* configure.ac: Switch license to GPLv3.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c
SS
22
23#include "defs.h"
3f244638 24#include "dwarf2-frame.h"
c906108c 25#include "frame.h"
8de307e0
AS
26#include "frame-base.h"
27#include "frame-unwind.h"
e6bb342a 28#include "gdbtypes.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbcore.h"
31#include "value.h"
32#include "gdb_string.h"
8de307e0 33#include "gdb_assert.h"
7a292a7a 34#include "inferior.h"
4e052eda 35#include "regcache.h"
5d3ed2e3 36#include "arch-utils.h"
55809acb 37#include "osabi.h"
a89aa300 38#include "dis-asm.h"
8ed86d01 39#include "target-descriptions.h"
32eeb91a
AS
40
41#include "m68k-tdep.h"
c906108c 42\f
c5aa993b 43
89c3b6d3
PDM
44#define P_LINKL_FP 0x480e
45#define P_LINKW_FP 0x4e56
46#define P_PEA_FP 0x4856
8de307e0
AS
47#define P_MOVEAL_SP_FP 0x2c4f
48#define P_ADDAW_SP 0xdefc
49#define P_ADDAL_SP 0xdffc
50#define P_SUBQW_SP 0x514f
51#define P_SUBQL_SP 0x518f
52#define P_LEA_SP_SP 0x4fef
53#define P_LEA_PC_A5 0x4bfb0170
54#define P_FMOVEMX_SP 0xf227
55#define P_MOVEL_SP 0x2f00
56#define P_MOVEML_SP 0x48e7
89c3b6d3 57
103a1597 58/* Offset from SP to first arg on stack at first instruction of a function */
103a1597
GS
59#define SP_ARG0 (1 * 4)
60
103a1597
GS
61#if !defined (BPT_VECTOR)
62#define BPT_VECTOR 0xf
63#endif
64
f5cf7aa1 65static const gdb_byte *
103a1597
GS
66m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
67{
f5cf7aa1 68 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
69 *lenptr = sizeof (break_insn);
70 return break_insn;
71}
4713453b
AS
72\f
73
74/* Type for %ps. */
75struct type *m68k_ps_type;
76
77/* Construct types for ISA-specific registers. */
78static void
79m68k_init_types (void)
80{
81 struct type *type;
82
83 type = init_flags_type ("builtin_type_m68k_ps", 4);
84 append_flags_type_flag (type, 0, "C");
85 append_flags_type_flag (type, 1, "V");
86 append_flags_type_flag (type, 2, "Z");
87 append_flags_type_flag (type, 3, "N");
88 append_flags_type_flag (type, 4, "X");
89 append_flags_type_flag (type, 8, "I0");
90 append_flags_type_flag (type, 9, "I1");
91 append_flags_type_flag (type, 10, "I2");
92 append_flags_type_flag (type, 12, "M");
93 append_flags_type_flag (type, 13, "S");
94 append_flags_type_flag (type, 14, "T0");
95 append_flags_type_flag (type, 15, "T1");
96 m68k_ps_type = type;
97}
103a1597 98
d85fe7f7
AS
99/* Return the GDB type object for the "standard" data type of data in
100 register N. This should be int for D0-D7, SR, FPCONTROL and
101 FPSTATUS, long double for FP0-FP7, and void pointer for all others
102 (A0-A7, PC, FPIADDR). Note, for registers which contain
103 addresses return pointer to void, not pointer to char, because we
104 don't want to attempt to print the string after printing the
105 address. */
5d3ed2e3
GS
106
107static struct type *
8de307e0 108m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 109{
8ed86d01 110 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
03dac896 111
8ed86d01
VP
112 if (tdep->fpregs_present)
113 {
3e8c568d
UW
114 if (regnum >= gdbarch_fp0_regnum (current_gdbarch)
115 && regnum <= gdbarch_fp0_regnum (current_gdbarch) + 7)
8ed86d01
VP
116 {
117 if (tdep->flavour == m68k_coldfire_flavour)
118 return builtin_type (gdbarch)->builtin_double;
119 else
120 return builtin_type_m68881_ext;
121 }
122
123 if (regnum == M68K_FPI_REGNUM)
124 return builtin_type_void_func_ptr;
125
126 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
127 return builtin_type_int32;
128 }
129 else
130 {
131 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
132 return builtin_type_int0;
133 }
03dac896 134
3e8c568d 135 if (regnum == gdbarch_pc_regnum (current_gdbarch))
8ed86d01 136 return builtin_type_void_func_ptr;
03dac896 137
32eeb91a 138 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
03dac896
AS
139 return builtin_type_void_data_ptr;
140
4713453b
AS
141 if (regnum == M68K_PS_REGNUM)
142 return m68k_ps_type;
143
03dac896 144 return builtin_type_int32;
5d3ed2e3
GS
145}
146
8ed86d01 147static const char *m68k_register_names[] = {
