* configure.ac: Switch license to GPLv3.
[deliverable/binutils-gdb.git] / gdb / mep-tdep.c
CommitLineData
aeb43123
KB
1/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "gdb_string.h"
34#include "value.h"
35#include "inferior.h"
36#include "dis-asm.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "language.h"
40#include "arch-utils.h"
41#include "regcache.h"
42#include "remote.h"
43#include "floatformat.h"
44#include "sim-regno.h"
45#include "disasm.h"
46#include "trad-frame.h"
47#include "reggroups.h"
48#include "elf-bfd.h"
49#include "elf/mep.h"
50#include "prologue-value.h"
51#include "opcode/cgen-bitset.h"
52#include "infcall.h"
53
54#include "gdb_assert.h"
55
56/* Get the user's customized MeP coprocessor register names from
57 libopcodes. */
58#include "opcodes/mep-desc.h"
59#include "opcodes/mep-opc.h"
60
61\f
62/* The gdbarch_tdep structure. */
63
64/* A quick recap for GDB hackers not familiar with the whole Toshiba
65 Media Processor story:
66
67 The MeP media engine is a configureable processor: users can design
68 their own coprocessors, implement custom instructions, adjust cache
69 sizes, select optional standard facilities like add-and-saturate
70 instructions, and so on. Then, they can build custom versions of
71 the GNU toolchain to support their customized chips. The
72 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
73 tree, and a config file pointing to various files provided by the
74 user describing their customizations, and edits the source tree to
75 produce a compiler that can generate their custom instructions, an
76 assembler that can assemble them and recognize their custom
77 register names, and so on.
78
79 Furthermore, the user can actually specify several of these custom
80 configurations, called 'me_modules', and get a toolchain which can
81 produce code for any of them, given a compiler/assembler switch;
82 you say something like 'gcc -mconfig=mm_max' to generate code for
83 the me_module named 'mm_max'.
84
85 GDB, in particular, needs to:
86
87 - use the coprocessor control register names provided by the user
88 in their hardware description, in expressions, 'info register'
89 output, and disassembly,
90
91 - know the number, names, and types of the coprocessor's
92 general-purpose registers, adjust the 'info all-registers' output
93 accordingly, and print error messages if the user refers to one
94 that doesn't exist
95
96 - allow access to the control bus space only when the configuration
97 actually has a control bus, and recognize which regions of the
98 control bus space are actually populated,
99
100 - disassemble using the user's provided mnemonics for their custom
101 instructions, and
102
103 - recognize whether the $hi and $lo registers are present, and
104 allow access to them only when they are actually there.
105
106 There are three sources of information about what sort of me_module
107 we're actually dealing with:
108
109 - A MeP executable file indicates which me_module it was compiled
110 for, and libopcodes has tables describing each module. So, given
111 an executable file, we can find out about the processor it was
112 compiled for.
113
114 - There are SID command-line options to select a particular
115 me_module, overriding the one specified in the ELF file. SID
116 provides GDB with a fake read-only register, 'module', which
117 indicates which me_module GDB is communicating with an instance
118 of.
119
120 - There are SID command-line options to enable or disable certain
121 optional processor features, overriding the defaults for the
122 selected me_module. The MeP $OPT register indicates which
123 options are present on the current processor. */
124
125
126struct gdbarch_tdep
127{
128 /* A CGEN cpu descriptor for this BFD architecture and machine.
129
130 Note: this is *not* customized for any particular me_module; the
131 MeP libopcodes machinery actually puts off module-specific
132 customization until the last minute. So this contains
133 information about all supported me_modules. */
134 CGEN_CPU_DESC cpu_desc;
135
136 /* The me_module index from the ELF file we used to select this
137 architecture, or CONFIG_NONE if there was none.
138
139 Note that we should prefer to use the me_module number available
140 via the 'module' register, whenever we're actually talking to a
141 real target.
142
143 In the absence of live information, we'd like to get the
144 me_module number from the ELF file. But which ELF file: the
145 executable file, the core file, ... ? The answer is, "the last
146 ELF file we used to set the current architecture". Thus, we
147 create a separate instance of the gdbarch structure for each
148 me_module value mep_gdbarch_init sees, and store the me_module
149 value from the ELF file here. */
150 CONFIG_ATTR me_module;
151};
152
153
154\f
155/* Getting me_module information from the CGEN tables. */
156
157
158/* Find an entry in the DESC's hardware table whose name begins with
159 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
160 intersect with GENERIC_ISA_MASK. If there is no matching entry,
161 return zero. */
162static const CGEN_HW_ENTRY *
163find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
164 const char *prefix,
165 CGEN_BITSET *copro_isa_mask,
166 CGEN_BITSET *generic_isa_mask)
167{
168 int prefix_len = strlen (prefix);
169 int i;
170
171 for (i = 0; i < desc->hw_table.num_entries; i++)
172 {
173 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
174 if (strncmp (prefix, hw->name, prefix_len) == 0)
175 {
176 CGEN_BITSET *hw_isa_mask
177 = ((CGEN_BITSET *)
178 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
179
180 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
181 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
182 return hw;
183 }
184 }
185
186 return 0;
187}
188
189
190/* Find an entry in DESC's hardware table whose type is TYPE. Return
191 zero if there is none. */
192static const CGEN_HW_ENTRY *
193find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
194{
195 int i;
196
197 for (i = 0; i < desc->hw_table.num_entries; i++)
198 {
199 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
200
201 if (hw->type == type)
202 return hw;
203 }
204
205 return 0;
206}
207
208
209/* Return the CGEN hardware table entry for the coprocessor register
210 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
211 no such register set, return zero. If ME_MODULE is the generic
212 me_module CONFIG_NONE, return the table entry for the register set
213 whose hardware type is GENERIC_TYPE. */
214static const CGEN_HW_ENTRY *
215me_module_register_set (CONFIG_ATTR me_module,
216 const char *prefix,
217 CGEN_HW_TYPE generic_type)
218{
219 /* This is kind of tricky, because the hardware table is constructed
220 in a way that isn't very helpful. Perhaps we can fix that, but
221 here's how it works at the moment:
222
223 The configuration map, `mep_config_map', is indexed by me_module
224 number, and indicates which coprocessor and core ISAs that
225 me_module supports. The 'core_isa' mask includes all the core
226 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
227 The entry for the generic me_module, CONFIG_NONE, has an empty
228 'cop_isa', and its 'core_isa' selects only the standard MeP
229 instruction set.
230
231 The CGEN CPU descriptor's hardware table, desc->hw_table, has
232 entries for all the register sets, for all me_modules. Each
233 entry has a mask indicating which ISAs use that register set.
234 So, if an me_module supports some coprocessor ISA, we can find
235 applicable register sets by scanning the hardware table for
236 register sets whose masks include (at least some of) those ISAs.
237
238 Each hardware table entry also has a name, whose prefix says
239 whether it's a general-purpose ("h-cr") or control ("h-ccr")
240 coprocessor register set. It might be nicer to have an attribute
241 indicating what sort of register set it was, that we could use
242 instead of pattern-matching on the name.
243
244 When there is no hardware table entry whose mask includes a
245 particular coprocessor ISA and whose name starts with a given
246 prefix, then that means that that coprocessor doesn't have any
247 registers of that type. In such cases, this function must return
248 a null pointer.
249
250 Coprocessor register sets' masks may or may not include the core
251 ISA for the me_module they belong to. Those generated by a2cgen
252 do, but the sample me_module included in the unconfigured tree,
253 'ccfx', does not.
254
255 There are generic coprocessor register sets, intended only for
256 use with the generic me_module. Unfortunately, their masks
257 include *all* ISAs --- even those for coprocessors that don't
258 have such register sets. This makes detecting the case where a
259 coprocessor lacks a particular register set more complicated.
260
261 So, here's the approach we take:
262
263 - For CONFIG_NONE, we return the generic coprocessor register set.
264
265 - For any other me_module, we search for a register set whose
266 mask contains any of the me_module's coprocessor ISAs,
267 specifically excluding the generic coprocessor register sets. */
268
269 CGEN_CPU_DESC desc = gdbarch_tdep (current_gdbarch)->cpu_desc;
270 const CGEN_HW_ENTRY *hw;
271
272 if (me_module == CONFIG_NONE)
273 hw = find_hw_entry_by_type (desc, generic_type);
274 else
275 {
276 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
277 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
278 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
279 CGEN_BITSET *cop_and_core;
280
281 /* The coprocessor ISAs include the ISA for the specific core which
282 has that coprocessor. */
283 cop_and_core = cgen_bitset_copy (cop);
284 cgen_bitset_union (cop, core, cop_and_core);
285 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
286 }
287
288 return hw;
289}
290
291
292/* Given a hardware table entry HW representing a register set, return
293 a pointer to the keyword table with all the register names. If HW
294 is NULL, return NULL, to propage the "no such register set" info
295 along. */
296static CGEN_KEYWORD *
297register_set_keyword_table (const CGEN_HW_ENTRY *hw)
298{
299 if (! hw)
300 return NULL;
301
302 /* Check that HW is actually a keyword table. */
303 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
304
305 /* The 'asm_data' field of a register set's hardware table entry
306 refers to a keyword table. */
307 return (CGEN_KEYWORD *) hw->asm_data;
308}
309
310
311/* Given a keyword table KEYWORD and a register number REGNUM, return
312 the name of the register, or "" if KEYWORD contains no register
313 whose number is REGNUM. */
314static char *
315register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
316{
317 const CGEN_KEYWORD_ENTRY *entry
318 = cgen_keyword_lookup_value (keyword_table, regnum);
319
320 if (entry)
321 {
322 char *name = entry->name;
323
324 /* The CGEN keyword entries for register names include the
325 leading $, which appears in MeP assembly as well as in GDB.
