2007-11-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
3f244638 22#include "dwarf2-frame.h"
c906108c 23#include "frame.h"
8de307e0
AS
24#include "frame-base.h"
25#include "frame-unwind.h"
e6bb342a 26#include "gdbtypes.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbcore.h"
29#include "value.h"
30#include "gdb_string.h"
8de307e0 31#include "gdb_assert.h"
7a292a7a 32#include "inferior.h"
4e052eda 33#include "regcache.h"
5d3ed2e3 34#include "arch-utils.h"
55809acb 35#include "osabi.h"
a89aa300 36#include "dis-asm.h"
8ed86d01 37#include "target-descriptions.h"
32eeb91a
AS
38
39#include "m68k-tdep.h"
c906108c 40\f
c5aa993b 41
89c3b6d3
PDM
42#define P_LINKL_FP 0x480e
43#define P_LINKW_FP 0x4e56
44#define P_PEA_FP 0x4856
8de307e0
AS
45#define P_MOVEAL_SP_FP 0x2c4f
46#define P_ADDAW_SP 0xdefc
47#define P_ADDAL_SP 0xdffc
48#define P_SUBQW_SP 0x514f
49#define P_SUBQL_SP 0x518f
50#define P_LEA_SP_SP 0x4fef
51#define P_LEA_PC_A5 0x4bfb0170
52#define P_FMOVEMX_SP 0xf227
53#define P_MOVEL_SP 0x2f00
54#define P_MOVEML_SP 0x48e7
89c3b6d3 55
103a1597 56/* Offset from SP to first arg on stack at first instruction of a function */
103a1597
GS
57#define SP_ARG0 (1 * 4)
58
103a1597
GS
59#if !defined (BPT_VECTOR)
60#define BPT_VECTOR 0xf
61#endif
62
f5cf7aa1 63static const gdb_byte *
103a1597
GS
64m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
65{
f5cf7aa1 66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69}
4713453b
AS
70\f
71
72/* Type for %ps. */
73struct type *m68k_ps_type;
74
75/* Construct types for ISA-specific registers. */
76static void
77m68k_init_types (void)
78{
79 struct type *type;
80
81 type = init_flags_type ("builtin_type_m68k_ps", 4);
82 append_flags_type_flag (type, 0, "C");
83 append_flags_type_flag (type, 1, "V");
84 append_flags_type_flag (type, 2, "Z");
85 append_flags_type_flag (type, 3, "N");
86 append_flags_type_flag (type, 4, "X");
87 append_flags_type_flag (type, 8, "I0");
88 append_flags_type_flag (type, 9, "I1");
89 append_flags_type_flag (type, 10, "I2");
90 append_flags_type_flag (type, 12, "M");
91 append_flags_type_flag (type, 13, "S");
92 append_flags_type_flag (type, 14, "T0");
93 append_flags_type_flag (type, 15, "T1");
94 m68k_ps_type = type;
95}
103a1597 96
d85fe7f7
AS
97/* Return the GDB type object for the "standard" data type of data in
98 register N. This should be int for D0-D7, SR, FPCONTROL and
99 FPSTATUS, long double for FP0-FP7, and void pointer for all others
100 (A0-A7, PC, FPIADDR). Note, for registers which contain
101 addresses return pointer to void, not pointer to char, because we
102 don't want to attempt to print the string after printing the
103 address. */
5d3ed2e3
GS
104
105static struct type *
8de307e0 106m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 107{
c984b7ff 108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 109
8ed86d01
VP
110 if (tdep->fpregs_present)
111 {
c984b7ff
UW
112 if (regnum >= gdbarch_fp0_regnum (gdbarch)
113 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
114 {
115 if (tdep->flavour == m68k_coldfire_flavour)
116 return builtin_type (gdbarch)->builtin_double;
117 else
118 return builtin_type_m68881_ext;
119 }
120
121 if (regnum == M68K_FPI_REGNUM)
122 return builtin_type_void_func_ptr;
123
124 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
125 return builtin_type_int32;
126 }
127 else
128 {
129 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
130 return builtin_type_int0;
131 }
03dac896 132
c984b7ff 133 if (regnum == gdbarch_pc_regnum (gdbarch))
8ed86d01 134 return builtin_type_void_func_ptr;
03dac896 135
32eeb91a 136 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
03dac896
AS
137 return builtin_type_void_data_ptr;
138
4713453b
AS
139 if (regnum == M68K_PS_REGNUM)
140 return m68k_ps_type;
141
03dac896 142 return builtin_type_int32;
5d3ed2e3
GS
143}
144
8ed86d01 145static const char *m68k_register_names[] = {
5d3ed2e3
GS
146 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
147 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
148 "ps", "pc",
149 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 150 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
151 };
152
8ed86d01
VP
153/* Function: m68k_register_name
154 Returns the name of the standard m68k register regnum. */
155
156static const char *
d93859e2 157m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
158{
159 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 160 internal_error (__FILE__, __LINE__,
e2e0b3e5 161 _("m68k_register_name: illegal register number %d"), regnum);
5d3ed2e3 162 else
8ed86d01 163 return m68k_register_names[regnum];
5d3ed2e3 164}
e47577ab
MK
165\f
166/* Return nonzero if a value of type TYPE stored in register REGNUM
167 needs any special handling. */
168
169static int
170m68k_convert_register_p (int regnum, struct type *type)
171{
8ed86d01
VP
172 if (!gdbarch_tdep (current_gdbarch)->fpregs_present)
