* i386-tdep.h (i386_supply_gregset): Provide prototype.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
a4b8ebc8 45#include "reggroups.h"
c906108c 46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
a4b8ebc8 50#include "sim-regno.h"
a89aa300 51#include "dis-asm.h"
c906108c 52
e0f7ec59 53static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
5bbcb741 54static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 55
dd824b04
DJ
56/* A useful bit in the CP0 status register (PS_REGNUM). */
57/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58#define ST0_FR (1 << 26)
59
b0069a17
AC
60/* The sizes of floating point registers. */
61
62enum
63{
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66};
67
0dadbba0 68
2e4ebe70
DJ
69static const char *mips_abi_string;
70
71static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
28d169de 75 "n64",
2e4ebe70
DJ
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80};
81
cce74817 82struct frame_extra_info
c5aa993b
JM
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
cce74817 87
d929b26f
AC
88/* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
53904c9e
AC
92static const char size_auto[] = "auto";
93static const char size_32[] = "32";
94static const char size_64[] = "64";
d929b26f 95
53904c9e 96static const char *size_enums[] = {
d929b26f
AC
97 size_auto,
98 size_32,
99 size_64,
a5ea2558
AC
100 0
101};
102
7a292a7a
SS
103/* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
c906108c
SS
106
107enum mips_fpu_type
c5aa993b
JM
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
c906108c
SS
113
114#ifndef MIPS_DEFAULT_FPU_TYPE
115#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116#endif
117static int mips_fpu_type_auto = 1;
118static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 119
9ace0497 120static int mips_debug = 0;
7a292a7a 121
c2d11a7d
JM
122/* MIPS specific per-architecture information */
123struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
70f80edf 127
c2d11a7d 128 /* mips options */
0dadbba0 129 enum mips_abi mips_abi;
2e4ebe70 130 enum mips_abi found_abi;
c2d11a7d
JM
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
a5ea2558 134 int mips_default_saved_regsize;
c2d11a7d 135 int mips_fp_register_double;
d929b26f 136 int mips_default_stack_argsize;
4014092b 137 int default_mask_address_p;
c2d11a7d
JM
138 };
139
0dadbba0 140#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 141 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 142
c2d11a7d 143#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 144
c2d11a7d 145#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 146
c2d11a7d 147#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 148
d929b26f
AC
149/* Return the currently configured (or set) saved register size. */
150
a5ea2558 151#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 152
53904c9e 153static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
154
155#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
156
95404a3e
AC
157/* MIPS16 function addresses are odd (bit 0 is set). Here are some
158 functions to test, set, or clear bit 0 of addresses. */
159
160static CORE_ADDR
161is_mips16_addr (CORE_ADDR addr)
162{
163 return ((addr) & 1);
164}
165
166static CORE_ADDR
167make_mips16_addr (CORE_ADDR addr)
168{
169 return ((addr) | 1);
170}
171
172static CORE_ADDR
173unmake_mips16_addr (CORE_ADDR addr)
174{
175 return ((addr) & ~1);
176}
177
22540ece
AC
178/* Return the contents of register REGNUM as a signed integer. */
179
180static LONGEST
181read_signed_register (int regnum)
182{
12c266ea 183 void *buf = alloca (DEPRECATED_REGISTER_RAW_SIZE (regnum));
22540ece 184 deprecated_read_register_gen (regnum, buf);
12c266ea 185 return (extract_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum)));
22540ece
AC
186}
187
188static LONGEST
189read_signed_register_pid (int regnum, ptid_t ptid)
190{
191 ptid_t save_ptid;
192 LONGEST retval;
193
194 if (ptid_equal (ptid, inferior_ptid))
195 return read_signed_register (regnum);
196
197 save_ptid = inferior_ptid;
198
199 inferior_ptid = ptid;
200
201 retval = read_signed_register (regnum);
202
203 inferior_ptid = save_ptid;
204
205 return retval;
206}
207
d1973055
KB
208/* Return the MIPS ABI associated with GDBARCH. */
209enum mips_abi
210mips_abi (struct gdbarch *gdbarch)
211{
212 return gdbarch_tdep (gdbarch)->mips_abi;
213}
214
4246e332
AC
215int
216mips_regsize (struct gdbarch *gdbarch)
217{
218 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
219 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
220}
221
d929b26f 222static unsigned int
acdb74a0 223mips_saved_regsize (void)
d929b26f
AC
224{
225 if (mips_saved_regsize_string == size_auto)
226 return MIPS_DEFAULT_SAVED_REGSIZE;
227 else if (mips_saved_regsize_string == size_64)
228 return 8;
229 else /* if (mips_saved_regsize_string == size_32) */
230 return 4;
231}
232
71b8ef93 233/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 234 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 235 "info" field is used for this purpose.
5a89d8aa
MS
236
237 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
238 i.e. refers to a 16-bit function, and sets a "special" bit in a
239 minimal symbol to mark it as a 16-bit function
240
f594e5e9 241 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 242
5a89d8aa
MS
243static void
244mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
245{
246 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
247 {
248 MSYMBOL_INFO (msym) = (char *)
249 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
250 SYMBOL_VALUE_ADDRESS (msym) |= 1;
251 }
252}
253
71b8ef93
MS
254static int
255msymbol_is_special (struct minimal_symbol *msym)
256{
257 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
258}
259
88658117
AC
260/* XFER a value from the big/little/left end of the register.
261 Depending on the size of the value it might occupy the entire
262 register or just part of it. Make an allowance for this, aligning
263 things accordingly. */
264
265static void
266mips_xfer_register (struct regcache *regcache, int reg_num, int length,
267 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
268 int buf_offset)
269{
d9d9c31f 270 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 271 int reg_offset = 0;
a4b8ebc8 272 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
273 /* Need to transfer the left or right part of the register, based on
274 the targets byte order. */
88658117
AC
275 switch (endian)
276 {
277 case BFD_ENDIAN_BIG:
12c266ea 278 reg_offset = DEPRECATED_REGISTER_RAW_SIZE (reg_num) - length;
88658117
AC
279 break;
280 case BFD_ENDIAN_LITTLE:
281 reg_offset = 0;
282 break;
283 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
284 reg_offset = 0;
285 break;
286 default:
287 internal_error (__FILE__, __LINE__, "bad switch");
288 }
289 if (mips_debug)
cb1d2653
AC
290 fprintf_unfiltered (gdb_stderr,
291 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
292 reg_num, reg_offset, buf_offset, length);
88658117
AC
293 if (mips_debug && out != NULL)
294 {
295 int i;
cb1d2653 296 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 297 for (i = 0; i < length; i++)
cb1d2653 298 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
299 }
300 if (in != NULL)
a4b8ebc8 301 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
88658117 302 if (out != NULL)
a4b8ebc8 303 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
88658117
AC
304 if (mips_debug && in != NULL)
305 {
306 int i;
cb1d2653 307 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 308 for (i = 0; i < length; i++)
cb1d2653 309 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
310 }
311 if (mips_debug)
312 fprintf_unfiltered (gdb_stdlog, "\n");
313}
314
dd824b04
DJ
315/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
316 compatiblity mode. A return value of 1 means that we have
317 physical 64-bit registers, but should treat them as 32-bit registers. */
318
319static int
320mips2_fp_compat (void)
321{
322 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
323 meaningful. */
12c266ea 324 if (DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
dd824b04
DJ
325 return 0;
326
327#if 0
328 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
329 in all the places we deal with FP registers. PR gdb/413. */
330 /* Otherwise check the FR bit in the status register - it controls
331 the FP compatiblity mode. If it is clear we are in compatibility
332 mode. */
333 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
334 return 1;
335#endif
361d1df0 336
dd824b04
DJ
337 return 0;
338}
339
c2d11a7d
JM
340/* Indicate that the ABI makes use of double-precision registers
341 provided by the FPU (rather than combining pairs of registers to
8fa9cfa1 342 form double-precision values). See also MIPS_FPU_TYPE. */
c2d11a7d 343#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 344
d929b26f
AC
345/* The amount of space reserved on the stack for registers. This is
346 different to MIPS_SAVED_REGSIZE as it determines the alignment of
347 data allocated after the registers have run out. */
348
0dadbba0 349#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
350
351#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
352
53904c9e 353static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
354
355static unsigned int
356mips_stack_argsize (void)
357{
358 if (mips_stack_argsize_string == size_auto)
359 return MIPS_DEFAULT_STACK_ARGSIZE;
360 else if (mips_stack_argsize_string == size_64)
361 return 8;
362 else /* if (mips_stack_argsize_string == size_32) */
363 return 4;
364}
365
92e1c15c 366#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 367
7a292a7a 368#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 369
570b8f7c
AC
370static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
371 struct frame_info *, int);
c906108c 372
a14ed312 373static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 374
a14ed312 375static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 376
5a89d8aa 377static int mips_set_processor_type (char *);
c906108c 378
a14ed312 379static void mips_show_processor_type_command (char *, int);
c906108c 380
a14ed312 381static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 382
570b8f7c
AC
383static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
384 struct frame_info *next_frame,
385 int cur_frame);
c906108c 386
a14ed312
KB
387static CORE_ADDR after_prologue (CORE_ADDR pc,
388 mips_extra_func_info_t proc_desc);
c906108c 389
67b2c998
DJ
390static struct type *mips_float_register_type (void);
391static struct type *mips_double_register_type (void);
392
c906108c
SS
393/* This value is the model of MIPS in use. It is derived from the value
394 of the PrID register. */
395
396char *mips_processor_type;
397
398char *tmp_mips_processor_type;
399
acdb74a0
AC
400/* The list of available "set mips " and "show mips " commands */
401
402static struct cmd_list_element *setmipscmdlist = NULL;
403static struct cmd_list_element *showmipscmdlist = NULL;
404
c906108c
SS
405/* A set of original names, to be used when restoring back to generic
406 registers from a specific set. */
5e2e9765 407static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
c906108c 408
5e2e9765
KB
409/* Integer registers 0 thru 31 are handled explicitly by
410 mips_register_name(). Processor specific registers 32 and above
411 are listed in the sets of register names assigned to
412 mips_processor_reg_names. */
413static char **mips_processor_reg_names = mips_generic_reg_names;
cce74817 414
5e2e9765 415/* Return the name of the register corresponding to REGNO. */
5a89d8aa 416static const char *
5e2e9765 417mips_register_name (int regno)
cce74817 418{
5e2e9765
KB
419 /* GPR names for all ABIs other than n32/n64. */
420 static char *mips_gpr_names[] = {
421 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
422 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
423 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
424 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
425 };
426
427 /* GPR names for n32 and n64 ABIs. */
428 static char *mips_n32_n64_gpr_names[] = {
429 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
430 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
431 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
432 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
433 };
434
435 enum mips_abi abi = mips_abi (current_gdbarch);
436
a4b8ebc8
AC
437 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
438 don't make the raw register names visible. */
439 int rawnum = regno % NUM_REGS;
440 if (regno < NUM_REGS)
441 return "";
442
5e2e9765
KB
443 /* The MIPS integer registers are always mapped from 0 to 31. The
444 names of the registers (which reflects the conventions regarding
445 register use) vary depending on the ABI. */
a4b8ebc8 446 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
447 {
448 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 449 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 450 else
a4b8ebc8 451 return mips_gpr_names[rawnum];
5e2e9765 452 }
a4b8ebc8
AC
453 else if (32 <= rawnum && rawnum < NUM_REGS)
454 return mips_processor_reg_names[rawnum - 32];
5e2e9765
KB
455 else
456 internal_error (__FILE__, __LINE__,
a4b8ebc8 457 "mips_register_name: bad register number %d", rawnum);
cce74817 458}
5e2e9765 459
9846de1b 460/* *INDENT-OFF* */
c906108c
SS
461/* Names of IDT R3041 registers. */
462
463char *mips_r3041_reg_names[] = {
c906108c
SS
464 "sr", "lo", "hi", "bad", "cause","pc",
465 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
466 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
467 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
468 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 469 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
470 "", "", "bus", "ccfg", "", "", "", "",
471 "", "", "port", "cmp", "", "", "epc", "prid",
472};
473
474/* Names of IDT R3051 registers. */
475
476char *mips_r3051_reg_names[] = {
c906108c
SS
477 "sr", "lo", "hi", "bad", "cause","pc",
478 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
479 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
480 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
481 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 482 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
483 "inx", "rand", "elo", "", "ctxt", "", "", "",
484 "", "", "ehi", "", "", "", "epc", "prid",
485};
486
487/* Names of IDT R3081 registers. */
488
489char *mips_r3081_reg_names[] = {
c906108c
SS
490 "sr", "lo", "hi", "bad", "cause","pc",
491 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
492 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
493 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
494 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 495 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
496 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
497 "", "", "ehi", "", "", "", "epc", "prid",
498};
499
500/* Names of LSI 33k registers. */
501
502char *mips_lsi33k_reg_names[] = {
c906108c
SS
503 "epc", "hi", "lo", "sr", "cause","badvaddr",
504 "dcic", "bpc", "bda", "", "", "", "", "",
505 "", "", "", "", "", "", "", "",
506 "", "", "", "", "", "", "", "",
507 "", "", "", "", "", "", "", "",
508 "", "", "", "",
509 "", "", "", "", "", "", "", "",
510 "", "", "", "", "", "", "", "",
511};
512
513struct {
514 char *name;
515 char **regnames;
516} mips_processor_type_table[] = {
517 { "generic", mips_generic_reg_names },
518 { "r3041", mips_r3041_reg_names },
519 { "r3051", mips_r3051_reg_names },
520 { "r3071", mips_r3081_reg_names },
521 { "r3081", mips_r3081_reg_names },
522 { "lsi33k", mips_lsi33k_reg_names },
523 { NULL, NULL }
524};
9846de1b 525/* *INDENT-ON* */
c906108c 526
a4b8ebc8 527/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 528
a4b8ebc8
AC
529static int
530mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
531 struct reggroup *reggroup)
532{
533 int vector_p;
534 int float_p;
535 int raw_p;
536 int rawnum = regnum % NUM_REGS;
537 int pseudo = regnum / NUM_REGS;
538 if (reggroup == all_reggroup)
539 return pseudo;
540 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
541 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
542 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
543 (gdbarch), as not all architectures are multi-arch. */
544 raw_p = rawnum < NUM_REGS;
545 if (REGISTER_NAME (regnum) == NULL
546 || REGISTER_NAME (regnum)[0] == '\0')
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
562 return 0;
563}
564
565/* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. */
c5aa993b 568
a4b8ebc8
AC
569static void
570mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, void *buf)
572{
573 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
574 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
575}
576
577static void
578mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
579 int cookednum, const void *buf)
580{
581 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
582 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
583}
c5aa993b 584
c906108c 585/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
586static int mips16_to_32_reg[8] =
587{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
588
589/* Heuristic_proc_start may hunt through the text section for a long
590 time across a 2400 baud serial line. Allows the user to limit this
591 search. */
592
593static unsigned int heuristic_fence_post = 0;
594
c5aa993b
JM
595#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
596#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
597#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
598#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
599#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
600#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
601#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
602#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
603#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
604#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
605/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
606 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
607#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
608#define _PROC_MAGIC_ 0x0F0F0F0F
609#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
610#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
611
612struct linked_proc_info
c5aa993b
JM
613 {
614 struct mips_extra_func_info info;
615 struct linked_proc_info *next;
616 }
617 *linked_proc_desc_table = NULL;
c906108c 618
46cd78fb
AC
619/* Number of bytes of storage in the actual machine representation for
620 register N. NOTE: This indirectly defines the register size
a4b8ebc8 621 transfered by the GDB protocol. */
43e526b9
JM
622
623static int mips64_transfers_32bit_regs_p = 0;
624
f7ab6ec6 625static int
a4b8ebc8 626mips_register_raw_size (int regnum)
43e526b9 627{
a4b8ebc8
AC
628 gdb_assert (regnum >= 0);
629 if (regnum < NUM_REGS)
630 {
631 /* For compatibility with old code, implemnt the broken register raw
632 size map for the raw registers.
633
634 NOTE: cagney/2003-06-15: This is so bogus. The register's
635 raw size is changing according to the ABI
636 (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a
c73e8f27
AC
637 combination of DEPRECATED_REGISTER_RAW_SIZE and
638 DEPRECATED_REGISTER_BYTE. */
a4b8ebc8 639 if (mips64_transfers_32bit_regs_p)
c73e8f27 640 return register_size (current_gdbarch, regnum);
a4b8ebc8
AC
641 else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32
642 && FP_REGISTER_DOUBLE)
643 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
644 registers. */
645 return 8;
646 else
4246e332 647 return mips_regsize (current_gdbarch);
a4b8ebc8
AC
648 }
649 else if (regnum < 2 * NUM_REGS)
650 {
651 /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw
5ef80fb0
AC
652 registers, but return the register's virtual size. */
653 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
a4b8ebc8 654 }
43e526b9 655 else
a4b8ebc8
AC
656 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
657}
658
46cd78fb
AC
659/* Convert between RAW and VIRTUAL registers. The RAW register size
660 defines the remote-gdb packet. */
661
d05285fa 662static int
acdb74a0 663mips_register_convertible (int reg_nr)
43e526b9
JM
664{
665 if (mips64_transfers_32bit_regs_p)
666 return 0;
667 else
c73e8f27 668 return (DEPRECATED_REGISTER_RAW_SIZE (reg_nr) > register_size (current_gdbarch, reg_nr));
43e526b9
JM
669}
670
d05285fa 671static void
acdb74a0
AC
672mips_register_convert_to_virtual (int n, struct type *virtual_type,
673 char *raw_buf, char *virt_buf)
43e526b9 674{
d7449b42 675 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9 676 memcpy (virt_buf,
12c266ea 677 raw_buf + (DEPRECATED_REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
43e526b9
JM
678 TYPE_LENGTH (virtual_type));
679 else
680 memcpy (virt_buf,
681 raw_buf,
682 TYPE_LENGTH (virtual_type));
683}
684
d05285fa 685static void
acdb74a0 686mips_register_convert_to_raw (struct type *virtual_type, int n,
781a750d 687 const char *virt_buf, char *raw_buf)
43e526b9 688{
12c266ea 689 memset (raw_buf, 0, DEPRECATED_REGISTER_RAW_SIZE (n));
d7449b42 690 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
12c266ea 691 memcpy (raw_buf + (DEPRECATED_REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
43e526b9
JM
692 virt_buf,
693 TYPE_LENGTH (virtual_type));
694 else
695 memcpy (raw_buf,
696 virt_buf,
697 TYPE_LENGTH (virtual_type));
698}
699
ff2e87ac
AC
700static int
701mips_convert_register_p (int regnum, struct type *type)
702{
703 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea 704 && DEPRECATED_REGISTER_RAW_SIZE (regnum) == 4
ff2e87ac
AC
705 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
706 && TYPE_CODE(type) == TYPE_CODE_FLT
707 && TYPE_LENGTH(type) == 8);
708}
709
42c466d7 710static void
ff2e87ac
AC
711mips_register_to_value (struct frame_info *frame, int regnum,
712 struct type *type, void *to)
102182a9 713{
7f5f525d
AC
714 get_frame_register (frame, regnum + 0, (char *) to + 4);
715 get_frame_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
716}
717
42c466d7 718static void
ff2e87ac
AC
719mips_value_to_register (struct frame_info *frame, int regnum,
720 struct type *type, const void *from)
102182a9 721{
ff2e87ac
AC
722 put_frame_register (frame, regnum + 0, (const char *) from + 4);
723 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
724}
725
a4b8ebc8
AC
726/* Return the GDB type object for the "standard" data type of data in
727 register REG. */
78fde5f8
KB
728
729static struct type *
a4b8ebc8
AC
730mips_register_type (struct gdbarch *gdbarch, int regnum)
731{
5ef80fb0
AC
732 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
733 if ((regnum % NUM_REGS) >= FP0_REGNUM
734 && (regnum % NUM_REGS) < FP0_REGNUM + 32)
a6425924 735 {
5ef80fb0
AC
736 /* The floating-point registers raw, or cooked, always match
737 mips_regsize(), and also map 1:1, byte for byte. */
738 switch (gdbarch_byte_order (gdbarch))
739 {
740 case BFD_ENDIAN_BIG:
741 if (mips_regsize (gdbarch) == 4)
742 return builtin_type_ieee_single_big;
743 else
744 return builtin_type_ieee_double_big;
745 case BFD_ENDIAN_LITTLE:
746 if (mips_regsize (gdbarch) == 4)
747 return builtin_type_ieee_single_little;
748 else
749 return builtin_type_ieee_double_little;
750 case BFD_ENDIAN_UNKNOWN:
751 default:
752 internal_error (__FILE__, __LINE__, "bad switch");
753 }
a6425924 754 }
5ef80fb0
AC
755 else if (regnum >= (NUM_REGS + FCRCS_REGNUM)
756 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
757 /* The pseudo/cooked view of the embedded registers is always
758 32-bit. The raw view is handled below. */
759 return builtin_type_int32;
760 else if (mips_regsize (gdbarch) == 8)
761 /* 64-bit ISA. */
762 return builtin_type_int64;
78fde5f8 763 else
5ef80fb0
AC
764 /* 32-bit ISA. */
765 return builtin_type_int32;
78fde5f8
KB
766}
767
bcb0cc15
MS
768/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
769
770static CORE_ADDR
771mips_read_sp (void)
772{
e227b13c 773 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
774}
775
c906108c 776/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 777enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
778
779static int
780mips_mask_address_p (void)
781{
782 switch (mask_address_var)
783 {
7f19b9a2 784 case AUTO_BOOLEAN_TRUE:
4014092b 785 return 1;
7f19b9a2 786 case AUTO_BOOLEAN_FALSE:
4014092b
AC
787 return 0;
788 break;
7f19b9a2 789 case AUTO_BOOLEAN_AUTO:
92e1c15c 790 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 791 default:
8e65ff28
AC
792 internal_error (__FILE__, __LINE__,
793 "mips_mask_address_p: bad switch");
4014092b 794 return -1;
361d1df0 795 }
4014092b
AC
796}
797
798static void
e9e68a56 799show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
800{
801 switch (mask_address_var)
802 {
7f19b9a2 803 case AUTO_BOOLEAN_TRUE:
4014092b
AC
804 printf_filtered ("The 32 bit mips address mask is enabled\n");
805 break;
7f19b9a2 806 case AUTO_BOOLEAN_FALSE:
4014092b
AC
807 printf_filtered ("The 32 bit mips address mask is disabled\n");
808 break;
7f19b9a2 809 case AUTO_BOOLEAN_AUTO:
4014092b
AC
810 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
811 mips_mask_address_p () ? "enabled" : "disabled");
812 break;
813 default:
8e65ff28
AC
814 internal_error (__FILE__, __LINE__,
815 "show_mask_address: bad switch");
4014092b 816 break;
361d1df0 817 }
4014092b 818}
c906108c
SS
819
820/* Should call_function allocate stack space for a struct return? */
cb811fe7 821
f7ab6ec6 822static int
cb811fe7 823mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 824{
cb811fe7
MS
825 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
826}
827
f7ab6ec6 828static int
cb811fe7
MS
829mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
830{
b78bcb18 831 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
832}
833
8b389c40
MS
834/* Should call_function pass struct by reference?
