2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
CommitLineData
75c9abc6 1/* Target-dependent code for GNU/Linux on MIPS processors.
a094c6fb 2
6aba47ca 3 Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007
76a9d10f 4 Free Software Foundation, Inc.
2aa830e4
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
2aa830e4
DJ
22
23#include "defs.h"
24#include "gdbcore.h"
25#include "target.h"
26#include "solib-svr4.h"
19ed69dd 27#include "osabi.h"
96f026fc 28#include "mips-tdep.h"
19ed69dd 29#include "gdb_string.h"
96f026fc 30#include "gdb_assert.h"
6de918a6 31#include "frame.h"
2fdf551c 32#include "regcache.h"
5792a79b
DJ
33#include "trad-frame.h"
34#include "tramp-frame.h"
e6bb342a 35#include "gdbtypes.h"
5ea03926 36#include "solib.h"
7d522c90
DJ
37#include "solib-svr4.h"
38#include "solist.h"
982e9687 39#include "symtab.h"
d37eb719 40#include "mips-linux-tdep.h"
2aa830e4 41
7d522c90
DJ
42static struct target_so_ops mips_svr4_so_ops;
43
2aa830e4 44/* Figure out where the longjmp will land.
295093a4
MS
45 We expect the first arg to be a pointer to the jmp_buf structure
46 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
47 at. The pc is copied into PC. This routine returns 1 on
48 success. */
2aa830e4 49
19ed69dd
KB
50#define MIPS_LINUX_JB_ELEMENT_SIZE 4
51#define MIPS_LINUX_JB_PC 0
52
53static int
2aa830e4
DJ
54mips_linux_get_longjmp_target (CORE_ADDR *pc)
55{
56 CORE_ADDR jb_addr;
57 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
58
613e114f 59 jb_addr = read_register (MIPS_A0_REGNUM);
2aa830e4 60
bf072999
DJ
61 if (target_read_memory (jb_addr
62 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
63 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
2aa830e4
DJ
64 return 0;
65
7c0b4a20 66 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
2aa830e4
DJ
67
68 return 1;
69}
70
4246e332 71/* Transform the bits comprising a 32-bit register to the right size
23a6d369
AC
72 for regcache_raw_supply(). This is needed when mips_isa_regsize()
73 is 8. */
96f026fc
KB
74
75static void
28f5035f 76supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
96f026fc 77{
d37eb719 78 gdb_byte buf[MAX_REGISTER_SIZE];
3acba339 79 store_signed_integer (buf, register_size (current_gdbarch, regnum),
96f026fc 80 extract_signed_integer (addr, 4));
28f5035f 81 regcache_raw_supply (regcache, regnum, buf);
96f026fc
KB
82}
83
2aa830e4
DJ
84/* Unpack an elf_gregset_t into GDB's register cache. */
85
d37eb719 86void
28f5035f
UW
87mips_supply_gregset (struct regcache *regcache,
88 const mips_elf_gregset_t *gregsetp)
2aa830e4
DJ
89{
90 int regi;
28f5035f 91 const mips_elf_greg_t *regp = *gregsetp;
d9d9c31f 92 char zerobuf[MAX_REGISTER_SIZE];
bf072999 93
d9d9c31f 94 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4
DJ
95
96 for (regi = EF_REG0; regi <= EF_REG31; regi++)
28f5035f 97 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
2aa830e4 98
28f5035f
UW
99 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
100 regp + EF_LO);
101 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
102 regp + EF_HI);
56cea623 103
28f5035f
UW
104 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
105 regp + EF_CP0_EPC);
106 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
107 regp + EF_CP0_BADVADDR);
108 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
109 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
110 regp + EF_CP0_CAUSE);
2aa830e4
DJ
111
112 /* Fill inaccessible registers with zero. */
28f5035f 113 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
295093a4
MS
114 for (regi = MIPS_FIRST_EMBED_REGNUM;
115 regi < MIPS_LAST_EMBED_REGNUM;
116 regi++)
28f5035f 117 regcache_raw_supply (regcache, regi, zerobuf);
2aa830e4
DJ
118}
119
120/* Pack our registers (or one register) into an elf_gregset_t. */