326 But we don't want to return that; GDB core code adds that
327 itself. */
328 if (name[0] == '$')
329 name++;
330
331 return name;
332 }
333 else
334 return "";
335}
336
337
338/* Masks for option bits in the OPT special-purpose register. */
339enum {
340 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
341 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
342 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
343 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
344 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
345 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
346 MEP_OPT_AVE = 1 << 19, /* average instruction option */
347 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
348 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
349 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
350 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
351 MEP_OPT_COP = 1 << 4, /* coprocessor option */
352 MEP_OPT_DSP = 1 << 2, /* DSP option */
353 MEP_OPT_UCI = 1 << 1, /* UCI option */
354 MEP_OPT_DBG = 1 << 0, /* DBG function option */
355};
356
357
358/* Given the option_mask value for a particular entry in
359 mep_config_map, produce the value the processor's OPT register
360 would use to represent the same set of options. */
361static unsigned int
362opt_from_option_mask (unsigned int option_mask)
363{
364 /* A table mapping OPT register bits onto CGEN config map option
365 bits. */
366 struct {
367 unsigned int opt_bit, option_mask_bit;
368 } bits[] = {
369 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
371 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
372 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
373 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
374 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
375 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
376 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
377 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
378 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
379 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
380 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
381 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
382 };
383
384 int i;
385 unsigned int opt = 0;
386
387 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
388 if (option_mask & bits[i].option_mask_bit)
389 opt |= bits[i].opt_bit;
390
391 return opt;
392}
393
394
395/* Return the value the $OPT register would use to represent the set
396 of options for ME_MODULE. */
397static unsigned int
398me_module_opt (CONFIG_ATTR me_module)
399{
400 return opt_from_option_mask (mep_config_map[me_module].option_mask);
401}
402
403
404/* Return the width of ME_MODULE's coprocessor data bus, in bits.
405 This is either 32 or 64. */
406static int
407me_module_cop_data_bus_width (CONFIG_ATTR me_module)
408{
409 if (mep_config_map[me_module].option_mask
410 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
411 return 64;
412 else
413 return 32;
414}
415
416
417/* Return true if ME_MODULE is big-endian, false otherwise. */
418static int
419me_module_big_endian (CONFIG_ATTR me_module)
420{
421 return mep_config_map[me_module].big_endian;
422}
423
424
425/* Return the name of ME_MODULE, or NULL if it has no name. */
426static const char *
427me_module_name (CONFIG_ATTR me_module)
428{
429 /* The default me_module has "" as its name, but it's easier for our
430 callers to test for NULL. */
431 if (! mep_config_map[me_module].name
432 || mep_config_map[me_module].name[0] == '\0')
433 return NULL;
434 else
435 return mep_config_map[me_module].name;
436}
437\f
438/* Register set. */
439
440
441/* The MeP spec defines the following registers:
442 16 general purpose registers (r0-r15)
443 32 control/special registers (csr0-csr31)
444 32 coprocessor general-purpose registers (c0 -- c31)
445 64 coprocessor control registers (ccr0 -- ccr63)
446
447 For the raw registers, we assign numbers here explicitly, instead
448 of letting the enum assign them for us; the numbers are a matter of
449 external protocol, and shouldn't shift around as things are edited.
450
451 We access the control/special registers via pseudoregisters, to
452 enforce read-only portions that some registers have.
453
454 We access the coprocessor general purpose and control registers via
455 pseudoregisters, to make sure they appear in the proper order in
456 the 'info all-registers' command (which uses the register number
457 ordering), and also to allow them to be renamed and resized
458 depending on the me_module in use.
459
460 The MeP allows coprocessor general-purpose registers to be either
461 32 or 64 bits long, depending on the configuration. Since we don't
462 want the format of the 'g' packet to vary from one core to another,
463 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
464 types of registers to change (see the implementation of
465 register_type), so we have four banks of pseudoregisters for the
466 coprocessor gprs --- 32-bit vs. 64-bit, and integer
467 vs. floating-point --- and we show or hide them depending on the
468 configuration. */
469enum
470{
471 MEP_FIRST_RAW_REGNUM = 0,
472
473 MEP_FIRST_GPR_REGNUM = 0,
474 MEP_R0_REGNUM = 0,
475 MEP_R1_REGNUM = 1,
476 MEP_R2_REGNUM = 2,
477 MEP_R3_REGNUM = 3,
478 MEP_R4_REGNUM = 4,
479 MEP_R5_REGNUM = 5,
480 MEP_R6_REGNUM = 6,
481 MEP_R7_REGNUM = 7,
482 MEP_R8_REGNUM = 8,
483 MEP_R9_REGNUM = 9,
484 MEP_R10_REGNUM = 10,
485 MEP_R11_REGNUM = 11,
486 MEP_R12_REGNUM = 12,
487 MEP_FP_REGNUM = MEP_R8_REGNUM,
488 MEP_R13_REGNUM = 13,
489 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
490 MEP_R14_REGNUM = 14,
491 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
492 MEP_R15_REGNUM = 15,
493 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
494 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
495
496 /* The raw control registers. These are the values as received via
497 the remote protocol, directly from the target; we only let user
498 code touch the via the pseudoregisters, which enforce read-only
499 bits. */
500 MEP_FIRST_RAW_CSR_REGNUM = 16,
501 MEP_RAW_PC_REGNUM = 16, /* Program counter */
502 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
503 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
504 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
505 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
506 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
507 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
508 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
509 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
510 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
511 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
512 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
513 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
514 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
515 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
516 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
517 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
518 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
519 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
520 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
521 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
522 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
523 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
524 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
525 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
526 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
527 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
528 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
529 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
530 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
531 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
532 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
533 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
534
535 /* The raw coprocessor general-purpose registers. These are all 64
536 bits wide. */
537 MEP_FIRST_RAW_CR_REGNUM = 48,
538 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
539
540 MEP_FIRST_RAW_CCR_REGNUM = 80,
541 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
542
543 /* The module number register. This is the index of the me_module
544 of which the current target is an instance. (This is not a real
545 MeP-specified register; it's provided by SID.) */
546 MEP_MODULE_REGNUM,
547
548 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
549
550 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
551
552 /* Pseudoregisters. See mep_pseudo_register_read and
553 mep_pseudo_register_write. */
554 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
555
556 /* We have a pseudoregister for every control/special register, to
557 implement registers with read-only bits. */
558 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
559 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
560 MEP_LP_REGNUM, /* Link pointer */
561 MEP_SAR_REGNUM, /* shift amount */
562 MEP_CSR3_REGNUM, /* csr3: reserved */
563 MEP_RPB_REGNUM, /* repeat begin address */
564 MEP_RPE_REGNUM, /* Repeat end address */
565 MEP_RPC_REGNUM, /* Repeat count */
566 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
567 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
568 MEP_CSR9_REGNUM, /* csr3: reserved */
569 MEP_CSR10_REGNUM, /* csr3: reserved */
570 MEP_CSR11_REGNUM, /* csr3: reserved */
571 MEP_MB0_REGNUM, /* modulo begin address 0 */
572 MEP_ME0_REGNUM, /* modulo end address 0 */
573 MEP_MB1_REGNUM, /* modulo begin address 1 */
574 MEP_ME1_REGNUM, /* modulo end address 1 */
575 MEP_PSW_REGNUM, /* program status word */
576 MEP_ID_REGNUM, /* processor ID/revision */
577 MEP_TMP_REGNUM, /* Temporary */
578 MEP_EPC_REGNUM, /* Exception program counter */
579 MEP_EXC_REGNUM, /* exception cause */
580 MEP_CFG_REGNUM, /* processor configuration*/
581 MEP_CSR22_REGNUM, /* csr3: reserved */
582 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
583 MEP_DBG_REGNUM, /* debug */
584 MEP_DEPC_REGNUM, /* Debug exception PC */
585 MEP_OPT_REGNUM, /* options */
586 MEP_RCFG_REGNUM, /* local ram config */
587 MEP_CCFG_REGNUM, /* cache config */
588 MEP_CSR29_REGNUM, /* csr3: reserved */
589 MEP_CSR30_REGNUM, /* csr3: reserved */
590 MEP_CSR31_REGNUM, /* csr3: reserved */
591 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
592
593 /* The 32-bit integer view of the coprocessor GPR's. */
594 MEP_FIRST_CR32_REGNUM,
595 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
596
597 /* The 32-bit floating-point view of the coprocessor GPR's. */
598 MEP_FIRST_FP_CR32_REGNUM,
599 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
600
601 /* The 64-bit integer view of the coprocessor GPR's. */
602 MEP_FIRST_CR64_REGNUM,
603 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
604
605 /* The 64-bit floating-point view of the coprocessor GPR's. */
606 MEP_FIRST_FP_CR64_REGNUM,
607 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
608
609 MEP_FIRST_CCR_REGNUM,
610 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
611
612 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
613
614 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
615
616 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
617};
618
619
620#define IN_SET(set, n) \
621 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
622
623#define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
624#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
625#define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
626#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
627
628#define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
629#define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
630#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
631#define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
632#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
633#define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
634 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
635#define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
636
637#define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
638#define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
639
640#define NUM_REGS_IN_SET(set) \
641 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
642
643#define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
644#define MEP_PSW_SIZE (4) /* Size of the PSW register. */
645#define MEP_LP_SIZE (4) /* Size of the LP register. */
646
647
648/* Many of the control/special registers contain bits that cannot be
649 written to; some are entirely read-only. So we present them all as
650 pseudoregisters.
651
652 The following table describes the special properties of each CSR. */
653struct mep_csr_register
654{
655 /* The number of this CSR's raw register. */
656 int raw;
657
658 /* The number of this CSR's pseudoregister. */
659 int pseudo;
660
661 /* A mask of the bits that are writeable: if a bit is set here, then
662 it can be modified; if the bit is clear, then it cannot. */
663 LONGEST writeable_bits;
664};
665
666
667/* mep_csr_registers[i] describes the i'th CSR.
