* gas/mips/rm7000.s: Let objdump print trailing dots.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
a4b8ebc8 45#include "reggroups.h"
c906108c 46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
a4b8ebc8 50#include "sim-regno.h"
a89aa300 51#include "dis-asm.h"
c906108c 52
e0f7ec59 53static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
5bbcb741 54static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 55
dd824b04
DJ
56/* A useful bit in the CP0 status register (PS_REGNUM). */
57/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58#define ST0_FR (1 << 26)
59
b0069a17
AC
60/* The sizes of floating point registers. */
61
62enum
63{
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66};
67
0dadbba0 68
2e4ebe70
DJ
69static const char *mips_abi_string;
70
71static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
28d169de 75 "n64",
2e4ebe70
DJ
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80};
81
cce74817 82struct frame_extra_info
c5aa993b
JM
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
cce74817 87
d929b26f
AC
88/* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
53904c9e
AC
92static const char size_auto[] = "auto";
93static const char size_32[] = "32";
94static const char size_64[] = "64";
d929b26f 95
53904c9e 96static const char *size_enums[] = {
d929b26f
AC
97 size_auto,
98 size_32,
99 size_64,
a5ea2558
AC
100 0
101};
102
7a292a7a
SS
103/* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
c906108c
SS
106
107enum mips_fpu_type
c5aa993b
JM
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
c906108c
SS
113
114#ifndef MIPS_DEFAULT_FPU_TYPE
115#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116#endif
117static int mips_fpu_type_auto = 1;
118static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 119
9ace0497 120static int mips_debug = 0;
7a292a7a 121
c2d11a7d
JM
122/* MIPS specific per-architecture information */
123struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
70f80edf 127
c2d11a7d 128 /* mips options */
0dadbba0 129 enum mips_abi mips_abi;
2e4ebe70 130 enum mips_abi found_abi;
c2d11a7d
JM
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
a5ea2558 134 int mips_default_saved_regsize;
c2d11a7d 135 int mips_fp_register_double;
d929b26f 136 int mips_default_stack_argsize;
5213ab06 137 int gdb_target_is_mips64;
4014092b 138 int default_mask_address_p;
c2d11a7d
JM
139 };
140
0dadbba0 141#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 142 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 143
c2d11a7d 144#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 145
c2d11a7d 146#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 147
c2d11a7d 148#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 149
d929b26f
AC
150/* Return the currently configured (or set) saved register size. */
151
a5ea2558 152#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 153
53904c9e 154static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
155
156#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
157
95404a3e
AC
158/* MIPS16 function addresses are odd (bit 0 is set). Here are some
159 functions to test, set, or clear bit 0 of addresses. */
160
161static CORE_ADDR
162is_mips16_addr (CORE_ADDR addr)
163{
164 return ((addr) & 1);
165}
166
167static CORE_ADDR
168make_mips16_addr (CORE_ADDR addr)
169{
170 return ((addr) | 1);
171}
172
173static CORE_ADDR
174unmake_mips16_addr (CORE_ADDR addr)
175{
176 return ((addr) & ~1);
177}
178
22540ece
AC
179/* Return the contents of register REGNUM as a signed integer. */
180
181static LONGEST
182read_signed_register (int regnum)
183{
184 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
185 deprecated_read_register_gen (regnum, buf);
186 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
187}
188
189static LONGEST
190read_signed_register_pid (int regnum, ptid_t ptid)
191{
192 ptid_t save_ptid;
193 LONGEST retval;
194
195 if (ptid_equal (ptid, inferior_ptid))
196 return read_signed_register (regnum);
197
198 save_ptid = inferior_ptid;
199
200 inferior_ptid = ptid;
201
202 retval = read_signed_register (regnum);
203
204 inferior_ptid = save_ptid;
205
206 return retval;
207}
208
d1973055
KB
209/* Return the MIPS ABI associated with GDBARCH. */
210enum mips_abi
211mips_abi (struct gdbarch *gdbarch)
212{
213 return gdbarch_tdep (gdbarch)->mips_abi;
214}
215
d929b26f 216static unsigned int
acdb74a0 217mips_saved_regsize (void)
d929b26f
AC
218{
219 if (mips_saved_regsize_string == size_auto)
220 return MIPS_DEFAULT_SAVED_REGSIZE;
221 else if (mips_saved_regsize_string == size_64)
222 return 8;
223 else /* if (mips_saved_regsize_string == size_32) */
224 return 4;
225}
226
71b8ef93 227/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
228 marks it as 16-bit function. The MSB of the minimal symbol's
229 "info" field is used for this purpose. This field is already
230 being used to store the symbol size, so the assumption is
231 that the symbol size cannot exceed 2^31.
232
233 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
234 i.e. refers to a 16-bit function, and sets a "special" bit in a
235 minimal symbol to mark it as a 16-bit function
236
237 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
238 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
239 the "info" field with the "special" bit masked out */
240
5a89d8aa
MS
241static void
242mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
243{
244 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
245 {
246 MSYMBOL_INFO (msym) = (char *)
247 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
248 SYMBOL_VALUE_ADDRESS (msym) |= 1;
249 }
250}
251
71b8ef93
MS
252static int
253msymbol_is_special (struct minimal_symbol *msym)
254{
255 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
256}
257
258static long
259msymbol_size (struct minimal_symbol *msym)
260{
261 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
262}
263
88658117
AC
264/* XFER a value from the big/little/left end of the register.
265 Depending on the size of the value it might occupy the entire
266 register or just part of it. Make an allowance for this, aligning
267 things accordingly. */
268
269static void
270mips_xfer_register (struct regcache *regcache, int reg_num, int length,
271 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
272 int buf_offset)
273{
d9d9c31f 274 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 275 int reg_offset = 0;
a4b8ebc8 276 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
277 /* Need to transfer the left or right part of the register, based on
278 the targets byte order. */
88658117
AC
279 switch (endian)
280 {
281 case BFD_ENDIAN_BIG:
282 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
283 break;
284 case BFD_ENDIAN_LITTLE:
285 reg_offset = 0;
286 break;
287 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
288 reg_offset = 0;
289 break;
290 default:
291 internal_error (__FILE__, __LINE__, "bad switch");
292 }
293 if (mips_debug)
cb1d2653
AC
294 fprintf_unfiltered (gdb_stderr,
295 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
296 reg_num, reg_offset, buf_offset, length);
88658117
AC
297 if (mips_debug && out != NULL)
298 {
299 int i;
cb1d2653 300 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 301 for (i = 0; i < length; i++)
cb1d2653 302 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
303 }
304 if (in != NULL)
a4b8ebc8 305 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
88658117 306 if (out != NULL)
a4b8ebc8 307 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
88658117
AC
308 if (mips_debug && in != NULL)
309 {
310 int i;
cb1d2653 311 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 312 for (i = 0; i < length; i++)
cb1d2653 313 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
314 }
315 if (mips_debug)
316 fprintf_unfiltered (gdb_stdlog, "\n");
317}
318
dd824b04
DJ
319/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
320 compatiblity mode. A return value of 1 means that we have
321 physical 64-bit registers, but should treat them as 32-bit registers. */
322
323static int
324mips2_fp_compat (void)
325{
326 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
327 meaningful. */
328 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
329 return 0;
330
331#if 0
332 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
333 in all the places we deal with FP registers. PR gdb/413. */
334 /* Otherwise check the FR bit in the status register - it controls
335 the FP compatiblity mode. If it is clear we are in compatibility
336 mode. */
337 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
338 return 1;
339#endif
361d1df0 340
dd824b04
DJ
341 return 0;
342}
343
c2d11a7d
JM
344/* Indicate that the ABI makes use of double-precision registers
345 provided by the FPU (rather than combining pairs of registers to
346 form double-precision values). Do not use "TARGET_IS_MIPS64" to
347 determine if the ABI is using double-precision registers. See also
348 MIPS_FPU_TYPE. */
c2d11a7d 349#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 350
d929b26f
AC
351/* The amount of space reserved on the stack for registers. This is
352 different to MIPS_SAVED_REGSIZE as it determines the alignment of
353 data allocated after the registers have run out. */
354
0dadbba0 355#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
356
357#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
358
53904c9e 359static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
360
361static unsigned int
362mips_stack_argsize (void)
363{
364 if (mips_stack_argsize_string == size_auto)
365 return MIPS_DEFAULT_STACK_ARGSIZE;
366 else if (mips_stack_argsize_string == size_64)
367 return 8;
368 else /* if (mips_stack_argsize_string == size_32) */
369 return 4;
370}
371
5213ab06 372#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 373
92e1c15c 374#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 375
7a292a7a 376#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 377
570b8f7c
AC
378static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
379 struct frame_info *, int);
c906108c 380
a14ed312 381static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 382
a14ed312 383static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 384
5a89d8aa 385static int mips_set_processor_type (char *);
c906108c 386
a14ed312 387static void mips_show_processor_type_command (char *, int);
c906108c 388
a14ed312 389static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 390
570b8f7c
AC
391static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
392 struct frame_info *next_frame,
393 int cur_frame);
c906108c 394
a14ed312
KB
395static CORE_ADDR after_prologue (CORE_ADDR pc,
396 mips_extra_func_info_t proc_desc);
c906108c 397
67b2c998
DJ
398static struct type *mips_float_register_type (void);
399static struct type *mips_double_register_type (void);
400
c906108c
SS
401/* This value is the model of MIPS in use. It is derived from the value
402 of the PrID register. */
403
404char *mips_processor_type;
405
406char *tmp_mips_processor_type;
407
acdb74a0
AC
408/* The list of available "set mips " and "show mips " commands */
409
410static struct cmd_list_element *setmipscmdlist = NULL;
411static struct cmd_list_element *showmipscmdlist = NULL;
412
c906108c
SS
413/* A set of original names, to be used when restoring back to generic
414 registers from a specific set. */
5e2e9765 415static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
c906108c 416
5e2e9765
KB
417/* Integer registers 0 thru 31 are handled explicitly by
418 mips_register_name(). Processor specific registers 32 and above
419 are listed in the sets of register names assigned to
420 mips_processor_reg_names. */
421static char **mips_processor_reg_names = mips_generic_reg_names;
cce74817 422
5e2e9765 423/* Return the name of the register corresponding to REGNO. */
5a89d8aa 424static const char *
5e2e9765 425mips_register_name (int regno)
cce74817 426{
5e2e9765
KB
427 /* GPR names for all ABIs other than n32/n64. */
428 static char *mips_gpr_names[] = {
429 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
430 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
431 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
432 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
433 };
434
435 /* GPR names for n32 and n64 ABIs. */
436 static char *mips_n32_n64_gpr_names[] = {
437 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
438 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
439 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
440 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
441 };
442
443 enum mips_abi abi = mips_abi (current_gdbarch);
444
a4b8ebc8
AC
445 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
446 don't make the raw register names visible. */
447 int rawnum = regno % NUM_REGS;
448 if (regno < NUM_REGS)
449 return "";
450
5e2e9765
KB
451 /* The MIPS integer registers are always mapped from 0 to 31. The
452 names of the registers (which reflects the conventions regarding
453 register use) vary depending on the ABI. */
a4b8ebc8 454 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
455 {
456 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 457 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 458 else
a4b8ebc8 459 return mips_gpr_names[rawnum];
5e2e9765 460 }
a4b8ebc8
AC
461 else if (32 <= rawnum && rawnum < NUM_REGS)
462 return mips_processor_reg_names[rawnum - 32];
5e2e9765
KB
463 else
464 internal_error (__FILE__, __LINE__,
a4b8ebc8 465 "mips_register_name: bad register number %d", rawnum);
cce74817 466}
5e2e9765 467
9846de1b 468/* *INDENT-OFF* */
c906108c
SS
469/* Names of IDT R3041 registers. */
470
471char *mips_r3041_reg_names[] = {
c906108c
SS
472 "sr", "lo", "hi", "bad", "cause","pc",
473 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
474 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
475 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
476 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 477 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
478 "", "", "bus", "ccfg", "", "", "", "",
479 "", "", "port", "cmp", "", "", "epc", "prid",
480};
481
482/* Names of IDT R3051 registers. */
483
484char *mips_r3051_reg_names[] = {
c906108c
SS
485 "sr", "lo", "hi", "bad", "cause","pc",
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 490 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
491 "inx", "rand", "elo", "", "ctxt", "", "", "",
492 "", "", "ehi", "", "", "", "epc", "prid",
493};
494
495/* Names of IDT R3081 registers. */
496
497char *mips_r3081_reg_names[] = {
c906108c
SS
498 "sr", "lo", "hi", "bad", "cause","pc",
499 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
500 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
501 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
502 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 503 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
504 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
505 "", "", "ehi", "", "", "", "epc", "prid",
506};
507
508/* Names of LSI 33k registers. */
509
510char *mips_lsi33k_reg_names[] = {
c906108c
SS
511 "epc", "hi", "lo", "sr", "cause","badvaddr",
512 "dcic", "bpc", "bda", "", "", "", "", "",
513 "", "", "", "", "", "", "", "",
514 "", "", "", "", "", "", "", "",
515 "", "", "", "", "", "", "", "",
516 "", "", "", "",
517 "", "", "", "", "", "", "", "",
518 "", "", "", "", "", "", "", "",
519};
520
521struct {
522 char *name;
523 char **regnames;
524} mips_processor_type_table[] = {
525 { "generic", mips_generic_reg_names },
526 { "r3041", mips_r3041_reg_names },
527 { "r3051", mips_r3051_reg_names },
528 { "r3071", mips_r3081_reg_names },
529 { "r3081", mips_r3081_reg_names },
530 { "lsi33k", mips_lsi33k_reg_names },
531 { NULL, NULL }
532};
9846de1b 533/* *INDENT-ON* */
c906108c 534
a4b8ebc8 535/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 536
a4b8ebc8
AC
537static int
538mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
539 struct reggroup *reggroup)
540{
541 int vector_p;
542 int float_p;
543 int raw_p;
544 int rawnum = regnum % NUM_REGS;
545 int pseudo = regnum / NUM_REGS;
546 if (reggroup == all_reggroup)
547 return pseudo;
548 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
549 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
550 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
551 (gdbarch), as not all architectures are multi-arch. */
552 raw_p = rawnum < NUM_REGS;
553 if (REGISTER_NAME (regnum) == NULL
554 || REGISTER_NAME (regnum)[0] == '\0')
555 return 0;
556 if (reggroup == float_reggroup)
557 return float_p && pseudo;
558 if (reggroup == vector_reggroup)
559 return vector_p && pseudo;
560 if (reggroup == general_reggroup)
561 return (!vector_p && !float_p) && pseudo;
562 /* Save the pseudo registers. Need to make certain that any code
563 extracting register values from a saved register cache also uses
564 pseudo registers. */
565 if (reggroup == save_reggroup)
566 return raw_p && pseudo;
567 /* Restore the same pseudo register. */
568 if (reggroup == restore_reggroup)
569 return raw_p && pseudo;
570 return 0;
571}
572
573/* Map the symbol table registers which live in the range [1 *
574 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
575 registers. */
c5aa993b 576
a4b8ebc8
AC
577static void
578mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
579 int cookednum, void *buf)
580{
581 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
582 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
583}
584
585static void
586mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
587 int cookednum, const void *buf)
588{
589 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
590 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
591}
c5aa993b 592
c906108c 593/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
594static int mips16_to_32_reg[8] =
595{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
596
597/* Heuristic_proc_start may hunt through the text section for a long
598 time across a 2400 baud serial line. Allows the user to limit this
599 search. */
600
601static unsigned int heuristic_fence_post = 0;
602
c5aa993b
JM
603#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
604#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
605#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
606#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
607#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
608#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
609#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
610#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
611#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
612#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
613/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
614 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
615#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
616#define _PROC_MAGIC_ 0x0F0F0F0F
617#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
618#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
619
620struct linked_proc_info
c5aa993b
JM
621 {
622 struct mips_extra_func_info info;
623 struct linked_proc_info *next;
624 }
625 *linked_proc_desc_table = NULL;
c906108c 626
cce74817 627void
acdb74a0 628mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
629{
630 if (fi
da50a4b7
AC
631 && get_frame_extra_info (fi)
632 && get_frame_extra_info (fi)->proc_desc
633 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 634 printf_filtered (" frame pointer is at %s+%s\n",
da50a4b7
AC
635 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
636 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
cce74817 637}
c906108c 638
46cd78fb
AC
639/* Number of bytes of storage in the actual machine representation for
640 register N. NOTE: This indirectly defines the register size
a4b8ebc8 641 transfered by the GDB protocol. */
43e526b9
JM
642
643static int mips64_transfers_32bit_regs_p = 0;
644
f7ab6ec6 645static int
a4b8ebc8 646mips_register_raw_size (int regnum)
43e526b9 647{
a4b8ebc8
AC
648 gdb_assert (regnum >= 0);
649 if (regnum < NUM_REGS)
650 {
651 /* For compatibility with old code, implemnt the broken register raw
652 size map for the raw registers.
653
654 NOTE: cagney/2003-06-15: This is so bogus. The register's
655 raw size is changing according to the ABI
656 (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a
62700349 657 combination of REGISTER_RAW_SIZE and DEPRECATED_REGISTER_BYTE. */
a4b8ebc8
AC
658 if (mips64_transfers_32bit_regs_p)
659 return REGISTER_VIRTUAL_SIZE (regnum);
660 else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32
661 && FP_REGISTER_DOUBLE)
662 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
663 registers. */
664 return 8;
665 else
666 return MIPS_REGSIZE;
667 }
668 else if (regnum < 2 * NUM_REGS)
669 {
670 /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw
671 registers, but always return the virtual size. */
672 int rawnum = regnum % NUM_REGS;
5bbcb741 673 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, rawnum));
a4b8ebc8 674 }
43e526b9 675 else
a4b8ebc8
AC
676 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
677}
678
679/* Register offset in a buffer for each register.
680
681 FIXME: cagney/2003-06-15: This is so bogus. Instead REGISTER_TYPE
682 should strictly return the layout of the buffer. Unfortunatly
683 remote.c and the MIPS have come to rely on a custom layout that
684 doesn't 1:1 map onto the register type. */
685
686static int
687mips_register_byte (int regnum)
688{
689 gdb_assert (regnum >= 0);
690 if (regnum < NUM_REGS)
691 /* Pick up the relevant per-tm file register byte method. */
692 return MIPS_REGISTER_BYTE (regnum);
693 else if (regnum < 2 * NUM_REGS)
694 {
695 int reg;
696 int byte;
697 /* Start with the end of the raw register buffer - assum that
698 MIPS_REGISTER_BYTE (NUM_REGS) returns that end. */
699 byte = MIPS_REGISTER_BYTE (NUM_REGS);
700 /* Add space for all the proceeding registers based on their
701 real size. */
702 for (reg = NUM_REGS; reg < regnum; reg++)
5bbcb741
JB
703 byte += TYPE_LENGTH (gdbarch_register_type (current_gdbarch,
704 (reg % NUM_REGS)));
a4b8ebc8
AC
705 return byte;
706 }
707 else
708 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
43e526b9
JM
709}
710
46cd78fb
AC
711/* Convert between RAW and VIRTUAL registers. The RAW register size
712 defines the remote-gdb packet. */
713
d05285fa 714static int
acdb74a0 715mips_register_convertible (int reg_nr)
43e526b9
JM
716{
717 if (mips64_transfers_32bit_regs_p)
718 return 0;
719 else
720 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
721}
722
d05285fa 723static void
acdb74a0
AC
724mips_register_convert_to_virtual (int n, struct type *virtual_type,
725 char *raw_buf, char *virt_buf)
43e526b9 726{
d7449b42 727 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
728 memcpy (virt_buf,
729 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
730 TYPE_LENGTH (virtual_type));
731 else
732 memcpy (virt_buf,
733 raw_buf,
734 TYPE_LENGTH (virtual_type));
735}
736
d05285fa 737static void
acdb74a0 738mips_register_convert_to_raw (struct type *virtual_type, int n,
781a750d 739 const char *virt_buf, char *raw_buf)
43e526b9
JM
740{
741 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 742 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
743 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
744 virt_buf,
745 TYPE_LENGTH (virtual_type));
746 else
747 memcpy (raw_buf,
748 virt_buf,
749 TYPE_LENGTH (virtual_type));
750}
751
ff2e87ac
AC
752static int
753mips_convert_register_p (int regnum, struct type *type)
754{
755 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
756 && REGISTER_RAW_SIZE (regnum) == 4
757 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
758 && TYPE_CODE(type) == TYPE_CODE_FLT
759 && TYPE_LENGTH(type) == 8);
760}
761
42c466d7 762static void
ff2e87ac
AC
763mips_register_to_value (struct frame_info *frame, int regnum,
764 struct type *type, void *to)
102182a9 765{
ff2e87ac
AC
766 frame_read_register (frame, regnum + 0, (char *) to + 4);
767 frame_read_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
768}
769
42c466d7 770static void
ff2e87ac
AC
771mips_value_to_register (struct frame_info *frame, int regnum,
772 struct type *type, const void *from)
102182a9 773{
ff2e87ac
AC
774 put_frame_register (frame, regnum + 0, (const char *) from + 4);
775 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
776}
777
a4b8ebc8
AC
778/* Return the GDB type object for the "standard" data type of data in
779 register REG. */
78fde5f8
KB
780
781static struct type *
a4b8ebc8
AC
782mips_register_type (struct gdbarch *gdbarch, int regnum)
783{
784 /* For moment, map [NUM_REGS .. 2*NUM_REGS) onto the same raw
785 registers. Even return the same type. */
786 int rawnum = regnum % NUM_REGS;
787 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
788#ifdef MIPS_REGISTER_TYPE
789 return MIPS_REGISTER_TYPE (rawnum);
790#else
791 if (FP0_REGNUM <= rawnum && rawnum < FP0_REGNUM + 32)
a6425924
KB
792 {
793 /* Floating point registers... */
794 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
795 return builtin_type_ieee_double_big;
796 else
797 return builtin_type_ieee_double_little;
798 }
a4b8ebc8 799 else if (rawnum == PS_REGNUM /* CR */)
78fde5f8 800 return builtin_type_uint32;
a4b8ebc8 801 else if (FCRCS_REGNUM <= rawnum && rawnum <= LAST_EMBED_REGNUM)
78fde5f8
KB
802 return builtin_type_uint32;
803 else
804 {
a6425924
KB
805 /* Everything else...