173 return 0;
83acabca
DJ
174 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
175 && type != builtin_type_m68881_ext);
e47577ab
MK
176}
177
178/* Read a value of type TYPE from register REGNUM in frame FRAME, and
179 return its contents in TO. */
180
181static void
182m68k_register_to_value (struct frame_info *frame, int regnum,
f5cf7aa1 183 struct type *type, gdb_byte *to)
e47577ab 184{
f5cf7aa1 185 gdb_byte from[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
186 struct type *fpreg_type = register_type (get_frame_arch (frame),
187 M68K_FP0_REGNUM);
e47577ab
MK
188
189 /* We only support floating-point values. */
190 if (TYPE_CODE (type) != TYPE_CODE_FLT)
191 {
8a3fe4f8
AC
192 warning (_("Cannot convert floating-point register value "
193 "to non-floating-point type."));
e47577ab
MK
194 return;
195 }
196
83acabca 197 /* Convert to TYPE. */
e47577ab 198 get_frame_register (frame, regnum, from);
8ed86d01 199 convert_typed_floating (from, fpreg_type, to, type);
e47577ab
MK
200}
201
202/* Write the contents FROM of a value of type TYPE into register
203 REGNUM in frame FRAME. */
204
205static void
206m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 207 struct type *type, const gdb_byte *from)
e47577ab 208{
f5cf7aa1 209 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
e47577ab
MK
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
8a3fe4f8
AC
216 warning (_("Cannot convert non-floating-point type "
217 "to floating-point register value."));
e47577ab
MK
218 return;
219 }
220
83acabca 221 /* Convert from TYPE. */
8ed86d01 222 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
223 put_frame_register (frame, regnum, to);
224}
225
8de307e0 226\f
f595cb19
MK
227/* There is a fair number of calling conventions that are in somewhat
228 wide use. The 68000/08/10 don't support an FPU, not even as a
229 coprocessor. All function return values are stored in %d0/%d1.
230 Structures are returned in a static buffer, a pointer to which is
231 returned in %d0. This means that functions returning a structure
232 are not re-entrant. To avoid this problem some systems use a
233 convention where the caller passes a pointer to a buffer in %a1
234 where the return values is to be stored. This convention is the
235 default, and is implemented in the function m68k_return_value.
236
237 The 68020/030/040/060 do support an FPU, either as a coprocessor
238 (68881/2) or built-in (68040/68060). That's why System V release 4
239 (SVR4) instroduces a new calling convention specified by the SVR4
240 psABI. Integer values are returned in %d0/%d1, pointer return
241 values in %a0 and floating values in %fp0. When calling functions
242 returning a structure the caller should pass a pointer to a buffer
243 for the return value in %a0. This convention is implemented in the
244 function m68k_svr4_return_value, and by appropriately setting the
245 struct_value_regnum member of `struct gdbarch_tdep'.
246
247 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
248 for passing the structure return value buffer.
249
250 GCC can also generate code where small structures are returned in
251 %d0/%d1 instead of in memory by using -freg-struct-return. This is
252 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
253 embedded systems. This convention is implemented by setting the
254 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
255
256/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 257 into VALBUF. */
942dc0e9
GS
258
259static void
8de307e0 260m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 261 gdb_byte *valbuf)
942dc0e9 262{
8de307e0 263 int len = TYPE_LENGTH (type);
f5cf7aa1 264 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 265
8de307e0
AS
266 if (len <= 4)
267 {
268 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
269 memcpy (valbuf, buf + (4 - len), len);
270 }
271 else if (len <= 8)
272 {
273 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
274 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 275 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
276 }
277 else
278 internal_error (__FILE__, __LINE__,
e2e0b3e5 279 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
280}
281
942dc0e9 282static void
f595cb19 283m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 284 gdb_byte *valbuf)
942dc0e9 285{
8de307e0 286 int len = TYPE_LENGTH (type);
f5cf7aa1 287 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
288 struct gdbarch *gdbarch = get_regcache_arch (regcache);
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 290
8ed86d01 291 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 292 {
c984b7ff 293 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 294 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 295 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 296 }
f595cb19
MK
297 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
298 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