668 We just list the register numbers here explicitly to help catch
669 typos. */
670#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
671struct mep_csr_register mep_csr_registers[] = {
672 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
673 { CSR(LP), 0xffffffff },
674 { CSR(SAR), 0x0000003f },
675 { CSR(CSR3), 0xffffffff },
676 { CSR(RPB), 0xfffffffe },
677 { CSR(RPE), 0xffffffff },
678 { CSR(RPC), 0xffffffff },
679 { CSR(HI), 0xffffffff },
680 { CSR(LO), 0xffffffff },
681 { CSR(CSR9), 0xffffffff },
682 { CSR(CSR10), 0xffffffff },
683 { CSR(CSR11), 0xffffffff },
684 { CSR(MB0), 0x0000ffff },
685 { CSR(ME0), 0x0000ffff },
686 { CSR(MB1), 0x0000ffff },
687 { CSR(ME1), 0x0000ffff },
688 { CSR(PSW), 0x000003ff },
689 { CSR(ID), 0x00000000 },
690 { CSR(TMP), 0xffffffff },
691 { CSR(EPC), 0xffffffff },
692 { CSR(EXC), 0x000030f0 },
693 { CSR(CFG), 0x00c0001b },
694 { CSR(CSR22), 0xffffffff },
695 { CSR(NPC), 0xffffffff },
696 { CSR(DBG), 0x00000580 },
697 { CSR(DEPC), 0xffffffff },
698 { CSR(OPT), 0x00000000 },
699 { CSR(RCFG), 0x00000000 },
700 { CSR(CCFG), 0x00000000 },
701 { CSR(CSR29), 0xffffffff },
702 { CSR(CSR30), 0xffffffff },
703 { CSR(CSR31), 0xffffffff },
704};
705
706
707/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
708 the number of the corresponding pseudoregister. Otherwise,
709 mep_raw_to_pseudo[R] == R. */
710static int mep_raw_to_pseudo[MEP_NUM_REGS];
711
712/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
713 is the number of the underlying raw register. Otherwise
714 mep_pseudo_to_raw[R] == R. */
715static int mep_pseudo_to_raw[MEP_NUM_REGS];
716
717static void
718mep_init_pseudoregister_maps (void)
719{
720 int i;
721
722 /* Verify that mep_csr_registers covers all the CSRs, in order. */
723 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
724 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
725
726 /* Verify that the raw and pseudo ranges have matching sizes. */
727 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
729 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
730 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
731
732 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
733 {
734 struct mep_csr_register *r = &mep_csr_registers[i];
735
736 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
737 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
738 }
739
740 /* Set up the initial raw<->pseudo mappings. */
741 for (i = 0; i < MEP_NUM_REGS; i++)
742 {
743 mep_raw_to_pseudo[i] = i;
744 mep_pseudo_to_raw[i] = i;
745 }
746
747 /* Add the CSR raw<->pseudo mappings. */
748 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
749 {
750 struct mep_csr_register *r = &mep_csr_registers[i];
751
752 mep_raw_to_pseudo[r->raw] = r->pseudo;
753 mep_pseudo_to_raw[r->pseudo] = r->raw;
754 }
755
756 /* Add the CR raw<->pseudo mappings. */
757 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
758 {
759 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
760 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
761 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
762 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
763 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
764
765 /* Truly, the raw->pseudo mapping depends on the current module.
766 But we use the raw->pseudo mapping when we read the debugging
767 info; at that point, we don't know what module we'll actually
768 be running yet. So, we always supply the 64-bit register
769 numbers; GDB knows how to pick a smaller value out of a
770 larger register properly. */
771 mep_raw_to_pseudo[raw] = pseudo64;
772 mep_pseudo_to_raw[pseudo32] = raw;
773 mep_pseudo_to_raw[pseudofp32] = raw;
774 mep_pseudo_to_raw[pseudo64] = raw;
775 mep_pseudo_to_raw[pseudofp64] = raw;
776 }
777
778 /* Add the CCR raw<->pseudo mappings. */
779 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
780 {
781 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
782 int pseudo = MEP_FIRST_CCR_REGNUM + i;
783 mep_raw_to_pseudo[raw] = pseudo;
784 mep_pseudo_to_raw[pseudo] = raw;
785 }
786}
787
788
789static int
790mep_debug_reg_to_regnum (int debug_reg)
791{
792 /* The debug info uses the raw register numbers. */
793 return mep_raw_to_pseudo[debug_reg];
794}
795
796
797/* Return the size, in bits, of the coprocessor pseudoregister
798 numbered PSEUDO. */
799static int
800mep_pseudo_cr_size (int pseudo)
801{
802 if (IS_CR32_REGNUM (pseudo)
803 || IS_FP_CR32_REGNUM (pseudo))
804 return 32;
805 else if (IS_CR64_REGNUM (pseudo)
806 || IS_FP_CR64_REGNUM (pseudo))
807 return 64;
808 else
809 gdb_assert (0);
810}
811
812
813/* If the coprocessor pseudoregister numbered PSEUDO is a
814 floating-point register, return non-zero; if it is an integer
815 register, return zero. */
816static int
817mep_pseudo_cr_is_float (int pseudo)
818{
819 return (IS_FP_CR32_REGNUM (pseudo)
820 || IS_FP_CR64_REGNUM (pseudo));
821}
822
823
824/* Given a coprocessor GPR pseudoregister number, return its index
825 within that register bank. */
826static int
827mep_pseudo_cr_index (int pseudo)
828{
829 if (IS_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_CR32_REGNUM;
831 else if (IS_FP_CR32_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
833 else if (IS_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_CR64_REGNUM;
835 else if (IS_FP_CR64_REGNUM (pseudo))
836 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
837 else
838 gdb_assert (0);
839}
840
841
842/* Return the me_module index describing the current target.
843
844 If the current target has registers (e.g., simulator, remote
845 target), then this uses the value of the 'module' register, raw
846 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
847 from the ELF header's e_flags field of the current executable
848 file. */
849static CONFIG_ATTR
850current_me_module ()
851{
852 if (target_has_registers)
3d1a74ac
UW
853 {
854 ULONGEST regval;
594f7785 855 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
856 MEP_MODULE_REGNUM, &regval);
857 return regval;
858 }
aeb43123
KB
859 else
860 return gdbarch_tdep (current_gdbarch)->me_module;
861}
862
863
864/* Return the set of options for the current target, in the form that
865 the OPT register would use.
866
867 If the current target has registers (e.g., simulator, remote
868 target), then this is the actual value of the OPT register. If the
869 current target does not have registers (e.g., an executable file),
870 then use the 'module_opt' field we computed when we build the
871 gdbarch object for this module. */
872static unsigned int
873current_options ()
874{
875 if (target_has_registers)
3d1a74ac
UW
876 {
877 ULONGEST regval;
594f7785 878 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
879 MEP_OPT_REGNUM, &regval);
880 return regval;
881 }
aeb43123
KB
882 else
883 return me_module_opt (current_me_module ());
884}
885
886
887/* Return the width of the current me_module's coprocessor data bus,
888 in bits. This is either 32 or 64. */
889static int
890current_cop_data_bus_width ()
891{
892 return me_module_cop_data_bus_width (current_me_module ());
893}
894
895
896/* Return the keyword table of coprocessor general-purpose register
897 names appropriate for the me_module we're dealing with. */
898static CGEN_KEYWORD *
899current_cr_names ()
900{
901 const CGEN_HW_ENTRY *hw
902 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
903
904 return register_set_keyword_table (hw);
905}
906
907
908/* Return non-zero if the coprocessor general-purpose registers are
909 floating-point values, zero otherwise. */
910static int
911current_cr_is_float ()
912{
913 const CGEN_HW_ENTRY *hw
914 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
915
916 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
917}
918
919
920/* Return the keyword table of coprocessor control register names
921 appropriate for the me_module we're dealing with. */
922static CGEN_KEYWORD *
923current_ccr_names ()
924{
925 const CGEN_HW_ENTRY *hw
926 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
927
928 return register_set_keyword_table (hw);
929}
930
931
932static const char *
933mep_register_name (int regnr)
934{
935 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
936
937 /* General-purpose registers. */
938 static const char *gpr_names[] = {
939 "r0", "r1", "r2", "r3", /* 0 */
940 "r4", "r5", "r6", "r7", /* 4 */
941 "fp", "r9", "r10", "r11", /* 8 */
942 "r12", "tp", "gp", "sp" /* 12 */
943 };
944
945 /* Special-purpose registers. */
946 static const char *csr_names[] = {
947 "pc", "lp", "sar", "", /* 0 csr3: reserved */
948 "rpb", "rpe", "rpc", "hi", /* 4 */
949 "lo", "", "", "", /* 8 csr9-csr11: reserved */
950 "mb0", "me0", "mb1", "me1", /* 12 */
951
952 "psw", "id", "tmp", "epc", /* 16 */
953 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
954 "dbg", "depc", "opt", "rcfg", /* 24 */
955 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
956 };
957
958 if (IS_GPR_REGNUM (regnr))
959 return gpr_names[regnr - MEP_R0_REGNUM];
960 else if (IS_CSR_REGNUM (regnr))
961 {
962 /* The 'hi' and 'lo' registers are only present on processors
963 that have the 'MUL' or 'DIV' instructions enabled. */
964 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
965 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
966 return "";
967
968 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
969 }
970 else if (IS_CR_REGNUM (regnr))
971 {
972 CGEN_KEYWORD *names;
973 int cr_size;
974 int cr_is_float;
975
976 /* Does this module have a coprocessor at all? */
977 if (! (current_options () & MEP_OPT_COP))
978 return "";
979
980 names = current_cr_names ();
981 if (! names)
982 /* This module's coprocessor has no general-purpose registers. */
983 return "";
984
985 cr_size = current_cop_data_bus_width ();
986 if (cr_size != mep_pseudo_cr_size (regnr))
987 /* This module's coprocessor's GPR's are of a different size. */
988 return "";
989
990 cr_is_float = current_cr_is_float ();
991 /* The extra ! operators ensure we get boolean equality, not
992 numeric equality. */
993 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
994 /* This module's coprocessor's GPR's are of a different type. */
995 return "";
996
997 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
998 }
999 else if (IS_CCR_REGNUM (regnr))
1000 {
1001 /* Does this module have a coprocessor at all? */
1002 if (! (current_options () & MEP_OPT_COP))
1003 return "";
1004
1005 {
1006 CGEN_KEYWORD *names = current_ccr_names ();
1007
1008 if (! names)
1009 /* This me_module's coprocessor has no control registers. */
1010 return "";
1011
1012 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1013 }
1014 }
1015
1016 /* It might be nice to give the 'module' register a name, but that
1017 would affect the output of 'info all-registers', which would
1018 disturb the test suites. So we leave it invisible. */
1019 else
1020 return NULL;
1021}
1022
1023
1024/* Custom register groups for the MeP. */
1025static struct reggroup *mep_csr_reggroup; /* control/special */
1026static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1027static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1028
1029
1030static int
1031mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1032 struct reggroup *group)
1033{
1034 /* Filter reserved or unused register numbers. */
1035 {
1036 const char *name = mep_register_name (regnum);
1037
1038 if (! name || name[0] == '\0')
1039 return 0;
1040 }
1041
1042 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1043 the existing behavior, so we'd want to run that by them. */
1044 if (group == general_reggroup)
1045 return (IS_GPR_REGNUM (regnum)
1046 || IS_CSR_REGNUM (regnum));
1047
1048 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1049 else if (group == all_reggroup)
1050 return (IS_GPR_REGNUM (regnum)
1051 || IS_CSR_REGNUM (regnum)
1052 || IS_CR_REGNUM (regnum)
1053 || IS_CCR_REGNUM (regnum));
