oops - omitted from previous delta
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
c906108c
SS
45
46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
c906108c 50
dd824b04
DJ
51/* A useful bit in the CP0 status register (PS_REGNUM). */
52/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
53#define ST0_FR (1 << 26)
54
b0069a17
AC
55/* The sizes of floating point registers. */
56
57enum
58{
59 MIPS_FPU_SINGLE_REGSIZE = 4,
60 MIPS_FPU_DOUBLE_REGSIZE = 8
61};
62
0dadbba0 63
2e4ebe70
DJ
64static const char *mips_abi_string;
65
66static const char *mips_abi_strings[] = {
67 "auto",
68 "n32",
69 "o32",
28d169de 70 "n64",
2e4ebe70
DJ
71 "o64",
72 "eabi32",
73 "eabi64",
74 NULL
75};
76
cce74817 77struct frame_extra_info
c5aa993b
JM
78 {
79 mips_extra_func_info_t proc_desc;
80 int num_args;
81 };
cce74817 82
d929b26f
AC
83/* Various MIPS ISA options (related to stack analysis) can be
84 overridden dynamically. Establish an enum/array for managing
85 them. */
86
53904c9e
AC
87static const char size_auto[] = "auto";
88static const char size_32[] = "32";
89static const char size_64[] = "64";
d929b26f 90
53904c9e 91static const char *size_enums[] = {
d929b26f
AC
92 size_auto,
93 size_32,
94 size_64,
a5ea2558
AC
95 0
96};
97
7a292a7a
SS
98/* Some MIPS boards don't support floating point while others only
99 support single-precision floating-point operations. See also
100 FP_REGISTER_DOUBLE. */
c906108c
SS
101
102enum mips_fpu_type
c5aa993b
JM
103 {
104 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
105 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
106 MIPS_FPU_NONE /* No floating point. */
107 };
c906108c
SS
108
109#ifndef MIPS_DEFAULT_FPU_TYPE
110#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
111#endif
112static int mips_fpu_type_auto = 1;
113static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 114
9ace0497 115static int mips_debug = 0;
7a292a7a 116
c2d11a7d
JM
117/* MIPS specific per-architecture information */
118struct gdbarch_tdep
119 {
120 /* from the elf header */
121 int elf_flags;
70f80edf 122
c2d11a7d 123 /* mips options */
0dadbba0 124 enum mips_abi mips_abi;
2e4ebe70 125 enum mips_abi found_abi;
c2d11a7d
JM
126 enum mips_fpu_type mips_fpu_type;
127 int mips_last_arg_regnum;
128 int mips_last_fp_arg_regnum;
a5ea2558 129 int mips_default_saved_regsize;
c2d11a7d 130 int mips_fp_register_double;
d929b26f 131 int mips_default_stack_argsize;
5213ab06 132 int gdb_target_is_mips64;
4014092b 133 int default_mask_address_p;
c2d11a7d
JM
134 };
135
0dadbba0 136#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 137 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 138
c2d11a7d 139#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 140
c2d11a7d 141#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 142
c2d11a7d 143#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 144
d929b26f
AC
145/* Return the currently configured (or set) saved register size. */
146
a5ea2558 147#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 148
53904c9e 149static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
150
151#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
152
d1973055
KB
153/* Return the MIPS ABI associated with GDBARCH. */
154enum mips_abi
155mips_abi (struct gdbarch *gdbarch)
156{
157 return gdbarch_tdep (gdbarch)->mips_abi;
158}
159
d929b26f 160static unsigned int
acdb74a0 161mips_saved_regsize (void)
d929b26f
AC
162{
163 if (mips_saved_regsize_string == size_auto)
164 return MIPS_DEFAULT_SAVED_REGSIZE;
165 else if (mips_saved_regsize_string == size_64)
166 return 8;
167 else /* if (mips_saved_regsize_string == size_32) */
168 return 4;
169}
170
71b8ef93 171/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
172 marks it as 16-bit function. The MSB of the minimal symbol's
173 "info" field is used for this purpose. This field is already
174 being used to store the symbol size, so the assumption is
175 that the symbol size cannot exceed 2^31.
176
177 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
178 i.e. refers to a 16-bit function, and sets a "special" bit in a
179 minimal symbol to mark it as a 16-bit function
180
181 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
182 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
183 the "info" field with the "special" bit masked out */
184
5a89d8aa
MS
185static void
186mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
187{
188 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
189 {
190 MSYMBOL_INFO (msym) = (char *)
191 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
192 SYMBOL_VALUE_ADDRESS (msym) |= 1;
193 }
194}
195
71b8ef93
MS
196static int
197msymbol_is_special (struct minimal_symbol *msym)
198{
199 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
200}
201
202static long
203msymbol_size (struct minimal_symbol *msym)
204{
205 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
206}
207
88658117
AC
208/* XFER a value from the big/little/left end of the register.
209 Depending on the size of the value it might occupy the entire
210 register or just part of it. Make an allowance for this, aligning
211 things accordingly. */
212
213static void
214mips_xfer_register (struct regcache *regcache, int reg_num, int length,
215 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
216 int buf_offset)
217{
218 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
219 int reg_offset = 0;
cb1d2653
AC
220 /* Need to transfer the left or right part of the register, based on
221 the targets byte order. */
88658117
AC
222 switch (endian)
223 {
224 case BFD_ENDIAN_BIG:
225 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
226 break;
227 case BFD_ENDIAN_LITTLE:
228 reg_offset = 0;
229 break;
230 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
231 reg_offset = 0;
232 break;
233 default:
234 internal_error (__FILE__, __LINE__, "bad switch");
235 }
236 if (mips_debug)
cb1d2653
AC
237 fprintf_unfiltered (gdb_stderr,
238 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
239 reg_num, reg_offset, buf_offset, length);
88658117
AC
240 if (mips_debug && out != NULL)
241 {
242 int i;
cb1d2653 243 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 244 for (i = 0; i < length; i++)
cb1d2653 245 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
246 }
247 if (in != NULL)
248 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
249 if (out != NULL)
250 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
251 if (mips_debug && in != NULL)
252 {
253 int i;
cb1d2653 254 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 255 for (i = 0; i < length; i++)
cb1d2653 256 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
257 }
258 if (mips_debug)
259 fprintf_unfiltered (gdb_stdlog, "\n");
260}
261
dd824b04
DJ
262/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
263 compatiblity mode. A return value of 1 means that we have
264 physical 64-bit registers, but should treat them as 32-bit registers. */
265
266static int
267mips2_fp_compat (void)
268{
269 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
270 meaningful. */
271 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
272 return 0;
273
274#if 0
275 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
276 in all the places we deal with FP registers. PR gdb/413. */
277 /* Otherwise check the FR bit in the status register - it controls
278 the FP compatiblity mode. If it is clear we are in compatibility
279 mode. */
280 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
281 return 1;
282#endif
361d1df0 283
dd824b04
DJ
284 return 0;
285}
286
c2d11a7d
JM
287/* Indicate that the ABI makes use of double-precision registers
288 provided by the FPU (rather than combining pairs of registers to
289 form double-precision values). Do not use "TARGET_IS_MIPS64" to
290 determine if the ABI is using double-precision registers. See also
291 MIPS_FPU_TYPE. */
c2d11a7d 292#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 293
d929b26f
AC
294/* The amount of space reserved on the stack for registers. This is
295 different to MIPS_SAVED_REGSIZE as it determines the alignment of
296 data allocated after the registers have run out. */
297
0dadbba0 298#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
299
300#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
301
53904c9e 302static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
303
304static unsigned int
305mips_stack_argsize (void)
306{
307 if (mips_stack_argsize_string == size_auto)
308 return MIPS_DEFAULT_STACK_ARGSIZE;
309 else if (mips_stack_argsize_string == size_64)
310 return 8;
311 else /* if (mips_stack_argsize_string == size_32) */
312 return 4;
313}
314
5213ab06 315#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 316
92e1c15c 317#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 318
7a292a7a 319#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 320
a14ed312 321int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 322
a14ed312 323static void mips_print_register (int, int);
c906108c 324
570b8f7c
AC
325static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
326 struct frame_info *, int);
c906108c 327
a14ed312 328static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 329
a14ed312 330static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 331
5a89d8aa 332static int mips_set_processor_type (char *);
c906108c 333
a14ed312 334static void mips_show_processor_type_command (char *, int);
c906108c 335
a14ed312 336static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 337
570b8f7c
AC
338static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
339 struct frame_info *next_frame,
340 int cur_frame);
c906108c 341
a14ed312
KB
342static CORE_ADDR after_prologue (CORE_ADDR pc,
343 mips_extra_func_info_t proc_desc);
c906108c 344
dd824b04
DJ
345static void mips_read_fp_register_single (int regno, char *rare_buffer);
346static void mips_read_fp_register_double (int regno, char *rare_buffer);
347
67b2c998
DJ
348static struct type *mips_float_register_type (void);
349static struct type *mips_double_register_type (void);
350
c906108c
SS
351/* This value is the model of MIPS in use. It is derived from the value
352 of the PrID register. */
353
354char *mips_processor_type;
355
356char *tmp_mips_processor_type;
357
acdb74a0
AC
358/* The list of available "set mips " and "show mips " commands */
359
360static struct cmd_list_element *setmipscmdlist = NULL;
361static struct cmd_list_element *showmipscmdlist = NULL;
362
c906108c
SS
363/* A set of original names, to be used when restoring back to generic
364 registers from a specific set. */
5e2e9765 365static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
c906108c 366
5e2e9765
KB
367/* Integer registers 0 thru 31 are handled explicitly by
368 mips_register_name(). Processor specific registers 32 and above
369 are listed in the sets of register names assigned to
370 mips_processor_reg_names. */
371static char **mips_processor_reg_names = mips_generic_reg_names;
cce74817 372
5e2e9765 373/* Return the name of the register corresponding to REGNO. */
5a89d8aa 374static const char *
5e2e9765 375mips_register_name (int regno)
cce74817 376{
5e2e9765
KB
377 /* GPR names for all ABIs other than n32/n64. */
378 static char *mips_gpr_names[] = {
379 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
380 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
381 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
382 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
383 };
384
385 /* GPR names for n32 and n64 ABIs. */
386 static char *mips_n32_n64_gpr_names[] = {
387 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
388 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
389 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
390 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
391 };
392
393 enum mips_abi abi = mips_abi (current_gdbarch);
394
395 /* The MIPS integer registers are always mapped from 0 to 31. The
396 names of the registers (which reflects the conventions regarding
397 register use) vary depending on the ABI. */
398 if (0 <= regno && regno < 32)
399 {
400 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
401 return mips_n32_n64_gpr_names[regno];
402 else
403 return mips_gpr_names[regno];
404 }
b006a9e9 405 else if (32 <= regno && regno < NUM_REGS)
5e2e9765
KB
406 return mips_processor_reg_names[regno - 32];
407 else
408 internal_error (__FILE__, __LINE__,
409 "mips_register_name: bad register number %d", regno);
cce74817 410}
5e2e9765 411
9846de1b 412/* *INDENT-OFF* */
c906108c
SS
413/* Names of IDT R3041 registers. */
414
415char *mips_r3041_reg_names[] = {
c906108c
SS
416 "sr", "lo", "hi", "bad", "cause","pc",
417 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
418 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
419 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
420 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 421 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
422 "", "", "bus", "ccfg", "", "", "", "",
423 "", "", "port", "cmp", "", "", "epc", "prid",
424};
425
426/* Names of IDT R3051 registers. */
427
428char *mips_r3051_reg_names[] = {
c906108c
SS
429 "sr", "lo", "hi", "bad", "cause","pc",
430 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
431 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
432 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
433 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 434 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
435 "inx", "rand", "elo", "", "ctxt", "", "", "",
436 "", "", "ehi", "", "", "", "epc", "prid",
437};
438
439/* Names of IDT R3081 registers. */
440
441char *mips_r3081_reg_names[] = {
c906108c
SS
442 "sr", "lo", "hi", "bad", "cause","pc",
443 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
444 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
445 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
446 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 447 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
448 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
449 "", "", "ehi", "", "", "", "epc", "prid",
450};
451
452/* Names of LSI 33k registers. */
453
454char *mips_lsi33k_reg_names[] = {
c906108c
SS
455 "epc", "hi", "lo", "sr", "cause","badvaddr",
456 "dcic", "bpc", "bda", "", "", "", "", "",
457 "", "", "", "", "", "", "", "",
458 "", "", "", "", "", "", "", "",
459 "", "", "", "", "", "", "", "",
460 "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463};
464
465struct {
466 char *name;
467 char **regnames;
468} mips_processor_type_table[] = {
469 { "generic", mips_generic_reg_names },
470 { "r3041", mips_r3041_reg_names },
471 { "r3051", mips_r3051_reg_names },
472 { "r3071", mips_r3081_reg_names },
473 { "r3081", mips_r3081_reg_names },
474 { "lsi33k", mips_lsi33k_reg_names },
475 { NULL, NULL }
476};
9846de1b 477/* *INDENT-ON* */
c906108c 478
c5aa993b
JM
479
480
481
c906108c 482/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
483static int mips16_to_32_reg[8] =
484{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
485
486/* Heuristic_proc_start may hunt through the text section for a long
487 time across a 2400 baud serial line. Allows the user to limit this
488 search. */
489
490static unsigned int heuristic_fence_post = 0;
491
c5aa993b
JM
492#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
493#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
494#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
495#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
496#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
497#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
498#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
499#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
500#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
501#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
502/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
503 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
504#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
505#define _PROC_MAGIC_ 0x0F0F0F0F
506#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
507#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
508
509struct linked_proc_info
c5aa993b
JM
510 {
511 struct mips_extra_func_info info;
512 struct linked_proc_info *next;
513 }
514 *linked_proc_desc_table = NULL;
c906108c 515
cce74817 516void
acdb74a0 517mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
518{
519 if (fi
da50a4b7
AC
520 && get_frame_extra_info (fi)
521 && get_frame_extra_info (fi)->proc_desc
522 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 523 printf_filtered (" frame pointer is at %s+%s\n",
da50a4b7
AC
524 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
525 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
cce74817 526}
c906108c 527
46cd78fb
AC
528/* Number of bytes of storage in the actual machine representation for
529 register N. NOTE: This indirectly defines the register size
530 transfered by the GDB protocol. */
43e526b9
JM
531
532static int mips64_transfers_32bit_regs_p = 0;
533
f7ab6ec6 534static int
acdb74a0 535mips_register_raw_size (int reg_nr)
43e526b9
JM
536{
537 if (mips64_transfers_32bit_regs_p)
538 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
539 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
540 && FP_REGISTER_DOUBLE)
541 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
542 registers. */
543 return 8;
43e526b9
JM
544 else
545 return MIPS_REGSIZE;
546}
547
46cd78fb
AC
548/* Convert between RAW and VIRTUAL registers. The RAW register size
549 defines the remote-gdb packet. */
550
d05285fa 551static int
acdb74a0 552mips_register_convertible (int reg_nr)
43e526b9
JM
553{
554 if (mips64_transfers_32bit_regs_p)
555 return 0;
556 else
557 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
558}
559
d05285fa 560static void
acdb74a0
AC
561mips_register_convert_to_virtual (int n, struct type *virtual_type,
562 char *raw_buf, char *virt_buf)
43e526b9 563{
d7449b42 564 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
565 memcpy (virt_buf,
566 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
567 TYPE_LENGTH (virtual_type));
568 else
569 memcpy (virt_buf,
570 raw_buf,
571 TYPE_LENGTH (virtual_type));
572}
573
d05285fa 574static void
acdb74a0
AC
575mips_register_convert_to_raw (struct type *virtual_type, int n,
576 char *virt_buf, char *raw_buf)
43e526b9
JM
577{
578 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 579 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
580 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
581 virt_buf,
582 TYPE_LENGTH (virtual_type));
583 else
584 memcpy (raw_buf,
585 virt_buf,
586 TYPE_LENGTH (virtual_type));
587}
588
102182a9
MS
589void
590mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
591{
592 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
593 && REGISTER_RAW_SIZE (regnum) == 4
594 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
595 && TYPE_CODE(type) == TYPE_CODE_FLT
596 && TYPE_LENGTH(type) == 8)
597 {
598 char temp[4];
599 memcpy (temp, ((char *)(buffer))+4, 4);
600 memcpy (((char *)(buffer))+4, (buffer), 4);
601 memcpy (((char *)(buffer)), temp, 4);
602 }
603}
604
605void
606mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
607{
608if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
609 && REGISTER_RAW_SIZE (regnum) == 4
610 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
611 && TYPE_CODE(type) == TYPE_CODE_FLT
612 && TYPE_LENGTH(type) == 8)
613 {
614 char temp[4];
615 memcpy (temp, ((char *)(buffer))+4, 4);
616 memcpy (((char *)(buffer))+4, (buffer), 4);
617 memcpy (((char *)(buffer)), temp, 4);
618 }
619}
620
78fde5f8
KB
621/* Return the GDB type object for the "standard" data type
622 of data in register REG.
623
624 Note: kevinb/2002-08-01: The definition below should faithfully
625 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
626 definitions found in config/mips/tm-*.h. I'm concerned about
627 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
628 though. In some cases FP_REGNUM is in this range, and I doubt
629 that this code is correct for the 64-bit case. */
630
631static struct type *
632mips_register_virtual_type (int reg)
633{
634 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
635 {
636 /* Floating point registers... */
637 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
638 return builtin_type_ieee_double_big;
639 else
640 return builtin_type_ieee_double_little;
641 }
78fde5f8
KB
642 else if (reg == PS_REGNUM /* CR */)
643 return builtin_type_uint32;
644 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
645 return builtin_type_uint32;
646 else
647 {
a6425924
KB
648 /* Everything else...
649 Return type appropriate for width of register. */
650 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
651 return builtin_type_uint64;
78fde5f8 652 else
a6425924 653 return builtin_type_uint32;
78fde5f8
KB
654 }
655}
656
bcb0cc15
MS
657/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
658
659static CORE_ADDR
660mips_read_sp (void)
661{
662 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
663}
664
c906108c 665/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 666enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
667
668static int
669mips_mask_address_p (void)
670{
671 switch (mask_address_var)
672 {
7f19b9a2 673 case AUTO_BOOLEAN_TRUE:
4014092b 674 return 1;
7f19b9a2 675 case AUTO_BOOLEAN_FALSE:
4014092b
AC
676 return 0;
677 break;
7f19b9a2 678 case AUTO_BOOLEAN_AUTO:
92e1c15c 679 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 680 default:
8e65ff28
AC
681 internal_error (__FILE__, __LINE__,
682 "mips_mask_address_p: bad switch");
4014092b 683 return -1;
361d1df0 684 }
4014092b
AC
685}
686
687static void
e9e68a56 688show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
689{
690 switch (mask_address_var)
691 {
7f19b9a2 692 case AUTO_BOOLEAN_TRUE:
4014092b
AC
693 printf_filtered ("The 32 bit mips address mask is enabled\n");
694 break;
7f19b9a2 695 case AUTO_BOOLEAN_FALSE:
4014092b
AC
696 printf_filtered ("The 32 bit mips address mask is disabled\n");
697 break;
7f19b9a2 698 case AUTO_BOOLEAN_AUTO:
4014092b
AC
699 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
700 mips_mask_address_p () ? "enabled" : "disabled");
701 break;
702 default:
8e65ff28
AC
703 internal_error (__FILE__, __LINE__,
704 "show_mask_address: bad switch");
4014092b 705 break;
361d1df0 706 }
4014092b 707}
c906108c
SS
708
709/* Should call_function allocate stack space for a struct return? */
cb811fe7 710
f7ab6ec6 711static int
cb811fe7 712mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 713{
cb811fe7
MS
714 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
715}
716
f7ab6ec6 717static int
cb811fe7
MS
718mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
719{
b78bcb18 720 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
721}
722
f7ab6ec6 723static int
cb811fe7
MS
724mips_o32_use_struct_convention (int gcc_p, struct type *type)
725{
726 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
727}
728
8b389c40
MS
729/* Should call_function pass struct by reference?
730 For each architecture, structs are passed either by
731 value or by reference, depending on their size. */
732
733static int
734mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
735{
736 enum type_code typecode = TYPE_CODE (check_typedef (type));
737 int len = TYPE_LENGTH (check_typedef (type));
738
739 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
740 return (len > MIPS_SAVED_REGSIZE);
741
742 return 0;
743}
744
745static int
746mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
747{
748 return 0; /* Assumption: N32/N64 never passes struct by ref. */
749}
750
f7ab6ec6 751static int
8b389c40
MS
752mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
753{
754 return 0; /* Assumption: O32/O64 never passes struct by ref. */
755}
756
c906108c
SS
757/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
758
759static int
760pc_is_mips16 (bfd_vma memaddr)
761{
762 struct minimal_symbol *sym;
763
764 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
765 if (IS_MIPS16_ADDR (memaddr))
766 return 1;
767
768 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
769 the high bit of the info field. Use this to decide if the function is
770 MIPS16 or normal MIPS. */
771 sym = lookup_minimal_symbol_by_pc (memaddr);
772 if (sym)
71b8ef93 773 return msymbol_is_special (sym);
c906108c
SS
774 else
775 return 0;
776}
777
6c997a34
AC
778/* MIPS believes that the PC has a sign extended value. Perhaphs the
779 all registers should be sign extended for simplicity? */
780
781static CORE_ADDR
39f77062 782mips_read_pc (ptid_t ptid)
6c997a34 783{
39f77062 784 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 785}
c906108c
SS
786
787/* This returns the PC of the first inst after the prologue. If we can't
788 find the prologue, then return 0. */
789
790static CORE_ADDR
acdb74a0
AC
791after_prologue (CORE_ADDR pc,
792 mips_extra_func_info_t proc_desc)
c906108c
SS
793{
794 struct symtab_and_line sal;
795 CORE_ADDR func_addr, func_end;
796
479412cd
DJ
797 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
798 to read the stack pointer from the current machine state, because
799 the current machine state has nothing to do with the information
800 we need from the proc_desc; and the process may or may not exist
801 right now. */
c906108c 802 if (!proc_desc)
479412cd 803 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
804
805 if (proc_desc)
806 {
807 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 808 strongly suspect that frameless always means prologueless... */
c906108c
SS
809 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
810 && PROC_FRAME_OFFSET (proc_desc) == 0)
811 return 0;
812 }
813
814 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
815 return 0; /* Unknown */
816
817 sal = find_pc_line (func_addr, 0);
818
819 if (sal.end < func_end)
820 return sal.end;
821
822 /* The line after the prologue is after the end of the function. In this
823 case, tell the caller to find the prologue the hard way. */
824
825 return 0;
826}
827
828/* Decode a MIPS32 instruction that saves a register in the stack, and
829 set the appropriate bit in the general register mask or float register mask
830 to indicate which register is saved. This is a helper function
831 for mips_find_saved_regs. */
832
833static void
acdb74a0
AC
834mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
835 unsigned long *float_mask)
c906108c
SS
836{
837 int reg;
838
839 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
840 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
841 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
842 {
843 /* It might be possible to use the instruction to
c5aa993b
JM
844 find the offset, rather than the code below which
845 is based on things being in a certain order in the
846 frame, but figuring out what the instruction's offset
847 is relative to might be a little tricky. */
c906108c
SS
848 reg = (inst & 0x001f0000) >> 16;
849 *gen_mask |= (1 << reg);
850 }
851 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
852 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
853 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
854
855 {
856 reg = ((inst & 0x001f0000) >> 16);
857 *float_mask |= (1 << reg);
858 }
859}
860
861/* Decode a MIPS16 instruction that saves a register in the stack, and
862 set the appropriate bit in the general register or float register mask
863 to indicate which register is saved. This is a helper function
864 for mips_find_saved_regs. */
865
866static void
acdb74a0 867mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 868{
c5aa993b 869 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
870 {
871 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
872 *gen_mask |= (1 << reg);
873 }
c5aa993b 874 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
875 {
876 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
877 *gen_mask |= (1 << reg);
878 }
c5aa993b 879 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
880 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
881 *gen_mask |= (1 << RA_REGNUM);
882}
883
884
885/* Fetch and return instruction from the specified location. If the PC
886 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
887
888static t_inst
acdb74a0 889mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
890{
891 char buf[MIPS_INSTLEN];
892 int instlen;
893 int status;
894
895 if (pc_is_mips16 (addr))
896 {
897 instlen = MIPS16_INSTLEN;
898 addr = UNMAKE_MIPS16_ADDR (addr);
899 }
900 else
c5aa993b 901 instlen = MIPS_INSTLEN;
c906108c
SS
902 status = read_memory_nobpt (addr, buf, instlen);
903 if (status)
904 memory_error (status, addr);
905 return extract_unsigned_integer (buf, instlen);
906}
907
908
909/* These the fields of 32 bit mips instructions */
e135b889
DJ
910#define mips32_op(x) (x >> 26)
911#define itype_op(x) (x >> 26)
912#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 913#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 914#define itype_immediate(x) (x & 0xffff)
c906108c 915
e135b889
DJ
916#define jtype_op(x) (x >> 26)
917#define jtype_target(x) (x & 0x03ffffff)
c906108c 918
e135b889
DJ
919#define rtype_op(x) (x >> 26)
920#define rtype_rs(x) ((x >> 21) & 0x1f)
921#define rtype_rt(x) ((x >> 16) & 0x1f)
922#define rtype_rd(x) ((x >> 11) & 0x1f)
923#define rtype_shamt(x) ((x >> 6) & 0x1f)
924#define rtype_funct(x) (x & 0x3f)
c906108c
SS
925
926static CORE_ADDR
c5aa993b
JM
927mips32_relative_offset (unsigned long inst)
928{
929 long x;
930 x = itype_immediate (inst);
931 if (x & 0x8000) /* sign bit set */
c906108c 932 {
c5aa993b 933 x |= 0xffff0000; /* sign extension */
c906108c 934 }
c5aa993b
JM
935 x = x << 2;
936 return x;
c906108c
SS
937}
938
939/* Determine whate to set a single step breakpoint while considering
940 branch prediction */
5a89d8aa 941static CORE_ADDR
c5aa993b
JM
942mips32_next_pc (CORE_ADDR pc)
943{
944 unsigned long inst;
945 int op;
946 inst = mips_fetch_instruction (pc);
e135b889 947 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 948 {
e135b889
DJ
949 if (itype_op (inst) >> 2 == 5)
950 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 951 {
e135b889 952 op = (itype_op (inst) & 0x03);
c906108c
SS
953 switch (op)
954 {
e135b889
DJ
955 case 0: /* BEQL */
956 goto equal_branch;
957 case 1: /* BNEL */
958 goto neq_branch;
959 case 2: /* BLEZL */
960 goto less_branch;
961 case 3: /* BGTZ */
962 goto greater_branch;
c5aa993b
JM
963 default:
964 pc += 4;
c906108c
SS
965 }
966 }
e135b889
DJ
967 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
968 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
969 {
970 int tf = itype_rt (inst) & 0x01;
971 int cnum = itype_rt (inst) >> 2;
972 int fcrcs = read_signed_register (FCRCS_REGNUM);
973 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
974
975 if (((cond >> cnum) & 0x01) == tf)
976 pc += mips32_relative_offset (inst) + 4;
977 else
978 pc += 8;
979 }
c5aa993b
JM
980 else
981 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
982 }
983 else
c5aa993b
JM
984 { /* This gets way messy */
985
c906108c 986 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 987 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 988 {
c5aa993b
JM
989 case 0: /* SPECIAL */
990 op = rtype_funct (inst);
991 switch (op)
992 {
993 case 8: /* JR */
994 case 9: /* JALR */
6c997a34
AC
995 /* Set PC to that address */
996 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
997 break;
998 default:
999 pc += 4;
1000 }
1001
e135b889 1002 break; /* end SPECIAL */
c5aa993b 1003 case 1: /* REGIMM */
c906108c 1004 {
e135b889
DJ
1005 op = itype_rt (inst); /* branch condition */
1006 switch (op)
c906108c 1007 {
c5aa993b 1008 case 0: /* BLTZ */
e135b889
DJ
1009 case 2: /* BLTZL */
1010 case 16: /* BLTZAL */
c5aa993b 1011 case 18: /* BLTZALL */
c906108c 1012 less_branch:
6c997a34 1013 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1014 pc += mips32_relative_offset (inst) + 4;
1015 else
1016 pc += 8; /* after the delay slot */
1017 break;
e135b889 1018 case 1: /* BGEZ */
c5aa993b
JM
1019 case 3: /* BGEZL */
1020 case 17: /* BGEZAL */
1021 case 19: /* BGEZALL */
c906108c 1022 greater_equal_branch:
6c997a34 1023 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1024 pc += mips32_relative_offset (inst) + 4;
1025 else
1026 pc += 8; /* after the delay slot */
1027 break;
e135b889 1028 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1029 default:
1030 pc += 4;
c906108c
SS
1031 }
1032 }
e135b889 1033 break; /* end REGIMM */
c5aa993b
JM
1034 case 2: /* J */
1035 case 3: /* JAL */
1036 {
1037 unsigned long reg;
1038 reg = jtype_target (inst) << 2;
e135b889 1039 /* Upper four bits get never changed... */
c5aa993b 1040 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1041 }
c5aa993b
JM
1042 break;
1043 /* FIXME case JALX : */
1044 {
1045 unsigned long reg;
1046 reg = jtype_target (inst) << 2;
1047 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1048 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1049 }
c5aa993b 1050 break; /* The new PC will be alternate mode */
e135b889 1051 case 4: /* BEQ, BEQL */
c5aa993b 1052 equal_branch:
6c997a34
AC
1053 if (read_signed_register (itype_rs (inst)) ==
1054 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 break;
e135b889 1059 case 5: /* BNE, BNEL */
c5aa993b 1060 neq_branch:
6c997a34 1061 if (read_signed_register (itype_rs (inst)) !=
e135b889 1062 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1063 pc += mips32_relative_offset (inst) + 4;
1064 else
1065 pc += 8;
1066 break;
e135b889 1067 case 6: /* BLEZ, BLEZL */
c906108c 1068 less_zero_branch:
6c997a34 1069 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1070 pc += mips32_relative_offset (inst) + 4;
1071 else
1072 pc += 8;
1073 break;
1074 case 7:
e135b889
DJ
1075 default:
1076 greater_branch: /* BGTZ, BGTZL */
6c997a34 1077 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8;
1081 break;
c5aa993b
JM
1082 } /* switch */
1083 } /* else */
1084 return pc;
1085} /* mips32_next_pc */
c906108c
SS
1086
1087/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1088 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1089 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1090 We dont want to set a single step instruction on the extend instruction
1091 either.