299 else
300 m68k_extract_return_value (type, regcache, valbuf);
301}
302
303/* Write a function return value of TYPE from VALBUF into REGCACHE. */
304
305static void
306m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 307 const gdb_byte *valbuf)
f595cb19
MK
308{
309 int len = TYPE_LENGTH (type);
942dc0e9 310
8de307e0
AS
311 if (len <= 4)
312 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
313 else if (len <= 8)
314 {
f595cb19 315 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 316 len - 4, valbuf);
f5cf7aa1 317 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
318 }
319 else
320 internal_error (__FILE__, __LINE__,
e2e0b3e5 321 _("Cannot store return value of %d bytes long."), len);
8de307e0 322}
942dc0e9 323
f595cb19
MK
324static void
325m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 326 const gdb_byte *valbuf)
942dc0e9 327{
f595cb19 328 int len = TYPE_LENGTH (type);
c984b7ff
UW
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 331
8ed86d01 332 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 333 {
c984b7ff 334 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 335 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 336 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
337 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
338 }
339 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
340 {
341 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
342 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
343 }
344 else
345 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
346}
347
f595cb19
MK
348/* Return non-zero if TYPE, which is assumed to be a structure or
349 union type, should be returned in registers for architecture
350 GDBARCH. */
351
c481dac7 352static int
f595cb19 353m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 354{
f595cb19
MK
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356 enum type_code code = TYPE_CODE (type);
357 int len = TYPE_LENGTH (type);
c481dac7 358
f595cb19
MK
359 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
360
361 if (tdep->struct_return == pcc_struct_return)
362 return 0;
363
364 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
365}
366
f595cb19
MK
367/* Determine, for architecture GDBARCH, how a return value of TYPE
368 should be returned. If it is supposed to be returned in registers,
369 and READBUF is non-zero, read the appropriate value from REGCACHE,
370 and copy it into READBUF. If WRITEBUF is non-zero, write the value
371 from WRITEBUF into REGCACHE. */
372
373static enum return_value_convention
374m68k_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
375 struct regcache *regcache, gdb_byte *readbuf,
376 const gdb_byte *writebuf)
f595cb19
MK
377{
378 enum type_code code = TYPE_CODE (type);
379
1c845060
MK
380 /* GCC returns a `long double' in memory too. */
381 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
382 && !m68k_reg_struct_return_p (gdbarch, type))
383 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
384 {
385 /* The default on m68k is to return structures in static memory.
386 Consequently a function must return the address where we can
387 find the return value. */
f595cb19 388
1c845060
MK
389 if (readbuf)
390 {
391 ULONGEST addr;
392
393 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
394 read_memory (addr, readbuf, TYPE_LENGTH (type));
395 }
396
397 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
398 }
f595cb19
MK
399
400 if (readbuf)
401 m68k_extract_return_value (type, regcache, readbuf);
402 if (writebuf)
403 m68k_store_return_value (type, regcache, writebuf);
404
405 return RETURN_VALUE_REGISTER_CONVENTION;
406}
407
408static enum return_value_convention
409m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
410 struct regcache *regcache, gdb_byte *readbuf,
411 const gdb_byte *writebuf)
f595cb19
MK
412{
413 enum type_code code = TYPE_CODE (type);
414
415 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
416 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
417 {
418 /* The System V ABI says that:
419
420 "A function returning a structure or union also sets %a0 to
421 the value it finds in %a0. Thus when the caller receives
422 control again, the address of the returned object resides in
423 register %a0."
424
425 So the ABI guarantees that we can always find the return
426 value just after the function has returned. */
427
428 if (readbuf)
429 {
430 ULONGEST addr;
431
432 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
433 read_memory (addr, readbuf, TYPE_LENGTH (type));
434 }
435
436 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
437 }
f595cb19
MK
438
439 /* This special case is for structures consisting of a single
440 `float' or `double' member. These structures are returned in
441 %fp0. For these structures, we call ourselves recursively,
442 changing TYPE into the type of the first member of the structure.
