[gdb/testsuite] Fix gdb.base/coredump-filter-build-id.exp with older eu-unstrip
[deliverable/binutils-gdb.git] / gdb / macrotab.c
CommitLineData
ec2bcbe7 1/* C preprocessor macro tables for GDB.
3666a048 2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
ec2bcbe7
JB
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ec2bcbe7
JB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ec2bcbe7
JB
19
20#include "defs.h"
04ea0df1 21#include "gdb_obstack.h"
ec2bcbe7 22#include "splay-tree.h"
0ba1096a 23#include "filenames.h"
ec2bcbe7
JB
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "macrotab.h"
ec2bcbe7
JB
28#include "bcache.h"
29#include "complaints.h"
abc9d0dc 30#include "macroexp.h"
ec2bcbe7
JB
31
32\f
33/* The macro table structure. */
34
35struct macro_table
36{
37 /* The obstack this table's data should be allocated in, or zero if
38 we should use xmalloc. */
39 struct obstack *obstack;
40
41 /* The bcache we should use to hold macro names, argument names, and
42 definitions, or zero if we should use xmalloc. */
dfb65191 43 gdb::bcache *bcache;
ec2bcbe7
JB
44
45 /* The main source file for this compilation unit --- the one whose
46 name was given to the compiler. This is the root of the
47 #inclusion tree; everything else is #included from here. */
48 struct macro_source_file *main_source;
49
43f3e411
DE
50 /* Backlink to containing compilation unit, or NULL if there isn't one. */
51 struct compunit_symtab *compunit_symtab;
233d95b5 52
d7d9f01e
TT
53 /* True if macros in this table can be redefined without issuing an
54 error. */
55 int redef_ok;
56
ec2bcbe7
JB
57 /* The table of macro definitions. This is a splay tree (an ordered
58 binary tree that stays balanced, effectively), sorted by macro
59 name. Where a macro gets defined more than once (presumably with
60 an #undefinition in between), we sort the definitions by the
61 order they would appear in the preprocessor's output. That is,
62 if `a.c' #includes `m.h' and then #includes `n.h', and both
63 header files #define X (with an #undef somewhere in between),
64 then the definition from `m.h' appears in our splay tree before
65 the one from `n.h'.
66
67 The splay tree's keys are `struct macro_key' pointers;
68 the values are `struct macro_definition' pointers.
69
70 The splay tree, its nodes, and the keys and values are allocated
71 in obstack, if it's non-zero, or with xmalloc otherwise. The
72 macro names, argument names, argument name arrays, and definition
73 strings are all allocated in bcache, if non-zero, or with xmalloc
74 otherwise. */
75 splay_tree definitions;
76};
77
78
79\f
80/* Allocation and freeing functions. */
81
82/* Allocate SIZE bytes of memory appropriately for the macro table T.
83 This just checks whether T has an obstack, or whether its pieces
84 should be allocated with xmalloc. */
85static void *
86macro_alloc (int size, struct macro_table *t)
87{
88 if (t->obstack)
89 return obstack_alloc (t->obstack, size);
90 else
91 return xmalloc (size);
92}
93
94
95static void
96macro_free (void *object, struct macro_table *t)
97{
32623386
JB
98 if (t->obstack)
99 /* There are cases where we need to remove entries from a macro
100 table, even when reading debugging information. This should be
101 rare, and there's no easy way to free arbitrary data from an
102 obstack, so we just leak it. */
103 ;
104 else
105 xfree (object);
ec2bcbe7
JB
106}
107
108
109/* If the macro table T has a bcache, then cache the LEN bytes at ADDR
110 there, and return the cached copy. Otherwise, just xmalloc a copy
111 of the bytes, and return a pointer to that. */
112static const void *
113macro_bcache (struct macro_table *t, const void *addr, int len)
114{
115 if (t->bcache)
25629dfd 116 return t->bcache->insert (addr, len);
ec2bcbe7
JB
117 else
118 {
119 void *copy = xmalloc (len);
b8d56208 120
ec2bcbe7
JB
121 memcpy (copy, addr, len);
122 return copy;
123 }
124}
125
126
127/* If the macro table T has a bcache, cache the null-terminated string
128 S there, and return a pointer to the cached copy. Otherwise,
129 xmalloc a copy and return that. */
130static const char *
131macro_bcache_str (struct macro_table *t, const char *s)
132{
19ba03f4 133 return (const char *) macro_bcache (t, s, strlen (s) + 1);
ec2bcbe7
JB
134}
135
136
137/* Free a possibly bcached object OBJ. That is, if the macro table T
32623386 138 has a bcache, do nothing; otherwise, xfree OBJ. */
b9362cc7 139static void
ec2bcbe7
JB
140macro_bcache_free (struct macro_table *t, void *obj)
141{
32623386
JB
142 if (t->bcache)
143 /* There are cases where we need to remove entries from a macro
144 table, even when reading debugging information. This should be
145 rare, and there's no easy way to free data from a bcache, so we
146 just leak it. */
147 ;
148 else
149 xfree (obj);
ec2bcbe7
JB
150}
151
152
153\f
154/* Macro tree keys, w/their comparison, allocation, and freeing functions. */
155
156/* A key in the splay tree. */
157struct macro_key
158{
159 /* The table we're in. We only need this in order to free it, since
160 the splay tree library's key and value freeing functions require
161 that the key or value contain all the information needed to free
162 themselves. */
163 struct macro_table *table;
164
165 /* The name of the macro. This is in the table's bcache, if it has
025bb325 166 one. */
ec2bcbe7
JB
167 const char *name;
168
169 /* The source file and line number where the definition's scope
170 begins. This is also the line of the definition itself. */
171 struct macro_source_file *start_file;
172 int start_line;
173
174 /* The first source file and line after the definition's scope.