121
d37eb719 122void
28f5035f
UW
123mips_fill_gregset (const struct regcache *regcache,
124 mips_elf_gregset_t *gregsetp, int regno)
2aa830e4
DJ
125{
126 int regaddr, regi;
d37eb719 127 mips_elf_greg_t *regp = *gregsetp;
96f026fc 128 void *dst;
2aa830e4
DJ
129
130 if (regno == -1)
131 {
d37eb719 132 memset (regp, 0, sizeof (mips_elf_gregset_t));
2aa830e4 133 for (regi = 0; regi < 32; regi++)
28f5035f
UW
134 mips_fill_gregset (regcache, gregsetp, regi);
135 mips_fill_gregset (regcache, gregsetp,
136 mips_regnum (current_gdbarch)->lo);
137 mips_fill_gregset (regcache, gregsetp,
138 mips_regnum (current_gdbarch)->hi);
139 mips_fill_gregset (regcache, gregsetp,
140 mips_regnum (current_gdbarch)->pc);
141 mips_fill_gregset (regcache, gregsetp,
142 mips_regnum (current_gdbarch)->badvaddr);
143 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
144 mips_fill_gregset (regcache, gregsetp,
145 mips_regnum (current_gdbarch)->cause);
2aa830e4
DJ
146 return;
147 }
148
149 if (regno < 32)
150 {
2aa830e4 151 dst = regp + regno + EF_REG0;
28f5035f 152 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
153 return;
154 }
155
56cea623
AC
156 if (regno == mips_regnum (current_gdbarch)->lo)
157 regaddr = EF_LO;
158 else if (regno == mips_regnum (current_gdbarch)->hi)
159 regaddr = EF_HI;
160 else if (regno == mips_regnum (current_gdbarch)->pc)
161 regaddr = EF_CP0_EPC;
162 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
163 regaddr = EF_CP0_BADVADDR;
24e05951 164 else if (regno == MIPS_PS_REGNUM)
56cea623
AC
165 regaddr = EF_CP0_STATUS;
166 else if (regno == mips_regnum (current_gdbarch)->cause)
167 regaddr = EF_CP0_CAUSE;
168 else
169 regaddr = -1;
2aa830e4
DJ
170
171 if (regaddr != -1)
172 {
2aa830e4 173 dst = regp + regaddr;
28f5035f 174 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
175 }
176}
177
178/* Likewise, unpack an elf_fpregset_t. */
179
d37eb719 180void
28f5035f
UW
181mips_supply_fpregset (struct regcache *regcache,
182 const mips_elf_fpregset_t *fpregsetp)
2aa830e4 183{
52f0bd74 184 int regi;
d9d9c31f 185 char zerobuf[MAX_REGISTER_SIZE];
bf072999 186
d9d9c31f 187 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4
DJ
188
189 for (regi = 0; regi < 32; regi++)
28f5035f 190 regcache_raw_supply (regcache, FP0_REGNUM + regi, *fpregsetp + regi);
2aa830e4 191
28f5035f 192 regcache_raw_supply (regcache,
23a6d369 193 mips_regnum (current_gdbarch)->fp_control_status,
28f5035f 194 *fpregsetp + 32);
2aa830e4 195
295093a4 196 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
28f5035f 197 regcache_raw_supply (regcache,
23a6d369
AC
198 mips_regnum (current_gdbarch)->fp_implementation_revision,
199 zerobuf);
2aa830e4
DJ
200}
201
202/* Likewise, pack one or all floating point registers into an
203 elf_fpregset_t. */
204
d37eb719 205void
28f5035f
UW
206mips_fill_fpregset (const struct regcache *regcache,
207 mips_elf_fpregset_t *fpregsetp, int regno)
2aa830e4
DJ
208{
209 char *from, *to;
210
211 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
212 {
2aa830e4 213 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
28f5035f 214 regcache_raw_collect (regcache, regno, to);
2aa830e4 215 }
56cea623 216 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
2aa830e4 217 {
2aa830e4 218 to = (char *) (*fpregsetp + 32);
28f5035f 219 regcache_raw_collect (regcache, regno, to);
2aa830e4
DJ
220 }
221 else if (regno == -1)
222 {
223 int regi;
224
225 for (regi = 0; regi < 32; regi++)
28f5035f
UW
226 mips_fill_fpregset (regcache, fpregsetp, FP0_REGNUM + regi);
227 mips_fill_fpregset (regcache, fpregsetp,
9f62d0e2 228 mips_regnum (current_gdbarch)->fp_control_status);
2aa830e4
DJ
229 }
230}
231
96f026fc
KB
232/* Support for 64-bit ABIs. */
233
96f026fc 234/* Figure out where the longjmp will land.
