68HC12_HARD_PC_REGNUM)
342 {
343 const int regsize = TYPE_LENGTH (builtin_type_uint32);
344 char *tmp = alloca (regsize);
345 CORE_ADDR pc;
346
347 memcpy (tmp, buf, regsize);
348 pc = extract_unsigned_integer (tmp, regsize);
349 if (pc >= 0x1000000)
350 {
351 pc -= 0x1000000;
4db73d49
SC
352 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
353 (pc >> 14) & 0x0ff);
548bcbec 354 pc &= 0x03fff;
4db73d49
SC
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
356 pc + 0x8000);
548bcbec
SC
357 }
358 else
4db73d49 359 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
360 return;
361 }
362
82c230c2 363 m68hc11_initialize_register_info ();
78073dd8 364
82c230c2
SC
365 /* Store a soft register: translate into a memory write. */
366 if (soft_regs[regno].name)
367 {
46ce284d
AC
368 const int regsize = 2;
369 char *tmp = alloca (regsize);
370 memcpy (tmp, buf, regsize);
371 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
372 }
373}
78073dd8 374
fa88f677 375static const char *
82c230c2 376m68hc11_register_name (int reg_nr)
78073dd8 377{
548bcbec
SC
378 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
379 return "pc";
380 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
381 return "ppc";
382
82c230c2
SC
383 if (reg_nr < 0)
384 return NULL;
385 if (reg_nr >= M68HC11_ALL_REGS)
386 return NULL;
387
65760afb
SC
388 m68hc11_initialize_register_info ();
389
82c230c2
SC
390 /* If we don't know the address of a soft register, pretend it
391 does not exist. */
392 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
393 return NULL;
394 return m68hc11_register_names[reg_nr];
395}
78073dd8 396
f4f9705a 397static const unsigned char *
82c230c2 398m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 399{
82c230c2
SC
400 static unsigned char breakpoint[] = {0x0};
401
402 *lenptr = sizeof (breakpoint);
403 return breakpoint;
78073dd8
AC
404}
405
908f682f
SC
406\f
407/* 68HC11 & 68HC12 prologue analysis.
408
409 */
410#define MAX_CODES 12
411
412/* 68HC11 opcodes. */
413#undef M6811_OP_PAGE2
b94a41a1
SC
414#define M6811_OP_PAGE2 (0x18)
415#define M6811_OP_LDX (0xde)
416#define M6811_OP_LDX_EXT (0xfe)
417#define M6811_OP_PSHX (0x3c)
418#define M6811_OP_STS (0x9f)
419#define M6811_OP_STS_EXT (0xbf)
420#define M6811_OP_TSX (0x30)
421#define M6811_OP_XGDX (0x8f)
422#define M6811_OP_ADDD (0xc3)
423#define M6811_OP_TXS (0x35)
424#define M6811_OP_DES (0x34)
908f682f
SC
425
426/* 68HC12 opcodes. */
b94a41a1
SC
427#define M6812_OP_PAGE2 (0x18)
428#define M6812_OP_MOVW (0x01)
429#define M6812_PB_PSHW (0xae)
430#define M6812_OP_STS (0x5f)
431#define M6812_OP_STS_EXT (0x7f)
432#define M6812_OP_LEAS (0x1b)
433#define M6812_OP_PSHX (0x34)
434#define M6812_OP_PSHY (0x35)
908f682f
SC
435
436/* Operand extraction. */
437#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
438#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
439#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
440#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
441
442/* Identification of the sequence. */
443enum m6811_seq_type
444{
445 P_LAST = 0,
446 P_SAVE_REG, /* Save a register on the stack. */
447 P_SET_FRAME, /* Setup the frame pointer. */
448 P_LOCAL_1, /* Allocate 1 byte for locals. */
449 P_LOCAL_2, /* Allocate 2 bytes for locals. */
450 P_LOCAL_N /* Allocate N bytes for locals. */
451};
452
453struct insn_sequence {
454 enum m6811_seq_type type;
455 unsigned length;
456 unsigned short code[MAX_CODES];
457};
458
459/* Sequence of instructions in the 68HC11 function prologue. */
460static struct insn_sequence m6811_prologue[] = {
461 /* Sequences to save a soft-register. */
462 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PSHX } },
464 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
465 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
466 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PSHX } },
468 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
470
471 /* Sequences to allocate local variables. */
472 { P_LOCAL_N, 7, { M6811_OP_TSX,
473 M6811_OP_XGDX,
474 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
475 M6811_OP_XGDX,
476 M6811_OP_TXS } },
477 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
480 M6811_OP_PAGE2, M6811_OP_XGDX,
481 M6811_OP_PAGE2, M6811_OP_TXS } },
482 { P_LOCAL_1, 1, { M6811_OP_DES } },
483 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
484 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
485
486 /* Initialize the frame pointer. */
487 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 488 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
489 { P_LAST, 0, { 0 } }
490};
491
492
493/* Sequence of instructions in the 68HC12 function prologue. */
494static struct insn_sequence m6812_prologue[] = {
495 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
496 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
497 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
498 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 499 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
500 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
501 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
502 { P_LAST, 0 }
503};
504
505
506/* Analyze the sequence of instructions starting at the given address.