175 (That is, the scope does not include this endpoint.) If end_file
176 is zero, then the definition extends to the end of the
177 compilation unit. */
178 struct macro_source_file *end_file;
179 int end_line;
180};
181
182
183/* Return the #inclusion depth of the source file FILE. This is the
184 number of #inclusions it took to reach this file. For the main
185 source file, the #inclusion depth is zero; for a file it #includes
186 directly, the depth would be one; and so on. */
187static int
188inclusion_depth (struct macro_source_file *file)
189{
190 int depth;
191
192 for (depth = 0; file->included_by; depth++)
193 file = file->included_by;
194
195 return depth;
196}
197
198
199/* Compare two source locations (from the same compilation unit).
200 This is part of the comparison function for the tree of
201 definitions.
202
203 LINE1 and LINE2 are line numbers in the source files FILE1 and
204 FILE2. Return a value:
205 - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
206 - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
207 - zero if they are equal.
208
209 When the two locations are in different source files --- perhaps
210 one is in a header, while another is in the main source file --- we
211 order them by where they would appear in the fully pre-processed
212 sources, where all the #included files have been substituted into
213 their places. */
214static int
215compare_locations (struct macro_source_file *file1, int line1,
dda83cd7 216 struct macro_source_file *file2, int line2)
ec2bcbe7
JB
217{
218 /* We want to treat positions in an #included file as coming *after*
219 the line containing the #include, but *before* the line after the
220 include. As we walk up the #inclusion tree toward the main
221 source file, we update fileX and lineX as we go; includedX
222 indicates whether the original position was from the #included
223 file. */
224 int included1 = 0;
225 int included2 = 0;
226
227 /* If a file is zero, that means "end of compilation unit." Handle
228 that specially. */
229 if (! file1)
230 {
231 if (! file2)
dda83cd7 232 return 0;
ec2bcbe7 233 else
dda83cd7 234 return 1;
ec2bcbe7
JB
235 }
236 else if (! file2)
237 return -1;
238
239 /* If the two files are not the same, find their common ancestor in
240 the #inclusion tree. */
241 if (file1 != file2)
242 {
243 /* If one file is deeper than the other, walk up the #inclusion
dda83cd7
SM
244 chain until the two files are at least at the same *depth*.
245 Then, walk up both files in synchrony until they're the same
246 file. That file is the common ancestor. */
ec2bcbe7
JB
247 int depth1 = inclusion_depth (file1);
248 int depth2 = inclusion_depth (file2);
249
250 /* Only one of these while loops will ever execute in any given
dda83cd7 251 case. */
ec2bcbe7 252 while (depth1 > depth2)
dda83cd7
SM
253 {
254 line1 = file1->included_at_line;
255 file1 = file1->included_by;
256 included1 = 1;
257 depth1--;
258 }
ec2bcbe7 259 while (depth2 > depth1)
dda83cd7
SM
260 {
261 line2 = file2->included_at_line;
262 file2 = file2->included_by;
263 included2 = 1;
264 depth2--;
265 }
ec2bcbe7
JB
266
267 /* Now both file1 and file2 are at the same depth. Walk toward
dda83cd7 268 the root of the tree until we find where the branches meet. */
ec2bcbe7 269 while (file1 != file2)
dda83cd7
SM
270 {
271 line1 = file1->included_at_line;
272 file1 = file1->included_by;
273 /* At this point, we know that the case the includedX flags
274 are trying to deal with won't come up, but we'll just
275 maintain them anyway. */
276 included1 = 1;
277
278 line2 = file2->included_at_line;
279 file2 = file2->included_by;
280 included2 = 1;
281
282 /* Sanity check. If file1 and file2 are really from the
283 same compilation unit, then they should both be part of
284 the same tree, and this shouldn't happen. */
285 gdb_assert (file1 && file2);
286 }
ec2bcbe7
JB
287 }
288
289 /* Now we've got two line numbers in the same file. */
290 if (line1 == line2)
291 {
292 /* They can't both be from #included files. Then we shouldn't
dda83cd7 293 have walked up this far. */
ec2bcbe7
JB
294 gdb_assert (! included1 || ! included2);
295
296 /* Any #included position comes after a non-#included position
dda83cd7 297 with the same line number in the #including file. */
ec2bcbe7 298 if (included1)
dda83cd7 299 return 1;
ec2bcbe7 300 else if (included2)
dda83cd7 301 return -1;
ec2bcbe7 302 else
dda83cd7 303 return 0;
ec2bcbe7
JB
304 }
305 else
306 return line1 - line2;
307}
308
309
310/* Compare a macro key KEY against NAME, the source file FILE, and
311 line number LINE.