295093a4
MS
235 We expect the first arg to be a pointer to the jmp_buf structure
236 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
237 at. The pc is copied into PC. This routine returns 1 on
238 success. */
96f026fc
KB
239
240/* Details about jmp_buf. */
241
242#define MIPS64_LINUX_JB_PC 0
243
244static int
245mips64_linux_get_longjmp_target (CORE_ADDR *pc)
246{
247 CORE_ADDR jb_addr;
248 void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
249 int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
250
613e114f 251 jb_addr = read_register (MIPS_A0_REGNUM);
96f026fc
KB
252
253 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
254 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
255 return 0;
256
7c0b4a20 257 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
96f026fc
KB
258
259 return 1;
260}
261
d37eb719
DJ
262/* Register set support functions. These operate on standard 64-bit
263 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
264 target will still use the 64-bit format for PTRACE_GETREGS. */
265
266/* Supply a 64-bit register. */
96f026fc 267
d37eb719 268void
28f5035f
UW
269supply_64bit_reg (struct regcache *regcache, int regnum,
270 const gdb_byte *buf)
d37eb719
DJ
271{
272 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
273 && register_size (current_gdbarch, regnum) == 4)
28f5035f 274 regcache_raw_supply (regcache, regnum, buf + 4);
d37eb719 275 else
28f5035f 276 regcache_raw_supply (regcache, regnum, buf);
d37eb719
DJ
277}
278
279/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
280
281void
28f5035f
UW
282mips64_supply_gregset (struct regcache *regcache,
283 const mips64_elf_gregset_t *gregsetp)
96f026fc
KB
284{
285 int regi;
28f5035f 286 const mips64_elf_greg_t *regp = *gregsetp;
d37eb719 287 gdb_byte zerobuf[MAX_REGISTER_SIZE];
96f026fc 288
d9d9c31f 289 memset (zerobuf, 0, MAX_REGISTER_SIZE);
96f026fc
KB
290
291 for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
28f5035f
UW
292 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
293 (const gdb_byte *)(regp + regi));
294
295 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
296 (const gdb_byte *) (regp + MIPS64_EF_LO));
297 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
298 (const gdb_byte *) (regp + MIPS64_EF_HI));
299
300 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
301 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
302 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
303 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
304 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
305 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
306 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
307 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
96f026fc
KB
308
309 /* Fill inaccessible registers with zero. */
28f5035f 310 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
295093a4
MS
311 for (regi = MIPS_FIRST_EMBED_REGNUM;
312 regi < MIPS_LAST_EMBED_REGNUM;
313 regi++)
28f5035f 314 regcache_raw_supply (regcache, regi, zerobuf);
96f026fc
KB
315}
316
d37eb719 317/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
96f026fc 318
d37eb719 319void
28f5035f
UW
320mips64_fill_gregset (const struct regcache *regcache,
321 mips64_elf_gregset_t *gregsetp, int regno)
96f026fc
KB
322{
323 int regaddr, regi;
324 mips64_elf_greg_t *regp = *gregsetp;
325 void *src, *dst;
326
327 if (regno == -1)
328 {
329 memset (regp, 0, sizeof (mips64_elf_gregset_t));
330 for (regi = 0; regi < 32; regi++)
28f5035f
UW
331 mips64_fill_gregset (regcache, gregsetp, regi);
332 mips64_fill_gregset (regcache, gregsetp,
333 mips_regnum (current_gdbarch)->lo);
334 mips64_fill_gregset (regcache, gregsetp,
335 mips_regnum (current_gdbarch)->hi);
336 mips64_fill_gregset (regcache, gregsetp,
337 mips_regnum (current_gdbarch)->pc);
338 mips64_fill_gregset (regcache, gregsetp,
295093a4 339 mips_regnum (current_gdbarch)->badvaddr);
28f5035f
UW
340 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
341 mips64_fill_gregset (regcache, gregsetp,
295093a4 342 mips_regnum (current_gdbarch)->cause);
96f026fc
KB
343 return;
344 }
345
346 if (regno < 32)
d37eb719
DJ
347 regaddr = regno + MIPS64_EF_REG0;
348 else if (regno == mips_regnum (current_gdbarch)->lo)
56cea623
AC
349 regaddr = MIPS64_EF_LO;
350 else if (regno == mips_regnum (current_gdbarch)->hi)
351 regaddr = MIPS64_EF_HI;
352 else if (regno == mips_regnum (current_gdbarch)->pc)
353 regaddr = MIPS64_EF_CP0_EPC;
354 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
355 regaddr = MIPS64_EF_CP0_BADVADDR;
24e05951 356 else if (regno == MIPS_PS_REGNUM)
56cea623
AC
357 regaddr = MIPS64_EF_CP0_STATUS;
358 else if (regno == mips_regnum (current_gdbarch)->cause)
359 regaddr = MIPS64_EF_CP0_CAUSE;
360 else
361 regaddr = -1;
96f026fc
KB
362
363 if (regaddr != -1)
364 {
d37eb719
DJ
365 gdb_byte buf[MAX_REGISTER_SIZE];
366 LONGEST val;
367
28f5035f 368 regcache_raw_collect (regcache, regno, buf);
d37eb719
DJ
369 val = extract_signed_integer (buf,
370 register_size (current_gdbarch, regno));
96f026fc 371 dst = regp + regaddr;
d37eb719 372 store_signed_integer (dst, 8, val);
96f026fc
KB
373 }
374}
375
376/* Likewise, unpack an elf_fpregset_t. */
377
d37eb719 378void
28f5035f
UW
379mips64_supply_fpregset (struct regcache *regcache,
380 const mips64_elf_fpregset_t *fpregsetp)
96f026fc 381{
52f0bd74 382 int regi;
96f026fc 383
d37eb719
DJ
384 /* See mips_linux_o32_sigframe_init for a description of the