507 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 508 the optional value (constant/address) associated with it. */
908f682f 509static struct insn_sequence *
c8a7f6ac 510m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
511 CORE_ADDR *val)
512{
513 unsigned char buffer[MAX_CODES];
514 unsigned bufsize;
515 unsigned j;
516 CORE_ADDR cur_val;
517 short v = 0;
518
519 bufsize = 0;
520 for (; seq->type != P_LAST; seq++)
521 {
522 cur_val = 0;
523 for (j = 0; j < seq->length; j++)
524 {
525 if (bufsize < j + 1)
526 {
c8a7f6ac 527 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
528 1);
529 bufsize++;
530 }
531 /* Continue while we match the opcode. */
532 if (seq->code[j] == buffer[j])
533 continue;
534
535 if ((seq->code[j] & 0xf00) == 0)
536 break;
537
538 /* Extract a sequence parameter (address or constant). */
539 switch (seq->code[j])
540 {
541 case OP_DIRECT:
542 cur_val = (CORE_ADDR) buffer[j];
543 break;
544
545 case OP_IMM_HIGH:
546 cur_val = cur_val & 0x0ff;
547 cur_val |= (buffer[j] << 8);
548 break;
549
550 case OP_IMM_LOW:
551 cur_val &= 0x0ff00;
552 cur_val |= buffer[j];
553 break;
554
555 case OP_PBYTE:
556 if ((buffer[j] & 0xE0) == 0x80)
557 {
558 v = buffer[j] & 0x1f;
559 if (v & 0x10)
560 v |= 0xfff0;
561 }
562 else if ((buffer[j] & 0xfe) == 0xf0)
563 {
c8a7f6ac 564 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
565 if (buffer[j] & 1)
566 v |= 0xff00;
567 }
568 else if (buffer[j] == 0xf2)
569 {
c8a7f6ac 570 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
571 }
572 cur_val = v;
573 break;
574 }
575 }
576
577 /* We have a full match. */
578 if (j == seq->length)
579 {
580 *val = cur_val;
908f682f
SC
581 return seq;
582 }
583 }
584 return 0;
585}
586
7df11f59
SC
587/* Return the instruction that the function at the PC is using. */
588static enum insn_return_kind
589m68hc11_get_return_insn (CORE_ADDR pc)
590{
591 struct minimal_symbol *sym;
592
593 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
594 function is stored by elfread.c in the high bit of the info field.
595 Use this to decide which instruction the function uses to return. */
596 sym = lookup_minimal_symbol_by_pc (pc);
597 if (sym == 0)
598 return RETURN_RTS;
599
600 if (MSYMBOL_IS_RTC (sym))
601 return RETURN_RTC;
602 else if (MSYMBOL_IS_RTI (sym))
603 return RETURN_RTI;
604 else
605 return RETURN_RTS;
606}
607
78073dd8
AC
608/* Analyze the function prologue to find some information
609 about the function:
610 - the PC of the first line (for m68hc11_skip_prologue)
611 - the offset of the previous frame saved address (from current frame)
612 - the soft registers which are pushed. */
1ea653ae
SC
613static CORE_ADDR
614m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
615 struct m68hc11_unwind_cache *info)
78073dd8 616{
1ea653ae 617 LONGEST save_addr;
78073dd8 618 CORE_ADDR func_end;
78073dd8
AC
619 int size;
620 int found_frame_point;
82c230c2 621 int saved_reg;
908f682f
SC
622 int done = 0;
623 struct insn_sequence *seq_table;
1ea653ae
SC
624
625 info->size = 0;
626 info->sp_offset = 0;
627 if (pc >= current_pc)
628 return current_pc;
629
78073dd8
AC
630 size = 0;
631
82c230c2 632 m68hc11_initialize_register_info ();
1ea653ae 633 if (pc == 0)
78073dd8 634 {
1ea653ae
SC
635 info->size = 0;
636 return pc;
78073dd8
AC
637 }
638
908f682f
SC
639 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
640
78073dd8
AC
641 /* The 68hc11 stack is as follows:
642
643
644 | |
645 +-----------+
646 | |
647 | args |
648 | |
649 +-----------+
650 | PC-return |
651 +-----------+
652 | Old frame |
653 +-----------+
654 | |
655 | Locals |
656 | |
657 +-----------+ <--- current frame
658 | |
659
660 With most processors (like 68K) the previous frame can be computed
661 easily because it is always at a fixed offset (see link/unlink).