312
313 Sort definitions by name; for two definitions with the same name,
314 place the one whose definition comes earlier before the one whose
315 definition comes later.
316
317 Return -1, 0, or 1 if key comes before, is identical to, or comes
318 after NAME, FILE, and LINE. */
319static int
320key_compare (struct macro_key *key,
dda83cd7 321 const char *name, struct macro_source_file *file, int line)
ec2bcbe7
JB
322{
323 int names = strcmp (key->name, name);
b8d56208 324
ec2bcbe7
JB
325 if (names)
326 return names;
327
328 return compare_locations (key->start_file, key->start_line,
dda83cd7 329 file, line);
ec2bcbe7
JB
330}
331
332
333/* The macro tree comparison function, typed for the splay tree
334 library's happiness. */
335static int
336macro_tree_compare (splay_tree_key untyped_key1,
dda83cd7 337 splay_tree_key untyped_key2)
ec2bcbe7
JB
338{
339 struct macro_key *key1 = (struct macro_key *) untyped_key1;
340 struct macro_key *key2 = (struct macro_key *) untyped_key2;
341
342 return key_compare (key1, key2->name, key2->start_file, key2->start_line);
343}
344
345
346/* Construct a new macro key node for a macro in table T whose name is
347 NAME, and whose scope starts at LINE in FILE; register the name in
348 the bcache. */
349static struct macro_key *
350new_macro_key (struct macro_table *t,
dda83cd7
SM
351 const char *name,
352 struct macro_source_file *file,
353 int line)
ec2bcbe7 354{
224c3ddb 355 struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t);
ec2bcbe7
JB
356
357 memset (k, 0, sizeof (*k));
358 k->table = t;
359 k->name = macro_bcache_str (t, name);
360 k->start_file = file;
361 k->start_line = line;
362 k->end_file = 0;
363
364 return k;
365}
366
367
368static void
369macro_tree_delete_key (void *untyped_key)
370{
371 struct macro_key *key = (struct macro_key *) untyped_key;
372
373 macro_bcache_free (key->table, (char *) key->name);
374 macro_free (key, key->table);
375}
376
377
378\f
379/* Building and querying the tree of #included files. */
380
381
382/* Allocate and initialize a new source file structure. */
383static struct macro_source_file *
384new_source_file (struct macro_table *t,
dda83cd7 385 const char *filename)
ec2bcbe7
JB
386{
387 /* Get space for the source file structure itself. */
224c3ddb
SM
388 struct macro_source_file *f
389 = (struct macro_source_file *) macro_alloc (sizeof (*f), t);
ec2bcbe7
JB
390
391 memset (f, 0, sizeof (*f));
392 f->table = t;
393 f->filename = macro_bcache_str (t, filename);
394 f->includes = 0;
395
396 return f;
397}
398
399
400/* Free a source file, and all the source files it #included. */
401static void
402free_macro_source_file (struct macro_source_file *src)
403{
404 struct macro_source_file *child, *next_child;
405
406 /* Free this file's children. */
407 for (child = src->includes; child; child = next_child)
408 {
409 next_child = child->next_included;
410 free_macro_source_file (child);
411 }
412
413 macro_bcache_free (src->table, (char *) src->filename);
414 macro_free (src, src->table);
415}
416
417
418struct macro_source_file *
419macro_set_main (struct macro_table *t,
dda83cd7 420 const char *filename)
ec2bcbe7
JB
421{
422 /* You can't change a table's main source file. What would that do
423 to the tree? */
424 gdb_assert (! t->main_source);
425
426 t->main_source = new_source_file (t, filename);
427
428 return t->main_source;
429}
430
431
432struct macro_source_file *
433macro_main (struct macro_table *t)
434{
435 gdb_assert (t->main_source);
436
437 return t->main_source;
438}
439
440
d7d9f01e
TT
441void
442macro_allow_redefinitions (struct macro_table *t)
443{
444 gdb_assert (! t->obstack);
445 t->redef_ok = 1;
446}
447
448
ec2bcbe7
JB
449struct macro_source_file *
450macro_include (struct macro_source_file *source,
dda83cd7
SM
451 int line,
452 const char *included)
ec2bcbe7 453{
fe978cb0 454 struct macro_source_file *newobj;
ec2bcbe7
JB
455 struct macro_source_file **link;
456
457 /* Find the right position in SOURCE's `includes' list for the new
1708f284
JB
458 file. Skip inclusions at earlier lines, until we find one at the
459 same line or later --- or until the end of the list. */