385 peculiar FP register layout. */
386 if (register_size (current_gdbarch, FP0_REGNUM) == 4)
387 for (regi = 0; regi < 32; regi++)
388 {
28f5035f 389 const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
d37eb719
DJ
390 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
391 reg_ptr += 4;
28f5035f 392 regcache_raw_supply (regcache, FP0_REGNUM + regi, reg_ptr);
d37eb719
DJ
393 }
394 else
395 for (regi = 0; regi < 32; regi++)
28f5035f
UW
396 regcache_raw_supply (regcache, FP0_REGNUM + regi,
397 (const char *)(*fpregsetp + regi));
d37eb719 398
28f5035f
UW
399 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->fp_control_status,
400 (const gdb_byte *)(*fpregsetp + 32));
d37eb719
DJ
401
402 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
403 include it - but the result of PTRACE_GETFPREGS does. The best we
404 can do is to assume that its value is present. */
28f5035f
UW
405 supply_32bit_reg (regcache,
406 mips_regnum (current_gdbarch)->fp_implementation_revision,
407 (const gdb_byte *)(*fpregsetp + 32) + 4);
96f026fc
KB
408}
409
410/* Likewise, pack one or all floating point registers into an
411 elf_fpregset_t. */
412
d37eb719 413void
28f5035f
UW
414mips64_fill_fpregset (const struct regcache *regcache,
415 mips64_elf_fpregset_t *fpregsetp, int regno)
96f026fc 416{
d37eb719 417 gdb_byte *to;
96f026fc
KB
418
419 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
420 {
d37eb719
DJ
421 /* See mips_linux_o32_sigframe_init for a description of the
422 peculiar FP register layout. */
423 if (register_size (current_gdbarch, regno) == 4)
424 {
425 int regi = regno - FP0_REGNUM;
426
427 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
428 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
429 to += 4;
28f5035f 430 regcache_raw_collect (regcache, regno, to);
d37eb719
DJ
431 }
432 else
433 {
434 to = (gdb_byte *) (*fpregsetp + regno - FP0_REGNUM);
28f5035f 435 regcache_raw_collect (regcache, regno, to);
d37eb719 436 }
96f026fc 437 }
56cea623 438 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
96f026fc 439 {
d37eb719
DJ
440 gdb_byte buf[MAX_REGISTER_SIZE];
441 LONGEST val;
442
28f5035f 443 regcache_raw_collect (regcache, regno, buf);
d37eb719
DJ
444 val = extract_signed_integer (buf,
445 register_size (current_gdbarch, regno));
446 to = (gdb_byte *) (*fpregsetp + 32);
447 store_signed_integer (to, 4, val);
448 }
449 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
450 {
451 gdb_byte buf[MAX_REGISTER_SIZE];
452 LONGEST val;
453
28f5035f 454 regcache_raw_collect (regcache, regno, buf);
d37eb719
DJ
455 val = extract_signed_integer (buf,
456 register_size (current_gdbarch, regno));
457 to = (gdb_byte *) (*fpregsetp + 32) + 4;
458 store_signed_integer (to, 4, val);
96f026fc
KB
459 }
460 else if (regno == -1)
461 {
462 int regi;
463
464 for (regi = 0; regi < 32; regi++)
28f5035f
UW
465 mips64_fill_fpregset (regcache, fpregsetp, FP0_REGNUM + regi);
466 mips64_fill_fpregset (regcache, fpregsetp,
d37eb719 467 mips_regnum (current_gdbarch)->fp_control_status);
28f5035f
UW
468 mips64_fill_fpregset (regcache, fpregsetp,
469 (mips_regnum (current_gdbarch)
470 ->fp_implementation_revision));
96f026fc
KB
471 }
472}
473
474
2aa830e4
DJ
475/* Use a local version of this function to get the correct types for
476 regsets, until multi-arch core support is ready. */
477
478static void
9eefc95f
UW
479fetch_core_registers (struct regcache *regcache,
480 char *core_reg_sect, unsigned core_reg_size,
2aa830e4
DJ
481 int which, CORE_ADDR reg_addr)
482{
d37eb719
DJ
483 mips_elf_gregset_t gregset;
484 mips_elf_fpregset_t fpregset;
96f026fc
KB
485 mips64_elf_gregset_t gregset64;
486 mips64_elf_fpregset_t fpregset64;
2aa830e4
DJ
487
488 if (which == 0)
489 {
96f026fc 490 if (core_reg_size == sizeof (gregset))
2aa830e4 491 {
96f026fc 492 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
9eefc95f 493 mips_supply_gregset (regcache,
28f5035f 494 (const mips_elf_gregset_t *) &gregset);
96f026fc
KB
495 }
496 else if (core_reg_size == sizeof (gregset64))
497 {
498 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
9eefc95f 499 mips64_supply_gregset (regcache,
28f5035f 500 (const mips64_elf_gregset_t *) &gregset64);
2aa830e4
DJ
501 }
502 else
503 {
8a3fe4f8 504 warning (_("wrong size gregset struct in core file"));
2aa830e4
DJ
505 }
506 }
507 else if (which == 2)
508 {
96f026fc 509 if (core_reg_size == sizeof (fpregset))
2aa830e4 510 {
96f026fc 511 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
9eefc95f 512 mips_supply_fpregset (regcache,
28f5035f 513 (const mips_elf_fpregset_t *) &fpregset);
96f026fc
KB
514 }
515 else if (core_reg_size == sizeof (fpregset64))
516 {
295093a4
MS
517 memcpy ((char *) &fpregset64, core_reg_sect,
518 sizeof (fpregset64));
9eefc95f 519 mips64_supply_fpregset (regcache,
28f5035f 520 (const mips64_elf_fpregset_t *) &fpregset64);
2aa830e4
DJ
521 }
522 else
523 {
8a3fe4f8 524 warning (_("wrong size fpregset struct in core file"));
2aa830e4
DJ
525 }
526 }
527}
528
529/* Register that we are able to handle ELF file formats using standard
530 procfs "regset" structures. */
531
532static struct core_fns regset_core_fns =
533{
534 bfd_target_elf_flavour, /* core_flavour */
535 default_check_format, /* check_format */
536 default_core_sniffer, /* core_sniffer */
537 fetch_core_registers, /* core_read_registers */
538 NULL /* next */
539};
540
96f026fc 541
295093a4
MS
542/* Check the code at PC for a dynamic linker lazy resolution stub.