1054
1055 /* All registers should be saved and restored, except for the raw
1056 CSR's.
1057
1058 This is probably right if the coprocessor is something like a
1059 floating-point unit, but would be wrong if the coprocessor is
1060 something that does I/O, where register accesses actually cause
1061 externally-visible actions. But I get the impression that the
1062 coprocessor isn't supposed to do things like that --- you'd use a
1063 hardware engine, perhaps. */
1064 else if (group == save_reggroup || group == restore_reggroup)
1065 return (IS_GPR_REGNUM (regnum)
1066 || IS_CSR_REGNUM (regnum)
1067 || IS_CR_REGNUM (regnum)
1068 || IS_CCR_REGNUM (regnum));
1069
1070 else if (group == mep_csr_reggroup)
1071 return IS_CSR_REGNUM (regnum);
1072 else if (group == mep_cr_reggroup)
1073 return IS_CR_REGNUM (regnum);
1074 else if (group == mep_ccr_reggroup)
1075 return IS_CCR_REGNUM (regnum);
1076 else
1077 return 0;
1078}
1079
1080
1081static struct type *
1082mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1083{
1084 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1085 long. So for them, the raw registers are always 64 bits long (to
1086 keep the 'g' packet format fixed), and the pseudoregisters vary
1087 in length. */
1088 if (IS_RAW_CR_REGNUM (reg_nr))
1089 return builtin_type_uint64;
1090
1091 /* Since GDB doesn't allow registers to change type, we have two
1092 banks of pseudoregisters for the coprocessor general-purpose
1093 registers: one that gives a 32-bit view, and one that gives a
1094 64-bit view. We hide or show one or the other depending on the
1095 current module. */
1096 if (IS_CR_REGNUM (reg_nr))
1097 {
1098 int size = mep_pseudo_cr_size (reg_nr);
1099 if (size == 32)
1100 {
1101 if (mep_pseudo_cr_is_float (reg_nr))
1102 return builtin_type_float;
1103 else
1104 return builtin_type_uint32;
1105 }
1106 else if (size == 64)
1107 {
1108 if (mep_pseudo_cr_is_float (reg_nr))
1109 return builtin_type_double;
1110 else
1111 return builtin_type_uint64;
1112 }
1113 else
1114 gdb_assert (0);
1115 }
1116
1117 /* All other registers are 32 bits long. */
1118 else
1119 return builtin_type_uint32;
1120}
1121
1122
1123static CORE_ADDR
61a1198a 1124mep_read_pc (struct regcache *regcache)
aeb43123 1125{
61a1198a
UW
1126 ULONGEST pc;
1127 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
aeb43123
KB
1128 return pc;
1129}
1130
1131static void
61a1198a 1132mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
aeb43123 1133{
61a1198a 1134 regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
aeb43123
KB
1135}
1136
1137
1138static void
1139mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1140 struct regcache *regcache,
1141 int cookednum,
1142 void *buf)
1143{
1144 /* Read the raw register into a 64-bit buffer, and then return the
1145 appropriate end of that buffer. */
1146 int rawnum = mep_pseudo_to_raw[cookednum];
1147 char buf64[8];
1148
1149 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1150 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1151 regcache_raw_read (regcache, rawnum, buf64);
1152 /* Slow, but legible. */
1153 store_unsigned_integer (buf, 4, extract_unsigned_integer (buf64, 8));
1154}
1155
1156
1157static void
1158mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1159 struct regcache *regcache,
1160 int cookednum,
1161 void *buf)
1162{
1163 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1164}
1165
1166
1167static void
1168mep_pseudo_register_read (struct gdbarch *gdbarch,
1169 struct regcache *regcache,
1170 int cookednum,
1171 gdb_byte *buf)
1172{
1173 if (IS_CSR_REGNUM (cookednum)
1174 || IS_CCR_REGNUM (cookednum))
1175 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1176 else if (IS_CR32_REGNUM (cookednum)
1177 || IS_FP_CR32_REGNUM (cookednum))
1178 mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1179 else if (IS_CR64_REGNUM (cookednum)
1180 || IS_FP_CR64_REGNUM (cookednum))
1181 mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1182 else
1183 gdb_assert (0);
1184}
1185
1186
1187static void
1188mep_pseudo_csr_write (struct gdbarch *gdbarch,
1189 struct regcache *regcache,
1190 int cookednum,
1191 const void *buf)
1192{
1193 int size = register_size (gdbarch, cookednum);
1194 struct mep_csr_register *r
1195 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1196
1197 if (r->writeable_bits == 0)
1198 /* A completely read-only register; avoid the read-modify-
1199 write cycle, and juts ignore the entire write. */
1200 ;
1201 else
1202 {
1203 /* A partially writeable register; do a read-modify-write cycle. */
1204 ULONGEST old_bits;
1205 ULONGEST new_bits;
1206 ULONGEST mixed_bits;
1207
1208 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1209 new_bits = extract_unsigned_integer (buf, size);
1210 mixed_bits = ((r->writeable_bits & new_bits)
1211 | (~r->writeable_bits & old_bits));
1212 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1213 }
1214}
1215
1216
1217static void
1218mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1219 struct regcache *regcache,
1220 int cookednum,
1221 const void *buf)
1222{
1223 /* Expand the 32-bit value into a 64-bit value, and write that to
1224 the pseudoregister. */
1225 int rawnum = mep_pseudo_to_raw[cookednum];
1226 char buf64[8];
1227
1228 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1229 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1230 /* Slow, but legible. */
1231 store_unsigned_integer (buf64, 8, extract_unsigned_integer (buf, 4));
1232 regcache_raw_write (regcache, rawnum, buf64);
1233}
1234
1235
1236static void
1237mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1238 struct regcache *regcache,
1239 int cookednum,
1240 const void *buf)
1241{
1242 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1243}
1244
1245
1246static void
1247mep_pseudo_register_write (struct gdbarch *gdbarch,
1248 struct regcache *regcache,
1249 int cookednum,
1250 const gdb_byte *buf)
1251{
1252 if (IS_CSR_REGNUM (cookednum))
1253 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1254 else if (IS_CR32_REGNUM (cookednum)
1255 || IS_FP_CR32_REGNUM (cookednum))
1256 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1257 else if (IS_CR64_REGNUM (cookednum)
1258 || IS_FP_CR64_REGNUM (cookednum))
1259 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1260 else if (IS_CCR_REGNUM (cookednum))
1261 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1262 else
1263 gdb_assert (0);
1264}
1265
1266
1267\f
1268/* Disassembly. */
1269
1270/* The mep disassembler needs to know about the section in order to
1271 work correctly. */
1272int
1273mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1274{
1275 struct obj_section * s = find_pc_section (pc);
1276
1277 if (s)
1278 {
1279 /* The libopcodes disassembly code uses the section to find the
1280 BFD, the BFD to find the ELF header, the ELF header to find
1281 the me_module index, and the me_module index to select the
1282 right instructions to print. */
1283 info->section = s->the_bfd_section;
1284 info->arch = bfd_arch_mep;
1285
1286 return print_insn_mep (pc, info);
1287 }
1288
1289 return 0;
1290}
1291
1292\f
1293/* Prologue analysis. */
1294
1295
1296/* The MeP has two classes of instructions: "core" instructions, which
1297 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1298 which are mostly concerned with moving data in and out of
1299 coprocessor registers, and branching on coprocessor condition
1300 codes. There's space in the instruction set for custom coprocessor
1301 instructions, too.
1302
1303 Instructions can be 16 or 32 bits long; the top two bits of the
1304 first byte indicate the length. The coprocessor instructions are
1305 mixed in with the core instructions, and there's no easy way to
1306 distinguish them; you have to completely decode them to tell one
1307 from the other.