5d3ed2e3
GS
148 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
149 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
150 "ps", "pc",
151 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 152 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
153 };
154
8ed86d01
VP
155/* Function: m68k_register_name
156 Returns the name of the standard m68k register regnum. */
157
158static const char *
159m68k_register_name (int regnum)
160{
161 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 162 internal_error (__FILE__, __LINE__,
e2e0b3e5 163 _("m68k_register_name: illegal register number %d"), regnum);
5d3ed2e3 164 else
8ed86d01 165 return m68k_register_names[regnum];
5d3ed2e3 166}
e47577ab
MK
167\f
168/* Return nonzero if a value of type TYPE stored in register REGNUM
169 needs any special handling. */
170
171static int
172m68k_convert_register_p (int regnum, struct type *type)
173{
8ed86d01
VP
174 if (!gdbarch_tdep (current_gdbarch)->fpregs_present)
175 return 0;
e47577ab
MK
176 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
177}
178
179/* Read a value of type TYPE from register REGNUM in frame FRAME, and
180 return its contents in TO. */
181
182static void
183m68k_register_to_value (struct frame_info *frame, int regnum,
f5cf7aa1 184 struct type *type, gdb_byte *to)
e47577ab 185{
f5cf7aa1 186 gdb_byte from[M68K_MAX_REGISTER_SIZE];
8ed86d01 187 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
188
189 /* We only support floating-point values. */
190 if (TYPE_CODE (type) != TYPE_CODE_FLT)
191 {
8a3fe4f8
AC
192 warning (_("Cannot convert floating-point register value "
193 "to non-floating-point type."));
e47577ab
MK
194 return;
195 }
196
197 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
198 the extended floating-point format used by the FPU. */
199 get_frame_register (frame, regnum, from);
8ed86d01 200 convert_typed_floating (from, fpreg_type, to, type);
e47577ab
MK
201}
202
203/* Write the contents FROM of a value of type TYPE into register
204 REGNUM in frame FRAME. */
205
206static void
207m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 208 struct type *type, const gdb_byte *from)
e47577ab 209{
f5cf7aa1 210 gdb_byte to[M68K_MAX_REGISTER_SIZE];
8ed86d01 211 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
8a3fe4f8
AC
216 warning (_("Cannot convert non-floating-point type "
217 "to floating-point register value."));
e47577ab
MK
218 return;
219 }
220
221 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
222 to the extended floating-point format used by the FPU. */
8ed86d01 223 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
224 put_frame_register (frame, regnum, to);
225}
226
8de307e0 227\f
f595cb19
MK
228/* There is a fair number of calling conventions that are in somewhat
229 wide use. The 68000/08/10 don't support an FPU, not even as a
230 coprocessor. All function return values are stored in %d0/%d1.
231 Structures are returned in a static buffer, a pointer to which is
232 returned in %d0. This means that functions returning a structure
233 are not re-entrant. To avoid this problem some systems use a
234 convention where the caller passes a pointer to a buffer in %a1
235 where the return values is to be stored. This convention is the
236 default, and is implemented in the function m68k_return_value.
237
238 The 68020/030/040/060 do support an FPU, either as a coprocessor
239 (68881/2) or built-in (68040/68060). That's why System V release 4
240 (SVR4) instroduces a new calling convention specified by the SVR4
241 psABI. Integer values are returned in %d0/%d1, pointer return
242 values in %a0 and floating values in %fp0. When calling functions
243 returning a structure the caller should pass a pointer to a buffer
244 for the return value in %a0. This convention is implemented in the
245 function m68k_svr4_return_value, and by appropriately setting the
246 struct_value_regnum member of `struct gdbarch_tdep'.
247
248 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
249 for passing the structure return value buffer.