543 Because they aren't in the .plt section, we pattern-match on the
544 code generated by GNU ld. They look like this:
6de918a6
DJ
545
546 lw t9,0x8010(gp)
547 addu t7,ra
548 jalr t9,ra
549 addiu t8,zero,INDEX
550
295093a4
MS
551 (with the appropriate doubleword instructions for N64). Also
552 return the dynamic symbol index used in the last instruction. */
6de918a6
DJ
553
554static int
555mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
556{
557 unsigned char buf[28], *p;
558 ULONGEST insn, insn1;
559 int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
560
561 read_memory (pc - 12, buf, 28);
562
563 if (n64)
564 {
565 /* ld t9,0x8010(gp) */
566 insn1 = 0xdf998010;
567 }
568 else
569 {
570 /* lw t9,0x8010(gp) */
571 insn1 = 0x8f998010;
572 }
573
574 p = buf + 12;
575 while (p >= buf)
576 {
577 insn = extract_unsigned_integer (p, 4);
578 if (insn == insn1)
579 break;
580 p -= 4;
581 }
582 if (p < buf)
583 return 0;
584
585 insn = extract_unsigned_integer (p + 4, 4);
586 if (n64)
587 {
588 /* daddu t7,ra */
589 if (insn != 0x03e0782d)
590 return 0;
591 }
592 else
593 {
594 /* addu t7,ra */
595 if (insn != 0x03e07821)
596 return 0;
597 }
295093a4 598
6de918a6
DJ
599 insn = extract_unsigned_integer (p + 8, 4);
600 /* jalr t9,ra */
601 if (insn != 0x0320f809)
602 return 0;
603
604 insn = extract_unsigned_integer (p + 12, 4);
605 if (n64)
606 {
607 /* daddiu t8,zero,0 */
608 if ((insn & 0xffff0000) != 0x64180000)
609 return 0;
610 }
611 else
612 {
613 /* addiu t8,zero,0 */
614 if ((insn & 0xffff0000) != 0x24180000)
615 return 0;
616 }
617
618 return (insn & 0xffff);
619}
620
295093a4
MS
621/* Return non-zero iff PC belongs to the dynamic linker resolution
622 code or to a stub. */
6de918a6 623
7d522c90 624static int
6de918a6
DJ
625mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
626{
295093a4
MS
627 /* Check whether PC is in the dynamic linker. This also checks
628 whether it is in the .plt section, which MIPS does not use. */
7d522c90 629 if (svr4_in_dynsym_resolve_code (pc))
6de918a6
DJ
630 return 1;
631
295093a4
MS
632 /* Pattern match for the stub. It would be nice if there were a
633 more efficient way to avoid this check. */
6de918a6
DJ
634 if (mips_linux_in_dynsym_stub (pc, NULL))
635 return 1;
636
637 return 0;
638}
639
640/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
641 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
642 implementation of this triggers at "fixup" from the same objfile as
c4c5b7ba
AC
643 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
644 "__dl_runtime_resolve" directly. An unresolved PLT entry will
645 point to _dl_runtime_resolve, which will first call
646 __dl_runtime_resolve, and then pass control to the resolved
647 function. */
6de918a6
DJ
648
649static CORE_ADDR
650mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
651{
652 struct minimal_symbol *resolver;
653
654 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
655
656 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
295093a4 657 return frame_pc_unwind (get_current_frame ());
6de918a6
DJ
658
659 return 0;
295093a4 660}
6de918a6 661
5792a79b
DJ
662/* Signal trampoline support. There are four supported layouts for a
663 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
664 n64 rt_sigframe. We handle them all independently; not the most
665 efficient way, but simplest. First, declare all the unwinders. */
666
667static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
668 struct frame_info *next_frame,
669 struct trad_frame_cache *this_cache,
670 CORE_ADDR func);
671
672static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
673 struct frame_info *next_frame,
674 struct trad_frame_cache *this_cache,
675 CORE_ADDR func);
676
677#define MIPS_NR_LINUX 4000
678#define MIPS_NR_N64_LINUX 5000
679#define MIPS_NR_N32_LINUX 6000
680
681#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
682#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
683#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
684#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
685
686#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
687#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
688#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
689#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
690#define MIPS_INST_SYSCALL 0x0000000c
691
2cd8546d
AC
692static const struct tramp_frame mips_linux_o32_sigframe = {
693 SIGTRAMP_FRAME,
5792a79b 694 4,
2cd8546d
AC
695 {
696 { MIPS_INST_LI_V0_SIGRETURN, -1 },
697 { MIPS_INST_SYSCALL, -1 },
698 { TRAMP_SENTINEL_INSN, -1 }
699 },
5792a79b
DJ
700 mips_linux_o32_sigframe_init
701};
702
2cd8546d
AC
703static const struct tramp_frame mips_linux_o32_rt_sigframe = {