806 Return type appropriate for width of register. */
807 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
808 return builtin_type_uint64;
78fde5f8 809 else
a6425924 810 return builtin_type_uint32;
78fde5f8 811 }
a4b8ebc8 812#endif
78fde5f8
KB
813}
814
bcb0cc15
MS
815/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
816
817static CORE_ADDR
818mips_read_sp (void)
819{
e227b13c 820 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
821}
822
c906108c 823/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 824enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
825
826static int
827mips_mask_address_p (void)
828{
829 switch (mask_address_var)
830 {
7f19b9a2 831 case AUTO_BOOLEAN_TRUE:
4014092b 832 return 1;
7f19b9a2 833 case AUTO_BOOLEAN_FALSE:
4014092b
AC
834 return 0;
835 break;
7f19b9a2 836 case AUTO_BOOLEAN_AUTO:
92e1c15c 837 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 838 default:
8e65ff28
AC
839 internal_error (__FILE__, __LINE__,
840 "mips_mask_address_p: bad switch");
4014092b 841 return -1;
361d1df0 842 }
4014092b
AC
843}
844
845static void
e9e68a56 846show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
847{
848 switch (mask_address_var)
849 {
7f19b9a2 850 case AUTO_BOOLEAN_TRUE:
4014092b
AC
851 printf_filtered ("The 32 bit mips address mask is enabled\n");
852 break;
7f19b9a2 853 case AUTO_BOOLEAN_FALSE:
4014092b
AC
854 printf_filtered ("The 32 bit mips address mask is disabled\n");
855 break;
7f19b9a2 856 case AUTO_BOOLEAN_AUTO:
4014092b
AC
857 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
858 mips_mask_address_p () ? "enabled" : "disabled");
859 break;
860 default:
8e65ff28
AC
861 internal_error (__FILE__, __LINE__,
862 "show_mask_address: bad switch");
4014092b 863 break;
361d1df0 864 }
4014092b 865}
c906108c
SS
866
867/* Should call_function allocate stack space for a struct return? */
cb811fe7 868
f7ab6ec6 869static int
cb811fe7 870mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 871{
cb811fe7
MS
872 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
873}
874
f7ab6ec6 875static int
cb811fe7
MS
876mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
877{
b78bcb18 878 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
879}
880
8b389c40
MS
881/* Should call_function pass struct by reference?
882 For each architecture, structs are passed either by
883 value or by reference, depending on their size. */
884
885static int
886mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
887{
888 enum type_code typecode = TYPE_CODE (check_typedef (type));
889 int len = TYPE_LENGTH (check_typedef (type));
890
891 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
892 return (len > MIPS_SAVED_REGSIZE);
893
894 return 0;
895}
896
897static int
898mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
899{
900 return 0; /* Assumption: N32/N64 never passes struct by ref. */
901}
902
f7ab6ec6 903static int
8b389c40
MS
904mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
905{
906 return 0; /* Assumption: O32/O64 never passes struct by ref. */
907}
908
c906108c
SS
909/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
910
911static int
912pc_is_mips16 (bfd_vma memaddr)
913{
914 struct minimal_symbol *sym;
915
916 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 917 if (is_mips16_addr (memaddr))
c906108c
SS
918 return 1;
919
920 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
921 the high bit of the info field. Use this to decide if the function is
922 MIPS16 or normal MIPS. */
923 sym = lookup_minimal_symbol_by_pc (memaddr);
924 if (sym)
71b8ef93 925 return msymbol_is_special (sym);
c906108c
SS
926 else
927 return 0;
928}
929
6c997a34
AC
930/* MIPS believes that the PC has a sign extended value. Perhaphs the
931 all registers should be sign extended for simplicity? */
932
933static CORE_ADDR
39f77062 934mips_read_pc (ptid_t ptid)
6c997a34 935{
39f77062 936 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 937}
c906108c
SS
938
939/* This returns the PC of the first inst after the prologue. If we can't
940 find the prologue, then return 0. */
941
942static CORE_ADDR
acdb74a0
AC
943after_prologue (CORE_ADDR pc,
944 mips_extra_func_info_t proc_desc)
c906108c
SS
945{
946 struct symtab_and_line sal;
947 CORE_ADDR func_addr, func_end;
948
479412cd
DJ
949 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
950 to read the stack pointer from the current machine state, because
951 the current machine state has nothing to do with the information
952 we need from the proc_desc; and the process may or may not exist
953 right now. */
c906108c 954 if (!proc_desc)
479412cd 955 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
956
957 if (proc_desc)
958 {
959 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 960 strongly suspect that frameless always means prologueless... */
c906108c
SS
961 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
962 && PROC_FRAME_OFFSET (proc_desc) == 0)
963 return 0;
964 }
965
966 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
967 return 0; /* Unknown */
968
969 sal = find_pc_line (func_addr, 0);
970
971 if (sal.end < func_end)
972 return sal.end;
973
974 /* The line after the prologue is after the end of the function. In this
975 case, tell the caller to find the prologue the hard way. */
976
977 return 0;
978}
979
980/* Decode a MIPS32 instruction that saves a register in the stack, and
981 set the appropriate bit in the general register mask or float register mask
982 to indicate which register is saved. This is a helper function
983 for mips_find_saved_regs. */
984
985static void
acdb74a0
AC
986mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
987 unsigned long *float_mask)
c906108c
SS
988{
989 int reg;
990
991 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
992 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
993 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
994 {
995 /* It might be possible to use the instruction to
c5aa993b
JM
996 find the offset, rather than the code below which
997 is based on things being in a certain order in the
998 frame, but figuring out what the instruction's offset
999 is relative to might be a little tricky. */
c906108c
SS
1000 reg = (inst & 0x001f0000) >> 16;
1001 *gen_mask |= (1 << reg);
1002 }
1003 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
1004 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
1005 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
1006
1007 {
1008 reg = ((inst & 0x001f0000) >> 16);
1009 *float_mask |= (1 << reg);
1010 }
1011}
1012
1013/* Decode a MIPS16 instruction that saves a register in the stack, and
1014 set the appropriate bit in the general register or float register mask
1015 to indicate which register is saved. This is a helper function
1016 for mips_find_saved_regs. */
1017
1018static void
acdb74a0 1019mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 1020{
c5aa993b 1021 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
1022 {
1023 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1024 *gen_mask |= (1 << reg);
1025 }
c5aa993b 1026 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
1027 {
1028 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1029 *gen_mask |= (1 << reg);
1030 }
c5aa993b 1031 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
1032 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1033 *gen_mask |= (1 << RA_REGNUM);
1034}
1035
1036
1037/* Fetch and return instruction from the specified location. If the PC
1038 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1039
1040static t_inst
acdb74a0 1041mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
1042{
1043 char buf[MIPS_INSTLEN];
1044 int instlen;
1045 int status;
1046
1047 if (pc_is_mips16 (addr))
1048 {
1049 instlen = MIPS16_INSTLEN;
95404a3e 1050 addr = unmake_mips16_addr (addr);
c906108c
SS
1051 }
1052 else
c5aa993b 1053 instlen = MIPS_INSTLEN;
c906108c
SS
1054 status = read_memory_nobpt (addr, buf, instlen);
1055 if (status)
1056 memory_error (status, addr);
1057 return extract_unsigned_integer (buf, instlen);
1058}
1059
1060
1061/* These the fields of 32 bit mips instructions */
e135b889
DJ
1062#define mips32_op(x) (x >> 26)
1063#define itype_op(x) (x >> 26)
1064#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1065#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1066#define itype_immediate(x) (x & 0xffff)
c906108c 1067
e135b889
DJ
1068#define jtype_op(x) (x >> 26)
1069#define jtype_target(x) (x & 0x03ffffff)
c906108c 1070
e135b889
DJ
1071#define rtype_op(x) (x >> 26)
1072#define rtype_rs(x) ((x >> 21) & 0x1f)
1073#define rtype_rt(x) ((x >> 16) & 0x1f)
1074#define rtype_rd(x) ((x >> 11) & 0x1f)
1075#define rtype_shamt(x) ((x >> 6) & 0x1f)
1076#define rtype_funct(x) (x & 0x3f)
c906108c
SS
1077
1078static CORE_ADDR
c5aa993b
JM
1079mips32_relative_offset (unsigned long inst)
1080{
1081 long x;
1082 x = itype_immediate (inst);
1083 if (x & 0x8000) /* sign bit set */
c906108c 1084 {
c5aa993b 1085 x |= 0xffff0000; /* sign extension */
c906108c 1086 }
c5aa993b
JM
1087 x = x << 2;
1088 return x;
c906108c
SS
1089}
1090
1091/* Determine whate to set a single step breakpoint while considering
1092 branch prediction */
5a89d8aa 1093static CORE_ADDR
c5aa993b
JM
1094mips32_next_pc (CORE_ADDR pc)
1095{
1096 unsigned long inst;
1097 int op;
1098 inst = mips_fetch_instruction (pc);
e135b889 1099 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1100 {
e135b889
DJ
1101 if (itype_op (inst) >> 2 == 5)
1102 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1103 {
e135b889 1104 op = (itype_op (inst) & 0x03);
c906108c
SS
1105 switch (op)
1106 {
e135b889
DJ
1107 case 0: /* BEQL */
1108 goto equal_branch;
1109 case 1: /* BNEL */
1110 goto neq_branch;
1111 case 2: /* BLEZL */
1112 goto less_branch;
1113 case 3: /* BGTZ */
1114 goto greater_branch;
c5aa993b
JM
1115 default:
1116 pc += 4;
c906108c
SS
1117 }
1118 }
e135b889
DJ
1119 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1120 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1121 {
1122 int tf = itype_rt (inst) & 0x01;
1123 int cnum = itype_rt (inst) >> 2;
1124 int fcrcs = read_signed_register (FCRCS_REGNUM);
1125 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1126
1127 if (((cond >> cnum) & 0x01) == tf)
1128 pc += mips32_relative_offset (inst) + 4;
1129 else
1130 pc += 8;
1131 }
c5aa993b
JM
1132 else
1133 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1134 }
1135 else
c5aa993b
JM
1136 { /* This gets way messy */
1137
c906108c 1138 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1139 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1140 {
c5aa993b
JM
1141 case 0: /* SPECIAL */
1142 op = rtype_funct (inst);
1143 switch (op)
1144 {
1145 case 8: /* JR */
1146 case 9: /* JALR */
6c997a34
AC
1147 /* Set PC to that address */
1148 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1149 break;
1150 default:
1151 pc += 4;
1152 }
1153
e135b889 1154 break; /* end SPECIAL */
c5aa993b 1155 case 1: /* REGIMM */
c906108c 1156 {
e135b889
DJ
1157 op = itype_rt (inst); /* branch condition */
1158 switch (op)
c906108c 1159 {
c5aa993b 1160 case 0: /* BLTZ */
e135b889
DJ
1161 case 2: /* BLTZL */
1162 case 16: /* BLTZAL */
c5aa993b 1163 case 18: /* BLTZALL */
c906108c 1164 less_branch:
6c997a34 1165 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1166 pc += mips32_relative_offset (inst) + 4;
1167 else
1168 pc += 8; /* after the delay slot */
1169 break;
e135b889 1170 case 1: /* BGEZ */
c5aa993b
JM
1171 case 3: /* BGEZL */
1172 case 17: /* BGEZAL */
1173 case 19: /* BGEZALL */
c906108c 1174 greater_equal_branch:
6c997a34 1175 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1176 pc += mips32_relative_offset (inst) + 4;
1177 else
1178 pc += 8; /* after the delay slot */
1179 break;
e135b889 1180 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1181 default:
1182 pc += 4;
c906108c
SS
1183 }
1184 }
e135b889 1185 break; /* end REGIMM */
c5aa993b
JM
1186 case 2: /* J */
1187 case 3: /* JAL */
1188 {
1189 unsigned long reg;
1190 reg = jtype_target (inst) << 2;
e135b889 1191 /* Upper four bits get never changed... */
c5aa993b 1192 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1193 }
c5aa993b
JM
1194 break;
1195 /* FIXME case JALX : */
1196 {
1197 unsigned long reg;
1198 reg = jtype_target (inst) << 2;
1199 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1200 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1201 }
c5aa993b 1202 break; /* The new PC will be alternate mode */
e135b889 1203 case 4: /* BEQ, BEQL */
c5aa993b 1204 equal_branch:
6c997a34
AC
1205 if (read_signed_register (itype_rs (inst)) ==
1206 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1207 pc += mips32_relative_offset (inst) + 4;
1208 else
1209 pc += 8;
1210 break;
e135b889 1211 case 5: /* BNE, BNEL */
c5aa993b 1212 neq_branch:
6c997a34 1213 if (read_signed_register (itype_rs (inst)) !=
e135b889 1214 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1215 pc += mips32_relative_offset (inst) + 4;
1216 else
1217 pc += 8;
1218 break;
e135b889 1219 case 6: /* BLEZ, BLEZL */
c906108c 1220 less_zero_branch:
6c997a34 1221 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1222 pc += mips32_relative_offset (inst) + 4;
1223 else
1224 pc += 8;
1225 break;
1226 case 7:
e135b889
DJ
1227 default:
1228 greater_branch: /* BGTZ, BGTZL */
6c997a34 1229 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1230 pc += mips32_relative_offset (inst) + 4;
1231 else
1232 pc += 8;
1233 break;
c5aa993b
JM
1234 } /* switch */
1235 } /* else */
1236 return pc;
1237} /* mips32_next_pc */
c906108c
SS
1238
1239/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1240 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1241 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1242 We dont want to set a single step instruction on the extend instruction
1243 either.
c5aa993b 1244 */
c906108c
SS
1245
1246/* Lots of mips16 instruction formats */
1247/* Predicting jumps requires itype,ritype,i8type
1248 and their extensions extItype,extritype,extI8type
c5aa993b 1249 */
c906108c
SS
1250enum mips16_inst_fmts
1251{
c5aa993b
JM
1252 itype, /* 0 immediate 5,10 */
1253 ritype, /* 1 5,3,8 */
1254 rrtype, /* 2 5,3,3,5 */
1255 rritype, /* 3 5,3,3,5 */
1256 rrrtype, /* 4 5,3,3,3,2 */
1257 rriatype, /* 5 5,3,3,1,4 */
1258 shifttype, /* 6 5,3,3,3,2 */
1259 i8type, /* 7 5,3,8 */
1260 i8movtype, /* 8 5,3,3,5 */
1261 i8mov32rtype, /* 9 5,3,5,3 */
1262 i64type, /* 10 5,3,8 */
1263 ri64type, /* 11 5,3,3,5 */
1264 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1265 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1266 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1267 extRRItype, /* 15 5,5,5,5,3,3,5 */
1268 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1269 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1270 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1271 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1272 extRi64type, /* 20 5,6,5,5,3,3,5 */
1273 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1274};
12f02c2a
AC
1275/* I am heaping all the fields of the formats into one structure and
1276 then, only the fields which are involved in instruction extension */
c906108c 1277struct upk_mips16
c5aa993b 1278 {
12f02c2a 1279 CORE_ADDR offset;
c5aa993b
JM
1280 unsigned int regx; /* Function in i8 type */
1281 unsigned int regy;
1282 };
c906108c
SS
1283
1284
12f02c2a
AC
1285/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1286 for the bits which make up the immediatate extension. */
c906108c 1287
12f02c2a
AC
1288static CORE_ADDR
1289extended_offset (unsigned int extension)
c906108c 1290{
12f02c2a 1291 CORE_ADDR value;
c5aa993b
JM
1292 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1293 value = value << 6;
1294 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1295 value = value << 5;
1296 value |= extension & 0x01f; /* extract 4:0 */
1297 return value;
c906108c
SS
1298}
1299
1300/* Only call this function if you know that this is an extendable
1301 instruction, It wont malfunction, but why make excess remote memory references?