835 For each architecture, structs are passed either by
836 value or by reference, depending on their size. */
837
838static int
839mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
840{
841 enum type_code typecode = TYPE_CODE (check_typedef (type));
842 int len = TYPE_LENGTH (check_typedef (type));
843
844 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
845 return (len > MIPS_SAVED_REGSIZE);
846
847 return 0;
848}
849
850static int
851mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
852{
853 return 0; /* Assumption: N32/N64 never passes struct by ref. */
854}
855
f7ab6ec6 856static int
8b389c40
MS
857mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
858{
859 return 0; /* Assumption: O32/O64 never passes struct by ref. */
860}
861
c906108c
SS
862/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
863
864static int
865pc_is_mips16 (bfd_vma memaddr)
866{
867 struct minimal_symbol *sym;
868
869 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 870 if (is_mips16_addr (memaddr))
c906108c
SS
871 return 1;
872
873 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
874 the high bit of the info field. Use this to decide if the function is
875 MIPS16 or normal MIPS. */
876 sym = lookup_minimal_symbol_by_pc (memaddr);
877 if (sym)
71b8ef93 878 return msymbol_is_special (sym);
c906108c
SS
879 else
880 return 0;
881}
882
6c997a34
AC
883/* MIPS believes that the PC has a sign extended value. Perhaphs the
884 all registers should be sign extended for simplicity? */
885
886static CORE_ADDR
39f77062 887mips_read_pc (ptid_t ptid)
6c997a34 888{
39f77062 889 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 890}
c906108c
SS
891
892/* This returns the PC of the first inst after the prologue. If we can't
893 find the prologue, then return 0. */
894
895static CORE_ADDR
acdb74a0
AC
896after_prologue (CORE_ADDR pc,
897 mips_extra_func_info_t proc_desc)
c906108c
SS
898{
899 struct symtab_and_line sal;
900 CORE_ADDR func_addr, func_end;
901
479412cd
DJ
902 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
903 to read the stack pointer from the current machine state, because
904 the current machine state has nothing to do with the information
905 we need from the proc_desc; and the process may or may not exist
906 right now. */
c906108c 907 if (!proc_desc)
479412cd 908 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
909
910 if (proc_desc)
911 {
912 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 913 strongly suspect that frameless always means prologueless... */
c906108c
SS
914 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
915 && PROC_FRAME_OFFSET (proc_desc) == 0)
916 return 0;
917 }
918
919 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
920 return 0; /* Unknown */
921
922 sal = find_pc_line (func_addr, 0);
923
924 if (sal.end < func_end)
925 return sal.end;
926
927 /* The line after the prologue is after the end of the function. In this
928 case, tell the caller to find the prologue the hard way. */
929
930 return 0;
931}
932
933/* Decode a MIPS32 instruction that saves a register in the stack, and
934 set the appropriate bit in the general register mask or float register mask
935 to indicate which register is saved. This is a helper function
936 for mips_find_saved_regs. */
937
938static void
acdb74a0
AC
939mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
940 unsigned long *float_mask)
c906108c
SS
941{
942 int reg;
943
944 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
945 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
946 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
947 {
948 /* It might be possible to use the instruction to
c5aa993b
JM
949 find the offset, rather than the code below which
950 is based on things being in a certain order in the
951 frame, but figuring out what the instruction's offset
952 is relative to might be a little tricky. */
c906108c
SS
953 reg = (inst & 0x001f0000) >> 16;
954 *gen_mask |= (1 << reg);
955 }
956 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
957 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
958 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
959
960 {
961 reg = ((inst & 0x001f0000) >> 16);
962 *float_mask |= (1 << reg);
963 }
964}
965
966/* Decode a MIPS16 instruction that saves a register in the stack, and
967 set the appropriate bit in the general register or float register mask
968 to indicate which register is saved. This is a helper function
969 for mips_find_saved_regs. */
970
971static void
acdb74a0 972mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 973{
c5aa993b 974 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
975 {
976 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
977 *gen_mask |= (1 << reg);
978 }
c5aa993b 979 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
980 {
981 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
982 *gen_mask |= (1 << reg);
983 }
c5aa993b 984 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
985 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
986 *gen_mask |= (1 << RA_REGNUM);
987}
988
989
990/* Fetch and return instruction from the specified location. If the PC
991 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
992
993static t_inst
acdb74a0 994mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
995{
996 char buf[MIPS_INSTLEN];
997 int instlen;
998 int status;
999
1000 if (pc_is_mips16 (addr))
1001 {
1002 instlen = MIPS16_INSTLEN;
95404a3e 1003 addr = unmake_mips16_addr (addr);
c906108c
SS
1004 }
1005 else
c5aa993b 1006 instlen = MIPS_INSTLEN;
c906108c
SS
1007 status = read_memory_nobpt (addr, buf, instlen);
1008 if (status)
1009 memory_error (status, addr);
1010 return extract_unsigned_integer (buf, instlen);
1011}
1012
1013
1014/* These the fields of 32 bit mips instructions */
e135b889
DJ
1015#define mips32_op(x) (x >> 26)
1016#define itype_op(x) (x >> 26)
1017#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1018#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1019#define itype_immediate(x) (x & 0xffff)
c906108c 1020
e135b889
DJ
1021#define jtype_op(x) (x >> 26)
1022#define jtype_target(x) (x & 0x03ffffff)
c906108c 1023
e135b889
DJ
1024#define rtype_op(x) (x >> 26)
1025#define rtype_rs(x) ((x >> 21) & 0x1f)
1026#define rtype_rt(x) ((x >> 16) & 0x1f)
1027#define rtype_rd(x) ((x >> 11) & 0x1f)
1028#define rtype_shamt(x) ((x >> 6) & 0x1f)
1029#define rtype_funct(x) (x & 0x3f)
c906108c
SS
1030
1031static CORE_ADDR
c5aa993b
JM
1032mips32_relative_offset (unsigned long inst)
1033{
1034 long x;
1035 x = itype_immediate (inst);
1036 if (x & 0x8000) /* sign bit set */
c906108c 1037 {
c5aa993b 1038 x |= 0xffff0000; /* sign extension */
c906108c 1039 }
c5aa993b
JM
1040 x = x << 2;
1041 return x;
c906108c
SS
1042}
1043
1044/* Determine whate to set a single step breakpoint while considering
1045 branch prediction */
5a89d8aa 1046static CORE_ADDR
c5aa993b
JM
1047mips32_next_pc (CORE_ADDR pc)
1048{
1049 unsigned long inst;
1050 int op;
1051 inst = mips_fetch_instruction (pc);
e135b889 1052 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1053 {
e135b889
DJ
1054 if (itype_op (inst) >> 2 == 5)
1055 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1056 {
e135b889 1057 op = (itype_op (inst) & 0x03);
c906108c
SS
1058 switch (op)
1059 {
e135b889
DJ
1060 case 0: /* BEQL */
1061 goto equal_branch;
1062 case 1: /* BNEL */
1063 goto neq_branch;
1064 case 2: /* BLEZL */
1065 goto less_branch;
1066 case 3: /* BGTZ */
1067 goto greater_branch;
c5aa993b
JM
1068 default:
1069 pc += 4;
c906108c
SS
1070 }
1071 }
e135b889
DJ
1072 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1073 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1074 {
1075 int tf = itype_rt (inst) & 0x01;
1076 int cnum = itype_rt (inst) >> 2;
1077 int fcrcs = read_signed_register (FCRCS_REGNUM);
1078 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1079
1080 if (((cond >> cnum) & 0x01) == tf)
1081 pc += mips32_relative_offset (inst) + 4;
1082 else
1083 pc += 8;
1084 }
c5aa993b
JM
1085 else
1086 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1087 }
1088 else
c5aa993b
JM
1089 { /* This gets way messy */
1090
c906108c 1091 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1092 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1093 {
c5aa993b
JM
1094 case 0: /* SPECIAL */
1095 op = rtype_funct (inst);
1096 switch (op)
1097 {
1098 case 8: /* JR */
1099 case 9: /* JALR */
6c997a34
AC
1100 /* Set PC to that address */
1101 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1102 break;
1103 default:
1104 pc += 4;
1105 }
1106
e135b889 1107 break; /* end SPECIAL */
c5aa993b 1108 case 1: /* REGIMM */
c906108c 1109 {
e135b889
DJ
1110 op = itype_rt (inst); /* branch condition */
1111 switch (op)
c906108c 1112 {
c5aa993b 1113 case 0: /* BLTZ */
e135b889
DJ
1114 case 2: /* BLTZL */
1115 case 16: /* BLTZAL */
c5aa993b 1116 case 18: /* BLTZALL */
c906108c 1117 less_branch:
6c997a34 1118 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1119 pc += mips32_relative_offset (inst) + 4;
1120 else
1121 pc += 8; /* after the delay slot */
1122 break;
e135b889 1123 case 1: /* BGEZ */
c5aa993b
JM
1124 case 3: /* BGEZL */
1125 case 17: /* BGEZAL */
1126 case 19: /* BGEZALL */
c906108c 1127 greater_equal_branch:
6c997a34 1128 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1129 pc += mips32_relative_offset (inst) + 4;
1130 else
1131 pc += 8; /* after the delay slot */
1132 break;
e135b889 1133 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1134 default:
1135 pc += 4;
c906108c
SS
1136 }
1137 }
e135b889 1138 break; /* end REGIMM */
c5aa993b
JM
1139 case 2: /* J */
1140 case 3: /* JAL */
1141 {
1142 unsigned long reg;
1143 reg = jtype_target (inst) << 2;
e135b889 1144 /* Upper four bits get never changed... */
c5aa993b 1145 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1146 }
c5aa993b
JM
1147 break;
1148 /* FIXME case JALX : */
1149 {
1150 unsigned long reg;
1151 reg = jtype_target (inst) << 2;
1152 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1153 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1154 }
c5aa993b 1155 break; /* The new PC will be alternate mode */
e135b889 1156 case 4: /* BEQ, BEQL */
c5aa993b 1157 equal_branch:
6c997a34
AC
1158 if (read_signed_register (itype_rs (inst)) ==
1159 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1160 pc += mips32_relative_offset (inst) + 4;
1161 else
1162 pc += 8;
1163 break;
e135b889 1164 case 5: /* BNE, BNEL */
c5aa993b 1165 neq_branch:
6c997a34 1166 if (read_signed_register (itype_rs (inst)) !=
e135b889 1167 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1168 pc += mips32_relative_offset (inst) + 4;
1169 else
1170 pc += 8;
1171 break;
e135b889 1172 case 6: /* BLEZ, BLEZL */
c906108c 1173 less_zero_branch:
6c997a34 1174 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1175 pc += mips32_relative_offset (inst) + 4;
1176 else
1177 pc += 8;
1178 break;
1179 case 7:
e135b889
DJ
1180 default:
1181 greater_branch: /* BGTZ, BGTZL */
6c997a34 1182 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1183 pc += mips32_relative_offset (inst) + 4;
1184 else
1185 pc += 8;
1186 break;
c5aa993b
JM
1187 } /* switch */
1188 } /* else */
1189 return pc;
1190} /* mips32_next_pc */
c906108c
SS
1191
1192/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1193 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1194 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1195 We dont want to set a single step instruction on the extend instruction
1196 either.
c5aa993b 1197 */
c906108c
SS
1198
1199/* Lots of mips16 instruction formats */
1200/* Predicting jumps requires itype,ritype,i8type
1201 and their extensions extItype,extritype,extI8type
c5aa993b 1202 */
c906108c
SS
1203enum mips16_inst_fmts
1204{
c5aa993b
JM
1205 itype, /* 0 immediate 5,10 */
1206 ritype, /* 1 5,3,8 */
1207 rrtype, /* 2 5,3,3,5 */
1208 rritype, /* 3 5,3,3,5 */
1209 rrrtype, /* 4 5,3,3,3,2 */
1210 rriatype, /* 5 5,3,3,1,4 */
1211 shifttype, /* 6 5,3,3,3,2 */
1212 i8type, /* 7 5,3,8 */
1213 i8movtype, /* 8 5,3,3,5 */
1214 i8mov32rtype, /* 9 5,3,5,3 */
1215 i64type, /* 10 5,3,8 */
1216 ri64type, /* 11 5,3,3,5 */
1217 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1218 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1219 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1220 extRRItype, /* 15 5,5,5,5,3,3,5 */
1221 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1222 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1223 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1224 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1225 extRi64type, /* 20 5,6,5,5,3,3,5 */
1226 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1227};
12f02c2a
AC
1228/* I am heaping all the fields of the formats into one structure and
1229 then, only the fields which are involved in instruction extension */
c906108c 1230struct upk_mips16
c5aa993b 1231 {
12f02c2a 1232 CORE_ADDR offset;
c5aa993b
JM
1233 unsigned int regx; /* Function in i8 type */
1234 unsigned int regy;
1235 };
c906108c
SS
1236
1237
12f02c2a
AC
1238/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1239 for the bits which make up the immediatate extension. */
c906108c 1240
12f02c2a
AC
1241static CORE_ADDR
1242extended_offset (unsigned int extension)
c906108c 1243{
12f02c2a 1244 CORE_ADDR value;
c5aa993b
JM
1245 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1246 value = value << 6;
1247 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1248 value = value << 5;
1249 value |= extension & 0x01f; /* extract 4:0 */
1250 return value;
c906108c
SS
1251}
1252
1253/* Only call this function if you know that this is an extendable
1254 instruction, It wont malfunction, but why make excess remote memory references?
1255 If the immediate operands get sign extended or somthing, do it after
1256 the extension is performed.
c5aa993b 1257 */
c906108c
SS
1258/* FIXME: Every one of these cases needs to worry about sign extension
1259 when the offset is to be used in relative addressing */
1260
1261
12f02c2a 1262static unsigned int
c5aa993b 1263fetch_mips_16 (CORE_ADDR pc)
c906108c 1264{
c5aa993b
JM
1265 char buf[8];
1266 pc &= 0xfffffffe; /* clear the low order bit */
1267 target_read_memory (pc, buf, 2);
1268 return extract_unsigned_integer (buf, 2);
c906108c
SS
1269}
1270
1271static void
c5aa993b 1272unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1273 unsigned int extension,
1274 unsigned int inst,
1275 enum mips16_inst_fmts insn_format,
c5aa993b 1276 struct upk_mips16 *upk)
c906108c 1277{
12f02c2a
AC
1278 CORE_ADDR offset;
1279 int regx;
1280 int regy;
1281 switch (insn_format)
c906108c 1282 {
c5aa993b 1283 case itype:
c906108c 1284 {
12f02c2a
AC
1285 CORE_ADDR value;
1286 if (extension)
c5aa993b
JM
1287 {
1288 value = extended_offset (extension);
1289 value = value << 11; /* rom for the original value */
12f02c2a 1290 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1291 }
1292 else
c5aa993b 1293 {
12f02c2a 1294 value = inst & 0x7ff;
c5aa993b 1295 /* FIXME : Consider sign extension */
c906108c 1296 }
12f02c2a
AC
1297 offset = value;
1298 regx = -1;
1299 regy = -1;
c906108c 1300 }
c5aa993b
JM
1301 break;
1302 case ritype:
1303 case i8type:
1304 { /* A register identifier and an offset */
c906108c
SS
1305 /* Most of the fields are the same as I type but the
1306 immediate value is of a different length */
12f02c2a
AC
1307 CORE_ADDR value;
1308 if (extension)
c906108c 1309 {
c5aa993b
JM
1310 value = extended_offset (extension);
1311 value = value << 8; /* from the original instruction */
12f02c2a
AC
1312 value |= inst & 0xff; /* eleven bits from instruction */
1313 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1314 if (value & 0x4000) /* test the sign bit , bit 26 */
1315 {
1316 value &= ~0x3fff; /* remove the sign bit */
1317 value = -value;
c906108c
SS
1318 }
1319 }
c5aa993b
JM
1320 else
1321 {
12f02c2a
AC
1322 value = inst & 0xff; /* 8 bits */
1323 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1324 /* FIXME: Do sign extension , this format needs it */
1325 if (value & 0x80) /* THIS CONFUSES ME */
1326 {
1327 value &= 0xef; /* remove the sign bit */
1328 value = -value;
1329 }
c5aa993b 1330 }
12f02c2a
AC
1331 offset = value;
1332 regy = -1;
c5aa993b 1333 break;
c906108c 1334 }
c5aa993b 1335 case jalxtype:
c906108c 1336 {
c5aa993b 1337 unsigned long value;
12f02c2a
AC
1338 unsigned int nexthalf;
1339 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1340 value = value << 16;
1341 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1342 value |= nexthalf;
12f02c2a
AC
1343 offset = value;
1344 regx = -1;
1345 regy = -1;
c5aa993b 1346 break;
c906108c
SS
1347 }
1348 default:
8e65ff28
AC
1349 internal_error (__FILE__, __LINE__,
1350 "bad switch");
c906108c 1351 }
12f02c2a
AC
1352 upk->offset = offset;
1353 upk->regx = regx;
1354 upk->regy = regy;
c906108c
SS
1355}
1356
1357
c5aa993b
JM
1358static CORE_ADDR
1359add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1360{
c5aa993b 1361 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1362}
1363
12f02c2a
AC
1364static CORE_ADDR
1365extended_mips16_next_pc (CORE_ADDR pc,
1366 unsigned int extension,
1367 unsigned int insn)
c906108c 1368{
12f02c2a
AC
1369 int op = (insn >> 11);
1370 switch (op)
c906108c 1371 {
12f02c2a
AC
1372 case 2: /* Branch */
1373 {
1374 CORE_ADDR offset;
1375 struct upk_mips16 upk;
1376 unpack_mips16 (pc, extension, insn, itype, &upk);
1377 offset = upk.offset;
1378 if (offset & 0x800)
1379 {
1380 offset &= 0xeff;
1381 offset = -offset;
1382 }
1383 pc += (offset << 1) + 2;
1384 break;
1385 }
1386 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1387 {
1388 struct upk_mips16 upk;
1389 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1390 pc = add_offset_16 (pc, upk.offset);
1391 if ((insn >> 10) & 0x01) /* Exchange mode */
1392 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1393 else
1394 pc |= 0x01;
1395 break;
1396 }
1397 case 4: /* beqz */
1398 {
1399 struct upk_mips16 upk;
1400 int reg;
1401 unpack_mips16 (pc, extension, insn, ritype, &upk);
1402 reg = read_signed_register (upk.regx);
1403 if (reg == 0)
1404 pc += (upk.offset << 1) + 2;
1405 else
1406 pc += 2;
1407 break;
1408 }
1409 case 5: /* bnez */
1410 {
1411 struct upk_mips16 upk;
1412 int reg;
1413 unpack_mips16 (pc, extension, insn, ritype, &upk);
1414 reg = read_signed_register (upk.regx);
1415 if (reg != 0)
1416 pc += (upk.offset << 1) + 2;
1417 else
1418 pc += 2;
1419 break;
1420 }
1421 case 12: /* I8 Formats btez btnez */
1422 {
1423 struct upk_mips16 upk;
1424 int reg;
1425 unpack_mips16 (pc, extension, insn, i8type, &upk);
1426 /* upk.regx contains the opcode */
1427 reg = read_signed_register (24); /* Test register is 24 */
1428 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1429 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1430 /* pc = add_offset_16(pc,upk.offset) ; */
1431 pc += (upk.offset << 1) + 2;
1432 else
1433 pc += 2;
1434 break;
1435 }
1436 case 29: /* RR Formats JR, JALR, JALR-RA */
1437 {
1438 struct upk_mips16 upk;
1439 /* upk.fmt = rrtype; */
1440 op = insn & 0x1f;
1441 if (op == 0)
c5aa993b 1442 {
12f02c2a
AC
1443 int reg;
1444 upk.regx = (insn >> 8) & 0x07;
1445 upk.regy = (insn >> 5) & 0x07;
1446 switch (upk.regy)
c5aa993b 1447 {
12f02c2a
AC
1448 case 0:
1449 reg = upk.regx;
1450 break;
1451 case 1:
1452 reg = 31;
1453 break; /* Function return instruction */
1454 case 2:
1455 reg = upk.regx;
1456 break;
1457 default:
1458 reg = 31;
1459 break; /* BOGUS Guess */
c906108c 1460 }
12f02c2a 1461 pc = read_signed_register (reg);
c906108c 1462 }
12f02c2a 1463 else
c5aa993b 1464 pc += 2;
12f02c2a
AC
1465 break;
1466 }
1467 case 30:
1468 /* This is an instruction extension. Fetch the real instruction
1469 (which follows the extension) and decode things based on
1470 that. */
1471 {
1472 pc += 2;
1473 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1474 break;
1475 }
1476 default:
1477 {
1478 pc += 2;
1479 break;
1480 }
c906108c 1481 }
c5aa993b 1482 return pc;
12f02c2a 1483}
c906108c 1484
5a89d8aa 1485static CORE_ADDR
12f02c2a
AC
1486mips16_next_pc (CORE_ADDR pc)
1487{
1488 unsigned int insn = fetch_mips_16 (pc);
1489 return extended_mips16_next_pc (pc, 0, insn);
1490}
1491
1492/* The mips_next_pc function supports single_step when the remote
7e73cedf 1493 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1494 It works by decoding the current instruction and predicting where a
1495 branch will go. This isnt hard because all the data is available.
1496 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1497CORE_ADDR
1498mips_next_pc (CORE_ADDR pc)
c906108c 1499{
c5aa993b
JM
1500 if (pc & 0x01)
1501 return mips16_next_pc (pc);
1502 else
1503 return mips32_next_pc (pc);
12f02c2a 1504}
c906108c 1505
e0f7ec59
AC
1506/* Set up the 'saved_regs' array. This is a data structure containing
1507 the addresses on the stack where each register has been saved, for
1508 each stack frame. Registers that have not been saved will have
1509 zero here. The stack pointer register is special: rather than the
1510 address where the stack register has been saved,
1511 saved_regs[SP_REGNUM] will have the actual value of the previous
1512 frame's stack register. */
c906108c 1513
d28e01f4 1514static void
acdb74a0 1515mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1516{
1517 int ireg;
c906108c
SS
1518 /* r0 bit means kernel trap */
1519 int kernel_trap;
1520 /* What registers have been saved? Bitmasks. */
1521 unsigned long gen_mask, float_mask;
1522 mips_extra_func_info_t proc_desc;
1523 t_inst inst;
e0f7ec59 1524 CORE_ADDR *saved_regs;
c906108c 1525
1b1d3794 1526 if (deprecated_get_frame_saved_regs (fci) != NULL)
e0f7ec59
AC
1527 return;
1528 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1529
1530 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1531 in a sigcontext structure somewhere on the stack. If the stack
1532 layout for sigtramp changes we might have to change these
1533 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1534#ifndef SIGFRAME_BASE
e0f7ec59
AC
1535 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1536 above the sigtramp frame. */
4246e332 1537#define SIGFRAME_BASE mips_regsize (current_gdbarch)
c906108c 1538/* FIXME! Are these correct?? */
4246e332
AC
1539#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1540#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
c906108c 1541#define SIGFRAME_FPREGSAVE_OFF \
4246e332 1542 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
c906108c
SS
1543#endif
1544#ifndef SIGFRAME_REG_SIZE
e0f7ec59 1545 /* FIXME! Is this correct?? */
4246e332 1546#define SIGFRAME_REG_SIZE mips_regsize (current_gdbarch)
c906108c 1547#endif
5a203e44 1548 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1549 {
1550 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1551 {
e0f7ec59
AC
1552 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1553 + ireg * SIGFRAME_REG_SIZE);
1554 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1555 }
1556 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1557 {
e0f7ec59
AC
1558 CORE_ADDR reg_position = (get_frame_base (fci)
1559 + SIGFRAME_FPREGSAVE_OFF
1560 + ireg * SIGFRAME_REG_SIZE);
1561 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
c906108c 1562 }
e0f7ec59
AC
1563
1564 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1565 /* SP_REGNUM, contains the value and not the address. */
1566 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1567 return;
1568 }
1569
da50a4b7 1570 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1571 if (proc_desc == NULL)
e0f7ec59
AC
1572 /* I'm not sure how/whether this can happen. Normally when we
1573 can't find a proc_desc, we "synthesize" one using
1574 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1575 return;
1576
c5aa993b
JM
1577 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1578 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1579 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1580
e0f7ec59
AC
1581 if (/* In any frame other than the innermost or a frame interrupted
1582 by a signal, we assume that all registers have been saved.
1583 This assumes that all register saves in a function happen
1584 before the first function call. */
11c02a10
AC
1585 (get_next_frame (fci) == NULL
1586 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1587
e0f7ec59 1588 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1589 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1590
e0f7ec59
AC
1591 /* Don't bother unless we are inside a function prologue.
1592 Outside the prologue, we know where everything is. */
c906108c 1593
50abf9e5 1594 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1595
e0f7ec59
AC
1596 /* Not sure exactly what kernel_trap means, but if it means the
1597 kernel saves the registers without a prologue doing it, we
1598 better not examine the prologue to see whether registers
1599 have been saved yet. */
c5aa993b 1600 && !kernel_trap)
c906108c 1601 {
e0f7ec59
AC
1602 /* We need to figure out whether the registers that the
1603 proc_desc claims are saved have been saved yet. */
c906108c
SS
1604
1605 CORE_ADDR addr;
1606
1607 /* Bitmasks; set if we have found a save for the register. */
1608 unsigned long gen_save_found = 0;
1609 unsigned long float_save_found = 0;
1610 int instlen;
1611
1612 /* If the address is odd, assume this is MIPS16 code. */
1613 addr = PROC_LOW_ADDR (proc_desc);
1614 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1615
e0f7ec59
AC
1616 /* Scan through this function's instructions preceding the
1617 current PC, and look for those that save registers. */
50abf9e5 1618 while (addr < get_frame_pc (fci))
c906108c
SS
1619 {
1620 inst = mips_fetch_instruction (addr);
1621 if (pc_is_mips16 (addr))
1622 mips16_decode_reg_save (inst, &gen_save_found);
1623 else
1624 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1625 addr += instlen;
1626 }
1627 gen_mask = gen_save_found;
1628 float_mask = float_save_found;
1629 }
1630
e0f7ec59
AC
1631 /* Fill in the offsets for the registers which gen_mask says were
1632 saved. */
1633 {
1634 CORE_ADDR reg_position = (get_frame_base (fci)
1635 + PROC_REG_OFFSET (proc_desc));
1636 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1637 if (gen_mask & 0x80000000)
1638 {
1639 set_reg_offset (saved_regs, ireg, reg_position);
1640 reg_position -= MIPS_SAVED_REGSIZE;
1641 }
1642 }
c906108c 1643
e0f7ec59
AC
1644 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1645 order of that normally used by gcc. Therefore, we have to fetch
1646 the first instruction of the function, and if it's an entry
1647 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1648 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1649 {
1650 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1651 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1652 /* entry */
c906108c
SS
1653 {
1654 int reg;
1655 int sreg_count = (inst >> 6) & 3;
c5aa993b 1656
c906108c 1657 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1658 CORE_ADDR reg_position = (get_frame_base (fci)
1659 + PROC_REG_OFFSET (proc_desc));
c906108c 1660 if (inst & 0x20)
7a292a7a 1661 reg_position -= MIPS_SAVED_REGSIZE;
c906108c 1662
e0f7ec59
AC
1663 /* Check if the s0 and s1 registers were pushed on the
1664 stack. */
c5aa993b 1665 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1666 {
e0f7ec59 1667 set_reg_offset (saved_regs, reg, reg_position);
7a292a7a 1668 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1669 }
1670 }
1671 }
1672
e0f7ec59
AC
1673 /* Fill in the offsets for the registers which float_mask says were
1674 saved. */
1675 {
1676 CORE_ADDR reg_position = (get_frame_base (fci)
1677 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1678
e0f7ec59
AC
1679 /* Fill in the offsets for the float registers which float_mask
1680 says were saved. */
1681 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1682 if (float_mask & 0x80000000)
1683 {
c57bb9fa
AC
1684 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1685 {
1686 /* On a big endian 32 bit ABI, floating point registers
1687 are paired to form doubles such that the most
1688 significant part is in $f[N+1] and the least
1689 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1690 registers are also spilled as a pair and stored as a
1691 double.