704 SIGTRAMP_FRAME,
5792a79b 705 4,
2cd8546d
AC
706 {
707 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
708 { MIPS_INST_SYSCALL, -1 },
709 { TRAMP_SENTINEL_INSN, -1 } },
5792a79b
DJ
710 mips_linux_o32_sigframe_init
711};
712
2cd8546d
AC
713static const struct tramp_frame mips_linux_n32_rt_sigframe = {
714 SIGTRAMP_FRAME,
5792a79b 715 4,
2cd8546d
AC
716 {
717 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
718 { MIPS_INST_SYSCALL, -1 },
719 { TRAMP_SENTINEL_INSN, -1 }
720 },
5792a79b
DJ
721 mips_linux_n32n64_sigframe_init
722};
723
2cd8546d
AC
724static const struct tramp_frame mips_linux_n64_rt_sigframe = {
725 SIGTRAMP_FRAME,
5792a79b 726 4,
fcbd8a5c
TS
727 {
728 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
729 { MIPS_INST_SYSCALL, -1 },
730 { TRAMP_SENTINEL_INSN, -1 }
731 },
5792a79b
DJ
732 mips_linux_n32n64_sigframe_init
733};
734
735/* *INDENT-OFF* */
736/* The unwinder for o32 signal frames. The legacy structures look
737 like this:
738
739 struct sigframe {
740 u32 sf_ass[4]; [argument save space for o32]
741 u32 sf_code[2]; [signal trampoline]
742 struct sigcontext sf_sc;
743 sigset_t sf_mask;
744 };
745
746 struct sigcontext {
747 unsigned int sc_regmask; [Unused]
748 unsigned int sc_status;
749 unsigned long long sc_pc;
750 unsigned long long sc_regs[32];
751 unsigned long long sc_fpregs[32];
752 unsigned int sc_ownedfp;
753 unsigned int sc_fpc_csr;
754 unsigned int sc_fpc_eir; [Unused]
755 unsigned int sc_used_math;
756 unsigned int sc_ssflags; [Unused]
757 [Alignment hole of four bytes]
758 unsigned long long sc_mdhi;
759 unsigned long long sc_mdlo;
760
761 unsigned int sc_cause; [Unused]
762 unsigned int sc_badvaddr; [Unused]
763
764 unsigned long sc_sigset[4]; [kernel's sigset_t]
765 };
766
767 The RT signal frames look like this:
768
769 struct rt_sigframe {
770 u32 rs_ass[4]; [argument save space for o32]
771 u32 rs_code[2] [signal trampoline]
772 struct siginfo rs_info;
773 struct ucontext rs_uc;
774 };
775
776 struct ucontext {
777 unsigned long uc_flags;
778 struct ucontext *uc_link;
779 stack_t uc_stack;
780 [Alignment hole of four bytes]
781 struct sigcontext uc_mcontext;
782 sigset_t uc_sigmask;
783 }; */
784/* *INDENT-ON* */
785
786#define SIGFRAME_CODE_OFFSET (4 * 4)
787#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
788
789#define RTSIGFRAME_SIGINFO_SIZE 128
790#define STACK_T_SIZE (3 * 4)
791#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
792#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
793 + RTSIGFRAME_SIGINFO_SIZE \
794 + UCONTEXT_SIGCONTEXT_OFFSET)
795
796#define SIGCONTEXT_PC (1 * 8)
797#define SIGCONTEXT_REGS (2 * 8)
798#define SIGCONTEXT_FPREGS (34 * 8)
799#define SIGCONTEXT_FPCSR (66 * 8 + 4)
800#define SIGCONTEXT_HI (69 * 8)
801#define SIGCONTEXT_LO (70 * 8)
802#define SIGCONTEXT_CAUSE (71 * 8 + 0)
803#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
804
805#define SIGCONTEXT_REG_SIZE 8
806
807static void
808mips_linux_o32_sigframe_init (const struct tramp_frame *self,
809 struct frame_info *next_frame,
810 struct trad_frame_cache *this_cache,
811 CORE_ADDR func)
812{
813 int ireg, reg_position;
814 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
815 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
37c4d197 816 CORE_ADDR regs_base;
5792a79b
DJ
817
818 if (self == &mips_linux_o32_sigframe)
819 sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
820 else
821 sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
295093a4
MS
822
823 /* I'm not proud of this hack. Eventually we will have the
824 infrastructure to indicate the size of saved registers on a
825 per-frame basis, but right now we don't; the kernel saves eight
37c4d197
DJ
826 bytes but we only want four. Use regs_base to access any
827 64-bit fields. */
5792a79b 828 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
37c4d197
DJ
829 regs_base = sigcontext_base + 4;
830 else
831 regs_base = sigcontext_base;
5792a79b
DJ
832
833#if 0
834 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
37c4d197 835 regs_base + SIGCONTEXT_REGS);
5792a79b
DJ
836#endif
837
838 for (ireg = 1; ireg < 32; ireg++)
295093a4
MS
839 trad_frame_set_reg_addr (this_cache,
840 ireg + MIPS_ZERO_REGNUM + NUM_REGS,
37c4d197 841 regs_base + SIGCONTEXT_REGS
5792a79b
DJ
842 + ireg * SIGCONTEXT_REG_SIZE);
843
37c4d197
DJ
844 /* The way that floating point registers are saved, unfortunately,
845 depends on the architecture the kernel is built for. For the r3000 and
846 tx39, four bytes of each register are at the beginning of each of the
847 32 eight byte slots. For everything else, the registers are saved
848 using double precision; only the even-numbered slots are initialized,