c5aa993b 1092 */
c906108c
SS
1093
1094/* Lots of mips16 instruction formats */
1095/* Predicting jumps requires itype,ritype,i8type
1096 and their extensions extItype,extritype,extI8type
c5aa993b 1097 */
c906108c
SS
1098enum mips16_inst_fmts
1099{
c5aa993b
JM
1100 itype, /* 0 immediate 5,10 */
1101 ritype, /* 1 5,3,8 */
1102 rrtype, /* 2 5,3,3,5 */
1103 rritype, /* 3 5,3,3,5 */
1104 rrrtype, /* 4 5,3,3,3,2 */
1105 rriatype, /* 5 5,3,3,1,4 */
1106 shifttype, /* 6 5,3,3,3,2 */
1107 i8type, /* 7 5,3,8 */
1108 i8movtype, /* 8 5,3,3,5 */
1109 i8mov32rtype, /* 9 5,3,5,3 */
1110 i64type, /* 10 5,3,8 */
1111 ri64type, /* 11 5,3,3,5 */
1112 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1113 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1114 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1115 extRRItype, /* 15 5,5,5,5,3,3,5 */
1116 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1117 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1118 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1119 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1120 extRi64type, /* 20 5,6,5,5,3,3,5 */
1121 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1122};
12f02c2a
AC
1123/* I am heaping all the fields of the formats into one structure and
1124 then, only the fields which are involved in instruction extension */
c906108c 1125struct upk_mips16
c5aa993b 1126 {
12f02c2a 1127 CORE_ADDR offset;
c5aa993b
JM
1128 unsigned int regx; /* Function in i8 type */
1129 unsigned int regy;
1130 };
c906108c
SS
1131
1132
12f02c2a
AC
1133/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1134 for the bits which make up the immediatate extension. */
c906108c 1135
12f02c2a
AC
1136static CORE_ADDR
1137extended_offset (unsigned int extension)
c906108c 1138{
12f02c2a 1139 CORE_ADDR value;
c5aa993b
JM
1140 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1141 value = value << 6;
1142 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1143 value = value << 5;
1144 value |= extension & 0x01f; /* extract 4:0 */
1145 return value;
c906108c
SS
1146}
1147
1148/* Only call this function if you know that this is an extendable
1149 instruction, It wont malfunction, but why make excess remote memory references?
1150 If the immediate operands get sign extended or somthing, do it after
1151 the extension is performed.
c5aa993b 1152 */
c906108c
SS
1153/* FIXME: Every one of these cases needs to worry about sign extension
1154 when the offset is to be used in relative addressing */
1155
1156
12f02c2a 1157static unsigned int
c5aa993b 1158fetch_mips_16 (CORE_ADDR pc)
c906108c 1159{
c5aa993b
JM
1160 char buf[8];
1161 pc &= 0xfffffffe; /* clear the low order bit */
1162 target_read_memory (pc, buf, 2);
1163 return extract_unsigned_integer (buf, 2);
c906108c
SS
1164}
1165
1166static void
c5aa993b 1167unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1168 unsigned int extension,
1169 unsigned int inst,
1170 enum mips16_inst_fmts insn_format,
c5aa993b 1171 struct upk_mips16 *upk)
c906108c 1172{
12f02c2a
AC
1173 CORE_ADDR offset;
1174 int regx;
1175 int regy;
1176 switch (insn_format)
c906108c 1177 {
c5aa993b 1178 case itype:
c906108c 1179 {
12f02c2a
AC
1180 CORE_ADDR value;
1181 if (extension)
c5aa993b
JM
1182 {
1183 value = extended_offset (extension);
1184 value = value << 11; /* rom for the original value */
12f02c2a 1185 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1186 }
1187 else
c5aa993b 1188 {
12f02c2a 1189 value = inst & 0x7ff;
c5aa993b 1190 /* FIXME : Consider sign extension */
c906108c 1191 }
12f02c2a
AC
1192 offset = value;
1193 regx = -1;
1194 regy = -1;
c906108c 1195 }
c5aa993b
JM
1196 break;
1197 case ritype:
1198 case i8type:
1199 { /* A register identifier and an offset */
c906108c
SS
1200 /* Most of the fields are the same as I type but the
1201 immediate value is of a different length */
12f02c2a
AC
1202 CORE_ADDR value;
1203 if (extension)
c906108c 1204 {
c5aa993b
JM
1205 value = extended_offset (extension);
1206 value = value << 8; /* from the original instruction */
12f02c2a
AC
1207 value |= inst & 0xff; /* eleven bits from instruction */
1208 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1209 if (value & 0x4000) /* test the sign bit , bit 26 */
1210 {
1211 value &= ~0x3fff; /* remove the sign bit */
1212 value = -value;
c906108c
SS
1213 }
1214 }
c5aa993b
JM
1215 else
1216 {
12f02c2a
AC
1217 value = inst & 0xff; /* 8 bits */
1218 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1219 /* FIXME: Do sign extension , this format needs it */
1220 if (value & 0x80) /* THIS CONFUSES ME */
1221 {
1222 value &= 0xef; /* remove the sign bit */
1223 value = -value;
1224 }
c5aa993b 1225 }
12f02c2a
AC
1226 offset = value;
1227 regy = -1;
c5aa993b 1228 break;
c906108c 1229 }
c5aa993b 1230 case jalxtype:
c906108c 1231 {
c5aa993b 1232 unsigned long value;
12f02c2a
AC
1233 unsigned int nexthalf;
1234 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1235 value = value << 16;
1236 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1237 value |= nexthalf;
12f02c2a
AC
1238 offset = value;
1239 regx = -1;
1240 regy = -1;
c5aa993b 1241 break;
c906108c
SS
1242 }
1243 default:
8e65ff28
AC
1244 internal_error (__FILE__, __LINE__,
1245 "bad switch");
c906108c 1246 }
12f02c2a
AC
1247 upk->offset = offset;
1248 upk->regx = regx;
1249 upk->regy = regy;
c906108c
SS
1250}
1251
1252
c5aa993b
JM
1253static CORE_ADDR
1254add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1255{
c5aa993b 1256 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1257}
1258
12f02c2a
AC
1259static CORE_ADDR
1260extended_mips16_next_pc (CORE_ADDR pc,
1261 unsigned int extension,
1262 unsigned int insn)
c906108c 1263{
12f02c2a
AC
1264 int op = (insn >> 11);
1265 switch (op)
c906108c 1266 {
12f02c2a
AC
1267 case 2: /* Branch */
1268 {
1269 CORE_ADDR offset;
1270 struct upk_mips16 upk;
1271 unpack_mips16 (pc, extension, insn, itype, &upk);
1272 offset = upk.offset;
1273 if (offset & 0x800)
1274 {
1275 offset &= 0xeff;
1276 offset = -offset;
1277 }
1278 pc += (offset << 1) + 2;
1279 break;
1280 }
1281 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1282 {
1283 struct upk_mips16 upk;
1284 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1285 pc = add_offset_16 (pc, upk.offset);
1286 if ((insn >> 10) & 0x01) /* Exchange mode */
1287 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1288 else
1289 pc |= 0x01;
1290 break;
1291 }
1292 case 4: /* beqz */
1293 {
1294 struct upk_mips16 upk;
1295 int reg;
1296 unpack_mips16 (pc, extension, insn, ritype, &upk);
1297 reg = read_signed_register (upk.regx);
1298 if (reg == 0)
1299 pc += (upk.offset << 1) + 2;
1300 else
1301 pc += 2;
1302 break;
1303 }
1304 case 5: /* bnez */
1305 {
1306 struct upk_mips16 upk;
1307 int reg;
1308 unpack_mips16 (pc, extension, insn, ritype, &upk);
1309 reg = read_signed_register (upk.regx);
1310 if (reg != 0)
1311 pc += (upk.offset << 1) + 2;
1312 else
1313 pc += 2;
1314 break;
1315 }
1316 case 12: /* I8 Formats btez btnez */
1317 {
1318 struct upk_mips16 upk;
1319 int reg;
1320 unpack_mips16 (pc, extension, insn, i8type, &upk);
1321 /* upk.regx contains the opcode */
1322 reg = read_signed_register (24); /* Test register is 24 */
1323 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1324 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1325 /* pc = add_offset_16(pc,upk.offset) ; */
1326 pc += (upk.offset << 1) + 2;
1327 else
1328 pc += 2;
1329 break;
1330 }
1331 case 29: /* RR Formats JR, JALR, JALR-RA */
1332 {
1333 struct upk_mips16 upk;
1334 /* upk.fmt = rrtype; */
1335 op = insn & 0x1f;
1336 if (op == 0)
c5aa993b 1337 {
12f02c2a
AC
1338 int reg;
1339 upk.regx = (insn >> 8) & 0x07;
1340 upk.regy = (insn >> 5) & 0x07;
1341 switch (upk.regy)
c5aa993b 1342 {
12f02c2a
AC
1343 case 0:
1344 reg = upk.regx;
1345 break;
1346 case 1:
1347 reg = 31;
1348 break; /* Function return instruction */
1349 case 2:
1350 reg = upk.regx;
1351 break;
1352 default:
1353 reg = 31;
1354 break; /* BOGUS Guess */
c906108c 1355 }
12f02c2a 1356 pc = read_signed_register (reg);
c906108c 1357 }
12f02c2a 1358 else
c5aa993b 1359 pc += 2;
12f02c2a
AC
1360 break;
1361 }
1362 case 30:
1363 /* This is an instruction extension. Fetch the real instruction
1364 (which follows the extension) and decode things based on
1365 that. */
1366 {
1367 pc += 2;
1368 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1369 break;
1370 }
1371 default:
1372 {
1373 pc += 2;
1374 break;
1375 }
c906108c 1376 }
c5aa993b 1377 return pc;
12f02c2a 1378}
c906108c 1379
5a89d8aa 1380static CORE_ADDR
12f02c2a
AC
1381mips16_next_pc (CORE_ADDR pc)
1382{
1383 unsigned int insn = fetch_mips_16 (pc);
1384 return extended_mips16_next_pc (pc, 0, insn);
1385}
1386
1387/* The mips_next_pc function supports single_step when the remote
7e73cedf 1388 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1389 It works by decoding the current instruction and predicting where a
1390 branch will go. This isnt hard because all the data is available.
1391 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1392CORE_ADDR
1393mips_next_pc (CORE_ADDR pc)
c906108c 1394{
c5aa993b
JM
1395 if (pc & 0x01)
1396 return mips16_next_pc (pc);
1397 else
1398 return mips32_next_pc (pc);
12f02c2a 1399}
c906108c
SS
1400
1401/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1402 NULL).
1403
1404 Note: kevinb/2002-08-09: The only caller of this function is (and
1405 should remain) mips_frame_init_saved_regs(). In fact,
1406 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1407 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1408 functions should really be combined and now that there is only one
1409 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1410 though.) */
c906108c 1411
d28e01f4 1412static void
acdb74a0 1413mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1414{
1415 int ireg;
1416 CORE_ADDR reg_position;
1417 /* r0 bit means kernel trap */
1418 int kernel_trap;
1419 /* What registers have been saved? Bitmasks. */
1420 unsigned long gen_mask, float_mask;
1421 mips_extra_func_info_t proc_desc;
1422 t_inst inst;
1423
1424 frame_saved_regs_zalloc (fci);
1425
1426 /* If it is the frame for sigtramp, the saved registers are located
1427 in a sigcontext structure somewhere on the stack.
1428 If the stack layout for sigtramp changes we might have to change these
1429 constants and the companion fixup_sigtramp in mdebugread.c */
1430#ifndef SIGFRAME_BASE
1431/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1432 above the sigtramp frame. */
1433#define SIGFRAME_BASE MIPS_REGSIZE
1434/* FIXME! Are these correct?? */
1435#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1436#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1437#define SIGFRAME_FPREGSAVE_OFF \
1438 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1439#endif
1440#ifndef SIGFRAME_REG_SIZE
1441/* FIXME! Is this correct?? */
1442#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1443#endif
5a203e44 1444 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1445 {
1446 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1447 {
1e2330ba 1448 reg_position = get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
c5aa993b 1449 + ireg * SIGFRAME_REG_SIZE;
b2fb4676 1450 get_frame_saved_regs (fci)[ireg] = reg_position;
c906108c
SS
1451 }
1452 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1453 {
1e2330ba 1454 reg_position = get_frame_base (fci) + SIGFRAME_FPREGSAVE_OFF
c5aa993b 1455 + ireg * SIGFRAME_REG_SIZE;
b2fb4676 1456 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
c906108c 1457 }
1e2330ba 1458 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_base (fci) + SIGFRAME_PC_OFF;
c906108c
SS
1459 return;
1460 }
1461
da50a4b7 1462 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c
SS
1463 if (proc_desc == NULL)
1464 /* I'm not sure how/whether this can happen. Normally when we can't
1465 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1466 and set the saved_regs right away. */
1467 return;
1468
c5aa993b
JM
1469 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1470 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1471 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1472
c5aa993b
JM
1473 if ( /* In any frame other than the innermost or a frame interrupted by
1474 a signal, we assume that all registers have been saved.
1475 This assumes that all register saves in a function happen before
1476 the first function call. */
11c02a10
AC
1477 (get_next_frame (fci) == NULL
1478 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1479
c5aa993b
JM
1480 /* In a dummy frame we know exactly where things are saved. */
1481 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1482
c5aa993b
JM
1483 /* Don't bother unless we are inside a function prologue. Outside the
1484 prologue, we know where everything is. */
c906108c 1485
50abf9e5 1486 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1487
c5aa993b
JM
1488 /* Not sure exactly what kernel_trap means, but if it means
1489 the kernel saves the registers without a prologue doing it,
1490 we better not examine the prologue to see whether registers
1491 have been saved yet. */
1492 && !kernel_trap)
c906108c
SS
1493 {
1494 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1495 claims are saved have been saved yet. */
c906108c
SS
1496
1497 CORE_ADDR addr;
1498
1499 /* Bitmasks; set if we have found a save for the register. */
1500 unsigned long gen_save_found = 0;
1501 unsigned long float_save_found = 0;
1502 int instlen;
1503
1504 /* If the address is odd, assume this is MIPS16 code. */
1505 addr = PROC_LOW_ADDR (proc_desc);
1506 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1507
1508 /* Scan through this function's instructions preceding the current
1509 PC, and look for those that save registers. */
50abf9e5 1510 while (addr < get_frame_pc (fci))
c906108c
SS
1511 {
1512 inst = mips_fetch_instruction (addr);
1513 if (pc_is_mips16 (addr))
1514 mips16_decode_reg_save (inst, &gen_save_found);
1515 else
1516 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1517 addr += instlen;
1518 }
1519 gen_mask = gen_save_found;
1520 float_mask = float_save_found;
1521 }
1522
1523 /* Fill in the offsets for the registers which gen_mask says
1524 were saved. */
1e2330ba 1525 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
c5aa993b 1526 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1527 if (gen_mask & 0x80000000)
1528 {
b2fb4676 1529 get_frame_saved_regs (fci)[ireg] = reg_position;
7a292a7a 1530 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1531 }
1532
1533 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1534 of that normally used by gcc. Therefore, we have to fetch the first
1535 instruction of the function, and if it's an entry instruction that
1536 saves $s0 or $s1, correct their saved addresses. */
1537 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1538 {
1539 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1540 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1541 {
1542 int reg;
1543 int sreg_count = (inst >> 6) & 3;
c5aa993b 1544
c906108c 1545 /* Check if the ra register was pushed on the stack. */
1e2330ba 1546 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
c906108c 1547 if (inst & 0x20)
7a292a7a 1548 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1549
1550 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1551 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1552 {
b2fb4676 1553 get_frame_saved_regs (fci)[reg] = reg_position;
7a292a7a 1554 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1555 }
1556 }
1557 }
1558
1559 /* Fill in the offsets for the registers which float_mask says
1560 were saved. */
1e2330ba 1561 reg_position = get_frame_base (fci) + PROC_FREG_OFFSET (proc_desc);
c906108c 1562
6acdf5c7
MS
1563 /* Apparently, the freg_offset gives the offset to the first 64 bit
1564 saved.
1565
1566 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1567 designates the first saved 64 bit register.
1568
1569 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1570 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1571 FREG_OFFSET, designates the address of the lower register of the
1572 register pair. Adjust the offset so that it designates the upper
1573 register of the pair -- i.e., the address of the first saved 32
1574 bit register. */
1575
1576 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1577 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1578
1579 /* Fill in the offsets for the float registers which float_mask says
1580 were saved. */
c5aa993b 1581 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1582 if (float_mask & 0x80000000)
1583 {
b2fb4676 1584 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1585 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1586 }
1587
b2fb4676 1588 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_saved_regs (fci)[RA_REGNUM];
c906108c
SS
1589}
1590
d28e01f4
KB
1591/* Set up the 'saved_regs' array. This is a data structure containing
1592 the addresses on the stack where each register has been saved, for
1593 each stack frame. Registers that have not been saved will have
1594 zero here. The stack pointer register is special: rather than the
1595 address where the stack register has been saved, saved_regs[SP_REGNUM]
1596 will have the actual value of the previous frame's stack register. */
1597
1598static void
1599mips_frame_init_saved_regs (struct frame_info *frame)
1600{
b2fb4676 1601 if (get_frame_saved_regs (frame) == NULL)
d28e01f4
KB
1602 {
1603 mips_find_saved_regs (frame);
1604 }
1e2330ba 1605 get_frame_saved_regs (frame)[SP_REGNUM] = get_frame_base (frame);
d28e01f4
KB
1606}
1607
c906108c 1608static CORE_ADDR
acdb74a0 1609read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1610{
64159455
AC
1611 int optimized;
1612 CORE_ADDR addr;
1613 int realnum;
1614 enum lval_type lval;
1615 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
f796e4be
KB
1616
1617 if (fi == NULL)
c906108c 1618 {
f796e4be
KB
1619 regcache_cooked_read (current_regcache, regno, raw_buffer);
1620 }
1621 else
1622 {
1623 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1624 raw_buffer);
1625 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1626 should have a pseudo register range that correspons to the ABI's,
1627 rather than the ISA's, view of registers. These registers would
1628 then implicitly describe their size and hence could be used
1629 without the below munging. */
1630 if (lval == lval_memory)
c906108c 1631 {
f796e4be
KB
1632 if (regno < 32)
1633 {
1634 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1635 saved. */
1636 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1637 }
c906108c
SS
1638 }
1639 }
64159455
AC
1640
1641 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1642}
1643
1644/* mips_addr_bits_remove - remove useless address bits */
1645
875e1767 1646static CORE_ADDR
acdb74a0 1647mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1648{
5213ab06
AC
1649 if (GDB_TARGET_IS_MIPS64)
1650 {
4014092b 1651 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1652 {
1653 /* This hack is a work-around for existing boards using
1654 PMON, the simulator, and any other 64-bit targets that
1655 doesn't have true 64-bit addressing. On these targets,
1656 the upper 32 bits of addresses are ignored by the
1657 hardware. Thus, the PC or SP are likely to have been
1658 sign extended to all 1s by instruction sequences that
1659 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1660 code that loads an address is this:
1661 lui $r2, <upper 16 bits>
1662 ori $r2, <lower 16 bits>
1663 But the lui sign-extends the value such that the upper 32
1664 bits may be all 1s. The workaround is simply to mask off
1665 these bits. In the future, gcc may be changed to support
1666 true 64-bit addressing, and this masking will have to be
1667 disabled. */
5213ab06
AC
1668 addr &= (CORE_ADDR) 0xffffffff;
1669 }
1670 }
4014092b 1671 else if (mips_mask_address_p ())
5213ab06 1672 {
4014092b
AC
1673 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1674 masking off bits, instead, the actual target should be asking
1675 for the address to be converted to a valid pointer. */
5213ab06
AC
1676 /* Even when GDB is configured for some 32-bit targets
1677 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1678 so CORE_ADDR is 64 bits. So we still have to mask off
1679 useless bits from addresses. */
c5aa993b 1680 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1681 }
c906108c
SS
1682 return addr;
1683}
1684
9022177c
DJ
1685/* mips_software_single_step() is called just before we want to resume
1686 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1687 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1688 the target of the coming instruction and breakpoint it.