ec2bcbe7 460 for (link = &source->includes;
1708f284 461 *link && (*link)->included_at_line < line;
ec2bcbe7
JB
462 link = &(*link)->next_included)
463 ;
464
465 /* Did we find another file already #included at the same line as
466 the new one? */
467 if (*link && line == (*link)->included_at_line)
468 {
469 /* This means the compiler is emitting bogus debug info. (GCC
dda83cd7
SM
470 circa March 2002 did this.) It also means that the splay
471 tree ordering function, macro_tree_compare, will abort,
472 because it can't tell which #inclusion came first. But GDB
473 should tolerate bad debug info. So:
ec2bcbe7 474
dda83cd7 475 First, squawk. */
233d95b5 476
9409233b
TT
477 std::string link_fullname = macro_source_fullname (*link);
478 std::string source_fullname = macro_source_fullname (source);
b98664d3 479 complaint (_("both `%s' and `%s' allegedly #included at %s:%d"),
9409233b
TT
480 included, link_fullname.c_str (), source_fullname.c_str (),
481 line);
ec2bcbe7
JB
482
483 /* Now, choose a new, unoccupied line number for this
dda83cd7 484 #inclusion, after the alleged #inclusion line. */
ec2bcbe7 485 while (*link && line == (*link)->included_at_line)
dda83cd7
SM
486 {
487 /* This line number is taken, so try the next line. */
488 line++;
489 link = &(*link)->next_included;
490 }
ec2bcbe7
JB
491 }
492
493 /* At this point, we know that LINE is an unused line number, and
494 *LINK points to the entry an #inclusion at that line should
495 precede. */
fe978cb0
PA
496 newobj = new_source_file (source->table, included);
497 newobj->included_by = source;
498 newobj->included_at_line = line;
499 newobj->next_included = *link;
500 *link = newobj;
ec2bcbe7 501
fe978cb0 502 return newobj;
ec2bcbe7
JB
503}
504
505
506struct macro_source_file *
507macro_lookup_inclusion (struct macro_source_file *source, const char *name)
508{
509 /* Is SOURCE itself named NAME? */
0ba1096a 510 if (filename_cmp (name, source->filename) == 0)
ec2bcbe7
JB
511 return source;
512
ec2bcbe7
JB
513 /* It's not us. Try all our children, and return the lowest. */
514 {
515 struct macro_source_file *child;
a86bc61c
JB
516 struct macro_source_file *best = NULL;
517 int best_depth = 0;
ec2bcbe7
JB
518
519 for (child = source->includes; child; child = child->next_included)
520 {
dda83cd7
SM
521 struct macro_source_file *result
522 = macro_lookup_inclusion (child, name);
523
524 if (result)
525 {
526 int result_depth = inclusion_depth (result);
527
528 if (! best || result_depth < best_depth)
529 {
530 best = result;
531 best_depth = result_depth;
532 }
533 }
ec2bcbe7
JB
534 }
535
536 return best;
537 }
538}
539
540
541\f
542/* Registering and looking up macro definitions. */
543
544
545/* Construct a definition for a macro in table T. Cache all strings,
546 and the macro_definition structure itself, in T's bcache. */
547static struct macro_definition *
548new_macro_definition (struct macro_table *t,
dda83cd7
SM
549 enum macro_kind kind,
550 int argc, const char **argv,
551 const char *replacement)
ec2bcbe7 552{
224c3ddb
SM
553 struct macro_definition *d
554 = (struct macro_definition *) macro_alloc (sizeof (*d), t);
ec2bcbe7
JB
555
556 memset (d, 0, sizeof (*d));
557 d->table = t;
558 d->kind = kind;
559 d->replacement = macro_bcache_str (t, replacement);
abc9d0dc 560 d->argc = argc;
ec2bcbe7
JB
561
562 if (kind == macro_function_like)
563 {
564 int i;
565 const char **cached_argv;
566 int cached_argv_size = argc * sizeof (*cached_argv);
567
568 /* Bcache all the arguments. */
224c3ddb 569 cached_argv = (const char **) alloca (cached_argv_size);
ec2bcbe7 570 for (i = 0; i < argc; i++)
dda83cd7 571 cached_argv[i] = macro_bcache_str (t, argv[i]);
ec2bcbe7
JB
572
573 /* Now bcache the array of argument pointers itself. */
19ba03f4
SM
574 d->argv = ((const char * const *)
575 macro_bcache (t, cached_argv, cached_argv_size));
ec2bcbe7
JB
576 }
577
578 /* We don't bcache the entire definition structure because it's got
579 a pointer to the macro table in it; since each compilation unit
580 has its own macro table, you'd only get bcache hits for identical
581 definitions within a compilation unit, which seems unlikely.