443 Since that should work for all structures that have only one
444 member, we don't bother to check the member's type here. */
445 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
446 {
447 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
448 return m68k_svr4_return_value (gdbarch, type, regcache,
449 readbuf, writebuf);
450 }
451
452 if (readbuf)
453 m68k_svr4_extract_return_value (type, regcache, readbuf);
454 if (writebuf)
455 m68k_svr4_store_return_value (type, regcache, writebuf);
456
457 return RETURN_VALUE_REGISTER_CONVENTION;
458}
459\f
392a587b 460
9bb47d95
NS
461/* Always align the frame to a 4-byte boundary. This is required on
462 coldfire and harmless on the rest. */
463
464static CORE_ADDR
465m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
466{
467 /* Align the stack to four bytes. */
468 return sp & ~3;
469}
470
8de307e0 471static CORE_ADDR
7d9b040b 472m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
473 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
474 struct value **args, CORE_ADDR sp, int struct_return,
475 CORE_ADDR struct_addr)
7f8e7424 476{
f595cb19 477 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
f5cf7aa1 478 gdb_byte buf[4];
8de307e0
AS
479 int i;
480
481 /* Push arguments in reverse order. */
482 for (i = nargs - 1; i >= 0; i--)
483 {
4754a64e 484 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 485 int len = TYPE_LENGTH (value_type);
8de307e0 486 int container_len = (len + 3) & ~3;
c481dac7
AS
487 int offset;
488
489 /* Non-scalars bigger than 4 bytes are left aligned, others are
490 right aligned. */
491 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
492 || TYPE_CODE (value_type) == TYPE_CODE_UNION
493 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
494 && len > 4)
495 offset = 0;
496 else
497 offset = container_len - len;
8de307e0 498 sp -= container_len;
46615f07 499 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
500 }
501
c481dac7 502 /* Store struct value address. */
8de307e0
AS
503 if (struct_return)
504 {
8de307e0 505 store_unsigned_integer (buf, 4, struct_addr);
f595cb19 506 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
507 }
508
509 /* Store return address. */
510 sp -= 4;
511 store_unsigned_integer (buf, 4, bp_addr);
512 write_memory (sp, buf, 4);
513
514 /* Finally, update the stack pointer... */
515 store_unsigned_integer (buf, 4, sp);
516 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
517
518 /* ...and fake a frame pointer. */
519 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
520
521 /* DWARF2/GCC uses the stack address *before* the function call as a
522 frame's CFA. */
523 return sp + 8;
7f8e7424 524}
6dd0fba6
NS
525
526/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
527
528static int
529m68k_dwarf_reg_to_regnum (int num)
530{
531 if (num < 8)
532 /* d0..7 */
533 return (num - 0) + M68K_D0_REGNUM;
534 else if (num < 16)
535 /* a0..7 */
536 return (num - 8) + M68K_A0_REGNUM;
8ed86d01 537 else if (num < 24 && gdbarch_tdep (current_gdbarch)->fpregs_present)
6dd0fba6
NS
538 /* fp0..7 */
539 return (num - 16) + M68K_FP0_REGNUM;
540 else if (num == 25)
541 /* pc */
542 return M68K_PC_REGNUM;
543 else
f57d151a
UW
544 return gdbarch_num_regs (current_gdbarch)
545 + gdbarch_num_pseudo_regs (current_gdbarch);
6dd0fba6
NS
546}
547
8de307e0
AS
548\f
549struct m68k_frame_cache
550{
551 /* Base address. */
552 CORE_ADDR base;
553 CORE_ADDR sp_offset;
554 CORE_ADDR pc;
7f8e7424 555
8de307e0
AS
556 /* Saved registers. */
557 CORE_ADDR saved_regs[M68K_NUM_REGS];
558 CORE_ADDR saved_sp;
7f8e7424 559
8de307e0
AS
560 /* Stack space reserved for local variables. */
561 long locals;
562};
c906108c 563
8de307e0
AS
564/* Allocate and initialize a frame cache. */
565
566static struct m68k_frame_cache *
567m68k_alloc_frame_cache (void)
c906108c 568{
8de307e0
AS
569 struct m68k_frame_cache *cache;
570 int i;
c906108c 571
8de307e0 572 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 573
8de307e0
AS
574 /* Base address. */
575 cache->base = 0;
576 cache->sp_offset = -4;
577 cache->pc = 0;
c906108c 578
8de307e0
AS
579 /* Saved registers. We initialize these to -1 since zero is a valid
580 offset (that's where %fp is supposed to be stored). */
581 for (i = 0; i < M68K_NUM_REGS; i++)
582 cache->saved_regs[i] = -1;
583
584 /* Frameless until proven otherwise. */
585 cache->locals = -1;
586
587 return cache;
c906108c
SS
588}
589
8de307e0
AS
590/* Check whether PC points at a code that sets up a new stack frame.
591 If so, it updates CACHE and returns the address of the first
592 instruction after the sequence that sets removes the "hidden"
593 argument from the stack or CURRENT_PC, whichever is smaller.