1689
1690 single_step is also called just after the inferior stops. If we had
1691 set up a simulated single-step, we undo our damage. */
1692
1693void
1694mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1695{
1696 static CORE_ADDR next_pc;
1697 typedef char binsn_quantum[BREAKPOINT_MAX];
1698 static binsn_quantum break_mem;
1699 CORE_ADDR pc;
1700
1701 if (insert_breakpoints_p)
1702 {
1703 pc = read_register (PC_REGNUM);
1704 next_pc = mips_next_pc (pc);
1705
1706 target_insert_breakpoint (next_pc, break_mem);
1707 }
1708 else
1709 target_remove_breakpoint (next_pc, break_mem);
1710}
1711
97f46953 1712static CORE_ADDR
acdb74a0 1713mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1714{
1715 CORE_ADDR pc, tmp;
1716
11c02a10
AC
1717 pc = ((fromleaf)
1718 ? SAVED_PC_AFTER_CALL (get_next_frame (prev))
1719 : get_next_frame (prev)
8bedc050 1720 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1721 : read_pc ());
5a89d8aa 1722 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1723 return tmp ? tmp : pc;
c906108c
SS
1724}
1725
1726
f7ab6ec6 1727static CORE_ADDR
acdb74a0 1728mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1729{
1730 CORE_ADDR saved_pc;
da50a4b7 1731 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
c906108c
SS
1732 /* We have to get the saved pc from the sigcontext
1733 if it is a signal handler frame. */
5a203e44 1734 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
c5aa993b 1735 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1736
50abf9e5 1737 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1738 {
1739 LONGEST tmp;
1740 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1741 saved_pc = tmp;
1742 }
1743 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1e2330ba 1744 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1745 else
7a292a7a 1746 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1747
1748 return ADDR_BITS_REMOVE (saved_pc);
1749}
1750
1751static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1752
1753/* This hack will go away once the get_prev_frame() code has been
1754 modified to set the frame's type first. That is BEFORE init extra
1755 frame info et.al. is called. This is because it will become
1756 possible to skip the init extra info call for sigtramp and dummy
1757 frames. */
1758static CORE_ADDR *temp_saved_regs;
c906108c
SS
1759
1760/* Set a register's saved stack address in temp_saved_regs. If an address
1761 has already been set for this register, do nothing; this way we will
1762 only recognize the first save of a given register in a function prologue.
1763 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1764
1765static void
acdb74a0 1766set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1767{
cce74817
JM
1768 if (temp_saved_regs[regno] == 0)
1769 temp_saved_regs[regno] = offset;
c906108c
SS
1770}
1771
1772
1773/* Test whether the PC points to the return instruction at the
1774 end of a function. */
1775
c5aa993b 1776static int
acdb74a0 1777mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1778{
1779 if (pc_is_mips16 (pc))
1780 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1781 generates a "jr $ra"; other times it generates code to load
1782 the return address from the stack to an accessible register (such
1783 as $a3), then a "jr" using that register. This second case
1784 is almost impossible to distinguish from an indirect jump
1785 used for switch statements, so we don't even try. */
1786 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1787 else
1788 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1789}
1790
1791
1792/* This fencepost looks highly suspicious to me. Removing it also
1793 seems suspicious as it could affect remote debugging across serial
1794 lines. */
1795
1796static CORE_ADDR
acdb74a0 1797heuristic_proc_start (CORE_ADDR pc)
c906108c 1798{
c5aa993b
JM
1799 CORE_ADDR start_pc;
1800 CORE_ADDR fence;
1801 int instlen;
1802 int seen_adjsp = 0;
c906108c 1803
c5aa993b
JM
1804 pc = ADDR_BITS_REMOVE (pc);
1805 start_pc = pc;
1806 fence = start_pc - heuristic_fence_post;
1807 if (start_pc == 0)
1808 return 0;
c906108c 1809
c5aa993b
JM
1810 if (heuristic_fence_post == UINT_MAX
1811 || fence < VM_MIN_ADDRESS)
1812 fence = VM_MIN_ADDRESS;
c906108c 1813
c5aa993b 1814 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1815
c5aa993b
JM
1816 /* search back for previous return */
1817 for (start_pc -= instlen;; start_pc -= instlen)
1818 if (start_pc < fence)
1819 {
1820 /* It's not clear to me why we reach this point when
1821 stop_soon_quietly, but with this test, at least we
1822 don't print out warnings for every child forked (eg, on
1823 decstation). 22apr93 rich@cygnus.com. */
1824 if (!stop_soon_quietly)
c906108c 1825 {
c5aa993b
JM
1826 static int blurb_printed = 0;
1827
1828 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1829 paddr_nz (pc));
1830
1831 if (!blurb_printed)
c906108c 1832 {
c5aa993b
JM
1833 /* This actually happens frequently in embedded
1834 development, when you first connect to a board
1835 and your stack pointer and pc are nowhere in
1836 particular. This message needs to give people
1837 in that situation enough information to
1838 determine that it's no big deal. */
1839 printf_filtered ("\n\
cd0fc7c3
SS
1840 GDB is unable to find the start of the function at 0x%s\n\
1841and thus can't determine the size of that function's stack frame.\n\
1842This means that GDB may be unable to access that stack frame, or\n\
1843the frames below it.\n\
1844 This problem is most likely caused by an invalid program counter or\n\
1845stack pointer.\n\
1846 However, if you think GDB should simply search farther back\n\
1847from 0x%s for code which looks like the beginning of a\n\
1848function, you can increase the range of the search using the `set\n\
1849heuristic-fence-post' command.\n",
c5aa993b
JM
1850 paddr_nz (pc), paddr_nz (pc));
1851 blurb_printed = 1;
c906108c 1852 }
c906108c
SS
1853 }
1854
c5aa993b
JM
1855 return 0;
1856 }
1857 else if (pc_is_mips16 (start_pc))
1858 {
1859 unsigned short inst;
1860
1861 /* On MIPS16, any one of the following is likely to be the
1862 start of a function:
1863 entry
1864 addiu sp,-n
1865 daddiu sp,-n
1866 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1867 inst = mips_fetch_instruction (start_pc);
1868 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1869 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1870 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1871 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1872 break;
1873 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1874 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1875 seen_adjsp = 1;
1876 else
1877 seen_adjsp = 0;
1878 }
1879 else if (mips_about_to_return (start_pc))
1880 {
1881 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1882 break;
1883 }
1884
c5aa993b 1885 return start_pc;
c906108c
SS
1886}
1887
1888/* Fetch the immediate value from a MIPS16 instruction.
1889 If the previous instruction was an EXTEND, use it to extend
1890 the upper bits of the immediate value. This is a helper function
1891 for mips16_heuristic_proc_desc. */
1892
1893static int
acdb74a0
AC
1894mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1895 unsigned short inst, /* current instruction */
1896 int nbits, /* number of bits in imm field */
1897 int scale, /* scale factor to be applied to imm */
1898 int is_signed) /* is the imm field signed? */
c906108c
SS
1899{
1900 int offset;
1901
1902 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1903 {
1904 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1905 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1906 offset = 0 - (0x10000 - (offset & 0xffff));
1907 return offset | (inst & 0x1f);
1908 }
1909 else
1910 {
1911 int max_imm = 1 << nbits;
1912 int mask = max_imm - 1;
1913 int sign_bit = max_imm >> 1;
1914
1915 offset = inst & mask;
1916 if (is_signed && (offset & sign_bit))
1917 offset = 0 - (max_imm - offset);
1918 return offset * scale;
1919 }
1920}
1921
1922
1923/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1924 stream from start_pc to limit_pc. */
1925
1926static void
acdb74a0
AC
1927mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1928 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1929{
1930 CORE_ADDR cur_pc;
1931 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1932 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1933 unsigned inst = 0; /* current instruction */
1934 unsigned entry_inst = 0; /* the entry instruction */
1935 int reg, offset;
1936
c5aa993b
JM
1937 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1938 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1939
1940 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1941 {
1942 /* Save the previous instruction. If it's an EXTEND, we'll extract
1943 the immediate offset extension from it in mips16_get_imm. */
1944 prev_inst = inst;
1945
1946 /* Fetch and decode the instruction. */
1947 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1948 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1949 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1950 {
1951 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1952 if (offset < 0) /* negative stack adjustment? */
1953 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1954 else
1955 /* Exit loop if a positive stack adjustment is found, which
1956 usually means that the stack cleanup code in the function
1957 epilogue is reached. */
1958 break;
1959 }
1960 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1961 {
1962 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1963 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1964 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1965 set_reg_offset (reg, sp + offset);
1966 }
1967 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1968 {
1969 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1970 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1971 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1972 set_reg_offset (reg, sp + offset);
1973 }
1974 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1975 {
1976 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1977 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1978 set_reg_offset (RA_REGNUM, sp + offset);
1979 }
1980 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1981 {
1982 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1983 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1984 set_reg_offset (RA_REGNUM, sp + offset);
1985 }
c5aa993b 1986 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1987 {
1988 frame_addr = sp;
1989 PROC_FRAME_REG (&temp_proc_desc) = 17;
1990 }
1991 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1992 {
1993 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1994 frame_addr = sp + offset;
1995 PROC_FRAME_REG (&temp_proc_desc) = 17;
1996 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1997 }
1998 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1999 {
2000 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2001 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2002 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2003 set_reg_offset (reg, frame_addr + offset);
2004 }
2005 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2006 {
2007 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2008 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2009 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2010 set_reg_offset (reg, frame_addr + offset);
2011 }
c5aa993b
JM
2012 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2013 entry_inst = inst; /* save for later processing */
c906108c 2014 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2015 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2016 }
2017
c5aa993b
JM
2018 /* The entry instruction is typically the first instruction in a function,
2019 and it stores registers at offsets relative to the value of the old SP
2020 (before the prologue). But the value of the sp parameter to this
2021 function is the new SP (after the prologue has been executed). So we
2022 can't calculate those offsets until we've seen the entire prologue,
2023 and can calculate what the old SP must have been. */
2024 if (entry_inst != 0)
2025 {
2026 int areg_count = (entry_inst >> 8) & 7;
2027 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2028
c5aa993b
JM
2029 /* The entry instruction always subtracts 32 from the SP. */
2030 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2031
c5aa993b
JM
2032 /* Now we can calculate what the SP must have been at the
2033 start of the function prologue. */
2034 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2035
c5aa993b
JM
2036 /* Check if a0-a3 were saved in the caller's argument save area. */
2037 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2038 {
2039 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2040 set_reg_offset (reg, sp + offset);
2041 offset += MIPS_SAVED_REGSIZE;
2042 }
c906108c 2043
c5aa993b
JM
2044 /* Check if the ra register was pushed on the stack. */
2045 offset = -4;
2046 if (entry_inst & 0x20)
2047 {
2048 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2049 set_reg_offset (RA_REGNUM, sp + offset);
2050 offset -= MIPS_SAVED_REGSIZE;
2051 }
c906108c 2052
c5aa993b
JM
2053 /* Check if the s0 and s1 registers were pushed on the stack. */
2054 for (reg = 16; reg < sreg_count + 16; reg++)
2055 {
2056 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2057 set_reg_offset (reg, sp + offset);
2058 offset -= MIPS_SAVED_REGSIZE;
2059 }
2060 }
c906108c
SS
2061}
2062
2063static void
fba45db2
KB
2064mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2065 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2066{
2067 CORE_ADDR cur_pc;
c5aa993b 2068 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2069restart:
fe29b929 2070 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2071 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2072 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2073 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2074 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2075 {
2076 unsigned long inst, high_word, low_word;
2077 int reg;
2078
2079 /* Fetch the instruction. */
2080 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2081
2082 /* Save some code by pre-extracting some useful fields. */
2083 high_word = (inst >> 16) & 0xffff;
2084 low_word = inst & 0xffff;
2085 reg = high_word & 0x1f;
2086
c5aa993b 2087 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2088 || high_word == 0x23bd /* addi $sp,$sp,-i */
2089 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2090 {
2091 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2092 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2093 else
2094 /* Exit loop if a positive stack adjustment is found, which
2095 usually means that the stack cleanup code in the function
2096 epilogue is reached. */
2097 break;
2098 }
2099 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2100 {
c5aa993b 2101 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2102 set_reg_offset (reg, sp + low_word);
2103 }
2104 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2105 {
2106 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2107 but the register size used is only 32 bits. Make the address
2108 for the saved register point to the lower 32 bits. */
c5aa993b 2109 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2110 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2111 }
c5aa993b 2112 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2113 {
2114 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2115 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2116 frame_addr = sp + low_word;
c906108c
SS
2117 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2118 {
2119 unsigned alloca_adjust;
2120 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2121 frame_addr = read_next_frame_reg (next_frame, 30);
2122 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2123 if (alloca_adjust > 0)
2124 {
2125 /* FP > SP + frame_size. This may be because
2126 * of an alloca or somethings similar.
2127 * Fix sp to "pre-alloca" value, and try again.
2128 */
2129 sp += alloca_adjust;
2130 goto restart;
2131 }
2132 }
2133 }
c5aa993b
JM
2134 /* move $30,$sp. With different versions of gas this will be either
2135 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2136 Accept any one of these. */
c906108c
SS
2137 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2138 {
2139 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2140 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2141 {
2142 unsigned alloca_adjust;
2143 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2144 frame_addr = read_next_frame_reg (next_frame, 30);
2145 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2146 if (alloca_adjust > 0)
2147 {
2148 /* FP > SP + frame_size. This may be because
2149 * of an alloca or somethings similar.
2150 * Fix sp to "pre-alloca" value, and try again.
2151 */
2152 sp += alloca_adjust;
2153 goto restart;
2154 }
2155 }
2156 }
c5aa993b 2157 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2158 {
c5aa993b 2159 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2160 set_reg_offset (reg, frame_addr + low_word);
2161 }
2162 }
2163}
2164
2165static mips_extra_func_info_t
acdb74a0 2166heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2167 struct frame_info *next_frame, int cur_frame)
c906108c 2168{
479412cd
DJ
2169 CORE_ADDR sp;
2170
2171 if (cur_frame)
2172 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2173 else
2174 sp = 0;
c906108c 2175
c5aa993b
JM
2176 if (start_pc == 0)
2177 return NULL;
2178 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2179 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2180 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2181 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2182 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2183 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2184
2185 if (start_pc + 200 < limit_pc)
2186 limit_pc = start_pc + 200;
2187 if (pc_is_mips16 (start_pc))
2188 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2189 else
2190 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2191 return &temp_proc_desc;
2192}
2193
6c0d6680
DJ
2194struct mips_objfile_private
2195{
2196 bfd_size_type size;
2197 char *contents;
2198};
2199
2200/* Global used to communicate between non_heuristic_proc_desc and
2201 compare_pdr_entries within qsort (). */
2202static bfd *the_bfd;
2203
2204static int
2205compare_pdr_entries (const void *a, const void *b)
2206{
2207 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2208 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2209
2210 if (lhs < rhs)
2211 return -1;
2212 else if (lhs == rhs)
2213 return 0;
2214 else
2215 return 1;
2216}
2217
c906108c 2218static mips_extra_func_info_t
acdb74a0 2219non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2220{
2221 CORE_ADDR startaddr;
2222 mips_extra_func_info_t proc_desc;
c5aa993b 2223 struct block *b = block_for_pc (pc);
c906108c 2224 struct symbol *sym;
6c0d6680
DJ
2225 struct obj_section *sec;
2226 struct mips_objfile_private *priv;
2227
ae45cd16 2228 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2229 return NULL;
c906108c
SS
2230
2231 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2232 if (addrptr)
2233 *addrptr = startaddr;
6c0d6680
DJ
2234
2235 priv = NULL;
2236
2237 sec = find_pc_section (pc);
2238 if (sec != NULL)
c906108c 2239 {
6c0d6680
DJ
2240 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2241
2242 /* Search the ".pdr" section generated by GAS. This includes most of
2243 the information normally found in ECOFF PDRs. */
2244
2245 the_bfd = sec->objfile->obfd;
2246 if (priv == NULL
2247 && (the_bfd->format == bfd_object
2248 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2249 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2250 {
2251 /* Right now GAS only outputs the address as a four-byte sequence.
2252 This means that we should not bother with this method on 64-bit
2253 targets (until that is fixed). */
2254
2255 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2256 sizeof (struct mips_objfile_private));
2257 priv->size = 0;
2258 sec->objfile->obj_private = priv;
2259 }
2260 else if (priv == NULL)
2261 {
2262 asection *bfdsec;
2263
2264 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2265 sizeof (struct mips_objfile_private));
2266
2267 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2268 if (bfdsec != NULL)
2269 {
2270 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2271 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2272 priv->size);
2273 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2274 priv->contents, 0, priv->size);
2275
2276 /* In general, the .pdr section is sorted. However, in the
2277 presence of multiple code sections (and other corner cases)
2278 it can become unsorted. Sort it so that we can use a faster
2279 binary search. */
2280 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2281 }
2282 else
2283 priv->size = 0;
2284
2285 sec->objfile->obj_private = priv;
2286 }
2287 the_bfd = NULL;
2288
2289 if (priv->size != 0)
2290 {
2291 int low, mid, high;
2292 char *ptr;
2293
2294 low = 0;
2295 high = priv->size / 32;
2296
2297 do
2298 {
2299 CORE_ADDR pdr_pc;
2300
2301 mid = (low + high) / 2;
2302
2303 ptr = priv->contents + mid * 32;
2304 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2305 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2306 SECT_OFF_TEXT (sec->objfile));
2307 if (pdr_pc == startaddr)
2308 break;
2309 if (pdr_pc > startaddr)
2310 high = mid;
2311 else
2312 low = mid + 1;
2313 }
2314 while (low != high);
2315
2316 if (low != high)
2317 {
2318 struct symbol *sym = find_pc_function (pc);
2319
2320 /* Fill in what we need of the proc_desc. */
2321 proc_desc = (mips_extra_func_info_t)
2322 obstack_alloc (&sec->objfile->psymbol_obstack,
2323 sizeof (struct mips_extra_func_info));
2324 PROC_LOW_ADDR (proc_desc) = startaddr;
2325
2326 /* Only used for dummy frames. */
2327 PROC_HIGH_ADDR (proc_desc) = 0;
2328
2329 PROC_FRAME_OFFSET (proc_desc)
2330 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2331 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2332 ptr + 24);
2333 PROC_FRAME_ADJUST (proc_desc) = 0;
2334 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2335 ptr + 4);
2336 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2337 ptr + 12);
2338 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2339 ptr + 8);
2340 PROC_FREG_OFFSET (proc_desc)
2341 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2342 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2343 ptr + 28);
2344 proc_desc->pdr.isym = (long) sym;
2345
2346 return proc_desc;
2347 }
2348 }
c906108c
SS
2349 }
2350
6c0d6680
DJ
2351 if (b == NULL)
2352 return NULL;
2353
2354 if (startaddr > BLOCK_START (b))
2355 {
2356 /* This is the "pathological" case referred to in a comment in
2357 print_frame_info. It might be better to move this check into
2358 symbol reading. */
2359 return NULL;
2360 }
2361
2362 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2363
c906108c
SS
2364 /* If we never found a PDR for this function in symbol reading, then
2365 examine prologues to find the information. */
2366 if (sym)
2367 {
2368 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2369 if (PROC_FRAME_REG (proc_desc) == -1)
2370 return NULL;
2371 else
2372 return proc_desc;
2373 }
2374 else
2375 return NULL;
2376}
2377
2378
2379static mips_extra_func_info_t
479412cd 2380find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2381{
2382 mips_extra_func_info_t proc_desc;
4e0df2df 2383 CORE_ADDR startaddr = 0;
c906108c
SS
2384
2385 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2386
2387 if (proc_desc)
2388 {
2389 /* IF this is the topmost frame AND
2390 * (this proc does not have debugging information OR
2391 * the PC is in the procedure prologue)
2392 * THEN create a "heuristic" proc_desc (by analyzing
2393 * the actual code) to replace the "official" proc_desc.
2394 */
2395 if (next_frame == NULL)
2396 {
2397 struct symtab_and_line val;
2398 struct symbol *proc_symbol =
c86b5b38 2399 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2400
2401 if (proc_symbol)
2402 {
2403 val = find_pc_line (BLOCK_START
c5aa993b 2404 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2405 0);
2406 val.pc = val.end ? val.end : pc;
2407 }
2408 if (!proc_symbol || pc < val.pc)
2409 {
2410 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2411 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2412 pc, next_frame, cur_frame);
c906108c
SS
2413 if (found_heuristic)
2414 proc_desc = found_heuristic;
2415 }
2416 }
2417 }
2418 else
2419 {
2420 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2421 by procedure call dummys. However, the procedures being called ought
2422 to have their own proc_descs, and even if they don't,
2423 heuristic_proc_desc knows how to create them! */
c906108c
SS
2424
2425 register struct linked_proc_info *link;
2426
2427 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2428 if (PROC_LOW_ADDR (&link->info) <= pc
2429 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2430 return &link->info;
2431
2432 if (startaddr == 0)
2433 startaddr = heuristic_proc_start (pc);
2434
2435 proc_desc =
479412cd 2436 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2437 }
2438 return proc_desc;
2439}
2440
2441static CORE_ADDR
acdb74a0
AC
2442get_frame_pointer (struct frame_info *frame,
2443 mips_extra_func_info_t proc_desc)
c906108c 2444{
c86b5b38
MS
2445 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2446 PROC_FRAME_REG (proc_desc)) +
2447 PROC_FRAME_OFFSET (proc_desc) -
2448 PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2449}
2450
5a89d8aa 2451static mips_extra_func_info_t cached_proc_desc;
c906108c 2452
f7ab6ec6 2453static CORE_ADDR
acdb74a0 2454mips_frame_chain (struct frame_info *frame)
c906108c
SS
2455{
2456 mips_extra_func_info_t proc_desc;
2457 CORE_ADDR tmp;
8bedc050 2458 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
2459
2460 if (saved_pc == 0 || inside_entry_file (saved_pc))
2461 return 0;
2462
2463 /* Check if the PC is inside a call stub. If it is, fetch the
2464 PC of the caller of that stub. */
5a89d8aa 2465 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2466 saved_pc = tmp;
2467
ae45cd16 2468 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2469 {
2470 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2471 is well, frame->frame the bottom of the current frame will
2472 contain that value. */
1e2330ba 2473 return get_frame_base (frame);
cedea778
AC
2474 }
2475
c906108c 2476 /* Look up the procedure descriptor for this PC. */
479412cd 2477 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2478 if (!proc_desc)
2479 return 0;
2480
2481 cached_proc_desc = proc_desc;
2482
2483 /* If no frame pointer and frame size is zero, we must be at end
2484 of stack (or otherwise hosed). If we don't check frame size,
2485 we loop forever if we see a zero size frame. */
2486 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2487 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2488 /* The previous frame from a sigtramp frame might be frameless
2489 and have frame size zero. */
5a203e44 2490 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2491 /* For a generic dummy frame, let get_frame_pointer() unwind a
2492 register value saved as part of the dummy frame call. */
50abf9e5 2493 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2494 return 0;
2495 else
2496 return get_frame_pointer (frame, proc_desc);
2497}
2498
f7ab6ec6 2499static void
acdb74a0 2500mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2501{
2502 int regnum;
f2c16bd6
KB
2503 mips_extra_func_info_t proc_desc;
2504
2505 if (get_frame_type (fci) == DUMMY_FRAME)
2506 return;
c906108c 2507
f796e4be
KB
2508 /* Use proc_desc calculated in frame_chain. When there is no
2509 next frame, i.e, get_next_frame (fci) == NULL, we call
2510 find_proc_desc () to calculate it, passing an explicit
2511 NULL as the frame parameter. */
f2c16bd6 2512 proc_desc =
11c02a10
AC
2513 get_next_frame (fci)
2514 ? cached_proc_desc
f796e4be
KB
2515 : find_proc_desc (get_frame_pc (fci),
2516 NULL /* i.e, get_next_frame (fci) */,
2517 1);
c906108c 2518
a00a19e9 2519 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2520
7b5849cc 2521 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2522 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2523 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2524 if (proc_desc)
2525 {
2526 /* Fixup frame-pointer - only needed for top frame */
2527 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2528 Get the value of the frame relative sp, procedure might have been
2529 interrupted by a signal at it's very start. */
50abf9e5 2530 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2531 && !PROC_DESC_IS_DUMMY (proc_desc))
11c02a10 2532 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
50abf9e5 2533 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2534 /* Do not ``fix'' fci->frame. It will have the value of the
2535 generic dummy frame's top-of-stack (since the draft
2536 fci->frame is obtained by returning the unwound stack
2537 pointer) and that is what we want. That way the fci->frame
2538 value will match the top-of-stack value that was saved as
2539 part of the dummy frames data. */
2540 /* Do nothing. */;
c906108c 2541 else
11c02a10 2542 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2543
2544 if (proc_desc == &temp_proc_desc)
2545 {
2546 char *name;
2547
2548 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2549 mips_find_saved_registers will do that for us. We can't
2550 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2551 yet set. */
2552 /* FIXME: cagney/2002-11-18: This problem will go away once
2553 frame.c:get_prev_frame() is modified to set the frame's
2554 type before calling functions like this. */
50abf9e5 2555 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2556 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2557 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2558 {
c5aa993b 2559 frame_saved_regs_zalloc (fci);
b2fb4676
AC
2560 memcpy (get_frame_saved_regs (fci), temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2561 get_frame_saved_regs (fci)[PC_REGNUM]
2562 = get_frame_saved_regs (fci)[RA_REGNUM];
ffabd70d
KB
2563 /* Set value of previous frame's stack pointer. Remember that
2564 saved_regs[SP_REGNUM] is special in that it contains the
2565 value of the stack pointer register. The other saved_regs
2566 values are addresses (in the inferior) at which a given
2567 register's value may be found. */
1e2330ba 2568 get_frame_saved_regs (fci)[SP_REGNUM] = get_frame_base (fci);
c906108c
SS
2569 }
2570 }
2571
2572 /* hack: if argument regs are saved, guess these contain args */
cce74817 2573 /* assume we can't tell how many args for now */
da50a4b7 2574 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2575 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2576 {
c5aa993b 2577 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2578 {
da50a4b7 2579 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2580 break;
2581 }
c5aa993b 2582 }
c906108c
SS
2583 }
2584}
2585
2586/* MIPS stack frames are almost impenetrable. When execution stops,
2587 we basically have to look at symbol information for the function
2588 that we stopped in, which tells us *which* register (if any) is
2589 the base of the frame pointer, and what offset from that register
361d1df0 2590 the frame itself is at.
c906108c
SS
2591
2592 This presents a problem when trying to examine a stack in memory
2593 (that isn't executing at the moment), using the "frame" command. We
2594 don't have a PC, nor do we have any registers except SP.