582
583 "So, why do macro definitions have pointers to their macro tables
584 at all?" Well, when the splay tree library wants to free a
585 node's value, it calls the value freeing function with nothing
586 but the value itself. It makes the (apparently reasonable)
587 assumption that the value carries enough information to free
588 itself. But not all macro tables have bcaches, so not all macro
589 definitions would be bcached. There's no way to tell whether a
590 given definition is bcached without knowing which table the
591 definition belongs to. ... blah. The thing's only sixteen
592 bytes anyway, and we can still bcache the name, args, and
593 definition, so we just don't bother bcaching the definition
594 structure itself. */
595 return d;
596}
597
598
599/* Free a macro definition. */
600static void
601macro_tree_delete_value (void *untyped_definition)
602{
603 struct macro_definition *d = (struct macro_definition *) untyped_definition;
604 struct macro_table *t = d->table;
605
606 if (d->kind == macro_function_like)
607 {
608 int i;
609
610 for (i = 0; i < d->argc; i++)
dda83cd7 611 macro_bcache_free (t, (char *) d->argv[i]);
ec2bcbe7
JB
612 macro_bcache_free (t, (char **) d->argv);
613 }
614
615 macro_bcache_free (t, (char *) d->replacement);
616 macro_free (d, t);
617}
618
619
620/* Find the splay tree node for the definition of NAME at LINE in
621 SOURCE, or zero if there is none. */
622static splay_tree_node
623find_definition (const char *name,
dda83cd7
SM
624 struct macro_source_file *file,
625 int line)
ec2bcbe7
JB
626{
627 struct macro_table *t = file->table;
628 splay_tree_node n;
629
630 /* Construct a macro_key object, just for the query. */
631 struct macro_key query;
632
633 query.name = name;
634 query.start_file = file;
635 query.start_line = line;
a86bc61c 636 query.end_file = NULL;
ec2bcbe7
JB
637
638 n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
639 if (! n)
640 {
641 /* It's okay for us to do two queries like this: the real work
dda83cd7
SM
642 of the searching is done when we splay, and splaying the tree
643 a second time at the same key is a constant time operation.
644 If this still bugs you, you could always just extend the
645 splay tree library with a predecessor-or-equal operation, and
646 use that. */
ec2bcbe7 647 splay_tree_node pred = splay_tree_predecessor (t->definitions,
dda83cd7 648 (splay_tree_key) &query);
ec2bcbe7
JB
649
650 if (pred)
dda83cd7
SM
651 {
652 /* Make sure this predecessor actually has the right name.
653 We just want to search within a given name's definitions. */
654 struct macro_key *found = (struct macro_key *) pred->key;
655
656 if (strcmp (found->name, name) == 0)
657 n = pred;
658 }
ec2bcbe7
JB
659 }
660
661 if (n)
662 {
663 struct macro_key *found = (struct macro_key *) n->key;
664
665 /* Okay, so this definition has the right name, and its scope
dda83cd7
SM
666 begins before the given source location. But does its scope
667 end after the given source location? */
ec2bcbe7 668 if (compare_locations (file, line, found->end_file, found->end_line) < 0)
dda83cd7 669 return n;
ec2bcbe7 670 else
dda83cd7 671 return 0;
ec2bcbe7
JB
672 }
673 else
674 return 0;
675}
676
677
0a3d0425
JB
678/* If NAME already has a definition in scope at LINE in SOURCE, return
679 the key. If the old definition is different from the definition
680 given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
681 Otherwise, return zero. (ARGC and ARGV are meaningless unless KIND
682 is `macro_function_like'.) */
ec2bcbe7
JB
683static struct macro_key *
684check_for_redefinition (struct macro_source_file *source, int line,
dda83cd7
SM
685 const char *name, enum macro_kind kind,
686 int argc, const char **argv,
687 const char *replacement)
ec2bcbe7
JB
688{
689 splay_tree_node n = find_definition (name, source, line);
690
ec2bcbe7
JB
691 if (n)
692 {
693 struct macro_key *found_key = (struct macro_key *) n->key;
0a3d0425 694 struct macro_definition *found_def
dda83cd7 695 = (struct macro_definition *) n->value;
0a3d0425
JB
696 int same = 1;
697
698 /* Is this definition the same as the existing one?