594 Otherwise, return PC. */
c906108c 595
8de307e0
AS
596static CORE_ADDR
597m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
598 struct m68k_frame_cache *cache)
c906108c 599{
8de307e0
AS
600 int op;
601
602 if (pc >= current_pc)
603 return current_pc;
c906108c 604
8de307e0
AS
605 op = read_memory_unsigned_integer (pc, 2);
606
607 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 608 {
8de307e0
AS
609 cache->saved_regs[M68K_FP_REGNUM] = 0;
610 cache->sp_offset += 4;
611 if (op == P_LINKW_FP)
612 {
613 /* link.w %fp, #-N */
614 /* link.w %fp, #0; adda.l #-N, %sp */
615 cache->locals = -read_memory_integer (pc + 2, 2);
616
617 if (pc + 4 < current_pc && cache->locals == 0)
618 {
619 op = read_memory_unsigned_integer (pc + 4, 2);
620 if (op == P_ADDAL_SP)
621 {
622 cache->locals = read_memory_integer (pc + 6, 4);
623 return pc + 10;
624 }
625 }
626
627 return pc + 4;
628 }
629 else if (op == P_LINKL_FP)
c906108c 630 {
8de307e0
AS
631 /* link.l %fp, #-N */
632 cache->locals = -read_memory_integer (pc + 2, 4);
633 return pc + 6;
634 }
635 else
636 {
637 /* pea (%fp); movea.l %sp, %fp */
638 cache->locals = 0;
639
640 if (pc + 2 < current_pc)
641 {
642 op = read_memory_unsigned_integer (pc + 2, 2);
643
644 if (op == P_MOVEAL_SP_FP)
645 {
646 /* move.l %sp, %fp */
647 return pc + 4;
648 }
649 }
650
651 return pc + 2;
c906108c
SS
652 }
653 }
8de307e0 654 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 655 {
8de307e0
AS
656 /* subq.[wl] #N,%sp */
657 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
658 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
659 if (pc + 2 < current_pc)
c906108c 660 {
8de307e0
AS
661 op = read_memory_unsigned_integer (pc + 2, 2);
662 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
663 {
664 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
665 return pc + 4;
666 }
c906108c 667 }
8de307e0
AS
668 return pc + 2;
669 }
670 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
671 {
672 /* adda.w #-N,%sp */
673 /* lea (-N,%sp),%sp */
674 cache->locals = -read_memory_integer (pc + 2, 2);
675 return pc + 4;
c906108c 676 }
8de307e0 677 else if (op == P_ADDAL_SP)
c906108c 678 {
8de307e0
AS
679 /* adda.l #-N,%sp */
680 cache->locals = -read_memory_integer (pc + 2, 4);
681 return pc + 6;
c906108c 682 }
8de307e0
AS
683
684 return pc;
c906108c 685}
c5aa993b 686
8de307e0
AS
687/* Check whether PC points at code that saves registers on the stack.
688 If so, it updates CACHE and returns the address of the first
689 instruction after the register saves or CURRENT_PC, whichever is
690 smaller. Otherwise, return PC. */
c906108c 691
8de307e0
AS
692static CORE_ADDR
693m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
694 struct m68k_frame_cache *cache)
695{
696 if (cache->locals >= 0)
697 {
698 CORE_ADDR offset;
699 int op;
700 int i, mask, regno;
c906108c 701
8de307e0
AS
702 offset = -4 - cache->locals;
703 while (pc < current_pc)
704 {
705 op = read_memory_unsigned_integer (pc, 2);
8ed86d01
VP
706 if (op == P_FMOVEMX_SP
707 && gdbarch_tdep (current_gdbarch)->fpregs_present)
8de307e0
AS
708 {
709 /* fmovem.x REGS,-(%sp) */
710 op = read_memory_unsigned_integer (pc + 2, 2);
711 if ((op & 0xff00) == 0xe000)
712 {
713 mask = op & 0xff;
714 for (i = 0; i < 16; i++, mask >>= 1)
715 {
716 if (mask & 1)
717 {
718 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
719 offset -= 12;
720 }
721 }
722 pc += 4;
723 }
724 else
725 break;
726 }
0ba5a932 727 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
728 {
729 /* move.l %R,-(%sp) */
0ba5a932 730 regno = op & 017;
8de307e0
AS
731 cache->saved_regs[regno] = offset;
732 offset -= 4;
733 pc += 2;
734 }
735 else if (op == P_MOVEML_SP)
736 {
737 /* movem.l REGS,-(%sp) */
738 mask = read_memory_unsigned_integer (pc + 2, 2);
739 for (i = 0; i < 16; i++, mask >>= 1)
740 {
741 if (mask & 1)
742 {
743 cache->saved_regs[15 - i] = offset;
744 offset -= 4;
745 }
746 }
747 pc += 4;
748 }
749 else
750 break;
751 }
752 }
753
754 return pc;
755}
c906108c 756
c906108c 757
8de307e0
AS
758/* Do a full analysis of the prologue at PC and update CACHE
759 accordingly. Bail out early if CURRENT_PC is reached. Return the
760 address where the analysis stopped.
c906108c 761
8de307e0 762 We handle all cases that can be generated by gcc.