2595
2596 This routine takes two arguments, SP and PC, and tries to make the
2597 cached frames look as if these two arguments defined a frame on the
2598 cache. This allows the rest of info frame to extract the important
2599 arguments without difficulty. */
2600
2601struct frame_info *
acdb74a0 2602setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2603{
2604 if (argc != 2)
2605 error ("MIPS frame specifications require two arguments: sp and pc");
2606
2607 return create_new_frame (argv[0], argv[1]);
2608}
2609
f09ded24
AC
2610/* According to the current ABI, should the type be passed in a
2611 floating-point register (assuming that there is space)? When there
2612 is no FPU, FP are not even considered as possibile candidates for
2613 FP registers and, consequently this returns false - forces FP
2614 arguments into integer registers. */
2615
2616static int
2617fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2618{
2619 return ((typecode == TYPE_CODE_FLT
2620 || (MIPS_EABI
2621 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2622 && TYPE_NFIELDS (arg_type) == 1
2623 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2624 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2625}
2626
49e790b0
DJ
2627/* On o32, argument passing in GPRs depends on the alignment of the type being
2628 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2629
2630static int
2631mips_type_needs_double_align (struct type *type)
2632{
2633 enum type_code typecode = TYPE_CODE (type);
361d1df0 2634
49e790b0
DJ
2635 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2636 return 1;
2637 else if (typecode == TYPE_CODE_STRUCT)
2638 {
2639 if (TYPE_NFIELDS (type) < 1)
2640 return 0;
2641 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2642 }
2643 else if (typecode == TYPE_CODE_UNION)
2644 {
361d1df0 2645 int i, n;
49e790b0
DJ
2646
2647 n = TYPE_NFIELDS (type);
2648 for (i = 0; i < n; i++)
2649 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2650 return 1;
2651 return 0;
2652 }
2653 return 0;
2654}
2655
cb3d25d1
MS
2656/* Macros to round N up or down to the next A boundary;
2657 A must be a power of two. */
2658
2659#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2660#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2661
dc604539
AC
2662/* Adjust the address downward (direction of stack growth) so that it
2663 is correctly aligned for a new stack frame. */
2664static CORE_ADDR
2665mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2666{
2667 return ROUND_DOWN (addr, 16);
2668}
2669
f7ab6ec6 2670static CORE_ADDR
46e0f506
MS
2671mips_eabi_push_arguments (int nargs,
2672 struct value **args,
2673 CORE_ADDR sp,
2674 int struct_return,
2675 CORE_ADDR struct_addr)
c906108c
SS
2676{
2677 int argreg;
2678 int float_argreg;
2679 int argnum;
2680 int len = 0;
2681 int stack_offset = 0;
2682
c906108c 2683 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2684 are properly aligned. The stack has to be at least 64-bit
2685 aligned even on 32-bit machines, because doubles must be 64-bit
2686 aligned. For n32 and n64, stack frames need to be 128-bit
2687 aligned, so we round to this widest known alignment. */
2688
c906108c 2689 sp = ROUND_DOWN (sp, 16);
cce41527 2690 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2691
46e0f506 2692 /* Now make space on the stack for the args. We allocate more
c906108c 2693 than necessary for EABI, because the first few arguments are
46e0f506 2694 passed in registers, but that's OK. */
c906108c 2695 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2696 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2697 MIPS_STACK_ARGSIZE);
c906108c
SS
2698 sp -= ROUND_UP (len, 16);
2699
9ace0497 2700 if (mips_debug)
46e0f506
MS
2701 fprintf_unfiltered (gdb_stdlog,
2702 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2703 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2704
c906108c
SS
2705 /* Initialize the integer and float register pointers. */
2706 argreg = A0_REGNUM;
2707 float_argreg = FPA0_REGNUM;
2708
46e0f506 2709 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2710 if (struct_return)
9ace0497
AC
2711 {
2712 if (mips_debug)
2713 fprintf_unfiltered (gdb_stdlog,
46e0f506 2714 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2715 argreg, paddr_nz (struct_addr));
9ace0497
AC
2716 write_register (argreg++, struct_addr);
2717 }
c906108c
SS
2718
2719 /* Now load as many as possible of the first arguments into
2720 registers, and push the rest onto the stack. Loop thru args
2721 from first to last. */
2722 for (argnum = 0; argnum < nargs; argnum++)
2723 {
2724 char *val;
cb3d25d1 2725 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
ea7c478f 2726 struct value *arg = args[argnum];
c906108c
SS
2727 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2728 int len = TYPE_LENGTH (arg_type);
2729 enum type_code typecode = TYPE_CODE (arg_type);
2730
9ace0497
AC
2731 if (mips_debug)
2732 fprintf_unfiltered (gdb_stdlog,
46e0f506 2733 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2734 argnum + 1, len, (int) typecode);
9ace0497 2735
c906108c 2736 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2737 reference. */
2738 if (len > MIPS_SAVED_REGSIZE
9ace0497 2739 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2740 {
7a292a7a 2741 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2742 typecode = TYPE_CODE_PTR;
7a292a7a 2743 len = MIPS_SAVED_REGSIZE;
c906108c 2744 val = valbuf;
9ace0497
AC
2745 if (mips_debug)
2746 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2747 }
2748 else
c5aa993b 2749 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2750
2751 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2752 even-numbered floating point register. Round the FP register
2753 up before the check to see if there are any FP registers
46e0f506
MS
2754 left. Non MIPS_EABI targets also pass the FP in the integer
2755 registers so also round up normal registers. */
acdb74a0
AC
2756 if (!FP_REGISTER_DOUBLE
2757 && fp_register_arg_p (typecode, arg_type))
2758 {
2759 if ((float_argreg & 1))
2760 float_argreg++;
2761 }
c906108c
SS
2762
2763 /* Floating point arguments passed in registers have to be
2764 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2765 are passed in register pairs; the even register gets
2766 the low word, and the odd register gets the high word.
2767 On non-EABI processors, the first two floating point arguments are
2768 also copied to general registers, because MIPS16 functions
2769 don't use float registers for arguments. This duplication of
2770 arguments in general registers can't hurt non-MIPS16 functions
2771 because those registers are normally skipped. */
1012bd0e
EZ
2772 /* MIPS_EABI squeezes a struct that contains a single floating
2773 point value into an FP register instead of pushing it onto the
46e0f506 2774 stack. */
f09ded24
AC
2775 if (fp_register_arg_p (typecode, arg_type)
2776 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2777 {
2778 if (!FP_REGISTER_DOUBLE && len == 8)
2779 {
d7449b42 2780 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2781 unsigned long regval;
2782
2783 /* Write the low word of the double to the even register(s). */
c5aa993b 2784 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2785 if (mips_debug)
acdb74a0 2786 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2787 float_argreg, phex (regval, 4));
c906108c 2788 write_register (float_argreg++, regval);
c906108c
SS
2789
2790 /* Write the high word of the double to the odd register(s). */
c5aa993b 2791 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2792 if (mips_debug)
acdb74a0 2793 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2794 float_argreg, phex (regval, 4));
c906108c 2795 write_register (float_argreg++, regval);
c906108c
SS
2796 }
2797 else
2798 {
2799 /* This is a floating point value that fits entirely
2800 in a single register. */
53a5351d 2801 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2802 above to ensure that it is even register aligned. */
9ace0497
AC
2803 LONGEST regval = extract_unsigned_integer (val, len);
2804 if (mips_debug)
acdb74a0 2805 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2806 float_argreg, phex (regval, len));
c906108c 2807 write_register (float_argreg++, regval);
c906108c
SS
2808 }
2809 }
2810 else
2811 {
2812 /* Copy the argument to general registers or the stack in
2813 register-sized pieces. Large arguments are split between
2814 registers and stack. */
2815 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2816 are treated specially: Irix cc passes them in registers
2817 where gcc sometimes puts them on the stack. For maximum
2818 compatibility, we will put them in both places. */
c5aa993b 2819 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2820 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2821
f09ded24 2822 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2823 register are only written to memory. */
c906108c
SS
2824 while (len > 0)
2825 {
ebafbe83 2826 /* Remember if the argument was written to the stack. */
566f0f7a 2827 int stack_used_p = 0;
46e0f506
MS
2828 int partial_len =
2829 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2830
acdb74a0
AC
2831 if (mips_debug)
2832 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2833 partial_len);
2834
566f0f7a 2835 /* Write this portion of the argument to the stack. */
f09ded24
AC
2836 if (argreg > MIPS_LAST_ARG_REGNUM
2837 || odd_sized_struct
2838 || fp_register_arg_p (typecode, arg_type))
c906108c 2839 {
c906108c
SS
2840 /* Should shorter than int integer values be
2841 promoted to int before being stored? */
c906108c 2842 int longword_offset = 0;
9ace0497 2843 CORE_ADDR addr;
566f0f7a 2844 stack_used_p = 1;
d7449b42 2845 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2846 {
d929b26f 2847 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2848 (typecode == TYPE_CODE_INT ||
2849 typecode == TYPE_CODE_PTR ||
2850 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2851 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2852 else if ((typecode == TYPE_CODE_STRUCT ||
2853 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2854 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2855 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2856 }
c5aa993b 2857
9ace0497
AC
2858 if (mips_debug)
2859 {
cb3d25d1
MS
2860 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2861 paddr_nz (stack_offset));
2862 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2863 paddr_nz (longword_offset));
9ace0497 2864 }
361d1df0 2865
9ace0497
AC
2866 addr = sp + stack_offset + longword_offset;
2867
2868 if (mips_debug)
2869 {
2870 int i;
cb3d25d1
MS
2871 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2872 paddr_nz (addr));
9ace0497
AC
2873 for (i = 0; i < partial_len; i++)
2874 {
cb3d25d1
MS
2875 fprintf_unfiltered (gdb_stdlog, "%02x",
2876 val[i] & 0xff);
9ace0497
AC
2877 }
2878 }
2879 write_memory (addr, val, partial_len);
c906108c
SS
2880 }
2881
f09ded24
AC
2882 /* Note!!! This is NOT an else clause. Odd sized
2883 structs may go thru BOTH paths. Floating point
46e0f506 2884 arguments will not. */
566f0f7a 2885 /* Write this portion of the argument to a general
46e0f506 2886 purpose register. */
f09ded24
AC
2887 if (argreg <= MIPS_LAST_ARG_REGNUM
2888 && !fp_register_arg_p (typecode, arg_type))
c906108c 2889 {
9ace0497 2890 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2891
9ace0497 2892 if (mips_debug)
acdb74a0 2893 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2894 argreg,
2895 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2896 write_register (argreg, regval);
2897 argreg++;
c906108c 2898 }
c5aa993b 2899
c906108c
SS
2900 len -= partial_len;
2901 val += partial_len;
2902
566f0f7a
AC
2903 /* Compute the the offset into the stack at which we
2904 will copy the next parameter.
2905
566f0f7a 2906 In the new EABI (and the NABI32), the stack_offset
46e0f506 2907 only needs to be adjusted when it has been used. */
c906108c 2908
46e0f506 2909 if (stack_used_p)
d929b26f 2910 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2911 }
2912 }
9ace0497
AC
2913 if (mips_debug)
2914 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2915 }
2916
0f71a2f6
JM
2917 /* Return adjusted stack pointer. */
2918 return sp;
2919}
2920
ebafbe83
MS
2921/* N32/N64 version of push_arguments. */
2922
f7ab6ec6 2923static CORE_ADDR
cb3d25d1
MS
2924mips_n32n64_push_arguments (int nargs,
2925 struct value **args,
2926 CORE_ADDR sp,
2927 int struct_return,
2928 CORE_ADDR struct_addr)
2929{
2930 int argreg;
2931 int float_argreg;
2932 int argnum;
2933 int len = 0;
2934 int stack_offset = 0;
2935
2936 /* First ensure that the stack and structure return address (if any)
2937 are properly aligned. The stack has to be at least 64-bit
2938 aligned even on 32-bit machines, because doubles must be 64-bit
2939 aligned. For n32 and n64, stack frames need to be 128-bit
2940 aligned, so we round to this widest known alignment. */
2941
2942 sp = ROUND_DOWN (sp, 16);
2943 struct_addr = ROUND_DOWN (struct_addr, 16);
2944
2945 /* Now make space on the stack for the args. */
2946 for (argnum = 0; argnum < nargs; argnum++)
2947 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2948 MIPS_STACK_ARGSIZE);
2949 sp -= ROUND_UP (len, 16);
2950
2951 if (mips_debug)
2952 fprintf_unfiltered (gdb_stdlog,
2953 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2954 paddr_nz (sp), ROUND_UP (len, 16));
2955
2956 /* Initialize the integer and float register pointers. */
2957 argreg = A0_REGNUM;
2958 float_argreg = FPA0_REGNUM;
2959
46e0f506 2960 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2961 if (struct_return)
2962 {
2963 if (mips_debug)
2964 fprintf_unfiltered (gdb_stdlog,
2965 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2966 argreg, paddr_nz (struct_addr));
2967 write_register (argreg++, struct_addr);
2968 }
2969
2970 /* Now load as many as possible of the first arguments into
2971 registers, and push the rest onto the stack. Loop thru args
2972 from first to last. */
2973 for (argnum = 0; argnum < nargs; argnum++)
2974 {
2975 char *val;
2976 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2977 struct value *arg = args[argnum];
2978 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2979 int len = TYPE_LENGTH (arg_type);
2980 enum type_code typecode = TYPE_CODE (arg_type);
2981
2982 if (mips_debug)
2983 fprintf_unfiltered (gdb_stdlog,
2984 "mips_n32n64_push_arguments: %d len=%d type=%d",
2985 argnum + 1, len, (int) typecode);
2986
2987 val = (char *) VALUE_CONTENTS (arg);
2988
2989 if (fp_register_arg_p (typecode, arg_type)
2990 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2991 {
2992 /* This is a floating point value that fits entirely
2993 in a single register. */
2994 /* On 32 bit ABI's the float_argreg is further adjusted
2995 above to ensure that it is even register aligned. */
2996 LONGEST regval = extract_unsigned_integer (val, len);
2997 if (mips_debug)
2998 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2999 float_argreg, phex (regval, len));
3000 write_register (float_argreg++, regval);
3001
3002 if (mips_debug)
3003 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3004 argreg, phex (regval, len));
3005 write_register (argreg, regval);
3006 argreg += 1;
3007 }
3008 else
3009 {
3010 /* Copy the argument to general registers or the stack in
3011 register-sized pieces. Large arguments are split between
3012 registers and stack. */
3013 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3014 are treated specially: Irix cc passes them in registers
3015 where gcc sometimes puts them on the stack. For maximum
3016 compatibility, we will put them in both places. */
3017 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3018 (len % MIPS_SAVED_REGSIZE != 0));
3019 /* Note: Floating-point values that didn't fit into an FP
3020 register are only written to memory. */
3021 while (len > 0)
3022 {
3023 /* Rememer if the argument was written to the stack. */
3024 int stack_used_p = 0;
3025 int partial_len = len < MIPS_SAVED_REGSIZE ?
3026 len : MIPS_SAVED_REGSIZE;
3027
3028 if (mips_debug)
3029 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3030 partial_len);
3031
3032 /* Write this portion of the argument to the stack. */
3033 if (argreg > MIPS_LAST_ARG_REGNUM
3034 || odd_sized_struct
3035 || fp_register_arg_p (typecode, arg_type))
3036 {
3037 /* Should shorter than int integer values be
3038 promoted to int before being stored? */
3039 int longword_offset = 0;
3040 CORE_ADDR addr;
3041 stack_used_p = 1;
3042 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3043 {
3044 if (MIPS_STACK_ARGSIZE == 8 &&
3045 (typecode == TYPE_CODE_INT ||
3046 typecode == TYPE_CODE_PTR ||
3047 typecode == TYPE_CODE_FLT) && len <= 4)
3048 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3049 }
3050
3051 if (mips_debug)
3052 {
3053 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3054 paddr_nz (stack_offset));
3055 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3056 paddr_nz (longword_offset));
3057 }
3058
3059 addr = sp + stack_offset + longword_offset;
3060
3061 if (mips_debug)
3062 {
3063 int i;
3064 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3065 paddr_nz (addr));
3066 for (i = 0; i < partial_len; i++)
3067 {
3068 fprintf_unfiltered (gdb_stdlog, "%02x",
3069 val[i] & 0xff);
3070 }
3071 }
3072 write_memory (addr, val, partial_len);
3073 }
3074
3075 /* Note!!! This is NOT an else clause. Odd sized
3076 structs may go thru BOTH paths. Floating point
3077 arguments will not. */
3078 /* Write this portion of the argument to a general
3079 purpose register. */
3080 if (argreg <= MIPS_LAST_ARG_REGNUM
3081 && !fp_register_arg_p (typecode, arg_type))
3082 {
3083 LONGEST regval = extract_unsigned_integer (val, partial_len);
3084
3085 /* A non-floating-point argument being passed in a
3086 general register. If a struct or union, and if
3087 the remaining length is smaller than the register
3088 size, we have to adjust the register value on
3089 big endian targets.
3090
3091 It does not seem to be necessary to do the
3092 same for integral types.
3093
3094 cagney/2001-07-23: gdb/179: Also, GCC, when
3095 outputting LE O32 with sizeof (struct) <
3096 MIPS_SAVED_REGSIZE, generates a left shift as
3097 part of storing the argument in a register a
3098 register (the left shift isn't generated when
3099 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3100 is quite possible that this is GCC contradicting
3101 the LE/O32 ABI, GDB has not been adjusted to
3102 accommodate this. Either someone needs to
3103 demonstrate that the LE/O32 ABI specifies such a
3104 left shift OR this new ABI gets identified as
3105 such and GDB gets tweaked accordingly. */
3106
3107 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3108 && partial_len < MIPS_SAVED_REGSIZE
3109 && (typecode == TYPE_CODE_STRUCT ||
3110 typecode == TYPE_CODE_UNION))
3111 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3112 TARGET_CHAR_BIT);
3113
3114 if (mips_debug)
3115 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3116 argreg,
3117 phex (regval, MIPS_SAVED_REGSIZE));
3118 write_register (argreg, regval);
3119 argreg++;
3120 }
3121
3122 len -= partial_len;
3123 val += partial_len;
3124
3125 /* Compute the the offset into the stack at which we
3126 will copy the next parameter.
3127
3128 In N32 (N64?), the stack_offset only needs to be
3129 adjusted when it has been used. */
3130
3131 if (stack_used_p)
3132 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3133 }
3134 }
3135 if (mips_debug)
3136 fprintf_unfiltered (gdb_stdlog, "\n");
3137 }
3138
3139 /* Return adjusted stack pointer. */
3140 return sp;
3141}
3142
46cac009 3143/* O32 version of push_arguments. */
ebafbe83 3144
46cac009
AC
3145static CORE_ADDR
3146mips_o32_push_arguments (int nargs,
3147 struct value **args,
3148 CORE_ADDR sp,
3149 int struct_return,
3150 CORE_ADDR struct_addr)
ebafbe83
MS
3151{
3152 int argreg;
3153 int float_argreg;
3154 int argnum;
3155 int len = 0;
3156 int stack_offset = 0;
ebafbe83
MS
3157
3158 /* First ensure that the stack and structure return address (if any)
3159 are properly aligned. The stack has to be at least 64-bit
3160 aligned even on 32-bit machines, because doubles must be 64-bit
3161 aligned. For n32 and n64, stack frames need to be 128-bit
3162 aligned, so we round to this widest known alignment. */
3163
3164 sp = ROUND_DOWN (sp, 16);
3165 struct_addr = ROUND_DOWN (struct_addr, 16);
3166
3167 /* Now make space on the stack for the args. */
3168 for (argnum = 0; argnum < nargs; argnum++)
3169 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3170 MIPS_STACK_ARGSIZE);
3171 sp -= ROUND_UP (len, 16);
3172
3173 if (mips_debug)
3174 fprintf_unfiltered (gdb_stdlog,
46cac009 3175 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
3176 paddr_nz (sp), ROUND_UP (len, 16));
3177
3178 /* Initialize the integer and float register pointers. */
3179 argreg = A0_REGNUM;
3180 float_argreg = FPA0_REGNUM;
3181
bcb0cc15 3182 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3183 if (struct_return)
3184 {
3185 if (mips_debug)
3186 fprintf_unfiltered (gdb_stdlog,
46cac009 3187 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3188 argreg, paddr_nz (struct_addr));
3189 write_register (argreg++, struct_addr);
3190 stack_offset += MIPS_STACK_ARGSIZE;
3191 }
3192
3193 /* Now load as many as possible of the first arguments into
3194 registers, and push the rest onto the stack. Loop thru args
3195 from first to last. */
3196 for (argnum = 0; argnum < nargs; argnum++)
3197 {
3198 char *val;
3199 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3200 struct value *arg = args[argnum];
3201 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3202 int len = TYPE_LENGTH (arg_type);
3203 enum type_code typecode = TYPE_CODE (arg_type);
3204
3205 if (mips_debug)
3206 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3207 "mips_o32_push_arguments: %d len=%d type=%d",
3208 argnum + 1, len, (int) typecode);
3209
3210 val = (char *) VALUE_CONTENTS (arg);
3211
3212 /* 32-bit ABIs always start floating point arguments in an
3213 even-numbered floating point register. Round the FP register
3214 up before the check to see if there are any FP registers
3215 left. O32/O64 targets also pass the FP in the integer
3216 registers so also round up normal registers. */
3217 if (!FP_REGISTER_DOUBLE
3218 && fp_register_arg_p (typecode, arg_type))
3219 {
3220 if ((float_argreg & 1))
3221 float_argreg++;
3222 }
3223
3224 /* Floating point arguments passed in registers have to be
3225 treated specially. On 32-bit architectures, doubles
3226 are passed in register pairs; the even register gets
3227 the low word, and the odd register gets the high word.
3228 On O32/O64, the first two floating point arguments are
3229 also copied to general registers, because MIPS16 functions
3230 don't use float registers for arguments. This duplication of
3231 arguments in general registers can't hurt non-MIPS16 functions
3232 because those registers are normally skipped. */
3233
3234 if (fp_register_arg_p (typecode, arg_type)
3235 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3236 {
3237 if (!FP_REGISTER_DOUBLE && len == 8)
3238 {
3239 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3240 unsigned long regval;
3241
3242 /* Write the low word of the double to the even register(s). */
3243 regval = extract_unsigned_integer (val + low_offset, 4);
3244 if (mips_debug)
3245 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3246 float_argreg, phex (regval, 4));
3247 write_register (float_argreg++, regval);
3248 if (mips_debug)
3249 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3250 argreg, phex (regval, 4));
3251 write_register (argreg++, regval);
3252
3253 /* Write the high word of the double to the odd register(s). */
3254 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3255 if (mips_debug)
3256 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3257 float_argreg, phex (regval, 4));
3258 write_register (float_argreg++, regval);
3259
3260 if (mips_debug)
3261 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3262 argreg, phex (regval, 4));
3263 write_register (argreg++, regval);
3264 }
3265 else
3266 {
3267 /* This is a floating point value that fits entirely
3268 in a single register. */
3269 /* On 32 bit ABI's the float_argreg is further adjusted
3270 above to ensure that it is even register aligned. */
3271 LONGEST regval = extract_unsigned_integer (val, len);
3272 if (mips_debug)
3273 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3274 float_argreg, phex (regval, len));
3275 write_register (float_argreg++, regval);
3276 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3277 registers for each argument. The below is (my
3278 guess) to ensure that the corresponding integer
3279 register has reserved the same space. */
3280 if (mips_debug)
3281 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3282 argreg, phex (regval, len));
3283 write_register (argreg, regval);
3284 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3285 }
3286 /* Reserve space for the FP register. */
3287 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3288 }
3289 else
3290 {
3291 /* Copy the argument to general registers or the stack in
3292 register-sized pieces. Large arguments are split between
3293 registers and stack. */
3294 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3295 are treated specially: Irix cc passes them in registers
3296 where gcc sometimes puts them on the stack. For maximum
3297 compatibility, we will put them in both places. */
3298 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3299 (len % MIPS_SAVED_REGSIZE != 0));
3300 /* Structures should be aligned to eight bytes (even arg registers)
3301 on MIPS_ABI_O32, if their first member has double precision. */
3302 if (MIPS_SAVED_REGSIZE < 8
3303 && mips_type_needs_double_align (arg_type))
3304 {
3305 if ((argreg & 1))
3306 argreg++;
3307 }
3308 /* Note: Floating-point values that didn't fit into an FP
3309 register are only written to memory. */
3310 while (len > 0)
3311 {
3312 /* Remember if the argument was written to the stack. */
3313 int stack_used_p = 0;
3314 int partial_len =
3315 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3316
3317 if (mips_debug)
3318 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3319 partial_len);
3320
3321 /* Write this portion of the argument to the stack. */
3322 if (argreg > MIPS_LAST_ARG_REGNUM
3323 || odd_sized_struct
3324 || fp_register_arg_p (typecode, arg_type))
3325 {
3326 /* Should shorter than int integer values be
3327 promoted to int before being stored? */
3328 int longword_offset = 0;
3329 CORE_ADDR addr;
3330 stack_used_p = 1;
3331 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3332 {
3333 if (MIPS_STACK_ARGSIZE == 8 &&
3334 (typecode == TYPE_CODE_INT ||
3335 typecode == TYPE_CODE_PTR ||
3336 typecode == TYPE_CODE_FLT) && len <= 4)
3337 longword_offset = MIPS_STACK_ARGSIZE - len;
3338 }
3339
3340 if (mips_debug)
3341 {
3342 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3343 paddr_nz (stack_offset));
3344 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3345 paddr_nz (longword_offset));
3346 }
3347
3348 addr = sp + stack_offset + longword_offset;
3349
3350 if (mips_debug)
3351 {
3352 int i;
3353 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3354 paddr_nz (addr));
3355 for (i = 0; i < partial_len; i++)
3356 {
3357 fprintf_unfiltered (gdb_stdlog, "%02x",
3358 val[i] & 0xff);
3359 }
3360 }
3361 write_memory (addr, val, partial_len);
3362 }
3363
3364 /* Note!!! This is NOT an else clause. Odd sized
3365 structs may go thru BOTH paths. Floating point
3366 arguments will not. */
3367 /* Write this portion of the argument to a general
3368 purpose register. */
3369 if (argreg <= MIPS_LAST_ARG_REGNUM
3370 && !fp_register_arg_p (typecode, arg_type))
3371 {
3372 LONGEST regval = extract_signed_integer (val, partial_len);
3373 /* Value may need to be sign extended, because
3374 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3375
3376 /* A non-floating-point argument being passed in a
3377 general register. If a struct or union, and if
3378 the remaining length is smaller than the register
3379 size, we have to adjust the register value on
3380 big endian targets.