dda83cd7
SM
699 According to the standard, this comparison needs to be done
700 on lists of tokens, not byte-by-byte, as we do here. But
701 that's too hard for us at the moment, and comparing
702 byte-by-byte will only yield false negatives (i.e., extra
703 warning messages), not false positives (i.e., unnoticed
704 definition changes). */
0a3d0425 705 if (kind != found_def->kind)
dda83cd7 706 same = 0;
0a3d0425 707 else if (strcmp (replacement, found_def->replacement))
dda83cd7 708 same = 0;
0a3d0425 709 else if (kind == macro_function_like)
dda83cd7
SM
710 {
711 if (argc != found_def->argc)
712 same = 0;
713 else
714 {
715 int i;
716
717 for (i = 0; i < argc; i++)
718 if (strcmp (argv[i], found_def->argv[i]))
719 same = 0;
720 }
721 }
0a3d0425
JB
722
723 if (! same)
dda83cd7 724 {
9409233b
TT
725 std::string source_fullname = macro_source_fullname (source);
726 std::string found_key_fullname
727 = macro_source_fullname (found_key->start_file);
b98664d3 728 complaint (_("macro `%s' redefined at %s:%d; "
3e43a32a 729 "original definition at %s:%d"),
9409233b
TT
730 name, source_fullname.c_str (), line,
731 found_key_fullname.c_str (),
233d95b5 732 found_key->start_line);
dda83cd7 733 }
0a3d0425 734
ec2bcbe7
JB
735 return found_key;
736 }
737 else
738 return 0;
739}
740
ab9268d2
PW
741/* A helper function to define a new object-like or function-like macro
742 according to KIND. When KIND is macro_object_like,
743 the macro_special_kind must be provided as ARGC, and ARGV must be NULL.
744 When KIND is macro_function_like, ARGC and ARGV are giving the function
745 arguments. */
ec2bcbe7 746
abc9d0dc 747static void
ab9268d2 748macro_define_internal (struct macro_source_file *source, int line,
dda83cd7 749 const char *name, enum macro_kind kind,
ab9268d2 750 int argc, const char **argv,
dda83cd7 751 const char *replacement)
ec2bcbe7
JB
752{
753 struct macro_table *t = source->table;
d7d9f01e 754 struct macro_key *k = NULL;
ec2bcbe7
JB
755 struct macro_definition *d;
756
d7d9f01e 757 if (! t->redef_ok)
ab9268d2
PW
758 k = check_for_redefinition (source, line,
759 name, kind,
760 argc, argv,
d7d9f01e 761 replacement);
ec2bcbe7
JB
762
763 /* If we're redefining a symbol, and the existing key would be
764 identical to our new key, then the splay_tree_insert function
765 will try to delete the old definition. When the definition is
766 living on an obstack, this isn't a happy thing.
767
768 Since this only happens in the presence of questionable debug
769 info, we just ignore all definitions after the first. The only
770 case I know of where this arises is in GCC's output for
771 predefined macros, and all the definitions are the same in that
772 case. */
773 if (k && ! key_compare (k, name, source, line))
774 return;
775
776 k = new_macro_key (t, name, source, line);
ab9268d2 777 d = new_macro_definition (t, kind, argc, argv, replacement);
ec2bcbe7
JB
778 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
779}
780
ab9268d2
PW
781/* A helper function to define a new object-like macro. */
782
783static void
784macro_define_object_internal (struct macro_source_file *source, int line,
785 const char *name, const char *replacement,
786 enum macro_special_kind special_kind)
787{
788 macro_define_internal (source, line,
789 name, macro_object_like,
790 special_kind, NULL,
791 replacement);
792}
793
abc9d0dc
TT
794void
795macro_define_object (struct macro_source_file *source, int line,
796 const char *name, const char *replacement)
797{
798 macro_define_object_internal (source, line, name, replacement,
799 macro_ordinary);
800}
801
802/* See macrotab.h. */
803
804void
805macro_define_special (struct macro_table *table)
806{
807 macro_define_object_internal (table->main_source, -1, "__FILE__", "",
808 macro_FILE);
809 macro_define_object_internal (table->main_source, -1, "__LINE__", "",
810 macro_LINE);
811}
ec2bcbe7
JB
812
813void
814macro_define_function (struct macro_source_file *source, int line,
dda83cd7
SM
815 const char *name, int argc, const char **argv,
816 const char *replacement)
ec2bcbe7 817{
ab9268d2
PW
818 macro_define_internal (source, line,
819 name, macro_function_like,
820 argc, argv,
821 replacement);
ec2bcbe7
JB
822}