c906108c 763
8de307e0 764 For allocating a stack frame:
c906108c 765
8de307e0
AS
766 link.w %a6,#-N
767 link.l %a6,#-N
768 pea (%fp); move.l %sp,%fp
769 link.w %a6,#0; add.l #-N,%sp
770 subq.l #N,%sp
771 subq.w #N,%sp
772 subq.w #8,%sp; subq.w #N-8,%sp
773 add.w #-N,%sp
774 lea (-N,%sp),%sp
775 add.l #-N,%sp
c906108c 776
8de307e0 777 For saving registers:
c906108c 778
8de307e0
AS
779 fmovem.x REGS,-(%sp)
780 move.l R1,-(%sp)
781 move.l R1,-(%sp); move.l R2,-(%sp)
782 movem.l REGS,-(%sp)
c906108c 783
8de307e0 784 For setting up the PIC register:
c906108c 785
8de307e0 786 lea (%pc,N),%a5
c906108c 787
8de307e0 788 */
c906108c 789
eb2e12d7 790static CORE_ADDR
8de307e0
AS
791m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
792 struct m68k_frame_cache *cache)
c906108c 793{
8de307e0 794 unsigned int op;
c906108c 795
8de307e0
AS
796 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
797 pc = m68k_analyze_register_saves (pc, current_pc, cache);
798 if (pc >= current_pc)
799 return current_pc;
c906108c 800
8de307e0
AS
801 /* Check for GOT setup. */
802 op = read_memory_unsigned_integer (pc, 4);
803 if (op == P_LEA_PC_A5)
c906108c 804 {
8de307e0
AS
805 /* lea (%pc,N),%a5 */
806 return pc + 6;
c906108c 807 }
8de307e0
AS
808
809 return pc;
c906108c
SS
810}
811
8de307e0 812/* Return PC of first real instruction. */
7f8e7424 813
8de307e0
AS
814static CORE_ADDR
815m68k_skip_prologue (CORE_ADDR start_pc)
c906108c 816{
8de307e0
AS
817 struct m68k_frame_cache cache;
818 CORE_ADDR pc;
819 int op;
c906108c 820
8de307e0
AS
821 cache.locals = -1;
822 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
823 if (cache.locals < 0)
824 return start_pc;
825 return pc;
826}
c906108c 827
8de307e0
AS
828static CORE_ADDR
829m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
830{
f5cf7aa1 831 gdb_byte buf[8];
7f8e7424 832
c984b7ff 833 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
8de307e0
AS
834 return extract_typed_address (buf, builtin_type_void_func_ptr);
835}
836\f
837/* Normal frames. */
7f8e7424 838
8de307e0
AS
839static struct m68k_frame_cache *
840m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
841{
842 struct m68k_frame_cache *cache;
f5cf7aa1 843 gdb_byte buf[4];
8de307e0
AS
844 int i;
845
846 if (*this_cache)
847 return *this_cache;
848
849 cache = m68k_alloc_frame_cache ();
850 *this_cache = cache;
851
852 /* In principle, for normal frames, %fp holds the frame pointer,
853 which holds the base address for the current stack frame.
854 However, for functions that don't need it, the frame pointer is
855 optional. For these "frameless" functions the frame pointer is
856 actually the frame pointer of the calling frame. Signal
857 trampolines are just a special case of a "frameless" function.
858 They (usually) share their frame pointer with the frame that was
859 in progress when the signal occurred. */
860
861 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
862 cache->base = extract_unsigned_integer (buf, 4);
863 if (cache->base == 0)
864 return cache;
865
866 /* For normal frames, %pc is stored at 4(%fp). */
867 cache->saved_regs[M68K_PC_REGNUM] = 4;
868
93d42b30 869 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
8de307e0
AS
870 if (cache->pc != 0)
871 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
872
873 if (cache->locals < 0)
874 {
875 /* We didn't find a valid frame, which means that CACHE->base
876 currently holds the frame pointer for our calling frame. If
877 we're at the start of a function, or somewhere half-way its
878 prologue, the function's frame probably hasn't been fully
879 setup yet. Try to reconstruct the base address for the stack
880 frame by looking at the stack pointer. For truly "frameless"
881 functions this might work too. */
882
883 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
885 }
7f8e7424 886
8de307e0
AS
887 /* Now that we have the base address for the stack frame we can
888 calculate the value of %sp in the calling frame. */
889 cache->saved_sp = cache->base + 8;
7f8e7424 890
8de307e0
AS
891 /* Adjust all the saved registers such that they contain addresses
892 instead of offsets. */
893 for (i = 0; i < M68K_NUM_REGS; i++)
894 if (cache->saved_regs[i] != -1)
895 cache->saved_regs[i] += cache->base;
c906108c 896
8de307e0
AS
897 return cache;
898}
c906108c 899
8de307e0
AS
900static void
901m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
902 struct frame_id *this_id)
903{
904 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
c906108c 905