662 That is, locals are accessed with negative offsets, arguments are
663 accessed with positive ones. Since 68hc11 only supports offsets
664 in the range [0..255], the frame is defined at the bottom of
665 locals (see picture).
666
667 The purpose of the analysis made here is to find out the size
668 of locals in this function. An alternative to this is to use
669 DWARF2 info. This would be better but I don't know how to
670 access dwarf2 debug from this function.
671
672 Walk from the function entry point to the point where we save
673 the frame. While walking instructions, compute the size of bytes
674 which are pushed. This gives us the index to access the previous
675 frame.
676
677 We limit the search to 128 bytes so that the algorithm is bounded
678 in case of random and wrong code. We also stop and abort if
679 we find an instruction which is not supposed to appear in the
680 prologue (as generated by gcc 2.95, 2.96).
681 */
78073dd8 682 func_end = pc + 128;
78073dd8 683 found_frame_point = 0;
1ea653ae
SC
684 info->size = 0;
685 save_addr = 0;
908f682f 686 while (!done && pc + 2 < func_end)
78073dd8 687 {
908f682f
SC
688 struct insn_sequence *seq;
689 CORE_ADDR val;
1ea653ae 690
c8a7f6ac 691 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
692 if (seq == 0)
693 break;
78073dd8 694
c8a7f6ac
SC
695 /* If we are within the instruction group, we can't advance the
696 pc nor the stack offset. Otherwise the caller's stack computed
697 from the current stack can be wrong. */
698 if (pc + seq->length > current_pc)
699 break;
700
701 pc = pc + seq->length;
908f682f 702 if (seq->type == P_SAVE_REG)
78073dd8 703 {
908f682f
SC
704 if (found_frame_point)
705 {
706 saved_reg = m68hc11_which_soft_register (val);
707 if (saved_reg < 0)
708 break;
78073dd8 709
908f682f 710 save_addr -= 2;
1ea653ae 711 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
712 }
713 else
714 {
715 size += 2;
716 }
78073dd8 717 }
908f682f 718 else if (seq->type == P_SET_FRAME)
78073dd8
AC
719 {
720 found_frame_point = 1;
1ea653ae 721 info->size = size;
78073dd8 722 }
908f682f 723 else if (seq->type == P_LOCAL_1)
78073dd8 724 {
6148eca7
SC
725 size += 1;
726 }
908f682f 727 else if (seq->type == P_LOCAL_2)
78073dd8 728 {
908f682f 729 size += 2;
78073dd8 730 }
908f682f 731 else if (seq->type == P_LOCAL_N)
78073dd8 732 {
908f682f
SC
733 /* Stack pointer is decremented for the allocation. */
734 if (val & 0x8000)
735 size -= (int) (val) | 0xffff0000;
736 else
737 size -= val;
78073dd8
AC
738 }
739 }
1ea653ae
SC
740 if (found_frame_point == 0)
741 info->sp_offset = size;
742 else
743 info->sp_offset = -1;
744 return pc;
78073dd8
AC
745}
746
82c230c2 747static CORE_ADDR
78073dd8
AC
748m68hc11_skip_prologue (CORE_ADDR pc)
749{
750 CORE_ADDR func_addr, func_end;
751 struct symtab_and_line sal;
1ea653ae 752 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 753
82c230c2
SC
754 /* If we have line debugging information, then the end of the
755 prologue should be the first assembly instruction of the
78073dd8
AC
756 first source line. */
757 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
758 {
759 sal = find_pc_line (func_addr, 0);
760 if (sal.end && sal.end < func_end)
761 return sal.end;
762 }
763
1ea653ae 764 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
765 return pc;
766}
767
1ea653ae
SC
768static CORE_ADDR
769m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
770{
771 ULONGEST pc;
772
773 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
774 &pc);
775 return pc;
776}
777
778/* Put here the code to store, into fi->saved_regs, the addresses of
779 the saved registers of frame described by FRAME_INFO. This
780 includes special registers such as pc and fp saved in special ways
781 in the stack frame. sp is even more special: the address we return
782 for it IS the sp for the next frame. */
783
784struct m68hc11_unwind_cache *
785m68hc11_frame_unwind_cache (struct frame_info *next_frame,
786 void **this_prologue_cache)
787{
788 ULONGEST prev_sp;
789 ULONGEST this_base;
790 struct m68hc11_unwind_cache *info;
791 CORE_ADDR current_pc;
792 int i;
793
794 if ((*this_prologue_cache))
795 return (*this_prologue_cache);
796
797 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
798 (*this_prologue_cache) = info;
799 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
800
801 info->pc = frame_func_unwind (next_frame);
802
803 info->size = 0;
804 info->return_kind = m68hc11_get_return_insn (info->pc);
805
806 /* The SP was moved to the FP. This indicates that a new frame
807 was created. Get THIS frame's FP value by unwinding it from
808 the next frame. */
809 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
810 if (this_base == 0)