3381
3382 It does not seem to be necessary to do the
3383 same for integral types.
3384
3385 Also don't do this adjustment on O64 binaries.
3386
3387 cagney/2001-07-23: gdb/179: Also, GCC, when
3388 outputting LE O32 with sizeof (struct) <
3389 MIPS_SAVED_REGSIZE, generates a left shift as
3390 part of storing the argument in a register a
3391 register (the left shift isn't generated when
3392 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3393 is quite possible that this is GCC contradicting
3394 the LE/O32 ABI, GDB has not been adjusted to
3395 accommodate this. Either someone needs to
3396 demonstrate that the LE/O32 ABI specifies such a
3397 left shift OR this new ABI gets identified as
3398 such and GDB gets tweaked accordingly. */
3399
3400 if (MIPS_SAVED_REGSIZE < 8
3401 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3402 && partial_len < MIPS_SAVED_REGSIZE
3403 && (typecode == TYPE_CODE_STRUCT ||
3404 typecode == TYPE_CODE_UNION))
3405 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3406 TARGET_CHAR_BIT);
3407
3408 if (mips_debug)
3409 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3410 argreg,
3411 phex (regval, MIPS_SAVED_REGSIZE));
3412 write_register (argreg, regval);
3413 argreg++;
3414
3415 /* Prevent subsequent floating point arguments from
3416 being passed in floating point registers. */
3417 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3418 }
3419
3420 len -= partial_len;
3421 val += partial_len;
3422
3423 /* Compute the the offset into the stack at which we
3424 will copy the next parameter.
3425
3426 In older ABIs, the caller reserved space for
3427 registers that contained arguments. This was loosely
3428 refered to as their "home". Consequently, space is
3429 always allocated. */
3430
3431 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3432 }
3433 }
3434 if (mips_debug)
3435 fprintf_unfiltered (gdb_stdlog, "\n");
3436 }
3437
3438 /* Return adjusted stack pointer. */
3439 return sp;
3440}
3441
3442/* O64 version of push_arguments. */
3443
3444static CORE_ADDR
3445mips_o64_push_arguments (int nargs,
3446 struct value **args,
3447 CORE_ADDR sp,
3448 int struct_return,
3449 CORE_ADDR struct_addr)
3450{
3451 int argreg;
3452 int float_argreg;
3453 int argnum;
3454 int len = 0;
3455 int stack_offset = 0;
3456
3457 /* First ensure that the stack and structure return address (if any)
3458 are properly aligned. The stack has to be at least 64-bit
3459 aligned even on 32-bit machines, because doubles must be 64-bit
3460 aligned. For n32 and n64, stack frames need to be 128-bit
3461 aligned, so we round to this widest known alignment. */
3462
3463 sp = ROUND_DOWN (sp, 16);
3464 struct_addr = ROUND_DOWN (struct_addr, 16);
3465
3466 /* Now make space on the stack for the args. */
3467 for (argnum = 0; argnum < nargs; argnum++)
3468 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3469 MIPS_STACK_ARGSIZE);
3470 sp -= ROUND_UP (len, 16);
3471
3472 if (mips_debug)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3475 paddr_nz (sp), ROUND_UP (len, 16));
3476
3477 /* Initialize the integer and float register pointers. */
3478 argreg = A0_REGNUM;
3479 float_argreg = FPA0_REGNUM;
3480
3481 /* The struct_return pointer occupies the first parameter-passing reg. */
3482 if (struct_return)
3483 {
3484 if (mips_debug)
3485 fprintf_unfiltered (gdb_stdlog,
3486 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3487 argreg, paddr_nz (struct_addr));
3488 write_register (argreg++, struct_addr);
3489 stack_offset += MIPS_STACK_ARGSIZE;
3490 }
3491
3492 /* Now load as many as possible of the first arguments into
3493 registers, and push the rest onto the stack. Loop thru args
3494 from first to last. */
3495 for (argnum = 0; argnum < nargs; argnum++)
3496 {
3497 char *val;
3498 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3499 struct value *arg = args[argnum];
3500 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3501 int len = TYPE_LENGTH (arg_type);
3502 enum type_code typecode = TYPE_CODE (arg_type);
3503
3504 if (mips_debug)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3507 argnum + 1, len, (int) typecode);
3508
3509 val = (char *) VALUE_CONTENTS (arg);
3510
3511 /* 32-bit ABIs always start floating point arguments in an
3512 even-numbered floating point register. Round the FP register
3513 up before the check to see if there are any FP registers
3514 left. O32/O64 targets also pass the FP in the integer
3515 registers so also round up normal registers. */
3516 if (!FP_REGISTER_DOUBLE
3517 && fp_register_arg_p (typecode, arg_type))
3518 {
3519 if ((float_argreg & 1))
3520 float_argreg++;
3521 }
3522
3523 /* Floating point arguments passed in registers have to be
3524 treated specially. On 32-bit architectures, doubles
3525 are passed in register pairs; the even register gets
3526 the low word, and the odd register gets the high word.
3527 On O32/O64, the first two floating point arguments are
3528 also copied to general registers, because MIPS16 functions
3529 don't use float registers for arguments. This duplication of
3530 arguments in general registers can't hurt non-MIPS16 functions
3531 because those registers are normally skipped. */
3532
3533 if (fp_register_arg_p (typecode, arg_type)
3534 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3535 {
3536 if (!FP_REGISTER_DOUBLE && len == 8)
3537 {
3538 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3539 unsigned long regval;
3540
3541 /* Write the low word of the double to the even register(s). */
3542 regval = extract_unsigned_integer (val + low_offset, 4);
3543 if (mips_debug)
3544 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3545 float_argreg, phex (regval, 4));
3546 write_register (float_argreg++, regval);
3547 if (mips_debug)
3548 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3549 argreg, phex (regval, 4));
3550 write_register (argreg++, regval);
3551
3552 /* Write the high word of the double to the odd register(s). */
3553 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3554 if (mips_debug)
3555 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3556 float_argreg, phex (regval, 4));
3557 write_register (float_argreg++, regval);
3558
3559 if (mips_debug)
3560 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3561 argreg, phex (regval, 4));
3562 write_register (argreg++, regval);
3563 }
3564 else
3565 {
3566 /* This is a floating point value that fits entirely
3567 in a single register. */
3568 /* On 32 bit ABI's the float_argreg is further adjusted
3569 above to ensure that it is even register aligned. */
3570 LONGEST regval = extract_unsigned_integer (val, len);
3571 if (mips_debug)
3572 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3573 float_argreg, phex (regval, len));
3574 write_register (float_argreg++, regval);
3575 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3576 registers for each argument. The below is (my
3577 guess) to ensure that the corresponding integer
3578 register has reserved the same space. */
3579 if (mips_debug)
3580 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3581 argreg, phex (regval, len));
3582 write_register (argreg, regval);
3583 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3584 }
3585 /* Reserve space for the FP register. */
3586 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3587 }
3588 else
3589 {
3590 /* Copy the argument to general registers or the stack in
3591 register-sized pieces. Large arguments are split between
3592 registers and stack. */
3593 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3594 are treated specially: Irix cc passes them in registers
3595 where gcc sometimes puts them on the stack. For maximum
3596 compatibility, we will put them in both places. */
3597 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3598 (len % MIPS_SAVED_REGSIZE != 0));
3599 /* Structures should be aligned to eight bytes (even arg registers)
3600 on MIPS_ABI_O32, if their first member has double precision. */
3601 if (MIPS_SAVED_REGSIZE < 8
3602 && mips_type_needs_double_align (arg_type))
3603 {
3604 if ((argreg & 1))
3605 argreg++;
3606 }
3607 /* Note: Floating-point values that didn't fit into an FP
3608 register are only written to memory. */
3609 while (len > 0)
3610 {
3611 /* Remember if the argument was written to the stack. */
3612 int stack_used_p = 0;
3613 int partial_len =
3614 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3615
3616 if (mips_debug)
3617 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3618 partial_len);
3619
3620 /* Write this portion of the argument to the stack. */
3621 if (argreg > MIPS_LAST_ARG_REGNUM
3622 || odd_sized_struct
3623 || fp_register_arg_p (typecode, arg_type))
3624 {
3625 /* Should shorter than int integer values be
3626 promoted to int before being stored? */
3627 int longword_offset = 0;
3628 CORE_ADDR addr;
3629 stack_used_p = 1;
3630 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3631 {
3632 if (MIPS_STACK_ARGSIZE == 8 &&
3633 (typecode == TYPE_CODE_INT ||
3634 typecode == TYPE_CODE_PTR ||
3635 typecode == TYPE_CODE_FLT) && len <= 4)
3636 longword_offset = MIPS_STACK_ARGSIZE - len;
3637 }
3638
3639 if (mips_debug)
3640 {
3641 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3642 paddr_nz (stack_offset));
3643 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3644 paddr_nz (longword_offset));
3645 }
3646
3647 addr = sp + stack_offset + longword_offset;
3648
3649 if (mips_debug)
3650 {
3651 int i;
3652 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3653 paddr_nz (addr));
3654 for (i = 0; i < partial_len; i++)
3655 {
3656 fprintf_unfiltered (gdb_stdlog, "%02x",
3657 val[i] & 0xff);
3658 }
3659 }
3660 write_memory (addr, val, partial_len);
3661 }
3662
3663 /* Note!!! This is NOT an else clause. Odd sized
3664 structs may go thru BOTH paths. Floating point
3665 arguments will not. */
3666 /* Write this portion of the argument to a general
3667 purpose register. */
3668 if (argreg <= MIPS_LAST_ARG_REGNUM
3669 && !fp_register_arg_p (typecode, arg_type))
3670 {
3671 LONGEST regval = extract_signed_integer (val, partial_len);
3672 /* Value may need to be sign extended, because
3673 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3674
3675 /* A non-floating-point argument being passed in a
3676 general register. If a struct or union, and if
3677 the remaining length is smaller than the register
3678 size, we have to adjust the register value on
3679 big endian targets.
3680
3681 It does not seem to be necessary to do the
3682 same for integral types.
3683
3684 Also don't do this adjustment on O64 binaries.
3685
3686 cagney/2001-07-23: gdb/179: Also, GCC, when
3687 outputting LE O32 with sizeof (struct) <
3688 MIPS_SAVED_REGSIZE, generates a left shift as
3689 part of storing the argument in a register a
3690 register (the left shift isn't generated when
3691 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3692 is quite possible that this is GCC contradicting
3693 the LE/O32 ABI, GDB has not been adjusted to
3694 accommodate this. Either someone needs to
3695 demonstrate that the LE/O32 ABI specifies such a
3696 left shift OR this new ABI gets identified as
3697 such and GDB gets tweaked accordingly. */
3698
3699 if (MIPS_SAVED_REGSIZE < 8
3700 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3701 && partial_len < MIPS_SAVED_REGSIZE
3702 && (typecode == TYPE_CODE_STRUCT ||
3703 typecode == TYPE_CODE_UNION))
3704 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3705 TARGET_CHAR_BIT);
3706
3707 if (mips_debug)
3708 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3709 argreg,
3710 phex (regval, MIPS_SAVED_REGSIZE));
3711 write_register (argreg, regval);
3712 argreg++;
3713
3714 /* Prevent subsequent floating point arguments from
3715 being passed in floating point registers. */
3716 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3717 }
3718
3719 len -= partial_len;
3720 val += partial_len;
3721
3722 /* Compute the the offset into the stack at which we
3723 will copy the next parameter.
3724
3725 In older ABIs, the caller reserved space for
3726 registers that contained arguments. This was loosely
3727 refered to as their "home". Consequently, space is
3728 always allocated. */
3729
3730 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3731 }
3732 }
3733 if (mips_debug)
3734 fprintf_unfiltered (gdb_stdlog, "\n");
3735 }
3736
3737 /* Return adjusted stack pointer. */
3738 return sp;
3739}
3740
f7ab6ec6 3741static CORE_ADDR
acdb74a0 3742mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3743{
c906108c
SS
3744 /* Set the return address register to point to the entry
3745 point of the program, where a breakpoint lies in wait. */
c5aa993b 3746 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3747 return sp;
3748}
3749
3750static void
c5aa993b 3751mips_push_register (CORE_ADDR * sp, int regno)
c906108c 3752{
cb3d25d1 3753 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
3754 int regsize;
3755 int offset;
3756 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3757 {
3758 regsize = MIPS_SAVED_REGSIZE;
d7449b42 3759 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3760 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3761 : 0);
3762 }
3763 else
3764 {
3765 regsize = REGISTER_RAW_SIZE (regno);
3766 offset = 0;
3767 }
c906108c 3768 *sp -= regsize;
4caf0990 3769 deprecated_read_register_gen (regno, buffer);
7a292a7a 3770 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
3771}
3772
3773/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3774#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3775
f7ab6ec6 3776static void
acdb74a0 3777mips_push_dummy_frame (void)
c906108c
SS
3778{
3779 int ireg;
c5aa993b
JM
3780 struct linked_proc_info *link = (struct linked_proc_info *)
3781 xmalloc (sizeof (struct linked_proc_info));
c906108c 3782 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 3783 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
3784 CORE_ADDR old_sp = sp;
3785 link->next = linked_proc_desc_table;
3786 linked_proc_desc_table = link;
3787
3788/* FIXME! are these correct ? */
c5aa993b 3789#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
3790#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3791#define FLOAT_REG_SAVE_MASK MASK(0,19)
3792#define FLOAT_SINGLE_REG_SAVE_MASK \
3793 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3794 /*
3795 * The registers we must save are all those not preserved across
3796 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3797 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3798 * and FP Control/Status registers.
361d1df0 3799 *
c906108c
SS
3800 *
3801 * Dummy frame layout:
3802 * (high memory)
c5aa993b
JM
3803 * Saved PC
3804 * Saved MMHI, MMLO, FPC_CSR
3805 * Saved R31
3806 * Saved R28
3807 * ...
3808 * Saved R1
c906108c
SS
3809 * Saved D18 (i.e. F19, F18)
3810 * ...
3811 * Saved D0 (i.e. F1, F0)
c5aa993b 3812 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
3813 * (low memory)
3814 */
3815
3816 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
3817 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3818 PROC_FRAME_OFFSET (proc_desc) = 0;
3819 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
3820 mips_push_register (&sp, PC_REGNUM);
3821 mips_push_register (&sp, HI_REGNUM);
3822 mips_push_register (&sp, LO_REGNUM);
3823 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3824
3825 /* Save general CPU registers */
c5aa993b 3826 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 3827 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
3828 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3829 for (ireg = 32; --ireg >= 0;)
3830 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3831 mips_push_register (&sp, ireg);
3832
3833 /* Save floating point registers starting with high order word */
c5aa993b 3834 PROC_FREG_MASK (proc_desc) =
c906108c
SS
3835 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3836 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3837 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3838 from FP. */
c5aa993b
JM
3839 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3840 for (ireg = 32; --ireg >= 0;)
3841 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3842 mips_push_register (&sp, ireg + FP0_REGNUM);
3843
3844 /* Update the frame pointer for the call dummy and the stack pointer.
3845 Set the procedure's starting and ending addresses to point to the
3846 call dummy address at the entry point. */
3847 write_register (PUSH_FP_REGNUM, old_sp);
3848 write_register (SP_REGNUM, sp);
c5aa993b
JM
3849 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3850 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3851 SET_PROC_DESC_IS_DUMMY (proc_desc);
3852 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
3853}
3854
f7ab6ec6 3855static void
acdb74a0 3856mips_pop_frame (void)
c906108c
SS
3857{
3858 register int regnum;
3859 struct frame_info *frame = get_current_frame ();
c193f6ac 3860 CORE_ADDR new_sp = get_frame_base (frame);
da50a4b7 3861 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
c906108c 3862
50abf9e5 3863 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3864 {
3865 generic_pop_dummy_frame ();
3866 flush_cached_frames ();
3867 return;
3868 }
3869
8bedc050 3870 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
b2fb4676 3871 if (get_frame_saved_regs (frame) == NULL)
f30ee0bc 3872 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
c906108c 3873 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3874 if (regnum != SP_REGNUM && regnum != PC_REGNUM
b2fb4676 3875 && get_frame_saved_regs (frame)[regnum])
21f87145
MS
3876 {
3877 /* Floating point registers must not be sign extended,
3878 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3879
3880 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3881 write_register (regnum,
b2fb4676 3882 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3883 MIPS_SAVED_REGSIZE));
3884 else
3885 write_register (regnum,
b2fb4676 3886 read_memory_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3887 MIPS_SAVED_REGSIZE));
3888 }
757a7cc6 3889
c906108c
SS
3890 write_register (SP_REGNUM, new_sp);
3891 flush_cached_frames ();
3892
c5aa993b 3893 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3894 {
3895 struct linked_proc_info *pi_ptr, *prev_ptr;
3896
3897 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3898 pi_ptr != NULL;
3899 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3900 {
3901 if (&pi_ptr->info == proc_desc)
3902 break;
3903 }
3904
3905 if (pi_ptr == NULL)
3906 error ("Can't locate dummy extra frame info\n");
3907
3908 if (prev_ptr != NULL)
3909 prev_ptr->next = pi_ptr->next;
3910 else
3911 linked_proc_desc_table = pi_ptr->next;
3912
b8c9b27d 3913 xfree (pi_ptr);
c906108c
SS
3914
3915 write_register (HI_REGNUM,
c5aa993b 3916 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3917 MIPS_SAVED_REGSIZE));
c906108c 3918 write_register (LO_REGNUM,
c5aa993b 3919 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3920 MIPS_SAVED_REGSIZE));
c906108c
SS
3921 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3922 write_register (FCRCS_REGNUM,
c5aa993b 3923 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3924 MIPS_SAVED_REGSIZE));
c906108c
SS
3925 }
3926}
3927
f7ab6ec6
MS
3928static void
3929mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3930 struct value **args, struct type *type, int gcc_p)
3931{
3932 write_register(T9_REGNUM, fun);
3933}
3934
dd824b04
DJ
3935/* Floating point register management.
3936
3937 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3938 64bit operations, these early MIPS cpus treat fp register pairs
3939 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3940 registers and offer a compatibility mode that emulates the MIPS2 fp
3941 model. When operating in MIPS2 fp compat mode, later cpu's split
3942 double precision floats into two 32-bit chunks and store them in
3943 consecutive fp regs. To display 64-bit floats stored in this
3944 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3945 Throw in user-configurable endianness and you have a real mess.
3946
3947 The way this works is:
3948 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3949 double-precision value will be split across two logical registers.
3950 The lower-numbered logical register will hold the low-order bits,
3951 regardless of the processor's endianness.
3952 - If we are on a 64-bit processor, and we are looking for a
3953 single-precision value, it will be in the low ordered bits
3954 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3955 save slot in memory.
3956 - If we are in 64-bit mode, everything is straightforward.
3957
3958 Note that this code only deals with "live" registers at the top of the
3959 stack. We will attempt to deal with saved registers later, when
3960 the raw/cooked register interface is in place. (We need a general
3961 interface that can deal with dynamic saved register sizes -- fp
3962 regs could be 32 bits wide in one frame and 64 on the frame above
3963 and below). */
3964
67b2c998
DJ
3965static struct type *
3966mips_float_register_type (void)
3967{
361d1df0 3968 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3969 return builtin_type_ieee_single_big;
3970 else
3971 return builtin_type_ieee_single_little;
3972}
3973
3974static struct type *
3975mips_double_register_type (void)
3976{
361d1df0 3977 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3978 return builtin_type_ieee_double_big;
3979 else
3980 return builtin_type_ieee_double_little;
3981}
3982
dd824b04
DJ
3983/* Copy a 32-bit single-precision value from the current frame
3984 into rare_buffer. */
3985
3986static void
3987mips_read_fp_register_single (int regno, char *rare_buffer)
3988{
3989 int raw_size = REGISTER_RAW_SIZE (regno);
3990 char *raw_buffer = alloca (raw_size);
3991
6e7f8b9c 3992 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
dd824b04
DJ
3993 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3994 if (raw_size == 8)
3995 {
3996 /* We have a 64-bit value for this register. Find the low-order
3997 32 bits. */
3998 int offset;
3999
4000 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4001 offset = 4;
4002 else
4003 offset = 0;
4004
4005 memcpy (rare_buffer, raw_buffer + offset, 4);
4006 }
4007 else
4008 {
4009 memcpy (rare_buffer, raw_buffer, 4);
4010 }
4011}
4012
4013/* Copy a 64-bit double-precision value from the current frame into
4014 rare_buffer. This may include getting half of it from the next
4015 register. */
4016
4017static void
4018mips_read_fp_register_double (int regno, char *rare_buffer)
4019{
4020 int raw_size = REGISTER_RAW_SIZE (regno);
4021
4022 if (raw_size == 8 && !mips2_fp_compat ())
4023 {
4024 /* We have a 64-bit value for this register, and we should use
4025 all 64 bits. */
6e7f8b9c 4026 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
dd824b04
DJ
4027 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4028 }
4029 else
4030 {
4031 if ((regno - FP0_REGNUM) & 1)
4032 internal_error (__FILE__, __LINE__,
4033 "mips_read_fp_register_double: bad access to "
4034 "odd-numbered FP register");
4035
4036 /* mips_read_fp_register_single will find the correct 32 bits from
4037 each register. */
4038 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4039 {
4040 mips_read_fp_register_single (regno, rare_buffer + 4);
4041 mips_read_fp_register_single (regno + 1, rare_buffer);
4042 }
361d1df0 4043 else
dd824b04
DJ
4044 {
4045 mips_read_fp_register_single (regno, rare_buffer);
4046 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4047 }
4048 }
4049}
4050
c906108c 4051static void
acdb74a0 4052mips_print_register (int regnum, int all)
c906108c 4053{
119d55d8 4054 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4055
4056 /* Get the data in raw format. */
6e7f8b9c 4057 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
c906108c
SS
4058 {
4059 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4060 return;
4061 }
4062
dd824b04
DJ
4063 /* If we have a actual 32-bit floating point register (or we are in
4064 32-bit compatibility mode), and the register is even-numbered,
4065 also print it as a double (spanning two registers). */
c906108c 4066 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
4067 && (REGISTER_RAW_SIZE (regnum) == 4
4068 || mips2_fp_compat ())
c5aa993b 4069 && !((regnum - FP0_REGNUM) & 1))
dd824b04 4070 {
cb3d25d1 4071 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
c906108c 4072
dd824b04 4073 mips_read_fp_register_double (regnum, dbuffer);
c906108c 4074
dd824b04 4075 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 4076 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
4077 gdb_stdout, 0, 1, 0, Val_pretty_default);
4078 printf_filtered ("); ");
4079 }
c906108c
SS
4080 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4081
4082 /* The problem with printing numeric register names (r26, etc.) is that
4083 the user can't use them on input. Probably the best solution is to
4084 fix it so that either the numeric or the funky (a2, etc.) names
4085 are accepted on input. */
4086 if (regnum < MIPS_NUMREGS)
4087 printf_filtered ("(r%d): ", regnum);
4088 else
4089 printf_filtered (": ");
4090
4091 /* If virtual format is floating, print it that way. */
4092 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
4093 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4094 {
4095 /* We have a meaningful 64-bit value in this register. Show
4096 it as a 32-bit float and a 64-bit double. */
d7449b42 4097 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
4098
4099 printf_filtered (" (float) ");
67b2c998 4100 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
4101 gdb_stdout, 0, 1, 0, Val_pretty_default);
4102 printf_filtered (", (double) ");
67b2c998 4103 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
4104 gdb_stdout, 0, 1, 0, Val_pretty_default);
4105 }
4106 else
4107 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4108 gdb_stdout, 0, 1, 0, Val_pretty_default);
4109 /* Else print as integer in hex. */
4110 else
ed9a39eb
JM
4111 {
4112 int offset;
4113
d7449b42 4114 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
4115 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4116 else
4117 offset = 0;
361d1df0 4118
ed9a39eb
JM
4119 print_scalar_formatted (raw_buffer + offset,
4120 REGISTER_VIRTUAL_TYPE (regnum),
4121 'x', 0, gdb_stdout);
4122 }
c906108c
SS
4123}
4124
361d1df0 4125/* Replacement for generic do_registers_info.