250
251 GCC can also generate code where small structures are returned in
252 %d0/%d1 instead of in memory by using -freg-struct-return. This is
253 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
254 embedded systems. This convention is implemented by setting the
255 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
256
257/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 258 into VALBUF. */
942dc0e9
GS
259
260static void
8de307e0 261m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 262 gdb_byte *valbuf)
942dc0e9 263{
8de307e0 264 int len = TYPE_LENGTH (type);
f5cf7aa1 265 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 266
8de307e0
AS
267 if (len <= 4)
268 {
269 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
270 memcpy (valbuf, buf + (4 - len), len);
271 }
272 else if (len <= 8)
273 {
274 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
275 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 276 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
277 }
278 else
279 internal_error (__FILE__, __LINE__,
e2e0b3e5 280 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
281}
282
942dc0e9 283static void
f595cb19 284m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 285 gdb_byte *valbuf)
942dc0e9 286{
8de307e0 287 int len = TYPE_LENGTH (type);
f5cf7aa1 288 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
942dc0e9 290
8ed86d01 291 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 292 {
8ed86d01
VP
293 struct type *fpreg_type = register_type
294 (current_gdbarch, M68K_FP0_REGNUM);
f595cb19 295 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 296 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 297 }
f595cb19
MK
298 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
299 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
300 else
301 m68k_extract_return_value (type, regcache, valbuf);
302}
303
304/* Write a function return value of TYPE from VALBUF into REGCACHE. */
305
306static void
307m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 308 const gdb_byte *valbuf)
f595cb19
MK
309{
310 int len = TYPE_LENGTH (type);
942dc0e9 311
8de307e0
AS
312 if (len <= 4)
313 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
314 else if (len <= 8)
315 {
f595cb19 316 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 317 len - 4, valbuf);
f5cf7aa1 318 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
319 }
320 else
321 internal_error (__FILE__, __LINE__,
e2e0b3e5 322 _("Cannot store return value of %d bytes long."), len);
8de307e0 323}
942dc0e9 324
f595cb19
MK
325static void
326m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 327 const gdb_byte *valbuf)
942dc0e9 328{
f595cb19 329 int len = TYPE_LENGTH (type);
8ed86d01 330 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
8de307e0 331
8ed86d01 332 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 333 {
8ed86d01
VP
334 struct type *fpreg_type = register_type
335 (current_gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 336 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 337 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
338 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
339 }
340 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
341 {
342 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
343 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
344 }
345 else
346 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
347}
348
f595cb19
MK
349/* Return non-zero if TYPE, which is assumed to be a structure or
350 union type, should be returned in registers for architecture
351 GDBARCH. */
352
c481dac7 353static int
f595cb19 354m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 355{
f595cb19
MK
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum type_code code = TYPE_CODE (type);
358 int len = TYPE_LENGTH (type);
c481dac7 359
f595cb19
MK
360 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
361
362 if (tdep->struct_return == pcc_struct_return)
363 return 0;
364
365 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
366}
367
f595cb19
MK
368/* Determine, for architecture GDBARCH, how a return value of TYPE
369 should be returned. If it is supposed to be returned in registers,
370 and READBUF is non-zero, read the appropriate value from REGCACHE,
371 and copy it into READBUF. If WRITEBUF is non-zero, write the value
372 from WRITEBUF into REGCACHE. */
373
374static enum return_value_convention
375m68k_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
376 struct regcache *regcache, gdb_byte *readbuf,
377 const gdb_byte *writebuf)
f595cb19
MK
378{
379 enum type_code code = TYPE_CODE (type);
380
1c845060
MK
381 /* GCC returns a `long double' in memory too. */
382 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
383 && !m68k_reg_struct_return_p (gdbarch, type))
384 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
385 {
386 /* The default on m68k is to return structures in static memory.
387 Consequently a function must return the address where we can
388 find the return value. */
f595cb19 389
1c845060
MK
390 if (readbuf)
391 {
392 ULONGEST addr;
393
394 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
395 read_memory (addr, readbuf, TYPE_LENGTH (type));
396 }
397
398 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
399 }
f595cb19
MK
400
401 if (readbuf)
402 m68k_extract_return_value (type, regcache, readbuf);
403 if (writebuf)
404 m68k_store_return_value (type, regcache, writebuf);
405
406 return RETURN_VALUE_REGISTER_CONVENTION;
407}
408
409static enum return_value_convention
410m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
411 struct regcache *regcache, gdb_byte *readbuf,
412 const gdb_byte *writebuf)
f595cb19
MK
413{
414 enum type_code code = TYPE_CODE (type);
415
416 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
417 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
418 {
419 /* The System V ABI says that:
420
421 "A function returning a structure or union also sets %a0 to
422 the value it finds in %a0. Thus when the caller receives
423 control again, the address of the returned object resides in
424 register %a0."
425
426 So the ABI guarantees that we can always find the return
427 value just after the function has returned. */
428
429 if (readbuf)
430 {
431 ULONGEST addr;
432
433 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
434 read_memory (addr, readbuf, TYPE_LENGTH (type));
435 }
436
437 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
438 }
f595cb19
MK
439
440 /* This special case is for structures consisting of a single
441 `float' or `double' member. These structures are returned in
442 %fp0. For these structures, we call ourselves recursively,
443 changing TYPE into the type of the first member of the structure.