811 {
812 info->base = 0;
813 return info;
814 }
815
816 current_pc = frame_pc_unwind (next_frame);
817 if (info->pc != 0)
818 m68hc11_scan_prologue (info->pc, current_pc, info);
819
820 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
821
822 if (info->sp_offset != (CORE_ADDR) -1)
823 {
824 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
825 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
826 prev_sp = this_base + info->sp_offset + 2;
827 this_base += STACK_CORRECTION;
828 }
829 else
830 {
831 /* The FP points at the last saved register. Adjust the FP back
832 to before the first saved register giving the SP. */
833 prev_sp = this_base + info->size + 2;
834
835 this_base += STACK_CORRECTION;
836 if (soft_regs[SOFT_FP_REGNUM].name)
837 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
838 }
839
840 if (info->return_kind == RETURN_RTC)
841 {
842 prev_sp += 1;
843 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
845 }
846 else if (info->return_kind == RETURN_RTI)
847 {
848 prev_sp += 7;
849 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
850 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
851 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
852 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
853 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
854 }
855
856 /* Add 1 here to adjust for the post-decrement nature of the push
857 instruction.*/
858 info->prev_sp = prev_sp;
859
860 info->base = this_base;
861
862 /* Adjust all the saved registers so that they contain addresses and not
863 offsets. */
864 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
865 if (trad_frame_addr_p (info->saved_regs, i))
866 {
867 info->saved_regs[i].addr += this_base;
868 }
869
870 /* The previous frame's SP needed to be computed. Save the computed
871 value. */
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873
874 return info;
875}
876
877/* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
879
880static void
881m68hc11_frame_this_id (struct frame_info *next_frame,
882 void **this_prologue_cache,
883 struct frame_id *this_id)
884{
885 struct m68hc11_unwind_cache *info
886 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
887 CORE_ADDR base;
888 CORE_ADDR func;
889 struct frame_id id;
890
891 /* The FUNC is easy. */
892 func = frame_func_unwind (next_frame);
893
1ea653ae
SC
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
898 if (base == 0)
899 return;
900
901 id = frame_id_build (base, func);
1ea653ae
SC
902 (*this_id) = id;
903}
904
905static void
906m68hc11_frame_prev_register (struct frame_info *next_frame,
907 void **this_prologue_cache,
908 int regnum, int *optimizedp,
909 enum lval_type *lvalp, CORE_ADDR *addrp,
910 int *realnump, void *bufferp)
911{
912 struct m68hc11_unwind_cache *info
913 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
914
1f67027d
AC
915 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
916 optimizedp, lvalp, addrp, realnump, bufferp);
1ea653ae
SC
917
918 if (regnum == HARD_PC_REGNUM)
919 {
920 /* Take into account the 68HC12 specific call (PC + page). */
921 if (info->return_kind == RETURN_RTC
922 && *addrp >= 0x08000 && *addrp < 0x0c000
923 && USE_PAGE_REGISTER)
924 {
925 int page_optimized;
926
927 CORE_ADDR page;
928
1f67027d
AC
929 trad_frame_get_prev_register (next_frame, info->saved_regs,
930 HARD_PAGE_REGNUM, &page_optimized,
931 0, &page, 0, 0);
1ea653ae
SC
932 *addrp -= 0x08000;
933 *addrp += ((page & 0x0ff) << 14);
934 *addrp += 0x1000000;
935 }
936 }
937}
938
939static const struct frame_unwind m68hc11_frame_unwind = {
940 NORMAL_FRAME,
941 m68hc11_frame_this_id,
942 m68hc11_frame_prev_register
943};
944
945const struct frame_unwind *
1a241548 946m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
947{
948 return &m68hc11_frame_unwind;
949}
950
951static CORE_ADDR
952m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
953{
954 struct m68hc11_unwind_cache *info
955 = m68hc11_frame_unwind_cache (next_frame, this_cache);
956
957 return info->base;
958}
959
960static CORE_ADDR
961m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
962{
963 CORE_ADDR addr;
964 struct m68hc11_unwind_cache *info
965 = m68hc11_frame_unwind_cache (next_frame, this_cache);
966
967 addr = info->base + info->size;
968 if (info->return_kind == RETURN_RTC)
969 addr += 1;
970 else if (info->return_kind == RETURN_RTI)
971 addr += 7;
972
973 return addr;
974}
975
976static const struct frame_base m68hc11_frame_base = {
977 &m68hc11_frame_unwind,
978 m68hc11_frame_base_address,
979 m68hc11_frame_base_address,
980 m68hc11_frame_args_address
981};
982
983static CORE_ADDR
984m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
985{
986 ULONGEST sp;