1692
1693 When little-endian the least significant part is
1694 stored first leading to the memory order $f[N] and
1695 then $f[N+1].
1696
ce2826aa 1697 Unfortunately, when big-endian the most significant
c57bb9fa
AC
1698 part of the double is stored first, and the least
1699 significant is stored second. This leads to the
1700 registers being ordered in memory as firt $f[N+1] and
1701 then $f[N].
1702
1703 For the big-endian case make certain that the
1704 addresses point at the correct (swapped) locations
1705 $f[N] and $f[N+1] pair (keep in mind that
1706 reg_position is decremented each time through the
1707 loop). */
1708 if ((ireg & 1))
1709 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1710 reg_position - MIPS_SAVED_REGSIZE);
1711 else
1712 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1713 reg_position + MIPS_SAVED_REGSIZE);
1714 }
1715 else
1716 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
e0f7ec59
AC
1717 reg_position -= MIPS_SAVED_REGSIZE;
1718 }
c906108c 1719
e0f7ec59
AC
1720 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1721 }
d28e01f4 1722
e0f7ec59
AC
1723 /* SP_REGNUM, contains the value and not the address. */
1724 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1725}
1726
c906108c 1727static CORE_ADDR
acdb74a0 1728read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1729{
a4b8ebc8
AC
1730 /* Always a pseudo. */
1731 gdb_assert (regno >= NUM_REGS);
f796e4be 1732 if (fi == NULL)
c906108c 1733 {
a4b8ebc8
AC
1734 LONGEST val;
1735 regcache_cooked_read_signed (current_regcache, regno, &val);
1736 return val;
f796e4be 1737 }
a4b8ebc8
AC
1738 else if ((regno % NUM_REGS) == SP_REGNUM)
1739 /* The SP_REGNUM is special, its value is stored in saved_regs.
1740 In fact, it is so special that it can even only be fetched
1741 using a raw register number! Once this code as been converted
1742 to frame-unwind the problem goes away. */
1743 return frame_unwind_register_signed (fi, regno % NUM_REGS);
f796e4be 1744 else
a4b8ebc8 1745 return frame_unwind_register_signed (fi, regno);
64159455 1746
c906108c
SS
1747}
1748
1749/* mips_addr_bits_remove - remove useless address bits */
1750
875e1767 1751static CORE_ADDR
acdb74a0 1752mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1753{
8fa9cfa1
AC
1754 if (mips_mask_address_p ()
1755 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1756 /* This hack is a work-around for existing boards using PMON, the
1757 simulator, and any other 64-bit targets that doesn't have true
1758 64-bit addressing. On these targets, the upper 32 bits of
1759 addresses are ignored by the hardware. Thus, the PC or SP are
1760 likely to have been sign extended to all 1s by instruction
1761 sequences that load 32-bit addresses. For example, a typical
1762 piece of code that loads an address is this:
1763
1764 lui $r2, <upper 16 bits>
1765 ori $r2, <lower 16 bits>
1766
1767 But the lui sign-extends the value such that the upper 32 bits
1768 may be all 1s. The workaround is simply to mask off these
1769 bits. In the future, gcc may be changed to support true 64-bit
1770 addressing, and this masking will have to be disabled. */
1771 return addr &= 0xffffffffUL;
1772 else
1773 return addr;
c906108c
SS
1774}
1775
9022177c
DJ
1776/* mips_software_single_step() is called just before we want to resume
1777 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1778 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1779 the target of the coming instruction and breakpoint it.
1780
1781 single_step is also called just after the inferior stops. If we had
1782 set up a simulated single-step, we undo our damage. */
1783
1784void
1785mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1786{
1787 static CORE_ADDR next_pc;
1788 typedef char binsn_quantum[BREAKPOINT_MAX];
1789 static binsn_quantum break_mem;
1790 CORE_ADDR pc;
1791
1792 if (insert_breakpoints_p)
1793 {
1794 pc = read_register (PC_REGNUM);
1795 next_pc = mips_next_pc (pc);
1796
1797 target_insert_breakpoint (next_pc, break_mem);
1798 }
1799 else
1800 target_remove_breakpoint (next_pc, break_mem);
1801}
1802
97f46953 1803static CORE_ADDR
acdb74a0 1804mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1805{
1806 CORE_ADDR pc, tmp;
1807
11c02a10 1808 pc = ((fromleaf)
6913c89a 1809 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1810 : get_next_frame (prev)
8bedc050 1811 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1812 : read_pc ());
5a89d8aa 1813 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1814 return tmp ? tmp : pc;
c906108c
SS
1815}
1816
1817
f7ab6ec6 1818static CORE_ADDR
acdb74a0 1819mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1820{
1821 CORE_ADDR saved_pc;
c906108c 1822
50abf9e5 1823 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1824 {
1825 LONGEST tmp;
a4b8ebc8
AC
1826 /* Always unwind the cooked PC register value. */
1827 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
cedea778
AC
1828 saved_pc = tmp;
1829 }
c906108c 1830 else
a4b8ebc8
AC
1831 {
1832 mips_extra_func_info_t proc_desc
1833 = get_frame_extra_info (frame)->proc_desc;
1834 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1835 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1836 else
1837 {
1838 /* We have to get the saved pc from the sigcontext if it is
1839 a signal handler frame. */
1840 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1841 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1842 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1843 }
1844 }
c906108c
SS
1845 return ADDR_BITS_REMOVE (saved_pc);
1846}
1847
1848static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1849
1850/* This hack will go away once the get_prev_frame() code has been
1851 modified to set the frame's type first. That is BEFORE init extra
1852 frame info et.al. is called. This is because it will become
1853 possible to skip the init extra info call for sigtramp and dummy
1854 frames. */
1855static CORE_ADDR *temp_saved_regs;
c906108c 1856
e0f7ec59
AC
1857/* Set a register's saved stack address in temp_saved_regs. If an
1858 address has already been set for this register, do nothing; this
1859 way we will only recognize the first save of a given register in a
a4b8ebc8
AC
1860 function prologue.
1861
1862 For simplicity, save the address in both [0 .. NUM_REGS) and
1863 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1864 is used as it is only second range (the ABI instead of ISA
1865 registers) that comes into play when finding saved registers in a
1866 frame. */
c906108c
SS
1867
1868static void
e0f7ec59 1869set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1870{
e0f7ec59 1871 if (saved_regs[regno] == 0)
a4b8ebc8
AC
1872 {
1873 saved_regs[regno + 0 * NUM_REGS] = offset;
1874 saved_regs[regno + 1 * NUM_REGS] = offset;
1875 }
c906108c
SS
1876}
1877
1878
1879/* Test whether the PC points to the return instruction at the
1880 end of a function. */
1881
c5aa993b 1882static int
acdb74a0 1883mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1884{
1885 if (pc_is_mips16 (pc))
1886 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1887 generates a "jr $ra"; other times it generates code to load
1888 the return address from the stack to an accessible register (such
1889 as $a3), then a "jr" using that register. This second case
1890 is almost impossible to distinguish from an indirect jump
1891 used for switch statements, so we don't even try. */
1892 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1893 else
1894 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1895}
1896
1897
1898/* This fencepost looks highly suspicious to me. Removing it also
1899 seems suspicious as it could affect remote debugging across serial
1900 lines. */
1901
1902static CORE_ADDR
acdb74a0 1903heuristic_proc_start (CORE_ADDR pc)
c906108c 1904{
c5aa993b
JM
1905 CORE_ADDR start_pc;
1906 CORE_ADDR fence;
1907 int instlen;
1908 int seen_adjsp = 0;
c906108c 1909
c5aa993b
JM
1910 pc = ADDR_BITS_REMOVE (pc);
1911 start_pc = pc;
1912 fence = start_pc - heuristic_fence_post;
1913 if (start_pc == 0)
1914 return 0;
c906108c 1915
c5aa993b
JM
1916 if (heuristic_fence_post == UINT_MAX
1917 || fence < VM_MIN_ADDRESS)
1918 fence = VM_MIN_ADDRESS;
c906108c 1919
c5aa993b 1920 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1921
c5aa993b
JM
1922 /* search back for previous return */
1923 for (start_pc -= instlen;; start_pc -= instlen)
1924 if (start_pc < fence)
1925 {
1926 /* It's not clear to me why we reach this point when
c0236d92 1927 stop_soon, but with this test, at least we
c5aa993b
JM
1928 don't print out warnings for every child forked (eg, on
1929 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1930 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1931 {
c5aa993b
JM
1932 static int blurb_printed = 0;
1933
1934 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1935 paddr_nz (pc));
1936
1937 if (!blurb_printed)
c906108c 1938 {
c5aa993b
JM
1939 /* This actually happens frequently in embedded
1940 development, when you first connect to a board
1941 and your stack pointer and pc are nowhere in
1942 particular. This message needs to give people
1943 in that situation enough information to
1944 determine that it's no big deal. */
1945 printf_filtered ("\n\
cd0fc7c3
SS
1946 GDB is unable to find the start of the function at 0x%s\n\
1947and thus can't determine the size of that function's stack frame.\n\
1948This means that GDB may be unable to access that stack frame, or\n\
1949the frames below it.\n\
1950 This problem is most likely caused by an invalid program counter or\n\
1951stack pointer.\n\
1952 However, if you think GDB should simply search farther back\n\
1953from 0x%s for code which looks like the beginning of a\n\
1954function, you can increase the range of the search using the `set\n\
1955heuristic-fence-post' command.\n",
c5aa993b
JM
1956 paddr_nz (pc), paddr_nz (pc));
1957 blurb_printed = 1;
c906108c 1958 }
c906108c
SS
1959 }
1960
c5aa993b
JM
1961 return 0;
1962 }
1963 else if (pc_is_mips16 (start_pc))
1964 {
1965 unsigned short inst;
1966
1967 /* On MIPS16, any one of the following is likely to be the
1968 start of a function:
1969 entry
1970 addiu sp,-n
1971 daddiu sp,-n
1972 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1973 inst = mips_fetch_instruction (start_pc);
1974 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1975 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1976 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1977 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1978 break;
1979 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1980 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1981 seen_adjsp = 1;
1982 else
1983 seen_adjsp = 0;
1984 }
1985 else if (mips_about_to_return (start_pc))
1986 {
1987 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1988 break;
1989 }
1990
c5aa993b 1991 return start_pc;
c906108c
SS
1992}
1993
1994/* Fetch the immediate value from a MIPS16 instruction.
1995 If the previous instruction was an EXTEND, use it to extend
1996 the upper bits of the immediate value. This is a helper function
1997 for mips16_heuristic_proc_desc. */
1998
1999static int
acdb74a0
AC
2000mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2001 unsigned short inst, /* current instruction */
2002 int nbits, /* number of bits in imm field */
2003 int scale, /* scale factor to be applied to imm */
2004 int is_signed) /* is the imm field signed? */
c906108c
SS
2005{
2006 int offset;
2007
2008 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2009 {
2010 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 2011 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
2012 offset = 0 - (0x10000 - (offset & 0xffff));
2013 return offset | (inst & 0x1f);
2014 }
2015 else
2016 {
2017 int max_imm = 1 << nbits;
2018 int mask = max_imm - 1;
2019 int sign_bit = max_imm >> 1;
2020
2021 offset = inst & mask;
2022 if (is_signed && (offset & sign_bit))
2023 offset = 0 - (max_imm - offset);
2024 return offset * scale;
2025 }
2026}
2027
2028
2029/* Fill in values in temp_proc_desc based on the MIPS16 instruction
2030 stream from start_pc to limit_pc. */
2031
2032static void
acdb74a0
AC
2033mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2034 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2035{
2036 CORE_ADDR cur_pc;
2037 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2038 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2039 unsigned inst = 0; /* current instruction */
2040 unsigned entry_inst = 0; /* the entry instruction */
2041 int reg, offset;
2042
c5aa993b
JM
2043 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2044 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
2045
2046 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2047 {
2048 /* Save the previous instruction. If it's an EXTEND, we'll extract
2049 the immediate offset extension from it in mips16_get_imm. */
2050 prev_inst = inst;
2051
2052 /* Fetch and decode the instruction. */
2053 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 2054 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
2055 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2056 {
2057 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
2058 if (offset < 0) /* negative stack adjustment? */
2059 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
2060 else
2061 /* Exit loop if a positive stack adjustment is found, which
2062 usually means that the stack cleanup code in the function
2063 epilogue is reached. */
2064 break;
2065 }
2066 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2067 {
2068 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2069 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 2070 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2071 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2072 }
2073 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2074 {
2075 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2076 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2077 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2078 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2079 }
2080 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2081 {
2082 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2083 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2084 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2085 }
2086 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2087 {
2088 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2089 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2090 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2091 }
c5aa993b 2092 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2093 {
2094 frame_addr = sp;
2095 PROC_FRAME_REG (&temp_proc_desc) = 17;
2096 }
2097 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2098 {
2099 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2100 frame_addr = sp + offset;
2101 PROC_FRAME_REG (&temp_proc_desc) = 17;
2102 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2103 }
2104 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2105 {
2106 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2107 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2108 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2109 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2110 }
2111 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2112 {
2113 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2114 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2115 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2116 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2117 }
c5aa993b
JM
2118 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2119 entry_inst = inst; /* save for later processing */
c906108c 2120 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2121 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2122 }
2123
c5aa993b
JM
2124 /* The entry instruction is typically the first instruction in a function,
2125 and it stores registers at offsets relative to the value of the old SP
2126 (before the prologue). But the value of the sp parameter to this
2127 function is the new SP (after the prologue has been executed). So we
2128 can't calculate those offsets until we've seen the entire prologue,
2129 and can calculate what the old SP must have been. */
2130 if (entry_inst != 0)
2131 {
2132 int areg_count = (entry_inst >> 8) & 7;
2133 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2134
c5aa993b
JM
2135 /* The entry instruction always subtracts 32 from the SP. */
2136 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2137
c5aa993b
JM
2138 /* Now we can calculate what the SP must have been at the
2139 start of the function prologue. */
2140 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2141
c5aa993b
JM
2142 /* Check if a0-a3 were saved in the caller's argument save area. */
2143 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2144 {
2145 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2146 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2147 offset += MIPS_SAVED_REGSIZE;
2148 }
c906108c 2149
c5aa993b
JM
2150 /* Check if the ra register was pushed on the stack. */
2151 offset = -4;
2152 if (entry_inst & 0x20)
2153 {
2154 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2155 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c5aa993b
JM
2156 offset -= MIPS_SAVED_REGSIZE;
2157 }
c906108c 2158
c5aa993b
JM
2159 /* Check if the s0 and s1 registers were pushed on the stack. */
2160 for (reg = 16; reg < sreg_count + 16; reg++)
2161 {
2162 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2163 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2164 offset -= MIPS_SAVED_REGSIZE;
2165 }
2166 }
c906108c
SS
2167}
2168
2169static void
fba45db2
KB
2170mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2171 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2172{
2173 CORE_ADDR cur_pc;
c5aa993b 2174 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2175restart:
fe29b929 2176 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2177 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2178 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2179 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2180 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2181 {
2182 unsigned long inst, high_word, low_word;
2183 int reg;
2184
2185 /* Fetch the instruction. */
2186 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2187
2188 /* Save some code by pre-extracting some useful fields. */
2189 high_word = (inst >> 16) & 0xffff;
2190 low_word = inst & 0xffff;
2191 reg = high_word & 0x1f;
2192
c5aa993b 2193 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2194 || high_word == 0x23bd /* addi $sp,$sp,-i */
2195 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2196 {
2197 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2198 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2199 else
2200 /* Exit loop if a positive stack adjustment is found, which
2201 usually means that the stack cleanup code in the function
2202 epilogue is reached. */
2203 break;
2204 }
2205 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2206 {
c5aa993b 2207 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2208 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2209 }
2210 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2211 {
2212 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2213 but the register size used is only 32 bits. Make the address
2214 for the saved register point to the lower 32 bits. */
c5aa993b 2215 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
4246e332 2216 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
c906108c 2217 }
c5aa993b 2218 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2219 {
2220 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2221 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2222 frame_addr = sp + low_word;
c906108c
SS
2223 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2224 {
2225 unsigned alloca_adjust;
2226 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2227 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2228 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2229 if (alloca_adjust > 0)
2230 {
2231 /* FP > SP + frame_size. This may be because
2232 * of an alloca or somethings similar.
2233 * Fix sp to "pre-alloca" value, and try again.
2234 */
2235 sp += alloca_adjust;
2236 goto restart;
2237 }
2238 }
2239 }
c5aa993b
JM
2240 /* move $30,$sp. With different versions of gas this will be either
2241 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2242 Accept any one of these. */
c906108c
SS
2243 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2244 {
2245 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2246 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2247 {
2248 unsigned alloca_adjust;
2249 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2250 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2251 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2252 if (alloca_adjust > 0)
2253 {
2254 /* FP > SP + frame_size. This may be because
2255 * of an alloca or somethings similar.
2256 * Fix sp to "pre-alloca" value, and try again.
2257 */
2258 sp += alloca_adjust;
2259 goto restart;
2260 }
2261 }
2262 }
c5aa993b 2263 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2264 {
c5aa993b 2265 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2266 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2267 }
2268 }
2269}
2270
2271static mips_extra_func_info_t
acdb74a0 2272heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2273 struct frame_info *next_frame, int cur_frame)
c906108c 2274{
479412cd
DJ
2275 CORE_ADDR sp;
2276
2277 if (cur_frame)
a4b8ebc8 2278 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
479412cd
DJ
2279 else
2280 sp = 0;
c906108c 2281
c5aa993b
JM
2282 if (start_pc == 0)
2283 return NULL;
2284 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2285 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2286 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2287 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2288 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2289 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2290
2291 if (start_pc + 200 < limit_pc)
2292 limit_pc = start_pc + 200;
2293 if (pc_is_mips16 (start_pc))
2294 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2295 else
2296 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2297 return &temp_proc_desc;
2298}
2299
6c0d6680
DJ
2300struct mips_objfile_private
2301{
2302 bfd_size_type size;
2303 char *contents;
2304};
2305
2306/* Global used to communicate between non_heuristic_proc_desc and
2307 compare_pdr_entries within qsort (). */
2308static bfd *the_bfd;
2309
2310static int
2311compare_pdr_entries (const void *a, const void *b)
2312{
2313 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2314 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2315
2316 if (lhs < rhs)
2317 return -1;
2318 else if (lhs == rhs)
2319 return 0;
2320 else
2321 return 1;
2322}
2323
c906108c 2324static mips_extra_func_info_t
acdb74a0 2325non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2326{
2327 CORE_ADDR startaddr;
2328 mips_extra_func_info_t proc_desc;
c5aa993b 2329 struct block *b = block_for_pc (pc);
c906108c 2330 struct symbol *sym;
6c0d6680
DJ
2331 struct obj_section *sec;
2332 struct mips_objfile_private *priv;
2333
ae45cd16 2334 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2335 return NULL;
c906108c
SS
2336
2337 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2338 if (addrptr)
2339 *addrptr = startaddr;
6c0d6680
DJ
2340
2341 priv = NULL;
2342
2343 sec = find_pc_section (pc);
2344 if (sec != NULL)
c906108c 2345 {
6c0d6680
DJ
2346 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2347
2348 /* Search the ".pdr" section generated by GAS. This includes most of
2349 the information normally found in ECOFF PDRs. */
2350
2351 the_bfd = sec->objfile->obfd;
2352 if (priv == NULL
2353 && (the_bfd->format == bfd_object
2354 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2355 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2356 {
2357 /* Right now GAS only outputs the address as a four-byte sequence.
2358 This means that we should not bother with this method on 64-bit
2359 targets (until that is fixed). */
2360
2361 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2362 sizeof (struct mips_objfile_private));
2363 priv->size = 0;
2364 sec->objfile->obj_private = priv;
2365 }
2366 else if (priv == NULL)
2367 {
2368 asection *bfdsec;
2369
2370 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2371 sizeof (struct mips_objfile_private));
2372
2373 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2374 if (bfdsec != NULL)
2375 {
2376 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2377 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2378 priv->size);
2379 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2380 priv->contents, 0, priv->size);
2381
2382 /* In general, the .pdr section is sorted. However, in the
2383 presence of multiple code sections (and other corner cases)
2384 it can become unsorted. Sort it so that we can use a faster
2385 binary search. */
2386 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2387 }
2388 else
2389 priv->size = 0;
2390
2391 sec->objfile->obj_private = priv;
2392 }
2393 the_bfd = NULL;
2394
2395 if (priv->size != 0)
2396 {
2397 int low, mid, high;
2398 char *ptr;
2399
2400 low = 0;
2401 high = priv->size / 32;
2402
2403 do
2404 {
2405 CORE_ADDR pdr_pc;
2406
2407 mid = (low + high) / 2;
2408
2409 ptr = priv->contents + mid * 32;
2410 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2411 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2412 SECT_OFF_TEXT (sec->objfile));
2413 if (pdr_pc == startaddr)
2414 break;
2415 if (pdr_pc > startaddr)
2416 high = mid;
2417 else
2418 low = mid + 1;
2419 }
2420 while (low != high);
2421
2422 if (low != high)
2423 {
2424 struct symbol *sym = find_pc_function (pc);
2425
2426 /* Fill in what we need of the proc_desc. */
2427 proc_desc = (mips_extra_func_info_t)
2428 obstack_alloc (&sec->objfile->psymbol_obstack,
2429 sizeof (struct mips_extra_func_info));
2430 PROC_LOW_ADDR (proc_desc) = startaddr;
2431
2432 /* Only used for dummy frames. */
2433 PROC_HIGH_ADDR (proc_desc) = 0;
2434
2435 PROC_FRAME_OFFSET (proc_desc)
2436 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2437 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2438 ptr + 24);
2439 PROC_FRAME_ADJUST (proc_desc) = 0;
2440 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2441 ptr + 4);
2442 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2443 ptr + 12);
2444 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2445 ptr + 8);
2446 PROC_FREG_OFFSET (proc_desc)
2447 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2448 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2449 ptr + 28);
2450 proc_desc->pdr.isym = (long) sym;
2451
2452 return proc_desc;
2453 }
2454 }
c906108c
SS
2455 }
2456
6c0d6680
DJ
2457 if (b == NULL)
2458 return NULL;
2459
2460 if (startaddr > BLOCK_START (b))
2461 {
2462 /* This is the "pathological" case referred to in a comment in
2463 print_frame_info. It might be better to move this check into
2464 symbol reading. */
2465 return NULL;
2466 }
2467
176620f1 2468 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2469
c906108c
SS
2470 /* If we never found a PDR for this function in symbol reading, then
2471 examine prologues to find the information. */
2472 if (sym)
2473 {
2474 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2475 if (PROC_FRAME_REG (proc_desc) == -1)
2476 return NULL;
2477 else
2478 return proc_desc;
2479 }
2480 else
2481 return NULL;
2482}
2483
2484
2485static mips_extra_func_info_t
479412cd 2486find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2487{
2488 mips_extra_func_info_t proc_desc;
4e0df2df 2489 CORE_ADDR startaddr = 0;
c906108c
SS
2490
2491 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2492
2493 if (proc_desc)
2494 {
2495 /* IF this is the topmost frame AND
2496 * (this proc does not have debugging information OR
2497 * the PC is in the procedure prologue)
2498 * THEN create a "heuristic" proc_desc (by analyzing
2499 * the actual code) to replace the "official" proc_desc.