444 Since that should work for all structures that have only one
445 member, we don't bother to check the member's type here. */
446 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
447 {
448 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
449 return m68k_svr4_return_value (gdbarch, type, regcache,
450 readbuf, writebuf);
451 }
452
453 if (readbuf)
454 m68k_svr4_extract_return_value (type, regcache, readbuf);
455 if (writebuf)
456 m68k_svr4_store_return_value (type, regcache, writebuf);
457
458 return RETURN_VALUE_REGISTER_CONVENTION;
459}
460\f
392a587b 461
9bb47d95
NS
462/* Always align the frame to a 4-byte boundary. This is required on
463 coldfire and harmless on the rest. */
464
465static CORE_ADDR
466m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
467{
468 /* Align the stack to four bytes. */
469 return sp & ~3;
470}
471
8de307e0 472static CORE_ADDR
7d9b040b 473m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
474 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
475 struct value **args, CORE_ADDR sp, int struct_return,
476 CORE_ADDR struct_addr)
7f8e7424 477{
f595cb19 478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
f5cf7aa1 479 gdb_byte buf[4];
8de307e0
AS
480 int i;
481
482 /* Push arguments in reverse order. */
483 for (i = nargs - 1; i >= 0; i--)
484 {
4754a64e 485 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 486 int len = TYPE_LENGTH (value_type);
8de307e0 487 int container_len = (len + 3) & ~3;
c481dac7
AS
488 int offset;
489
490 /* Non-scalars bigger than 4 bytes are left aligned, others are
491 right aligned. */
492 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
493 || TYPE_CODE (value_type) == TYPE_CODE_UNION
494 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
495 && len > 4)
496 offset = 0;
497 else
498 offset = container_len - len;
8de307e0 499 sp -= container_len;
46615f07 500 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
501 }
502
c481dac7 503 /* Store struct value address. */
8de307e0
AS
504 if (struct_return)
505 {
8de307e0 506 store_unsigned_integer (buf, 4, struct_addr);
f595cb19 507 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
508 }
509
510 /* Store return address. */
511 sp -= 4;
512 store_unsigned_integer (buf, 4, bp_addr);
513 write_memory (sp, buf, 4);
514
515 /* Finally, update the stack pointer... */
516 store_unsigned_integer (buf, 4, sp);
517 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
518
519 /* ...and fake a frame pointer. */
520 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
521
522 /* DWARF2/GCC uses the stack address *before* the function call as a
523 frame's CFA. */
524 return sp + 8;
7f8e7424 525}
6dd0fba6
NS
526
527/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
528
529static int
530m68k_dwarf_reg_to_regnum (int num)
531{
532 if (num < 8)
533 /* d0..7 */
534 return (num - 0) + M68K_D0_REGNUM;
535 else if (num < 16)
536 /* a0..7 */
537 return (num - 8) + M68K_A0_REGNUM;
8ed86d01 538 else if (num < 24 && gdbarch_tdep (current_gdbarch)->fpregs_present)
6dd0fba6
NS
539 /* fp0..7 */
540 return (num - 16) + M68K_FP0_REGNUM;
541 else if (num == 25)
542 /* pc */
543 return M68K_PC_REGNUM;
544 else
f57d151a
UW
545 return gdbarch_num_regs (current_gdbarch)
546 + gdbarch_num_pseudo_regs (current_gdbarch);
6dd0fba6
NS
547}
548
8de307e0
AS
549\f
550struct m68k_frame_cache
551{
552 /* Base address. */
553 CORE_ADDR base;
554 CORE_ADDR sp_offset;
555 CORE_ADDR pc;
7f8e7424 556
8de307e0
AS
557 /* Saved registers. */
558 CORE_ADDR saved_regs[M68K_NUM_REGS];
559 CORE_ADDR saved_sp;
7f8e7424 560
8de307e0
AS
561 /* Stack space reserved for local variables. */
562 long locals;
563};
c906108c 564
8de307e0
AS
565/* Allocate and initialize a frame cache. */
566
567static struct m68k_frame_cache *
568m68k_alloc_frame_cache (void)
c906108c 569{
8de307e0
AS
570 struct m68k_frame_cache *cache;
571 int i;
c906108c 572
8de307e0 573 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 574
8de307e0
AS
575 /* Base address. */
576 cache->base = 0;
577 cache->sp_offset = -4;
578 cache->pc = 0;
c906108c 579
8de307e0
AS
580 /* Saved registers. We initialize these to -1 since zero is a valid
581 offset (that's where %fp is supposed to be stored). */
582 for (i = 0; i < M68K_NUM_REGS; i++)
583 cache->saved_regs[i] = -1;
584
585 /* Frameless until proven otherwise. */
586 cache->locals = -1;
587
588 return cache;
c906108c
SS
589}
590
8de307e0
AS
591/* Check whether PC points at a code that sets up a new stack frame.
592 If so, it updates CACHE and returns the address of the first
593 instruction after the sequence that sets removes the "hidden"
594 argument from the stack or CURRENT_PC, whichever is smaller.