987 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
988 return sp;
989}
990
991/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
992 dummy frame. The frame ID's base needs to match the TOS value
993 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
994 breakpoint. */
995
996static struct frame_id
997m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
998{
999 ULONGEST tos;
1000 CORE_ADDR pc = frame_pc_unwind (next_frame);
1001
1002 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1003 tos += 2;
1004 return frame_id_build (tos, pc);
1005}
78073dd8 1006
e286caf2
SC
1007\f
1008/* Get and print the register from the given frame. */
78073dd8 1009static void
e286caf2
SC
1010m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1011 struct frame_info *frame, int regno)
78073dd8 1012{
e286caf2
SC
1013 LONGEST rval;
1014
1015 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1016 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1017 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1018 else
7f5f525d 1019 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1020
1021 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1022 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1023 {
e286caf2
SC
1024 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1025 if (regno != HARD_CCR_REGNUM)
1026 print_longest (file, 'd', 1, rval);
7df11f59 1027 }
e286caf2
SC
1028 else
1029 {
1030 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1031 {
1032 ULONGEST page;
7df11f59 1033
7f5f525d 1034 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1035 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1036 (unsigned) rval);
1037 }
1038 else
1039 {
1040 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1041 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1042 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1043 print_longest (file, 'd', 1, rval);
1044 }
1045 }
1046
1047 if (regno == HARD_CCR_REGNUM)
78073dd8 1048 {
e286caf2
SC
1049 /* CCR register */
1050 int C, Z, N, V;
1051 unsigned char l = rval & 0xff;
1052
1053 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1054 l & M6811_S_BIT ? 'S' : '-',
1055 l & M6811_X_BIT ? 'X' : '-',
1056 l & M6811_H_BIT ? 'H' : '-',
1057 l & M6811_I_BIT ? 'I' : '-',
1058 l & M6811_N_BIT ? 'N' : '-',
1059 l & M6811_Z_BIT ? 'Z' : '-',
1060 l & M6811_V_BIT ? 'V' : '-',
1061 l & M6811_C_BIT ? 'C' : '-');
1062 N = (l & M6811_N_BIT) != 0;
1063 Z = (l & M6811_Z_BIT) != 0;
1064 V = (l & M6811_V_BIT) != 0;
1065 C = (l & M6811_C_BIT) != 0;
1066
1067 /* Print flags following the h8300 */
1068 if ((C | Z) == 0)
1069 fprintf_filtered (file, "u> ");
1070 else if ((C | Z) == 1)
1071 fprintf_filtered (file, "u<= ");
1072 else if (C == 0)
1073 fprintf_filtered (file, "u< ");
1074
1075 if (Z == 0)
1076 fprintf_filtered (file, "!= ");
1077 else
1078 fprintf_filtered (file, "== ");
1079
1080 if ((N ^ V) == 0)
1081 fprintf_filtered (file, ">= ");
1082 else
1083 fprintf_filtered (file, "< ");
1084
1085 if ((Z | (N ^ V)) == 0)
1086 fprintf_filtered (file, "> ");
78073dd8 1087 else
e286caf2 1088 fprintf_filtered (file, "<= ");
78073dd8 1089 }
e286caf2
SC
1090}
1091
1092/* Same as 'info reg' but prints the registers in a different way. */
1093static void
1094m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1095 struct frame_info *frame, int regno, int cpregs)
1096{
1097 if (regno >= 0)
1098 {
1099 const char *name = gdbarch_register_name (gdbarch, regno);
1100
1101 if (!name || !*name)
1102 return;
1103
1104 fprintf_filtered (file, "%-10s ", name);
1105 m68hc11_print_register (gdbarch, file, frame, regno);
1106 fprintf_filtered (file, "\n");
1107 }
1108 else
1109 {
1110 int i, nr;
1111
1112 fprintf_filtered (file, "PC=");
1113 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1114
1115 fprintf_filtered (file, " SP=");
1116 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1117
1118 fprintf_filtered (file, " FP=");
1119 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1120
1121 fprintf_filtered (file, "\nCCR=");
1122 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1123
1124 fprintf_filtered (file, "\nD=");
1125 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1126
1127 fprintf_filtered (file, " X=");
1128 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1129
1130 fprintf_filtered (file, " Y=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1132
1133 if (gdbarch_tdep (gdbarch)->use_page_register)
1134 {
1135 fprintf_filtered (file, "\nPage=");
1136 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1137 }
1138 fprintf_filtered (file, "\n");
1139
1140 nr = 0;
1141 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1142 {
1143 /* Skip registers which are not defined in the symbol table. */