8de307e0
AS
906 /* This marks the outermost frame. */
907 if (cache->base == 0)
908 return;
c5aa993b 909
8de307e0
AS
910 /* See the end of m68k_push_dummy_call. */
911 *this_id = frame_id_build (cache->base + 8, cache->pc);
912}
c5aa993b 913
8de307e0
AS
914static void
915m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
916 int regnum, int *optimizedp,
917 enum lval_type *lvalp, CORE_ADDR *addrp,
60b04da5 918 int *realnump, gdb_byte *valuep)
8de307e0
AS
919{
920 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
921
922 gdb_assert (regnum >= 0);
923
924 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
c5aa993b 925 {
8de307e0
AS
926 *optimizedp = 0;
927 *lvalp = not_lval;
928 *addrp = 0;
929 *realnump = -1;
930 if (valuep)
c906108c 931 {
8de307e0
AS
932 /* Store the value. */
933 store_unsigned_integer (valuep, 4, cache->saved_sp);
89c3b6d3 934 }
8de307e0
AS
935 return;
936 }
937
938 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
939 {
940 *optimizedp = 0;
941 *lvalp = lval_memory;
942 *addrp = cache->saved_regs[regnum];
943 *realnump = -1;
944 if (valuep)
89c3b6d3 945 {
8de307e0
AS
946 /* Read the value in from memory. */
947 read_memory (*addrp, valuep,
c984b7ff 948 register_size (get_frame_arch (next_frame), regnum));
89c3b6d3 949 }
8de307e0 950 return;
c906108c 951 }
8de307e0 952
00b25ff3
AC
953 *optimizedp = 0;
954 *lvalp = lval_register;
955 *addrp = 0;
956 *realnump = regnum;
957 if (valuep)
958 frame_unwind_register (next_frame, (*realnump), valuep);
8de307e0
AS
959}
960
961static const struct frame_unwind m68k_frame_unwind =
962{
963 NORMAL_FRAME,
964 m68k_frame_this_id,
965 m68k_frame_prev_register
966};
967
968static const struct frame_unwind *
336d1bba 969m68k_frame_sniffer (struct frame_info *next_frame)
8de307e0
AS
970{
971 return &m68k_frame_unwind;
972}
973\f
8de307e0
AS
974static CORE_ADDR
975m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
976{
977 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
978
979 return cache->base;
980}
981
982static const struct frame_base m68k_frame_base =
983{
984 &m68k_frame_unwind,
985 m68k_frame_base_address,
986 m68k_frame_base_address,
987 m68k_frame_base_address
988};
989
990static struct frame_id
991m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
992{
f5cf7aa1 993 gdb_byte buf[4];
8de307e0 994 CORE_ADDR fp;
c906108c 995
8de307e0
AS
996 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
997 fp = extract_unsigned_integer (buf, 4);
c906108c 998
8de307e0
AS
999 /* See the end of m68k_push_dummy_call. */
1000 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1001}
1002\f
c906108c 1003
c906108c
SS
1004/* Figure out where the longjmp will land. Slurp the args out of the stack.
1005 We expect the first arg to be a pointer to the jmp_buf structure from which
1006 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1007 This routine returns true on success. */
1008
c34d127c 1009static int
60ade65d 1010m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1011{
f5cf7aa1 1012 gdb_byte *buf;
c906108c 1013 CORE_ADDR sp, jb_addr;
c984b7ff 1014 struct gdbarch *gdbarch = get_frame_arch (frame);
60ade65d 1015 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
eb2e12d7
AS
1016
1017 if (tdep->jb_pc < 0)
1018 {
1019 internal_error (__FILE__, __LINE__,
e2e0b3e5 1020 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1021 return 0;
1022 }
c906108c 1023
c984b7ff
UW
1024 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1025 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 1026
b5d78d39 1027 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
c984b7ff 1028 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1029 return 0;
1030
c984b7ff 1031 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
819844ad 1032 / TARGET_CHAR_BIT);
c906108c 1033
eb2e12d7 1034 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
c984b7ff 1035 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1036 return 0;
1037
c984b7ff 1038 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
819844ad 1039 / TARGET_CHAR_BIT);
c906108c
SS
1040 return 1;
1041}
f595cb19
MK
1042\f
1043
1044/* System V Release 4 (SVR4). */
1045
1046void
1047m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1048{
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050
1051 /* SVR4 uses a different calling convention. */
1052 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1053
1054 /* SVR4 uses %a0 instead of %a1. */
1055 tdep->struct_value_regnum = M68K_A0_REGNUM;