2500 */
2501 if (next_frame == NULL)
2502 {
2503 struct symtab_and_line val;
2504 struct symbol *proc_symbol =
c86b5b38 2505 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2506
2507 if (proc_symbol)
2508 {
2509 val = find_pc_line (BLOCK_START
c5aa993b 2510 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2511 0);
2512 val.pc = val.end ? val.end : pc;
2513 }
2514 if (!proc_symbol || pc < val.pc)
2515 {
2516 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2517 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2518 pc, next_frame, cur_frame);
c906108c
SS
2519 if (found_heuristic)
2520 proc_desc = found_heuristic;
2521 }
2522 }
2523 }
2524 else
2525 {
2526 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2527 by procedure call dummys. However, the procedures being called ought
2528 to have their own proc_descs, and even if they don't,
2529 heuristic_proc_desc knows how to create them! */
c906108c 2530
aa1ee363 2531 struct linked_proc_info *link;
c906108c
SS
2532
2533 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2534 if (PROC_LOW_ADDR (&link->info) <= pc
2535 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2536 return &link->info;
2537
2538 if (startaddr == 0)
2539 startaddr = heuristic_proc_start (pc);
2540
2541 proc_desc =
479412cd 2542 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2543 }
2544 return proc_desc;
2545}
2546
2547static CORE_ADDR
acdb74a0
AC
2548get_frame_pointer (struct frame_info *frame,
2549 mips_extra_func_info_t proc_desc)
c906108c 2550{
a4b8ebc8 2551 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
e227b13c
AC
2552 + PROC_FRAME_OFFSET (proc_desc)
2553 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2554}
2555
5a89d8aa 2556static mips_extra_func_info_t cached_proc_desc;
c906108c 2557
f7ab6ec6 2558static CORE_ADDR
acdb74a0 2559mips_frame_chain (struct frame_info *frame)
c906108c
SS
2560{
2561 mips_extra_func_info_t proc_desc;
2562 CORE_ADDR tmp;
8bedc050 2563 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c 2564
627b3ba2 2565 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
c906108c
SS
2566 return 0;
2567
2568 /* Check if the PC is inside a call stub. If it is, fetch the
2569 PC of the caller of that stub. */
5a89d8aa 2570 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2571 saved_pc = tmp;
2572
ae45cd16 2573 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2574 {
2575 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2576 is well, frame->frame the bottom of the current frame will
2577 contain that value. */
1e2330ba 2578 return get_frame_base (frame);
cedea778
AC
2579 }
2580
c906108c 2581 /* Look up the procedure descriptor for this PC. */
479412cd 2582 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2583 if (!proc_desc)
2584 return 0;
2585
2586 cached_proc_desc = proc_desc;
2587
2588 /* If no frame pointer and frame size is zero, we must be at end
2589 of stack (or otherwise hosed). If we don't check frame size,
2590 we loop forever if we see a zero size frame. */
2591 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2592 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2593 /* The previous frame from a sigtramp frame might be frameless
2594 and have frame size zero. */
5a203e44 2595 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2596 /* For a generic dummy frame, let get_frame_pointer() unwind a
2597 register value saved as part of the dummy frame call. */
50abf9e5 2598 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2599 return 0;
2600 else
2601 return get_frame_pointer (frame, proc_desc);
2602}
2603
f7ab6ec6 2604static void
acdb74a0 2605mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2606{
2607 int regnum;
f2c16bd6
KB
2608 mips_extra_func_info_t proc_desc;
2609
2610 if (get_frame_type (fci) == DUMMY_FRAME)
2611 return;
c906108c 2612
f796e4be
KB
2613 /* Use proc_desc calculated in frame_chain. When there is no
2614 next frame, i.e, get_next_frame (fci) == NULL, we call
2615 find_proc_desc () to calculate it, passing an explicit
2616 NULL as the frame parameter. */
f2c16bd6 2617 proc_desc =
11c02a10
AC
2618 get_next_frame (fci)
2619 ? cached_proc_desc
f796e4be
KB
2620 : find_proc_desc (get_frame_pc (fci),
2621 NULL /* i.e, get_next_frame (fci) */,
2622 1);
c906108c 2623
a00a19e9 2624 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2625
7b5849cc 2626 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2627 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2628 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2629 if (proc_desc)
2630 {
2631 /* Fixup frame-pointer - only needed for top frame */
2632 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2633 Get the value of the frame relative sp, procedure might have been
2634 interrupted by a signal at it's very start. */
50abf9e5 2635 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2636 && !PROC_DESC_IS_DUMMY (proc_desc))
a4b8ebc8 2637 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
50abf9e5 2638 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2639 /* Do not ``fix'' fci->frame. It will have the value of the
2640 generic dummy frame's top-of-stack (since the draft
2641 fci->frame is obtained by returning the unwound stack
2642 pointer) and that is what we want. That way the fci->frame
2643 value will match the top-of-stack value that was saved as
2644 part of the dummy frames data. */
2645 /* Do nothing. */;
c906108c 2646 else
11c02a10 2647 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2648
2649 if (proc_desc == &temp_proc_desc)
2650 {
2651 char *name;
2652
2653 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2654 mips_find_saved_registers will do that for us. We can't
2655 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2656 yet set. */
2657 /* FIXME: cagney/2002-11-18: This problem will go away once
2658 frame.c:get_prev_frame() is modified to set the frame's
2659 type before calling functions like this. */
50abf9e5 2660 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2661 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2662 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2663 {
c5aa993b 2664 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2665 /* Set value of previous frame's stack pointer.
2666 Remember that saved_regs[SP_REGNUM] is special in
2667 that it contains the value of the stack pointer
2668 register. The other saved_regs values are addresses
2669 (in the inferior) at which a given register's value
2670 may be found. */
2671 set_reg_offset (temp_saved_regs, SP_REGNUM,
2672 get_frame_base (fci));
2673 set_reg_offset (temp_saved_regs, PC_REGNUM,
2674 temp_saved_regs[RA_REGNUM]);
1b1d3794 2675 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
e0f7ec59 2676 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2677 }
2678 }
2679
2680 /* hack: if argument regs are saved, guess these contain args */
cce74817 2681 /* assume we can't tell how many args for now */
da50a4b7 2682 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2683 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2684 {
c5aa993b 2685 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2686 {
da50a4b7 2687 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2688 break;
2689 }
c5aa993b 2690 }
c906108c
SS
2691 }
2692}
2693
2694/* MIPS stack frames are almost impenetrable. When execution stops,
2695 we basically have to look at symbol information for the function
2696 that we stopped in, which tells us *which* register (if any) is
2697 the base of the frame pointer, and what offset from that register
361d1df0 2698 the frame itself is at.
c906108c
SS
2699
2700 This presents a problem when trying to examine a stack in memory
2701 (that isn't executing at the moment), using the "frame" command. We
2702 don't have a PC, nor do we have any registers except SP.
2703
2704 This routine takes two arguments, SP and PC, and tries to make the
2705 cached frames look as if these two arguments defined a frame on the
2706 cache. This allows the rest of info frame to extract the important
2707 arguments without difficulty. */
2708
2709struct frame_info *
acdb74a0 2710setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2711{
2712 if (argc != 2)
2713 error ("MIPS frame specifications require two arguments: sp and pc");
2714
2715 return create_new_frame (argv[0], argv[1]);
2716}
2717
f09ded24
AC
2718/* According to the current ABI, should the type be passed in a
2719 floating-point register (assuming that there is space)? When there
2720 is no FPU, FP are not even considered as possibile candidates for
2721 FP registers and, consequently this returns false - forces FP
2722 arguments into integer registers. */
2723
2724static int
2725fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2726{
2727 return ((typecode == TYPE_CODE_FLT
2728 || (MIPS_EABI
2729 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2730 && TYPE_NFIELDS (arg_type) == 1
2731 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2732 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2733}
2734
49e790b0
DJ
2735/* On o32, argument passing in GPRs depends on the alignment of the type being
2736 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2737
2738static int
2739mips_type_needs_double_align (struct type *type)
2740{
2741 enum type_code typecode = TYPE_CODE (type);
361d1df0 2742
49e790b0
DJ
2743 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2744 return 1;
2745 else if (typecode == TYPE_CODE_STRUCT)
2746 {
2747 if (TYPE_NFIELDS (type) < 1)
2748 return 0;
2749 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2750 }
2751 else if (typecode == TYPE_CODE_UNION)
2752 {
361d1df0 2753 int i, n;
49e790b0
DJ
2754
2755 n = TYPE_NFIELDS (type);
2756 for (i = 0; i < n; i++)
2757 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2758 return 1;
2759 return 0;
2760 }
2761 return 0;
2762}
2763
dc604539
AC
2764/* Adjust the address downward (direction of stack growth) so that it
2765 is correctly aligned for a new stack frame. */
2766static CORE_ADDR
2767mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2768{
5b03f266 2769 return align_down (addr, 16);
dc604539
AC
2770}
2771
f7ab6ec6 2772static CORE_ADDR
25ab4790
AC
2773mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2774 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2775 struct value **args, CORE_ADDR sp, int struct_return,
2776 CORE_ADDR struct_addr)
c906108c
SS
2777{
2778 int argreg;
2779 int float_argreg;
2780 int argnum;
2781 int len = 0;
2782 int stack_offset = 0;
2783
25ab4790
AC
2784 /* For shared libraries, "t9" needs to point at the function
2785 address. */
2786 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2787
2788 /* Set the return address register to point to the entry point of
2789 the program, where a breakpoint lies in wait. */
2790 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2791
c906108c 2792 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2793 are properly aligned. The stack has to be at least 64-bit
2794 aligned even on 32-bit machines, because doubles must be 64-bit
2795 aligned. For n32 and n64, stack frames need to be 128-bit
2796 aligned, so we round to this widest known alignment. */
2797
5b03f266
AC
2798 sp = align_down (sp, 16);
2799 struct_addr = align_down (struct_addr, 16);
c5aa993b 2800
46e0f506 2801 /* Now make space on the stack for the args. We allocate more
c906108c 2802 than necessary for EABI, because the first few arguments are
46e0f506 2803 passed in registers, but that's OK. */
c906108c 2804 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 2805 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
46e0f506 2806 MIPS_STACK_ARGSIZE);
5b03f266 2807 sp -= align_up (len, 16);
c906108c 2808
9ace0497 2809 if (mips_debug)
46e0f506 2810 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2811 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2812 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2813
c906108c
SS
2814 /* Initialize the integer and float register pointers. */
2815 argreg = A0_REGNUM;
2816 float_argreg = FPA0_REGNUM;
2817
46e0f506 2818 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2819 if (struct_return)
9ace0497
AC
2820 {
2821 if (mips_debug)
2822 fprintf_unfiltered (gdb_stdlog,
25ab4790 2823 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2824 argreg, paddr_nz (struct_addr));
9ace0497
AC
2825 write_register (argreg++, struct_addr);
2826 }
c906108c
SS
2827
2828 /* Now load as many as possible of the first arguments into
2829 registers, and push the rest onto the stack. Loop thru args
2830 from first to last. */
2831 for (argnum = 0; argnum < nargs; argnum++)
2832 {
2833 char *val;
d9d9c31f 2834 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2835 struct value *arg = args[argnum];
c906108c
SS
2836 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2837 int len = TYPE_LENGTH (arg_type);
2838 enum type_code typecode = TYPE_CODE (arg_type);
2839
9ace0497
AC
2840 if (mips_debug)
2841 fprintf_unfiltered (gdb_stdlog,
25ab4790 2842 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2843 argnum + 1, len, (int) typecode);
9ace0497 2844
c906108c 2845 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2846 reference. */
2847 if (len > MIPS_SAVED_REGSIZE
9ace0497 2848 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2849 {
fbd9dcd3 2850 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2851 typecode = TYPE_CODE_PTR;
7a292a7a 2852 len = MIPS_SAVED_REGSIZE;
c906108c 2853 val = valbuf;
9ace0497
AC
2854 if (mips_debug)
2855 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2856 }
2857 else
c5aa993b 2858 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2859
2860 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2861 even-numbered floating point register. Round the FP register
2862 up before the check to see if there are any FP registers
46e0f506
MS
2863 left. Non MIPS_EABI targets also pass the FP in the integer
2864 registers so also round up normal registers. */
acdb74a0
AC
2865 if (!FP_REGISTER_DOUBLE
2866 && fp_register_arg_p (typecode, arg_type))
2867 {
2868 if ((float_argreg & 1))
2869 float_argreg++;
2870 }
c906108c
SS
2871
2872 /* Floating point arguments passed in registers have to be
2873 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2874 are passed in register pairs; the even register gets
2875 the low word, and the odd register gets the high word.
2876 On non-EABI processors, the first two floating point arguments are
2877 also copied to general registers, because MIPS16 functions
2878 don't use float registers for arguments. This duplication of
2879 arguments in general registers can't hurt non-MIPS16 functions
2880 because those registers are normally skipped. */
1012bd0e
EZ
2881 /* MIPS_EABI squeezes a struct that contains a single floating
2882 point value into an FP register instead of pushing it onto the
46e0f506 2883 stack. */
f09ded24
AC
2884 if (fp_register_arg_p (typecode, arg_type)
2885 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2886 {
2887 if (!FP_REGISTER_DOUBLE && len == 8)
2888 {
d7449b42 2889 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2890 unsigned long regval;
2891
2892 /* Write the low word of the double to the even register(s). */
c5aa993b 2893 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2894 if (mips_debug)
acdb74a0 2895 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2896 float_argreg, phex (regval, 4));
c906108c 2897 write_register (float_argreg++, regval);
c906108c
SS
2898
2899 /* Write the high word of the double to the odd register(s). */
c5aa993b 2900 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2901 if (mips_debug)
acdb74a0 2902 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2903 float_argreg, phex (regval, 4));
c906108c 2904 write_register (float_argreg++, regval);
c906108c
SS
2905 }
2906 else
2907 {
2908 /* This is a floating point value that fits entirely
2909 in a single register. */
53a5351d 2910 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2911 above to ensure that it is even register aligned. */
9ace0497
AC
2912 LONGEST regval = extract_unsigned_integer (val, len);
2913 if (mips_debug)
acdb74a0 2914 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2915 float_argreg, phex (regval, len));
c906108c 2916 write_register (float_argreg++, regval);
c906108c
SS
2917 }
2918 }
2919 else
2920 {
2921 /* Copy the argument to general registers or the stack in
2922 register-sized pieces. Large arguments are split between
2923 registers and stack. */
4246e332
AC
2924 /* Note: structs whose size is not a multiple of
2925 mips_regsize() are treated specially: Irix cc passes them
2926 in registers where gcc sometimes puts them on the stack.
2927 For maximum compatibility, we will put them in both
2928 places. */
c5aa993b 2929 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2930 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2931
f09ded24 2932 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2933 register are only written to memory. */
c906108c
SS
2934 while (len > 0)
2935 {
ebafbe83 2936 /* Remember if the argument was written to the stack. */
566f0f7a 2937 int stack_used_p = 0;
46e0f506
MS
2938 int partial_len =
2939 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2940
acdb74a0
AC
2941 if (mips_debug)
2942 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2943 partial_len);
2944
566f0f7a 2945 /* Write this portion of the argument to the stack. */
f09ded24
AC
2946 if (argreg > MIPS_LAST_ARG_REGNUM
2947 || odd_sized_struct
2948 || fp_register_arg_p (typecode, arg_type))
c906108c 2949 {
c906108c
SS
2950 /* Should shorter than int integer values be
2951 promoted to int before being stored? */
c906108c 2952 int longword_offset = 0;
9ace0497 2953 CORE_ADDR addr;
566f0f7a 2954 stack_used_p = 1;
d7449b42 2955 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2956 {
d929b26f 2957 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2958 (typecode == TYPE_CODE_INT ||
2959 typecode == TYPE_CODE_PTR ||
2960 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2961 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2962 else if ((typecode == TYPE_CODE_STRUCT ||
2963 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2964 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2965 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2966 }
c5aa993b 2967
9ace0497
AC
2968 if (mips_debug)
2969 {
cb3d25d1
MS
2970 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2971 paddr_nz (stack_offset));
2972 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2973 paddr_nz (longword_offset));
9ace0497 2974 }
361d1df0 2975
9ace0497
AC
2976 addr = sp + stack_offset + longword_offset;
2977
2978 if (mips_debug)
2979 {
2980 int i;
cb3d25d1
MS
2981 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2982 paddr_nz (addr));
9ace0497
AC
2983 for (i = 0; i < partial_len; i++)
2984 {
cb3d25d1
MS
2985 fprintf_unfiltered (gdb_stdlog, "%02x",
2986 val[i] & 0xff);
9ace0497
AC
2987 }
2988 }
2989 write_memory (addr, val, partial_len);
c906108c
SS
2990 }
2991
f09ded24
AC
2992 /* Note!!! This is NOT an else clause. Odd sized
2993 structs may go thru BOTH paths. Floating point
46e0f506 2994 arguments will not. */
566f0f7a 2995 /* Write this portion of the argument to a general
46e0f506 2996 purpose register. */
f09ded24
AC
2997 if (argreg <= MIPS_LAST_ARG_REGNUM
2998 && !fp_register_arg_p (typecode, arg_type))
c906108c 2999 {
9ace0497 3000 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 3001
9ace0497 3002 if (mips_debug)
acdb74a0 3003 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
3004 argreg,
3005 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
3006 write_register (argreg, regval);
3007 argreg++;
c906108c 3008 }
c5aa993b 3009
c906108c
SS
3010 len -= partial_len;
3011 val += partial_len;
3012
566f0f7a
AC
3013 /* Compute the the offset into the stack at which we
3014 will copy the next parameter.
3015
566f0f7a 3016 In the new EABI (and the NABI32), the stack_offset
46e0f506 3017 only needs to be adjusted when it has been used. */
c906108c 3018
46e0f506 3019 if (stack_used_p)
5b03f266 3020 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
3021 }
3022 }
9ace0497
AC
3023 if (mips_debug)
3024 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
3025 }
3026
310e9b6a
AC
3027 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3028
0f71a2f6
JM
3029 /* Return adjusted stack pointer. */
3030 return sp;
3031}
3032
25ab4790 3033/* N32/N64 version of push_dummy_call. */
ebafbe83 3034
f7ab6ec6 3035static CORE_ADDR
25ab4790
AC
3036mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3037 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3038 struct value **args, CORE_ADDR sp, int struct_return,
3039 CORE_ADDR struct_addr)
cb3d25d1
MS
3040{
3041 int argreg;
3042 int float_argreg;
3043 int argnum;
3044 int len = 0;
3045 int stack_offset = 0;
3046
25ab4790
AC
3047 /* For shared libraries, "t9" needs to point at the function
3048 address. */
3049 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3050
3051 /* Set the return address register to point to the entry point of
3052 the program, where a breakpoint lies in wait. */
3053 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3054
cb3d25d1
MS
3055 /* First ensure that the stack and structure return address (if any)
3056 are properly aligned. The stack has to be at least 64-bit
3057 aligned even on 32-bit machines, because doubles must be 64-bit
3058 aligned. For n32 and n64, stack frames need to be 128-bit
3059 aligned, so we round to this widest known alignment. */
3060
5b03f266
AC
3061 sp = align_down (sp, 16);
3062 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
3063
3064 /* Now make space on the stack for the args. */
3065 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3066 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
cb3d25d1 3067 MIPS_STACK_ARGSIZE);
5b03f266 3068 sp -= align_up (len, 16);
cb3d25d1
MS
3069
3070 if (mips_debug)
3071 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3072 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3073 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
3074
3075 /* Initialize the integer and float register pointers. */
3076 argreg = A0_REGNUM;
3077 float_argreg = FPA0_REGNUM;
3078
46e0f506 3079 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3080 if (struct_return)
3081 {
3082 if (mips_debug)
3083 fprintf_unfiltered (gdb_stdlog,
25ab4790 3084 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3085 argreg, paddr_nz (struct_addr));
3086 write_register (argreg++, struct_addr);
3087 }
3088
3089 /* Now load as many as possible of the first arguments into
3090 registers, and push the rest onto the stack. Loop thru args
3091 from first to last. */
3092 for (argnum = 0; argnum < nargs; argnum++)
3093 {
3094 char *val;
d9d9c31f 3095 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3096 struct value *arg = args[argnum];
3097 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3098 int len = TYPE_LENGTH (arg_type);
3099 enum type_code typecode = TYPE_CODE (arg_type);
3100
3101 if (mips_debug)
3102 fprintf_unfiltered (gdb_stdlog,
25ab4790 3103 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3104 argnum + 1, len, (int) typecode);
3105
3106 val = (char *) VALUE_CONTENTS (arg);
3107
3108 if (fp_register_arg_p (typecode, arg_type)
3109 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3110 {
3111 /* This is a floating point value that fits entirely
3112 in a single register. */
3113 /* On 32 bit ABI's the float_argreg is further adjusted
3114 above to ensure that it is even register aligned. */
3115 LONGEST regval = extract_unsigned_integer (val, len);
3116 if (mips_debug)
3117 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3118 float_argreg, phex (regval, len));
3119 write_register (float_argreg++, regval);
3120
3121 if (mips_debug)
3122 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3123 argreg, phex (regval, len));
3124 write_register (argreg, regval);
3125 argreg += 1;
3126 }
3127 else
3128 {
3129 /* Copy the argument to general registers or the stack in
3130 register-sized pieces. Large arguments are split between
3131 registers and stack. */
4246e332
AC
3132 /* Note: structs whose size is not a multiple of
3133 mips_regsize() are treated specially: Irix cc passes them
3134 in registers where gcc sometimes puts them on the stack.
3135 For maximum compatibility, we will put them in both
3136 places. */
cb3d25d1
MS
3137 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3138 (len % MIPS_SAVED_REGSIZE != 0));
3139 /* Note: Floating-point values that didn't fit into an FP
3140 register are only written to memory. */
3141 while (len > 0)
3142 {
3143 /* Rememer if the argument was written to the stack. */
3144 int stack_used_p = 0;
3145 int partial_len = len < MIPS_SAVED_REGSIZE ?
3146 len : MIPS_SAVED_REGSIZE;
3147
3148 if (mips_debug)
3149 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3150 partial_len);
3151
3152 /* Write this portion of the argument to the stack. */
3153 if (argreg > MIPS_LAST_ARG_REGNUM
3154 || odd_sized_struct
3155 || fp_register_arg_p (typecode, arg_type))
3156 {
3157 /* Should shorter than int integer values be
3158 promoted to int before being stored? */
3159 int longword_offset = 0;
3160 CORE_ADDR addr;
3161 stack_used_p = 1;
3162 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3163 {
3164 if (MIPS_STACK_ARGSIZE == 8 &&
3165 (typecode == TYPE_CODE_INT ||
3166 typecode == TYPE_CODE_PTR ||
3167 typecode == TYPE_CODE_FLT) && len <= 4)
3168 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3169 }
3170
3171 if (mips_debug)
3172 {
3173 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3174 paddr_nz (stack_offset));
3175 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3176 paddr_nz (longword_offset));
3177 }
3178
3179 addr = sp + stack_offset + longword_offset;
3180
3181 if (mips_debug)
3182 {
3183 int i;
3184 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3185 paddr_nz (addr));
3186 for (i = 0; i < partial_len; i++)
3187 {
3188 fprintf_unfiltered (gdb_stdlog, "%02x",
3189 val[i] & 0xff);
3190 }
3191 }
3192 write_memory (addr, val, partial_len);
3193 }
3194
3195 /* Note!!! This is NOT an else clause. Odd sized
3196 structs may go thru BOTH paths. Floating point
3197 arguments will not. */
3198 /* Write this portion of the argument to a general
3199 purpose register. */
3200 if (argreg <= MIPS_LAST_ARG_REGNUM
3201 && !fp_register_arg_p (typecode, arg_type))
3202 {
3203 LONGEST regval = extract_unsigned_integer (val, partial_len);
3204
3205 /* A non-floating-point argument being passed in a
3206 general register. If a struct or union, and if
3207 the remaining length is smaller than the register
3208 size, we have to adjust the register value on
3209 big endian targets.
3210
3211 It does not seem to be necessary to do the
3212 same for integral types.
3213
3214 cagney/2001-07-23: gdb/179: Also, GCC, when
3215 outputting LE O32 with sizeof (struct) <
3216 MIPS_SAVED_REGSIZE, generates a left shift as
3217 part of storing the argument in a register a
3218 register (the left shift isn't generated when
3219 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3220 is quite possible that this is GCC contradicting
3221 the LE/O32 ABI, GDB has not been adjusted to
3222 accommodate this. Either someone needs to
3223 demonstrate that the LE/O32 ABI specifies such a
3224 left shift OR this new ABI gets identified as
3225 such and GDB gets tweaked accordingly. */
3226
3227 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3228 && partial_len < MIPS_SAVED_REGSIZE
3229 && (typecode == TYPE_CODE_STRUCT ||
3230 typecode == TYPE_CODE_UNION))
3231 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3232 TARGET_CHAR_BIT);
3233
3234 if (mips_debug)
3235 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3236 argreg,
3237 phex (regval, MIPS_SAVED_REGSIZE));
3238 write_register (argreg, regval);
3239 argreg++;
3240 }
3241
3242 len -= partial_len;
3243 val += partial_len;
3244
3245 /* Compute the the offset into the stack at which we
3246 will copy the next parameter.
3247
3248 In N32 (N64?), the stack_offset only needs to be
3249 adjusted when it has been used. */
3250
3251 if (stack_used_p)
5b03f266 3252 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
cb3d25d1
MS
3253 }
3254 }
3255 if (mips_debug)
3256 fprintf_unfiltered (gdb_stdlog, "\n");
3257 }
3258
310e9b6a
AC
3259 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3260
cb3d25d1
MS
3261 /* Return adjusted stack pointer. */
3262 return sp;
3263}
3264
25ab4790 3265/* O32 version of push_dummy_call. */
ebafbe83 3266
46cac009 3267static CORE_ADDR
25ab4790
AC
3268mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3269 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3270 struct value **args, CORE_ADDR sp, int struct_return,
3271 CORE_ADDR struct_addr)
ebafbe83
MS
3272{
3273 int argreg;
3274 int float_argreg;
3275 int argnum;
3276 int len = 0;
3277 int stack_offset = 0;
ebafbe83 3278
25ab4790
AC
3279 /* For shared libraries, "t9" needs to point at the function
3280 address. */
3281 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3282
3283 /* Set the return address register to point to the entry point of
3284 the program, where a breakpoint lies in wait. */
3285 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3286
ebafbe83
MS
3287 /* First ensure that the stack and structure return address (if any)
3288 are properly aligned. The stack has to be at least 64-bit
3289 aligned even on 32-bit machines, because doubles must be 64-bit
3290 aligned. For n32 and n64, stack frames need to be 128-bit
3291 aligned, so we round to this widest known alignment. */
3292
5b03f266
AC
3293 sp = align_down (sp, 16);
3294 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3295
3296 /* Now make space on the stack for the args. */
3297 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3298 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
ebafbe83 3299 MIPS_STACK_ARGSIZE);
5b03f266 3300 sp -= align_up (len, 16);
ebafbe83
MS
3301
3302 if (mips_debug)
3303 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3304 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3305 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3306
3307 /* Initialize the integer and float register pointers. */
3308 argreg = A0_REGNUM;
3309 float_argreg = FPA0_REGNUM;
3310
bcb0cc15 3311 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3312 if (struct_return)
3313 {
3314 if (mips_debug)
3315 fprintf_unfiltered (gdb_stdlog,
25ab4790 3316 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3317 argreg, paddr_nz (struct_addr));
3318 write_register (argreg++, struct_addr);
3319 stack_offset += MIPS_STACK_ARGSIZE;
3320 }
3321
3322 /* Now load as many as possible of the first arguments into
3323 registers, and push the rest onto the stack. Loop thru args
3324 from first to last. */
3325 for (argnum = 0; argnum < nargs; argnum++)
3326 {
3327 char *val;
d9d9c31f 3328 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3329 struct value *arg = args[argnum];
3330 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3331 int len = TYPE_LENGTH (arg_type);
3332 enum type_code typecode = TYPE_CODE (arg_type);
3333
3334 if (mips_debug)
3335 fprintf_unfiltered (gdb_stdlog,
25ab4790 3336 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3337 argnum + 1, len, (int) typecode);
3338
3339 val = (char *) VALUE_CONTENTS (arg);
3340
3341 /* 32-bit ABIs always start floating point arguments in an
3342 even-numbered floating point register. Round the FP register
3343 up before the check to see if there are any FP registers
3344 left. O32/O64 targets also pass the FP in the integer
3345 registers so also round up normal registers. */
3346 if (!FP_REGISTER_DOUBLE
3347 && fp_register_arg_p (typecode, arg_type))
3348 {
3349 if ((float_argreg & 1))
3350 float_argreg++;
3351 }
3352
3353 /* Floating point arguments passed in registers have to be
3354 treated specially. On 32-bit architectures, doubles
3355 are passed in register pairs; the even register gets
3356 the low word, and the odd register gets the high word.