1302 If the immediate operands get sign extended or somthing, do it after
1303 the extension is performed.
c5aa993b 1304 */
c906108c
SS
1305/* FIXME: Every one of these cases needs to worry about sign extension
1306 when the offset is to be used in relative addressing */
1307
1308
12f02c2a 1309static unsigned int
c5aa993b 1310fetch_mips_16 (CORE_ADDR pc)
c906108c 1311{
c5aa993b
JM
1312 char buf[8];
1313 pc &= 0xfffffffe; /* clear the low order bit */
1314 target_read_memory (pc, buf, 2);
1315 return extract_unsigned_integer (buf, 2);
c906108c
SS
1316}
1317
1318static void
c5aa993b 1319unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1320 unsigned int extension,
1321 unsigned int inst,
1322 enum mips16_inst_fmts insn_format,
c5aa993b 1323 struct upk_mips16 *upk)
c906108c 1324{
12f02c2a
AC
1325 CORE_ADDR offset;
1326 int regx;
1327 int regy;
1328 switch (insn_format)
c906108c 1329 {
c5aa993b 1330 case itype:
c906108c 1331 {
12f02c2a
AC
1332 CORE_ADDR value;
1333 if (extension)
c5aa993b
JM
1334 {
1335 value = extended_offset (extension);
1336 value = value << 11; /* rom for the original value */
12f02c2a 1337 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1338 }
1339 else
c5aa993b 1340 {
12f02c2a 1341 value = inst & 0x7ff;
c5aa993b 1342 /* FIXME : Consider sign extension */
c906108c 1343 }
12f02c2a
AC
1344 offset = value;
1345 regx = -1;
1346 regy = -1;
c906108c 1347 }
c5aa993b
JM
1348 break;
1349 case ritype:
1350 case i8type:
1351 { /* A register identifier and an offset */
c906108c
SS
1352 /* Most of the fields are the same as I type but the
1353 immediate value is of a different length */
12f02c2a
AC
1354 CORE_ADDR value;
1355 if (extension)
c906108c 1356 {
c5aa993b
JM
1357 value = extended_offset (extension);
1358 value = value << 8; /* from the original instruction */
12f02c2a
AC
1359 value |= inst & 0xff; /* eleven bits from instruction */
1360 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1361 if (value & 0x4000) /* test the sign bit , bit 26 */
1362 {
1363 value &= ~0x3fff; /* remove the sign bit */
1364 value = -value;
c906108c
SS
1365 }
1366 }
c5aa993b
JM
1367 else
1368 {
12f02c2a
AC
1369 value = inst & 0xff; /* 8 bits */
1370 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1371 /* FIXME: Do sign extension , this format needs it */
1372 if (value & 0x80) /* THIS CONFUSES ME */
1373 {
1374 value &= 0xef; /* remove the sign bit */
1375 value = -value;
1376 }
c5aa993b 1377 }
12f02c2a
AC
1378 offset = value;
1379 regy = -1;
c5aa993b 1380 break;
c906108c 1381 }
c5aa993b 1382 case jalxtype:
c906108c 1383 {
c5aa993b 1384 unsigned long value;
12f02c2a
AC
1385 unsigned int nexthalf;
1386 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1387 value = value << 16;
1388 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1389 value |= nexthalf;
12f02c2a
AC
1390 offset = value;
1391 regx = -1;
1392 regy = -1;
c5aa993b 1393 break;
c906108c
SS
1394 }
1395 default:
8e65ff28
AC
1396 internal_error (__FILE__, __LINE__,
1397 "bad switch");
c906108c 1398 }
12f02c2a
AC
1399 upk->offset = offset;
1400 upk->regx = regx;
1401 upk->regy = regy;
c906108c
SS
1402}
1403
1404
c5aa993b
JM
1405static CORE_ADDR
1406add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1407{
c5aa993b 1408 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1409}
1410
12f02c2a
AC
1411static CORE_ADDR
1412extended_mips16_next_pc (CORE_ADDR pc,
1413 unsigned int extension,
1414 unsigned int insn)
c906108c 1415{
12f02c2a
AC
1416 int op = (insn >> 11);
1417 switch (op)
c906108c 1418 {
12f02c2a
AC
1419 case 2: /* Branch */
1420 {
1421 CORE_ADDR offset;
1422 struct upk_mips16 upk;
1423 unpack_mips16 (pc, extension, insn, itype, &upk);
1424 offset = upk.offset;
1425 if (offset & 0x800)
1426 {
1427 offset &= 0xeff;
1428 offset = -offset;
1429 }
1430 pc += (offset << 1) + 2;
1431 break;
1432 }
1433 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1434 {
1435 struct upk_mips16 upk;
1436 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1437 pc = add_offset_16 (pc, upk.offset);
1438 if ((insn >> 10) & 0x01) /* Exchange mode */
1439 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1440 else
1441 pc |= 0x01;
1442 break;
1443 }
1444 case 4: /* beqz */
1445 {
1446 struct upk_mips16 upk;
1447 int reg;
1448 unpack_mips16 (pc, extension, insn, ritype, &upk);
1449 reg = read_signed_register (upk.regx);
1450 if (reg == 0)
1451 pc += (upk.offset << 1) + 2;
1452 else
1453 pc += 2;
1454 break;
1455 }
1456 case 5: /* bnez */
1457 {
1458 struct upk_mips16 upk;
1459 int reg;
1460 unpack_mips16 (pc, extension, insn, ritype, &upk);
1461 reg = read_signed_register (upk.regx);
1462 if (reg != 0)
1463 pc += (upk.offset << 1) + 2;
1464 else
1465 pc += 2;
1466 break;
1467 }
1468 case 12: /* I8 Formats btez btnez */
1469 {
1470 struct upk_mips16 upk;
1471 int reg;
1472 unpack_mips16 (pc, extension, insn, i8type, &upk);
1473 /* upk.regx contains the opcode */
1474 reg = read_signed_register (24); /* Test register is 24 */
1475 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1476 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1477 /* pc = add_offset_16(pc,upk.offset) ; */
1478 pc += (upk.offset << 1) + 2;
1479 else
1480 pc += 2;
1481 break;
1482 }
1483 case 29: /* RR Formats JR, JALR, JALR-RA */
1484 {
1485 struct upk_mips16 upk;
1486 /* upk.fmt = rrtype; */
1487 op = insn & 0x1f;
1488 if (op == 0)
c5aa993b 1489 {
12f02c2a
AC
1490 int reg;
1491 upk.regx = (insn >> 8) & 0x07;
1492 upk.regy = (insn >> 5) & 0x07;
1493 switch (upk.regy)
c5aa993b 1494 {
12f02c2a
AC
1495 case 0:
1496 reg = upk.regx;
1497 break;
1498 case 1:
1499 reg = 31;
1500 break; /* Function return instruction */
1501 case 2:
1502 reg = upk.regx;
1503 break;
1504 default:
1505 reg = 31;
1506 break; /* BOGUS Guess */
c906108c 1507 }
12f02c2a 1508 pc = read_signed_register (reg);
c906108c 1509 }
12f02c2a 1510 else
c5aa993b 1511 pc += 2;
12f02c2a
AC
1512 break;
1513 }
1514 case 30:
1515 /* This is an instruction extension. Fetch the real instruction
1516 (which follows the extension) and decode things based on
1517 that. */
1518 {
1519 pc += 2;
1520 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1521 break;
1522 }
1523 default:
1524 {
1525 pc += 2;
1526 break;
1527 }
c906108c 1528 }
c5aa993b 1529 return pc;
12f02c2a 1530}
c906108c 1531
5a89d8aa 1532static CORE_ADDR
12f02c2a
AC
1533mips16_next_pc (CORE_ADDR pc)
1534{
1535 unsigned int insn = fetch_mips_16 (pc);
1536 return extended_mips16_next_pc (pc, 0, insn);
1537}
1538
1539/* The mips_next_pc function supports single_step when the remote
7e73cedf 1540 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1541 It works by decoding the current instruction and predicting where a
1542 branch will go. This isnt hard because all the data is available.
1543 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1544CORE_ADDR
1545mips_next_pc (CORE_ADDR pc)
c906108c 1546{
c5aa993b
JM
1547 if (pc & 0x01)
1548 return mips16_next_pc (pc);
1549 else
1550 return mips32_next_pc (pc);
12f02c2a 1551}
c906108c 1552
e0f7ec59
AC
1553/* Set up the 'saved_regs' array. This is a data structure containing
1554 the addresses on the stack where each register has been saved, for
1555 each stack frame. Registers that have not been saved will have
1556 zero here. The stack pointer register is special: rather than the
1557 address where the stack register has been saved,
1558 saved_regs[SP_REGNUM] will have the actual value of the previous
1559 frame's stack register. */
c906108c 1560
d28e01f4 1561static void
acdb74a0 1562mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1563{
1564 int ireg;
c906108c
SS
1565 /* r0 bit means kernel trap */
1566 int kernel_trap;
1567 /* What registers have been saved? Bitmasks. */
1568 unsigned long gen_mask, float_mask;
1569 mips_extra_func_info_t proc_desc;
1570 t_inst inst;
e0f7ec59 1571 CORE_ADDR *saved_regs;
c906108c 1572
e0f7ec59
AC
1573 if (get_frame_saved_regs (fci) != NULL)
1574 return;
1575 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1576
1577 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1578 in a sigcontext structure somewhere on the stack. If the stack
1579 layout for sigtramp changes we might have to change these
1580 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1581#ifndef SIGFRAME_BASE
e0f7ec59
AC
1582 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1583 above the sigtramp frame. */
c906108c
SS
1584#define SIGFRAME_BASE MIPS_REGSIZE
1585/* FIXME! Are these correct?? */
1586#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1587#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1588#define SIGFRAME_FPREGSAVE_OFF \
1589 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1590#endif
1591#ifndef SIGFRAME_REG_SIZE
e0f7ec59 1592 /* FIXME! Is this correct?? */
c906108c
SS
1593#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1594#endif
5a203e44 1595 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1596 {
1597 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1598 {
e0f7ec59
AC
1599 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1600 + ireg * SIGFRAME_REG_SIZE);
1601 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1602 }
1603 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1604 {
e0f7ec59
AC
1605 CORE_ADDR reg_position = (get_frame_base (fci)
1606 + SIGFRAME_FPREGSAVE_OFF
1607 + ireg * SIGFRAME_REG_SIZE);
1608 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
c906108c 1609 }
e0f7ec59
AC
1610
1611 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1612 /* SP_REGNUM, contains the value and not the address. */
1613 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1614 return;
1615 }
1616
da50a4b7 1617 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1618 if (proc_desc == NULL)
e0f7ec59
AC
1619 /* I'm not sure how/whether this can happen. Normally when we
1620 can't find a proc_desc, we "synthesize" one using
1621 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1622 return;
1623
c5aa993b
JM
1624 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1625 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1626 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1627
e0f7ec59
AC
1628 if (/* In any frame other than the innermost or a frame interrupted
1629 by a signal, we assume that all registers have been saved.
1630 This assumes that all register saves in a function happen
1631 before the first function call. */
11c02a10
AC
1632 (get_next_frame (fci) == NULL
1633 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1634
e0f7ec59 1635 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1636 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1637
e0f7ec59
AC
1638 /* Don't bother unless we are inside a function prologue.
1639 Outside the prologue, we know where everything is. */
c906108c 1640
50abf9e5 1641 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1642
e0f7ec59
AC
1643 /* Not sure exactly what kernel_trap means, but if it means the
1644 kernel saves the registers without a prologue doing it, we
1645 better not examine the prologue to see whether registers
1646 have been saved yet. */
c5aa993b 1647 && !kernel_trap)
c906108c 1648 {
e0f7ec59
AC
1649 /* We need to figure out whether the registers that the
1650 proc_desc claims are saved have been saved yet. */
c906108c
SS
1651
1652 CORE_ADDR addr;
1653
1654 /* Bitmasks; set if we have found a save for the register. */
1655 unsigned long gen_save_found = 0;
1656 unsigned long float_save_found = 0;
1657 int instlen;
1658
1659 /* If the address is odd, assume this is MIPS16 code. */
1660 addr = PROC_LOW_ADDR (proc_desc);
1661 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1662
e0f7ec59
AC
1663 /* Scan through this function's instructions preceding the
1664 current PC, and look for those that save registers. */
50abf9e5 1665 while (addr < get_frame_pc (fci))
c906108c
SS
1666 {
1667 inst = mips_fetch_instruction (addr);
1668 if (pc_is_mips16 (addr))
1669 mips16_decode_reg_save (inst, &gen_save_found);
1670 else
1671 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1672 addr += instlen;
1673 }
1674 gen_mask = gen_save_found;
1675 float_mask = float_save_found;
1676 }
1677
e0f7ec59
AC
1678 /* Fill in the offsets for the registers which gen_mask says were
1679 saved. */
1680 {
1681 CORE_ADDR reg_position = (get_frame_base (fci)
1682 + PROC_REG_OFFSET (proc_desc));
1683 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1684 if (gen_mask & 0x80000000)
1685 {
1686 set_reg_offset (saved_regs, ireg, reg_position);
1687 reg_position -= MIPS_SAVED_REGSIZE;
1688 }
1689 }
c906108c 1690
e0f7ec59
AC
1691 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1692 order of that normally used by gcc. Therefore, we have to fetch
1693 the first instruction of the function, and if it's an entry
1694 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1695 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1696 {
1697 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1698 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1699 /* entry */
c906108c
SS
1700 {
1701 int reg;
1702 int sreg_count = (inst >> 6) & 3;
c5aa993b 1703
c906108c 1704 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1705 CORE_ADDR reg_position = (get_frame_base (fci)
1706 + PROC_REG_OFFSET (proc_desc));
c906108c 1707 if (inst & 0x20)
7a292a7a 1708 reg_position -= MIPS_SAVED_REGSIZE;
c906108c 1709
e0f7ec59
AC
1710 /* Check if the s0 and s1 registers were pushed on the
1711 stack. */
c5aa993b 1712 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1713 {
e0f7ec59 1714 set_reg_offset (saved_regs, reg, reg_position);
7a292a7a 1715 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1716 }
1717 }
1718 }
1719
e0f7ec59
AC
1720 /* Fill in the offsets for the registers which float_mask says were
1721 saved. */
1722 {
1723 CORE_ADDR reg_position = (get_frame_base (fci)
1724 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1725
e0f7ec59
AC
1726 /* Fill in the offsets for the float registers which float_mask
1727 says were saved. */
1728 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1729 if (float_mask & 0x80000000)
1730 {
c57bb9fa
AC
1731 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1732 {
1733 /* On a big endian 32 bit ABI, floating point registers
1734 are paired to form doubles such that the most
1735 significant part is in $f[N+1] and the least
1736 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1737 registers are also spilled as a pair and stored as a
1738 double.
1739
1740 When little-endian the least significant part is
1741 stored first leading to the memory order $f[N] and
1742 then $f[N+1].
1743
1744 Unfortunatly, when big-endian the most significant
1745 part of the double is stored first, and the least
1746 significant is stored second. This leads to the
1747 registers being ordered in memory as firt $f[N+1] and
1748 then $f[N].
1749
1750 For the big-endian case make certain that the
1751 addresses point at the correct (swapped) locations
1752 $f[N] and $f[N+1] pair (keep in mind that
1753 reg_position is decremented each time through the
1754 loop). */
1755 if ((ireg & 1))
1756 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1757 reg_position - MIPS_SAVED_REGSIZE);
1758 else
1759 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1760 reg_position + MIPS_SAVED_REGSIZE);
1761 }
1762 else
1763 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
e0f7ec59
AC
1764 reg_position -= MIPS_SAVED_REGSIZE;
1765 }
c906108c 1766
e0f7ec59
AC
1767 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1768 }
d28e01f4 1769
e0f7ec59
AC
1770 /* SP_REGNUM, contains the value and not the address. */
1771 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1772}
1773
c906108c 1774static CORE_ADDR
acdb74a0 1775read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1776{
a4b8ebc8
AC
1777 /* Always a pseudo. */
1778 gdb_assert (regno >= NUM_REGS);
f796e4be 1779 if (fi == NULL)
c906108c 1780 {
a4b8ebc8
AC
1781 LONGEST val;
1782 regcache_cooked_read_signed (current_regcache, regno, &val);
1783 return val;
f796e4be 1784 }
a4b8ebc8
AC
1785 else if ((regno % NUM_REGS) == SP_REGNUM)
1786 /* The SP_REGNUM is special, its value is stored in saved_regs.
1787 In fact, it is so special that it can even only be fetched
1788 using a raw register number! Once this code as been converted
1789 to frame-unwind the problem goes away. */
1790 return frame_unwind_register_signed (fi, regno % NUM_REGS);
f796e4be 1791 else
a4b8ebc8 1792 return frame_unwind_register_signed (fi, regno);
64159455 1793
c906108c
SS
1794}
1795
1796/* mips_addr_bits_remove - remove useless address bits */
1797
875e1767 1798static CORE_ADDR
acdb74a0 1799mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1800{
5213ab06
AC
1801 if (GDB_TARGET_IS_MIPS64)
1802 {
4014092b 1803 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1804 {
1805 /* This hack is a work-around for existing boards using
1806 PMON, the simulator, and any other 64-bit targets that
1807 doesn't have true 64-bit addressing. On these targets,
1808 the upper 32 bits of addresses are ignored by the
1809 hardware. Thus, the PC or SP are likely to have been
1810 sign extended to all 1s by instruction sequences that
1811 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1812 code that loads an address is this:
1813 lui $r2, <upper 16 bits>
1814 ori $r2, <lower 16 bits>
1815 But the lui sign-extends the value such that the upper 32
1816 bits may be all 1s. The workaround is simply to mask off
1817 these bits. In the future, gcc may be changed to support
1818 true 64-bit addressing, and this masking will have to be
1819 disabled. */
5213ab06
AC
1820 addr &= (CORE_ADDR) 0xffffffff;
1821 }
1822 }
4014092b 1823 else if (mips_mask_address_p ())
5213ab06 1824 {
4014092b
AC
1825 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1826 masking off bits, instead, the actual target should be asking
1827 for the address to be converted to a valid pointer. */
5213ab06
AC
1828 /* Even when GDB is configured for some 32-bit targets
1829 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1830 so CORE_ADDR is 64 bits. So we still have to mask off
1831 useless bits from addresses. */
c5aa993b 1832 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1833 }
c906108c
SS
1834 return addr;
1835}
1836
9022177c
DJ
1837/* mips_software_single_step() is called just before we want to resume
1838 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1839 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1840 the target of the coming instruction and breakpoint it.
1841
1842 single_step is also called just after the inferior stops. If we had
1843 set up a simulated single-step, we undo our damage. */
1844
1845void
1846mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1847{
1848 static CORE_ADDR next_pc;
1849 typedef char binsn_quantum[BREAKPOINT_MAX];
1850 static binsn_quantum break_mem;
1851 CORE_ADDR pc;
1852
1853 if (insert_breakpoints_p)
1854 {
1855 pc = read_register (PC_REGNUM);
1856 next_pc = mips_next_pc (pc);
1857
1858 target_insert_breakpoint (next_pc, break_mem);
1859 }
1860 else
1861 target_remove_breakpoint (next_pc, break_mem);
1862}
1863
97f46953 1864static CORE_ADDR
acdb74a0 1865mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1866{
1867 CORE_ADDR pc, tmp;
1868
11c02a10 1869 pc = ((fromleaf)
6913c89a 1870 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1871 : get_next_frame (prev)
8bedc050 1872 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1873 : read_pc ());
5a89d8aa 1874 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1875 return tmp ? tmp : pc;
c906108c
SS
1876}
1877
1878
f7ab6ec6 1879static CORE_ADDR
acdb74a0 1880mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1881{
1882 CORE_ADDR saved_pc;
c906108c 1883
50abf9e5 1884 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1885 {
1886 LONGEST tmp;
a4b8ebc8
AC
1887 /* Always unwind the cooked PC register value. */
1888 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
cedea778
AC
1889 saved_pc = tmp;
1890 }
c906108c 1891 else
a4b8ebc8
AC
1892 {
1893 mips_extra_func_info_t proc_desc
1894 = get_frame_extra_info (frame)->proc_desc;
1895 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1896 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1897 else
1898 {
1899 /* We have to get the saved pc from the sigcontext if it is
1900 a signal handler frame. */
1901 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1902 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1903 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1904 }
1905 }
c906108c
SS
1906 return ADDR_BITS_REMOVE (saved_pc);
1907}
1908
1909static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1910
1911/* This hack will go away once the get_prev_frame() code has been
1912 modified to set the frame's type first. That is BEFORE init extra
1913 frame info et.al. is called. This is because it will become
1914 possible to skip the init extra info call for sigtramp and dummy
1915 frames. */
1916static CORE_ADDR *temp_saved_regs;
c906108c 1917
e0f7ec59
AC
1918/* Set a register's saved stack address in temp_saved_regs. If an
1919 address has already been set for this register, do nothing; this
1920 way we will only recognize the first save of a given register in a
a4b8ebc8
AC
1921 function prologue.