1056}
1057\f
c906108c 1058
152d9db6
GS
1059/* Function: m68k_gdbarch_init
1060 Initializer function for the m68k gdbarch vector.
1061 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1062
1063static struct gdbarch *
1064m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1065{
1066 struct gdbarch_tdep *tdep = NULL;
1067 struct gdbarch *gdbarch;
8ed86d01
VP
1068 struct gdbarch_list *best_arch;
1069 struct tdesc_arch_data *tdesc_data = NULL;
1070 int i;
1071 enum m68k_flavour flavour = m68k_no_flavour;
1072 int has_fp = 1;
1073 const struct floatformat **long_double_format = floatformats_m68881_ext;
1074
1075 /* Check any target description for validity. */
1076 if (tdesc_has_registers (info.target_desc))
1077 {
1078 const struct tdesc_feature *feature;
1079 int valid_p;
152d9db6 1080
8ed86d01
VP
1081 feature = tdesc_find_feature (info.target_desc,
1082 "org.gnu.gdb.m68k.core");
1083 if (feature != NULL)
1084 /* Do nothing. */
1085 ;
1086
1087 if (feature == NULL)
1088 {
1089 feature = tdesc_find_feature (info.target_desc,
1090 "org.gnu.gdb.coldfire.core");
1091 if (feature != NULL)
1092 flavour = m68k_coldfire_flavour;
1093 }
1094
1095 if (feature == NULL)
1096 {
1097 feature = tdesc_find_feature (info.target_desc,
1098 "org.gnu.gdb.fido.core");
1099 if (feature != NULL)
1100 flavour = m68k_fido_flavour;
1101 }
1102
1103 if (feature == NULL)
1104 return NULL;
1105
1106 tdesc_data = tdesc_data_alloc ();
1107
1108 valid_p = 1;
1109 for (i = 0; i <= M68K_PC_REGNUM; i++)
1110 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1111 m68k_register_names[i]);
1112
1113 if (!valid_p)
1114 {
1115 tdesc_data_cleanup (tdesc_data);
1116 return NULL;
1117 }
1118
1119 feature = tdesc_find_feature (info.target_desc,
1120 "org.gnu.gdb.coldfire.fp");
1121 if (feature != NULL)
1122 {
1123 valid_p = 1;
1124 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1125 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1126 m68k_register_names[i]);
1127 if (!valid_p)
1128 {
1129 tdesc_data_cleanup (tdesc_data);
1130 return NULL;
1131 }
1132 }
1133 else
1134 has_fp = 0;
1135 }
1136
1137 /* The mechanism for returning floating values from function
1138 and the type of long double depend on whether we're
1139 on ColdFire or standard m68k. */
1140
4ed77933 1141 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1142 {
1143 const bfd_arch_info_type *coldfire_arch =
1144 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1145
1146 if (coldfire_arch
4ed77933
AS
1147 && ((*info.bfd_arch_info->compatible)
1148 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1149 flavour = m68k_coldfire_flavour;
1150 }
1151
1152 /* If there is already a candidate, use it. */
1153 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1154 best_arch != NULL;
1155 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1156 {
1157 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1158 continue;
1159
1160 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1161 continue;
1162
1163 break;
1164 }
152d9db6 1165
eb2e12d7
AS
1166 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1167 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1168 tdep->fpregs_present = has_fp;
1169 tdep->flavour = flavour;
152d9db6 1170
8ed86d01
VP
1171 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1172 long_double_format = floatformats_ieee_double;
1173 set_gdbarch_long_double_format (gdbarch, long_double_format);
1174 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1175
5d3ed2e3 1176 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1177 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3
GS
1178
1179 /* Stack grows down. */
1180 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1181 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1182
1183 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1184 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1185 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1186
6300c360 1187 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6
NS
1188 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1189 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1190
8de307e0 1191 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1192 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1193 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1194 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1195 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1196 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1197 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
1198 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1199 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1200 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1201
8ed86d01
VP
1202 if (has_fp)
1203 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1204
1205 /* Try to figure out if the arch uses floating registers to return
1206 floating point values from functions. */
1207 if (has_fp)
1208 {
1209 /* On ColdFire, floating point values are returned in D0. */
1210 if (flavour == m68k_coldfire_flavour)
1211 tdep->float_return = 0;
1212 else
1213 tdep->float_return = 1;
1214 }
1215 else
1216 {
1217 /* No floating registers, so can't use them for returning values. */
1218 tdep->float_return = 0;
1219 }
1220
1221 /* Function call & return */
8de307e0 1222 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1223 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1224
8ed86d01 1225
650fcc91
AS
1226 /* Disassembler. */
1227 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1228
eb2e12d7
AS
1229#if defined JB_PC && defined JB_ELEMENT_SIZE
1230 tdep->jb_pc = JB_PC;
1231 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1232#else
1233 tdep->jb_pc = -1;
1234#endif
f595cb19 1235 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1236 tdep->struct_return = reg_struct_return;
8de307e0
AS
1237
1238 /* Frame unwinder. */
1239 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1240 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1241
1242 /* Hook in the DWARF CFI frame unwinder. */
1243 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1244
8de307e0 1245 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1246
55809acb
AS
1247 /* Hook in ABI-specific overrides, if they have been registered. */
1248 gdbarch_init_osabi (info, gdbarch);
1249
eb2e12d7
AS
1250 /* Now we have tuned the configuration, set a few final things,
1251 based on what the OS ABI has told us. */
1252
1253 if (tdep->jb_pc >= 0)
1254 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1255
336d1bba 1256 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
8de307e0 1257
8ed86d01 1258 if (tdesc_data)
7cc46491 1259 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1260
152d9db6
GS
1261 return gdbarch;
1262}
1263
1264
1265static void
c984b7ff 1266m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1267{
c984b7ff 1268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1269
eb2e12d7
AS
1270 if (tdep == NULL)
1271 return;
152d9db6 1272}
2acceee2 1273
a78f21af
AC
1274extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1275
c906108c 1276void
fba45db2 1277_initialize_m68k_tdep (void)
c906108c 1278{
152d9db6 1279 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
4713453b
AS
1280
1281 /* Initialize the m68k-specific register types. */
1282 m68k_init_types ();
c906108c 1283}
This page took 0.749626 seconds and 4 git commands to generate.