3357 On O32/O64, the first two floating point arguments are
3358 also copied to general registers, because MIPS16 functions
3359 don't use float registers for arguments. This duplication of
3360 arguments in general registers can't hurt non-MIPS16 functions
3361 because those registers are normally skipped. */
3362
3363 if (fp_register_arg_p (typecode, arg_type)
3364 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3365 {
3366 if (!FP_REGISTER_DOUBLE && len == 8)
3367 {
3368 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3369 unsigned long regval;
3370
3371 /* Write the low word of the double to the even register(s). */
3372 regval = extract_unsigned_integer (val + low_offset, 4);
3373 if (mips_debug)
3374 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3375 float_argreg, phex (regval, 4));
3376 write_register (float_argreg++, regval);
3377 if (mips_debug)
3378 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3379 argreg, phex (regval, 4));
3380 write_register (argreg++, regval);
3381
3382 /* Write the high word of the double to the odd register(s). */
3383 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3384 if (mips_debug)
3385 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3386 float_argreg, phex (regval, 4));
3387 write_register (float_argreg++, regval);
3388
3389 if (mips_debug)
3390 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3391 argreg, phex (regval, 4));
3392 write_register (argreg++, regval);
3393 }
3394 else
3395 {
3396 /* This is a floating point value that fits entirely
3397 in a single register. */
3398 /* On 32 bit ABI's the float_argreg is further adjusted
3399 above to ensure that it is even register aligned. */
3400 LONGEST regval = extract_unsigned_integer (val, len);
3401 if (mips_debug)
3402 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3403 float_argreg, phex (regval, len));
3404 write_register (float_argreg++, regval);
3405 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3406 registers for each argument. The below is (my
3407 guess) to ensure that the corresponding integer
3408 register has reserved the same space. */
3409 if (mips_debug)
3410 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3411 argreg, phex (regval, len));
3412 write_register (argreg, regval);
3413 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3414 }
3415 /* Reserve space for the FP register. */
5b03f266 3416 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
46cac009
AC
3417 }
3418 else
3419 {
3420 /* Copy the argument to general registers or the stack in
3421 register-sized pieces. Large arguments are split between
3422 registers and stack. */
4246e332
AC
3423 /* Note: structs whose size is not a multiple of
3424 mips_regsize() are treated specially: Irix cc passes them
3425 in registers where gcc sometimes puts them on the stack.
3426 For maximum compatibility, we will put them in both
3427 places. */
46cac009
AC
3428 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3429 (len % MIPS_SAVED_REGSIZE != 0));
3430 /* Structures should be aligned to eight bytes (even arg registers)
3431 on MIPS_ABI_O32, if their first member has double precision. */
3432 if (MIPS_SAVED_REGSIZE < 8
3433 && mips_type_needs_double_align (arg_type))
3434 {
3435 if ((argreg & 1))
3436 argreg++;
3437 }
3438 /* Note: Floating-point values that didn't fit into an FP
3439 register are only written to memory. */
3440 while (len > 0)
3441 {
3442 /* Remember if the argument was written to the stack. */
3443 int stack_used_p = 0;
3444 int partial_len =
3445 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3446
3447 if (mips_debug)
3448 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3449 partial_len);
3450
3451 /* Write this portion of the argument to the stack. */
3452 if (argreg > MIPS_LAST_ARG_REGNUM
3453 || odd_sized_struct
3454 || fp_register_arg_p (typecode, arg_type))
3455 {
3456 /* Should shorter than int integer values be
3457 promoted to int before being stored? */
3458 int longword_offset = 0;
3459 CORE_ADDR addr;
3460 stack_used_p = 1;
3461 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3462 {
3463 if (MIPS_STACK_ARGSIZE == 8 &&
3464 (typecode == TYPE_CODE_INT ||
3465 typecode == TYPE_CODE_PTR ||
3466 typecode == TYPE_CODE_FLT) && len <= 4)
3467 longword_offset = MIPS_STACK_ARGSIZE - len;
3468 }
3469
3470 if (mips_debug)
3471 {
3472 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3473 paddr_nz (stack_offset));
3474 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3475 paddr_nz (longword_offset));
3476 }
3477
3478 addr = sp + stack_offset + longword_offset;
3479
3480 if (mips_debug)
3481 {
3482 int i;
3483 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3484 paddr_nz (addr));
3485 for (i = 0; i < partial_len; i++)
3486 {
3487 fprintf_unfiltered (gdb_stdlog, "%02x",
3488 val[i] & 0xff);
3489 }
3490 }
3491 write_memory (addr, val, partial_len);
3492 }
3493
3494 /* Note!!! This is NOT an else clause. Odd sized
3495 structs may go thru BOTH paths. Floating point
3496 arguments will not. */
3497 /* Write this portion of the argument to a general
3498 purpose register. */
3499 if (argreg <= MIPS_LAST_ARG_REGNUM
3500 && !fp_register_arg_p (typecode, arg_type))
3501 {
3502 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332
AC
3503 /* Value may need to be sign extended, because
3504 mips_regsize() != MIPS_SAVED_REGSIZE. */
46cac009
AC
3505
3506 /* A non-floating-point argument being passed in a
3507 general register. If a struct or union, and if
3508 the remaining length is smaller than the register
3509 size, we have to adjust the register value on
3510 big endian targets.
3511
3512 It does not seem to be necessary to do the
3513 same for integral types.
3514
3515 Also don't do this adjustment on O64 binaries.
3516
3517 cagney/2001-07-23: gdb/179: Also, GCC, when
3518 outputting LE O32 with sizeof (struct) <
3519 MIPS_SAVED_REGSIZE, generates a left shift as
3520 part of storing the argument in a register a
3521 register (the left shift isn't generated when
3522 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3523 is quite possible that this is GCC contradicting
3524 the LE/O32 ABI, GDB has not been adjusted to
3525 accommodate this. Either someone needs to
3526 demonstrate that the LE/O32 ABI specifies such a
3527 left shift OR this new ABI gets identified as
3528 such and GDB gets tweaked accordingly. */
3529
3530 if (MIPS_SAVED_REGSIZE < 8
3531 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3532 && partial_len < MIPS_SAVED_REGSIZE
3533 && (typecode == TYPE_CODE_STRUCT ||
3534 typecode == TYPE_CODE_UNION))
3535 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3536 TARGET_CHAR_BIT);
3537
3538 if (mips_debug)
3539 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3540 argreg,
3541 phex (regval, MIPS_SAVED_REGSIZE));
3542 write_register (argreg, regval);
3543 argreg++;
3544
3545 /* Prevent subsequent floating point arguments from
3546 being passed in floating point registers. */
3547 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3548 }
3549
3550 len -= partial_len;
3551 val += partial_len;
3552
3553 /* Compute the the offset into the stack at which we
3554 will copy the next parameter.
3555
3556 In older ABIs, the caller reserved space for
3557 registers that contained arguments. This was loosely
3558 refered to as their "home". Consequently, space is
3559 always allocated. */
3560
5b03f266 3561 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
46cac009
AC
3562 }
3563 }
3564 if (mips_debug)
3565 fprintf_unfiltered (gdb_stdlog, "\n");
3566 }
3567
310e9b6a
AC
3568 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3569
46cac009
AC
3570 /* Return adjusted stack pointer. */
3571 return sp;
3572}
3573
25ab4790 3574/* O64 version of push_dummy_call. */
46cac009
AC
3575
3576static CORE_ADDR
25ab4790
AC
3577mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3578 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3579 struct value **args, CORE_ADDR sp, int struct_return,
3580 CORE_ADDR struct_addr)
46cac009
AC
3581{
3582 int argreg;
3583 int float_argreg;
3584 int argnum;
3585 int len = 0;
3586 int stack_offset = 0;
3587
25ab4790
AC
3588 /* For shared libraries, "t9" needs to point at the function
3589 address. */
3590 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3591
3592 /* Set the return address register to point to the entry point of
3593 the program, where a breakpoint lies in wait. */
3594 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3595
46cac009
AC
3596 /* First ensure that the stack and structure return address (if any)
3597 are properly aligned. The stack has to be at least 64-bit
3598 aligned even on 32-bit machines, because doubles must be 64-bit
3599 aligned. For n32 and n64, stack frames need to be 128-bit
3600 aligned, so we round to this widest known alignment. */
3601
5b03f266
AC
3602 sp = align_down (sp, 16);
3603 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3604
3605 /* Now make space on the stack for the args. */
3606 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3607 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
46cac009 3608 MIPS_STACK_ARGSIZE);
5b03f266 3609 sp -= align_up (len, 16);
46cac009
AC
3610
3611 if (mips_debug)
3612 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3613 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3614 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3615
3616 /* Initialize the integer and float register pointers. */
3617 argreg = A0_REGNUM;
3618 float_argreg = FPA0_REGNUM;
3619
3620 /* The struct_return pointer occupies the first parameter-passing reg. */
3621 if (struct_return)
3622 {
3623 if (mips_debug)
3624 fprintf_unfiltered (gdb_stdlog,
25ab4790 3625 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3626 argreg, paddr_nz (struct_addr));
3627 write_register (argreg++, struct_addr);
3628 stack_offset += MIPS_STACK_ARGSIZE;
3629 }
3630
3631 /* Now load as many as possible of the first arguments into
3632 registers, and push the rest onto the stack. Loop thru args
3633 from first to last. */
3634 for (argnum = 0; argnum < nargs; argnum++)
3635 {
3636 char *val;
d9d9c31f 3637 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3638 struct value *arg = args[argnum];
3639 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3640 int len = TYPE_LENGTH (arg_type);
3641 enum type_code typecode = TYPE_CODE (arg_type);
3642
3643 if (mips_debug)
3644 fprintf_unfiltered (gdb_stdlog,
25ab4790 3645 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3646 argnum + 1, len, (int) typecode);
3647
3648 val = (char *) VALUE_CONTENTS (arg);
3649
3650 /* 32-bit ABIs always start floating point arguments in an
3651 even-numbered floating point register. Round the FP register
3652 up before the check to see if there are any FP registers
3653 left. O32/O64 targets also pass the FP in the integer
3654 registers so also round up normal registers. */
3655 if (!FP_REGISTER_DOUBLE
3656 && fp_register_arg_p (typecode, arg_type))
3657 {
3658 if ((float_argreg & 1))
3659 float_argreg++;
3660 }
3661
3662 /* Floating point arguments passed in registers have to be
3663 treated specially. On 32-bit architectures, doubles
3664 are passed in register pairs; the even register gets
3665 the low word, and the odd register gets the high word.
3666 On O32/O64, the first two floating point arguments are
3667 also copied to general registers, because MIPS16 functions
3668 don't use float registers for arguments. This duplication of
3669 arguments in general registers can't hurt non-MIPS16 functions
3670 because those registers are normally skipped. */
3671
3672 if (fp_register_arg_p (typecode, arg_type)
3673 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3674 {
3675 if (!FP_REGISTER_DOUBLE && len == 8)
3676 {
3677 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3678 unsigned long regval;
3679
3680 /* Write the low word of the double to the even register(s). */
3681 regval = extract_unsigned_integer (val + low_offset, 4);
3682 if (mips_debug)
3683 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3684 float_argreg, phex (regval, 4));
3685 write_register (float_argreg++, regval);
3686 if (mips_debug)
3687 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3688 argreg, phex (regval, 4));
3689 write_register (argreg++, regval);
3690
3691 /* Write the high word of the double to the odd register(s). */
3692 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3693 if (mips_debug)
3694 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3695 float_argreg, phex (regval, 4));
3696 write_register (float_argreg++, regval);
3697
3698 if (mips_debug)
3699 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3700 argreg, phex (regval, 4));
3701 write_register (argreg++, regval);
3702 }
3703 else
3704 {
3705 /* This is a floating point value that fits entirely
3706 in a single register. */
3707 /* On 32 bit ABI's the float_argreg is further adjusted
3708 above to ensure that it is even register aligned. */
3709 LONGEST regval = extract_unsigned_integer (val, len);
3710 if (mips_debug)
3711 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3712 float_argreg, phex (regval, len));
3713 write_register (float_argreg++, regval);
3714 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3715 registers for each argument. The below is (my
3716 guess) to ensure that the corresponding integer
3717 register has reserved the same space. */
3718 if (mips_debug)
3719 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3720 argreg, phex (regval, len));
3721 write_register (argreg, regval);
3722 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3723 }
3724 /* Reserve space for the FP register. */
5b03f266 3725 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
ebafbe83
MS
3726 }
3727 else
3728 {
3729 /* Copy the argument to general registers or the stack in
3730 register-sized pieces. Large arguments are split between
3731 registers and stack. */
4246e332
AC
3732 /* Note: structs whose size is not a multiple of
3733 mips_regsize() are treated specially: Irix cc passes them
3734 in registers where gcc sometimes puts them on the stack.
3735 For maximum compatibility, we will put them in both
3736 places. */
ebafbe83
MS
3737 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3738 (len % MIPS_SAVED_REGSIZE != 0));
3739 /* Structures should be aligned to eight bytes (even arg registers)
3740 on MIPS_ABI_O32, if their first member has double precision. */
3741 if (MIPS_SAVED_REGSIZE < 8
3742 && mips_type_needs_double_align (arg_type))
3743 {
3744 if ((argreg & 1))
3745 argreg++;
3746 }
3747 /* Note: Floating-point values that didn't fit into an FP
3748 register are only written to memory. */
3749 while (len > 0)
3750 {
3751 /* Remember if the argument was written to the stack. */
3752 int stack_used_p = 0;
3753 int partial_len =
3754 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3755
3756 if (mips_debug)
3757 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3758 partial_len);
3759
3760 /* Write this portion of the argument to the stack. */
3761 if (argreg > MIPS_LAST_ARG_REGNUM
3762 || odd_sized_struct
3763 || fp_register_arg_p (typecode, arg_type))
3764 {
3765 /* Should shorter than int integer values be
3766 promoted to int before being stored? */
3767 int longword_offset = 0;
3768 CORE_ADDR addr;
3769 stack_used_p = 1;
3770 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3771 {
3772 if (MIPS_STACK_ARGSIZE == 8 &&
3773 (typecode == TYPE_CODE_INT ||
3774 typecode == TYPE_CODE_PTR ||
3775 typecode == TYPE_CODE_FLT) && len <= 4)
3776 longword_offset = MIPS_STACK_ARGSIZE - len;
3777 }
3778
3779 if (mips_debug)
3780 {
3781 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3782 paddr_nz (stack_offset));
3783 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3784 paddr_nz (longword_offset));
3785 }
3786
3787 addr = sp + stack_offset + longword_offset;
3788
3789 if (mips_debug)
3790 {
3791 int i;
3792 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3793 paddr_nz (addr));
3794 for (i = 0; i < partial_len; i++)
3795 {
3796 fprintf_unfiltered (gdb_stdlog, "%02x",
3797 val[i] & 0xff);
3798 }
3799 }
3800 write_memory (addr, val, partial_len);
3801 }
3802
3803 /* Note!!! This is NOT an else clause. Odd sized
3804 structs may go thru BOTH paths. Floating point
3805 arguments will not. */
3806 /* Write this portion of the argument to a general
3807 purpose register. */
3808 if (argreg <= MIPS_LAST_ARG_REGNUM
3809 && !fp_register_arg_p (typecode, arg_type))
3810 {
3811 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332
AC
3812 /* Value may need to be sign extended, because
3813 mips_regsize() != MIPS_SAVED_REGSIZE. */
ebafbe83
MS
3814
3815 /* A non-floating-point argument being passed in a
3816 general register. If a struct or union, and if
3817 the remaining length is smaller than the register
3818 size, we have to adjust the register value on
3819 big endian targets.
3820
3821 It does not seem to be necessary to do the
3822 same for integral types.
3823
3824 Also don't do this adjustment on O64 binaries.
3825
3826 cagney/2001-07-23: gdb/179: Also, GCC, when
3827 outputting LE O32 with sizeof (struct) <
3828 MIPS_SAVED_REGSIZE, generates a left shift as
3829 part of storing the argument in a register a
3830 register (the left shift isn't generated when
3831 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3832 is quite possible that this is GCC contradicting
3833 the LE/O32 ABI, GDB has not been adjusted to
3834 accommodate this. Either someone needs to
3835 demonstrate that the LE/O32 ABI specifies such a
3836 left shift OR this new ABI gets identified as
3837 such and GDB gets tweaked accordingly. */
3838
3839 if (MIPS_SAVED_REGSIZE < 8
3840 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3841 && partial_len < MIPS_SAVED_REGSIZE
3842 && (typecode == TYPE_CODE_STRUCT ||
3843 typecode == TYPE_CODE_UNION))
3844 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3845 TARGET_CHAR_BIT);
3846
3847 if (mips_debug)
3848 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3849 argreg,
3850 phex (regval, MIPS_SAVED_REGSIZE));
3851 write_register (argreg, regval);
3852 argreg++;
3853
3854 /* Prevent subsequent floating point arguments from
3855 being passed in floating point registers. */
3856 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3857 }
3858
3859 len -= partial_len;
3860 val += partial_len;
3861
3862 /* Compute the the offset into the stack at which we
3863 will copy the next parameter.
3864
3865 In older ABIs, the caller reserved space for
3866 registers that contained arguments. This was loosely
3867 refered to as their "home". Consequently, space is
3868 always allocated. */
3869
5b03f266 3870 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
ebafbe83
MS
3871 }
3872 }
3873 if (mips_debug)
3874 fprintf_unfiltered (gdb_stdlog, "\n");
3875 }
3876
310e9b6a
AC
3877 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3878
ebafbe83
MS
3879 /* Return adjusted stack pointer. */
3880 return sp;
3881}
3882
f7ab6ec6 3883static void
acdb74a0 3884mips_pop_frame (void)
c906108c 3885{
52f0bd74 3886 int regnum;
c906108c 3887 struct frame_info *frame = get_current_frame ();
c193f6ac 3888 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3889 mips_extra_func_info_t proc_desc;
c906108c 3890
50abf9e5 3891 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3892 {
3893 generic_pop_dummy_frame ();
3894 flush_cached_frames ();
3895 return;
3896 }
3897
e227b13c 3898 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3899 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3900 mips_find_saved_regs (frame);
c906108c 3901 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3902 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1b1d3794 3903 && deprecated_get_frame_saved_regs (frame)[regnum])
21f87145
MS
3904 {
3905 /* Floating point registers must not be sign extended,
3906 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3907
3908 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3909 write_register (regnum,
1b1d3794 3910 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
21f87145
MS
3911 MIPS_SAVED_REGSIZE));
3912 else
3913 write_register (regnum,
1b1d3794 3914 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
21f87145
MS
3915 MIPS_SAVED_REGSIZE));
3916 }
757a7cc6 3917
c906108c
SS
3918 write_register (SP_REGNUM, new_sp);
3919 flush_cached_frames ();
3920
c5aa993b 3921 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3922 {
3923 struct linked_proc_info *pi_ptr, *prev_ptr;
3924
3925 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3926 pi_ptr != NULL;
3927 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3928 {
3929 if (&pi_ptr->info == proc_desc)
3930 break;
3931 }
3932
3933 if (pi_ptr == NULL)
3934 error ("Can't locate dummy extra frame info\n");
3935
3936 if (prev_ptr != NULL)
3937 prev_ptr->next = pi_ptr->next;
3938 else
3939 linked_proc_desc_table = pi_ptr->next;
3940
b8c9b27d 3941 xfree (pi_ptr);
c906108c
SS
3942
3943 write_register (HI_REGNUM,
c5aa993b 3944 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3945 MIPS_SAVED_REGSIZE));
c906108c 3946 write_register (LO_REGNUM,
c5aa993b 3947 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3948 MIPS_SAVED_REGSIZE));
c906108c
SS
3949 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3950 write_register (FCRCS_REGNUM,
c5aa993b 3951 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3952 MIPS_SAVED_REGSIZE));
c906108c
SS
3953 }
3954}
3955
dd824b04
DJ
3956/* Floating point register management.
3957
3958 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3959 64bit operations, these early MIPS cpus treat fp register pairs
3960 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3961 registers and offer a compatibility mode that emulates the MIPS2 fp
3962 model. When operating in MIPS2 fp compat mode, later cpu's split
3963 double precision floats into two 32-bit chunks and store them in
3964 consecutive fp regs. To display 64-bit floats stored in this
3965 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3966 Throw in user-configurable endianness and you have a real mess.
3967
3968 The way this works is:
3969 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3970 double-precision value will be split across two logical registers.
3971 The lower-numbered logical register will hold the low-order bits,
3972 regardless of the processor's endianness.
3973 - If we are on a 64-bit processor, and we are looking for a
3974 single-precision value, it will be in the low ordered bits
3975 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3976 save slot in memory.
3977 - If we are in 64-bit mode, everything is straightforward.
3978
3979 Note that this code only deals with "live" registers at the top of the
3980 stack. We will attempt to deal with saved registers later, when
3981 the raw/cooked register interface is in place. (We need a general
3982 interface that can deal with dynamic saved register sizes -- fp
3983 regs could be 32 bits wide in one frame and 64 on the frame above
3984 and below). */
3985
67b2c998
DJ
3986static struct type *
3987mips_float_register_type (void)
3988{
361d1df0 3989 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3990 return builtin_type_ieee_single_big;
3991 else
3992 return builtin_type_ieee_single_little;
3993}
3994
3995static struct type *
3996mips_double_register_type (void)
3997{
361d1df0 3998 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3999 return builtin_type_ieee_double_big;
4000 else
4001 return builtin_type_ieee_double_little;
4002}
4003
dd824b04
DJ
4004/* Copy a 32-bit single-precision value from the current frame
4005 into rare_buffer. */
4006
4007static void
e11c53d2
AC
4008mips_read_fp_register_single (struct frame_info *frame, int regno,
4009 char *rare_buffer)
dd824b04 4010{
12c266ea 4011 int raw_size = DEPRECATED_REGISTER_RAW_SIZE (regno);
dd824b04
DJ
4012 char *raw_buffer = alloca (raw_size);
4013
e11c53d2 4014 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
4015 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4016 if (raw_size == 8)
4017 {
4018 /* We have a 64-bit value for this register. Find the low-order
4019 32 bits. */
4020 int offset;
4021
4022 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4023 offset = 4;
4024 else
4025 offset = 0;
4026
4027 memcpy (rare_buffer, raw_buffer + offset, 4);
4028 }
4029 else
4030 {
4031 memcpy (rare_buffer, raw_buffer, 4);
4032 }
4033}
4034
4035/* Copy a 64-bit double-precision value from the current frame into
4036 rare_buffer. This may include getting half of it from the next
4037 register. */
4038
4039static void
e11c53d2
AC
4040mips_read_fp_register_double (struct frame_info *frame, int regno,
4041 char *rare_buffer)
dd824b04 4042{
12c266ea 4043 int raw_size = DEPRECATED_REGISTER_RAW_SIZE (regno);
dd824b04
DJ
4044
4045 if (raw_size == 8 && !mips2_fp_compat ())
4046 {
4047 /* We have a 64-bit value for this register, and we should use
4048 all 64 bits. */
e11c53d2 4049 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
4050 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4051 }
4052 else
4053 {
4054 if ((regno - FP0_REGNUM) & 1)
4055 internal_error (__FILE__, __LINE__,
4056 "mips_read_fp_register_double: bad access to "
4057 "odd-numbered FP register");
4058
4059 /* mips_read_fp_register_single will find the correct 32 bits from
4060 each register. */
4061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4062 {
e11c53d2
AC
4063 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4064 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4065 }
361d1df0 4066 else
dd824b04 4067 {
e11c53d2
AC
4068 mips_read_fp_register_single (frame, regno, rare_buffer);
4069 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4070 }
4071 }
4072}
4073
c906108c 4074static void
e11c53d2
AC
4075mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4076 int regnum)
c5aa993b 4077{ /* do values for FP (float) regs */
dd824b04 4078 char *raw_buffer;
c906108c 4079 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4080 int inv1, inv2, namelen;
c5aa993b 4081
12c266ea 4082 raw_buffer = (char *) alloca (2 * DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4083
e11c53d2
AC
4084 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4085 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4086 "");
f0ef6b29 4087
12c266ea 4088 if (DEPRECATED_REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4089 {
f0ef6b29
KB
4090 /* 4-byte registers: Print hex and floating. Also print even
4091 numbered registers as doubles. */
e11c53d2 4092 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4093 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4094
e11c53d2 4095 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4096
e11c53d2 4097 fprintf_filtered (file, " flt: ");
1adad886 4098 if (inv1)
e11c53d2 4099 fprintf_filtered (file, " <invalid float> ");
1adad886 4100 else
e11c53d2 4101 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4102
f0ef6b29
KB
4103 if (regnum % 2 == 0)
4104 {
e11c53d2 4105 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4106 doub = unpack_double (mips_double_register_type (), raw_buffer,
4107 &inv2);
1adad886 4108
e11c53d2 4109 fprintf_filtered (file, " dbl: ");
f0ef6b29 4110 if (inv2)
e11c53d2 4111 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4112 else
e11c53d2 4113 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4114 }
c906108c
SS
4115 }
4116 else
dd824b04 4117 {
f0ef6b29 4118 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4119 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4120 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4121
e11c53d2 4122 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4123 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4124
361d1df0 4125
e11c53d2 4126 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4127
e11c53d2 4128 fprintf_filtered (file, " flt: ");
1adad886 4129 if (inv1)
e11c53d2 4130 fprintf_filtered (file, "<invalid float>");
1adad886 4131 else
e11c53d2 4132 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4133
e11c53d2 4134 fprintf_filtered (file, " dbl: ");
f0ef6b29 4135 if (inv2)
e11c53d2 4136 fprintf_filtered (file, "<invalid double>");
1adad886 4137 else
e11c53d2 4138 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4139 }
4140}
4141
4142static void
e11c53d2
AC
4143mips_print_register (struct ui_file *file, struct frame_info *frame,
4144 int regnum, int all)
f0ef6b29 4145{
a4b8ebc8 4146 struct gdbarch *gdbarch = get_frame_arch (frame);
d9d9c31f 4147 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4148 int offset;
1adad886 4149
a4b8ebc8 4150 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4151 {
e11c53d2 4152 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4153 return;
4154 }
4155
4156 /* Get the data in raw format. */
e11c53d2 4157 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4158 {
e11c53d2 4159 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4160 return;
c906108c 4161 }
f0ef6b29 4162
e11c53d2 4163 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4164
4165 /* The problem with printing numeric register names (r26, etc.) is that
4166 the user can't use them on input. Probably the best solution is to
4167 fix it so that either the numeric or the funky (a2, etc.) names
4168 are accepted on input. */
4169 if (regnum < MIPS_NUMREGS)
e11c53d2 4170 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4171 else
e11c53d2 4172 fprintf_filtered (file, ": ");
f0ef6b29
KB
4173
4174 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c73e8f27 4175 offset = DEPRECATED_REGISTER_RAW_SIZE (regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4176 else
4177 offset = 0;
4178
a4b8ebc8 4179 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
e11c53d2 4180 'x', 0, file);
c906108c
SS
4181}
4182
f0ef6b29
KB
4183/* Replacement for generic do_registers_info.