595 Otherwise, return PC. */
c906108c 596
8de307e0
AS
597static CORE_ADDR
598m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
599 struct m68k_frame_cache *cache)
c906108c 600{
8de307e0
AS
601 int op;
602
603 if (pc >= current_pc)
604 return current_pc;
c906108c 605
8de307e0
AS
606 op = read_memory_unsigned_integer (pc, 2);
607
608 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 609 {
8de307e0
AS
610 cache->saved_regs[M68K_FP_REGNUM] = 0;
611 cache->sp_offset += 4;
612 if (op == P_LINKW_FP)
613 {
614 /* link.w %fp, #-N */
615 /* link.w %fp, #0; adda.l #-N, %sp */
616 cache->locals = -read_memory_integer (pc + 2, 2);
617
618 if (pc + 4 < current_pc && cache->locals == 0)
619 {
620 op = read_memory_unsigned_integer (pc + 4, 2);
621 if (op == P_ADDAL_SP)
622 {
623 cache->locals = read_memory_integer (pc + 6, 4);
624 return pc + 10;
625 }
626 }
627
628 return pc + 4;
629 }
630 else if (op == P_LINKL_FP)
c906108c 631 {
8de307e0
AS
632 /* link.l %fp, #-N */
633 cache->locals = -read_memory_integer (pc + 2, 4);
634 return pc + 6;
635 }
636 else
637 {
638 /* pea (%fp); movea.l %sp, %fp */
639 cache->locals = 0;
640
641 if (pc + 2 < current_pc)
642 {
643 op = read_memory_unsigned_integer (pc + 2, 2);
644
645 if (op == P_MOVEAL_SP_FP)
646 {
647 /* move.l %sp, %fp */
648 return pc + 4;
649 }
650 }
651
652 return pc + 2;
c906108c
SS
653 }
654 }
8de307e0 655 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 656 {
8de307e0
AS
657 /* subq.[wl] #N,%sp */
658 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
659 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
660 if (pc + 2 < current_pc)
c906108c 661 {
8de307e0
AS
662 op = read_memory_unsigned_integer (pc + 2, 2);
663 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
664 {
665 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
666 return pc + 4;
667 }
c906108c 668 }
8de307e0
AS
669 return pc + 2;
670 }
671 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
672 {
673 /* adda.w #-N,%sp */
674 /* lea (-N,%sp),%sp */
675 cache->locals = -read_memory_integer (pc + 2, 2);
676 return pc + 4;
c906108c 677 }
8de307e0 678 else if (op == P_ADDAL_SP)
c906108c 679 {
8de307e0
AS
680 /* adda.l #-N,%sp */
681 cache->locals = -read_memory_integer (pc + 2, 4);
682 return pc + 6;
c906108c 683 }
8de307e0
AS
684
685 return pc;
c906108c 686}
c5aa993b 687
8de307e0
AS
688/* Check whether PC points at code that saves registers on the stack.
689 If so, it updates CACHE and returns the address of the first
690 instruction after the register saves or CURRENT_PC, whichever is
691 smaller. Otherwise, return PC. */
c906108c 692
8de307e0
AS
693static CORE_ADDR
694m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
695 struct m68k_frame_cache *cache)
696{
697 if (cache->locals >= 0)
698 {
699 CORE_ADDR offset;
700 int op;
701 int i, mask, regno;
c906108c 702
8de307e0
AS
703 offset = -4 - cache->locals;
704 while (pc < current_pc)
705 {
706 op = read_memory_unsigned_integer (pc, 2);
8ed86d01
VP
707 if (op == P_FMOVEMX_SP
708 && gdbarch_tdep (current_gdbarch)->fpregs_present)
8de307e0
AS
709 {
710 /* fmovem.x REGS,-(%sp) */
711 op = read_memory_unsigned_integer (pc + 2, 2);
712 if ((op & 0xff00) == 0xe000)
713 {
714 mask = op & 0xff;
715 for (i = 0; i < 16; i++, mask >>= 1)
716 {
717 if (mask & 1)
718 {
719 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
720 offset -= 12;
721 }
722 }
723 pc += 4;
724 }
725 else
726 break;
727 }
0ba5a932 728 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
729 {
730 /* move.l %R,-(%sp) */
0ba5a932 731 regno = op & 017;
8de307e0
AS
732 cache->saved_regs[regno] = offset;
733 offset -= 4;
734 pc += 2;
735 }
736 else if (op == P_MOVEML_SP)
737 {
738 /* movem.l REGS,-(%sp) */
739 mask = read_memory_unsigned_integer (pc + 2, 2);
740 for (i = 0; i < 16; i++, mask >>= 1)
741 {
742 if (mask & 1)
743 {
744 cache->saved_regs[15 - i] = offset;
745 offset -= 4;
746 }
747 }
748 pc += 4;
749 }
750 else
751 break;
752 }
753 }
754
755 return pc;
756}
c906108c 757
c906108c 758
8de307e0
AS
759/* Do a full analysis of the prologue at PC and update CACHE
760 accordingly. Bail out early if CURRENT_PC is reached. Return the
761 address where the analysis stopped.
c906108c 762
8de307e0 763 We handle all cases that can be generated by gcc.