1308
1309 The MeP also supports a "VLIW" operation mode, where instructions
1310 always occur in fixed-width bundles. The bundles are either 32
1311 bits or 64 bits long, depending on a fixed configuration flag. You
1312 decode the first part of the bundle as normal; if it's a core
1313 instruction, and there's any space left in the bundle, the
1314 remainder of the bundle is a coprocessor instruction, which will
1315 execute in parallel with the core instruction. If the first part
1316 of the bundle is a coprocessor instruction, it occupies the entire
1317 bundle.
1318
1319 So, here are all the cases:
1320
1321 - 32-bit VLIW mode:
1322 Every bundle is four bytes long, and naturally aligned, and can hold
1323 one or two instructions:
1324 - 16-bit core instruction; 16-bit coprocessor instruction
1325 These execute in parallel.
1326 - 32-bit core instruction
1327 - 32-bit coprocessor instruction
1328
1329 - 64-bit VLIW mode:
1330 Every bundle is eight bytes long, and naturally aligned, and can hold
1331 one or two instructions:
1332 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1333 These execute in parallel.
1334 - 32-bit core instruction; 32-bit coprocessor instruction
1335 These execute in parallel.
1336 - 64-bit coprocessor instruction
1337
1338 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1339 instruction, so I don't really know what's up there; perhaps these
1340 are always the user-defined coprocessor instructions. */
1341
1342
1343/* Return non-zero if PC is in a VLIW code section, zero
1344 otherwise. */
1345static int
1346mep_pc_in_vliw_section (CORE_ADDR pc)
1347{
1348 struct obj_section *s = find_pc_section (pc);
1349 if (s)
1350 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1351 return 0;
1352}
1353
1354
1355/* Set *INSN to the next core instruction at PC, and return the
1356 address of the next instruction.
1357
1358 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1359 instructions are encoded as one or two two-byte parts, and each
1360 part is byte-swapped independently. Thus:
1361
1362 void
1363 foo (void)
1364 {
1365 asm ("movu $1, 0x123456");
1366 asm ("sb $1,0x5678($2)");
1367 asm ("clip $1, 19");
1368 }
1369
1370 compiles to this big-endian code:
1371
1372 0: d1 56 12 34 movu $1,0x123456
1373 4: c1 28 56 78 sb $1,22136($2)
1374 8: f1 01 10 98 clip $1,0x13
1375 c: 70 02 ret
1376
1377 and this little-endian code:
1378
1379 0: 56 d1 34 12 movu $1,0x123456
1380 4: 28 c1 78 56 sb $1,22136($2)
1381 8: 01 f1 98 10 clip $1,0x13
1382 c: 02 70 ret
1383
1384 Instructions are returned in *INSN in an endian-independent form: a
1385 given instruction always appears in *INSN the same way, regardless
1386 of whether the instruction stream is big-endian or little-endian.
1387
1388 *INSN's most significant 16 bits are the first (i.e., at lower
1389 addresses) 16 bit part of the instruction. Its least significant
1390 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1391 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1392 are fetched using the current endianness.
1393
1394 So, the *INSN values for the instruction sequence above would be
1395 the following, in either endianness:
1396
1397 0xd1561234 movu $1,0x123456
1398 0xc1285678 sb $1,22136($2)
1399 0xf1011098 clip $1,0x13
1400 0x70020000 ret
1401
1402 (In a sense, it would be more natural to return 16-bit instructions
1403 in the least significant 16 bits of *INSN, but that would be
1404 ambiguous. In order to tell whether you're looking at a 16- or a
1405 32-bit instruction, you have to consult the major opcode field ---
1406 the most significant four bits of the instruction's first 16-bit
1407 part. But if we put 16-bit instructions at the least significant
1408 end of *INSN, then you don't know where to find the major opcode
1409 field until you know if it's a 16- or a 32-bit instruction ---
1410 which is where we started.)
1411
1412 If PC points to a core / coprocessor bundle in a VLIW section, set
1413 *INSN to the core instruction, and return the address of the next
1414 bundle. This has the effect of skipping the bundled coprocessor
1415 instruction. That's okay, since coprocessor instructions aren't
1416 significant to prologue analysis --- for the time being,
1417 anyway. */
1418
1419static CORE_ADDR
1420mep_get_insn (CORE_ADDR pc, long *insn)
1421{
1422 int pc_in_vliw_section;
1423 int vliw_mode;
1424 int insn_len;
1425 char buf[2];
1426
1427 *insn = 0;
1428
1429 /* Are we in a VLIW section? */
1430 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1431 if (pc_in_vliw_section)
1432 {
1433 /* Yes, find out which bundle size. */
1434 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1435
1436 /* If PC is in a VLIW section, but the current core doesn't say
1437 that it supports either VLIW mode, then we don't have enough
1438 information to parse the instruction stream it contains.
1439 Since the "undifferentiated" standard core doesn't have
1440 either VLIW mode bit set, this could happen.
1441
1442 But it shouldn't be an error to (say) set a breakpoint in a
1443 VLIW section, if you know you'll never reach it. (Perhaps
1444 you have a script that sets a bunch of standard breakpoints.)
1445
1446 So we'll just return zero here, and hope for the best. */
1447 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1448 return 0;
1449
1450 /* If both VL32 and VL64 are set, that's bogus, too. */
1451 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1452 return 0;
1453 }
1454 else
1455 vliw_mode = 0;
1456
1457 read_memory (pc, buf, sizeof (buf));
1458 *insn = extract_unsigned_integer (buf, 2) << 16;
1459
1460 /* The major opcode --- the top four bits of the first 16-bit
1461 part --- indicates whether this instruction is 16 or 32 bits
1462 long. All 32-bit instructions have a major opcode whose top
1463 two bits are 11; all the rest are 16-bit instructions. */
1464 if ((*insn & 0xc0000000) == 0xc0000000)
1465 {
1466 /* Fetch the second 16-bit part of the instruction. */
1467 read_memory (pc + 2, buf, sizeof (buf));
1468 *insn = *insn | extract_unsigned_integer (buf, 2);
1469 }
1470
1471 /* If we're in VLIW code, then the VLIW width determines the address
1472 of the next instruction. */
1473 if (vliw_mode)
1474 {
1475 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1476 coprocessor half of a core / copro bundle. */
1477 if (vliw_mode == MEP_OPT_VL32)
1478 insn_len = 4;
1479
1480 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1481 coprocessor half of a core / copro bundle. */
1482 else if (vliw_mode == MEP_OPT_VL64)
1483 insn_len = 8;
1484
1485 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1486 else
1487 gdb_assert (0);
1488 }
1489
1490 /* Otherwise, the top two bits of the major opcode are (again) what
1491 we need to check. */
1492 else if ((*insn & 0xc0000000) == 0xc0000000)
1493 insn_len = 4;
1494 else
1495 insn_len = 2;
1496
1497 return pc + insn_len;
1498}
1499
1500
1501/* Sign-extend the LEN-bit value N. */
1502#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1503
1504/* Return the LEN-bit field at POS from I. */
1505#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1506
1507/* Like FIELD, but sign-extend the field's value. */
1508#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1509
1510
1511/* Macros for decoding instructions.
1512
1513 Remember that 16-bit instructions are placed in bits 16..31 of i,
1514 not at the least significant end; this means that the major opcode
1515 field is always in the same place, regardless of the width of the
1516 instruction. As a reminder of this, we show the lower 16 bits of a
1517 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1518
1519/* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1520/* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1521/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1522
1523/* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1524#define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1525/* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1526#define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1527/* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1528#define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1529#define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1530#define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1531#define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1532
1533/* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1534#define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1535#define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1536#define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1537
1538/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1539#define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1540#define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1541#define SW_REG_BASE(i) (FIELD (i, 20, 4))
1542
1543/* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1544#define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1545#define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1546#define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1547
1548/* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1549#define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1550#define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1551#define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1552#define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1553
1554/* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1555#define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1556#define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1557#define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1558
1559/* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1560#define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1561#define ADD_TARGET(i) (FIELD (i, 24, 4))
1562#define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1563
1564/* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1565 imm5 = I||i[7:4] */
1566#define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1567#define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1568#define LDC_TARGET(i) (FIELD (i, 24, 4))
1569
1570/* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1571#define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1572#define LW_TARGET(i) (FIELD (i, 24, 4))
1573#define LW_BASE(i) (FIELD (i, 20, 4))
1574#define LW_OFFSET(i) (SFIELD (i, 0, 16))
1575
1576/* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1577#define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1578#define MOV_TARGET(i) (FIELD (i, 24, 4))
1579#define MOV_SOURCE(i) (FIELD (i, 20, 4))
1580
1ba3e7a3
KB
1581/* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1582#define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1583#define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1584
aeb43123
KB
1585
1586/* This structure holds the results of a prologue analysis. */
1587struct mep_prologue
1588{
1589 /* The offset from the frame base to the stack pointer --- always
1590 zero or negative.
1591
1592 Calling this a "size" is a bit misleading, but given that the
1593 stack grows downwards, using offsets for everything keeps one
1594 from going completely sign-crazy: you never change anything's
1595 sign for an ADD instruction; always change the second operand's
1596 sign for a SUB instruction; and everything takes care of
1597 itself. */
1598 int frame_size;
1599
1600 /* Non-zero if this function has initialized the frame pointer from
1601 the stack pointer, zero otherwise. */
1602 int has_frame_ptr;
1603
1604 /* If has_frame_ptr is non-zero, this is the offset from the frame
1605 base to where the frame pointer points. This is always zero or
1606 negative. */
1607 int frame_ptr_offset;
1608
1609 /* The address of the first instruction at which the frame has been
1610 set up and the arguments are where the debug info says they are
1611 --- as best as we can tell. */
1612 CORE_ADDR prologue_end;
1613
1614 /* reg_offset[R] is the offset from the CFA at which register R is
1615 saved, or 1 if register R has not been saved. (Real values are
1616 always zero or negative.) */
1617 int reg_offset[MEP_NUM_REGS];
1618};
1619
1620/* Return non-zero if VALUE is an incoming argument register. */
1621
1622static int
1623is_arg_reg (pv_t value)
1624{
1625 return (value.kind == pvk_register
1626 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1627 && value.k == 0);
1628}
1629
1630/* Return non-zero if a store of REG's current value VALUE to ADDR is
1631 probably spilling an argument register to its stack slot in STACK.