1922
1923 For simplicity, save the address in both [0 .. NUM_REGS) and
1924 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1925 is used as it is only second range (the ABI instead of ISA
1926 registers) that comes into play when finding saved registers in a
1927 frame. */
c906108c
SS
1928
1929static void
e0f7ec59 1930set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1931{
e0f7ec59 1932 if (saved_regs[regno] == 0)
a4b8ebc8
AC
1933 {
1934 saved_regs[regno + 0 * NUM_REGS] = offset;
1935 saved_regs[regno + 1 * NUM_REGS] = offset;
1936 }
c906108c
SS
1937}
1938
1939
1940/* Test whether the PC points to the return instruction at the
1941 end of a function. */
1942
c5aa993b 1943static int
acdb74a0 1944mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1945{
1946 if (pc_is_mips16 (pc))
1947 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1948 generates a "jr $ra"; other times it generates code to load
1949 the return address from the stack to an accessible register (such
1950 as $a3), then a "jr" using that register. This second case
1951 is almost impossible to distinguish from an indirect jump
1952 used for switch statements, so we don't even try. */
1953 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1954 else
1955 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1956}
1957
1958
1959/* This fencepost looks highly suspicious to me. Removing it also
1960 seems suspicious as it could affect remote debugging across serial
1961 lines. */
1962
1963static CORE_ADDR
acdb74a0 1964heuristic_proc_start (CORE_ADDR pc)
c906108c 1965{
c5aa993b
JM
1966 CORE_ADDR start_pc;
1967 CORE_ADDR fence;
1968 int instlen;
1969 int seen_adjsp = 0;
c906108c 1970
c5aa993b
JM
1971 pc = ADDR_BITS_REMOVE (pc);
1972 start_pc = pc;
1973 fence = start_pc - heuristic_fence_post;
1974 if (start_pc == 0)
1975 return 0;
c906108c 1976
c5aa993b
JM
1977 if (heuristic_fence_post == UINT_MAX
1978 || fence < VM_MIN_ADDRESS)
1979 fence = VM_MIN_ADDRESS;
c906108c 1980
c5aa993b 1981 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1982
c5aa993b
JM
1983 /* search back for previous return */
1984 for (start_pc -= instlen;; start_pc -= instlen)
1985 if (start_pc < fence)
1986 {
1987 /* It's not clear to me why we reach this point when
c0236d92 1988 stop_soon, but with this test, at least we
c5aa993b
JM
1989 don't print out warnings for every child forked (eg, on
1990 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1991 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1992 {
c5aa993b
JM
1993 static int blurb_printed = 0;
1994
1995 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1996 paddr_nz (pc));
1997
1998 if (!blurb_printed)
c906108c 1999 {
c5aa993b
JM
2000 /* This actually happens frequently in embedded
2001 development, when you first connect to a board
2002 and your stack pointer and pc are nowhere in
2003 particular. This message needs to give people
2004 in that situation enough information to
2005 determine that it's no big deal. */
2006 printf_filtered ("\n\
cd0fc7c3
SS
2007 GDB is unable to find the start of the function at 0x%s\n\
2008and thus can't determine the size of that function's stack frame.\n\
2009This means that GDB may be unable to access that stack frame, or\n\
2010the frames below it.\n\
2011 This problem is most likely caused by an invalid program counter or\n\
2012stack pointer.\n\
2013 However, if you think GDB should simply search farther back\n\
2014from 0x%s for code which looks like the beginning of a\n\
2015function, you can increase the range of the search using the `set\n\
2016heuristic-fence-post' command.\n",
c5aa993b
JM
2017 paddr_nz (pc), paddr_nz (pc));
2018 blurb_printed = 1;
c906108c 2019 }
c906108c
SS
2020 }
2021
c5aa993b
JM
2022 return 0;
2023 }
2024 else if (pc_is_mips16 (start_pc))
2025 {
2026 unsigned short inst;
2027
2028 /* On MIPS16, any one of the following is likely to be the
2029 start of a function:
2030 entry
2031 addiu sp,-n
2032 daddiu sp,-n
2033 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2034 inst = mips_fetch_instruction (start_pc);
2035 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2036 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2037 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2038 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2039 break;
2040 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2041 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2042 seen_adjsp = 1;
2043 else
2044 seen_adjsp = 0;
2045 }
2046 else if (mips_about_to_return (start_pc))
2047 {
2048 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
2049 break;
2050 }
2051
c5aa993b 2052 return start_pc;
c906108c
SS
2053}
2054
2055/* Fetch the immediate value from a MIPS16 instruction.
2056 If the previous instruction was an EXTEND, use it to extend
2057 the upper bits of the immediate value. This is a helper function
2058 for mips16_heuristic_proc_desc. */
2059
2060static int
acdb74a0
AC
2061mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2062 unsigned short inst, /* current instruction */
2063 int nbits, /* number of bits in imm field */
2064 int scale, /* scale factor to be applied to imm */
2065 int is_signed) /* is the imm field signed? */
c906108c
SS
2066{
2067 int offset;
2068
2069 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2070 {
2071 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 2072 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
2073 offset = 0 - (0x10000 - (offset & 0xffff));
2074 return offset | (inst & 0x1f);
2075 }
2076 else
2077 {
2078 int max_imm = 1 << nbits;
2079 int mask = max_imm - 1;
2080 int sign_bit = max_imm >> 1;
2081
2082 offset = inst & mask;
2083 if (is_signed && (offset & sign_bit))
2084 offset = 0 - (max_imm - offset);
2085 return offset * scale;
2086 }
2087}
2088
2089
2090/* Fill in values in temp_proc_desc based on the MIPS16 instruction
2091 stream from start_pc to limit_pc. */
2092
2093static void
acdb74a0
AC
2094mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2095 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2096{
2097 CORE_ADDR cur_pc;
2098 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2099 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2100 unsigned inst = 0; /* current instruction */
2101 unsigned entry_inst = 0; /* the entry instruction */
2102 int reg, offset;
2103
c5aa993b
JM
2104 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2105 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
2106
2107 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2108 {
2109 /* Save the previous instruction. If it's an EXTEND, we'll extract
2110 the immediate offset extension from it in mips16_get_imm. */
2111 prev_inst = inst;
2112
2113 /* Fetch and decode the instruction. */
2114 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 2115 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
2116 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2117 {
2118 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
2119 if (offset < 0) /* negative stack adjustment? */
2120 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
2121 else
2122 /* Exit loop if a positive stack adjustment is found, which
2123 usually means that the stack cleanup code in the function
2124 epilogue is reached. */
2125 break;
2126 }
2127 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2128 {
2129 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2130 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 2131 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2132 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2133 }
2134 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2135 {
2136 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2137 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2138 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2139 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2140 }
2141 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2142 {
2143 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2144 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2145 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2146 }
2147 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2148 {
2149 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2150 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2151 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2152 }
c5aa993b 2153 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2154 {
2155 frame_addr = sp;
2156 PROC_FRAME_REG (&temp_proc_desc) = 17;
2157 }
2158 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2159 {
2160 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2161 frame_addr = sp + offset;
2162 PROC_FRAME_REG (&temp_proc_desc) = 17;
2163 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2164 }
2165 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2166 {
2167 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2168 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2169 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2170 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2171 }
2172 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2173 {
2174 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2175 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2176 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2177 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2178 }
c5aa993b
JM
2179 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2180 entry_inst = inst; /* save for later processing */
c906108c 2181 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2182 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2183 }
2184
c5aa993b
JM
2185 /* The entry instruction is typically the first instruction in a function,
2186 and it stores registers at offsets relative to the value of the old SP
2187 (before the prologue). But the value of the sp parameter to this
2188 function is the new SP (after the prologue has been executed). So we
2189 can't calculate those offsets until we've seen the entire prologue,
2190 and can calculate what the old SP must have been. */
2191 if (entry_inst != 0)
2192 {
2193 int areg_count = (entry_inst >> 8) & 7;
2194 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2195
c5aa993b
JM
2196 /* The entry instruction always subtracts 32 from the SP. */
2197 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2198
c5aa993b
JM
2199 /* Now we can calculate what the SP must have been at the
2200 start of the function prologue. */
2201 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2202
c5aa993b
JM
2203 /* Check if a0-a3 were saved in the caller's argument save area. */
2204 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2205 {
2206 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2207 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2208 offset += MIPS_SAVED_REGSIZE;
2209 }
c906108c 2210
c5aa993b
JM
2211 /* Check if the ra register was pushed on the stack. */
2212 offset = -4;
2213 if (entry_inst & 0x20)
2214 {
2215 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2216 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c5aa993b
JM
2217 offset -= MIPS_SAVED_REGSIZE;
2218 }
c906108c 2219
c5aa993b
JM
2220 /* Check if the s0 and s1 registers were pushed on the stack. */
2221 for (reg = 16; reg < sreg_count + 16; reg++)
2222 {
2223 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2224 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2225 offset -= MIPS_SAVED_REGSIZE;
2226 }
2227 }
c906108c
SS
2228}
2229
2230static void
fba45db2
KB
2231mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2232 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2233{
2234 CORE_ADDR cur_pc;
c5aa993b 2235 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2236restart:
fe29b929 2237 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2238 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2239 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2240 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2241 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2242 {
2243 unsigned long inst, high_word, low_word;
2244 int reg;
2245
2246 /* Fetch the instruction. */
2247 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2248
2249 /* Save some code by pre-extracting some useful fields. */
2250 high_word = (inst >> 16) & 0xffff;
2251 low_word = inst & 0xffff;
2252 reg = high_word & 0x1f;
2253
c5aa993b 2254 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2255 || high_word == 0x23bd /* addi $sp,$sp,-i */
2256 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2257 {
2258 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2259 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2260 else
2261 /* Exit loop if a positive stack adjustment is found, which
2262 usually means that the stack cleanup code in the function
2263 epilogue is reached. */
2264 break;
2265 }
2266 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2267 {
c5aa993b 2268 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2269 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2270 }
2271 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2272 {
2273 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2274 but the register size used is only 32 bits. Make the address
2275 for the saved register point to the lower 32 bits. */
c5aa993b 2276 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2277 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
c906108c 2278 }
c5aa993b 2279 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2280 {
2281 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2282 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2283 frame_addr = sp + low_word;
c906108c
SS
2284 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2285 {
2286 unsigned alloca_adjust;
2287 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2288 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2289 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2290 if (alloca_adjust > 0)
2291 {
2292 /* FP > SP + frame_size. This may be because
2293 * of an alloca or somethings similar.
2294 * Fix sp to "pre-alloca" value, and try again.
2295 */
2296 sp += alloca_adjust;
2297 goto restart;
2298 }
2299 }
2300 }
c5aa993b
JM
2301 /* move $30,$sp. With different versions of gas this will be either
2302 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2303 Accept any one of these. */
c906108c
SS
2304 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2305 {
2306 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2307 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2308 {
2309 unsigned alloca_adjust;
2310 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2311 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2312 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2313 if (alloca_adjust > 0)
2314 {
2315 /* FP > SP + frame_size. This may be because
2316 * of an alloca or somethings similar.
2317 * Fix sp to "pre-alloca" value, and try again.
2318 */
2319 sp += alloca_adjust;
2320 goto restart;
2321 }
2322 }
2323 }
c5aa993b 2324 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2325 {
c5aa993b 2326 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2327 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2328 }
2329 }
2330}
2331
2332static mips_extra_func_info_t
acdb74a0 2333heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2334 struct frame_info *next_frame, int cur_frame)
c906108c 2335{
479412cd
DJ
2336 CORE_ADDR sp;
2337
2338 if (cur_frame)
a4b8ebc8 2339 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
479412cd
DJ
2340 else
2341 sp = 0;
c906108c 2342
c5aa993b
JM
2343 if (start_pc == 0)
2344 return NULL;
2345 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2346 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2347 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2348 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2349 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2350 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2351
2352 if (start_pc + 200 < limit_pc)
2353 limit_pc = start_pc + 200;
2354 if (pc_is_mips16 (start_pc))
2355 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2356 else
2357 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2358 return &temp_proc_desc;
2359}
2360
6c0d6680
DJ
2361struct mips_objfile_private
2362{
2363 bfd_size_type size;
2364 char *contents;
2365};
2366
2367/* Global used to communicate between non_heuristic_proc_desc and
2368 compare_pdr_entries within qsort (). */
2369static bfd *the_bfd;
2370
2371static int
2372compare_pdr_entries (const void *a, const void *b)
2373{
2374 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2375 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2376
2377 if (lhs < rhs)
2378 return -1;
2379 else if (lhs == rhs)
2380 return 0;
2381 else
2382 return 1;
2383}
2384
c906108c 2385static mips_extra_func_info_t
acdb74a0 2386non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2387{
2388 CORE_ADDR startaddr;
2389 mips_extra_func_info_t proc_desc;
c5aa993b 2390 struct block *b = block_for_pc (pc);
c906108c 2391 struct symbol *sym;
6c0d6680
DJ
2392 struct obj_section *sec;
2393 struct mips_objfile_private *priv;
2394
ae45cd16 2395 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2396 return NULL;
c906108c
SS
2397
2398 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2399 if (addrptr)
2400 *addrptr = startaddr;
6c0d6680
DJ
2401
2402 priv = NULL;
2403
2404 sec = find_pc_section (pc);
2405 if (sec != NULL)
c906108c 2406 {
6c0d6680
DJ
2407 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2408
2409 /* Search the ".pdr" section generated by GAS. This includes most of
2410 the information normally found in ECOFF PDRs. */
2411
2412 the_bfd = sec->objfile->obfd;
2413 if (priv == NULL
2414 && (the_bfd->format == bfd_object
2415 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2416 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2417 {
2418 /* Right now GAS only outputs the address as a four-byte sequence.
2419 This means that we should not bother with this method on 64-bit
2420 targets (until that is fixed). */
2421
2422 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2423 sizeof (struct mips_objfile_private));
2424 priv->size = 0;
2425 sec->objfile->obj_private = priv;
2426 }
2427 else if (priv == NULL)
2428 {
2429 asection *bfdsec;
2430
2431 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2432 sizeof (struct mips_objfile_private));
2433
2434 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2435 if (bfdsec != NULL)
2436 {
2437 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2438 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2439 priv->size);
2440 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2441 priv->contents, 0, priv->size);
2442
2443 /* In general, the .pdr section is sorted. However, in the
2444 presence of multiple code sections (and other corner cases)
2445 it can become unsorted. Sort it so that we can use a faster
2446 binary search. */
2447 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2448 }
2449 else
2450 priv->size = 0;
2451
2452 sec->objfile->obj_private = priv;
2453 }
2454 the_bfd = NULL;
2455
2456 if (priv->size != 0)
2457 {
2458 int low, mid, high;
2459 char *ptr;
2460
2461 low = 0;
2462 high = priv->size / 32;
2463
2464 do
2465 {
2466 CORE_ADDR pdr_pc;
2467
2468 mid = (low + high) / 2;
2469
2470 ptr = priv->contents + mid * 32;
2471 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2472 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2473 SECT_OFF_TEXT (sec->objfile));
2474 if (pdr_pc == startaddr)
2475 break;
2476 if (pdr_pc > startaddr)
2477 high = mid;
2478 else
2479 low = mid + 1;
2480 }
2481 while (low != high);
2482
2483 if (low != high)
2484 {
2485 struct symbol *sym = find_pc_function (pc);
2486
2487 /* Fill in what we need of the proc_desc. */
2488 proc_desc = (mips_extra_func_info_t)
2489 obstack_alloc (&sec->objfile->psymbol_obstack,
2490 sizeof (struct mips_extra_func_info));
2491 PROC_LOW_ADDR (proc_desc) = startaddr;
2492
2493 /* Only used for dummy frames. */
2494 PROC_HIGH_ADDR (proc_desc) = 0;
2495
2496 PROC_FRAME_OFFSET (proc_desc)
2497 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2498 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2499 ptr + 24);
2500 PROC_FRAME_ADJUST (proc_desc) = 0;
2501 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2502 ptr + 4);
2503 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2504 ptr + 12);
2505 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2506 ptr + 8);
2507 PROC_FREG_OFFSET (proc_desc)
2508 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2509 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2510 ptr + 28);
2511 proc_desc->pdr.isym = (long) sym;
2512
2513 return proc_desc;
2514 }
2515 }
c906108c
SS
2516 }
2517
6c0d6680
DJ
2518 if (b == NULL)
2519 return NULL;
2520
2521 if (startaddr > BLOCK_START (b))
2522 {
2523 /* This is the "pathological" case referred to in a comment in
2524 print_frame_info. It might be better to move this check into
2525 symbol reading. */
2526 return NULL;
2527 }
2528
176620f1 2529 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2530
c906108c
SS
2531 /* If we never found a PDR for this function in symbol reading, then
2532 examine prologues to find the information. */
2533 if (sym)
2534 {
2535 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2536 if (PROC_FRAME_REG (proc_desc) == -1)
2537 return NULL;
2538 else
2539 return proc_desc;
2540 }
2541 else
2542 return NULL;
2543}
2544
2545
2546static mips_extra_func_info_t
479412cd 2547find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2548{
2549 mips_extra_func_info_t proc_desc;
4e0df2df 2550 CORE_ADDR startaddr = 0;
c906108c
SS
2551
2552 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2553
2554 if (proc_desc)
2555 {
2556 /* IF this is the topmost frame AND
2557 * (this proc does not have debugging information OR
2558 * the PC is in the procedure prologue)
2559 * THEN create a "heuristic" proc_desc (by analyzing
2560 * the actual code) to replace the "official" proc_desc.
2561 */
2562 if (next_frame == NULL)
2563 {
2564 struct symtab_and_line val;
2565 struct symbol *proc_symbol =
c86b5b38 2566 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2567
2568 if (proc_symbol)
2569 {
2570 val = find_pc_line (BLOCK_START
c5aa993b 2571 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2572 0);
2573 val.pc = val.end ? val.end : pc;
2574 }
2575 if (!proc_symbol || pc < val.pc)
2576 {
2577 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2578 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2579 pc, next_frame, cur_frame);
c906108c
SS
2580 if (found_heuristic)
2581 proc_desc = found_heuristic;
2582 }
2583 }
2584 }
2585 else
2586 {
2587 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2588 by procedure call dummys. However, the procedures being called ought
2589 to have their own proc_descs, and even if they don't,
2590 heuristic_proc_desc knows how to create them! */
c906108c 2591
aa1ee363 2592 struct linked_proc_info *link;
c906108c
SS
2593
2594 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2595 if (PROC_LOW_ADDR (&link->info) <= pc
2596 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2597 return &link->info;
2598
2599 if (startaddr == 0)
2600 startaddr = heuristic_proc_start (pc);
2601
2602 proc_desc =
479412cd 2603 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2604 }
2605 return proc_desc;
2606}
2607
2608static CORE_ADDR
acdb74a0
AC
2609get_frame_pointer (struct frame_info *frame,
2610 mips_extra_func_info_t proc_desc)
c906108c 2611{
a4b8ebc8 2612 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
e227b13c
AC
2613 + PROC_FRAME_OFFSET (proc_desc)
2614 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2615}
2616
5a89d8aa 2617static mips_extra_func_info_t cached_proc_desc;
c906108c 2618
f7ab6ec6 2619static CORE_ADDR
acdb74a0 2620mips_frame_chain (struct frame_info *frame)
c906108c
SS
2621{
2622 mips_extra_func_info_t proc_desc;
2623 CORE_ADDR tmp;
8bedc050 2624 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c 2625
627b3ba2 2626 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
c906108c
SS
2627 return 0;
2628
2629 /* Check if the PC is inside a call stub. If it is, fetch the
2630 PC of the caller of that stub. */
5a89d8aa 2631 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2632 saved_pc = tmp;
2633
ae45cd16 2634 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2635 {
2636 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2637 is well, frame->frame the bottom of the current frame will
2638 contain that value. */
1e2330ba 2639 return get_frame_base (frame);
cedea778
AC
2640 }
2641
c906108c 2642 /* Look up the procedure descriptor for this PC. */
479412cd 2643 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2644 if (!proc_desc)
2645 return 0;
2646
2647 cached_proc_desc = proc_desc;
2648
2649 /* If no frame pointer and frame size is zero, we must be at end
2650 of stack (or otherwise hosed). If we don't check frame size,
2651 we loop forever if we see a zero size frame. */
2652 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2653 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2654 /* The previous frame from a sigtramp frame might be frameless
2655 and have frame size zero. */
5a203e44 2656 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2657 /* For a generic dummy frame, let get_frame_pointer() unwind a
2658 register value saved as part of the dummy frame call. */
50abf9e5 2659 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2660 return 0;
2661 else
2662 return get_frame_pointer (frame, proc_desc);
2663}
2664
f7ab6ec6 2665static void
acdb74a0 2666mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2667{
2668 int regnum;
f2c16bd6
KB
2669 mips_extra_func_info_t proc_desc;
2670
2671 if (get_frame_type (fci) == DUMMY_FRAME)
2672 return;
c906108c 2673
f796e4be
KB
2674 /* Use proc_desc calculated in frame_chain. When there is no
2675 next frame, i.e, get_next_frame (fci) == NULL, we call
2676 find_proc_desc () to calculate it, passing an explicit
2677 NULL as the frame parameter. */
f2c16bd6 2678 proc_desc =
11c02a10
AC
2679 get_next_frame (fci)
2680 ? cached_proc_desc
f796e4be
KB
2681 : find_proc_desc (get_frame_pc (fci),
2682 NULL /* i.e, get_next_frame (fci) */,
2683 1);
c906108c 2684
a00a19e9 2685 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2686
7b5849cc 2687 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2688 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2689 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2690 if (proc_desc)
2691 {
2692 /* Fixup frame-pointer - only needed for top frame */
2693 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2694 Get the value of the frame relative sp, procedure might have been
2695 interrupted by a signal at it's very start. */
50abf9e5 2696 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2697 && !PROC_DESC_IS_DUMMY (proc_desc))
a4b8ebc8 2698 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
50abf9e5 2699 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2700 /* Do not ``fix'' fci->frame. It will have the value of the
2701 generic dummy frame's top-of-stack (since the draft
2702 fci->frame is obtained by returning the unwound stack
2703 pointer) and that is what we want. That way the fci->frame
2704 value will match the top-of-stack value that was saved as
2705 part of the dummy frames data. */
2706 /* Do nothing. */;
c906108c 2707 else
11c02a10 2708 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2709
2710 if (proc_desc == &temp_proc_desc)
2711 {
2712 char *name;
2713
2714 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2715 mips_find_saved_registers will do that for us. We can't
2716 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2717 yet set. */
2718 /* FIXME: cagney/2002-11-18: This problem will go away once
2719 frame.c:get_prev_frame() is modified to set the frame's
2720 type before calling functions like this. */
50abf9e5 2721 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2722 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2723 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2724 {
c5aa993b 2725 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2726 /* Set value of previous frame's stack pointer.