4184 Print regs in pretty columns. */
4185
4186static int
e11c53d2
AC
4187print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4188 int regnum)
f0ef6b29 4189{
e11c53d2
AC
4190 fprintf_filtered (file, " ");
4191 mips_print_fp_register (file, frame, regnum);
4192 fprintf_filtered (file, "\n");
f0ef6b29
KB
4193 return regnum + 1;
4194}
4195
4196
c906108c
SS
4197/* Print a row's worth of GP (int) registers, with name labels above */
4198
4199static int
e11c53d2 4200print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4201 int start_regnum)
c906108c 4202{
a4b8ebc8 4203 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4204 /* do values for GP (int) regs */
d9d9c31f 4205 char raw_buffer[MAX_REGISTER_SIZE];
4246e332 4206 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4207 int col, byte;
a4b8ebc8 4208 int regnum;
c906108c
SS
4209
4210 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4211 fprintf_filtered (file, " ");
a4b8ebc8
AC
4212 for (col = 0, regnum = start_regnum;
4213 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4214 regnum++)
c906108c
SS
4215 {
4216 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4217 continue; /* unused register */
a4b8ebc8 4218 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4219 break; /* end the row: reached FP register */
4246e332 4220 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4221 REGISTER_NAME (regnum));
c906108c
SS
4222 col++;
4223 }
a4b8ebc8 4224 /* print the R0 to R31 names */
20e6603c
AC
4225 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4226 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4227 else
4228 fprintf_filtered (file, "\n ");
c906108c 4229
c906108c 4230 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8
AC
4231 for (col = 0, regnum = start_regnum;
4232 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4233 regnum++)
c906108c
SS
4234 {
4235 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4236 continue; /* unused register */
a4b8ebc8 4237 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4238 break; /* end row: reached FP register */
c906108c 4239 /* OK: get the data in raw format. */
e11c53d2 4240 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4241 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4242 /* pad small registers */
4246e332
AC
4243 for (byte = 0;
4244 byte < (mips_regsize (current_gdbarch)
c73e8f27 4245 - register_size (current_gdbarch, regnum));
4246e332 4246 byte++)
c906108c
SS
4247 printf_filtered (" ");
4248 /* Now print the register value in hex, endian order. */
d7449b42 4249 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c73e8f27 4250 for (byte = DEPRECATED_REGISTER_RAW_SIZE (regnum) - register_size (current_gdbarch, regnum);
12c266ea 4251 byte < DEPRECATED_REGISTER_RAW_SIZE (regnum);
43e526b9 4252 byte++)
e11c53d2 4253 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4254 else
c73e8f27 4255 for (byte = register_size (current_gdbarch, regnum) - 1;
43e526b9
JM
4256 byte >= 0;
4257 byte--)
e11c53d2
AC
4258 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4259 fprintf_filtered (file, " ");
c906108c
SS
4260 col++;
4261 }
c5aa993b 4262 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4263 fprintf_filtered (file, "\n");
c906108c
SS
4264
4265 return regnum;
4266}
4267
4268/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4269
bf1f5b4c 4270static void
e11c53d2
AC
4271mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4272 struct frame_info *frame, int regnum, int all)
c906108c 4273{
c5aa993b 4274 if (regnum != -1) /* do one specified register */
c906108c 4275 {
a4b8ebc8 4276 gdb_assert (regnum >= NUM_REGS);
c906108c
SS
4277 if (*(REGISTER_NAME (regnum)) == '\0')
4278 error ("Not a valid register for the current processor type");
4279
e11c53d2
AC
4280 mips_print_register (file, frame, regnum, 0);
4281 fprintf_filtered (file, "\n");
c906108c 4282 }
c5aa993b
JM
4283 else
4284 /* do all (or most) registers */
c906108c 4285 {
a4b8ebc8
AC
4286 regnum = NUM_REGS;
4287 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4288 {
a4b8ebc8 4289 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4290 {
4291 if (all) /* true for "INFO ALL-REGISTERS" command */
4292 regnum = print_fp_register_row (file, frame, regnum);
4293 else
4294 regnum += MIPS_NUMREGS; /* skip floating point regs */
4295 }
c906108c 4296 else
e11c53d2 4297 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4298 }
4299 }
4300}
4301
c906108c
SS
4302/* Is this a branch with a delay slot? */
4303
a14ed312 4304static int is_delayed (unsigned long);
c906108c
SS
4305
4306static int
acdb74a0 4307is_delayed (unsigned long insn)
c906108c
SS
4308{
4309 int i;
4310 for (i = 0; i < NUMOPCODES; ++i)
4311 if (mips_opcodes[i].pinfo != INSN_MACRO
4312 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4313 break;
4314 return (i < NUMOPCODES
4315 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4316 | INSN_COND_BRANCH_DELAY
4317 | INSN_COND_BRANCH_LIKELY)));
4318}
4319
4320int
acdb74a0 4321mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4322{
4323 char buf[MIPS_INSTLEN];
4324
4325 /* There is no branch delay slot on MIPS16. */
4326 if (pc_is_mips16 (pc))
4327 return 0;
4328
4329 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4330 /* If error reading memory, guess that it is not a delayed branch. */
4331 return 0;
c5aa993b 4332 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4333}
4334
4335
4336/* Skip the PC past function prologue instructions (32-bit version).
4337 This is a helper function for mips_skip_prologue. */
4338
4339static CORE_ADDR
f7b9e9fc 4340mips32_skip_prologue (CORE_ADDR pc)
c906108c 4341{
c5aa993b
JM
4342 t_inst inst;
4343 CORE_ADDR end_pc;
4344 int seen_sp_adjust = 0;
4345 int load_immediate_bytes = 0;
4346
4347 /* Skip the typical prologue instructions. These are the stack adjustment
4348 instruction and the instructions that save registers on the stack
4349 or in the gcc frame. */
4350 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4351 {
4352 unsigned long high_word;
c906108c 4353
c5aa993b
JM
4354 inst = mips_fetch_instruction (pc);
4355 high_word = (inst >> 16) & 0xffff;
c906108c 4356
c5aa993b
JM
4357 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4358 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4359 seen_sp_adjust = 1;
4360 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4361 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4362 seen_sp_adjust = 1;
4363 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4364 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4365 && (inst & 0x001F0000)) /* reg != $zero */
4366 continue;
4367
4368 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4369 continue;
4370 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4371 /* sx reg,n($s8) */
4372 continue; /* reg != $zero */
4373
4374 /* move $s8,$sp. With different versions of gas this will be either
4375 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4376 Accept any one of these. */
4377 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4378 continue;
4379
4380 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4381 continue;
4382 else if (high_word == 0x3c1c) /* lui $gp,n */
4383 continue;
4384 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4385 continue;
4386 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4387 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4388 continue;
4389 /* The following instructions load $at or $t0 with an immediate
4390 value in preparation for a stack adjustment via
4391 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4392 a local variable, so we accept them only before a stack adjustment
4393 instruction was seen. */
4394 else if (!seen_sp_adjust)
4395 {
4396 if (high_word == 0x3c01 || /* lui $at,n */
4397 high_word == 0x3c08) /* lui $t0,n */
4398 {
4399 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4400 continue;
4401 }
4402 else if (high_word == 0x3421 || /* ori $at,$at,n */
4403 high_word == 0x3508 || /* ori $t0,$t0,n */
4404 high_word == 0x3401 || /* ori $at,$zero,n */
4405 high_word == 0x3408) /* ori $t0,$zero,n */
4406 {
4407 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4408 continue;
4409 }
4410 else
4411 break;
4412 }
4413 else
4414 break;
c906108c
SS
4415 }
4416
c5aa993b
JM
4417 /* In a frameless function, we might have incorrectly
4418 skipped some load immediate instructions. Undo the skipping
4419 if the load immediate was not followed by a stack adjustment. */
4420 if (load_immediate_bytes && !seen_sp_adjust)
4421 pc -= load_immediate_bytes;
4422 return pc;
c906108c
SS
4423}
4424
4425/* Skip the PC past function prologue instructions (16-bit version).
4426 This is a helper function for mips_skip_prologue. */
4427
4428static CORE_ADDR
f7b9e9fc 4429mips16_skip_prologue (CORE_ADDR pc)
c906108c 4430{
c5aa993b
JM
4431 CORE_ADDR end_pc;
4432 int extend_bytes = 0;
4433 int prev_extend_bytes;
c906108c 4434
c5aa993b
JM
4435 /* Table of instructions likely to be found in a function prologue. */
4436 static struct
c906108c
SS
4437 {
4438 unsigned short inst;
4439 unsigned short mask;
c5aa993b
JM
4440 }
4441 table[] =
4442 {
c906108c 4443 {
c5aa993b
JM
4444 0x6300, 0xff00
4445 }
4446 , /* addiu $sp,offset */
4447 {
4448 0xfb00, 0xff00
4449 }
4450 , /* daddiu $sp,offset */
4451 {
4452 0xd000, 0xf800
4453 }
4454 , /* sw reg,n($sp) */
4455 {
4456 0xf900, 0xff00
4457 }
4458 , /* sd reg,n($sp) */
4459 {
4460 0x6200, 0xff00
4461 }
4462 , /* sw $ra,n($sp) */
4463 {
4464 0xfa00, 0xff00
4465 }
4466 , /* sd $ra,n($sp) */
4467 {
4468 0x673d, 0xffff
4469 }
4470 , /* move $s1,sp */
4471 {
4472 0xd980, 0xff80
4473 }
4474 , /* sw $a0-$a3,n($s1) */
4475 {
4476 0x6704, 0xff1c
4477 }
4478 , /* move reg,$a0-$a3 */
4479 {
4480 0xe809, 0xf81f
4481 }
4482 , /* entry pseudo-op */
4483 {
4484 0x0100, 0xff00
4485 }
4486 , /* addiu $s1,$sp,n */
4487 {
4488 0, 0
4489 } /* end of table marker */
4490 };
4491
4492 /* Skip the typical prologue instructions. These are the stack adjustment
4493 instruction and the instructions that save registers on the stack
4494 or in the gcc frame. */
4495 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4496 {
4497 unsigned short inst;
4498 int i;
c906108c 4499
c5aa993b 4500 inst = mips_fetch_instruction (pc);
c906108c 4501
c5aa993b
JM
4502 /* Normally we ignore an extend instruction. However, if it is
4503 not followed by a valid prologue instruction, we must adjust
4504 the pc back over the extend so that it won't be considered
4505 part of the prologue. */
4506 if ((inst & 0xf800) == 0xf000) /* extend */
4507 {
4508 extend_bytes = MIPS16_INSTLEN;
4509 continue;
4510 }
4511 prev_extend_bytes = extend_bytes;
4512 extend_bytes = 0;
c906108c 4513
c5aa993b
JM
4514 /* Check for other valid prologue instructions besides extend. */
4515 for (i = 0; table[i].mask != 0; i++)
4516 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4517 break;
4518 if (table[i].mask != 0) /* it was in table? */
4519 continue; /* ignore it */
4520 else
4521 /* non-prologue */
4522 {
4523 /* Return the current pc, adjusted backwards by 2 if
4524 the previous instruction was an extend. */
4525 return pc - prev_extend_bytes;
4526 }
c906108c
SS
4527 }
4528 return pc;
4529}
4530
4531/* To skip prologues, I use this predicate. Returns either PC itself
4532 if the code at PC does not look like a function prologue; otherwise
4533 returns an address that (if we're lucky) follows the prologue. If
4534 LENIENT, then we must skip everything which is involved in setting
4535 up the frame (it's OK to skip more, just so long as we don't skip
4536 anything which might clobber the registers which are being saved.
4537 We must skip more in the case where part of the prologue is in the
4538 delay slot of a non-prologue instruction). */
4539
f7ab6ec6 4540static CORE_ADDR
f7b9e9fc 4541mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4542{
4543 /* See if we can determine the end of the prologue via the symbol table.
4544 If so, then return either PC, or the PC after the prologue, whichever
4545 is greater. */
4546
4547 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4548
4549 if (post_prologue_pc != 0)
4550 return max (pc, post_prologue_pc);
4551
4552 /* Can't determine prologue from the symbol table, need to examine
4553 instructions. */
4554
4555 if (pc_is_mips16 (pc))
f7b9e9fc 4556 return mips16_skip_prologue (pc);
c906108c 4557 else
f7b9e9fc 4558 return mips32_skip_prologue (pc);
c906108c 4559}
c906108c 4560
7a292a7a
SS
4561/* Determine how a return value is stored within the MIPS register
4562 file, given the return type `valtype'. */
4563
4564struct return_value_word
4565{
4566 int len;
4567 int reg;
4568 int reg_offset;
4569 int buf_offset;
4570};
4571
7a292a7a 4572static void
acdb74a0
AC
4573return_value_location (struct type *valtype,
4574 struct return_value_word *hi,
4575 struct return_value_word *lo)
7a292a7a
SS
4576{
4577 int len = TYPE_LENGTH (valtype);
c5aa993b 4578
7a292a7a
SS
4579 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4580 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4581 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4582 {
4583 if (!FP_REGISTER_DOUBLE && len == 8)
4584 {
4585 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4586 spread them across a floating-point register pair. */
d7449b42
AC
4587 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4588 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4589 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea 4590 && DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
7a292a7a
SS
4591 ? 4 : 0);
4592 hi->reg_offset = lo->reg_offset;
4593 lo->reg = FP0_REGNUM + 0;
4594 hi->reg = FP0_REGNUM + 1;
4595 lo->len = 4;
4596 hi->len = 4;
4597 }
4598 else
4599 {
4600 /* The floating point value fits in a single floating-point
c5aa993b 4601 register. */
d7449b42 4602 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea 4603 && DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 8
7a292a7a
SS
4604 && len == 4)
4605 ? 4 : 0);
4606 lo->reg = FP0_REGNUM;
4607 lo->len = len;
4608 lo->buf_offset = 0;
4609 hi->len = 0;
4610 hi->reg_offset = 0;
4611 hi->buf_offset = 0;
4612 hi->reg = 0;
4613 }
4614 }
4615 else
4616 {
4617 /* Locate a result possibly spread across two registers. */
4618 int regnum = 2;
4619 lo->reg = regnum + 0;
4620 hi->reg = regnum + 1;
d7449b42 4621 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4622 && len < MIPS_SAVED_REGSIZE)
4623 {
bf1f5b4c
MS
4624 /* "un-left-justify" the value in the low register */
4625 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4626 lo->len = len;
bf1f5b4c 4627 hi->reg_offset = 0;
7a292a7a
SS
4628 hi->len = 0;
4629 }
d7449b42 4630 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4631 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4632 && len < MIPS_SAVED_REGSIZE * 2
4633 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4634 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4635 {
4636 /* "un-left-justify" the value spread across two registers. */
4637 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4638 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4639 hi->reg_offset = 0;
4640 hi->len = len - lo->len;
4641 }
4642 else
4643 {
4644 /* Only perform a partial copy of the second register. */
4645 lo->reg_offset = 0;
4646 hi->reg_offset = 0;
4647 if (len > MIPS_SAVED_REGSIZE)
4648 {
4649 lo->len = MIPS_SAVED_REGSIZE;
4650 hi->len = len - MIPS_SAVED_REGSIZE;
4651 }
4652 else
4653 {
4654 lo->len = len;
4655 hi->len = 0;
4656 }
4657 }
d7449b42 4658 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea 4659 && DEPRECATED_REGISTER_RAW_SIZE (regnum) == 8
7a292a7a
SS
4660 && MIPS_SAVED_REGSIZE == 4)
4661 {
4662 /* Account for the fact that only the least-signficant part
c5aa993b 4663 of the register is being used */
7a292a7a
SS
4664 lo->reg_offset += 4;
4665 hi->reg_offset += 4;
4666 }
4667 lo->buf_offset = 0;
4668 hi->buf_offset = lo->len;
4669 }
4670}
4671
4672/* Given a return value in `regbuf' with a type `valtype', extract and
4673 copy its value into `valbuf'. */
4674
46cac009
AC
4675static void
4676mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4677 char regbuf[],
46cac009
AC
4678 char *valbuf)
4679{
4680 struct return_value_word lo;
4681 struct return_value_word hi;
4682 return_value_location (valtype, &hi, &lo);
4683
4684 memcpy (valbuf + lo.buf_offset,
62700349 4685 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4686 lo.len);
4687
4688 if (hi.len > 0)
4689 memcpy (valbuf + hi.buf_offset,
62700349 4690 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4691 hi.len);
4692}
4693
46cac009
AC
4694static void
4695mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4696 char regbuf[],
46cac009
AC
4697 char *valbuf)
4698{
4699 struct return_value_word lo;
4700 struct return_value_word hi;
4701 return_value_location (valtype, &hi, &lo);
4702
4703 memcpy (valbuf + lo.buf_offset,
62700349 4704 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4705 lo.len);
4706
4707 if (hi.len > 0)
4708 memcpy (valbuf + hi.buf_offset,
62700349 4709 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4710 hi.len);
4711}
4712
7a292a7a
SS
4713/* Given a return value in `valbuf' with a type `valtype', write it's
4714 value into the appropriate register. */
4715
46cac009
AC
4716static void
4717mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4718{
d9d9c31f 4719 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4720 struct return_value_word lo;
4721 struct return_value_word hi;
4722 return_value_location (valtype, &hi, &lo);
4723
4724 memset (raw_buffer, 0, sizeof (raw_buffer));
4725 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4726 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
12c266ea 4727 DEPRECATED_REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4728
4729 if (hi.len > 0)
4730 {
4731 memset (raw_buffer, 0, sizeof (raw_buffer));
4732 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4733 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
12c266ea 4734 DEPRECATED_REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4735 }
4736}
4737
4738static void
cb1d2653 4739mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4740{
d9d9c31f 4741 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4742 struct return_value_word lo;
4743 struct return_value_word hi;
4744 return_value_location (valtype, &hi, &lo);
4745
4746 memset (raw_buffer, 0, sizeof (raw_buffer));
4747 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4748 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
12c266ea 4749 DEPRECATED_REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4750
4751 if (hi.len > 0)
4752 {
4753 memset (raw_buffer, 0, sizeof (raw_buffer));
4754 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4755 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
12c266ea 4756 DEPRECATED_REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4757 }
4758}
4759
cb1d2653
AC
4760/* O32 ABI stuff. */
4761
46cac009 4762static void
cb1d2653
AC
4763mips_o32_xfer_return_value (struct type *type,
4764 struct regcache *regcache,
4765 bfd_byte *in, const bfd_byte *out)
46cac009 4766{
cb1d2653
AC
4767 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4768 if (TYPE_CODE (type) == TYPE_CODE_FLT
4769 && TYPE_LENGTH (type) == 4
4770 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4771 {
cb1d2653
AC
4772 /* A single-precision floating-point value. It fits in the
4773 least significant part of FP0. */
4774 if (mips_debug)
4775 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
a4b8ebc8 4776 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
cb1d2653
AC
4777 TARGET_BYTE_ORDER, in, out, 0);
4778 }
4779 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4780 && TYPE_LENGTH (type) == 8
4781 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4782 {
a4b8ebc8
AC
4783 /* A double-precision floating-point value. The most
4784 significant part goes in FP1, and the least significant in
4785 FP0. */
cb1d2653 4786 if (mips_debug)
a4b8ebc8 4787 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
cb1d2653
AC
4788 switch (TARGET_BYTE_ORDER)
4789 {
4790 case BFD_ENDIAN_LITTLE:
a4b8ebc8 4791 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
cb1d2653 4792 TARGET_BYTE_ORDER, in, out, 0);
a4b8ebc8 4793 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
cb1d2653
AC
4794 TARGET_BYTE_ORDER, in, out, 4);
4795 break;
4796 case BFD_ENDIAN_BIG:
a4b8ebc8 4797 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
cb1d2653 4798 TARGET_BYTE_ORDER, in, out, 0);
a4b8ebc8 4799 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
cb1d2653
AC
4800 TARGET_BYTE_ORDER, in, out, 4);
4801 break;
4802 default:
4803 internal_error (__FILE__, __LINE__, "bad switch");
4804 }
4805 }
4806#if 0
4807 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4808 && TYPE_NFIELDS (type) <= 2
4809 && TYPE_NFIELDS (type) >= 1
4810 && ((TYPE_NFIELDS (type) == 1
4811 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4812 == TYPE_CODE_FLT))
4813 || (TYPE_NFIELDS (type) == 2
4814 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4815 == TYPE_CODE_FLT)
4816 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4817 == TYPE_CODE_FLT)))
4818 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4819 {
4820 /* A struct that contains one or two floats. Each value is part
4821 in the least significant part of their floating point
4822 register.. */
d9d9c31f 4823 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4824 int regnum;
4825 int field;
4826 for (field = 0, regnum = FP0_REGNUM;
4827 field < TYPE_NFIELDS (type);
4828 field++, regnum += 2)
4829 {
4830 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4831 / TARGET_CHAR_BIT);
4832 if (mips_debug)
4833 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4834 mips_xfer_register (regcache, NUM_REGS + regnum,
4835 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
cb1d2653
AC
4836 TARGET_BYTE_ORDER, in, out, offset);
4837 }
4838 }
4839#endif
4840#if 0
4841 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4842 || TYPE_CODE (type) == TYPE_CODE_UNION)
4843 {
4844 /* A structure or union. Extract the left justified value,
4845 regardless of the byte order. I.e. DO NOT USE
4846 mips_xfer_lower. */
4847 int offset;
4848 int regnum;
4849 for (offset = 0, regnum = V0_REGNUM;
4850 offset < TYPE_LENGTH (type);
12c266ea 4851 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
cb1d2653 4852 {
12c266ea 4853 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
cb1d2653
AC
4854 if (offset + xfer > TYPE_LENGTH (type))
4855 xfer = TYPE_LENGTH (type) - offset;
4856 if (mips_debug)
4857 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4858 offset, xfer, regnum);
a4b8ebc8
AC
4859 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4860 BFD_ENDIAN_UNKNOWN, in, out, offset);
cb1d2653
AC
4861 }
4862 }
4863#endif
4864 else
4865 {
4866 /* A scalar extract each part but least-significant-byte
4867 justified. o32 thinks registers are 4 byte, regardless of
4868 the ISA. mips_stack_argsize controls this. */
4869 int offset;
4870 int regnum;