849 and the high bits are the odd-numbered register. Assume the latter
850 layout, since we can't tell, and it's much more common. Which bits are
851 the "high" bits depends on endianness. */
5792a79b 852 for (ireg = 0; ireg < 32; ireg++)
37c4d197
DJ
853 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (ireg & 1))
854 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
855 sigcontext_base + SIGCONTEXT_FPREGS + 4
856 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
857 else
858 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
859 sigcontext_base + SIGCONTEXT_FPREGS
860 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
5792a79b
DJ
861
862 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
37c4d197 863 regs_base + SIGCONTEXT_PC);
5792a79b 864
295093a4
MS
865 trad_frame_set_reg_addr (this_cache,
866 regs->fp_control_status + NUM_REGS,
5792a79b
DJ
867 sigcontext_base + SIGCONTEXT_FPCSR);
868 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
37c4d197 869 regs_base + SIGCONTEXT_HI);
5792a79b 870 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
37c4d197 871 regs_base + SIGCONTEXT_LO);
5792a79b
DJ
872 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
873 sigcontext_base + SIGCONTEXT_CAUSE);
874 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
875 sigcontext_base + SIGCONTEXT_BADVADDR);
876
877 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
878 trad_frame_set_id (this_cache,
295093a4
MS
879 frame_id_build (func - SIGFRAME_CODE_OFFSET,
880 func));
5792a79b
DJ
881}
882
883/* *INDENT-OFF* */
884/* For N32/N64 things look different. There is no non-rt signal frame.
885
886 struct rt_sigframe_n32 {
887 u32 rs_ass[4]; [ argument save space for o32 ]
888 u32 rs_code[2]; [ signal trampoline ]
889 struct siginfo rs_info;
890 struct ucontextn32 rs_uc;
891 };
892
893 struct ucontextn32 {
894 u32 uc_flags;
895 s32 uc_link;
896 stack32_t uc_stack;
897 struct sigcontext uc_mcontext;
898 sigset_t uc_sigmask; [ mask last for extensibility ]
899 };
295093a4 900
5792a79b
DJ
901 struct rt_sigframe_n32 {
902 u32 rs_ass[4]; [ argument save space for o32 ]
903 u32 rs_code[2]; [ signal trampoline ]
904 struct siginfo rs_info;
905 struct ucontext rs_uc;
906 };
907
908 struct ucontext {
909 unsigned long uc_flags;
910 struct ucontext *uc_link;
911 stack_t uc_stack;
912 struct sigcontext uc_mcontext;
913 sigset_t uc_sigmask; [ mask last for extensibility ]
914 };
915
916 And the sigcontext is different (this is for both n32 and n64):
917
918 struct sigcontext {
919 unsigned long long sc_regs[32];
920 unsigned long long sc_fpregs[32];
921 unsigned long long sc_mdhi;
922 unsigned long long sc_mdlo;
923 unsigned long long sc_pc;
924 unsigned int sc_status;
925 unsigned int sc_fpc_csr;
926 unsigned int sc_fpc_eir;
927 unsigned int sc_used_math;
928 unsigned int sc_cause;
929 unsigned int sc_badvaddr;
930 }; */
931/* *INDENT-ON* */
932
933#define N32_STACK_T_SIZE STACK_T_SIZE
934#define N64_STACK_T_SIZE (2 * 8 + 4)
935#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
936#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
937#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
938 + RTSIGFRAME_SIGINFO_SIZE \
939 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
940#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
941 + RTSIGFRAME_SIGINFO_SIZE \
942 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
943
944#define N64_SIGCONTEXT_REGS (0 * 8)
945#define N64_SIGCONTEXT_FPREGS (32 * 8)
946#define N64_SIGCONTEXT_HI (64 * 8)
947#define N64_SIGCONTEXT_LO (65 * 8)
948#define N64_SIGCONTEXT_PC (66 * 8)
949#define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
950#define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
951#define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
952#define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
953
954#define N64_SIGCONTEXT_REG_SIZE 8
295093a4 955
5792a79b
DJ
956static void
957mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
958 struct frame_info *next_frame,
959 struct trad_frame_cache *this_cache,
960 CORE_ADDR func)
961{
962 int ireg, reg_position;
963 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
964 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
965
966 if (self == &mips_linux_n32_rt_sigframe)
967 sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
968 else
969 sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
295093a4 970
5792a79b
DJ
971#if 0
972 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
973 sigcontext_base + N64_SIGCONTEXT_REGS);
974#endif
975
976 for (ireg = 1; ireg < 32; ireg++)
295093a4
MS
977 trad_frame_set_reg_addr (this_cache,
978 ireg + MIPS_ZERO_REGNUM + NUM_REGS,