2727 Remember that saved_regs[SP_REGNUM] is special in
2728 that it contains the value of the stack pointer
2729 register. The other saved_regs values are addresses
2730 (in the inferior) at which a given register's value
2731 may be found. */
2732 set_reg_offset (temp_saved_regs, SP_REGNUM,
2733 get_frame_base (fci));
2734 set_reg_offset (temp_saved_regs, PC_REGNUM,
2735 temp_saved_regs[RA_REGNUM]);
2736 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2737 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2738 }
2739 }
2740
2741 /* hack: if argument regs are saved, guess these contain args */
cce74817 2742 /* assume we can't tell how many args for now */
da50a4b7 2743 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2744 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2745 {
c5aa993b 2746 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2747 {
da50a4b7 2748 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2749 break;
2750 }
c5aa993b 2751 }
c906108c
SS
2752 }
2753}
2754
2755/* MIPS stack frames are almost impenetrable. When execution stops,
2756 we basically have to look at symbol information for the function
2757 that we stopped in, which tells us *which* register (if any) is
2758 the base of the frame pointer, and what offset from that register
361d1df0 2759 the frame itself is at.
c906108c
SS
2760
2761 This presents a problem when trying to examine a stack in memory
2762 (that isn't executing at the moment), using the "frame" command. We
2763 don't have a PC, nor do we have any registers except SP.
2764
2765 This routine takes two arguments, SP and PC, and tries to make the
2766 cached frames look as if these two arguments defined a frame on the
2767 cache. This allows the rest of info frame to extract the important
2768 arguments without difficulty. */
2769
2770struct frame_info *
acdb74a0 2771setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2772{
2773 if (argc != 2)
2774 error ("MIPS frame specifications require two arguments: sp and pc");
2775
2776 return create_new_frame (argv[0], argv[1]);
2777}
2778
f09ded24
AC
2779/* According to the current ABI, should the type be passed in a
2780 floating-point register (assuming that there is space)? When there
2781 is no FPU, FP are not even considered as possibile candidates for
2782 FP registers and, consequently this returns false - forces FP
2783 arguments into integer registers. */
2784
2785static int
2786fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2787{
2788 return ((typecode == TYPE_CODE_FLT
2789 || (MIPS_EABI
2790 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2791 && TYPE_NFIELDS (arg_type) == 1
2792 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2793 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2794}
2795
49e790b0
DJ
2796/* On o32, argument passing in GPRs depends on the alignment of the type being
2797 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2798
2799static int
2800mips_type_needs_double_align (struct type *type)
2801{
2802 enum type_code typecode = TYPE_CODE (type);
361d1df0 2803
49e790b0
DJ
2804 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2805 return 1;
2806 else if (typecode == TYPE_CODE_STRUCT)
2807 {
2808 if (TYPE_NFIELDS (type) < 1)
2809 return 0;
2810 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2811 }
2812 else if (typecode == TYPE_CODE_UNION)
2813 {
361d1df0 2814 int i, n;
49e790b0
DJ
2815
2816 n = TYPE_NFIELDS (type);
2817 for (i = 0; i < n; i++)
2818 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2819 return 1;
2820 return 0;
2821 }
2822 return 0;
2823}
2824
cb3d25d1
MS
2825/* Macros to round N up or down to the next A boundary;
2826 A must be a power of two. */
2827
2828#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2829#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2830
dc604539
AC
2831/* Adjust the address downward (direction of stack growth) so that it
2832 is correctly aligned for a new stack frame. */
2833static CORE_ADDR
2834mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2835{
2836 return ROUND_DOWN (addr, 16);
2837}
2838
f7ab6ec6 2839static CORE_ADDR
25ab4790
AC
2840mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2841 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2842 struct value **args, CORE_ADDR sp, int struct_return,
2843 CORE_ADDR struct_addr)
c906108c
SS
2844{
2845 int argreg;
2846 int float_argreg;
2847 int argnum;
2848 int len = 0;
2849 int stack_offset = 0;
2850
25ab4790
AC
2851 /* For shared libraries, "t9" needs to point at the function
2852 address. */
2853 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2854
2855 /* Set the return address register to point to the entry point of
2856 the program, where a breakpoint lies in wait. */
2857 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2858
c906108c 2859 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2860 are properly aligned. The stack has to be at least 64-bit
2861 aligned even on 32-bit machines, because doubles must be 64-bit
2862 aligned. For n32 and n64, stack frames need to be 128-bit
2863 aligned, so we round to this widest known alignment. */
2864
c906108c 2865 sp = ROUND_DOWN (sp, 16);
cce41527 2866 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2867
46e0f506 2868 /* Now make space on the stack for the args. We allocate more
c906108c 2869 than necessary for EABI, because the first few arguments are
46e0f506 2870 passed in registers, but that's OK. */
c906108c 2871 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2872 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2873 MIPS_STACK_ARGSIZE);
c906108c
SS
2874 sp -= ROUND_UP (len, 16);
2875
9ace0497 2876 if (mips_debug)
46e0f506 2877 fprintf_unfiltered (gdb_stdlog,
25ab4790 2878 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1 2879 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2880
c906108c
SS
2881 /* Initialize the integer and float register pointers. */
2882 argreg = A0_REGNUM;
2883 float_argreg = FPA0_REGNUM;
2884
46e0f506 2885 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2886 if (struct_return)
9ace0497
AC
2887 {
2888 if (mips_debug)
2889 fprintf_unfiltered (gdb_stdlog,
25ab4790 2890 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2891 argreg, paddr_nz (struct_addr));
9ace0497
AC
2892 write_register (argreg++, struct_addr);
2893 }
c906108c
SS
2894
2895 /* Now load as many as possible of the first arguments into
2896 registers, and push the rest onto the stack. Loop thru args
2897 from first to last. */
2898 for (argnum = 0; argnum < nargs; argnum++)
2899 {
2900 char *val;
d9d9c31f 2901 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2902 struct value *arg = args[argnum];
c906108c
SS
2903 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2904 int len = TYPE_LENGTH (arg_type);
2905 enum type_code typecode = TYPE_CODE (arg_type);
2906
9ace0497
AC
2907 if (mips_debug)
2908 fprintf_unfiltered (gdb_stdlog,
25ab4790 2909 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2910 argnum + 1, len, (int) typecode);
9ace0497 2911
c906108c 2912 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2913 reference. */
2914 if (len > MIPS_SAVED_REGSIZE
9ace0497 2915 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2916 {
fbd9dcd3 2917 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2918 typecode = TYPE_CODE_PTR;
7a292a7a 2919 len = MIPS_SAVED_REGSIZE;
c906108c 2920 val = valbuf;
9ace0497
AC
2921 if (mips_debug)
2922 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2923 }
2924 else
c5aa993b 2925 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2926
2927 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2928 even-numbered floating point register. Round the FP register
2929 up before the check to see if there are any FP registers
46e0f506
MS
2930 left. Non MIPS_EABI targets also pass the FP in the integer
2931 registers so also round up normal registers. */
acdb74a0
AC
2932 if (!FP_REGISTER_DOUBLE
2933 && fp_register_arg_p (typecode, arg_type))
2934 {
2935 if ((float_argreg & 1))
2936 float_argreg++;
2937 }
c906108c
SS
2938
2939 /* Floating point arguments passed in registers have to be
2940 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2941 are passed in register pairs; the even register gets
2942 the low word, and the odd register gets the high word.
2943 On non-EABI processors, the first two floating point arguments are
2944 also copied to general registers, because MIPS16 functions
2945 don't use float registers for arguments. This duplication of
2946 arguments in general registers can't hurt non-MIPS16 functions
2947 because those registers are normally skipped. */
1012bd0e
EZ
2948 /* MIPS_EABI squeezes a struct that contains a single floating
2949 point value into an FP register instead of pushing it onto the
46e0f506 2950 stack. */
f09ded24
AC
2951 if (fp_register_arg_p (typecode, arg_type)
2952 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2953 {
2954 if (!FP_REGISTER_DOUBLE && len == 8)
2955 {
d7449b42 2956 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2957 unsigned long regval;
2958
2959 /* Write the low word of the double to the even register(s). */
c5aa993b 2960 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2961 if (mips_debug)
acdb74a0 2962 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2963 float_argreg, phex (regval, 4));
c906108c 2964 write_register (float_argreg++, regval);
c906108c
SS
2965
2966 /* Write the high word of the double to the odd register(s). */
c5aa993b 2967 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2968 if (mips_debug)
acdb74a0 2969 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2970 float_argreg, phex (regval, 4));
c906108c 2971 write_register (float_argreg++, regval);
c906108c
SS
2972 }
2973 else
2974 {
2975 /* This is a floating point value that fits entirely
2976 in a single register. */
53a5351d 2977 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2978 above to ensure that it is even register aligned. */
9ace0497
AC
2979 LONGEST regval = extract_unsigned_integer (val, len);
2980 if (mips_debug)
acdb74a0 2981 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2982 float_argreg, phex (regval, len));
c906108c 2983 write_register (float_argreg++, regval);
c906108c
SS
2984 }
2985 }
2986 else
2987 {
2988 /* Copy the argument to general registers or the stack in
2989 register-sized pieces. Large arguments are split between
2990 registers and stack. */
2991 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2992 are treated specially: Irix cc passes them in registers
2993 where gcc sometimes puts them on the stack. For maximum
2994 compatibility, we will put them in both places. */
c5aa993b 2995 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2996 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2997
f09ded24 2998 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2999 register are only written to memory. */
c906108c
SS
3000 while (len > 0)
3001 {
ebafbe83 3002 /* Remember if the argument was written to the stack. */
566f0f7a 3003 int stack_used_p = 0;
46e0f506
MS
3004 int partial_len =
3005 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 3006
acdb74a0
AC
3007 if (mips_debug)
3008 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3009 partial_len);
3010
566f0f7a 3011 /* Write this portion of the argument to the stack. */
f09ded24
AC
3012 if (argreg > MIPS_LAST_ARG_REGNUM
3013 || odd_sized_struct
3014 || fp_register_arg_p (typecode, arg_type))
c906108c 3015 {
c906108c
SS
3016 /* Should shorter than int integer values be
3017 promoted to int before being stored? */
c906108c 3018 int longword_offset = 0;
9ace0497 3019 CORE_ADDR addr;
566f0f7a 3020 stack_used_p = 1;
d7449b42 3021 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 3022 {
d929b26f 3023 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
3024 (typecode == TYPE_CODE_INT ||
3025 typecode == TYPE_CODE_PTR ||
3026 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 3027 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
3028 else if ((typecode == TYPE_CODE_STRUCT ||
3029 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
3030 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
3031 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 3032 }
c5aa993b 3033
9ace0497
AC
3034 if (mips_debug)
3035 {
cb3d25d1
MS
3036 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3037 paddr_nz (stack_offset));
3038 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3039 paddr_nz (longword_offset));
9ace0497 3040 }
361d1df0 3041
9ace0497
AC
3042 addr = sp + stack_offset + longword_offset;
3043
3044 if (mips_debug)
3045 {
3046 int i;
cb3d25d1
MS
3047 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3048 paddr_nz (addr));
9ace0497
AC
3049 for (i = 0; i < partial_len; i++)
3050 {
cb3d25d1
MS
3051 fprintf_unfiltered (gdb_stdlog, "%02x",
3052 val[i] & 0xff);
9ace0497
AC
3053 }
3054 }
3055 write_memory (addr, val, partial_len);
c906108c
SS
3056 }
3057
f09ded24
AC
3058 /* Note!!! This is NOT an else clause. Odd sized
3059 structs may go thru BOTH paths. Floating point
46e0f506 3060 arguments will not. */
566f0f7a 3061 /* Write this portion of the argument to a general
46e0f506 3062 purpose register. */
f09ded24
AC
3063 if (argreg <= MIPS_LAST_ARG_REGNUM
3064 && !fp_register_arg_p (typecode, arg_type))
c906108c 3065 {
9ace0497 3066 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 3067
9ace0497 3068 if (mips_debug)
acdb74a0 3069 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
3070 argreg,
3071 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
3072 write_register (argreg, regval);
3073 argreg++;
c906108c 3074 }
c5aa993b 3075
c906108c
SS
3076 len -= partial_len;
3077 val += partial_len;
3078
566f0f7a
AC
3079 /* Compute the the offset into the stack at which we
3080 will copy the next parameter.
3081
566f0f7a 3082 In the new EABI (and the NABI32), the stack_offset
46e0f506 3083 only needs to be adjusted when it has been used. */
c906108c 3084
46e0f506 3085 if (stack_used_p)
d929b26f 3086 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
3087 }
3088 }
9ace0497
AC
3089 if (mips_debug)
3090 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
3091 }
3092
310e9b6a
AC
3093 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3094
0f71a2f6
JM
3095 /* Return adjusted stack pointer. */
3096 return sp;
3097}
3098
25ab4790 3099/* N32/N64 version of push_dummy_call. */
ebafbe83 3100
f7ab6ec6 3101static CORE_ADDR
25ab4790
AC
3102mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3103 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3104 struct value **args, CORE_ADDR sp, int struct_return,
3105 CORE_ADDR struct_addr)
cb3d25d1
MS
3106{
3107 int argreg;
3108 int float_argreg;
3109 int argnum;
3110 int len = 0;
3111 int stack_offset = 0;
3112
25ab4790
AC
3113 /* For shared libraries, "t9" needs to point at the function
3114 address. */
3115 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3116
3117 /* Set the return address register to point to the entry point of
3118 the program, where a breakpoint lies in wait. */
3119 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3120
cb3d25d1
MS
3121 /* First ensure that the stack and structure return address (if any)
3122 are properly aligned. The stack has to be at least 64-bit
3123 aligned even on 32-bit machines, because doubles must be 64-bit
3124 aligned. For n32 and n64, stack frames need to be 128-bit
3125 aligned, so we round to this widest known alignment. */
3126
3127 sp = ROUND_DOWN (sp, 16);
3128 struct_addr = ROUND_DOWN (struct_addr, 16);
3129
3130 /* Now make space on the stack for the args. */
3131 for (argnum = 0; argnum < nargs; argnum++)
3132 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3133 MIPS_STACK_ARGSIZE);
3134 sp -= ROUND_UP (len, 16);
3135
3136 if (mips_debug)
3137 fprintf_unfiltered (gdb_stdlog,
25ab4790 3138 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1
MS
3139 paddr_nz (sp), ROUND_UP (len, 16));
3140
3141 /* Initialize the integer and float register pointers. */
3142 argreg = A0_REGNUM;
3143 float_argreg = FPA0_REGNUM;
3144
46e0f506 3145 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3146 if (struct_return)
3147 {
3148 if (mips_debug)
3149 fprintf_unfiltered (gdb_stdlog,
25ab4790 3150 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3151 argreg, paddr_nz (struct_addr));
3152 write_register (argreg++, struct_addr);
3153 }
3154
3155 /* Now load as many as possible of the first arguments into
3156 registers, and push the rest onto the stack. Loop thru args
3157 from first to last. */
3158 for (argnum = 0; argnum < nargs; argnum++)
3159 {
3160 char *val;
d9d9c31f 3161 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3162 struct value *arg = args[argnum];
3163 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3164 int len = TYPE_LENGTH (arg_type);
3165 enum type_code typecode = TYPE_CODE (arg_type);
3166
3167 if (mips_debug)
3168 fprintf_unfiltered (gdb_stdlog,
25ab4790 3169 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3170 argnum + 1, len, (int) typecode);
3171
3172 val = (char *) VALUE_CONTENTS (arg);
3173
3174 if (fp_register_arg_p (typecode, arg_type)
3175 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3176 {
3177 /* This is a floating point value that fits entirely
3178 in a single register. */
3179 /* On 32 bit ABI's the float_argreg is further adjusted
3180 above to ensure that it is even register aligned. */
3181 LONGEST regval = extract_unsigned_integer (val, len);
3182 if (mips_debug)
3183 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3184 float_argreg, phex (regval, len));
3185 write_register (float_argreg++, regval);
3186
3187 if (mips_debug)
3188 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3189 argreg, phex (regval, len));
3190 write_register (argreg, regval);
3191 argreg += 1;
3192 }
3193 else
3194 {
3195 /* Copy the argument to general registers or the stack in
3196 register-sized pieces. Large arguments are split between
3197 registers and stack. */
3198 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3199 are treated specially: Irix cc passes them in registers
3200 where gcc sometimes puts them on the stack. For maximum
3201 compatibility, we will put them in both places. */
3202 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3203 (len % MIPS_SAVED_REGSIZE != 0));
3204 /* Note: Floating-point values that didn't fit into an FP
3205 register are only written to memory. */
3206 while (len > 0)
3207 {
3208 /* Rememer if the argument was written to the stack. */
3209 int stack_used_p = 0;
3210 int partial_len = len < MIPS_SAVED_REGSIZE ?
3211 len : MIPS_SAVED_REGSIZE;
3212
3213 if (mips_debug)
3214 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3215 partial_len);
3216
3217 /* Write this portion of the argument to the stack. */
3218 if (argreg > MIPS_LAST_ARG_REGNUM
3219 || odd_sized_struct
3220 || fp_register_arg_p (typecode, arg_type))
3221 {
3222 /* Should shorter than int integer values be
3223 promoted to int before being stored? */
3224 int longword_offset = 0;
3225 CORE_ADDR addr;
3226 stack_used_p = 1;
3227 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3228 {
3229 if (MIPS_STACK_ARGSIZE == 8 &&
3230 (typecode == TYPE_CODE_INT ||
3231 typecode == TYPE_CODE_PTR ||
3232 typecode == TYPE_CODE_FLT) && len <= 4)
3233 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3234 }
3235
3236 if (mips_debug)
3237 {
3238 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3239 paddr_nz (stack_offset));
3240 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3241 paddr_nz (longword_offset));
3242 }
3243
3244 addr = sp + stack_offset + longword_offset;
3245
3246 if (mips_debug)
3247 {
3248 int i;
3249 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3250 paddr_nz (addr));
3251 for (i = 0; i < partial_len; i++)
3252 {
3253 fprintf_unfiltered (gdb_stdlog, "%02x",
3254 val[i] & 0xff);
3255 }
3256 }
3257 write_memory (addr, val, partial_len);
3258 }
3259
3260 /* Note!!! This is NOT an else clause. Odd sized
3261 structs may go thru BOTH paths. Floating point
3262 arguments will not. */
3263 /* Write this portion of the argument to a general
3264 purpose register. */
3265 if (argreg <= MIPS_LAST_ARG_REGNUM
3266 && !fp_register_arg_p (typecode, arg_type))
3267 {
3268 LONGEST regval = extract_unsigned_integer (val, partial_len);
3269
3270 /* A non-floating-point argument being passed in a
3271 general register. If a struct or union, and if
3272 the remaining length is smaller than the register
3273 size, we have to adjust the register value on
3274 big endian targets.