c906108c
SS
4126 Print regs in pretty columns. */
4127
4128static int
acdb74a0 4129do_fp_register_row (int regnum)
c5aa993b 4130{ /* do values for FP (float) regs */
dd824b04 4131 char *raw_buffer;
c906108c
SS
4132 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4133 int inv1, inv2, inv3;
c5aa993b 4134
dd824b04 4135 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4136
dd824b04 4137 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4138 {
dd824b04
DJ
4139 /* 4-byte registers: we can fit two registers per row. */
4140 /* Also print every pair of 4-byte regs as an 8-byte double. */
4141 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4142 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4143
dd824b04 4144 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 4145 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
4146
4147 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4148 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4149
1adad886
AC
4150 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4151 if (inv1)
4152 printf_filtered (": <invalid float>");
4153 else
4154 printf_filtered ("%-17.9g", flt1);
4155
4156 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4157 if (inv2)
4158 printf_filtered (": <invalid float>");
4159 else
4160 printf_filtered ("%-17.9g", flt2);
4161
4162 printf_filtered (" dbl: ");
4163 if (inv3)
4164 printf_filtered ("<invalid double>");
4165 else
4166 printf_filtered ("%-24.17g", doub);
4167 printf_filtered ("\n");
4168
c906108c 4169 /* may want to do hex display here (future enhancement) */
c5aa993b 4170 regnum += 2;
c906108c
SS
4171 }
4172 else
dd824b04
DJ
4173 {
4174 /* Eight byte registers: print each one as float AND as double. */
4175 mips_read_fp_register_single (regnum, raw_buffer);
2f38ef89 4176 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4177
dd824b04 4178 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4179 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4180
1adad886
AC
4181 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4182 if (inv1)
4183 printf_filtered ("<invalid float>");
4184 else
4185 printf_filtered ("flt: %-17.9g", flt1);
4186
4187 printf_filtered (" dbl: ");
4188 if (inv3)
4189 printf_filtered ("<invalid double>");
4190 else
4191 printf_filtered ("%-24.17g", doub);
4192
4193 printf_filtered ("\n");
c906108c
SS
4194 /* may want to do hex display here (future enhancement) */
4195 regnum++;
4196 }
4197 return regnum;
4198}
4199
4200/* Print a row's worth of GP (int) registers, with name labels above */
4201
4202static int
acdb74a0 4203do_gp_register_row (int regnum)
c906108c
SS
4204{
4205 /* do values for GP (int) regs */
cb3d25d1 4206 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4207 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4208 int col, byte;
4209 int start_regnum = regnum;
4210 int numregs = NUM_REGS;
4211
4212
4213 /* For GP registers, we print a separate row of names above the vals */
4214 printf_filtered (" ");
4215 for (col = 0; col < ncols && regnum < numregs; regnum++)
4216 {
4217 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4218 continue; /* unused register */
c906108c 4219 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4220 break; /* end the row: reached FP register */
4221 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4222 REGISTER_NAME (regnum));
4223 col++;
4224 }
c5aa993b 4225 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4226 start_regnum); /* print the R0 to R31 names */
4227
4228 regnum = start_regnum; /* go back to start of row */
4229 /* now print the values in hex, 4 or 8 to the row */
4230 for (col = 0; col < ncols && regnum < numregs; regnum++)
4231 {
4232 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4233 continue; /* unused register */
c906108c 4234 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4235 break; /* end row: reached FP register */
c906108c 4236 /* OK: get the data in raw format. */
6e7f8b9c 4237 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
c906108c
SS
4238 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4239 /* pad small registers */
43e526b9 4240 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4241 printf_filtered (" ");
4242 /* Now print the register value in hex, endian order. */
d7449b42 4243 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4244 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4245 byte < REGISTER_RAW_SIZE (regnum);
4246 byte++)
c906108c
SS
4247 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4248 else
43e526b9
JM
4249 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4250 byte >= 0;
4251 byte--)
c906108c
SS
4252 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4253 printf_filtered (" ");
4254 col++;
4255 }
c5aa993b 4256 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4257 printf_filtered ("\n");
4258
4259 return regnum;
4260}
4261
4262/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4263
bf1f5b4c 4264static void
acdb74a0 4265mips_do_registers_info (int regnum, int fpregs)
c906108c 4266{
c5aa993b 4267 if (regnum != -1) /* do one specified register */
c906108c
SS
4268 {
4269 if (*(REGISTER_NAME (regnum)) == '\0')
4270 error ("Not a valid register for the current processor type");
4271
4272 mips_print_register (regnum, 0);
4273 printf_filtered ("\n");
4274 }
c5aa993b
JM
4275 else
4276 /* do all (or most) registers */
c906108c
SS
4277 {
4278 regnum = 0;
4279 while (regnum < NUM_REGS)
4280 {
c5aa993b
JM
4281 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4282 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4283 regnum = do_fp_register_row (regnum); /* FP regs */
4284 else
4285 regnum += MIPS_NUMREGS; /* skip floating point regs */
4286 else
4287 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4288 }
4289 }
4290}
4291
c906108c
SS
4292/* Is this a branch with a delay slot? */
4293
a14ed312 4294static int is_delayed (unsigned long);
c906108c
SS
4295
4296static int
acdb74a0 4297is_delayed (unsigned long insn)
c906108c
SS
4298{
4299 int i;
4300 for (i = 0; i < NUMOPCODES; ++i)
4301 if (mips_opcodes[i].pinfo != INSN_MACRO
4302 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4303 break;
4304 return (i < NUMOPCODES
4305 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4306 | INSN_COND_BRANCH_DELAY
4307 | INSN_COND_BRANCH_LIKELY)));
4308}
4309
4310int
acdb74a0 4311mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4312{
4313 char buf[MIPS_INSTLEN];
4314
4315 /* There is no branch delay slot on MIPS16. */
4316 if (pc_is_mips16 (pc))
4317 return 0;
4318
4319 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4320 /* If error reading memory, guess that it is not a delayed branch. */
4321 return 0;
c5aa993b 4322 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4323}
4324
4325
4326/* Skip the PC past function prologue instructions (32-bit version).
4327 This is a helper function for mips_skip_prologue. */
4328
4329static CORE_ADDR
f7b9e9fc 4330mips32_skip_prologue (CORE_ADDR pc)
c906108c 4331{
c5aa993b
JM
4332 t_inst inst;
4333 CORE_ADDR end_pc;
4334 int seen_sp_adjust = 0;
4335 int load_immediate_bytes = 0;
4336
4337 /* Skip the typical prologue instructions. These are the stack adjustment
4338 instruction and the instructions that save registers on the stack
4339 or in the gcc frame. */
4340 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4341 {
4342 unsigned long high_word;
c906108c 4343
c5aa993b
JM
4344 inst = mips_fetch_instruction (pc);
4345 high_word = (inst >> 16) & 0xffff;
c906108c 4346
c5aa993b
JM
4347 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4348 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4349 seen_sp_adjust = 1;
4350 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4351 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4352 seen_sp_adjust = 1;
4353 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4354 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4355 && (inst & 0x001F0000)) /* reg != $zero */
4356 continue;
4357
4358 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4359 continue;
4360 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4361 /* sx reg,n($s8) */
4362 continue; /* reg != $zero */
4363
4364 /* move $s8,$sp. With different versions of gas this will be either
4365 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4366 Accept any one of these. */
4367 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4368 continue;
4369
4370 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4371 continue;
4372 else if (high_word == 0x3c1c) /* lui $gp,n */
4373 continue;
4374 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4375 continue;
4376 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4377 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4378 continue;
4379 /* The following instructions load $at or $t0 with an immediate
4380 value in preparation for a stack adjustment via
4381 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4382 a local variable, so we accept them only before a stack adjustment
4383 instruction was seen. */
4384 else if (!seen_sp_adjust)
4385 {
4386 if (high_word == 0x3c01 || /* lui $at,n */
4387 high_word == 0x3c08) /* lui $t0,n */
4388 {
4389 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4390 continue;
4391 }
4392 else if (high_word == 0x3421 || /* ori $at,$at,n */
4393 high_word == 0x3508 || /* ori $t0,$t0,n */
4394 high_word == 0x3401 || /* ori $at,$zero,n */
4395 high_word == 0x3408) /* ori $t0,$zero,n */
4396 {
4397 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4398 continue;
4399 }
4400 else
4401 break;
4402 }
4403 else
4404 break;
c906108c
SS
4405 }
4406
c5aa993b
JM
4407 /* In a frameless function, we might have incorrectly
4408 skipped some load immediate instructions. Undo the skipping
4409 if the load immediate was not followed by a stack adjustment. */
4410 if (load_immediate_bytes && !seen_sp_adjust)
4411 pc -= load_immediate_bytes;
4412 return pc;
c906108c
SS
4413}
4414
4415/* Skip the PC past function prologue instructions (16-bit version).
4416 This is a helper function for mips_skip_prologue. */
4417
4418static CORE_ADDR
f7b9e9fc 4419mips16_skip_prologue (CORE_ADDR pc)
c906108c 4420{
c5aa993b
JM
4421 CORE_ADDR end_pc;
4422 int extend_bytes = 0;
4423 int prev_extend_bytes;
c906108c 4424
c5aa993b
JM
4425 /* Table of instructions likely to be found in a function prologue. */
4426 static struct
c906108c
SS
4427 {
4428 unsigned short inst;
4429 unsigned short mask;
c5aa993b
JM
4430 }
4431 table[] =
4432 {
c906108c 4433 {
c5aa993b
JM
4434 0x6300, 0xff00
4435 }
4436 , /* addiu $sp,offset */
4437 {
4438 0xfb00, 0xff00
4439 }
4440 , /* daddiu $sp,offset */
4441 {
4442 0xd000, 0xf800
4443 }
4444 , /* sw reg,n($sp) */
4445 {
4446 0xf900, 0xff00
4447 }
4448 , /* sd reg,n($sp) */
4449 {
4450 0x6200, 0xff00
4451 }
4452 , /* sw $ra,n($sp) */
4453 {
4454 0xfa00, 0xff00
4455 }
4456 , /* sd $ra,n($sp) */
4457 {
4458 0x673d, 0xffff
4459 }
4460 , /* move $s1,sp */
4461 {
4462 0xd980, 0xff80
4463 }
4464 , /* sw $a0-$a3,n($s1) */
4465 {
4466 0x6704, 0xff1c
4467 }
4468 , /* move reg,$a0-$a3 */
4469 {
4470 0xe809, 0xf81f
4471 }
4472 , /* entry pseudo-op */
4473 {
4474 0x0100, 0xff00
4475 }
4476 , /* addiu $s1,$sp,n */
4477 {
4478 0, 0
4479 } /* end of table marker */
4480 };
4481
4482 /* Skip the typical prologue instructions. These are the stack adjustment
4483 instruction and the instructions that save registers on the stack
4484 or in the gcc frame. */
4485 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4486 {
4487 unsigned short inst;
4488 int i;
c906108c 4489
c5aa993b 4490 inst = mips_fetch_instruction (pc);
c906108c 4491
c5aa993b
JM
4492 /* Normally we ignore an extend instruction. However, if it is
4493 not followed by a valid prologue instruction, we must adjust
4494 the pc back over the extend so that it won't be considered
4495 part of the prologue. */
4496 if ((inst & 0xf800) == 0xf000) /* extend */
4497 {
4498 extend_bytes = MIPS16_INSTLEN;
4499 continue;
4500 }
4501 prev_extend_bytes = extend_bytes;
4502 extend_bytes = 0;
c906108c 4503
c5aa993b
JM
4504 /* Check for other valid prologue instructions besides extend. */
4505 for (i = 0; table[i].mask != 0; i++)
4506 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4507 break;
4508 if (table[i].mask != 0) /* it was in table? */
4509 continue; /* ignore it */
4510 else
4511 /* non-prologue */
4512 {
4513 /* Return the current pc, adjusted backwards by 2 if
4514 the previous instruction was an extend. */
4515 return pc - prev_extend_bytes;
4516 }
c906108c
SS
4517 }
4518 return pc;
4519}
4520
4521/* To skip prologues, I use this predicate. Returns either PC itself
4522 if the code at PC does not look like a function prologue; otherwise
4523 returns an address that (if we're lucky) follows the prologue. If
4524 LENIENT, then we must skip everything which is involved in setting
4525 up the frame (it's OK to skip more, just so long as we don't skip
4526 anything which might clobber the registers which are being saved.
4527 We must skip more in the case where part of the prologue is in the
4528 delay slot of a non-prologue instruction). */
4529
f7ab6ec6 4530static CORE_ADDR
f7b9e9fc 4531mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4532{
4533 /* See if we can determine the end of the prologue via the symbol table.
4534 If so, then return either PC, or the PC after the prologue, whichever
4535 is greater. */
4536
4537 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4538
4539 if (post_prologue_pc != 0)
4540 return max (pc, post_prologue_pc);
4541
4542 /* Can't determine prologue from the symbol table, need to examine
4543 instructions. */
4544
4545 if (pc_is_mips16 (pc))
f7b9e9fc 4546 return mips16_skip_prologue (pc);
c906108c 4547 else
f7b9e9fc 4548 return mips32_skip_prologue (pc);
c906108c 4549}
c906108c 4550
7a292a7a
SS
4551/* Determine how a return value is stored within the MIPS register
4552 file, given the return type `valtype'. */
4553
4554struct return_value_word
4555{
4556 int len;
4557 int reg;
4558 int reg_offset;
4559 int buf_offset;
4560};
4561
7a292a7a 4562static void
acdb74a0
AC
4563return_value_location (struct type *valtype,
4564 struct return_value_word *hi,
4565 struct return_value_word *lo)
7a292a7a
SS
4566{
4567 int len = TYPE_LENGTH (valtype);
c5aa993b 4568
7a292a7a
SS
4569 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4570 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4571 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4572 {
4573 if (!FP_REGISTER_DOUBLE && len == 8)
4574 {
4575 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4576 spread them across a floating-point register pair. */
d7449b42
AC
4577 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4578 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4579 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4580 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4581 ? 4 : 0);
4582 hi->reg_offset = lo->reg_offset;
4583 lo->reg = FP0_REGNUM + 0;
4584 hi->reg = FP0_REGNUM + 1;
4585 lo->len = 4;
4586 hi->len = 4;
4587 }
4588 else
4589 {
4590 /* The floating point value fits in a single floating-point
c5aa993b 4591 register. */
d7449b42 4592 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4593 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4594 && len == 4)
4595 ? 4 : 0);
4596 lo->reg = FP0_REGNUM;
4597 lo->len = len;
4598 lo->buf_offset = 0;
4599 hi->len = 0;
4600 hi->reg_offset = 0;
4601 hi->buf_offset = 0;
4602 hi->reg = 0;
4603 }
4604 }
4605 else
4606 {
4607 /* Locate a result possibly spread across two registers. */
4608 int regnum = 2;
4609 lo->reg = regnum + 0;
4610 hi->reg = regnum + 1;
d7449b42 4611 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4612 && len < MIPS_SAVED_REGSIZE)
4613 {
bf1f5b4c
MS
4614 /* "un-left-justify" the value in the low register */
4615 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4616 lo->len = len;
bf1f5b4c 4617 hi->reg_offset = 0;
7a292a7a
SS
4618 hi->len = 0;
4619 }
d7449b42 4620 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4621 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4622 && len < MIPS_SAVED_REGSIZE * 2
4623 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4624 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4625 {
4626 /* "un-left-justify" the value spread across two registers. */
4627 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4628 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4629 hi->reg_offset = 0;
4630 hi->len = len - lo->len;
4631 }
4632 else
4633 {
4634 /* Only perform a partial copy of the second register. */
4635 lo->reg_offset = 0;
4636 hi->reg_offset = 0;
4637 if (len > MIPS_SAVED_REGSIZE)
4638 {
4639 lo->len = MIPS_SAVED_REGSIZE;
4640 hi->len = len - MIPS_SAVED_REGSIZE;
4641 }
4642 else
4643 {
4644 lo->len = len;
4645 hi->len = 0;
4646 }
4647 }
d7449b42 4648 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4649 && REGISTER_RAW_SIZE (regnum) == 8
4650 && MIPS_SAVED_REGSIZE == 4)
4651 {
4652 /* Account for the fact that only the least-signficant part
c5aa993b 4653 of the register is being used */
7a292a7a
SS
4654 lo->reg_offset += 4;
4655 hi->reg_offset += 4;
4656 }
4657 lo->buf_offset = 0;
4658 hi->buf_offset = lo->len;
4659 }
4660}
4661
4662/* Given a return value in `regbuf' with a type `valtype', extract and
4663 copy its value into `valbuf'. */
4664
46cac009
AC
4665static void
4666mips_eabi_extract_return_value (struct type *valtype,
4667 char regbuf[REGISTER_BYTES],
4668 char *valbuf)
4669{
4670 struct return_value_word lo;
4671 struct return_value_word hi;
4672 return_value_location (valtype, &hi, &lo);
4673
4674 memcpy (valbuf + lo.buf_offset,
4675 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4676 lo.len);
4677
4678 if (hi.len > 0)
4679 memcpy (valbuf + hi.buf_offset,
4680 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4681 hi.len);
4682}
4683
46cac009
AC
4684static void
4685mips_o64_extract_return_value (struct type *valtype,
4686 char regbuf[REGISTER_BYTES],
4687 char *valbuf)
4688{
4689 struct return_value_word lo;
4690 struct return_value_word hi;
4691 return_value_location (valtype, &hi, &lo);
4692
4693 memcpy (valbuf + lo.buf_offset,
4694 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4695 lo.len);
4696
4697 if (hi.len > 0)
4698 memcpy (valbuf + hi.buf_offset,
4699 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4700 hi.len);
4701}
4702
7a292a7a
SS
4703/* Given a return value in `valbuf' with a type `valtype', write it's
4704 value into the appropriate register. */
4705
46cac009
AC
4706static void
4707mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4708{
4709 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4710 struct return_value_word lo;
4711 struct return_value_word hi;
4712 return_value_location (valtype, &hi, &lo);
4713
4714 memset (raw_buffer, 0, sizeof (raw_buffer));
4715 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4716 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4717 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4718
4719 if (hi.len > 0)
4720 {
4721 memset (raw_buffer, 0, sizeof (raw_buffer));
4722 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4723 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4724 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4725 }
4726}
4727
4728static void
cb1d2653 4729mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009
AC
4730{
4731 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4732 struct return_value_word lo;
4733 struct return_value_word hi;
4734 return_value_location (valtype, &hi, &lo);
4735
4736 memset (raw_buffer, 0, sizeof (raw_buffer));
4737 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4738 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4739 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4740
4741 if (hi.len > 0)
4742 {
4743 memset (raw_buffer, 0, sizeof (raw_buffer));
4744 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4745 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4746 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4747 }
4748}
4749
cb1d2653
AC
4750/* O32 ABI stuff. */
4751
46cac009 4752static void
cb1d2653
AC
4753mips_o32_xfer_return_value (struct type *type,
4754 struct regcache *regcache,
4755 bfd_byte *in, const bfd_byte *out)
46cac009 4756{
cb1d2653
AC
4757 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4758 if (TYPE_CODE (type) == TYPE_CODE_FLT
4759 && TYPE_LENGTH (type) == 4
4760 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4761 {
cb1d2653
AC
4762 /* A single-precision floating-point value. It fits in the
4763 least significant part of FP0. */
4764 if (mips_debug)
4765 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4766 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4767 TARGET_BYTE_ORDER, in, out, 0);
4768 }
4769 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4770 && TYPE_LENGTH (type) == 8
4771 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4772 {
4773 /* A double-precision floating-point value. It fits in the
4774 least significant part of FP0/FP1 but with byte ordering
4775 based on the target (???). */
4776 if (mips_debug)
4777 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4778 switch (TARGET_BYTE_ORDER)
4779 {
4780 case BFD_ENDIAN_LITTLE:
4781 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4782 TARGET_BYTE_ORDER, in, out, 0);
4783 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4784 TARGET_BYTE_ORDER, in, out, 4);
4785 break;
4786 case BFD_ENDIAN_BIG:
4787 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4788 TARGET_BYTE_ORDER, in, out, 0);
4789 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4790 TARGET_BYTE_ORDER, in, out, 4);
4791 break;
4792 default:
4793 internal_error (__FILE__, __LINE__, "bad switch");
4794 }
4795 }
4796#if 0
4797 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4798 && TYPE_NFIELDS (type) <= 2
4799 && TYPE_NFIELDS (type) >= 1
4800 && ((TYPE_NFIELDS (type) == 1
4801 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4802 == TYPE_CODE_FLT))
4803 || (TYPE_NFIELDS (type) == 2
4804 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4805 == TYPE_CODE_FLT)
4806 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4807 == TYPE_CODE_FLT)))
4808 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4809 {
4810 /* A struct that contains one or two floats. Each value is part
4811 in the least significant part of their floating point
4812 register.. */
4813 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4814 int regnum;
4815 int field;
4816 for (field = 0, regnum = FP0_REGNUM;
4817 field < TYPE_NFIELDS (type);
4818 field++, regnum += 2)
4819 {
4820 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4821 / TARGET_CHAR_BIT);
4822 if (mips_debug)
4823 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4824 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4825 TARGET_BYTE_ORDER, in, out, offset);
4826 }
4827 }
4828#endif
4829#if 0
4830 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4831 || TYPE_CODE (type) == TYPE_CODE_UNION)
4832 {
4833 /* A structure or union. Extract the left justified value,
4834 regardless of the byte order. I.e. DO NOT USE
4835 mips_xfer_lower. */
4836 int offset;
4837 int regnum;
4838 for (offset = 0, regnum = V0_REGNUM;
4839 offset < TYPE_LENGTH (type);
4840 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4841 {
4842 int xfer = REGISTER_RAW_SIZE (regnum);
4843 if (offset + xfer > TYPE_LENGTH (type))
4844 xfer = TYPE_LENGTH (type) - offset;
4845 if (mips_debug)
4846 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4847 offset, xfer, regnum);
4848 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4849 in, out, offset);
4850 }
4851 }
4852#endif
4853 else
4854 {
4855 /* A scalar extract each part but least-significant-byte
4856 justified. o32 thinks registers are 4 byte, regardless of
4857 the ISA. mips_stack_argsize controls this. */
4858 int offset;
4859 int regnum;
4860 for (offset = 0, regnum = V0_REGNUM;
4861 offset < TYPE_LENGTH (type);
4862 offset += mips_stack_argsize (), regnum++)
4863 {
4864 int xfer = mips_stack_argsize ();
4865 int pos = 0;
4866 if (offset + xfer > TYPE_LENGTH (type))
4867 xfer = TYPE_LENGTH (type) - offset;
4868 if (mips_debug)
4869 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4870 offset, xfer, regnum);
4871 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4872 in, out, offset);
4873 }
46cac009
AC
4874 }
4875}
4876
cb1d2653
AC
4877static void
4878mips_o32_extract_return_value (struct type *type,
4879 struct regcache *regcache,
ebba8386 4880 void *valbuf)
cb1d2653
AC
4881{
4882 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4883}
4884
4885static void
4886mips_o32_store_return_value (struct type *type, char *valbuf)
4887{
4888 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4889}
4890
4891/* N32/N44 ABI stuff. */
4892
46cac009 4893static void
88658117
AC
4894mips_n32n64_xfer_return_value (struct type *type,
4895 struct regcache *regcache,
4896 bfd_byte *in, const bfd_byte *out)
c906108c 4897{
88658117
AC
4898 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4899 if (TYPE_CODE (type) == TYPE_CODE_FLT
4900 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4901 {
88658117
AC
4902 /* A floating-point value belongs in the least significant part
4903 of FP0. */
4904 if (mips_debug)
4905 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4906 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4907 TARGET_BYTE_ORDER, in, out, 0);
4908 }
4909 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4910 && TYPE_NFIELDS (type) <= 2
4911 && TYPE_NFIELDS (type) >= 1
4912 && ((TYPE_NFIELDS (type) == 1
4913 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4914 == TYPE_CODE_FLT))
4915 || (TYPE_NFIELDS (type) == 2
4916 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4917 == TYPE_CODE_FLT)
4918 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4919 == TYPE_CODE_FLT)))
4920 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4921 {
4922 /* A struct that contains one or two floats. Each value is part
4923 in the least significant part of their floating point
4924 register.. */
4925 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4926 int regnum;
4927 int field;
4928 for (field = 0, regnum = FP0_REGNUM;
4929 field < TYPE_NFIELDS (type);
4930 field++, regnum += 2)
4931 {
4932 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4933 / TARGET_CHAR_BIT);
4934 if (mips_debug)
4935 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4936 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4937 TARGET_BYTE_ORDER, in, out, offset);
4938 }
7a292a7a 4939 }
88658117
AC
4940 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4941 || TYPE_CODE (type) == TYPE_CODE_UNION)
4942 {
4943 /* A structure or union. Extract the left justified value,
4944 regardless of the byte order. I.e. DO NOT USE
4945 mips_xfer_lower. */
4946 int offset;
4947 int regnum;
4948 for (offset = 0, regnum = V0_REGNUM;
4949 offset < TYPE_LENGTH (type);
4950 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4951 {
4952 int xfer = REGISTER_RAW_SIZE (regnum);
4953 if (offset + xfer > TYPE_LENGTH (type))
4954 xfer = TYPE_LENGTH (type) - offset;
4955 if (mips_debug)
4956 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4957 offset, xfer, regnum);
4958 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4959 in, out, offset);
4960 }
4961 }
4962 else
4963 {
4964 /* A scalar extract each part but least-significant-byte
4965 justified. */
4966 int offset;
4967 int regnum;
4968 for (offset = 0, regnum = V0_REGNUM;
4969 offset < TYPE_LENGTH (type);
4970 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4971 {
4972 int xfer = REGISTER_RAW_SIZE (regnum);
4973 int pos = 0;
4974 if (offset + xfer > TYPE_LENGTH (type))
4975 xfer = TYPE_LENGTH (type) - offset;
4976 if (mips_debug)
4977 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4978 offset, xfer, regnum);
4979 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4980 in, out, offset);
4981 }
4982 }
4983}
4984
4985static void
4986mips_n32n64_extract_return_value (struct type *type,
4987 struct regcache *regcache,
ebba8386 4988 void *valbuf)
88658117
AC
4989{
4990 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4991}
4992
4993static void
4994mips_n32n64_store_return_value (struct type *type, char *valbuf)
4995{
4996 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4997}
4998
2f1488ce
MS
4999static void
5000mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5001{
5002 /* Nothing to do -- push_arguments does all the work. */
5003}
5004
5005static CORE_ADDR
6672060b 5006mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
5007{
5008 /* FIXME: This will only work at random. The caller passes the
5009 struct_return address in V0, but it is not preserved. It may
5010 still be there, or this may be a random value. */
77d8f2b4
MS
5011 LONGEST val;
5012
5013 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 5014 return val;
2f1488ce
MS
5015}
5016
c906108c
SS
5017/* Exported procedure: Is PC in the signal trampoline code */
5018
102182a9
MS
5019static int
5020mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
5021{
5022 if (sigtramp_address == 0)
5023 fixup_sigtramp ();
5024 return (pc >= sigtramp_address && pc < sigtramp_end);
5025}
5026
a5ea2558
AC
5027/* Root of all "set mips "/"show mips " commands. This will eventually be
5028 used for all MIPS-specific commands. */
5029
a5ea2558 5030static void
acdb74a0 5031show_mips_command (char *args, int from_tty)
a5ea2558
AC
5032{
5033 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5034}
5035
a5ea2558 5036static void
acdb74a0 5037set_mips_command (char *args, int from_tty)
a5ea2558
AC
5038{
5039 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5040 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5041}
5042
c906108c
SS
5043/* Commands to show/set the MIPS FPU type. */
5044
c906108c 5045static void
acdb74a0 5046show_mipsfpu_command (char *args, int from_tty)
c906108c 5047{
c906108c
SS
5048 char *fpu;
5049 switch (MIPS_FPU_TYPE)
5050 {
5051 case MIPS_FPU_SINGLE:
5052 fpu = "single-precision";
5053 break;
5054 case MIPS_FPU_DOUBLE:
5055 fpu = "double-precision";
5056 break;
5057 case MIPS_FPU_NONE:
5058 fpu = "absent (none)";
5059 break;
93d56215
AC
5060 default:
5061 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5062 }
5063 if (mips_fpu_type_auto)
5064 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5065 fpu);
5066 else
5067 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5068 fpu);
5069}
5070
5071
c906108c 5072static void
acdb74a0 5073set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5074{
5075 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5076 show_mipsfpu_command (args, from_tty);
5077}
5078
c906108c 5079static void
acdb74a0 5080set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5081{
5082 mips_fpu_type = MIPS_FPU_SINGLE;
5083 mips_fpu_type_auto = 0;
9e364162 5084 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5085}
5086
c906108c 5087static void
acdb74a0 5088set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5089{
5090 mips_fpu_type = MIPS_FPU_DOUBLE;
5091 mips_fpu_type_auto = 0;
9e364162 5092 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5093}
5094
c906108c 5095static void
acdb74a0 5096set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5097{
5098 mips_fpu_type = MIPS_FPU_NONE;
5099 mips_fpu_type_auto = 0;
9e364162 5100 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5101}
5102
c906108c 5103static void
acdb74a0 5104set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5105{
5106 mips_fpu_type_auto = 1;
5107}
5108
5109/* Command to set the processor type. */
5110
5111void
acdb74a0 5112mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5113{
5114 int i;
5115
5116 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5117 {
5118 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5119 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5120 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5121
5122 /* Restore the value. */
4fcf66da 5123 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5124
5125 return;
5126 }
c5aa993b 5127
c906108c
SS
5128 if (!mips_set_processor_type (tmp_mips_processor_type))
5129 {
5130 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5131 /* Restore its value. */
4fcf66da 5132 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5133 }
5134}
5135
5136static void
acdb74a0 5137mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5138{
5139}
5140
5141/* Modify the actual processor type. */
5142
5a89d8aa 5143static int
acdb74a0 5144mips_set_processor_type (char *str)
c906108c 5145{
1012bd0e 5146 int i;
c906108c
SS
5147
5148 if (str == NULL)
5149 return 0;
5150
5151 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5152 {
5153 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5154 {
5155 mips_processor_type = str;
cce74817 5156 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5157 return 1;
c906108c
SS
5158 /* FIXME tweak fpu flag too */
5159 }
5160 }
5161
5162 return 0;
5163}
5164
5165/* Attempt to identify the particular processor model by reading the
5166 processor id. */
5167
5168char *
acdb74a0 5169mips_read_processor_type (void)
c906108c
SS
5170{
5171 CORE_ADDR prid;
5172
5173 prid = read_register (PRID_REGNUM);
5174
5175 if ((prid & ~0xf) == 0x700)
c5aa993b 5176 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5177
5178 return NULL;
5179}
5180
5181/* Just like reinit_frame_cache, but with the right arguments to be
5182 callable as an sfunc. */
5183
5184static void
acdb74a0
AC
5185reinit_frame_cache_sfunc (char *args, int from_tty,
5186 struct cmd_list_element *c)
c906108c
SS
5187{
5188 reinit_frame_cache ();
5189}
5190
5191int
acdb74a0 5192gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5193{
5194 mips_extra_func_info_t proc_desc;
5195
5196 /* Search for the function containing this address. Set the low bit
5197 of the address when searching, in case we were given an even address
5198 that is the start of a 16-bit function. If we didn't do this,
5199 the search would fail because the symbol table says the function
5200 starts at an odd address, i.e. 1 byte past the given address. */
5201 memaddr = ADDR_BITS_REMOVE (memaddr);
5202 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5203
5204 /* Make an attempt to determine if this is a 16-bit function. If
5205 the procedure descriptor exists and the address therein is odd,
5206 it's definitely a 16-bit function. Otherwise, we have to just
5207 guess that if the address passed in is odd, it's 16-bits. */
5208 if (proc_desc)
361d1df0 5209 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5210 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5211 else
361d1df0 5212 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5213 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5214
5215 /* Round down the instruction address to the appropriate boundary. */
65c11066 5216 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5217
c906108c 5218 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5219 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5220 return print_insn_big_mips (memaddr, info);
5221 else
5222 return print_insn_little_mips (memaddr, info);
5223}
5224
5225/* Old-style breakpoint macros.