5792a79b
DJ
979 sigcontext_base + N64_SIGCONTEXT_REGS
980 + ireg * N64_SIGCONTEXT_REG_SIZE);
981
982 for (ireg = 0; ireg < 32; ireg++)
983 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
984 sigcontext_base + N64_SIGCONTEXT_FPREGS
985 + ireg * N64_SIGCONTEXT_REG_SIZE);
986
987 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
988 sigcontext_base + N64_SIGCONTEXT_PC);
989
295093a4
MS
990 trad_frame_set_reg_addr (this_cache,
991 regs->fp_control_status + NUM_REGS,
5792a79b
DJ
992 sigcontext_base + N64_SIGCONTEXT_FPCSR);
993 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
994 sigcontext_base + N64_SIGCONTEXT_HI);
995 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
996 sigcontext_base + N64_SIGCONTEXT_LO);
997 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
998 sigcontext_base + N64_SIGCONTEXT_CAUSE);
999 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
1000 sigcontext_base + N64_SIGCONTEXT_BADVADDR);
1001
1002 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1003 trad_frame_set_id (this_cache,
295093a4
MS
1004 frame_id_build (func - SIGFRAME_CODE_OFFSET,
1005 func));
5792a79b
DJ
1006}
1007
9f62d0e2 1008
5792a79b
DJ
1009/* Initialize one of the GNU/Linux OS ABIs. */
1010
19ed69dd 1011static void
295093a4
MS
1012mips_linux_init_abi (struct gdbarch_info info,
1013 struct gdbarch *gdbarch)
19ed69dd 1014{
96f026fc
KB
1015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1016 enum mips_abi abi = mips_abi (gdbarch);
1017
1018 switch (abi)
1019 {
1020 case MIPS_ABI_O32:
1021 set_gdbarch_get_longjmp_target (gdbarch,
1022 mips_linux_get_longjmp_target);
1023 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1024 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
fb2be677
AC
1025 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1026 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
96f026fc
KB
1027 break;
1028 case MIPS_ABI_N32:
1029 set_gdbarch_get_longjmp_target (gdbarch,
1030 mips_linux_get_longjmp_target);
1031 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1032 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
d05f6826
DJ
1033 set_gdbarch_long_double_bit (gdbarch, 128);
1034 /* These floatformats should probably be renamed. MIPS uses
1035 the same 128-bit IEEE floating point format that IA-64 uses,
1036 except that the quiet/signalling NaN bit is reversed (GDB
1037 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1038 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1039 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
96f026fc
KB
1040 break;
1041 case MIPS_ABI_N64:
1042 set_gdbarch_get_longjmp_target (gdbarch,
1043 mips64_linux_get_longjmp_target);
1044 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1045 (gdbarch, svr4_lp64_fetch_link_map_offsets);
d05f6826
DJ
1046 set_gdbarch_long_double_bit (gdbarch, 128);
1047 /* These floatformats should probably be renamed. MIPS uses
1048 the same 128-bit IEEE floating point format that IA-64 uses,
1049 except that the quiet/signalling NaN bit is reversed (GDB
1050 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1051 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1052 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
96f026fc
KB
1053 break;
1054 default:
e2e0b3e5 1055 internal_error (__FILE__, __LINE__, _("can't handle ABI"));
96f026fc
KB
1056 break;
1057 }
6de918a6 1058
982e9687 1059 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
6de918a6
DJ
1060 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1061
0d0266c6 1062 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
b2756930
KB
1063
1064 /* Enable TLS support. */
1065 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1066 svr4_fetch_objfile_link_map);
7d522c90
DJ
1067
1068 /* Initialize this lazily, to avoid an initialization order
1069 dependency on solib-svr4.c's _initialize routine. */
1070 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1071 {
1072 mips_svr4_so_ops = svr4_so_ops;
1073 mips_svr4_so_ops.in_dynsym_resolve_code
1074 = mips_linux_in_dynsym_resolve_code;
1075 }
1076 set_solib_ops (gdbarch, &mips_svr4_so_ops);
19ed69dd
KB
1077}
1078
2aa830e4 1079void
d1bacddc 1080_initialize_mips_linux_tdep (void)
2aa830e4 1081{
96f026fc
KB
1082 const struct bfd_arch_info *arch_info;
1083
96f026fc
KB
1084 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1085 arch_info != NULL;
1086 arch_info = arch_info->next)
1087 {
295093a4
MS
1088 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1089 GDB_OSABI_LINUX,
96f026fc
KB
1090 mips_linux_init_abi);
1091 }
1092
00e32a35 1093 deprecated_add_core_fns (&regset_core_fns);
2aa830e4 1094}
This page took 0.644531 seconds and 4 git commands to generate.