3275
3276 It does not seem to be necessary to do the
3277 same for integral types.
3278
3279 cagney/2001-07-23: gdb/179: Also, GCC, when
3280 outputting LE O32 with sizeof (struct) <
3281 MIPS_SAVED_REGSIZE, generates a left shift as
3282 part of storing the argument in a register a
3283 register (the left shift isn't generated when
3284 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3285 is quite possible that this is GCC contradicting
3286 the LE/O32 ABI, GDB has not been adjusted to
3287 accommodate this. Either someone needs to
3288 demonstrate that the LE/O32 ABI specifies such a
3289 left shift OR this new ABI gets identified as
3290 such and GDB gets tweaked accordingly. */
3291
3292 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3293 && partial_len < MIPS_SAVED_REGSIZE
3294 && (typecode == TYPE_CODE_STRUCT ||
3295 typecode == TYPE_CODE_UNION))
3296 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3297 TARGET_CHAR_BIT);
3298
3299 if (mips_debug)
3300 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3301 argreg,
3302 phex (regval, MIPS_SAVED_REGSIZE));
3303 write_register (argreg, regval);
3304 argreg++;
3305 }
3306
3307 len -= partial_len;
3308 val += partial_len;
3309
3310 /* Compute the the offset into the stack at which we
3311 will copy the next parameter.
3312
3313 In N32 (N64?), the stack_offset only needs to be
3314 adjusted when it has been used. */
3315
3316 if (stack_used_p)
3317 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3318 }
3319 }
3320 if (mips_debug)
3321 fprintf_unfiltered (gdb_stdlog, "\n");
3322 }
3323
310e9b6a
AC
3324 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3325
cb3d25d1
MS
3326 /* Return adjusted stack pointer. */
3327 return sp;
3328}
3329
25ab4790 3330/* O32 version of push_dummy_call. */
ebafbe83 3331
46cac009 3332static CORE_ADDR
25ab4790
AC
3333mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3334 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3335 struct value **args, CORE_ADDR sp, int struct_return,
3336 CORE_ADDR struct_addr)
ebafbe83
MS
3337{
3338 int argreg;
3339 int float_argreg;
3340 int argnum;
3341 int len = 0;
3342 int stack_offset = 0;
ebafbe83 3343
25ab4790
AC
3344 /* For shared libraries, "t9" needs to point at the function
3345 address. */
3346 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3347
3348 /* Set the return address register to point to the entry point of
3349 the program, where a breakpoint lies in wait. */
3350 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3351
ebafbe83
MS
3352 /* First ensure that the stack and structure return address (if any)
3353 are properly aligned. The stack has to be at least 64-bit
3354 aligned even on 32-bit machines, because doubles must be 64-bit
3355 aligned. For n32 and n64, stack frames need to be 128-bit
3356 aligned, so we round to this widest known alignment. */
3357
3358 sp = ROUND_DOWN (sp, 16);
3359 struct_addr = ROUND_DOWN (struct_addr, 16);
3360
3361 /* Now make space on the stack for the args. */
3362 for (argnum = 0; argnum < nargs; argnum++)
3363 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3364 MIPS_STACK_ARGSIZE);
3365 sp -= ROUND_UP (len, 16);
3366
3367 if (mips_debug)
3368 fprintf_unfiltered (gdb_stdlog,
25ab4790 3369 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
ebafbe83
MS
3370 paddr_nz (sp), ROUND_UP (len, 16));
3371
3372 /* Initialize the integer and float register pointers. */
3373 argreg = A0_REGNUM;
3374 float_argreg = FPA0_REGNUM;
3375
bcb0cc15 3376 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3377 if (struct_return)
3378 {
3379 if (mips_debug)
3380 fprintf_unfiltered (gdb_stdlog,
25ab4790 3381 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3382 argreg, paddr_nz (struct_addr));
3383 write_register (argreg++, struct_addr);
3384 stack_offset += MIPS_STACK_ARGSIZE;
3385 }
3386
3387 /* Now load as many as possible of the first arguments into
3388 registers, and push the rest onto the stack. Loop thru args
3389 from first to last. */
3390 for (argnum = 0; argnum < nargs; argnum++)
3391 {
3392 char *val;
d9d9c31f 3393 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3394 struct value *arg = args[argnum];
3395 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3396 int len = TYPE_LENGTH (arg_type);
3397 enum type_code typecode = TYPE_CODE (arg_type);
3398
3399 if (mips_debug)
3400 fprintf_unfiltered (gdb_stdlog,
25ab4790 3401 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3402 argnum + 1, len, (int) typecode);
3403
3404 val = (char *) VALUE_CONTENTS (arg);
3405
3406 /* 32-bit ABIs always start floating point arguments in an
3407 even-numbered floating point register. Round the FP register
3408 up before the check to see if there are any FP registers
3409 left. O32/O64 targets also pass the FP in the integer
3410 registers so also round up normal registers. */
3411 if (!FP_REGISTER_DOUBLE
3412 && fp_register_arg_p (typecode, arg_type))
3413 {
3414 if ((float_argreg & 1))
3415 float_argreg++;
3416 }
3417
3418 /* Floating point arguments passed in registers have to be
3419 treated specially. On 32-bit architectures, doubles
3420 are passed in register pairs; the even register gets
3421 the low word, and the odd register gets the high word.
3422 On O32/O64, the first two floating point arguments are
3423 also copied to general registers, because MIPS16 functions
3424 don't use float registers for arguments. This duplication of
3425 arguments in general registers can't hurt non-MIPS16 functions
3426 because those registers are normally skipped. */
3427
3428 if (fp_register_arg_p (typecode, arg_type)
3429 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3430 {
3431 if (!FP_REGISTER_DOUBLE && len == 8)
3432 {
3433 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3434 unsigned long regval;
3435
3436 /* Write the low word of the double to the even register(s). */
3437 regval = extract_unsigned_integer (val + low_offset, 4);
3438 if (mips_debug)
3439 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3440 float_argreg, phex (regval, 4));
3441 write_register (float_argreg++, regval);
3442 if (mips_debug)
3443 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3444 argreg, phex (regval, 4));
3445 write_register (argreg++, regval);
3446
3447 /* Write the high word of the double to the odd register(s). */
3448 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3449 if (mips_debug)
3450 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3451 float_argreg, phex (regval, 4));
3452 write_register (float_argreg++, regval);
3453
3454 if (mips_debug)
3455 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3456 argreg, phex (regval, 4));
3457 write_register (argreg++, regval);
3458 }
3459 else
3460 {
3461 /* This is a floating point value that fits entirely
3462 in a single register. */
3463 /* On 32 bit ABI's the float_argreg is further adjusted
3464 above to ensure that it is even register aligned. */
3465 LONGEST regval = extract_unsigned_integer (val, len);
3466 if (mips_debug)
3467 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3468 float_argreg, phex (regval, len));
3469 write_register (float_argreg++, regval);
3470 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3471 registers for each argument. The below is (my
3472 guess) to ensure that the corresponding integer
3473 register has reserved the same space. */
3474 if (mips_debug)
3475 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3476 argreg, phex (regval, len));
3477 write_register (argreg, regval);
3478 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3479 }
3480 /* Reserve space for the FP register. */
3481 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3482 }
3483 else
3484 {
3485 /* Copy the argument to general registers or the stack in
3486 register-sized pieces. Large arguments are split between
3487 registers and stack. */
3488 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3489 are treated specially: Irix cc passes them in registers
3490 where gcc sometimes puts them on the stack. For maximum
3491 compatibility, we will put them in both places. */
3492 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3493 (len % MIPS_SAVED_REGSIZE != 0));
3494 /* Structures should be aligned to eight bytes (even arg registers)
3495 on MIPS_ABI_O32, if their first member has double precision. */
3496 if (MIPS_SAVED_REGSIZE < 8
3497 && mips_type_needs_double_align (arg_type))
3498 {
3499 if ((argreg & 1))
3500 argreg++;
3501 }
3502 /* Note: Floating-point values that didn't fit into an FP
3503 register are only written to memory. */
3504 while (len > 0)
3505 {
3506 /* Remember if the argument was written to the stack. */
3507 int stack_used_p = 0;
3508 int partial_len =
3509 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3510
3511 if (mips_debug)
3512 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3513 partial_len);
3514
3515 /* Write this portion of the argument to the stack. */
3516 if (argreg > MIPS_LAST_ARG_REGNUM
3517 || odd_sized_struct
3518 || fp_register_arg_p (typecode, arg_type))
3519 {
3520 /* Should shorter than int integer values be
3521 promoted to int before being stored? */
3522 int longword_offset = 0;
3523 CORE_ADDR addr;
3524 stack_used_p = 1;
3525 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3526 {
3527 if (MIPS_STACK_ARGSIZE == 8 &&
3528 (typecode == TYPE_CODE_INT ||
3529 typecode == TYPE_CODE_PTR ||
3530 typecode == TYPE_CODE_FLT) && len <= 4)
3531 longword_offset = MIPS_STACK_ARGSIZE - len;
3532 }
3533
3534 if (mips_debug)
3535 {
3536 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3537 paddr_nz (stack_offset));
3538 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3539 paddr_nz (longword_offset));
3540 }
3541
3542 addr = sp + stack_offset + longword_offset;
3543
3544 if (mips_debug)
3545 {
3546 int i;
3547 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3548 paddr_nz (addr));
3549 for (i = 0; i < partial_len; i++)
3550 {
3551 fprintf_unfiltered (gdb_stdlog, "%02x",
3552 val[i] & 0xff);
3553 }
3554 }
3555 write_memory (addr, val, partial_len);
3556 }
3557
3558 /* Note!!! This is NOT an else clause. Odd sized
3559 structs may go thru BOTH paths. Floating point
3560 arguments will not. */
3561 /* Write this portion of the argument to a general
3562 purpose register. */
3563 if (argreg <= MIPS_LAST_ARG_REGNUM
3564 && !fp_register_arg_p (typecode, arg_type))
3565 {
3566 LONGEST regval = extract_signed_integer (val, partial_len);
3567 /* Value may need to be sign extended, because
3568 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3569
3570 /* A non-floating-point argument being passed in a
3571 general register. If a struct or union, and if
3572 the remaining length is smaller than the register
3573 size, we have to adjust the register value on
3574 big endian targets.
3575
3576 It does not seem to be necessary to do the
3577 same for integral types.
3578
3579 Also don't do this adjustment on O64 binaries.
3580
3581 cagney/2001-07-23: gdb/179: Also, GCC, when
3582 outputting LE O32 with sizeof (struct) <
3583 MIPS_SAVED_REGSIZE, generates a left shift as
3584 part of storing the argument in a register a
3585 register (the left shift isn't generated when
3586 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3587 is quite possible that this is GCC contradicting
3588 the LE/O32 ABI, GDB has not been adjusted to
3589 accommodate this. Either someone needs to
3590 demonstrate that the LE/O32 ABI specifies such a
3591 left shift OR this new ABI gets identified as
3592 such and GDB gets tweaked accordingly. */
3593
3594 if (MIPS_SAVED_REGSIZE < 8
3595 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3596 && partial_len < MIPS_SAVED_REGSIZE
3597 && (typecode == TYPE_CODE_STRUCT ||
3598 typecode == TYPE_CODE_UNION))
3599 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3600 TARGET_CHAR_BIT);
3601
3602 if (mips_debug)
3603 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3604 argreg,
3605 phex (regval, MIPS_SAVED_REGSIZE));
3606 write_register (argreg, regval);
3607 argreg++;
3608
3609 /* Prevent subsequent floating point arguments from
3610 being passed in floating point registers. */
3611 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3612 }
3613
3614 len -= partial_len;
3615 val += partial_len;
3616
3617 /* Compute the the offset into the stack at which we
3618 will copy the next parameter.
3619
3620 In older ABIs, the caller reserved space for
3621 registers that contained arguments. This was loosely
3622 refered to as their "home". Consequently, space is
3623 always allocated. */
3624
3625 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3626 }
3627 }
3628 if (mips_debug)
3629 fprintf_unfiltered (gdb_stdlog, "\n");
3630 }
3631
310e9b6a
AC
3632 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3633
46cac009
AC
3634 /* Return adjusted stack pointer. */
3635 return sp;
3636}
3637
25ab4790 3638/* O64 version of push_dummy_call. */
46cac009
AC
3639
3640static CORE_ADDR
25ab4790
AC
3641mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3642 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3643 struct value **args, CORE_ADDR sp, int struct_return,
3644 CORE_ADDR struct_addr)
46cac009
AC
3645{
3646 int argreg;
3647 int float_argreg;
3648 int argnum;
3649 int len = 0;
3650 int stack_offset = 0;
3651
25ab4790
AC
3652 /* For shared libraries, "t9" needs to point at the function
3653 address. */
3654 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3655
3656 /* Set the return address register to point to the entry point of
3657 the program, where a breakpoint lies in wait. */
3658 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3659
46cac009
AC
3660 /* First ensure that the stack and structure return address (if any)
3661 are properly aligned. The stack has to be at least 64-bit
3662 aligned even on 32-bit machines, because doubles must be 64-bit
3663 aligned. For n32 and n64, stack frames need to be 128-bit
3664 aligned, so we round to this widest known alignment. */
3665
3666 sp = ROUND_DOWN (sp, 16);
3667 struct_addr = ROUND_DOWN (struct_addr, 16);
3668
3669 /* Now make space on the stack for the args. */
3670 for (argnum = 0; argnum < nargs; argnum++)
3671 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3672 MIPS_STACK_ARGSIZE);
3673 sp -= ROUND_UP (len, 16);
3674
3675 if (mips_debug)
3676 fprintf_unfiltered (gdb_stdlog,
25ab4790 3677 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
46cac009
AC
3678 paddr_nz (sp), ROUND_UP (len, 16));
3679
3680 /* Initialize the integer and float register pointers. */
3681 argreg = A0_REGNUM;
3682 float_argreg = FPA0_REGNUM;
3683
3684 /* The struct_return pointer occupies the first parameter-passing reg. */
3685 if (struct_return)
3686 {
3687 if (mips_debug)
3688 fprintf_unfiltered (gdb_stdlog,
25ab4790 3689 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3690 argreg, paddr_nz (struct_addr));
3691 write_register (argreg++, struct_addr);
3692 stack_offset += MIPS_STACK_ARGSIZE;
3693 }
3694
3695 /* Now load as many as possible of the first arguments into
3696 registers, and push the rest onto the stack. Loop thru args
3697 from first to last. */
3698 for (argnum = 0; argnum < nargs; argnum++)
3699 {
3700 char *val;
d9d9c31f 3701 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3702 struct value *arg = args[argnum];
3703 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3704 int len = TYPE_LENGTH (arg_type);
3705 enum type_code typecode = TYPE_CODE (arg_type);
3706
3707 if (mips_debug)
3708 fprintf_unfiltered (gdb_stdlog,
25ab4790 3709 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3710 argnum + 1, len, (int) typecode);
3711
3712 val = (char *) VALUE_CONTENTS (arg);
3713
3714 /* 32-bit ABIs always start floating point arguments in an
3715 even-numbered floating point register. Round the FP register
3716 up before the check to see if there are any FP registers
3717 left. O32/O64 targets also pass the FP in the integer
3718 registers so also round up normal registers. */
3719 if (!FP_REGISTER_DOUBLE
3720 && fp_register_arg_p (typecode, arg_type))
3721 {
3722 if ((float_argreg & 1))
3723 float_argreg++;
3724 }
3725
3726 /* Floating point arguments passed in registers have to be
3727 treated specially. On 32-bit architectures, doubles
3728 are passed in register pairs; the even register gets
3729 the low word, and the odd register gets the high word.
3730 On O32/O64, the first two floating point arguments are
3731 also copied to general registers, because MIPS16 functions
3732 don't use float registers for arguments. This duplication of
3733 arguments in general registers can't hurt non-MIPS16 functions
3734 because those registers are normally skipped. */
3735
3736 if (fp_register_arg_p (typecode, arg_type)
3737 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3738 {
3739 if (!FP_REGISTER_DOUBLE && len == 8)
3740 {
3741 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3742 unsigned long regval;
3743
3744 /* Write the low word of the double to the even register(s). */
3745 regval = extract_unsigned_integer (val + low_offset, 4);
3746 if (mips_debug)
3747 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3748 float_argreg, phex (regval, 4));
3749 write_register (float_argreg++, regval);
3750 if (mips_debug)
3751 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3752 argreg, phex (regval, 4));
3753 write_register (argreg++, regval);
3754
3755 /* Write the high word of the double to the odd register(s). */
3756 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3757 if (mips_debug)
3758 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3759 float_argreg, phex (regval, 4));
3760 write_register (float_argreg++, regval);
3761
3762 if (mips_debug)
3763 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3764 argreg, phex (regval, 4));
3765 write_register (argreg++, regval);
3766 }
3767 else
3768 {
3769 /* This is a floating point value that fits entirely
3770 in a single register. */
3771 /* On 32 bit ABI's the float_argreg is further adjusted
3772 above to ensure that it is even register aligned. */
3773 LONGEST regval = extract_unsigned_integer (val, len);
3774 if (mips_debug)
3775 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3776 float_argreg, phex (regval, len));
3777 write_register (float_argreg++, regval);
3778 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3779 registers for each argument. The below is (my
3780 guess) to ensure that the corresponding integer
3781 register has reserved the same space. */
3782 if (mips_debug)
3783 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3784 argreg, phex (regval, len));
3785 write_register (argreg, regval);
3786 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3787 }
3788 /* Reserve space for the FP register. */
3789 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3790 }
3791 else
3792 {
3793 /* Copy the argument to general registers or the stack in
3794 register-sized pieces. Large arguments are split between
3795 registers and stack. */
3796 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3797 are treated specially: Irix cc passes them in registers
3798 where gcc sometimes puts them on the stack. For maximum
3799 compatibility, we will put them in both places. */
3800 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3801 (len % MIPS_SAVED_REGSIZE != 0));
3802 /* Structures should be aligned to eight bytes (even arg registers)
3803 on MIPS_ABI_O32, if their first member has double precision. */
3804 if (MIPS_SAVED_REGSIZE < 8
3805 && mips_type_needs_double_align (arg_type))
3806 {
3807 if ((argreg & 1))
3808 argreg++;
3809 }
3810 /* Note: Floating-point values that didn't fit into an FP
3811 register are only written to memory. */
3812 while (len > 0)
3813 {
3814 /* Remember if the argument was written to the stack. */
3815 int stack_used_p = 0;
3816 int partial_len =
3817 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3818
3819 if (mips_debug)
3820 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3821 partial_len);
3822
3823 /* Write this portion of the argument to the stack. */
3824 if (argreg > MIPS_LAST_ARG_REGNUM
3825 || odd_sized_struct
3826 || fp_register_arg_p (typecode, arg_type))
3827 {
3828 /* Should shorter than int integer values be
3829 promoted to int before being stored? */
3830 int longword_offset = 0;
3831 CORE_ADDR addr;
3832 stack_used_p = 1;
3833 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3834 {
3835 if (MIPS_STACK_ARGSIZE == 8 &&
3836 (typecode == TYPE_CODE_INT ||
3837 typecode == TYPE_CODE_PTR ||
3838 typecode == TYPE_CODE_FLT) && len <= 4)
3839 longword_offset = MIPS_STACK_ARGSIZE - len;
3840 }
3841
3842 if (mips_debug)
3843 {
3844 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3845 paddr_nz (stack_offset));
3846 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3847 paddr_nz (longword_offset));
3848 }
3849
3850 addr = sp + stack_offset + longword_offset;
3851
3852 if (mips_debug)
3853 {
3854 int i;
3855 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3856 paddr_nz (addr));
3857 for (i = 0; i < partial_len; i++)
3858 {
3859 fprintf_unfiltered (gdb_stdlog, "%02x",
3860 val[i] & 0xff);
3861 }
3862 }
3863 write_memory (addr, val, partial_len);
3864 }
3865
3866 /* Note!!! This is NOT an else clause. Odd sized
3867 structs may go thru BOTH paths. Floating point
3868 arguments will not. */
3869 /* Write this portion of the argument to a general
3870 purpose register. */
3871 if (argreg <= MIPS_LAST_ARG_REGNUM
3872 && !fp_register_arg_p (typecode, arg_type))
3873 {
3874 LONGEST regval = extract_signed_integer (val, partial_len);
3875 /* Value may need to be sign extended, because
3876 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3877
3878 /* A non-floating-point argument being passed in a
3879 general register. If a struct or union, and if
3880 the remaining length is smaller than the register
3881 size, we have to adjust the register value on
3882 big endian targets.