5226 The IDT board uses an unusual breakpoint value, and sometimes gets
5227 confused when it sees the usual MIPS breakpoint instruction. */
5228
5229#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5230#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5231#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5232#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5233#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5234#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5235#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5236#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5237
5238/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5239 counter value to determine whether a 16- or 32-bit breakpoint should be
5240 used. It returns a pointer to a string of bytes that encode a breakpoint
5241 instruction, stores the length of the string to *lenptr, and adjusts pc
5242 (if necessary) to point to the actual memory location where the
5243 breakpoint should be inserted. */
5244
f7ab6ec6 5245static const unsigned char *
acdb74a0 5246mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5247{
d7449b42 5248 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5249 {
5250 if (pc_is_mips16 (*pcptr))
5251 {
1012bd0e
EZ
5252 static unsigned char mips16_big_breakpoint[] =
5253 MIPS16_BIG_BREAKPOINT;
c906108c 5254 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5255 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5256 return mips16_big_breakpoint;
5257 }
5258 else
5259 {
1012bd0e
EZ
5260 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5261 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5262 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 5263
c5aa993b 5264 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5265
5266 if (strcmp (target_shortname, "mips") == 0)
5267 return idt_big_breakpoint;
5268 else if (strcmp (target_shortname, "ddb") == 0
5269 || strcmp (target_shortname, "pmon") == 0
5270 || strcmp (target_shortname, "lsi") == 0)
5271 return pmon_big_breakpoint;
5272 else
5273 return big_breakpoint;
5274 }
5275 }
5276 else
5277 {
5278 if (pc_is_mips16 (*pcptr))
5279 {
1012bd0e
EZ
5280 static unsigned char mips16_little_breakpoint[] =
5281 MIPS16_LITTLE_BREAKPOINT;
c906108c 5282 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5283 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5284 return mips16_little_breakpoint;
5285 }
5286 else
5287 {
1012bd0e
EZ
5288 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5289 static unsigned char pmon_little_breakpoint[] =
5290 PMON_LITTLE_BREAKPOINT;
5291 static unsigned char idt_little_breakpoint[] =
5292 IDT_LITTLE_BREAKPOINT;
c906108c 5293
c5aa993b 5294 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5295
5296 if (strcmp (target_shortname, "mips") == 0)
5297 return idt_little_breakpoint;
5298 else if (strcmp (target_shortname, "ddb") == 0
5299 || strcmp (target_shortname, "pmon") == 0
5300 || strcmp (target_shortname, "lsi") == 0)
5301 return pmon_little_breakpoint;
5302 else
5303 return little_breakpoint;
5304 }
5305 }
5306}
5307
5308/* If PC is in a mips16 call or return stub, return the address of the target
5309 PC, which is either the callee or the caller. There are several
5310 cases which must be handled:
5311
5312 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5313 target PC is in $31 ($ra).
c906108c 5314 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5315 and the target PC is in $2.
c906108c 5316 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5317 before the jal instruction, this is effectively a call stub
5318 and the the target PC is in $2. Otherwise this is effectively
5319 a return stub and the target PC is in $18.
c906108c
SS
5320
5321 See the source code for the stubs in gcc/config/mips/mips16.S for
5322 gory details.
5323
5324 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5325 */
c906108c 5326
757a7cc6 5327static CORE_ADDR
acdb74a0 5328mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5329{
5330 char *name;
5331 CORE_ADDR start_addr;
5332
5333 /* Find the starting address and name of the function containing the PC. */
5334 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5335 return 0;
5336
5337 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5338 target PC is in $31 ($ra). */
5339 if (strcmp (name, "__mips16_ret_sf") == 0
5340 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5341 return read_signed_register (RA_REGNUM);
c906108c
SS
5342
5343 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5344 {
5345 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5346 and the target PC is in $2. */
5347 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5348 return read_signed_register (2);
c906108c
SS
5349
5350 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5351 before the jal instruction, this is effectively a call stub
5352 and the the target PC is in $2. Otherwise this is effectively
5353 a return stub and the target PC is in $18. */
c906108c
SS
5354 else if (name[19] == 's' || name[19] == 'd')
5355 {
5356 if (pc == start_addr)
5357 {
5358 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5359 stub. Such a stub for a function bar might have a name
5360 like __fn_stub_bar, and might look like this:
5361 mfc1 $4,$f13
5362 mfc1 $5,$f12
5363 mfc1 $6,$f15
5364 mfc1 $7,$f14
5365 la $1,bar (becomes a lui/addiu pair)
5366 jr $1
5367 So scan down to the lui/addi and extract the target
5368 address from those two instructions. */
c906108c 5369
6c997a34 5370 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5371 t_inst inst;
5372 int i;
5373
5374 /* See if the name of the target function is __fn_stub_*. */
5375 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5376 return target_pc;
5377 if (strncmp (name, "__fn_stub_", 10) != 0
5378 && strcmp (name, "etext") != 0
5379 && strcmp (name, "_etext") != 0)
5380 return target_pc;
5381
5382 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5383 The limit on the search is arbitrarily set to 20
5384 instructions. FIXME. */
c906108c
SS
5385 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5386 {
c5aa993b
JM
5387 inst = mips_fetch_instruction (target_pc);
5388 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5389 pc = (inst << 16) & 0xffff0000; /* high word */
5390 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5391 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5392 }
5393
5394 /* Couldn't find the lui/addui pair, so return stub address. */
5395 return target_pc;
5396 }
5397 else
5398 /* This is the 'return' part of a call stub. The return
5399 address is in $r18. */
6c997a34 5400 return read_signed_register (18);
c906108c
SS
5401 }
5402 }
c5aa993b 5403 return 0; /* not a stub */
c906108c
SS
5404}
5405
5406
5407/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5408 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5409
757a7cc6 5410static int
acdb74a0 5411mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5412{
5413 CORE_ADDR start_addr;
5414
5415 /* Find the starting address of the function containing the PC. If the
5416 caller didn't give us a name, look it up at the same time. */
5417 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5418 return 0;
5419
5420 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5421 {
5422 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5423 if (name[19] >= '0' && name[19] <= '9')
5424 return 1;
5425 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5426 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5427 else if (name[19] == 's' || name[19] == 'd')
5428 return pc == start_addr;
5429 }
5430
c5aa993b 5431 return 0; /* not a stub */
c906108c
SS
5432}
5433
5434
5435/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5436 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5437
e41b17f0 5438static int
acdb74a0 5439mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5440{
5441 CORE_ADDR start_addr;
5442
5443 /* Find the starting address of the function containing the PC. */
5444 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5445 return 0;
5446
5447 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5448 if (strcmp (name, "__mips16_ret_sf") == 0
5449 || strcmp (name, "__mips16_ret_df") == 0)
5450 return 1;
5451
5452 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5453 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5454 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5455 && (name[19] == 's' || name[19] == 'd')
5456 && pc != start_addr)
5457 return 1;
5458
c5aa993b 5459 return 0; /* not a stub */
c906108c
SS
5460}
5461
5462
5463/* Return non-zero if the PC is in a library helper function that should
5464 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5465
5466int
acdb74a0 5467mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5468{
5469 char *name;
5470
5471 /* Find the starting address and name of the function containing the PC. */
5472 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5473 return 0;
5474
5475 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5476 that we want to ignore. */
5477 return (strcmp (name, "__mips16_ret_sf") == 0
5478 || strcmp (name, "__mips16_ret_df") == 0);
5479}
5480
5481
5482/* Return a location where we can set a breakpoint that will be hit
5483 when an inferior function call returns. This is normally the
5484 program's entry point. Executables that don't have an entry
5485 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5486 whose address is the location where the breakpoint should be placed. */
5487
f7ab6ec6 5488static CORE_ADDR
acdb74a0 5489mips_call_dummy_address (void)
c906108c
SS
5490{
5491 struct minimal_symbol *sym;
5492
5493 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5494 if (sym)
5495 return SYMBOL_VALUE_ADDRESS (sym);
5496 else
5497 return entry_point_address ();
5498}
5499
5500
47a8d4ba
AC
5501/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5502 the register stored on the stack (32) is different to its real raw
5503 size (64). The below ensures that registers are fetched from the
5504 stack using their ABI size and then stored into the RAW_BUFFER
5505 using their raw size.
5506
5507 The alternative to adding this function would be to add an ABI
5508 macro - REGISTER_STACK_SIZE(). */
5509
5510static void
acdb74a0 5511mips_get_saved_register (char *raw_buffer,
795e1e11 5512 int *optimizedp,
acdb74a0
AC
5513 CORE_ADDR *addrp,
5514 struct frame_info *frame,
5515 int regnum,
795e1e11 5516 enum lval_type *lvalp)
47a8d4ba 5517{
795e1e11
AC
5518 CORE_ADDR addrx;
5519 enum lval_type lvalx;
5520 int optimizedx;
47a8d4ba
AC
5521
5522 if (!target_has_registers)
5523 error ("No registers.");
5524
795e1e11
AC
5525 /* Make certain that all needed parameters are present. */
5526 if (addrp == NULL)
5527 addrp = &addrx;
5528 if (lvalp == NULL)
5529 lvalp = &lvalx;
5530 if (optimizedp == NULL)
5531 optimizedp = &optimizedx;
f796e4be
KB
5532 generic_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5533 regnum, lvalp);
795e1e11
AC
5534 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5535 have a pseudo register range that correspons to the ABI's, rather
5536 than the ISA's, view of registers. These registers would then
5537 implicitly describe their size and hence could be used without
5538 the below munging. */
5539 if ((*lvalp) == lval_memory)
47a8d4ba 5540 {
47a8d4ba
AC
5541 if (raw_buffer != NULL)
5542 {
47a8d4ba 5543 if (regnum < 32)
795e1e11
AC
5544 {
5545 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5546 saved. */
5547 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5548 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5549 }
47a8d4ba
AC
5550 }
5551 }
47a8d4ba 5552}
2acceee2 5553
f7b9e9fc
AC
5554/* Immediately after a function call, return the saved pc.
5555 Can't always go through the frames for this because on some machines
5556 the new frame is not set up until the new function executes
5557 some instructions. */
5558
5559static CORE_ADDR
5560mips_saved_pc_after_call (struct frame_info *frame)
5561{
6c997a34 5562 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5563}
5564
5565
88c72b7d
AC
5566/* Convert a dbx stab register number (from `r' declaration) to a gdb
5567 REGNUM */
5568
5569static int
5570mips_stab_reg_to_regnum (int num)
5571{
2f38ef89 5572 if (num >= 0 && num < 32)
88c72b7d 5573 return num;
2f38ef89 5574 else if (num >= 38 && num < 70)
88c72b7d 5575 return num + FP0_REGNUM - 38;
040b99fd
KB
5576 else if (num == 70)
5577 return HI_REGNUM;
5578 else if (num == 71)
5579 return LO_REGNUM;
2f38ef89
KB
5580 else
5581 {
5582 /* This will hopefully (eventually) provoke a warning. Should
5583 we be calling complaint() here? */
5584 return NUM_REGS + NUM_PSEUDO_REGS;
5585 }
88c72b7d
AC
5586}
5587
2f38ef89
KB
5588
5589/* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
88c72b7d
AC
5590
5591static int
2f38ef89 5592mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5593{
2f38ef89 5594 if (num >= 0 && num < 32)
88c72b7d 5595 return num;
2f38ef89 5596 else if (num >= 32 && num < 64)
88c72b7d 5597 return num + FP0_REGNUM - 32;
040b99fd
KB
5598 else if (num == 64)
5599 return HI_REGNUM;
5600 else if (num == 65)
5601 return LO_REGNUM;
2f38ef89
KB
5602 else
5603 {
5604 /* This will hopefully (eventually) provoke a warning. Should
5605 we be calling complaint() here? */
5606 return NUM_REGS + NUM_PSEUDO_REGS;
5607 }
88c72b7d
AC
5608}
5609
2f38ef89 5610
fc0c74b1
AC
5611/* Convert an integer into an address. By first converting the value
5612 into a pointer and then extracting it signed, the address is
5613 guarenteed to be correctly sign extended. */
5614
5615static CORE_ADDR
5616mips_integer_to_address (struct type *type, void *buf)
5617{
5618 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5619 LONGEST val = unpack_long (type, buf);
5620 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5621 return extract_signed_integer (tmp,
5622 TYPE_LENGTH (builtin_type_void_data_ptr));
5623}
5624
caaa3122
DJ
5625static void
5626mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5627{
5628 enum mips_abi *abip = (enum mips_abi *) obj;
5629 const char *name = bfd_get_section_name (abfd, sect);
5630
5631 if (*abip != MIPS_ABI_UNKNOWN)
5632 return;
5633
5634 if (strncmp (name, ".mdebug.", 8) != 0)
5635 return;
5636
5637 if (strcmp (name, ".mdebug.abi32") == 0)
5638 *abip = MIPS_ABI_O32;
5639 else if (strcmp (name, ".mdebug.abiN32") == 0)
5640 *abip = MIPS_ABI_N32;
62a49b2c 5641 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5642 *abip = MIPS_ABI_N64;
caaa3122
DJ
5643 else if (strcmp (name, ".mdebug.abiO64") == 0)
5644 *abip = MIPS_ABI_O64;
5645 else if (strcmp (name, ".mdebug.eabi32") == 0)
5646 *abip = MIPS_ABI_EABI32;
5647 else if (strcmp (name, ".mdebug.eabi64") == 0)
5648 *abip = MIPS_ABI_EABI64;
5649 else
5650 warning ("unsupported ABI %s.", name + 8);
5651}
5652
2e4ebe70
DJ
5653static enum mips_abi
5654global_mips_abi (void)
5655{
5656 int i;
5657
5658 for (i = 0; mips_abi_strings[i] != NULL; i++)
5659 if (mips_abi_strings[i] == mips_abi_string)
5660 return (enum mips_abi) i;
5661
5662 internal_error (__FILE__, __LINE__,
5663 "unknown ABI string");
5664}
5665
c2d11a7d 5666static struct gdbarch *
acdb74a0
AC
5667mips_gdbarch_init (struct gdbarch_info info,
5668 struct gdbarch_list *arches)
c2d11a7d
JM
5669{
5670 static LONGEST mips_call_dummy_words[] =
5671 {0};
5672 struct gdbarch *gdbarch;
5673 struct gdbarch_tdep *tdep;
5674 int elf_flags;
2e4ebe70 5675 enum mips_abi mips_abi, found_abi, wanted_abi;
c2d11a7d 5676
1d06468c
EZ
5677 /* Reset the disassembly info, in case it was set to something
5678 non-default. */
5679 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5680 tm_print_insn_info.arch = bfd_arch_unknown;
5681 tm_print_insn_info.mach = 0;
5682
70f80edf
JT
5683 elf_flags = 0;
5684
5685 if (info.abfd)
5686 {
5687 /* First of all, extract the elf_flags, if available. */
5688 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5689 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5690 }
c2d11a7d 5691
102182a9 5692 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5693 switch ((elf_flags & EF_MIPS_ABI))
5694 {
5695 case E_MIPS_ABI_O32:
5696 mips_abi = MIPS_ABI_O32;
5697 break;
5698 case E_MIPS_ABI_O64:
5699 mips_abi = MIPS_ABI_O64;
5700 break;
5701 case E_MIPS_ABI_EABI32:
5702 mips_abi = MIPS_ABI_EABI32;
5703 break;
5704 case E_MIPS_ABI_EABI64:
4a7f7ba8 5705 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5706 break;
5707 default:
acdb74a0
AC
5708 if ((elf_flags & EF_MIPS_ABI2))
5709 mips_abi = MIPS_ABI_N32;
5710 else
5711 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5712 break;
5713 }
acdb74a0 5714
caaa3122
DJ
5715 /* GCC creates a pseudo-section whose name describes the ABI. */
5716 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5717 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5718
2e4ebe70
DJ
5719 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5720 Use the ABI from the last architecture if there is one. */
5721 if (info.abfd == NULL && arches != NULL)
5722 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5723
32a6503c 5724 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5725 if (mips_abi == MIPS_ABI_UNKNOWN
5726 && info.bfd_arch_info != NULL
5727 && info.bfd_arch_info->arch == bfd_arch_mips)
5728 {
5729 switch (info.bfd_arch_info->mach)
5730 {
5731 case bfd_mach_mips3900:
5732 mips_abi = MIPS_ABI_EABI32;
5733 break;
5734 case bfd_mach_mips4100:
5735 case bfd_mach_mips5000:
5736 mips_abi = MIPS_ABI_EABI64;
5737 break;
1d06468c
EZ
5738 case bfd_mach_mips8000:
5739 case bfd_mach_mips10000:
32a6503c
KB
5740 /* On Irix, ELF64 executables use the N64 ABI. The
5741 pseudo-sections which describe the ABI aren't present
5742 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5743 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5744 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5745 mips_abi = MIPS_ABI_N64;
5746 else
5747 mips_abi = MIPS_ABI_N32;
1d06468c 5748 break;
bf64bfd6
AC
5749 }
5750 }
2e4ebe70 5751
2e4ebe70
DJ
5752 if (mips_abi == MIPS_ABI_UNKNOWN)
5753 mips_abi = MIPS_ABI_O32;
5754
5755 /* Now that we have found what the ABI for this binary would be,
5756 check whether the user is overriding it. */
5757 found_abi = mips_abi;
5758 wanted_abi = global_mips_abi ();
5759 if (wanted_abi != MIPS_ABI_UNKNOWN)
5760 mips_abi = wanted_abi;
5761
4b9b3959
AC
5762 if (gdbarch_debug)
5763 {
5764 fprintf_unfiltered (gdb_stdlog,
9ace0497 5765 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5766 elf_flags);
4b9b3959
AC
5767 fprintf_unfiltered (gdb_stdlog,
5768 "mips_gdbarch_init: mips_abi = %d\n",
5769 mips_abi);
2e4ebe70
DJ
5770 fprintf_unfiltered (gdb_stdlog,
5771 "mips_gdbarch_init: found_mips_abi = %d\n",
5772 found_abi);
4b9b3959 5773 }
0dadbba0 5774
c2d11a7d
JM
5775 /* try to find a pre-existing architecture */
5776 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5777 arches != NULL;
5778 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5779 {
5780 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5781 using. */
9103eae0 5782 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5783 continue;
9103eae0 5784 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5785 continue;
4be87837 5786 return arches->gdbarch;
c2d11a7d
JM
5787 }
5788
102182a9 5789 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5790 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5791 gdbarch = gdbarch_alloc (&info, tdep);
5792 tdep->elf_flags = elf_flags;
5793
102182a9 5794 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5795 set_gdbarch_short_bit (gdbarch, 16);
5796 set_gdbarch_int_bit (gdbarch, 32);
5797 set_gdbarch_float_bit (gdbarch, 32);
5798 set_gdbarch_double_bit (gdbarch, 64);
5799 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5800 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
a0ed5532
AC
5801 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
5802 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5803 tdep->found_abi = found_abi;
0dadbba0 5804 tdep->mips_abi = mips_abi;
1d06468c 5805
f7ab6ec6
MS
5806 set_gdbarch_elf_make_msymbol_special (gdbarch,
5807 mips_elf_make_msymbol_special);
5808
4be87837 5809 if (info.osabi == GDB_OSABI_IRIX)
fe29b929
KB
5810 set_gdbarch_num_regs (gdbarch, 71);
5811 else
5812 set_gdbarch_num_regs (gdbarch, 90);
5813
0dadbba0 5814 switch (mips_abi)
c2d11a7d 5815 {
0dadbba0 5816 case MIPS_ABI_O32:
b81774d8 5817 set_gdbarch_deprecated_push_arguments (gdbarch, mips_o32_push_arguments);
ebba8386 5818 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5819 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5820 tdep->mips_default_saved_regsize = 4;
0dadbba0 5821 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5822 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5823 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5824 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5825 tdep->gdb_target_is_mips64 = 0;
4014092b 5826 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5827 set_gdbarch_long_bit (gdbarch, 32);
5828 set_gdbarch_ptr_bit (gdbarch, 32);
5829 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5830 set_gdbarch_reg_struct_has_addr (gdbarch,
5831 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5832 set_gdbarch_use_struct_convention (gdbarch,
5833 mips_o32_use_struct_convention);
c2d11a7d 5834 break;
0dadbba0 5835 case MIPS_ABI_O64:
b81774d8 5836 set_gdbarch_deprecated_push_arguments (gdbarch, mips_o64_push_arguments);
ebba8386 5837 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5838 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5839 tdep->mips_default_saved_regsize = 8;
0dadbba0 5840 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5841 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5842 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5843 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5844 tdep->gdb_target_is_mips64 = 1;
361d1df0 5845 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5846 set_gdbarch_long_bit (gdbarch, 32);
5847 set_gdbarch_ptr_bit (gdbarch, 32);
5848 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5849 set_gdbarch_reg_struct_has_addr (gdbarch,
5850 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5851 set_gdbarch_use_struct_convention (gdbarch,
5852 mips_o32_use_struct_convention);
c2d11a7d 5853 break;
0dadbba0 5854 case MIPS_ABI_EABI32:
b81774d8 5855 set_gdbarch_deprecated_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5856 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5857 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5858 tdep->mips_default_saved_regsize = 4;
0dadbba0 5859 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5860 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5861 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5862 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5863 tdep->gdb_target_is_mips64 = 0;
4014092b 5864 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5865 set_gdbarch_long_bit (gdbarch, 32);
5866 set_gdbarch_ptr_bit (gdbarch, 32);
5867 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5868 set_gdbarch_reg_struct_has_addr (gdbarch,
5869 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5870 set_gdbarch_use_struct_convention (gdbarch,
5871 mips_eabi_use_struct_convention);
c2d11a7d 5872 break;
0dadbba0 5873 case MIPS_ABI_EABI64:
b81774d8 5874 set_gdbarch_deprecated_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5875 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5876 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5877 tdep->mips_default_saved_regsize = 8;
0dadbba0 5878 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5879 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5880 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5881 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5882 tdep->gdb_target_is_mips64 = 1;
4014092b 5883 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5884 set_gdbarch_long_bit (gdbarch, 64);
5885 set_gdbarch_ptr_bit (gdbarch, 64);
5886 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5887 set_gdbarch_reg_struct_has_addr (gdbarch,
5888 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5889 set_gdbarch_use_struct_convention (gdbarch,
5890 mips_eabi_use_struct_convention);
c2d11a7d 5891 break;
0dadbba0 5892 case MIPS_ABI_N32:
b81774d8 5893 set_gdbarch_deprecated_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5894 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5895 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5896 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5897 tdep->mips_default_stack_argsize = 8;
5898 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5899 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5900 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5901 tdep->gdb_target_is_mips64 = 1;
4014092b 5902 tdep->default_mask_address_p = 0;
0dadbba0
AC
5903 set_gdbarch_long_bit (gdbarch, 32);
5904 set_gdbarch_ptr_bit (gdbarch, 32);
5905 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
5906
5907 /* Set up the disassembler info, so that we get the right
28d169de
KB
5908 register names from libopcodes. */
5909 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5910 tm_print_insn_info.arch = bfd_arch_mips;
5911 if (info.bfd_arch_info != NULL
5912 && info.bfd_arch_info->arch == bfd_arch_mips
5913 && info.bfd_arch_info->mach)
5914 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5915 else
5916 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5917
5918 set_gdbarch_use_struct_convention (gdbarch,
5919 mips_n32n64_use_struct_convention);
8b389c40
MS
5920 set_gdbarch_reg_struct_has_addr (gdbarch,
5921 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5922 break;
5923 case MIPS_ABI_N64:
b81774d8 5924 set_gdbarch_deprecated_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5925 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5926 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5927 tdep->mips_default_saved_regsize = 8;
5928 tdep->mips_default_stack_argsize = 8;
5929 tdep->mips_fp_register_double = 1;
5930 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5931 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5932 tdep->gdb_target_is_mips64 = 1;
5933 tdep->default_mask_address_p = 0;
5934 set_gdbarch_long_bit (gdbarch, 64);
5935 set_gdbarch_ptr_bit (gdbarch, 64);
5936 set_gdbarch_long_long_bit (gdbarch, 64);
5937
5938 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
5939 register names from libopcodes. */
5940 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5941 tm_print_insn_info.arch = bfd_arch_mips;
5942 if (info.bfd_arch_info != NULL
5943 && info.bfd_arch_info->arch == bfd_arch_mips
5944 && info.bfd_arch_info->mach)
5945 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5946 else
5947 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5948
5949 set_gdbarch_use_struct_convention (gdbarch,
5950 mips_n32n64_use_struct_convention);
8b389c40
MS
5951 set_gdbarch_reg_struct_has_addr (gdbarch,
5952 mips_n32n64_reg_struct_has_addr);
0dadbba0 5953 break;
c2d11a7d 5954 default:
2e4ebe70
DJ
5955 internal_error (__FILE__, __LINE__,
5956 "unknown ABI in switch");
c2d11a7d
JM
5957 }
5958
a5ea2558
AC
5959 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5960 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5961 comment:
5962
5963 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5964 flag in object files because to do so would make it impossible to
102182a9 5965 link with libraries compiled without "-gp32". This is
a5ea2558 5966 unnecessarily restrictive.