1632 Such instructions should be included in the prologue, if possible.
1633
1634 The store is a spill if:
1635 - the value being stored is REG's original value;
1636 - the value has not already been stored somewhere in STACK; and
1637 - ADDR is a stack slot's address (e.g., relative to the original
1638 value of the SP). */
1639static int
1640is_arg_spill (pv_t value, pv_t addr, struct pv_area *stack)
1641{
1642 return (is_arg_reg (value)
1643 && pv_is_register (addr, MEP_SP_REGNUM)
1644 && ! pv_area_find_reg (stack, current_gdbarch, value.reg, 0));
1645}
1646
1647
1648/* Function for finding saved registers in a 'struct pv_area'; we pass
1649 this to pv_area_scan.
1650
1651 If VALUE is a saved register, ADDR says it was saved at a constant
1652 offset from the frame base, and SIZE indicates that the whole
1653 register was saved, record its offset in RESULT_UNTYPED. */
1654static void
1655check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1656{
1657 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1658
1659 if (value.kind == pvk_register
1660 && value.k == 0
1661 && pv_is_register (addr, MEP_SP_REGNUM)
1662 && size == register_size (current_gdbarch, value.reg))
1663 result->reg_offset[value.reg] = addr.k;
1664}
1665
1666
1667/* Analyze a prologue starting at START_PC, going no further than
1668 LIMIT_PC. Fill in RESULT as appropriate. */
1669static void
1670mep_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1671 struct mep_prologue *result)
1672{
1673 CORE_ADDR pc;
1674 unsigned long insn;
1675 int rn;
1676 int found_lp = 0;
1677 pv_t reg[MEP_NUM_REGS];
1678 struct pv_area *stack;
1679 struct cleanup *back_to;
1680 CORE_ADDR after_last_frame_setup_insn = start_pc;
1681
1682 memset (result, 0, sizeof (*result));
1683
1684 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1685 {
1686 reg[rn] = pv_register (rn, 0);
1687 result->reg_offset[rn] = 1;
1688 }
1689
1690 stack = make_pv_area (MEP_SP_REGNUM);
1691 back_to = make_cleanup_free_pv_area (stack);
1692
1693 pc = start_pc;
1694 while (pc < limit_pc)
1695 {
1696 CORE_ADDR next_pc;
1697 pv_t pre_insn_fp, pre_insn_sp;
1698
1699 next_pc = mep_get_insn (pc, &insn);
1700
1701 /* A zero return from mep_get_insn means that either we weren't
1702 able to read the instruction from memory, or that we don't
1703 have enough information to be able to reliably decode it. So
1704 we'll store here and hope for the best. */
1705 if (! next_pc)
1706 break;
1707
1708 /* Note the current values of the SP and FP, so we can tell if
1709 this instruction changed them, below. */
1710 pre_insn_fp = reg[MEP_FP_REGNUM];
1711 pre_insn_sp = reg[MEP_SP_REGNUM];
1712
1713 if (IS_ADD (insn))
1714 {
1715 int rn = ADD_TARGET (insn);
1716 CORE_ADDR imm6 = ADD_OFFSET (insn);
1717
1718 reg[rn] = pv_add_constant (reg[rn], imm6);
1719 }
1720 else if (IS_ADD3_16 (insn))
1721 {
1722 int rn = ADD3_16_TARGET (insn);
1723 int imm7 = ADD3_16_OFFSET (insn);
1724
1725 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1726 }
1727 else if (IS_ADD3_32 (insn))
1728 {
1729 int rn = ADD3_32_TARGET (insn);
1730 int rm = ADD3_32_SOURCE (insn);
1731 int imm16 = ADD3_32_OFFSET (insn);
1732
1733 reg[rn] = pv_add_constant (reg[rm], imm16);
1734 }
1735 else if (IS_SW_REG (insn))
1736 {
1737 int rn = SW_REG_SOURCE (insn);
1738 int rm = SW_REG_BASE (insn);
1739
1740 /* If simulating this store would require us to forget
1741 everything we know about the stack frame in the name of
1742 accuracy, it would be better to just quit now. */
1743 if (pv_area_store_would_trash (stack, reg[rm]))
1744 break;
1745
1746 if (is_arg_spill (reg[rn], reg[rm], stack))
1747 after_last_frame_setup_insn = next_pc;
1748
1749 pv_area_store (stack, reg[rm], 4, reg[rn]);
1750 }
1751 else if (IS_SW_IMMD (insn))
1752 {
1753 int rn = SW_IMMD_SOURCE (insn);
1754 int offset = SW_IMMD_OFFSET (insn);
1755 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1756
1757 /* If simulating this store would require us to forget
1758 everything we know about the stack frame in the name of
1759 accuracy, it would be better to just quit now. */
1760 if (pv_area_store_would_trash (stack, addr))
1761 break;
1762
1763 if (is_arg_spill (reg[rn], addr, stack))
1764 after_last_frame_setup_insn = next_pc;
1765
1766 pv_area_store (stack, addr, 4, reg[rn]);
1767 }
1768 else if (IS_MOV (insn))
1769 {
1770 int rn = MOV_TARGET (insn);
1771 int rm = MOV_SOURCE (insn);
1772
1773 reg[rn] = reg[rm];
1774
1775 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1776 after_last_frame_setup_insn = next_pc;
1777 }
1778 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1779 {
1780 int rn = SWBH_32_SOURCE (insn);
1781 int rm = SWBH_32_BASE (insn);
1782 int disp = SWBH_32_OFFSET (insn);
1783 int size = (IS_SB (insn) ? 1
1784 : IS_SH (insn) ? 2
1785 : IS_SW (insn) ? 4
1786 : (gdb_assert (0), 1));
1787 pv_t addr = pv_add_constant (reg[rm], disp);
1788
1789 if (pv_area_store_would_trash (stack, addr))
1790 break;
1791
1792 if (is_arg_spill (reg[rn], addr, stack))
1793 after_last_frame_setup_insn = next_pc;
1794
1795 pv_area_store (stack, addr, size, reg[rn]);
1796 }
1797 else if (IS_LDC (insn))
1798 {
1799 int rn = LDC_TARGET (insn);
1800 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1801
1802 reg[rn] = reg[cr];
1803 }
1804 else if (IS_LW (insn))
1805 {
1806 int rn = LW_TARGET (insn);
1807 int rm = LW_BASE (insn);
1808 int offset = LW_OFFSET (insn);
1809 pv_t addr = pv_add_constant (reg[rm], offset);
1810
1811 reg[rn] = pv_area_fetch (stack, addr, 4);
1812 }
1ba3e7a3
KB
1813 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1814 {
f219aedc 1815 /* When a loop appears as the first statement of a function
1ba3e7a3
KB
1816 body, gcc 4.x will use a BRA instruction to branch to the
1817 loop condition checking code. This BRA instruction is
1818 marked as part of the prologue. We therefore set next_pc
1819 to this branch target and also stop the prologue scan.
1820 The instructions at and beyond the branch target should
f219aedc
KB
1821 no longer be associated with the prologue.
1822
1823 Note that we only consider forward branches here. We
1824 presume that a forward branch is being used to skip over
1825 a loop body.
1826
1827 A backwards branch is covered by the default case below.
1828 If we were to encounter a backwards branch, that would
1829 most likely mean that we've scanned through a loop body.
1830 We definitely want to stop the prologue scan when this
1831 happens and that is precisely what is done by the default
1832 case below. */
1ba3e7a3
KB
1833 next_pc = pc + BRA_DISP (insn);
1834 after_last_frame_setup_insn = next_pc;
1835 break;
1836 }
aeb43123
KB
1837 else
1838 /* We've hit some instruction we don't know how to simulate.
1839 Strictly speaking, we should set every value we're
1840 tracking to "unknown". But we'll be optimistic, assume
1841 that we have enough information already, and stop
1842 analysis here. */
1843 break;
1844
1845 /* If this instruction changed the FP or decreased the SP (i.e.,
1846 allocated more stack space), then this may be a good place to
1847 declare the prologue finished. However, there are some
1848 exceptions:
1849
1850 - If the instruction just changed the FP back to its original
1851 value, then that's probably a restore instruction. The
1852 prologue should definitely end before that.