3883
3884 It does not seem to be necessary to do the
3885 same for integral types.
3886
3887 Also don't do this adjustment on O64 binaries.
3888
3889 cagney/2001-07-23: gdb/179: Also, GCC, when
3890 outputting LE O32 with sizeof (struct) <
3891 MIPS_SAVED_REGSIZE, generates a left shift as
3892 part of storing the argument in a register a
3893 register (the left shift isn't generated when
3894 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3895 is quite possible that this is GCC contradicting
3896 the LE/O32 ABI, GDB has not been adjusted to
3897 accommodate this. Either someone needs to
3898 demonstrate that the LE/O32 ABI specifies such a
3899 left shift OR this new ABI gets identified as
3900 such and GDB gets tweaked accordingly. */
3901
3902 if (MIPS_SAVED_REGSIZE < 8
3903 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3904 && partial_len < MIPS_SAVED_REGSIZE
3905 && (typecode == TYPE_CODE_STRUCT ||
3906 typecode == TYPE_CODE_UNION))
3907 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3908 TARGET_CHAR_BIT);
3909
3910 if (mips_debug)
3911 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3912 argreg,
3913 phex (regval, MIPS_SAVED_REGSIZE));
3914 write_register (argreg, regval);
3915 argreg++;
3916
3917 /* Prevent subsequent floating point arguments from
3918 being passed in floating point registers. */
3919 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3920 }
3921
3922 len -= partial_len;
3923 val += partial_len;
3924
3925 /* Compute the the offset into the stack at which we
3926 will copy the next parameter.
3927
3928 In older ABIs, the caller reserved space for
3929 registers that contained arguments. This was loosely
3930 refered to as their "home". Consequently, space is
3931 always allocated. */
3932
3933 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3934 }
3935 }
3936 if (mips_debug)
3937 fprintf_unfiltered (gdb_stdlog, "\n");
3938 }
3939
310e9b6a
AC
3940 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3941
ebafbe83
MS
3942 /* Return adjusted stack pointer. */
3943 return sp;
3944}
3945
f7ab6ec6 3946static void
acdb74a0 3947mips_pop_frame (void)
c906108c 3948{
52f0bd74 3949 int regnum;
c906108c 3950 struct frame_info *frame = get_current_frame ();
c193f6ac 3951 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3952 mips_extra_func_info_t proc_desc;
c906108c 3953
50abf9e5 3954 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3955 {
3956 generic_pop_dummy_frame ();
3957 flush_cached_frames ();
3958 return;
3959 }
3960
e227b13c 3961 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3962 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3963 mips_find_saved_regs (frame);
c906108c 3964 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3965 if (regnum != SP_REGNUM && regnum != PC_REGNUM
b2fb4676 3966 && get_frame_saved_regs (frame)[regnum])
21f87145
MS
3967 {
3968 /* Floating point registers must not be sign extended,
3969 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3970
3971 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3972 write_register (regnum,
b2fb4676 3973 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3974 MIPS_SAVED_REGSIZE));
3975 else
3976 write_register (regnum,
b2fb4676 3977 read_memory_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3978 MIPS_SAVED_REGSIZE));
3979 }
757a7cc6 3980
c906108c
SS
3981 write_register (SP_REGNUM, new_sp);
3982 flush_cached_frames ();
3983
c5aa993b 3984 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3985 {
3986 struct linked_proc_info *pi_ptr, *prev_ptr;
3987
3988 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3989 pi_ptr != NULL;
3990 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3991 {
3992 if (&pi_ptr->info == proc_desc)
3993 break;
3994 }
3995
3996 if (pi_ptr == NULL)
3997 error ("Can't locate dummy extra frame info\n");
3998
3999 if (prev_ptr != NULL)
4000 prev_ptr->next = pi_ptr->next;
4001 else
4002 linked_proc_desc_table = pi_ptr->next;
4003
b8c9b27d 4004 xfree (pi_ptr);
c906108c
SS
4005
4006 write_register (HI_REGNUM,
c5aa993b 4007 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 4008 MIPS_SAVED_REGSIZE));
c906108c 4009 write_register (LO_REGNUM,
c5aa993b 4010 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 4011 MIPS_SAVED_REGSIZE));
c906108c
SS
4012 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
4013 write_register (FCRCS_REGNUM,
c5aa993b 4014 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 4015 MIPS_SAVED_REGSIZE));
c906108c
SS
4016 }
4017}
4018
dd824b04
DJ
4019/* Floating point register management.
4020
4021 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4022 64bit operations, these early MIPS cpus treat fp register pairs
4023 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4024 registers and offer a compatibility mode that emulates the MIPS2 fp
4025 model. When operating in MIPS2 fp compat mode, later cpu's split
4026 double precision floats into two 32-bit chunks and store them in
4027 consecutive fp regs. To display 64-bit floats stored in this
4028 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4029 Throw in user-configurable endianness and you have a real mess.
4030
4031 The way this works is:
4032 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4033 double-precision value will be split across two logical registers.
4034 The lower-numbered logical register will hold the low-order bits,
4035 regardless of the processor's endianness.
4036 - If we are on a 64-bit processor, and we are looking for a
4037 single-precision value, it will be in the low ordered bits
4038 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4039 save slot in memory.
4040 - If we are in 64-bit mode, everything is straightforward.
4041
4042 Note that this code only deals with "live" registers at the top of the
4043 stack. We will attempt to deal with saved registers later, when
4044 the raw/cooked register interface is in place. (We need a general
4045 interface that can deal with dynamic saved register sizes -- fp
4046 regs could be 32 bits wide in one frame and 64 on the frame above
4047 and below). */
4048
67b2c998
DJ
4049static struct type *
4050mips_float_register_type (void)
4051{
361d1df0 4052 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
4053 return builtin_type_ieee_single_big;
4054 else
4055 return builtin_type_ieee_single_little;
4056}
4057
4058static struct type *
4059mips_double_register_type (void)
4060{
361d1df0 4061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
4062 return builtin_type_ieee_double_big;
4063 else
4064 return builtin_type_ieee_double_little;
4065}
4066
dd824b04
DJ
4067/* Copy a 32-bit single-precision value from the current frame
4068 into rare_buffer. */
4069
4070static void
e11c53d2
AC
4071mips_read_fp_register_single (struct frame_info *frame, int regno,
4072 char *rare_buffer)
dd824b04
DJ
4073{
4074 int raw_size = REGISTER_RAW_SIZE (regno);
4075 char *raw_buffer = alloca (raw_size);
4076
e11c53d2 4077 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
4078 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4079 if (raw_size == 8)
4080 {
4081 /* We have a 64-bit value for this register. Find the low-order
4082 32 bits. */
4083 int offset;
4084
4085 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4086 offset = 4;
4087 else
4088 offset = 0;
4089
4090 memcpy (rare_buffer, raw_buffer + offset, 4);
4091 }
4092 else
4093 {
4094 memcpy (rare_buffer, raw_buffer, 4);
4095 }
4096}
4097
4098/* Copy a 64-bit double-precision value from the current frame into
4099 rare_buffer. This may include getting half of it from the next
4100 register. */
4101
4102static void
e11c53d2
AC
4103mips_read_fp_register_double (struct frame_info *frame, int regno,
4104 char *rare_buffer)
dd824b04
DJ
4105{
4106 int raw_size = REGISTER_RAW_SIZE (regno);
4107
4108 if (raw_size == 8 && !mips2_fp_compat ())
4109 {
4110 /* We have a 64-bit value for this register, and we should use
4111 all 64 bits. */
e11c53d2 4112 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
4113 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4114 }
4115 else
4116 {
4117 if ((regno - FP0_REGNUM) & 1)
4118 internal_error (__FILE__, __LINE__,
4119 "mips_read_fp_register_double: bad access to "
4120 "odd-numbered FP register");
4121
4122 /* mips_read_fp_register_single will find the correct 32 bits from
4123 each register. */
4124 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4125 {
e11c53d2
AC
4126 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4127 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4128 }
361d1df0 4129 else
dd824b04 4130 {
e11c53d2
AC
4131 mips_read_fp_register_single (frame, regno, rare_buffer);
4132 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4133 }
4134 }
4135}
4136
c906108c 4137static void
e11c53d2
AC
4138mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4139 int regnum)
c5aa993b 4140{ /* do values for FP (float) regs */
dd824b04 4141 char *raw_buffer;
c906108c 4142 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4143 int inv1, inv2, namelen;
c5aa993b 4144
dd824b04 4145 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4146
e11c53d2
AC
4147 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4148 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4149 "");
f0ef6b29 4150
dd824b04 4151 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4152 {
f0ef6b29
KB
4153 /* 4-byte registers: Print hex and floating. Also print even
4154 numbered registers as doubles. */
e11c53d2 4155 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4156 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4157
e11c53d2 4158 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4159
e11c53d2 4160 fprintf_filtered (file, " flt: ");
1adad886 4161 if (inv1)
e11c53d2 4162 fprintf_filtered (file, " <invalid float> ");
1adad886 4163 else
e11c53d2 4164 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4165
f0ef6b29
KB
4166 if (regnum % 2 == 0)
4167 {
e11c53d2 4168 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4169 doub = unpack_double (mips_double_register_type (), raw_buffer,
4170 &inv2);
1adad886 4171
e11c53d2 4172 fprintf_filtered (file, " dbl: ");
f0ef6b29 4173 if (inv2)
e11c53d2 4174 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4175 else
e11c53d2 4176 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4177 }
c906108c
SS
4178 }
4179 else
dd824b04 4180 {
f0ef6b29 4181 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4182 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4183 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4184
e11c53d2 4185 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4186 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4187
361d1df0 4188
e11c53d2 4189 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4190
e11c53d2 4191 fprintf_filtered (file, " flt: ");
1adad886 4192 if (inv1)
e11c53d2 4193 fprintf_filtered (file, "<invalid float>");
1adad886 4194 else
e11c53d2 4195 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4196
e11c53d2 4197 fprintf_filtered (file, " dbl: ");
f0ef6b29 4198 if (inv2)
e11c53d2 4199 fprintf_filtered (file, "<invalid double>");
1adad886 4200 else
e11c53d2 4201 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4202 }
4203}
4204
4205static void
e11c53d2
AC
4206mips_print_register (struct ui_file *file, struct frame_info *frame,
4207 int regnum, int all)
f0ef6b29 4208{
a4b8ebc8 4209 struct gdbarch *gdbarch = get_frame_arch (frame);
d9d9c31f 4210 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4211 int offset;
1adad886 4212
a4b8ebc8 4213 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4214 {
e11c53d2 4215 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4216 return;
4217 }
4218
4219 /* Get the data in raw format. */
e11c53d2 4220 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4221 {
e11c53d2 4222 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4223 return;
c906108c 4224 }
f0ef6b29 4225
e11c53d2 4226 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4227
4228 /* The problem with printing numeric register names (r26, etc.) is that
4229 the user can't use them on input. Probably the best solution is to
4230 fix it so that either the numeric or the funky (a2, etc.) names
4231 are accepted on input. */
4232 if (regnum < MIPS_NUMREGS)
e11c53d2 4233 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4234 else
e11c53d2 4235 fprintf_filtered (file, ": ");
f0ef6b29
KB
4236
4237 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4238 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4239 else
4240 offset = 0;
4241
a4b8ebc8 4242 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
e11c53d2 4243 'x', 0, file);
c906108c
SS
4244}
4245
f0ef6b29
KB
4246/* Replacement for generic do_registers_info.
4247 Print regs in pretty columns. */
4248
4249static int
e11c53d2
AC
4250print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4251 int regnum)
f0ef6b29 4252{
e11c53d2
AC
4253 fprintf_filtered (file, " ");
4254 mips_print_fp_register (file, frame, regnum);
4255 fprintf_filtered (file, "\n");
f0ef6b29
KB
4256 return regnum + 1;
4257}
4258
4259
c906108c
SS
4260/* Print a row's worth of GP (int) registers, with name labels above */
4261
4262static int
e11c53d2 4263print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4264 int start_regnum)
c906108c 4265{
a4b8ebc8 4266 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4267 /* do values for GP (int) regs */
d9d9c31f 4268 char raw_buffer[MAX_REGISTER_SIZE];
c906108c
SS
4269 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4270 int col, byte;
a4b8ebc8 4271 int regnum;
c906108c
SS
4272
4273 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4274 fprintf_filtered (file, " ");
a4b8ebc8
AC
4275 for (col = 0, regnum = start_regnum;
4276 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4277 regnum++)
c906108c
SS
4278 {
4279 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4280 continue; /* unused register */
a4b8ebc8 4281 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4282 break; /* end the row: reached FP register */
e11c53d2
AC
4283 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4284 REGISTER_NAME (regnum));
c906108c
SS
4285 col++;
4286 }
a4b8ebc8 4287 /* print the R0 to R31 names */
20e6603c
AC
4288 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4289 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4290 else
4291 fprintf_filtered (file, "\n ");
c906108c 4292
c906108c 4293 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8
AC
4294 for (col = 0, regnum = start_regnum;
4295 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4296 regnum++)
c906108c
SS
4297 {
4298 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4299 continue; /* unused register */
a4b8ebc8 4300 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4301 break; /* end row: reached FP register */
c906108c 4302 /* OK: get the data in raw format. */
e11c53d2 4303 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4304 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4305 /* pad small registers */
43e526b9 4306 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4307 printf_filtered (" ");
4308 /* Now print the register value in hex, endian order. */
d7449b42 4309 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4310 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4311 byte < REGISTER_RAW_SIZE (regnum);
4312 byte++)
e11c53d2 4313 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4314 else
43e526b9
JM
4315 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4316 byte >= 0;
4317 byte--)
e11c53d2
AC
4318 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4319 fprintf_filtered (file, " ");
c906108c
SS
4320 col++;
4321 }
c5aa993b 4322 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4323 fprintf_filtered (file, "\n");
c906108c
SS
4324
4325 return regnum;
4326}
4327
4328/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4329
bf1f5b4c 4330static void
e11c53d2
AC
4331mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4332 struct frame_info *frame, int regnum, int all)
c906108c 4333{
c5aa993b 4334 if (regnum != -1) /* do one specified register */
c906108c 4335 {
a4b8ebc8 4336 gdb_assert (regnum >= NUM_REGS);
c906108c
SS
4337 if (*(REGISTER_NAME (regnum)) == '\0')
4338 error ("Not a valid register for the current processor type");
4339
e11c53d2
AC
4340 mips_print_register (file, frame, regnum, 0);
4341 fprintf_filtered (file, "\n");
c906108c 4342 }
c5aa993b
JM
4343 else
4344 /* do all (or most) registers */
c906108c 4345 {
a4b8ebc8
AC
4346 regnum = NUM_REGS;
4347 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4348 {
a4b8ebc8 4349 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4350 {
4351 if (all) /* true for "INFO ALL-REGISTERS" command */
4352 regnum = print_fp_register_row (file, frame, regnum);
4353 else
4354 regnum += MIPS_NUMREGS; /* skip floating point regs */
4355 }
c906108c 4356 else
e11c53d2 4357 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4358 }
4359 }
4360}
4361
c906108c
SS
4362/* Is this a branch with a delay slot? */
4363
a14ed312 4364static int is_delayed (unsigned long);
c906108c
SS
4365
4366static int
acdb74a0 4367is_delayed (unsigned long insn)
c906108c
SS
4368{
4369 int i;
4370 for (i = 0; i < NUMOPCODES; ++i)
4371 if (mips_opcodes[i].pinfo != INSN_MACRO
4372 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4373 break;
4374 return (i < NUMOPCODES
4375 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4376 | INSN_COND_BRANCH_DELAY
4377 | INSN_COND_BRANCH_LIKELY)));
4378}
4379
4380int
acdb74a0 4381mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4382{
4383 char buf[MIPS_INSTLEN];
4384
4385 /* There is no branch delay slot on MIPS16. */
4386 if (pc_is_mips16 (pc))
4387 return 0;
4388
4389 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4390 /* If error reading memory, guess that it is not a delayed branch. */
4391 return 0;
c5aa993b 4392 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4393}
4394
4395
4396/* Skip the PC past function prologue instructions (32-bit version).
4397 This is a helper function for mips_skip_prologue. */
4398
4399static CORE_ADDR
f7b9e9fc 4400mips32_skip_prologue (CORE_ADDR pc)
c906108c 4401{
c5aa993b
JM
4402 t_inst inst;
4403 CORE_ADDR end_pc;
4404 int seen_sp_adjust = 0;
4405 int load_immediate_bytes = 0;
4406
4407 /* Skip the typical prologue instructions. These are the stack adjustment
4408 instruction and the instructions that save registers on the stack
4409 or in the gcc frame. */
4410 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4411 {
4412 unsigned long high_word;
c906108c 4413
c5aa993b
JM
4414 inst = mips_fetch_instruction (pc);
4415 high_word = (inst >> 16) & 0xffff;
c906108c 4416
c5aa993b
JM
4417 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4418 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4419 seen_sp_adjust = 1;
4420 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4421 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4422 seen_sp_adjust = 1;
4423 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4424 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4425 && (inst & 0x001F0000)) /* reg != $zero */
4426 continue;
4427
4428 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4429 continue;
4430 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4431 /* sx reg,n($s8) */
4432 continue; /* reg != $zero */
4433
4434 /* move $s8,$sp. With different versions of gas this will be either
4435 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4436 Accept any one of these. */
4437 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4438 continue;
4439
4440 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4441 continue;
4442 else if (high_word == 0x3c1c) /* lui $gp,n */
4443 continue;
4444 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4445 continue;
4446 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4447 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4448 continue;
4449 /* The following instructions load $at or $t0 with an immediate
4450 value in preparation for a stack adjustment via
4451 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4452 a local variable, so we accept them only before a stack adjustment
4453 instruction was seen. */
4454 else if (!seen_sp_adjust)
4455 {
4456 if (high_word == 0x3c01 || /* lui $at,n */
4457 high_word == 0x3c08) /* lui $t0,n */
4458 {
4459 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4460 continue;
4461 }
4462 else if (high_word == 0x3421 || /* ori $at,$at,n */
4463 high_word == 0x3508 || /* ori $t0,$t0,n */
4464 high_word == 0x3401 || /* ori $at,$zero,n */
4465 high_word == 0x3408) /* ori $t0,$zero,n */
4466 {
4467 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4468 continue;
4469 }
4470 else
4471 break;
4472 }
4473 else
4474 break;
c906108c
SS
4475 }
4476
c5aa993b
JM
4477 /* In a frameless function, we might have incorrectly
4478 skipped some load immediate instructions. Undo the skipping
4479 if the load immediate was not followed by a stack adjustment. */
4480 if (load_immediate_bytes && !seen_sp_adjust)
4481 pc -= load_immediate_bytes;
4482 return pc;
c906108c
SS
4483}
4484
4485/* Skip the PC past function prologue instructions (16-bit version).