c906108c 764
8de307e0 765 For allocating a stack frame:
c906108c 766
8de307e0
AS
767 link.w %a6,#-N
768 link.l %a6,#-N
769 pea (%fp); move.l %sp,%fp
770 link.w %a6,#0; add.l #-N,%sp
771 subq.l #N,%sp
772 subq.w #N,%sp
773 subq.w #8,%sp; subq.w #N-8,%sp
774 add.w #-N,%sp
775 lea (-N,%sp),%sp
776 add.l #-N,%sp
c906108c 777
8de307e0 778 For saving registers:
c906108c 779
8de307e0
AS
780 fmovem.x REGS,-(%sp)
781 move.l R1,-(%sp)
782 move.l R1,-(%sp); move.l R2,-(%sp)
783 movem.l REGS,-(%sp)
c906108c 784
8de307e0 785 For setting up the PIC register:
c906108c 786
8de307e0 787 lea (%pc,N),%a5
c906108c 788
8de307e0 789 */
c906108c 790
eb2e12d7 791static CORE_ADDR
8de307e0
AS
792m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
793 struct m68k_frame_cache *cache)
c906108c 794{
8de307e0 795 unsigned int op;
c906108c 796
8de307e0
AS
797 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
798 pc = m68k_analyze_register_saves (pc, current_pc, cache);
799 if (pc >= current_pc)
800 return current_pc;
c906108c 801
8de307e0
AS
802 /* Check for GOT setup. */
803 op = read_memory_unsigned_integer (pc, 4);
804 if (op == P_LEA_PC_A5)
c906108c 805 {
8de307e0
AS
806 /* lea (%pc,N),%a5 */
807 return pc + 6;
c906108c 808 }
8de307e0
AS
809
810 return pc;
c906108c
SS
811}
812
8de307e0 813/* Return PC of first real instruction. */
7f8e7424 814
8de307e0
AS
815static CORE_ADDR
816m68k_skip_prologue (CORE_ADDR start_pc)
c906108c 817{
8de307e0
AS
818 struct m68k_frame_cache cache;
819 CORE_ADDR pc;
820 int op;
c906108c 821
8de307e0
AS
822 cache.locals = -1;
823 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
824 if (cache.locals < 0)
825 return start_pc;
826 return pc;
827}
c906108c 828
8de307e0
AS
829static CORE_ADDR
830m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
831{
f5cf7aa1 832 gdb_byte buf[8];
7f8e7424 833
3e8c568d 834 frame_unwind_register (next_frame, gdbarch_pc_regnum (current_gdbarch), buf);
8de307e0
AS
835 return extract_typed_address (buf, builtin_type_void_func_ptr);
836}
837\f
838/* Normal frames. */
7f8e7424 839
8de307e0
AS
840static struct m68k_frame_cache *
841m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
842{
843 struct m68k_frame_cache *cache;
f5cf7aa1 844 gdb_byte buf[4];
8de307e0
AS
845 int i;
846
847 if (*this_cache)
848 return *this_cache;
849
850 cache = m68k_alloc_frame_cache ();
851 *this_cache = cache;
852
853 /* In principle, for normal frames, %fp holds the frame pointer,
854 which holds the base address for the current stack frame.
855 However, for functions that don't need it, the frame pointer is
856 optional. For these "frameless" functions the frame pointer is
857 actually the frame pointer of the calling frame. Signal
858 trampolines are just a special case of a "frameless" function.
859 They (usually) share their frame pointer with the frame that was
860 in progress when the signal occurred. */
861
862 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
863 cache->base = extract_unsigned_integer (buf, 4);
864 if (cache->base == 0)
865 return cache;
866
867 /* For normal frames, %pc is stored at 4(%fp). */
868 cache->saved_regs[M68K_PC_REGNUM] = 4;
869
93d42b30 870 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
8de307e0
AS
871 if (cache->pc != 0)
872 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
873
874 if (cache->locals < 0)
875 {
876 /* We didn't find a valid frame, which means that CACHE->base
877 currently holds the frame pointer for our calling frame. If
878 we're at the start of a function, or somewhere half-way its
879 prologue, the function's frame probably hasn't been fully
880 setup yet. Try to reconstruct the base address for the stack
881 frame by looking at the stack pointer. For truly "frameless"
882 functions this might work too. */
883
884 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
885 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
886 }
7f8e7424 887
8de307e0
AS
888 /* Now that we have the base address for the stack frame we can
889 calculate the value of %sp in the calling frame. */
890 cache->saved_sp = cache->base + 8;
7f8e7424 891
8de307e0
AS
892 /* Adjust all the saved registers such that they contain addresses
893 instead of offsets. */
894 for (i = 0; i < M68K_NUM_REGS; i++)
895 if (cache->saved_regs[i] != -1)
896 cache->saved_regs[i] += cache->base;
c906108c 897
8de307e0
AS
898 return cache;
899}
c906108c 900
8de307e0
AS
901static void
902m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
903 struct frame_id *this_id)
904{