1853
1854 - If the instruction increased the value of the SP (that is,
1855 shrunk the frame), then it's probably part of a frame
1856 teardown sequence, and the prologue should end before that. */
1857
1858 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1859 {
1860 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1861 after_last_frame_setup_insn = next_pc;
1862 }
1863 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1864 {
1865 /* The comparison of constants looks odd, there, because .k
1866 is unsigned. All it really means is that the new value
1867 is lower than it was before the instruction. */
1868 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1869 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1870 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1871 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1872 after_last_frame_setup_insn = next_pc;
1873 }
1874
1875 pc = next_pc;
1876 }
1877
1878 /* Is the frame size (offset, really) a known constant? */
1879 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1880 result->frame_size = reg[MEP_SP_REGNUM].k;
1881
1882 /* Was the frame pointer initialized? */
1883 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1884 {
1885 result->has_frame_ptr = 1;
1886 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1887 }
1888
1889 /* Record where all the registers were saved. */
1890 pv_area_scan (stack, check_for_saved, (void *) result);
1891
1892 result->prologue_end = after_last_frame_setup_insn;
1893
1894 do_cleanups (back_to);
1895}
1896
1897
1898static CORE_ADDR
1899mep_skip_prologue (CORE_ADDR pc)
1900{
1901 char *name;
1902 CORE_ADDR func_addr, func_end;
1903 struct mep_prologue p;
1904
1905 /* Try to find the extent of the function that contains PC. */
1906 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1907 return pc;
1908
1909 mep_analyze_prologue (pc, func_end, &p);
1910 return p.prologue_end;
1911}
1912
1913
1914\f
1915/* Breakpoints. */
1916
1917static const unsigned char *
1918mep_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1919{
1920 static unsigned char breakpoint[] = { 0x70, 0x32 };
1921 *lenptr = sizeof (breakpoint);
1922 return breakpoint;
1923}
1924
1925
1926\f
1927/* Frames and frame unwinding. */
1928
1929
1930static struct mep_prologue *
1931mep_analyze_frame_prologue (struct frame_info *next_frame,
1932 void **this_prologue_cache)
1933{
1934 if (! *this_prologue_cache)
1935 {
1936 CORE_ADDR func_start, stop_addr;
1937
1938 *this_prologue_cache
1939 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1940
1c86fa97 1941 func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
aeb43123
KB
1942 stop_addr = frame_pc_unwind (next_frame);
1943
1944 /* If we couldn't find any function containing the PC, then
1945 just initialize the prologue cache, but don't do anything. */
1946 if (! func_start)
1947 stop_addr = func_start;
1948
1949 mep_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
1950 }
1951
1952 return *this_prologue_cache;
1953}
1954
1955
1956/* Given the next frame and a prologue cache, return this frame's
1957 base. */
1958static CORE_ADDR
1959mep_frame_base (struct frame_info *next_frame,
1960 void **this_prologue_cache)
1961{
1962 struct mep_prologue *p
1963 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1964
1965 /* In functions that use alloca, the distance between the stack
1966 pointer and the frame base varies dynamically, so we can't use
1967 the SP plus static information like prologue analysis to find the
1968 frame base. However, such functions must have a frame pointer,
1969 to be able to restore the SP on exit. So whenever we do have a
1970 frame pointer, use that to find the base. */
1971 if (p->has_frame_ptr)
1972 {
1973 CORE_ADDR fp
1974 = frame_unwind_register_unsigned (next_frame, MEP_FP_REGNUM);
1975 return fp - p->frame_ptr_offset;
1976 }
1977 else
1978 {
1979 CORE_ADDR sp
1980 = frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
1981 return sp - p->frame_size;
1982 }
1983}
1984
1985
1986static void
1987mep_frame_this_id (struct frame_info *next_frame,
1988 void **this_prologue_cache,
1989 struct frame_id *this_id)
1990{
1991 *this_id = frame_id_build (mep_frame_base (next_frame, this_prologue_cache),
1c86fa97 1992 frame_func_unwind (next_frame, NORMAL_FRAME));
aeb43123
KB
1993}
1994
1995
1996static void
1997mep_frame_prev_register (struct frame_info *next_frame,
1998 void **this_prologue_cache,
1999 int regnum, int *optimizedp,
2000 enum lval_type *lvalp, CORE_ADDR *addrp,
2001 int *realnump, gdb_byte *bufferp)
2002{
2003 struct mep_prologue *p
2004 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
2005
2006 /* There are a number of complications in unwinding registers on the
2007 MeP, having to do with core functions calling VLIW functions and
2008 vice versa.
2009
2010 The least significant bit of the link register, LP.LTOM, is the
2011 VLIW mode toggle bit: it's set if a core function called a VLIW
2012 function, or vice versa, and clear when the caller and callee
2013 were both in the same mode.
2014
2015 So, if we're asked to unwind the PC, then we really want to
2016 unwind the LP and clear the least significant bit. (Real return
2017 addresses are always even.) And if we want to unwind the program
2018 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2019
2020 Tweaking the register values we return in this way means that the
2021 bits in BUFFERP[] are not the same as the bits you'd find at
2022 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2023 do this. */
2024 if (regnum == MEP_PC_REGNUM)
2025 {
2026 mep_frame_prev_register (next_frame, this_prologue_cache, MEP_LP_REGNUM,
2027 optimizedp, lvalp, addrp, realnump, bufferp);
2028 store_unsigned_integer (bufferp, MEP_LP_SIZE,
2029 (extract_unsigned_integer (bufferp, MEP_LP_SIZE)
2030 & ~1));
2031 *lvalp = not_lval;
2032 }
2033 else
2034 {
2035 CORE_ADDR frame_base = mep_frame_base (next_frame, this_prologue_cache);
2036 int reg_size = register_size (get_frame_arch (next_frame), regnum);
2037
2038 /* Our caller's SP is our frame base. */
2039 if (regnum == MEP_SP_REGNUM)
2040 {
2041 *optimizedp = 0;
2042 *lvalp = not_lval;
2043 *addrp = 0;
2044 *realnump = -1;
2045 if (bufferp)
2046 store_unsigned_integer (bufferp, reg_size, frame_base);
2047 }
2048
2049 /* If prologue analysis says we saved this register somewhere,
2050 return a description of the stack slot holding it. */
2051 else if (p->reg_offset[regnum] != 1)
2052 {
2053 *optimizedp = 0;
2054 *lvalp = lval_memory;
2055 *addrp = frame_base + p->reg_offset[regnum];
2056 *realnump = -1;
2057 if (bufferp)
2058 get_frame_memory (next_frame, *addrp, bufferp, reg_size);
2059 }
2060
2061 /* Otherwise, presume we haven't changed the value of this
2062 register, and get it from the next frame. */
2063 else
2064 frame_register_unwind (next_frame, regnum,
2065 optimizedp, lvalp, addrp, realnump, bufferp);
2066
2067 /* If we need to toggle the operating mode, do so. */
2068 if (regnum == MEP_PSW_REGNUM)
2069 {
2070 int lp_optimized;
2071 enum lval_type lp_lval;
2072 CORE_ADDR lp_addr;
2073 int lp_realnum;
2074 char lp_buffer[MEP_LP_SIZE];
2075
2076 /* Get the LP's value, too. */
2077 frame_register_unwind (next_frame, MEP_LP_REGNUM,
2078 &lp_optimized, &lp_lval, &lp_addr,
2079 &lp_realnum, lp_buffer);
2080
2081 /* If LP.LTOM is set, then toggle PSW.OM. */
2082 if (extract_unsigned_integer (lp_buffer, MEP_LP_SIZE) & 0x1)
2083 store_unsigned_integer
2084 (bufferp, MEP_PSW_SIZE,
2085 (extract_unsigned_integer (bufferp, MEP_PSW_SIZE) ^ 0x1000));
2086 *lvalp = not_lval;
2087 }
2088 }
2089}
2090
2091
2092static const struct frame_unwind mep_frame_unwind = {
2093 NORMAL_FRAME,
2094 mep_frame_this_id,
2095 mep_frame_prev_register
2096};
2097
2098
2099static const struct frame_unwind *
2100mep_frame_sniffer (struct frame_info *next_frame)
2101{
2102 return &mep_frame_unwind;
2103}
2104
2105
2106/* Our general unwinding function can handle unwinding the PC. */
2107static CORE_ADDR
2108mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2109{
2110 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2111}
2112
2113
2114/* Our general unwinding function can handle unwinding the SP. */
2115static CORE_ADDR
2116mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2117{
2118 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2119}
2120
2121
2122\f
2123/* Return values. */
2124
2125
2126static int
2127mep_use_struct_convention (struct type *type)
2128{
2129 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2130}
2131
2132
2133static void
2134mep_extract_return_value (struct gdbarch *arch,
2135 struct type *type,
2136 struct regcache *regcache,
2137 gdb_byte *valbuf)
2138{
2139 int byte_order = gdbarch_byte_order (arch);
2140
2141 /* Values that don't occupy a full register appear at the less
2142 significant end of the value. This is the offset to where the
2143 value starts. */
2144 int offset;
2145
2146 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2147 pointed to by R0. */
2148 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2149
2150 if (byte_order == BFD_ENDIAN_BIG)
2151 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2152 else
2153 offset = 0;
2154
2155 /* Return values that do fit in a single register are returned in R0. */
2156 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2157 offset, TYPE_LENGTH (type),
2158 valbuf);
2159}
2160
2161
2162static void
2163mep_store_return_value (struct gdbarch *arch,
2164 struct type *type,
2165 struct regcache *regcache,
2166 const gdb_byte *valbuf)
2167{
2168 int byte_order = gdbarch_byte_order (arch);
2169
2170 /* Values that fit in a single register go in R0. */
2171 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2172 {
2173 /* Values that don't occupy a full register appear at the least
2174 significant end of the value. This is the offset to where the
2175 value starts. */
2176 int offset;
2177
2178 if (byte_order == BFD_ENDIAN_BIG)
2179 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2180 else
2181 offset = 0;
2182
2183 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2184 offset, TYPE_LENGTH (type),
2185 valbuf);
2186 }
2187
2188 /* Return values larger than a single register are returned in
2189 memory, pointed to by R0. Unfortunately, we can't count on R0
2190 pointing to the return buffer, so we raise an error here. */
2191 else
2192 error ("GDB cannot set return values larger than four bytes; "
2193 "the Media Processor's\n"
2194 "calling conventions do not provide enough information "
2195 "to do this.\n"
2196 "Try using the 'return' command with no argument.");
2197}
2198
2199enum return_value_convention
2200mep_return_value (struct gdbarch *gdbarch, struct type *type,
2201 struct regcache *regcache, gdb_byte *readbuf,
2202 const gdb_byte *writebuf)
2203{
2204 if (mep_use_struct_convention (type))
2205 {
2206 if (readbuf)
2207 {
2208 ULONGEST addr;
2209 /* Although the address of the struct buffer gets passed in R1, it's
2210 returned in R0. Fetch R0's value and then read the memory
2211 at that address. */
2212 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2213 read_memory (addr, readbuf, TYPE_LENGTH (type));
2214 }
2215 if (writebuf)
2216 {
2217 /* Return values larger than a single register are returned in
2218 memory, pointed to by R0. Unfortunately, we can't count on R0
2219 pointing to the return buffer, so we raise an error here. */
2220 error ("GDB cannot set return values larger than four bytes; "
2221 "the Media Processor's\n"
2222 "calling conventions do not provide enough information "
2223 "to do this.\n"
2224 "Try using the 'return' command with no argument.");
2225 }
2226 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2227 }
2228
2229 if (readbuf)
2230 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2231 if (writebuf)
2232 mep_store_return_value (gdbarch, type, regcache, writebuf);
2233
2234 return RETURN_VALUE_REGISTER_CONVENTION;
2235}
2236
2237\f
2238/* Inferior calls. */
2239
2240
2241static CORE_ADDR
2242mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2243{
2244 /* Require word alignment. */
2245 return sp & -4;
2246}
2247
2248
2249/* From "lang_spec2.txt":
2250
2251 4.2 Calling conventions
2252
2253 4.2.1 Core register conventions
2254
2255 - Parameters should be evaluated from left to right, and they
2256 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2257 after should be held in the stack. If the size is larger than 4
2258 bytes in the first four parameters, the pointer should be held in
2259 the registers instead. If the size is larger than 4 bytes in the
2260 fifth parameter or after, the pointer should be held in the stack.