4871 for (offset = 0, regnum = V0_REGNUM;
4872 offset < TYPE_LENGTH (type);
4873 offset += mips_stack_argsize (), regnum++)
4874 {
4875 int xfer = mips_stack_argsize ();
4876 int pos = 0;
4877 if (offset + xfer > TYPE_LENGTH (type))
4878 xfer = TYPE_LENGTH (type) - offset;
4879 if (mips_debug)
4880 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4881 offset, xfer, regnum);
a4b8ebc8
AC
4882 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4883 TARGET_BYTE_ORDER, in, out, offset);
cb1d2653 4884 }
46cac009
AC
4885 }
4886}
4887
cb1d2653
AC
4888static void
4889mips_o32_extract_return_value (struct type *type,
4890 struct regcache *regcache,
ebba8386 4891 void *valbuf)
cb1d2653
AC
4892{
4893 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4894}
4895
4896static void
4897mips_o32_store_return_value (struct type *type, char *valbuf)
4898{
4899 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4900}
4901
4902/* N32/N44 ABI stuff. */
4903
46cac009 4904static void
88658117
AC
4905mips_n32n64_xfer_return_value (struct type *type,
4906 struct regcache *regcache,
4907 bfd_byte *in, const bfd_byte *out)
c906108c 4908{
88658117
AC
4909 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4910 if (TYPE_CODE (type) == TYPE_CODE_FLT
4911 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4912 {
88658117
AC
4913 /* A floating-point value belongs in the least significant part
4914 of FP0. */
4915 if (mips_debug)
4916 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
a4b8ebc8 4917 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
88658117
AC
4918 TARGET_BYTE_ORDER, in, out, 0);
4919 }
4920 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4921 && TYPE_NFIELDS (type) <= 2
4922 && TYPE_NFIELDS (type) >= 1
4923 && ((TYPE_NFIELDS (type) == 1
4924 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4925 == TYPE_CODE_FLT))
4926 || (TYPE_NFIELDS (type) == 2
4927 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4928 == TYPE_CODE_FLT)
4929 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4930 == TYPE_CODE_FLT)))
4931 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4932 {
4933 /* A struct that contains one or two floats. Each value is part
4934 in the least significant part of their floating point
4935 register.. */
d9d9c31f 4936 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4937 int regnum;
4938 int field;
4939 for (field = 0, regnum = FP0_REGNUM;
4940 field < TYPE_NFIELDS (type);
4941 field++, regnum += 2)
4942 {
4943 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4944 / TARGET_CHAR_BIT);
4945 if (mips_debug)
4946 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4947 mips_xfer_register (regcache, NUM_REGS + regnum,
4948 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
88658117
AC
4949 TARGET_BYTE_ORDER, in, out, offset);
4950 }
7a292a7a 4951 }
88658117
AC
4952 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4953 || TYPE_CODE (type) == TYPE_CODE_UNION)
4954 {
4955 /* A structure or union. Extract the left justified value,
4956 regardless of the byte order. I.e. DO NOT USE
4957 mips_xfer_lower. */
4958 int offset;
4959 int regnum;
4960 for (offset = 0, regnum = V0_REGNUM;
4961 offset < TYPE_LENGTH (type);
12c266ea 4962 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
88658117 4963 {
12c266ea 4964 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
88658117
AC
4965 if (offset + xfer > TYPE_LENGTH (type))
4966 xfer = TYPE_LENGTH (type) - offset;
4967 if (mips_debug)
4968 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4969 offset, xfer, regnum);
a4b8ebc8
AC
4970 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4971 BFD_ENDIAN_UNKNOWN, in, out, offset);
88658117
AC
4972 }
4973 }
4974 else
4975 {
4976 /* A scalar extract each part but least-significant-byte
4977 justified. */
4978 int offset;
4979 int regnum;
4980 for (offset = 0, regnum = V0_REGNUM;
4981 offset < TYPE_LENGTH (type);
12c266ea 4982 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
88658117 4983 {
12c266ea 4984 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
88658117
AC
4985 int pos = 0;
4986 if (offset + xfer > TYPE_LENGTH (type))
4987 xfer = TYPE_LENGTH (type) - offset;
4988 if (mips_debug)
4989 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4990 offset, xfer, regnum);
a4b8ebc8
AC
4991 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4992 TARGET_BYTE_ORDER, in, out, offset);
88658117
AC
4993 }
4994 }
4995}
4996
4997static void
4998mips_n32n64_extract_return_value (struct type *type,
4999 struct regcache *regcache,
ebba8386 5000 void *valbuf)
88658117
AC
5001{
5002 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
5003}
5004
5005static void
5006mips_n32n64_store_return_value (struct type *type, char *valbuf)
5007{
5008 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
5009}
5010
2f1488ce 5011static CORE_ADDR
6672060b 5012mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
5013{
5014 /* FIXME: This will only work at random. The caller passes the
5015 struct_return address in V0, but it is not preserved. It may
5016 still be there, or this may be a random value. */
77d8f2b4
MS
5017 LONGEST val;
5018
5019 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 5020 return val;
2f1488ce
MS
5021}
5022
c906108c
SS
5023/* Exported procedure: Is PC in the signal trampoline code */
5024
102182a9
MS
5025static int
5026mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
5027{
5028 if (sigtramp_address == 0)
5029 fixup_sigtramp ();
5030 return (pc >= sigtramp_address && pc < sigtramp_end);
5031}
5032
a5ea2558
AC
5033/* Root of all "set mips "/"show mips " commands. This will eventually be
5034 used for all MIPS-specific commands. */
5035
a5ea2558 5036static void
acdb74a0 5037show_mips_command (char *args, int from_tty)
a5ea2558
AC
5038{
5039 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5040}
5041
a5ea2558 5042static void
acdb74a0 5043set_mips_command (char *args, int from_tty)
a5ea2558
AC
5044{
5045 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5046 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5047}
5048
c906108c
SS
5049/* Commands to show/set the MIPS FPU type. */
5050
c906108c 5051static void
acdb74a0 5052show_mipsfpu_command (char *args, int from_tty)
c906108c 5053{
c906108c
SS
5054 char *fpu;
5055 switch (MIPS_FPU_TYPE)
5056 {
5057 case MIPS_FPU_SINGLE:
5058 fpu = "single-precision";
5059 break;
5060 case MIPS_FPU_DOUBLE:
5061 fpu = "double-precision";
5062 break;
5063 case MIPS_FPU_NONE:
5064 fpu = "absent (none)";
5065 break;
93d56215
AC
5066 default:
5067 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5068 }
5069 if (mips_fpu_type_auto)
5070 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5071 fpu);
5072 else
5073 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5074 fpu);
5075}
5076
5077
c906108c 5078static void
acdb74a0 5079set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5080{
5081 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5082 show_mipsfpu_command (args, from_tty);
5083}
5084
c906108c 5085static void
acdb74a0 5086set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5087{
5088 mips_fpu_type = MIPS_FPU_SINGLE;
5089 mips_fpu_type_auto = 0;
9e364162 5090 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5091}
5092
c906108c 5093static void
acdb74a0 5094set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5095{
5096 mips_fpu_type = MIPS_FPU_DOUBLE;
5097 mips_fpu_type_auto = 0;
9e364162 5098 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5099}
5100
c906108c 5101static void
acdb74a0 5102set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5103{
5104 mips_fpu_type = MIPS_FPU_NONE;
5105 mips_fpu_type_auto = 0;
9e364162 5106 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5107}
5108
c906108c 5109static void
acdb74a0 5110set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5111{
5112 mips_fpu_type_auto = 1;
5113}
5114
5115/* Command to set the processor type. */
5116
5117void
acdb74a0 5118mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5119{
5120 int i;
5121
5122 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5123 {
5124 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5125 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5126 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5127
5128 /* Restore the value. */
4fcf66da 5129 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5130
5131 return;
5132 }
c5aa993b 5133
c906108c
SS
5134 if (!mips_set_processor_type (tmp_mips_processor_type))
5135 {
5136 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5137 /* Restore its value. */
4fcf66da 5138 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5139 }
5140}
5141
5142static void
acdb74a0 5143mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5144{
5145}
5146
5147/* Modify the actual processor type. */
5148
5a89d8aa 5149static int
acdb74a0 5150mips_set_processor_type (char *str)
c906108c 5151{
1012bd0e 5152 int i;
c906108c
SS
5153
5154 if (str == NULL)
5155 return 0;
5156
5157 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5158 {
5159 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5160 {
5161 mips_processor_type = str;
cce74817 5162 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5163 return 1;
c906108c
SS
5164 /* FIXME tweak fpu flag too */
5165 }
5166 }
5167
5168 return 0;
5169}
5170
5171/* Attempt to identify the particular processor model by reading the
5172 processor id. */
5173
5174char *
acdb74a0 5175mips_read_processor_type (void)
c906108c
SS
5176{
5177 CORE_ADDR prid;
5178
5179 prid = read_register (PRID_REGNUM);
5180
5181 if ((prid & ~0xf) == 0x700)
c5aa993b 5182 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5183
5184 return NULL;
5185}
5186
5187/* Just like reinit_frame_cache, but with the right arguments to be
5188 callable as an sfunc. */
5189
5190static void
acdb74a0
AC
5191reinit_frame_cache_sfunc (char *args, int from_tty,
5192 struct cmd_list_element *c)
c906108c
SS
5193{
5194 reinit_frame_cache ();
5195}
5196
a89aa300
AC
5197static int
5198gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 5199{
e5ab0dce 5200 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5201 mips_extra_func_info_t proc_desc;
5202
5203 /* Search for the function containing this address. Set the low bit
5204 of the address when searching, in case we were given an even address
5205 that is the start of a 16-bit function. If we didn't do this,
5206 the search would fail because the symbol table says the function
5207 starts at an odd address, i.e. 1 byte past the given address. */
5208 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5209 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5210
5211 /* Make an attempt to determine if this is a 16-bit function. If
5212 the procedure descriptor exists and the address therein is odd,
5213 it's definitely a 16-bit function. Otherwise, we have to just
5214 guess that if the address passed in is odd, it's 16-bits. */
d31431ed
AC
5215 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5216 disassembler needs to be able to locally determine the ISA, and
5217 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5218 work. */
c906108c 5219 if (proc_desc)
d31431ed
AC
5220 {
5221 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5222 info->mach = bfd_mach_mips16;
5223 }
c906108c 5224 else
d31431ed
AC
5225 {
5226 if (pc_is_mips16 (memaddr))
5227 info->mach = bfd_mach_mips16;
5228 }
c906108c
SS
5229
5230 /* Round down the instruction address to the appropriate boundary. */
65c11066 5231 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5232
e5ab0dce
AC
5233 /* Set the disassembler options. */
5234 if (tdep->mips_abi == MIPS_ABI_N32
5235 || tdep->mips_abi == MIPS_ABI_N64)
5236 {
5237 /* Set up the disassembler info, so that we get the right
5238 register names from libopcodes. */
5239 if (tdep->mips_abi == MIPS_ABI_N32)
5240 info->disassembler_options = "gpr-names=n32";
5241 else
5242 info->disassembler_options = "gpr-names=64";
5243 info->flavour = bfd_target_elf_flavour;
5244 }
5245 else
5246 /* This string is not recognized explicitly by the disassembler,
5247 but it tells the disassembler to not try to guess the ABI from
5248 the bfd elf headers, such that, if the user overrides the ABI
5249 of a program linked as NewABI, the disassembly will follow the
5250 register naming conventions specified by the user. */
5251 info->disassembler_options = "gpr-names=32";
5252
c906108c 5253 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5254 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5255 return print_insn_big_mips (memaddr, info);
5256 else
5257 return print_insn_little_mips (memaddr, info);
5258}
5259
c906108c
SS
5260/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5261 counter value to determine whether a 16- or 32-bit breakpoint should be
5262 used. It returns a pointer to a string of bytes that encode a breakpoint
5263 instruction, stores the length of the string to *lenptr, and adjusts pc
5264 (if necessary) to point to the actual memory location where the
5265 breakpoint should be inserted. */
5266
f7ab6ec6 5267static const unsigned char *
acdb74a0 5268mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5269{
d7449b42 5270 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5271 {
5272 if (pc_is_mips16 (*pcptr))
5273 {
aaab4dba 5274 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5275 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5276 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5277 return mips16_big_breakpoint;
5278 }
5279 else
5280 {
aaab4dba
AC
5281 /* The IDT board uses an unusual breakpoint value, and
5282 sometimes gets confused when it sees the usual MIPS
5283 breakpoint instruction. */
5284 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5285 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5286 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5287
c5aa993b 5288 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5289
5290 if (strcmp (target_shortname, "mips") == 0)
5291 return idt_big_breakpoint;
5292 else if (strcmp (target_shortname, "ddb") == 0
5293 || strcmp (target_shortname, "pmon") == 0
5294 || strcmp (target_shortname, "lsi") == 0)
5295 return pmon_big_breakpoint;
5296 else
5297 return big_breakpoint;
5298 }
5299 }
5300 else
5301 {
5302 if (pc_is_mips16 (*pcptr))
5303 {
aaab4dba 5304 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5305 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5306 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5307 return mips16_little_breakpoint;
5308 }
5309 else
5310 {
aaab4dba
AC
5311 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5312 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5313 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5314
c5aa993b 5315 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5316
5317 if (strcmp (target_shortname, "mips") == 0)
5318 return idt_little_breakpoint;
5319 else if (strcmp (target_shortname, "ddb") == 0
5320 || strcmp (target_shortname, "pmon") == 0
5321 || strcmp (target_shortname, "lsi") == 0)
5322 return pmon_little_breakpoint;
5323 else
5324 return little_breakpoint;
5325 }
5326 }
5327}
5328
5329/* If PC is in a mips16 call or return stub, return the address of the target
5330 PC, which is either the callee or the caller. There are several
5331 cases which must be handled:
5332
5333 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5334 target PC is in $31 ($ra).
c906108c 5335 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5336 and the target PC is in $2.
c906108c 5337 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5338 before the jal instruction, this is effectively a call stub
5339 and the the target PC is in $2. Otherwise this is effectively
5340 a return stub and the target PC is in $18.
c906108c
SS
5341
5342 See the source code for the stubs in gcc/config/mips/mips16.S for
5343 gory details.
5344
5345 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5346 */
c906108c 5347
757a7cc6 5348static CORE_ADDR
acdb74a0 5349mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5350{
5351 char *name;
5352 CORE_ADDR start_addr;
5353
5354 /* Find the starting address and name of the function containing the PC. */
5355 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5356 return 0;
5357
5358 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5359 target PC is in $31 ($ra). */
5360 if (strcmp (name, "__mips16_ret_sf") == 0
5361 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5362 return read_signed_register (RA_REGNUM);
c906108c
SS
5363
5364 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5365 {
5366 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5367 and the target PC is in $2. */
5368 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5369 return read_signed_register (2);
c906108c
SS
5370
5371 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5372 before the jal instruction, this is effectively a call stub
5373 and the the target PC is in $2. Otherwise this is effectively
5374 a return stub and the target PC is in $18. */
c906108c
SS
5375 else if (name[19] == 's' || name[19] == 'd')
5376 {
5377 if (pc == start_addr)
5378 {
5379 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5380 stub. Such a stub for a function bar might have a name
5381 like __fn_stub_bar, and might look like this:
5382 mfc1 $4,$f13
5383 mfc1 $5,$f12
5384 mfc1 $6,$f15
5385 mfc1 $7,$f14
5386 la $1,bar (becomes a lui/addiu pair)
5387 jr $1
5388 So scan down to the lui/addi and extract the target
5389 address from those two instructions. */
c906108c 5390
6c997a34 5391 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5392 t_inst inst;
5393 int i;
5394
5395 /* See if the name of the target function is __fn_stub_*. */
5396 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5397 return target_pc;
5398 if (strncmp (name, "__fn_stub_", 10) != 0
5399 && strcmp (name, "etext") != 0
5400 && strcmp (name, "_etext") != 0)
5401 return target_pc;
5402
5403 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5404 The limit on the search is arbitrarily set to 20
5405 instructions. FIXME. */
c906108c
SS
5406 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5407 {
c5aa993b
JM
5408 inst = mips_fetch_instruction (target_pc);
5409 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5410 pc = (inst << 16) & 0xffff0000; /* high word */
5411 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5412 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5413 }
5414
5415 /* Couldn't find the lui/addui pair, so return stub address. */
5416 return target_pc;
5417 }
5418 else
5419 /* This is the 'return' part of a call stub. The return
5420 address is in $r18. */
6c997a34 5421 return read_signed_register (18);
c906108c
SS
5422 }
5423 }
c5aa993b 5424 return 0; /* not a stub */
c906108c
SS
5425}
5426
5427
5428/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5429 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5430
757a7cc6 5431static int
acdb74a0 5432mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5433{
5434 CORE_ADDR start_addr;
5435
5436 /* Find the starting address of the function containing the PC. If the
5437 caller didn't give us a name, look it up at the same time. */
5438 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5439 return 0;
5440
5441 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5442 {
5443 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5444 if (name[19] >= '0' && name[19] <= '9')
5445 return 1;
5446 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5447 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5448 else if (name[19] == 's' || name[19] == 'd')
5449 return pc == start_addr;
5450 }
5451
c5aa993b 5452 return 0; /* not a stub */
c906108c
SS
5453}
5454
5455
5456/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5457 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5458
e41b17f0 5459static int
acdb74a0 5460mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5461{
5462 CORE_ADDR start_addr;
5463
5464 /* Find the starting address of the function containing the PC. */
5465 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5466 return 0;
5467
5468 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5469 if (strcmp (name, "__mips16_ret_sf") == 0
5470 || strcmp (name, "__mips16_ret_df") == 0)
5471 return 1;
5472
5473 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5474 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5475 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5476 && (name[19] == 's' || name[19] == 'd')
5477 && pc != start_addr)
5478 return 1;
5479
c5aa993b 5480 return 0; /* not a stub */
c906108c
SS
5481}
5482
5483
5484/* Return non-zero if the PC is in a library helper function that should
5485 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5486
5487int
acdb74a0 5488mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5489{
5490 char *name;
5491
5492 /* Find the starting address and name of the function containing the PC. */
5493 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5494 return 0;
5495
5496 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5497 that we want to ignore. */
5498 return (strcmp (name, "__mips16_ret_sf") == 0
5499 || strcmp (name, "__mips16_ret_df") == 0);
5500}
5501
5502
47a8d4ba
AC
5503/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5504 the register stored on the stack (32) is different to its real raw
5505 size (64). The below ensures that registers are fetched from the
5506 stack using their ABI size and then stored into the RAW_BUFFER
5507 using their raw size.
5508
5509 The alternative to adding this function would be to add an ABI
5510 macro - REGISTER_STACK_SIZE(). */
5511
5512static void
acdb74a0 5513mips_get_saved_register (char *raw_buffer,
795e1e11 5514 int *optimizedp,
acdb74a0
AC
5515 CORE_ADDR *addrp,
5516 struct frame_info *frame,
5517 int regnum,
795e1e11 5518 enum lval_type *lvalp)
47a8d4ba 5519{
795e1e11
AC
5520 CORE_ADDR addrx;
5521 enum lval_type lvalx;
5522 int optimizedx;
6e51443a 5523 int realnumx;
47a8d4ba 5524
a4b8ebc8
AC
5525 /* Always a pseudo. */
5526 gdb_assert (regnum >= NUM_REGS);
47a8d4ba 5527
795e1e11
AC
5528 /* Make certain that all needed parameters are present. */
5529 if (addrp == NULL)
5530 addrp = &addrx;
5531 if (lvalp == NULL)
5532 lvalp = &lvalx;
5533 if (optimizedp == NULL)
5534 optimizedp = &optimizedx;
a4b8ebc8
AC
5535
5536 if ((regnum % NUM_REGS) == SP_REGNUM)
5537 /* The SP_REGNUM is special, its value is stored in saved_regs.
5538 In fact, it is so special that it can even only be fetched
5539 using a raw register number! Once this code as been converted
5540 to frame-unwind the problem goes away. */
5541 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5542 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5543 &realnumx, raw_buffer);
5544 else
5545 /* Get it from the next frame. */
5546 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5547 regnum, optimizedp, lvalp, addrp,
5548 &realnumx, raw_buffer);
47a8d4ba 5549}
2acceee2 5550
f7b9e9fc
AC
5551/* Immediately after a function call, return the saved pc.