823
ec2bcbe7
JB
824void
825macro_undef (struct macro_source_file *source, int line,
dda83cd7 826 const char *name)
ec2bcbe7
JB
827{
828 splay_tree_node n = find_definition (name, source, line);
829
830 if (n)
831 {
ec2bcbe7
JB
832 struct macro_key *key = (struct macro_key *) n->key;
833
32623386 834 /* If we're removing a definition at exactly the same point that
dda83cd7
SM
835 we defined it, then just delete the entry altogether. GCC
836 4.1.2 will generate DWARF that says to do this if you pass it
837 arguments like '-DFOO -UFOO -DFOO=2'. */
32623386 838 if (source == key->start_file
dda83cd7
SM
839 && line == key->start_line)
840 splay_tree_remove (source->table->definitions, n->key);
32623386
JB
841
842 else
dda83cd7
SM
843 {
844 /* This function is the only place a macro's end-of-scope
845 location gets set to anything other than "end of the
846 compilation unit" (i.e., end_file is zero). So if this
847 macro already has its end-of-scope set, then we're
848 probably seeing a second #undefinition for the same
849 #definition. */
850 if (key->end_file)
851 {
9409233b
TT
852 std::string source_fullname = macro_source_fullname (source);
853 std::string key_fullname = macro_source_fullname (key->end_file);
dda83cd7
SM
854 complaint (_("macro '%s' is #undefined twice,"
855 " at %s:%d and %s:%d"),
9409233b
TT
856 name, source_fullname.c_str (), line,
857 key_fullname.c_str (),
233d95b5 858 key->end_line);
dda83cd7 859 }
ec2bcbe7 860
dda83cd7
SM
861 /* Whether or not we've seen a prior #undefinition, wipe out
862 the old ending point, and make this the ending point. */
863 key->end_file = source;
864 key->end_line = line;
865 }
ec2bcbe7
JB
866 }
867 else
868 {
869 /* According to the ISO C standard, an #undef for a symbol that
dda83cd7
SM
870 has no macro definition in scope is ignored. So we should
871 ignore it too. */
ec2bcbe7 872#if 0
b98664d3 873 complaint (_("no definition for macro `%s' in scope to #undef at %s:%d"),
23136709 874 name, source->filename, line);
ec2bcbe7
JB
875#endif
876 }
877}
878
abc9d0dc
TT
879/* A helper function that rewrites the definition of a special macro,
880 when needed. */
881
882static struct macro_definition *
883fixup_definition (const char *filename, int line, struct macro_definition *def)
884{
a36158ec 885 static gdb::unique_xmalloc_ptr<char> saved_expansion;
abc9d0dc
TT
886
887 if (def->kind == macro_object_like)
888 {
889 if (def->argc == macro_FILE)
890 {
891 saved_expansion = macro_stringify (filename);
a36158ec 892 def->replacement = saved_expansion.get ();
abc9d0dc
TT
893 }
894 else if (def->argc == macro_LINE)
895 {
a36158ec
SM
896 saved_expansion.reset (xstrprintf ("%d", line));
897 def->replacement = saved_expansion.get ();
abc9d0dc
TT
898 }
899 }
900
901 return def;
902}
ec2bcbe7
JB
903
904struct macro_definition *
905macro_lookup_definition (struct macro_source_file *source,
dda83cd7 906 int line, const char *name)
ec2bcbe7
JB
907{
908 splay_tree_node n = find_definition (name, source, line);
909
910 if (n)
233d95b5 911 {
9409233b
TT
912 std::string source_fullname = macro_source_fullname (source);
913 return fixup_definition (source_fullname.c_str (), line,
914 (struct macro_definition *) n->value);
233d95b5 915 }
ec2bcbe7
JB
916 else
917 return 0;
918}
919
920
921struct macro_source_file *
922macro_definition_location (struct macro_source_file *source,
dda83cd7
SM
923 int line,
924 const char *name,
925 int *definition_line)
ec2bcbe7
JB
926{
927 splay_tree_node n = find_definition (name, source, line);
928
929 if (n)
930 {
931 struct macro_key *key = (struct macro_key *) n->key;
b8d56208 932
ec2bcbe7
JB
933 *definition_line = key->start_line;
934 return key->start_file;
935 }
936 else
937 return 0;
938}
939
940
9a044a89
TT
941/* The type for callback data for iterating the splay tree in
942 macro_for_each and macro_for_each_in_scope. Only the latter uses
943 the FILE and LINE fields. */
944struct macro_for_each_data
945{
14bc53a8 946 gdb::function_view<macro_callback_fn> fn;
9a044a89
TT
947 struct macro_source_file *file;
948 int line;
949};
950
d7d9f01e
TT
951/* Helper function for macro_for_each. */
952static int
9a044a89 953foreach_macro (splay_tree_node node, void *arg)