2261
2262 - Return value of a function should be held in register $0. If the
2263 size of return value is larger than 4 bytes, $1 should hold the
2264 pointer pointing memory that would hold the return value. In this
2265 case, the first parameter should be held in $2, the second one in
2266 $3, and the third one in $4, and the forth parameter or after
2267 should be held in the stack.
2268
2269 [This doesn't say so, but arguments shorter than four bytes are
2270 passed in the least significant end of a four-byte word when
2271 they're passed on the stack.] */
2272
2273
2274/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2275 large to fit in a register, save it on the stack, and place its
2276 address in COPY[i]. SP is the initial stack pointer; return the
2277 new stack pointer. */
2278static CORE_ADDR
2279push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2280 CORE_ADDR copy[])
2281{
2282 int i;
2283
2284 for (i = 0; i < argc; i++)
2285 {
2286 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2287
2288 if (arg_len > MEP_GPR_SIZE)
2289 {
2290 /* Reserve space for the copy, and then round the SP down, to
2291 make sure it's all aligned properly. */
2292 sp = (sp - arg_len) & -4;
2293 write_memory (sp, value_contents (argv[i]), arg_len);
2294 copy[i] = sp;
2295 }
2296 }
2297
2298 return sp;
2299}
2300
2301
2302static CORE_ADDR
2303mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2304 struct regcache *regcache, CORE_ADDR bp_addr,
2305 int argc, struct value **argv, CORE_ADDR sp,
2306 int struct_return,
2307 CORE_ADDR struct_addr)
2308{
2309 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2310 CORE_ADDR func_addr = find_function_addr (function, NULL);
2311 int i;
2312
2313 /* The number of the next register available to hold an argument. */
2314 int arg_reg;
2315
2316 /* The address of the next stack slot available to hold an argument. */
2317 CORE_ADDR arg_stack;
2318
2319 /* The address of the end of the stack area for arguments. This is
2320 just for error checking. */
2321 CORE_ADDR arg_stack_end;
2322
2323 sp = push_large_arguments (sp, argc, argv, copy);
2324
2325 /* Reserve space for the stack arguments, if any. */
2326 arg_stack_end = sp;
2327 if (argc + (struct_addr ? 1 : 0) > 4)
2328 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2329
2330 arg_reg = MEP_R1_REGNUM;
2331 arg_stack = sp;
2332
2333 /* If we're returning a structure by value, push the pointer to the
2334 buffer as the first argument. */
2335 if (struct_return)
2336 {
2337 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2338 arg_reg++;
2339 }
2340
2341 for (i = 0; i < argc; i++)
2342 {
2343 unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2344 ULONGEST value;
2345
2346 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2347 if (arg_size <= MEP_GPR_SIZE)
2348 value = extract_unsigned_integer (value_contents (argv[i]),
2349 TYPE_LENGTH (value_type (argv[i])));
2350
2351 /* Arguments too large to fit in a GPR get copied to the stack,
2352 and we pass a pointer to the copy. */
2353 else
2354 value = copy[i];
2355
2356 /* We use $1 -- $4 for passing arguments, then use the stack. */
2357 if (arg_reg <= MEP_R4_REGNUM)
2358 {
2359 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2360 arg_reg++;
2361 }
2362 else
2363 {
2364 char buf[MEP_GPR_SIZE];
2365 store_unsigned_integer (buf, MEP_GPR_SIZE, value);
2366 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2367 arg_stack += MEP_GPR_SIZE;
2368 }
2369 }
2370
2371 gdb_assert (arg_stack <= arg_stack_end);
2372
2373 /* Set the return address. */
2374 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2375
2376 /* Update the stack pointer. */
2377 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2378
2379 return sp;
2380}
2381
2382
2383static struct frame_id
2384mep_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2385{
2386 return frame_id_build (mep_unwind_sp (gdbarch, next_frame),
2387 frame_pc_unwind (next_frame));
2388}
2389
2390
2391\f
2392/* Initialization. */
2393
2394
2395static struct gdbarch *
2396mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2397{
2398 struct gdbarch *gdbarch;
2399 struct gdbarch_tdep *tdep;
2400
2401 /* Which me_module are we building a gdbarch object for? */
2402 CONFIG_ATTR me_module;
2403
2404 /* If we have a BFD in hand, figure out which me_module it was built
2405 for. Otherwise, use the no-particular-me_module code. */
2406 if (info.abfd)
2407 {
2408 /* The way to get the me_module code depends on the object file
2409 format. At the moment, we only know how to handle ELF. */
2410 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2411 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2412 else
2413 me_module = CONFIG_NONE;
2414 }
2415 else
2416 me_module = CONFIG_NONE;
2417
2418 /* If we're setting the architecture from a file, check the
2419 endianness of the file against that of the me_module. */
2420 if (info.abfd)
2421 {
2422 /* The negations on either side make the comparison treat all
2423 non-zero (true) values as equal. */
2424 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2425 {
2426 const char *module_name = me_module_name (me_module);
2427 const char *module_endianness
2428 = me_module_big_endian (me_module) ? "big" : "little";
2429 const char *file_name = bfd_get_filename (info.abfd);
2430 const char *file_endianness
2431 = bfd_big_endian (info.abfd) ? "big" : "little";
2432
2433 fputc_unfiltered ('\n', gdb_stderr);
2434 if (module_name)
2435 warning ("the MeP module '%s' is %s-endian, but the executable\n"
2436 "%s is %s-endian.",
2437 module_name, module_endianness,
2438 file_name, file_endianness);
2439 else
2440 warning ("the selected MeP module is %s-endian, but the "
2441 "executable\n"
2442 "%s is %s-endian.",
2443 module_endianness, file_name, file_endianness);
2444 }
2445 }
2446
2447 /* Find a candidate among the list of architectures we've created
2448 already. info->bfd_arch_info needs to match, but we also want
2449 the right me_module: the ELF header's e_flags field needs to
2450 match as well. */
2451 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2452 arches != NULL;
2453 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2454 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2455 return arches->gdbarch;
2456
2457 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2458 gdbarch = gdbarch_alloc (&info, tdep);
2459
2460 /* Get a CGEN CPU descriptor for this architecture. */
2461 {
2462 const char *mach_name = info.bfd_arch_info->printable_name;
2463 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2464 ? CGEN_ENDIAN_BIG
2465 : CGEN_ENDIAN_LITTLE);
2466
2467 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2468 CGEN_CPU_OPEN_ENDIAN, endian,
2469 CGEN_CPU_OPEN_END);
2470 }
2471
2472 tdep->me_module = me_module;
2473
2474 /* Register set. */
2475 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2476 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2477 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2478 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2479 set_gdbarch_register_name (gdbarch, mep_register_name);
2480 set_gdbarch_register_type (gdbarch, mep_register_type);
2481 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2482 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2483 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2484 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2485 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2486
2487 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2488 reggroup_add (gdbarch, all_reggroup);
2489 reggroup_add (gdbarch, general_reggroup);
2490 reggroup_add (gdbarch, save_reggroup);
2491 reggroup_add (gdbarch, restore_reggroup);
2492 reggroup_add (gdbarch, mep_csr_reggroup);
2493 reggroup_add (gdbarch, mep_cr_reggroup);
2494 reggroup_add (gdbarch, mep_ccr_reggroup);
2495
2496 /* Disassembly. */
2497 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2498
2499 /* Breakpoints. */
2500 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2501 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2502 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2503
2504 /* Frames and frame unwinding. */
2505 frame_unwind_append_sniffer (gdbarch, mep_frame_sniffer);
2506 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2507 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2508 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2509 set_gdbarch_frame_args_skip (gdbarch, 0);
2510
2511 /* Return values. */
2512 set_gdbarch_return_value (gdbarch, mep_return_value);
2513
2514 /* Inferior function calls. */
2515 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2516 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2517 set_gdbarch_unwind_dummy_id (gdbarch, mep_unwind_dummy_id);
2518
2519 return gdbarch;
2520}
2521
2522
2523void
2524_initialize_mep_tdep (void)
2525{
2526 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2527 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2528 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2529
2530 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2531
2532 mep_init_pseudoregister_maps ();
2533}
This page took 0.207747 seconds and 4 git commands to generate.