905 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
c906108c 906
8de307e0
AS
907 /* This marks the outermost frame. */
908 if (cache->base == 0)
909 return;
c5aa993b 910
8de307e0
AS
911 /* See the end of m68k_push_dummy_call. */
912 *this_id = frame_id_build (cache->base + 8, cache->pc);
913}
c5aa993b 914
8de307e0
AS
915static void
916m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
917 int regnum, int *optimizedp,
918 enum lval_type *lvalp, CORE_ADDR *addrp,
60b04da5 919 int *realnump, gdb_byte *valuep)
8de307e0
AS
920{
921 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
922
923 gdb_assert (regnum >= 0);
924
925 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
c5aa993b 926 {
8de307e0
AS
927 *optimizedp = 0;
928 *lvalp = not_lval;
929 *addrp = 0;
930 *realnump = -1;
931 if (valuep)
c906108c 932 {
8de307e0
AS
933 /* Store the value. */
934 store_unsigned_integer (valuep, 4, cache->saved_sp);
89c3b6d3 935 }
8de307e0
AS
936 return;
937 }
938
939 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
940 {
941 *optimizedp = 0;
942 *lvalp = lval_memory;
943 *addrp = cache->saved_regs[regnum];
944 *realnump = -1;
945 if (valuep)
89c3b6d3 946 {
8de307e0
AS
947 /* Read the value in from memory. */
948 read_memory (*addrp, valuep,
949 register_size (current_gdbarch, regnum));
89c3b6d3 950 }
8de307e0 951 return;
c906108c 952 }
8de307e0 953
00b25ff3
AC
954 *optimizedp = 0;
955 *lvalp = lval_register;
956 *addrp = 0;
957 *realnump = regnum;
958 if (valuep)
959 frame_unwind_register (next_frame, (*realnump), valuep);
8de307e0
AS
960}
961
962static const struct frame_unwind m68k_frame_unwind =
963{
964 NORMAL_FRAME,
965 m68k_frame_this_id,
966 m68k_frame_prev_register
967};
968
969static const struct frame_unwind *
336d1bba 970m68k_frame_sniffer (struct frame_info *next_frame)
8de307e0
AS
971{
972 return &m68k_frame_unwind;
973}
974\f
8de307e0
AS
975static CORE_ADDR
976m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
977{
978 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
979
980 return cache->base;
981}
982
983static const struct frame_base m68k_frame_base =
984{
985 &m68k_frame_unwind,
986 m68k_frame_base_address,
987 m68k_frame_base_address,
988 m68k_frame_base_address
989};
990
991static struct frame_id
992m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
993{
f5cf7aa1 994 gdb_byte buf[4];
8de307e0 995 CORE_ADDR fp;
c906108c 996
8de307e0
AS
997 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
998 fp = extract_unsigned_integer (buf, 4);
c906108c 999
8de307e0
AS
1000 /* See the end of m68k_push_dummy_call. */
1001 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1002}
1003\f
c906108c 1004
c906108c
SS
1005/* Figure out where the longjmp will land. Slurp the args out of the stack.
1006 We expect the first arg to be a pointer to the jmp_buf structure from which
1007 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1008 This routine returns true on success. */
1009
c34d127c 1010static int
60ade65d 1011m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1012{
f5cf7aa1 1013 gdb_byte *buf;
c906108c 1014 CORE_ADDR sp, jb_addr;
60ade65d 1015 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
eb2e12d7
AS
1016
1017 if (tdep->jb_pc < 0)
1018 {
1019 internal_error (__FILE__, __LINE__,
e2e0b3e5 1020 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1021 return 0;
1022 }
c906108c 1023
819844ad 1024 buf = alloca (gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT);
3e8c568d 1025 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (current_gdbarch));
c906108c 1026
b5d78d39 1027 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
819844ad
UW
1028 buf,
1029 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1030 return 0;
1031
819844ad
UW
1032 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1033 / TARGET_CHAR_BIT);
c906108c 1034
eb2e12d7 1035 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
819844ad 1036 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1037 return 0;
1038
819844ad
UW
1039 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1040 / TARGET_CHAR_BIT);
c906108c
SS
1041 return 1;
1042}
f595cb19
MK
1043\f
1044
1045/* System V Release 4 (SVR4). */
1046
1047void
1048m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1049{
1050 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1051
1052 /* SVR4 uses a different calling convention. */
1053 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1054
1055 /* SVR4 uses %a0 instead of %a1. */
1056 tdep->struct_value_regnum = M68K_A0_REGNUM;