5552 Can't always go through the frames for this because on some machines
5553 the new frame is not set up until the new function executes
5554 some instructions. */
5555
5556static CORE_ADDR
5557mips_saved_pc_after_call (struct frame_info *frame)
5558{
6c997a34 5559 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5560}
5561
5562
a4b8ebc8
AC
5563/* Convert a dbx stab register number (from `r' declaration) to a GDB
5564 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5565
5566static int
5567mips_stab_reg_to_regnum (int num)
5568{
a4b8ebc8 5569 int regnum;
2f38ef89 5570 if (num >= 0 && num < 32)
a4b8ebc8 5571 regnum = num;
2f38ef89 5572 else if (num >= 38 && num < 70)
a4b8ebc8 5573 regnum = num + FP0_REGNUM - 38;
040b99fd 5574 else if (num == 70)
a4b8ebc8 5575 regnum = HI_REGNUM;
040b99fd 5576 else if (num == 71)
a4b8ebc8 5577 regnum = LO_REGNUM;
2f38ef89 5578 else
a4b8ebc8
AC
5579 /* This will hopefully (eventually) provoke a warning. Should
5580 we be calling complaint() here? */
5581 return NUM_REGS + NUM_PSEUDO_REGS;
5582 return NUM_REGS + regnum;
88c72b7d
AC
5583}
5584
2f38ef89 5585
a4b8ebc8
AC
5586/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5587 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5588
5589static int
2f38ef89 5590mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5591{
a4b8ebc8 5592 int regnum;
2f38ef89 5593 if (num >= 0 && num < 32)
a4b8ebc8 5594 regnum = num;
2f38ef89 5595 else if (num >= 32 && num < 64)
a4b8ebc8 5596 regnum = num + FP0_REGNUM - 32;
040b99fd 5597 else if (num == 64)
a4b8ebc8 5598 regnum = HI_REGNUM;
040b99fd 5599 else if (num == 65)
a4b8ebc8 5600 regnum = LO_REGNUM;
2f38ef89 5601 else
a4b8ebc8
AC
5602 /* This will hopefully (eventually) provoke a warning. Should we
5603 be calling complaint() here? */
5604 return NUM_REGS + NUM_PSEUDO_REGS;
5605 return NUM_REGS + regnum;
5606}
5607
5608static int
5609mips_register_sim_regno (int regnum)
5610{
5611 /* Only makes sense to supply raw registers. */
5612 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5613 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5614 decide if it is valid. Should instead define a standard sim/gdb
5615 register numbering scheme. */
5616 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5617 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5618 return regnum;
5619 else
5620 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5621}
5622
2f38ef89 5623
fc0c74b1
AC
5624/* Convert an integer into an address. By first converting the value
5625 into a pointer and then extracting it signed, the address is
5626 guarenteed to be correctly sign extended. */
5627
5628static CORE_ADDR
5629mips_integer_to_address (struct type *type, void *buf)
5630{
5631 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5632 LONGEST val = unpack_long (type, buf);
5633 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5634 return extract_signed_integer (tmp,
5635 TYPE_LENGTH (builtin_type_void_data_ptr));
5636}
5637
caaa3122
DJ
5638static void
5639mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5640{
5641 enum mips_abi *abip = (enum mips_abi *) obj;
5642 const char *name = bfd_get_section_name (abfd, sect);
5643
5644 if (*abip != MIPS_ABI_UNKNOWN)
5645 return;
5646
5647 if (strncmp (name, ".mdebug.", 8) != 0)
5648 return;
5649
5650 if (strcmp (name, ".mdebug.abi32") == 0)
5651 *abip = MIPS_ABI_O32;
5652 else if (strcmp (name, ".mdebug.abiN32") == 0)
5653 *abip = MIPS_ABI_N32;
62a49b2c 5654 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5655 *abip = MIPS_ABI_N64;
caaa3122
DJ
5656 else if (strcmp (name, ".mdebug.abiO64") == 0)
5657 *abip = MIPS_ABI_O64;
5658 else if (strcmp (name, ".mdebug.eabi32") == 0)
5659 *abip = MIPS_ABI_EABI32;
5660 else if (strcmp (name, ".mdebug.eabi64") == 0)
5661 *abip = MIPS_ABI_EABI64;
5662 else
5663 warning ("unsupported ABI %s.", name + 8);
5664}
5665
2e4ebe70
DJ
5666static enum mips_abi
5667global_mips_abi (void)
5668{
5669 int i;
5670
5671 for (i = 0; mips_abi_strings[i] != NULL; i++)
5672 if (mips_abi_strings[i] == mips_abi_string)
5673 return (enum mips_abi) i;
5674
5675 internal_error (__FILE__, __LINE__,
5676 "unknown ABI string");
5677}
5678
c2d11a7d 5679static struct gdbarch *
acdb74a0
AC
5680mips_gdbarch_init (struct gdbarch_info info,
5681 struct gdbarch_list *arches)
c2d11a7d 5682{
c2d11a7d
JM
5683 struct gdbarch *gdbarch;
5684 struct gdbarch_tdep *tdep;
5685 int elf_flags;
2e4ebe70 5686 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 5687 int num_regs;
c2d11a7d 5688
70f80edf
JT
5689 elf_flags = 0;
5690
5691 if (info.abfd)
5692 {
5693 /* First of all, extract the elf_flags, if available. */
5694 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5695 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5696 }
c2d11a7d 5697
102182a9 5698 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5699 switch ((elf_flags & EF_MIPS_ABI))
5700 {
5701 case E_MIPS_ABI_O32:
5702 mips_abi = MIPS_ABI_O32;
5703 break;
5704 case E_MIPS_ABI_O64:
5705 mips_abi = MIPS_ABI_O64;
5706 break;
5707 case E_MIPS_ABI_EABI32:
5708 mips_abi = MIPS_ABI_EABI32;
5709 break;
5710 case E_MIPS_ABI_EABI64:
4a7f7ba8 5711 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5712 break;
5713 default:
acdb74a0
AC
5714 if ((elf_flags & EF_MIPS_ABI2))
5715 mips_abi = MIPS_ABI_N32;
5716 else
5717 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5718 break;
5719 }
acdb74a0 5720
caaa3122
DJ
5721 /* GCC creates a pseudo-section whose name describes the ABI. */
5722 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5723 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5724
2e4ebe70
DJ
5725 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5726 Use the ABI from the last architecture if there is one. */
5727 if (info.abfd == NULL && arches != NULL)
5728 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5729
32a6503c 5730 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5731 if (mips_abi == MIPS_ABI_UNKNOWN
5732 && info.bfd_arch_info != NULL
5733 && info.bfd_arch_info->arch == bfd_arch_mips)
5734 {
5735 switch (info.bfd_arch_info->mach)
5736 {
5737 case bfd_mach_mips3900:
5738 mips_abi = MIPS_ABI_EABI32;
5739 break;
5740 case bfd_mach_mips4100:
5741 case bfd_mach_mips5000:
5742 mips_abi = MIPS_ABI_EABI64;
5743 break;
1d06468c
EZ
5744 case bfd_mach_mips8000:
5745 case bfd_mach_mips10000:
32a6503c
KB
5746 /* On Irix, ELF64 executables use the N64 ABI. The
5747 pseudo-sections which describe the ABI aren't present
5748 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5749 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5750 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5751 mips_abi = MIPS_ABI_N64;
5752 else
5753 mips_abi = MIPS_ABI_N32;
1d06468c 5754 break;
bf64bfd6
AC
5755 }
5756 }
2e4ebe70 5757
2e4ebe70
DJ
5758 if (mips_abi == MIPS_ABI_UNKNOWN)
5759 mips_abi = MIPS_ABI_O32;
5760
5761 /* Now that we have found what the ABI for this binary would be,
5762 check whether the user is overriding it. */
5763 found_abi = mips_abi;
5764 wanted_abi = global_mips_abi ();
5765 if (wanted_abi != MIPS_ABI_UNKNOWN)
5766 mips_abi = wanted_abi;
5767
4b9b3959
AC
5768 if (gdbarch_debug)
5769 {
5770 fprintf_unfiltered (gdb_stdlog,
9ace0497 5771 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5772 elf_flags);
4b9b3959
AC
5773 fprintf_unfiltered (gdb_stdlog,
5774 "mips_gdbarch_init: mips_abi = %d\n",
5775 mips_abi);
2e4ebe70
DJ
5776 fprintf_unfiltered (gdb_stdlog,
5777 "mips_gdbarch_init: found_mips_abi = %d\n",
5778 found_abi);
4b9b3959 5779 }
0dadbba0 5780
c2d11a7d
JM
5781 /* try to find a pre-existing architecture */
5782 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5783 arches != NULL;
5784 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5785 {
5786 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5787 using. */
9103eae0 5788 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5789 continue;
9103eae0 5790 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5791 continue;
4be87837 5792 return arches->gdbarch;
c2d11a7d
JM
5793 }
5794
102182a9 5795 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5796 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5797 gdbarch = gdbarch_alloc (&info, tdep);
5798 tdep->elf_flags = elf_flags;
5799
102182a9 5800 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5801 set_gdbarch_short_bit (gdbarch, 16);
5802 set_gdbarch_int_bit (gdbarch, 32);
5803 set_gdbarch_float_bit (gdbarch, 32);
5804 set_gdbarch_double_bit (gdbarch, 64);
5805 set_gdbarch_long_double_bit (gdbarch, 64);
9c04cab7 5806 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
a4b8ebc8
AC
5807 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5808 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5809 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
2e4ebe70 5810 tdep->found_abi = found_abi;
0dadbba0 5811 tdep->mips_abi = mips_abi;
1d06468c 5812
f7ab6ec6
MS
5813 set_gdbarch_elf_make_msymbol_special (gdbarch,
5814 mips_elf_make_msymbol_special);
5815
a4b8ebc8 5816
4be87837 5817 if (info.osabi == GDB_OSABI_IRIX)
a4b8ebc8 5818 num_regs = 71;
fe29b929 5819 else
a4b8ebc8
AC
5820 num_regs = 90;
5821 set_gdbarch_num_regs (gdbarch, num_regs);
5822 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
fe29b929 5823
0dadbba0 5824 switch (mips_abi)
c2d11a7d 5825 {
0dadbba0 5826 case MIPS_ABI_O32:
25ab4790 5827 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
ebba8386 5828 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5829 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5830 tdep->mips_default_saved_regsize = 4;
0dadbba0 5831 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5832 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5833 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5834 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4014092b 5835 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5836 set_gdbarch_long_bit (gdbarch, 32);
5837 set_gdbarch_ptr_bit (gdbarch, 32);
5838 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5839 set_gdbarch_deprecated_reg_struct_has_addr
5840 (gdbarch, mips_o32_reg_struct_has_addr);
cb811fe7 5841 set_gdbarch_use_struct_convention (gdbarch,
1fd35568 5842 always_use_struct_convention);
c2d11a7d 5843 break;
0dadbba0 5844 case MIPS_ABI_O64:
25ab4790 5845 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5846 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5847 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5848 tdep->mips_default_saved_regsize = 8;
0dadbba0 5849 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5850 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5851 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5852 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
361d1df0 5853 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5854 set_gdbarch_long_bit (gdbarch, 32);
5855 set_gdbarch_ptr_bit (gdbarch, 32);
5856 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5857 set_gdbarch_deprecated_reg_struct_has_addr
5858 (gdbarch, mips_o32_reg_struct_has_addr);
b060cbea 5859 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
c2d11a7d 5860 break;
0dadbba0 5861 case MIPS_ABI_EABI32:
25ab4790 5862 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5863 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5864 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5865 tdep->mips_default_saved_regsize = 4;
0dadbba0 5866 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5867 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5868 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5869 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4014092b 5870 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5871 set_gdbarch_long_bit (gdbarch, 32);
5872 set_gdbarch_ptr_bit (gdbarch, 32);
5873 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5874 set_gdbarch_deprecated_reg_struct_has_addr
5875 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5876 set_gdbarch_use_struct_convention (gdbarch,
5877 mips_eabi_use_struct_convention);
c2d11a7d 5878 break;
0dadbba0 5879 case MIPS_ABI_EABI64:
25ab4790 5880 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5881 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5882 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5883 tdep->mips_default_saved_regsize = 8;
0dadbba0 5884 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5885 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5886 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5887 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4014092b 5888 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5889 set_gdbarch_long_bit (gdbarch, 64);
5890 set_gdbarch_ptr_bit (gdbarch, 64);
5891 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5892 set_gdbarch_deprecated_reg_struct_has_addr
5893 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5894 set_gdbarch_use_struct_convention (gdbarch,
5895 mips_eabi_use_struct_convention);
c2d11a7d 5896 break;
0dadbba0 5897 case MIPS_ABI_N32:
25ab4790 5898 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5899 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5900 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5901 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5902 tdep->mips_default_stack_argsize = 8;
5903 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5904 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5905 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4014092b 5906 tdep->default_mask_address_p = 0;
0dadbba0
AC
5907 set_gdbarch_long_bit (gdbarch, 32);
5908 set_gdbarch_ptr_bit (gdbarch, 32);
5909 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5910 set_gdbarch_use_struct_convention (gdbarch,
5911 mips_n32n64_use_struct_convention);
2110b94f
MK
5912 set_gdbarch_deprecated_reg_struct_has_addr
5913 (gdbarch, mips_n32n64_reg_struct_has_addr);
28d169de
KB
5914 break;
5915 case MIPS_ABI_N64:
25ab4790 5916 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5917 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5918 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5919 tdep->mips_default_saved_regsize = 8;
5920 tdep->mips_default_stack_argsize = 8;
5921 tdep->mips_fp_register_double = 1;
5922 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5923 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5924 tdep->default_mask_address_p = 0;
5925 set_gdbarch_long_bit (gdbarch, 64);
5926 set_gdbarch_ptr_bit (gdbarch, 64);
5927 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5928 set_gdbarch_use_struct_convention (gdbarch,
5929 mips_n32n64_use_struct_convention);
2110b94f
MK
5930 set_gdbarch_deprecated_reg_struct_has_addr
5931 (gdbarch, mips_n32n64_reg_struct_has_addr);
0dadbba0 5932 break;
c2d11a7d 5933 default:
2e4ebe70
DJ
5934 internal_error (__FILE__, __LINE__,
5935 "unknown ABI in switch");
c2d11a7d
JM
5936 }
5937
a5ea2558
AC
5938 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5939 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5940 comment:
5941
5942 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5943 flag in object files because to do so would make it impossible to
102182a9 5944 link with libraries compiled without "-gp32". This is
a5ea2558 5945 unnecessarily restrictive.
361d1df0 5946
a5ea2558
AC
5947 We could solve this problem by adding "-gp32" multilibs to gcc,
5948 but to set this flag before gcc is built with such multilibs will
5949 break too many systems.''
5950
5951 But even more unhelpfully, the default linker output target for
5952 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5953 for 64-bit programs - you need to change the ABI to change this,
102182a9 5954 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5955 this flag to detect 32-bit mode would do the wrong thing given
5956 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5957 as 32-bit programs by default. */
a5ea2558 5958
c2d11a7d
JM
5959 /* enable/disable the MIPS FPU */
5960 if (!mips_fpu_type_auto)
5961 tdep->mips_fpu_type = mips_fpu_type;
5962 else if (info.bfd_arch_info != NULL
5963 && info.bfd_arch_info->arch == bfd_arch_mips)
5964 switch (info.bfd_arch_info->mach)
5965 {
b0069a17 5966 case bfd_mach_mips3900:
c2d11a7d 5967 case bfd_mach_mips4100:
ed9a39eb 5968 case bfd_mach_mips4111:
c2d11a7d
JM
5969 tdep->mips_fpu_type = MIPS_FPU_NONE;
5970 break;
bf64bfd6
AC
5971 case bfd_mach_mips4650:
5972 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5973 break;
c2d11a7d
JM
5974 default:
5975 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5976 break;
5977 }
5978 else
5979 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5980
5981 /* MIPS version of register names. NOTE: At present the MIPS
5982 register name management is part way between the old -
77949794 5983 #undef/#define MIPS_REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5984 Further work on it is required. */
c2d11a7d 5985 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5986 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5987 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 5988 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5989 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5990
102182a9
MS
5991 /* Add/remove bits from an address. The MIPS needs be careful to
5992 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5993 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5994
10312cc4 5995 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5996 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5997 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
10312cc4 5998
102182a9 5999 /* Map debug register numbers onto internal register numbers. */
88c72b7d 6000 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
6001 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6002 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6003 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 6004 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 6005
c2d11a7d 6006 /* Initialize a frame */
e0f7ec59 6007 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 6008 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
6009
6010 /* MIPS version of CALL_DUMMY */
6011
9710e734
AC
6012 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6013 replaced by a command, and all targets will default to on stack
6014 (regardless of the stack's execute status). */
6015 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
749b82f6 6016 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 6017 set_gdbarch_frame_align (gdbarch, mips_frame_align);
a59fe496 6018 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
781a750d
AC
6019 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6020 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6021 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
d05285fa 6022
618ce49f 6023 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
6024 set_gdbarch_frameless_function_invocation (gdbarch,
6025 generic_frameless_function_invocation_not);
8bedc050 6026 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
6027 set_gdbarch_frame_args_skip (gdbarch, 0);
6028
129c1cd6 6029 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 6030
f7b9e9fc
AC
6031 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6032 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6033 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6034
6035 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 6036 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 6037
fc0c74b1
AC
6038 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6039 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6040 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6041
102182a9
MS
6042 set_gdbarch_function_start_offset (gdbarch, 0);
6043
a4b8ebc8 6044 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 6045
e11c53d2 6046 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 6047 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6048
e5ab0dce
AC
6049 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6050
3a3bc038
AC
6051 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6052 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6053 need to all be folded into the target vector. Since they are
6054 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6055 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6056 is sitting on? */
6057 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6058
70f80edf 6059 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6060 gdbarch_init_osabi (info, gdbarch);
70f80edf 6061
2f1488ce
MS
6062 set_gdbarch_extract_struct_value_address (gdbarch,
6063 mips_extract_struct_value_address);
757a7cc6
MS
6064
6065 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6066
6067 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6068 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6069
4b9b3959
AC
6070 return gdbarch;
6071}
6072
2e4ebe70
DJ
6073static void
6074mips_abi_update (char *ignore_args, int from_tty,
6075 struct cmd_list_element *c)
6076{
6077 struct gdbarch_info info;
6078
6079 /* Force the architecture to update, and (if it's a MIPS architecture)
6080 mips_gdbarch_init will take care of the rest. */
6081 gdbarch_info_init (&info);
6082 gdbarch_update_p (info);
6083}
6084
ad188201
KB
6085/* Print out which MIPS ABI is in use. */
6086
6087static void
6088show_mips_abi (char *ignore_args, int from_tty)
6089{
6090 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6091 printf_filtered (
6092 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6093 else
6094 {
6095 enum mips_abi global_abi = global_mips_abi ();
6096 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6097 const char *actual_abi_str = mips_abi_strings[actual_abi];
6098
6099 if (global_abi == MIPS_ABI_UNKNOWN)
6100 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6101 actual_abi_str);
6102 else if (global_abi == actual_abi)
6103 printf_filtered (
6104 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6105 actual_abi_str);
6106 else
6107 {
6108 /* Probably shouldn't happen... */
6109 printf_filtered (
6110 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6111 actual_abi_str,
6112 mips_abi_strings[global_abi]);
6113 }
6114 }
6115}
6116
4b9b3959
AC
6117static void
6118mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6119{
6120 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6121 if (tdep != NULL)
c2d11a7d 6122 {
acdb74a0
AC
6123 int ef_mips_arch;
6124 int ef_mips_32bitmode;
6125 /* determine the ISA */
6126 switch (tdep->elf_flags & EF_MIPS_ARCH)
6127 {
6128 case E_MIPS_ARCH_1:
6129 ef_mips_arch = 1;
6130 break;
6131 case E_MIPS_ARCH_2:
6132 ef_mips_arch = 2;
6133 break;
6134 case E_MIPS_ARCH_3:
6135 ef_mips_arch = 3;
6136 break;
6137 case E_MIPS_ARCH_4:
93d56215 6138 ef_mips_arch = 4;
acdb74a0
AC
6139 break;
6140 default:
93d56215 6141 ef_mips_arch = 0;
acdb74a0
AC
6142 break;
6143 }
6144 /* determine the size of a pointer */
6145 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6148 tdep->elf_flags);
4b9b3959 6149 fprintf_unfiltered (file,
acdb74a0
AC
6150 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6151 ef_mips_32bitmode);
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: ef_mips_arch = %d\n",
6154 ef_mips_arch);
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6157 tdep->mips_abi,
2e4ebe70 6158 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6161 mips_mask_address_p (),
6162 tdep->default_mask_address_p);
c2d11a7d 6163 }
4b9b3959
AC
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6166 FP_REGISTER_DOUBLE);
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6169 MIPS_DEFAULT_FPU_TYPE,
6170 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6171 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6172 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6173 : "???"));
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: MIPS_EABI = %d\n",
6176 MIPS_EABI);
6177 fprintf_unfiltered (file,
acdb74a0
AC
6178 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6179 MIPS_LAST_FP_ARG_REGNUM,
6180 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6183 MIPS_FPU_TYPE,
6184 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6185 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6186 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6187 : "???"));
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6190 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6193 FP_REGISTER_DOUBLE);
4b9b3959
AC
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6196 MIPS_DEFAULT_STACK_ARGSIZE);
6197 fprintf_unfiltered (file,
6198 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6199 MIPS_STACK_ARGSIZE);
2475bac3
AC
6200 fprintf_unfiltered (file,
6201 "mips_dump_tdep: A0_REGNUM = %d\n",
6202 A0_REGNUM);
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6205 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6208 XSTRING (ATTACH_DETACH));
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6211 BADVADDR_REGNUM);
2475bac3
AC
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6214 CAUSE_REGNUM);
2475bac3
AC
6215 fprintf_unfiltered (file,
6216 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6217 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6220 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6223 FCRCS_REGNUM);
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6226 FCRIR_REGNUM);
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6229 FIRST_EMBED_REGNUM);
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6232 FPA0_REGNUM);
2475bac3
AC
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: HI_REGNUM = %d\n",
6235 HI_REGNUM);
2475bac3
AC
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6238 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6241 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6244 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6247 LAST_EMBED_REGNUM);
2475bac3
AC
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: LO_REGNUM = %d\n",
6250 LO_REGNUM);
6251#ifdef MACHINE_CPROC_FP_OFFSET
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6254 MACHINE_CPROC_FP_OFFSET);
6255#endif
6256#ifdef MACHINE_CPROC_PC_OFFSET
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6259 MACHINE_CPROC_PC_OFFSET);
6260#endif
6261#ifdef MACHINE_CPROC_SP_OFFSET
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6264 MACHINE_CPROC_SP_OFFSET);
6265#endif
2475bac3
AC
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6268 MIPS16_INSTLEN);
2475bac3
AC
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6275 MIPS_INSTLEN);
6276 fprintf_unfiltered (file,
acdb74a0
AC
6277 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6278 MIPS_LAST_ARG_REGNUM,
6279 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6282 MIPS_NUMREGS);
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6287 MIPS_SAVED_REGSIZE);
2475bac3
AC
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: PRID_REGNUM = %d\n",
6290 PRID_REGNUM);
2475bac3
AC
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: PROC_PC_REG = function?\n");
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: PS_REGNUM = %d\n",
6317 PS_REGNUM);
2475bac3
AC
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: RA_REGNUM = %d\n",
6320 RA_REGNUM);
2475bac3
AC
6321#ifdef SAVED_BYTES
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SAVED_BYTES = %d\n",
6324 SAVED_BYTES);
6325#endif
6326#ifdef SAVED_FP
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SAVED_FP = %d\n",
6329 SAVED_FP);
6330#endif
6331#ifdef SAVED_PC
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SAVED_PC = %d\n",
6334 SAVED_PC);
6335#endif
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6338 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6343 SIGFRAME_BASE);
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6346 SIGFRAME_FPREGSAVE_OFF);
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6349 SIGFRAME_PC_OFF);
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6352 SIGFRAME_REGSAVE_OFF);
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6355 SIGFRAME_REG_SIZE);
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6358 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6361 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6362 fprintf_unfiltered (file,
b0ed3589
AC
6363 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6364 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6367 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6368#ifdef STACK_END_ADDR
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6371 STACK_END_ADDR);
6372#endif
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6375 XSTRING (STEP_SKIPS_DELAY (PC)));
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6378 STEP_SKIPS_DELAY_P);
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6381 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: T9_REGNUM = %d\n",
6384 T9_REGNUM);
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6389 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6392 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6393#ifdef TRACE_CLEAR
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6396 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6397#endif
6398#ifdef TRACE_FLAVOR
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6401 TRACE_FLAVOR);
6402#endif
6403#ifdef TRACE_FLAVOR_SIZE
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6406 TRACE_FLAVOR_SIZE);
6407#endif
6408#ifdef TRACE_SET
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: TRACE_SET # %s\n",
6411 XSTRING (TRACE_SET (X,STATE)));
6412#endif
2475bac3
AC
6413#ifdef UNUSED_REGNUM
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6416 UNUSED_REGNUM);
6417#endif
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: V0_REGNUM = %d\n",
6420 V0_REGNUM);
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6423 (long) VM_MIN_ADDRESS);
2475bac3
AC
6424 fprintf_unfiltered (file,
6425 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6426 ZERO_REGNUM);
6427 fprintf_unfiltered (file,
6428 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6429 _PROC_MAGIC_);
c2d11a7d
JM
6430}
6431
a78f21af
AC
6432extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6433
c906108c 6434void
acdb74a0 6435_initialize_mips_tdep (void)
c906108c
SS
6436{
6437 static struct cmd_list_element *mipsfpulist = NULL;
6438 struct cmd_list_element *c;
6439
2e4ebe70
DJ
6440 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6441 if (MIPS_ABI_LAST + 1
6442 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6443 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6444
4b9b3959 6445 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 6446
a5ea2558
AC
6447 /* Add root prefix command for all "set mips"/"show mips" commands */
6448 add_prefix_cmd ("mips", no_class, set_mips_command,
6449 "Various MIPS specific commands.",
6450 &setmipscmdlist, "set mips ", 0, &setlist);
6451
6452 add_prefix_cmd ("mips", no_class, show_mips_command,
6453 "Various MIPS specific commands.",
6454 &showmipscmdlist, "show mips ", 0, &showlist);
6455
6456 /* Allow the user to override the saved register size. */
6457 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6458 class_obscure,
6459 size_enums,
6460 &mips_saved_regsize_string, "\
a5ea2558
AC
6461Set size of general purpose registers saved on the stack.\n\
6462This option can be set to one of:\n\
6463 32 - Force GDB to treat saved GP registers as 32-bit\n\
6464 64 - Force GDB to treat saved GP registers as 64-bit\n\
6465 auto - Allow GDB to use the target's default setting or autodetect the\n\
6466 saved GP register size from information contained in the executable.\n\
6467 (default: auto)",
1ed2a135 6468 &setmipscmdlist),
a5ea2558
AC
6469 &showmipscmdlist);
6470
d929b26f
AC
6471 /* Allow the user to override the argument stack size. */
6472 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6473 class_obscure,
6474 size_enums,
1ed2a135 6475 &mips_stack_argsize_string, "\
d929b26f
AC
6476Set the amount of stack space reserved for each argument.\n\
6477This option can be set to one of:\n\
6478 32 - Force GDB to allocate 32-bit chunks per argument\n\
6479 64 - Force GDB to allocate 64-bit chunks per argument\n\
6480 auto - Allow GDB to determine the correct setting from the current\n\
6481 target and executable (default)",
6482 &setmipscmdlist),
6483 &showmipscmdlist);
6484
2e4ebe70
DJ
6485 /* Allow the user to override the ABI. */
6486 c = add_set_enum_cmd
6487 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6488 "Set the ABI used by this program.\n"
6489 "This option can be set to one of:\n"
6490 " auto - the default ABI associated with the current binary\n"
6491 " o32\n"
6492 " o64\n"
6493 " n32\n"
f3a7b3a5 6494 " n64\n"
2e4ebe70
DJ
6495 " eabi32\n"
6496 " eabi64",
6497 &setmipscmdlist);
2e4ebe70 6498 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6499 add_cmd ("abi", class_obscure, show_mips_abi,
6500 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6501
c906108c
SS
6502 /* Let the user turn off floating point and set the fence post for
6503 heuristic_proc_start. */
6504
6505 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6506 "Set use of MIPS floating-point coprocessor.",
6507 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6508 add_cmd ("single", class_support, set_mipsfpu_single_command,
6509 "Select single-precision MIPS floating-point coprocessor.",
6510 &mipsfpulist);
6511 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6512 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6513 &mipsfpulist);
6514 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6515 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6516 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6517 add_cmd ("none", class_support, set_mipsfpu_none_command,
6518 "Select no MIPS floating-point coprocessor.",
6519 &mipsfpulist);
6520 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6521 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6522 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6523 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6524 "Select MIPS floating-point coprocessor automatically.",
6525 &mipsfpulist);
6526 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6527 "Show current use of MIPS floating-point coprocessor target.",
6528 &showlist);
6529
c906108c
SS
6530 /* We really would like to have both "0" and "unlimited" work, but
6531 command.c doesn't deal with that. So make it a var_zinteger
6532 because the user can always use "999999" or some such for unlimited. */
6533 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6534 (char *) &heuristic_fence_post,
6535 "\
6536Set the distance searched for the start of a function.\n\
6537If you are debugging a stripped executable, GDB needs to search through the\n\
6538program for the start of a function. This command sets the distance of the\n\
6539search. The only need to set it is when debugging a stripped executable.",
6540 &setlist);
6541 /* We need to throw away the frame cache when we set this, since it
6542 might change our ability to get backtraces. */
9f60d481 6543 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6544 add_show_from_set (c, &showlist);
6545
6546 /* Allow the user to control whether the upper bits of 64-bit
6547 addresses should be zeroed. */
e9e68a56
AC
6548 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6549Set zeroing of upper 32 bits of 64-bit addresses.\n\
6550Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6551allow GDB to determine the correct value.\n", "\
6552Show zeroing of upper 32 bits of 64-bit addresses.",
6553 NULL, show_mask_address,
6554 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6555
6556 /* Allow the user to control the size of 32 bit registers within the
6557 raw remote packet. */
6558 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6559 class_obscure,
6560 var_boolean,
6561 (char *)&mips64_transfers_32bit_regs_p, "\
6562Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6563Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6564that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
656564 bits for others. Use \"off\" to disable compatibility mode",
6566 &setlist),
6567 &showlist);
9ace0497
AC
6568
6569 /* Debug this files internals. */
6570 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6571 &mips_debug, "Set mips debugging.\n\
6572When non-zero, mips specific debugging is enabled.", &setdebuglist),
6573 &showdebuglist);
c906108c 6574}
This page took 0.798942 seconds and 4 git commands to generate.