1144 if (soft_regs[i].name == 0)
1145 continue;
1146
1147 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1148 m68hc11_print_register (gdbarch, file, frame, i);
1149 nr++;
1150 if ((nr % 8) == 7)
1151 fprintf_filtered (file, "\n");
1152 else
1153 fprintf_filtered (file, " ");
1154 }
1155 if (nr && (nr % 8) != 7)
1156 fprintf_filtered (file, "\n");
1157 }
1158}
1159
22df305e
SC
1160static CORE_ADDR
1161m68hc11_stack_align (CORE_ADDR addr)
1162{
1163 return ((addr + 1) & -2);
1164}
1165
82c230c2 1166static CORE_ADDR
7d9b040b 1167m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1168 struct regcache *regcache, CORE_ADDR bp_addr,
1169 int nargs, struct value **args, CORE_ADDR sp,
1170 int struct_return, CORE_ADDR struct_addr)
78073dd8 1171{
82c230c2
SC
1172 int argnum;
1173 int first_stack_argnum;
82c230c2
SC
1174 struct type *type;
1175 char *val;
1176 int len;
3dc990bf 1177 char buf[2];
82c230c2 1178
82c230c2
SC
1179 first_stack_argnum = 0;
1180 if (struct_return)
1181 {
184651e3
SC
1182 /* The struct is allocated on the stack and gdb used the stack
1183 pointer for the address of that struct. We must apply the
1184 stack offset on the address. */
3dc990bf
SC
1185 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1186 struct_addr + STACK_CORRECTION);
82c230c2
SC
1187 }
1188 else if (nargs > 0)
1189 {
4991999e 1190 type = value_type (args[0]);
82c230c2 1191 len = TYPE_LENGTH (type);
3dc990bf 1192
82c230c2
SC
1193 /* First argument is passed in D and X registers. */
1194 if (len <= 4)
1195 {
3dc990bf
SC
1196 ULONGEST v;
1197
0fd88904 1198 v = extract_unsigned_integer (value_contents (args[0]), len);
82c230c2 1199 first_stack_argnum = 1;
3dc990bf
SC
1200
1201 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1202 if (len > 2)
1203 {
1204 v >>= 16;
3dc990bf 1205 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1206 }
1207 }
1208 }
82c230c2 1209
3dc990bf 1210 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1211 {
4991999e 1212 type = value_type (args[argnum]);
82c230c2
SC
1213 len = TYPE_LENGTH (type);
1214
22df305e
SC
1215 if (len & 1)
1216 {
1217 static char zero = 0;
1218
3dc990bf
SC
1219 sp--;
1220 write_memory (sp, &zero, 1);
22df305e 1221 }
0fd88904 1222 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1223 sp -= len;
1224 write_memory (sp, val, len);
82c230c2 1225 }
3dc990bf
SC
1226
1227 /* Store return address. */
1228 sp -= 2;
1229 store_unsigned_integer (buf, 2, bp_addr);
1230 write_memory (sp, buf, 2);
1231
1232 /* Finally, update the stack pointer... */
1233 sp -= STACK_CORRECTION;
1234 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1235
1236 /* ...and fake a frame pointer. */
1237 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1238
1239 /* DWARF2/GCC uses the stack address *before* the function call as a
1240 frame's CFA. */
1241 return sp + 2;
78073dd8
AC
1242}
1243
1244
4db73d49
SC
1245/* Return the GDB type object for the "standard" data type
1246 of data in register N. */
1247
82c230c2 1248static struct type *
4db73d49 1249m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1250{
5706502a
SC
1251 switch (reg_nr)
1252 {
1253 case HARD_PAGE_REGNUM:
1254 case HARD_A_REGNUM:
1255 case HARD_B_REGNUM:
1256 case HARD_CCR_REGNUM:
1257 return builtin_type_uint8;
1258
548bcbec
SC
1259 case M68HC12_HARD_PC_REGNUM:
1260 return builtin_type_uint32;
1261
5706502a
SC
1262 default:
1263 return builtin_type_uint16;
1264 }
82c230c2
SC
1265}
1266
82c230c2 1267static void
4db73d49
SC
1268m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1269 const void *valbuf)
82c230c2 1270{
22df305e
SC
1271 int len;
1272
1273 len = TYPE_LENGTH (type);
1274
1275 /* First argument is passed in D and X registers. */
4db73d49
SC
1276 if (len <= 2)
1277 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1278 else if (len <= 4)
22df305e 1279 {
4db73d49
SC
1280 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1281 len - 2, valbuf);
1282 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1283 }
1284 else
1285 error ("return of value > 4 is not supported.");
82c230c2
SC
1286}
1287
1288
ef2b8fcd 1289/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1290 extract and copy its value into `valbuf'. */
1291
82c230c2 1292static void
ef2b8fcd
SC
1293m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1294 void *valbuf)
78073dd8 1295{
82c230c2 1296 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1297 char buf[M68HC11_REG_SIZE];
1298
1299 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1300 switch (len)
82c230c2 1301 {
22df305e 1302 case 1:
ef2b8fcd 1303 memcpy (valbuf, buf + 1, 1);
22df305e 1304 break;
ef2b8fcd 1305
22df305e 1306 case 2:
ef2b8fcd 1307 memcpy (valbuf, buf, 2);