1057}
1058\f
c906108c 1059
152d9db6
GS
1060/* Function: m68k_gdbarch_init
1061 Initializer function for the m68k gdbarch vector.
1062 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1063
1064static struct gdbarch *
1065m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1066{
1067 struct gdbarch_tdep *tdep = NULL;
1068 struct gdbarch *gdbarch;
8ed86d01
VP
1069 struct gdbarch_list *best_arch;
1070 struct tdesc_arch_data *tdesc_data = NULL;
1071 int i;
1072 enum m68k_flavour flavour = m68k_no_flavour;
1073 int has_fp = 1;
1074 const struct floatformat **long_double_format = floatformats_m68881_ext;
1075
1076 /* Check any target description for validity. */
1077 if (tdesc_has_registers (info.target_desc))
1078 {
1079 const struct tdesc_feature *feature;
1080 int valid_p;
152d9db6 1081
8ed86d01
VP
1082 feature = tdesc_find_feature (info.target_desc,
1083 "org.gnu.gdb.m68k.core");
1084 if (feature != NULL)
1085 /* Do nothing. */
1086 ;
1087
1088 if (feature == NULL)
1089 {
1090 feature = tdesc_find_feature (info.target_desc,
1091 "org.gnu.gdb.coldfire.core");
1092 if (feature != NULL)
1093 flavour = m68k_coldfire_flavour;
1094 }
1095
1096 if (feature == NULL)
1097 {
1098 feature = tdesc_find_feature (info.target_desc,
1099 "org.gnu.gdb.fido.core");
1100 if (feature != NULL)
1101 flavour = m68k_fido_flavour;
1102 }
1103
1104 if (feature == NULL)
1105 return NULL;
1106
1107 tdesc_data = tdesc_data_alloc ();
1108
1109 valid_p = 1;
1110 for (i = 0; i <= M68K_PC_REGNUM; i++)
1111 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1112 m68k_register_names[i]);
1113
1114 if (!valid_p)
1115 {
1116 tdesc_data_cleanup (tdesc_data);
1117 return NULL;
1118 }
1119
1120 feature = tdesc_find_feature (info.target_desc,
1121 "org.gnu.gdb.coldfire.fp");
1122 if (feature != NULL)
1123 {
1124 valid_p = 1;
1125 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1126 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1127 m68k_register_names[i]);
1128 if (!valid_p)
1129 {
1130 tdesc_data_cleanup (tdesc_data);
1131 return NULL;
1132 }
1133 }
1134 else
1135 has_fp = 0;
1136 }
1137
1138 /* The mechanism for returning floating values from function
1139 and the type of long double depend on whether we're
1140 on ColdFire or standard m68k. */
1141
4ed77933 1142 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1143 {
1144 const bfd_arch_info_type *coldfire_arch =
1145 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1146
1147 if (coldfire_arch
4ed77933
AS
1148 && ((*info.bfd_arch_info->compatible)
1149 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1150 flavour = m68k_coldfire_flavour;
1151 }
1152
1153 /* If there is already a candidate, use it. */
1154 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1155 best_arch != NULL;
1156 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1157 {
1158 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1159 continue;
1160
1161 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1162 continue;
1163
1164 break;
1165 }
152d9db6 1166
eb2e12d7
AS
1167 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1168 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1169 tdep->fpregs_present = has_fp;
1170 tdep->flavour = flavour;
152d9db6 1171
8ed86d01
VP
1172 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1173 long_double_format = floatformats_ieee_double;
1174 set_gdbarch_long_double_format (gdbarch, long_double_format);
1175 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1176
5d3ed2e3 1177 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1178 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3
GS
1179
1180 /* Stack grows down. */
1181 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1182 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1183
1184 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1185 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1186 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1187
6300c360 1188 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6
NS
1189 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1190 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1191
8de307e0 1192 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1193 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1194 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1195 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1196 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1197 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1198 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
1199 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1200 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1201 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1202
8ed86d01
VP
1203 if (has_fp)
1204 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1205
1206 /* Try to figure out if the arch uses floating registers to return
1207 floating point values from functions. */
1208 if (has_fp)
1209 {
1210 /* On ColdFire, floating point values are returned in D0. */
1211 if (flavour == m68k_coldfire_flavour)
1212 tdep->float_return = 0;
1213 else
1214 tdep->float_return = 1;
1215 }
1216 else
1217 {
1218 /* No floating registers, so can't use them for returning values. */
1219 tdep->float_return = 0;
1220 }
1221
1222 /* Function call & return */
8de307e0 1223 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1224 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1225
8ed86d01 1226
650fcc91
AS
1227 /* Disassembler. */
1228 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1229
eb2e12d7
AS
1230#if defined JB_PC && defined JB_ELEMENT_SIZE
1231 tdep->jb_pc = JB_PC;
1232 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1233#else
1234 tdep->jb_pc = -1;
1235#endif
f595cb19 1236 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1237 tdep->struct_return = reg_struct_return;
8de307e0
AS
1238
1239 /* Frame unwinder. */
1240 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1241 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1242
1243 /* Hook in the DWARF CFI frame unwinder. */
1244 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1245
8de307e0 1246 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1247
55809acb
AS
1248 /* Hook in ABI-specific overrides, if they have been registered. */
1249 gdbarch_init_osabi (info, gdbarch);
1250
eb2e12d7
AS
1251 /* Now we have tuned the configuration, set a few final things,
1252 based on what the OS ABI has told us. */
1253
1254 if (tdep->jb_pc >= 0)
1255 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1256
336d1bba 1257 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
8de307e0 1258
8ed86d01
VP
1259 if (tdesc_data)
1260 tdesc_use_registers (gdbarch, tdesc_data);
1261
152d9db6
GS
1262 return gdbarch;
1263}
1264
1265
1266static void
1267m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1268{
eb2e12d7 1269 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
152d9db6 1270
eb2e12d7
AS
1271 if (tdep == NULL)
1272 return;
152d9db6 1273}
2acceee2 1274
a78f21af
AC
1275extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1276
c906108c 1277void
fba45db2 1278_initialize_m68k_tdep (void)
c906108c 1279{
152d9db6 1280 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
4713453b
AS
1281
1282 /* Initialize the m68k-specific register types. */
1283 m68k_init_types ();
c906108c 1284}
This page took 0.895734 seconds and 4 git commands to generate.