361d1df0 5967
a5ea2558
AC
5968 We could solve this problem by adding "-gp32" multilibs to gcc,
5969 but to set this flag before gcc is built with such multilibs will
5970 break too many systems.''
5971
5972 But even more unhelpfully, the default linker output target for
5973 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5974 for 64-bit programs - you need to change the ABI to change this,
102182a9 5975 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5976 this flag to detect 32-bit mode would do the wrong thing given
5977 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5978 as 32-bit programs by default. */
a5ea2558 5979
c2d11a7d
JM
5980 /* enable/disable the MIPS FPU */
5981 if (!mips_fpu_type_auto)
5982 tdep->mips_fpu_type = mips_fpu_type;
5983 else if (info.bfd_arch_info != NULL
5984 && info.bfd_arch_info->arch == bfd_arch_mips)
5985 switch (info.bfd_arch_info->mach)
5986 {
b0069a17 5987 case bfd_mach_mips3900:
c2d11a7d 5988 case bfd_mach_mips4100:
ed9a39eb 5989 case bfd_mach_mips4111:
c2d11a7d
JM
5990 tdep->mips_fpu_type = MIPS_FPU_NONE;
5991 break;
bf64bfd6
AC
5992 case bfd_mach_mips4650:
5993 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5994 break;
c2d11a7d
JM
5995 default:
5996 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5997 break;
5998 }
5999 else
6000 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6001
6002 /* MIPS version of register names. NOTE: At present the MIPS
6003 register name management is part way between the old -
6004 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 6005 Further work on it is required. */
18f81521
MS
6006 /* NOTE: many targets (esp. embedded) do not go thru the
6007 gdbarch_register_name vector at all, instead bypassing it
6008 by defining REGISTER_NAMES. */
c2d11a7d 6009 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 6010 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 6011 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
a094c6fb 6012 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 6013 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6c0e89ed 6014 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
c2d11a7d 6015
102182a9
MS
6016 /* Add/remove bits from an address. The MIPS needs be careful to
6017 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
6018 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6019
10312cc4 6020 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
6021 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6022 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
a5afb99f 6023 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 6024
102182a9 6025 /* Map debug register numbers onto internal register numbers. */
88c72b7d 6026 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
6027 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6028 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6029 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
88c72b7d 6030
c2d11a7d 6031 /* Initialize a frame */
f30ee0bc 6032 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
e9582e71 6033 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
6034
6035 /* MIPS version of CALL_DUMMY */
6036
c2d11a7d 6037 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
28f617b3 6038 set_gdbarch_deprecated_push_return_address (gdbarch, mips_push_return_address);
749b82f6 6039 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
f7ab6ec6 6040 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
c2d11a7d
JM
6041 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
6042 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
28f617b3 6043 set_gdbarch_deprecated_push_return_address (gdbarch, mips_push_return_address);
dc604539 6044 set_gdbarch_frame_align (gdbarch, mips_frame_align);
cedea778 6045 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
bf1f5b4c 6046 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
6047 set_gdbarch_register_convert_to_virtual (gdbarch,
6048 mips_register_convert_to_virtual);
6049 set_gdbarch_register_convert_to_raw (gdbarch,
6050 mips_register_convert_to_raw);
6051
618ce49f 6052 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
6053 set_gdbarch_frameless_function_invocation (gdbarch,
6054 generic_frameless_function_invocation_not);
8bedc050 6055 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
6056 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6057 set_gdbarch_frame_args_skip (gdbarch, 0);
6058
129c1cd6 6059 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 6060
f7b9e9fc
AC
6061 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6062 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6063 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6064
6065 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6066 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6067
fc0c74b1
AC
6068 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6069 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6070 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6071
102182a9
MS
6072 set_gdbarch_function_start_offset (gdbarch, 0);
6073
32a6503c
KB
6074 /* There are MIPS targets which do not yet use this since they still
6075 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 6076 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 6077 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 6078
903ad3a6 6079 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 6080 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6081
70f80edf 6082 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6083 gdbarch_init_osabi (info, gdbarch);
70f80edf 6084
4183d812 6085 set_gdbarch_deprecated_store_struct_return (gdbarch, mips_store_struct_return);
2f1488ce
MS
6086 set_gdbarch_extract_struct_value_address (gdbarch,
6087 mips_extract_struct_value_address);
757a7cc6
MS
6088
6089 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6090
6091 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6092 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6093
4b9b3959
AC
6094 return gdbarch;
6095}
6096
2e4ebe70
DJ
6097static void
6098mips_abi_update (char *ignore_args, int from_tty,
6099 struct cmd_list_element *c)
6100{
6101 struct gdbarch_info info;
6102
6103 /* Force the architecture to update, and (if it's a MIPS architecture)
6104 mips_gdbarch_init will take care of the rest. */
6105 gdbarch_info_init (&info);
6106 gdbarch_update_p (info);
6107}
6108
ad188201
KB
6109/* Print out which MIPS ABI is in use. */
6110
6111static void
6112show_mips_abi (char *ignore_args, int from_tty)
6113{
6114 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6115 printf_filtered (
6116 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6117 else
6118 {
6119 enum mips_abi global_abi = global_mips_abi ();
6120 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6121 const char *actual_abi_str = mips_abi_strings[actual_abi];
6122
6123 if (global_abi == MIPS_ABI_UNKNOWN)
6124 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6125 actual_abi_str);
6126 else if (global_abi == actual_abi)
6127 printf_filtered (
6128 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6129 actual_abi_str);
6130 else
6131 {
6132 /* Probably shouldn't happen... */
6133 printf_filtered (
6134 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6135 actual_abi_str,
6136 mips_abi_strings[global_abi]);
6137 }
6138 }
6139}
6140
4b9b3959
AC
6141static void
6142mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6143{
6144 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6145 if (tdep != NULL)
c2d11a7d 6146 {
acdb74a0
AC
6147 int ef_mips_arch;
6148 int ef_mips_32bitmode;
6149 /* determine the ISA */
6150 switch (tdep->elf_flags & EF_MIPS_ARCH)
6151 {
6152 case E_MIPS_ARCH_1:
6153 ef_mips_arch = 1;
6154 break;
6155 case E_MIPS_ARCH_2:
6156 ef_mips_arch = 2;
6157 break;
6158 case E_MIPS_ARCH_3:
6159 ef_mips_arch = 3;
6160 break;
6161 case E_MIPS_ARCH_4:
93d56215 6162 ef_mips_arch = 4;
acdb74a0
AC
6163 break;
6164 default:
93d56215 6165 ef_mips_arch = 0;
acdb74a0
AC
6166 break;
6167 }
6168 /* determine the size of a pointer */
6169 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6170 fprintf_unfiltered (file,
6171 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6172 tdep->elf_flags);
4b9b3959 6173 fprintf_unfiltered (file,
acdb74a0
AC
6174 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6175 ef_mips_32bitmode);
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: ef_mips_arch = %d\n",
6178 ef_mips_arch);
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6181 tdep->mips_abi,
2e4ebe70 6182 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6185 mips_mask_address_p (),
6186 tdep->default_mask_address_p);
c2d11a7d 6187 }
4b9b3959
AC
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6190 FP_REGISTER_DOUBLE);
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6193 MIPS_DEFAULT_FPU_TYPE,
6194 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6195 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6196 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6197 : "???"));
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: MIPS_EABI = %d\n",
6200 MIPS_EABI);
6201 fprintf_unfiltered (file,
acdb74a0
AC
6202 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6203 MIPS_LAST_FP_ARG_REGNUM,
6204 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6207 MIPS_FPU_TYPE,
6208 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6209 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6210 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6211 : "???"));
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6214 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6215 fprintf_unfiltered (file,
6216 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6217 FP_REGISTER_DOUBLE);
4b9b3959
AC
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6220 MIPS_DEFAULT_STACK_ARGSIZE);
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6223 MIPS_STACK_ARGSIZE);
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6226 MIPS_REGSIZE);
2475bac3
AC
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: A0_REGNUM = %d\n",
6229 A0_REGNUM);
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6232 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6235 XSTRING (ATTACH_DETACH));
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6238 BADVADDR_REGNUM);
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6243 CAUSE_REGNUM);
2475bac3
AC
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6246 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6249 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6252 FCRCS_REGNUM);
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6255 FCRIR_REGNUM);
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6258 FIRST_EMBED_REGNUM);
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6261 FPA0_REGNUM);
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6264 GDB_TARGET_IS_MIPS64);
2475bac3
AC
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6267 GEN_REG_SAVE_MASK);
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6270 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: HI_REGNUM = %d\n",
6273 HI_REGNUM);
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6280 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6283 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6286 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6291 LAST_EMBED_REGNUM);
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: LO_REGNUM = %d\n",
6296 LO_REGNUM);
6297#ifdef MACHINE_CPROC_FP_OFFSET
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6300 MACHINE_CPROC_FP_OFFSET);
6301#endif
6302#ifdef MACHINE_CPROC_PC_OFFSET
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6305 MACHINE_CPROC_PC_OFFSET);
6306#endif
6307#ifdef MACHINE_CPROC_SP_OFFSET
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6310 MACHINE_CPROC_SP_OFFSET);
6311#endif
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6318 MIPS16_INSTLEN);
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6327 MIPS_INSTLEN);
6328 fprintf_unfiltered (file,
acdb74a0
AC
6329 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6330 MIPS_LAST_ARG_REGNUM,
6331 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6334 MIPS_NUMREGS);
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6339 MIPS_SAVED_REGSIZE);
2475bac3
AC
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: OP_LDFPR = used?\n");
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: OP_LDGPR = used?\n");
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: PRID_REGNUM = %d\n",
6350 PRID_REGNUM);
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6353 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: PROC_PC_REG = function?\n");
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6374 fprintf_unfiltered (file,
6375 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: PS_REGNUM = %d\n",
6380 PS_REGNUM);
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6383 PUSH_FP_REGNUM);
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: RA_REGNUM = %d\n",
6386 RA_REGNUM);
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6389 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6392 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: ROUND_DOWN = function?\n");
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: ROUND_UP = function?\n");
6399#ifdef SAVED_BYTES
6400 fprintf_unfiltered (file,
6401 "mips_dump_tdep: SAVED_BYTES = %d\n",
6402 SAVED_BYTES);
6403#endif
6404#ifdef SAVED_FP
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: SAVED_FP = %d\n",
6407 SAVED_FP);
6408#endif
6409#ifdef SAVED_PC
6410 fprintf_unfiltered (file,
6411 "mips_dump_tdep: SAVED_PC = %d\n",
6412 SAVED_PC);
6413#endif
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6416 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6421 SIGFRAME_BASE);
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6424 SIGFRAME_FPREGSAVE_OFF);
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6427 SIGFRAME_PC_OFF);
6428 fprintf_unfiltered (file,
6429 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6430 SIGFRAME_REGSAVE_OFF);
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6433 SIGFRAME_REG_SIZE);
6434 fprintf_unfiltered (file,
6435 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6436 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6437 fprintf_unfiltered (file,
6438 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6439 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6440 fprintf_unfiltered (file,
b0ed3589
AC
6441 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6442 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6443 fprintf_unfiltered (file,
6444 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6445 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6446#ifdef STACK_END_ADDR
6447 fprintf_unfiltered (file,
6448 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6449 STACK_END_ADDR);
6450#endif
6451 fprintf_unfiltered (file,
6452 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6453 XSTRING (STEP_SKIPS_DELAY (PC)));
6454 fprintf_unfiltered (file,
6455 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6456 STEP_SKIPS_DELAY_P);
6457 fprintf_unfiltered (file,
6458 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6459 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6460 fprintf_unfiltered (file,
6461 "mips_dump_tdep: T9_REGNUM = %d\n",
6462 T9_REGNUM);
6463 fprintf_unfiltered (file,
6464 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6465 fprintf_unfiltered (file,
6466 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6467 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6468 fprintf_unfiltered (file,
6469 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6470 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6471 fprintf_unfiltered (file,
6472 "mips_dump_tdep: TARGET_MIPS = used?\n");
6473 fprintf_unfiltered (file,
6474 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6475 XSTRING (TM_PRINT_INSN_MACH));
6476#ifdef TRACE_CLEAR
6477 fprintf_unfiltered (file,
6478 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6479 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6480#endif
6481#ifdef TRACE_FLAVOR
6482 fprintf_unfiltered (file,
6483 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6484 TRACE_FLAVOR);
6485#endif
6486#ifdef TRACE_FLAVOR_SIZE
6487 fprintf_unfiltered (file,
6488 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6489 TRACE_FLAVOR_SIZE);
6490#endif
6491#ifdef TRACE_SET
6492 fprintf_unfiltered (file,
6493 "mips_dump_tdep: TRACE_SET # %s\n",
6494 XSTRING (TRACE_SET (X,STATE)));
6495#endif
6496 fprintf_unfiltered (file,
6497 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6498#ifdef UNUSED_REGNUM
6499 fprintf_unfiltered (file,
6500 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6501 UNUSED_REGNUM);
6502#endif
6503 fprintf_unfiltered (file,
6504 "mips_dump_tdep: V0_REGNUM = %d\n",
6505 V0_REGNUM);
6506 fprintf_unfiltered (file,
6507 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6508 (long) VM_MIN_ADDRESS);
6509#ifdef VX_NUM_REGS
6510 fprintf_unfiltered (file,
6511 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6512 VX_NUM_REGS);
6513#endif
6514 fprintf_unfiltered (file,
6515 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6516 ZERO_REGNUM);
6517 fprintf_unfiltered (file,
6518 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6519 _PROC_MAGIC_);
c2d11a7d
JM
6520}
6521
c906108c 6522void
acdb74a0 6523_initialize_mips_tdep (void)
c906108c
SS
6524{
6525 static struct cmd_list_element *mipsfpulist = NULL;
6526 struct cmd_list_element *c;
6527
2e4ebe70
DJ
6528 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6529 if (MIPS_ABI_LAST + 1
6530 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6531 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6532
4b9b3959 6533 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 6534 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
6535 tm_print_insn = gdb_print_insn_mips;
6536
a5ea2558
AC
6537 /* Add root prefix command for all "set mips"/"show mips" commands */
6538 add_prefix_cmd ("mips", no_class, set_mips_command,
6539 "Various MIPS specific commands.",
6540 &setmipscmdlist, "set mips ", 0, &setlist);
6541
6542 add_prefix_cmd ("mips", no_class, show_mips_command,
6543 "Various MIPS specific commands.",
6544 &showmipscmdlist, "show mips ", 0, &showlist);
6545
6546 /* Allow the user to override the saved register size. */
6547 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6548 class_obscure,
6549 size_enums,
6550 &mips_saved_regsize_string, "\
a5ea2558
AC
6551Set size of general purpose registers saved on the stack.\n\
6552This option can be set to one of:\n\
6553 32 - Force GDB to treat saved GP registers as 32-bit\n\
6554 64 - Force GDB to treat saved GP registers as 64-bit\n\
6555 auto - Allow GDB to use the target's default setting or autodetect the\n\
6556 saved GP register size from information contained in the executable.\n\
6557 (default: auto)",
1ed2a135 6558 &setmipscmdlist),
a5ea2558
AC
6559 &showmipscmdlist);
6560
d929b26f
AC
6561 /* Allow the user to override the argument stack size. */
6562 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6563 class_obscure,
6564 size_enums,
1ed2a135 6565 &mips_stack_argsize_string, "\
d929b26f
AC
6566Set the amount of stack space reserved for each argument.\n\
6567This option can be set to one of:\n\
6568 32 - Force GDB to allocate 32-bit chunks per argument\n\
6569 64 - Force GDB to allocate 64-bit chunks per argument\n\
6570 auto - Allow GDB to determine the correct setting from the current\n\
6571 target and executable (default)",
6572 &setmipscmdlist),
6573 &showmipscmdlist);
6574
2e4ebe70
DJ
6575 /* Allow the user to override the ABI. */
6576 c = add_set_enum_cmd
6577 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6578 "Set the ABI used by this program.\n"
6579 "This option can be set to one of:\n"
6580 " auto - the default ABI associated with the current binary\n"
6581 " o32\n"
6582 " o64\n"
6583 " n32\n"
f3a7b3a5 6584 " n64\n"
2e4ebe70
DJ
6585 " eabi32\n"
6586 " eabi64",
6587 &setmipscmdlist);
2e4ebe70 6588 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6589 add_cmd ("abi", class_obscure, show_mips_abi,
6590 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6591
c906108c
SS
6592 /* Let the user turn off floating point and set the fence post for
6593 heuristic_proc_start. */
6594
6595 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6596 "Set use of MIPS floating-point coprocessor.",
6597 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6598 add_cmd ("single", class_support, set_mipsfpu_single_command,
6599 "Select single-precision MIPS floating-point coprocessor.",
6600 &mipsfpulist);
6601 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6602 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6603 &mipsfpulist);
6604 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6605 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6606 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6607 add_cmd ("none", class_support, set_mipsfpu_none_command,
6608 "Select no MIPS floating-point coprocessor.",
6609 &mipsfpulist);
6610 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6611 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6612 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6613 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6614 "Select MIPS floating-point coprocessor automatically.",
6615 &mipsfpulist);
6616 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6617 "Show current use of MIPS floating-point coprocessor target.",
6618 &showlist);
6619
c906108c
SS
6620 /* We really would like to have both "0" and "unlimited" work, but
6621 command.c doesn't deal with that. So make it a var_zinteger
6622 because the user can always use "999999" or some such for unlimited. */
6623 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6624 (char *) &heuristic_fence_post,
6625 "\
6626Set the distance searched for the start of a function.\n\
6627If you are debugging a stripped executable, GDB needs to search through the\n\
6628program for the start of a function. This command sets the distance of the\n\
6629search. The only need to set it is when debugging a stripped executable.",
6630 &setlist);
6631 /* We need to throw away the frame cache when we set this, since it
6632 might change our ability to get backtraces. */
9f60d481 6633 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6634 add_show_from_set (c, &showlist);
6635
6636 /* Allow the user to control whether the upper bits of 64-bit
6637 addresses should be zeroed. */
e9e68a56
AC
6638 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6639Set zeroing of upper 32 bits of 64-bit addresses.\n\
6640Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6641allow GDB to determine the correct value.\n", "\
6642Show zeroing of upper 32 bits of 64-bit addresses.",
6643 NULL, show_mask_address,
6644 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6645
6646 /* Allow the user to control the size of 32 bit registers within the
6647 raw remote packet. */
6648 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6649 class_obscure,
6650 var_boolean,
6651 (char *)&mips64_transfers_32bit_regs_p, "\
6652Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6653Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6654that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
665564 bits for others. Use \"off\" to disable compatibility mode",
6656 &setlist),
6657 &showlist);
9ace0497
AC
6658
6659 /* Debug this files internals. */
6660 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6661 &mips_debug, "Set mips debugging.\n\
6662When non-zero, mips specific debugging is enabled.", &setdebuglist),
6663 &showdebuglist);
c906108c 6664}
This page took 0.734323 seconds and 4 git commands to generate.