22df305e 1308 break;
ef2b8fcd 1309
22df305e 1310 case 3:
ef2b8fcd
SC
1311 memcpy ((char*) valbuf + 1, buf, 2);
1312 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1313 memcpy (valbuf, buf + 1, 1);
22df305e 1314 break;
ef2b8fcd 1315
22df305e 1316 case 4:
ef2b8fcd
SC
1317 memcpy ((char*) valbuf + 2, buf, 2);
1318 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1319 memcpy (valbuf, buf, 2);
22df305e
SC
1320 break;
1321
1322 default:
82c230c2
SC
1323 error ("bad size for return value");
1324 }
1325}
1326
97092415
AC
1327enum return_value_convention
1328m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1329 struct regcache *regcache, void *readbuf,
1330 const void *writebuf)
82c230c2 1331{
97092415
AC
1332 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1333 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1334 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1335 || TYPE_LENGTH (valtype) > 4)
1336 return RETURN_VALUE_STRUCT_CONVENTION;
1337 else
1338 {
1339 if (readbuf != NULL)
1340 m68hc11_extract_return_value (valtype, regcache, readbuf);
1341 if (writebuf != NULL)
1342 m68hc11_store_return_value (valtype, regcache, writebuf);
1343 return RETURN_VALUE_REGISTER_CONVENTION;
1344 }
82c230c2
SC
1345}
1346
7df11f59
SC
1347/* Test whether the ELF symbol corresponds to a function using rtc or
1348 rti to return. */
1349
1350static void
1351m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1352{
1353 unsigned char flags;
1354
1355 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1356 if (flags & STO_M68HC12_FAR)
1357 MSYMBOL_SET_RTC (msym);
1358 if (flags & STO_M68HC12_INTERRUPT)
1359 MSYMBOL_SET_RTI (msym);
1360}
1361
ea3881d9
SC
1362static int
1363gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1364{
1365 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1366 return print_insn_m68hc11 (memaddr, info);
1367 else
1368 return print_insn_m68hc12 (memaddr, info);
1369}
1370
b631436b
SC
1371\f
1372
1373/* 68HC11/68HC12 register groups.
1374 Identify real hard registers and soft registers used by gcc. */
1375
1376static struct reggroup *m68hc11_soft_reggroup;
1377static struct reggroup *m68hc11_hard_reggroup;
1378
1379static void
1380m68hc11_init_reggroups (void)
1381{
1382 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1383 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1384}
1385
1386static void
1387m68hc11_add_reggroups (struct gdbarch *gdbarch)
1388{
1389 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1390 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1391 reggroup_add (gdbarch, general_reggroup);
1392 reggroup_add (gdbarch, float_reggroup);
1393 reggroup_add (gdbarch, all_reggroup);
1394 reggroup_add (gdbarch, save_reggroup);
1395 reggroup_add (gdbarch, restore_reggroup);
1396 reggroup_add (gdbarch, vector_reggroup);
1397 reggroup_add (gdbarch, system_reggroup);
1398}
1399
1400static int
1401m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1402 struct reggroup *group)
1403{
1404 /* We must save the real hard register as well as gcc
1405 soft registers including the frame pointer. */
1406 if (group == save_reggroup || group == restore_reggroup)
1407 {
1408 return (regnum <= gdbarch_num_regs (gdbarch)
1409 || ((regnum == SOFT_FP_REGNUM
1410 || regnum == SOFT_TMP_REGNUM
1411 || regnum == SOFT_ZS_REGNUM
1412 || regnum == SOFT_XY_REGNUM)
1413 && m68hc11_register_name (regnum)));
1414 }
1415
1416 /* Group to identify gcc soft registers (d1..dN). */
1417 if (group == m68hc11_soft_reggroup)
1418 {
1419 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1420 }
1421
1422 if (group == m68hc11_hard_reggroup)
1423 {
1424 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1425 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1426 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1427 }
1428 return default_register_reggroup_p (gdbarch, regnum, group);
1429}
1430
82c230c2
SC
1431static struct gdbarch *
1432m68hc11_gdbarch_init (struct gdbarch_info info,
1433 struct gdbarch_list *arches)
1434{
82c230c2
SC
1435 struct gdbarch *gdbarch;
1436 struct gdbarch_tdep *tdep;
81967506 1437 int elf_flags;
82c230c2
SC
1438
1439 soft_reg_initialized = 0;
81967506
SC
1440
1441 /* Extract the elf_flags if available. */
1442 if (info.abfd != NULL
1443 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1444 elf_flags = elf_elfheader (info.abfd)->e_flags;
1445 else
1446 elf_flags = 0;
1447
82c230c2
SC
1448 /* try to find a pre-existing architecture */
1449 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1450 arches != NULL;
1451 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1452 {
81967506
SC
1453 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1454 continue;