d7d9f01e 954{
9a044a89 955 struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
d7d9f01e 956 struct macro_key *key = (struct macro_key *) node->key;
233d95b5 957 struct macro_definition *def;
233d95b5 958
9409233b
TT
959 std::string key_fullname = macro_source_fullname (key->start_file);
960 def = fixup_definition (key_fullname.c_str (), key->start_line,
233d95b5 961 (struct macro_definition *) node->value);
b8d56208 962
14bc53a8 963 datum->fn (key->name, def, key->start_file, key->start_line);
d7d9f01e
TT
964 return 0;
965}
966
967/* Call FN for every macro in TABLE. */
968void
14bc53a8
PA
969macro_for_each (struct macro_table *table,
970 gdb::function_view<macro_callback_fn> fn)
9a044a89
TT
971{
972 struct macro_for_each_data datum;
b8d56208 973
9a044a89 974 datum.fn = fn;
9a044a89
TT
975 datum.file = NULL;
976 datum.line = 0;
977 splay_tree_foreach (table->definitions, foreach_macro, &datum);
978}
979
980static int
981foreach_macro_in_scope (splay_tree_node node, void *info)
982{
983 struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
984 struct macro_key *key = (struct macro_key *) node->key;
233d95b5 985 struct macro_definition *def;
233d95b5 986
9409233b
TT
987 std::string datum_fullname = macro_source_fullname (datum->file);
988 def = fixup_definition (datum_fullname.c_str (), datum->line,
233d95b5 989 (struct macro_definition *) node->value);
9a044a89
TT
990
991 /* See if this macro is defined before the passed-in line, and
992 extends past that line. */
993 if (compare_locations (key->start_file, key->start_line,
994 datum->file, datum->line) < 0
995 && (!key->end_file
996 || compare_locations (key->end_file, key->end_line,
997 datum->file, datum->line) >= 0))
14bc53a8 998 datum->fn (key->name, def, key->start_file, key->start_line);
9a044a89
TT
999 return 0;
1000}
1001
1002/* Call FN for every macro is visible in SCOPE. */
1003void
1004macro_for_each_in_scope (struct macro_source_file *file, int line,
14bc53a8 1005 gdb::function_view<macro_callback_fn> fn)
d7d9f01e 1006{
9a044a89 1007 struct macro_for_each_data datum;
b8d56208 1008
9a044a89 1009 datum.fn = fn;
9a044a89
TT
1010 datum.file = file;
1011 datum.line = line;
1012 splay_tree_foreach (file->table->definitions,
1013 foreach_macro_in_scope, &datum);
d7d9f01e
TT
1014}
1015
1016
ec2bcbe7
JB
1017\f
1018/* Creating and freeing macro tables. */
1019
1020
1021struct macro_table *
dfb65191 1022new_macro_table (struct obstack *obstack, gdb::bcache *b,
43f3e411 1023 struct compunit_symtab *cust)
ec2bcbe7
JB
1024{
1025 struct macro_table *t;
1026
1027 /* First, get storage for the `struct macro_table' itself. */
1028 if (obstack)
8d749320 1029 t = XOBNEW (obstack, struct macro_table);
ec2bcbe7 1030 else
8d749320 1031 t = XNEW (struct macro_table);
ec2bcbe7
JB
1032
1033 memset (t, 0, sizeof (*t));
1034 t->obstack = obstack;
1035 t->bcache = b;
a86bc61c 1036 t->main_source = NULL;
43f3e411 1037 t->compunit_symtab = cust;
d7d9f01e 1038 t->redef_ok = 0;
ec2bcbe7 1039 t->definitions = (splay_tree_new_with_allocator
dda83cd7
SM
1040 (macro_tree_compare,
1041 ((splay_tree_delete_key_fn) macro_tree_delete_key),
1042 ((splay_tree_delete_value_fn) macro_tree_delete_value),
1043 ((splay_tree_allocate_fn) macro_alloc),
1044 ((splay_tree_deallocate_fn) macro_free),
1045 t));
ec2bcbe7
JB
1046
1047 return t;
1048}
1049
1050
1051void
1052free_macro_table (struct macro_table *table)
1053{
1054 /* Free the source file tree. */
1055 free_macro_source_file (table->main_source);
1056
1057 /* Free the table of macro definitions. */
1058 splay_tree_delete (table->definitions);
1059}
233d95b5
JK
1060
1061/* See macrotab.h for the comment. */
1062
9409233b 1063std::string
233d95b5
JK
1064macro_source_fullname (struct macro_source_file *file)
1065{
43f3e411
DE
1066 const char *comp_dir = NULL;
1067
1068 if (file->table->compunit_symtab != NULL)
1069 comp_dir = COMPUNIT_DIRNAME (file->table->compunit_symtab);
1070
1071 if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename))
9409233b 1072 return file->filename;
233d95b5 1073
9409233b 1074 return std::string (comp_dir) + SLASH_STRING + file->filename;
233d95b5 1075}
This page took 2.391531 seconds and 4 git commands to generate.