1455
82c230c2
SC
1456 return arches->gdbarch;
1457 }
1458
1459 /* Need a new architecture. Fill in a target specific vector. */
1460 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1461 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1462 tdep->elf_flags = elf_flags;
ed99b3d0 1463
5d1a66bd
SC
1464 switch (info.bfd_arch_info->arch)
1465 {
1466 case bfd_arch_m68hc11:
1467 tdep->stack_correction = 1;
7df11f59 1468 tdep->use_page_register = 0;
908f682f 1469 tdep->prologue = m6811_prologue;
548bcbec
SC
1470 set_gdbarch_addr_bit (gdbarch, 16);
1471 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1472 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1473 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1474 break;
82c230c2 1475
5d1a66bd
SC
1476 case bfd_arch_m68hc12:
1477 tdep->stack_correction = 0;
7df11f59 1478 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1479 tdep->prologue = m6812_prologue;
548bcbec
SC
1480 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1481 set_gdbarch_num_pseudo_regs (gdbarch,
1482 elf_flags & E_M68HC12_BANKS
1483 ? M68HC12_NUM_PSEUDO_REGS
1484 : M68HC11_NUM_PSEUDO_REGS);
1485 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1486 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1487 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1488 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1489 break;
1490
1491 default:
1492 break;
1493 }
7d32ba20
SC
1494
1495 /* Initially set everything according to the ABI.
1496 Use 16-bit integers since it will be the case for most
1497 programs. The size of these types should normally be set
1498 according to the dwarf2 debug information. */
82c230c2 1499 set_gdbarch_short_bit (gdbarch, 16);
81967506 1500 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1501 set_gdbarch_float_bit (gdbarch, 32);
81967506 1502 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1503 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1504 set_gdbarch_long_bit (gdbarch, 32);
1505 set_gdbarch_ptr_bit (gdbarch, 16);
1506 set_gdbarch_long_long_bit (gdbarch, 64);
1507
b2a02dda
SC
1508 /* Characters are unsigned. */
1509 set_gdbarch_char_signed (gdbarch, 0);
1510
1ea653ae
SC
1511 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1512 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1513
82c230c2
SC
1514 /* Set register info. */
1515 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1516
82c230c2 1517 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
82c230c2 1518
82c230c2 1519 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1520 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1521 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1522 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1523 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1524
3dc990bf
SC
1525 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1526
97092415 1527 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1528 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1529 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1530 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
f27dd7fd 1531 set_gdbarch_deprecated_stack_align (gdbarch, m68hc11_stack_align);
70ed8774 1532 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1533
b631436b
SC
1534 m68hc11_add_reggroups (gdbarch);
1535 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1536 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1537
1ea653ae
SC
1538 /* Hook in the DWARF CFI frame unwinder. */
1539 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1540
1a241548 1541 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1542 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1543
1544 /* Methods for saving / extracting a dummy frame's ID. The ID's
1545 stack address must match the SP value returned by
1546 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1547 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1548
1549 /* Return the unwound PC value. */
1550 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1551
7df11f59
SC
1552 /* Minsymbol frobbing. */
1553 set_gdbarch_elf_make_msymbol_special (gdbarch,
1554 m68hc11_elf_make_msymbol_special);
1555
82c230c2 1556 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1557
1558 return gdbarch;
78073dd8
AC
1559}
1560
a78f21af
AC
1561extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1562
78073dd8 1563void
fba45db2 1564_initialize_m68hc11_tdep (void)
78073dd8 1565{
82c230c2 1566 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1567 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1568 m68hc11_init_reggroups ();
78073dd8
AC
1569}
1570
This page took 0.669275 seconds and 4 git commands to generate.