4486 This is a helper function for mips_skip_prologue. */
4487
4488static CORE_ADDR
f7b9e9fc 4489mips16_skip_prologue (CORE_ADDR pc)
c906108c 4490{
c5aa993b
JM
4491 CORE_ADDR end_pc;
4492 int extend_bytes = 0;
4493 int prev_extend_bytes;
c906108c 4494
c5aa993b
JM
4495 /* Table of instructions likely to be found in a function prologue. */
4496 static struct
c906108c
SS
4497 {
4498 unsigned short inst;
4499 unsigned short mask;
c5aa993b
JM
4500 }
4501 table[] =
4502 {
c906108c 4503 {
c5aa993b
JM
4504 0x6300, 0xff00
4505 }
4506 , /* addiu $sp,offset */
4507 {
4508 0xfb00, 0xff00
4509 }
4510 , /* daddiu $sp,offset */
4511 {
4512 0xd000, 0xf800
4513 }
4514 , /* sw reg,n($sp) */
4515 {
4516 0xf900, 0xff00
4517 }
4518 , /* sd reg,n($sp) */
4519 {
4520 0x6200, 0xff00
4521 }
4522 , /* sw $ra,n($sp) */
4523 {
4524 0xfa00, 0xff00
4525 }
4526 , /* sd $ra,n($sp) */
4527 {
4528 0x673d, 0xffff
4529 }
4530 , /* move $s1,sp */
4531 {
4532 0xd980, 0xff80
4533 }
4534 , /* sw $a0-$a3,n($s1) */
4535 {
4536 0x6704, 0xff1c
4537 }
4538 , /* move reg,$a0-$a3 */
4539 {
4540 0xe809, 0xf81f
4541 }
4542 , /* entry pseudo-op */
4543 {
4544 0x0100, 0xff00
4545 }
4546 , /* addiu $s1,$sp,n */
4547 {
4548 0, 0
4549 } /* end of table marker */
4550 };
4551
4552 /* Skip the typical prologue instructions. These are the stack adjustment
4553 instruction and the instructions that save registers on the stack
4554 or in the gcc frame. */
4555 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4556 {
4557 unsigned short inst;
4558 int i;
c906108c 4559
c5aa993b 4560 inst = mips_fetch_instruction (pc);
c906108c 4561
c5aa993b
JM
4562 /* Normally we ignore an extend instruction. However, if it is
4563 not followed by a valid prologue instruction, we must adjust
4564 the pc back over the extend so that it won't be considered
4565 part of the prologue. */
4566 if ((inst & 0xf800) == 0xf000) /* extend */
4567 {
4568 extend_bytes = MIPS16_INSTLEN;
4569 continue;
4570 }
4571 prev_extend_bytes = extend_bytes;
4572 extend_bytes = 0;
c906108c 4573
c5aa993b
JM
4574 /* Check for other valid prologue instructions besides extend. */
4575 for (i = 0; table[i].mask != 0; i++)
4576 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4577 break;
4578 if (table[i].mask != 0) /* it was in table? */
4579 continue; /* ignore it */
4580 else
4581 /* non-prologue */
4582 {
4583 /* Return the current pc, adjusted backwards by 2 if
4584 the previous instruction was an extend. */
4585 return pc - prev_extend_bytes;
4586 }
c906108c
SS
4587 }
4588 return pc;
4589}
4590
4591/* To skip prologues, I use this predicate. Returns either PC itself
4592 if the code at PC does not look like a function prologue; otherwise
4593 returns an address that (if we're lucky) follows the prologue. If
4594 LENIENT, then we must skip everything which is involved in setting
4595 up the frame (it's OK to skip more, just so long as we don't skip
4596 anything which might clobber the registers which are being saved.
4597 We must skip more in the case where part of the prologue is in the
4598 delay slot of a non-prologue instruction). */
4599
f7ab6ec6 4600static CORE_ADDR
f7b9e9fc 4601mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4602{
4603 /* See if we can determine the end of the prologue via the symbol table.
4604 If so, then return either PC, or the PC after the prologue, whichever
4605 is greater. */
4606
4607 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4608
4609 if (post_prologue_pc != 0)
4610 return max (pc, post_prologue_pc);
4611
4612 /* Can't determine prologue from the symbol table, need to examine
4613 instructions. */
4614
4615 if (pc_is_mips16 (pc))
f7b9e9fc 4616 return mips16_skip_prologue (pc);
c906108c 4617 else
f7b9e9fc 4618 return mips32_skip_prologue (pc);
c906108c 4619}
c906108c 4620
7a292a7a
SS
4621/* Determine how a return value is stored within the MIPS register
4622 file, given the return type `valtype'. */
4623
4624struct return_value_word
4625{
4626 int len;
4627 int reg;
4628 int reg_offset;
4629 int buf_offset;
4630};
4631
7a292a7a 4632static void
acdb74a0
AC
4633return_value_location (struct type *valtype,
4634 struct return_value_word *hi,
4635 struct return_value_word *lo)
7a292a7a
SS
4636{
4637 int len = TYPE_LENGTH (valtype);
c5aa993b 4638
7a292a7a
SS
4639 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4640 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4641 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4642 {
4643 if (!FP_REGISTER_DOUBLE && len == 8)
4644 {
4645 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4646 spread them across a floating-point register pair. */
d7449b42
AC
4647 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4648 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4649 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4650 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4651 ? 4 : 0);
4652 hi->reg_offset = lo->reg_offset;
4653 lo->reg = FP0_REGNUM + 0;
4654 hi->reg = FP0_REGNUM + 1;
4655 lo->len = 4;
4656 hi->len = 4;
4657 }
4658 else
4659 {
4660 /* The floating point value fits in a single floating-point
c5aa993b 4661 register. */
d7449b42 4662 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4663 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4664 && len == 4)
4665 ? 4 : 0);
4666 lo->reg = FP0_REGNUM;
4667 lo->len = len;
4668 lo->buf_offset = 0;
4669 hi->len = 0;
4670 hi->reg_offset = 0;
4671 hi->buf_offset = 0;
4672 hi->reg = 0;
4673 }
4674 }
4675 else
4676 {
4677 /* Locate a result possibly spread across two registers. */
4678 int regnum = 2;
4679 lo->reg = regnum + 0;
4680 hi->reg = regnum + 1;
d7449b42 4681 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4682 && len < MIPS_SAVED_REGSIZE)
4683 {
bf1f5b4c
MS
4684 /* "un-left-justify" the value in the low register */
4685 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4686 lo->len = len;
bf1f5b4c 4687 hi->reg_offset = 0;
7a292a7a
SS
4688 hi->len = 0;
4689 }
d7449b42 4690 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4691 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4692 && len < MIPS_SAVED_REGSIZE * 2
4693 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4694 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4695 {
4696 /* "un-left-justify" the value spread across two registers. */
4697 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4698 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4699 hi->reg_offset = 0;
4700 hi->len = len - lo->len;
4701 }
4702 else
4703 {
4704 /* Only perform a partial copy of the second register. */
4705 lo->reg_offset = 0;
4706 hi->reg_offset = 0;
4707 if (len > MIPS_SAVED_REGSIZE)
4708 {
4709 lo->len = MIPS_SAVED_REGSIZE;
4710 hi->len = len - MIPS_SAVED_REGSIZE;
4711 }
4712 else
4713 {
4714 lo->len = len;
4715 hi->len = 0;
4716 }
4717 }
d7449b42 4718 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4719 && REGISTER_RAW_SIZE (regnum) == 8
4720 && MIPS_SAVED_REGSIZE == 4)
4721 {
4722 /* Account for the fact that only the least-signficant part
c5aa993b 4723 of the register is being used */
7a292a7a
SS
4724 lo->reg_offset += 4;
4725 hi->reg_offset += 4;
4726 }
4727 lo->buf_offset = 0;
4728 hi->buf_offset = lo->len;
4729 }
4730}
4731
4732/* Given a return value in `regbuf' with a type `valtype', extract and
4733 copy its value into `valbuf'. */
4734
46cac009
AC
4735static void
4736mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4737 char regbuf[],
46cac009
AC
4738 char *valbuf)
4739{
4740 struct return_value_word lo;
4741 struct return_value_word hi;
4742 return_value_location (valtype, &hi, &lo);
4743
4744 memcpy (valbuf + lo.buf_offset,
62700349 4745 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4746 lo.len);
4747
4748 if (hi.len > 0)
4749 memcpy (valbuf + hi.buf_offset,
62700349 4750 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4751 hi.len);
4752}
4753
46cac009
AC
4754static void
4755mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4756 char regbuf[],
46cac009
AC
4757 char *valbuf)
4758{
4759 struct return_value_word lo;
4760 struct return_value_word hi;
4761 return_value_location (valtype, &hi, &lo);
4762
4763 memcpy (valbuf + lo.buf_offset,
62700349 4764 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4765 lo.len);
4766
4767 if (hi.len > 0)
4768 memcpy (valbuf + hi.buf_offset,
62700349 4769 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4770 hi.len);
4771}
4772
7a292a7a
SS
4773/* Given a return value in `valbuf' with a type `valtype', write it's
4774 value into the appropriate register. */
4775
46cac009
AC
4776static void
4777mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4778{
d9d9c31f 4779 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4780 struct return_value_word lo;
4781 struct return_value_word hi;
4782 return_value_location (valtype, &hi, &lo);
4783
4784 memset (raw_buffer, 0, sizeof (raw_buffer));
4785 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4786 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
73937e03 4787 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4788
4789 if (hi.len > 0)
4790 {
4791 memset (raw_buffer, 0, sizeof (raw_buffer));
4792 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4793 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
73937e03 4794 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4795 }
4796}
4797
4798static void
cb1d2653 4799mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4800{
d9d9c31f 4801 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4802 struct return_value_word lo;
4803 struct return_value_word hi;
4804 return_value_location (valtype, &hi, &lo);
4805
4806 memset (raw_buffer, 0, sizeof (raw_buffer));
4807 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4808 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
73937e03 4809 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4810
4811 if (hi.len > 0)
4812 {
4813 memset (raw_buffer, 0, sizeof (raw_buffer));
4814 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4815 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
73937e03 4816 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4817 }
4818}
4819
cb1d2653
AC
4820/* O32 ABI stuff. */
4821
46cac009 4822static void
cb1d2653
AC
4823mips_o32_xfer_return_value (struct type *type,
4824 struct regcache *regcache,
4825 bfd_byte *in, const bfd_byte *out)
46cac009 4826{
cb1d2653
AC
4827 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4828 if (TYPE_CODE (type) == TYPE_CODE_FLT
4829 && TYPE_LENGTH (type) == 4
4830 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4831 {
cb1d2653
AC
4832 /* A single-precision floating-point value. It fits in the
4833 least significant part of FP0. */
4834 if (mips_debug)
4835 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
a4b8ebc8 4836 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
cb1d2653
AC
4837 TARGET_BYTE_ORDER, in, out, 0);
4838 }
4839 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4840 && TYPE_LENGTH (type) == 8
4841 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4842 {
a4b8ebc8
AC
4843 /* A double-precision floating-point value. The most
4844 significant part goes in FP1, and the least significant in
4845 FP0. */
cb1d2653 4846 if (mips_debug)
a4b8ebc8 4847 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
cb1d2653
AC
4848 switch (TARGET_BYTE_ORDER)
4849 {
4850 case BFD_ENDIAN_LITTLE:
a4b8ebc8 4851 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
cb1d2653 4852 TARGET_BYTE_ORDER, in, out, 0);
a4b8ebc8 4853 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
cb1d2653
AC
4854 TARGET_BYTE_ORDER, in, out, 4);
4855 break;
4856 case BFD_ENDIAN_BIG:
a4b8ebc8 4857 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
cb1d2653 4858 TARGET_BYTE_ORDER, in, out, 0);
a4b8ebc8 4859 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
cb1d2653
AC
4860 TARGET_BYTE_ORDER, in, out, 4);
4861 break;
4862 default:
4863 internal_error (__FILE__, __LINE__, "bad switch");
4864 }
4865 }
4866#if 0
4867 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4868 && TYPE_NFIELDS (type) <= 2
4869 && TYPE_NFIELDS (type) >= 1
4870 && ((TYPE_NFIELDS (type) == 1
4871 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4872 == TYPE_CODE_FLT))
4873 || (TYPE_NFIELDS (type) == 2
4874 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4875 == TYPE_CODE_FLT)
4876 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4877 == TYPE_CODE_FLT)))
4878 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4879 {
4880 /* A struct that contains one or two floats. Each value is part
4881 in the least significant part of their floating point
4882 register.. */
d9d9c31f 4883 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4884 int regnum;
4885 int field;
4886 for (field = 0, regnum = FP0_REGNUM;
4887 field < TYPE_NFIELDS (type);
4888 field++, regnum += 2)
4889 {
4890 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4891 / TARGET_CHAR_BIT);
4892 if (mips_debug)
4893 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4894 mips_xfer_register (regcache, NUM_REGS + regnum,
4895 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
cb1d2653
AC
4896 TARGET_BYTE_ORDER, in, out, offset);
4897 }
4898 }
4899#endif
4900#if 0
4901 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4902 || TYPE_CODE (type) == TYPE_CODE_UNION)
4903 {
4904 /* A structure or union. Extract the left justified value,
4905 regardless of the byte order. I.e. DO NOT USE
4906 mips_xfer_lower. */
4907 int offset;
4908 int regnum;
4909 for (offset = 0, regnum = V0_REGNUM;
4910 offset < TYPE_LENGTH (type);
4911 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4912 {
4913 int xfer = REGISTER_RAW_SIZE (regnum);
4914 if (offset + xfer > TYPE_LENGTH (type))
4915 xfer = TYPE_LENGTH (type) - offset;
4916 if (mips_debug)
4917 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4918 offset, xfer, regnum);
a4b8ebc8
AC
4919 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4920 BFD_ENDIAN_UNKNOWN, in, out, offset);
cb1d2653
AC
4921 }
4922 }
4923#endif
4924 else
4925 {
4926 /* A scalar extract each part but least-significant-byte
4927 justified. o32 thinks registers are 4 byte, regardless of
4928 the ISA. mips_stack_argsize controls this. */
4929 int offset;
4930 int regnum;
4931 for (offset = 0, regnum = V0_REGNUM;
4932 offset < TYPE_LENGTH (type);
4933 offset += mips_stack_argsize (), regnum++)
4934 {
4935 int xfer = mips_stack_argsize ();
4936 int pos = 0;
4937 if (offset + xfer > TYPE_LENGTH (type))
4938 xfer = TYPE_LENGTH (type) - offset;
4939 if (mips_debug)
4940 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4941 offset, xfer, regnum);
a4b8ebc8
AC
4942 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4943 TARGET_BYTE_ORDER, in, out, offset);
cb1d2653 4944 }
46cac009
AC
4945 }
4946}
4947
cb1d2653
AC
4948static void
4949mips_o32_extract_return_value (struct type *type,
4950 struct regcache *regcache,
ebba8386 4951 void *valbuf)
cb1d2653
AC
4952{
4953 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4954}
4955
4956static void
4957mips_o32_store_return_value (struct type *type, char *valbuf)
4958{
4959 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4960}
4961
4962/* N32/N44 ABI stuff. */
4963
46cac009 4964static void
88658117
AC
4965mips_n32n64_xfer_return_value (struct type *type,
4966 struct regcache *regcache,
4967 bfd_byte *in, const bfd_byte *out)
c906108c 4968{
88658117
AC
4969 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4970 if (TYPE_CODE (type) == TYPE_CODE_FLT
4971 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4972 {
88658117
AC
4973 /* A floating-point value belongs in the least significant part
4974 of FP0. */
4975 if (mips_debug)
4976 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
a4b8ebc8 4977 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
88658117
AC
4978 TARGET_BYTE_ORDER, in, out, 0);
4979 }
4980 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4981 && TYPE_NFIELDS (type) <= 2
4982 && TYPE_NFIELDS (type) >= 1
4983 && ((TYPE_NFIELDS (type) == 1
4984 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4985 == TYPE_CODE_FLT))
4986 || (TYPE_NFIELDS (type) == 2
4987 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4988 == TYPE_CODE_FLT)
4989 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4990 == TYPE_CODE_FLT)))
4991 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4992 {
4993 /* A struct that contains one or two floats. Each value is part
4994 in the least significant part of their floating point
4995 register.. */
d9d9c31f 4996 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4997 int regnum;
4998 int field;
4999 for (field = 0, regnum = FP0_REGNUM;
5000 field < TYPE_NFIELDS (type);
5001 field++, regnum += 2)
5002 {
5003 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5004 / TARGET_CHAR_BIT);
5005 if (mips_debug)
5006 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
5007 mips_xfer_register (regcache, NUM_REGS + regnum,
5008 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
88658117
AC
5009 TARGET_BYTE_ORDER, in, out, offset);
5010 }
7a292a7a 5011 }
88658117
AC
5012 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5013 || TYPE_CODE (type) == TYPE_CODE_UNION)
5014 {
5015 /* A structure or union. Extract the left justified value,
5016 regardless of the byte order. I.e. DO NOT USE
5017 mips_xfer_lower. */
5018 int offset;
5019 int regnum;
5020 for (offset = 0, regnum = V0_REGNUM;
5021 offset < TYPE_LENGTH (type);
5022 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5023 {
5024 int xfer = REGISTER_RAW_SIZE (regnum);
5025 if (offset + xfer > TYPE_LENGTH (type))
5026 xfer = TYPE_LENGTH (type) - offset;
5027 if (mips_debug)
5028 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5029 offset, xfer, regnum);
a4b8ebc8
AC
5030 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5031 BFD_ENDIAN_UNKNOWN, in, out, offset);
88658117
AC
5032 }
5033 }
5034 else
5035 {
5036 /* A scalar extract each part but least-significant-byte
5037 justified. */
5038 int offset;
5039 int regnum;
5040 for (offset = 0, regnum = V0_REGNUM;
5041 offset < TYPE_LENGTH (type);
5042 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5043 {
5044 int xfer = REGISTER_RAW_SIZE (regnum);
5045 int pos = 0;
5046 if (offset + xfer > TYPE_LENGTH (type))
5047 xfer = TYPE_LENGTH (type) - offset;
5048 if (mips_debug)
5049 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5050 offset, xfer, regnum);
a4b8ebc8
AC
5051 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5052 TARGET_BYTE_ORDER, in, out, offset);
88658117
AC
5053 }
5054 }
5055}
5056
5057static void
5058mips_n32n64_extract_return_value (struct type *type,
5059 struct regcache *regcache,
ebba8386 5060 void *valbuf)
88658117
AC
5061{
5062 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
5063}
5064
5065static void
5066mips_n32n64_store_return_value (struct type *type, char *valbuf)
5067{
5068 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
5069}
5070
2f1488ce 5071static CORE_ADDR
6672060b 5072mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
5073{
5074 /* FIXME: This will only work at random. The caller passes the
5075 struct_return address in V0, but it is not preserved. It may
5076 still be there, or this may be a random value. */
77d8f2b4
MS
5077 LONGEST val;
5078
5079 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 5080 return val;
2f1488ce
MS
5081}
5082
c906108c
SS
5083/* Exported procedure: Is PC in the signal trampoline code */
5084
102182a9
MS
5085static int
5086mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
5087{
5088 if (sigtramp_address == 0)
5089 fixup_sigtramp ();
5090 return (pc >= sigtramp_address && pc < sigtramp_end);
5091}
5092
a5ea2558
AC
5093/* Root of all "set mips "/"show mips " commands. This will eventually be
5094 used for all MIPS-specific commands. */
5095
a5ea2558 5096static void
acdb74a0 5097show_mips_command (char *args, int from_tty)
a5ea2558
AC
5098{
5099 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5100}
5101
a5ea2558 5102static void
acdb74a0 5103set_mips_command (char *args, int from_tty)
a5ea2558
AC
5104{
5105 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5106 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5107}
5108
c906108c
SS
5109/* Commands to show/set the MIPS FPU type. */
5110
c906108c 5111static void
acdb74a0 5112show_mipsfpu_command (char *args, int from_tty)
c906108c 5113{
c906108c
SS
5114 char *fpu;
5115 switch (MIPS_FPU_TYPE)
5116 {
5117 case MIPS_FPU_SINGLE:
5118 fpu = "single-precision";
5119 break;
5120 case MIPS_FPU_DOUBLE:
5121 fpu = "double-precision";
5122 break;
5123 case MIPS_FPU_NONE:
5124 fpu = "absent (none)";
5125 break;
93d56215
AC
5126 default:
5127 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5128 }
5129 if (mips_fpu_type_auto)
5130 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5131 fpu);
5132 else
5133 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5134 fpu);
5135}
5136
5137
c906108c 5138static void
acdb74a0 5139set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5140{
5141 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5142 show_mipsfpu_command (args, from_tty);
5143}
5144
c906108c 5145static void
acdb74a0 5146set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5147{
5148 mips_fpu_type = MIPS_FPU_SINGLE;
5149 mips_fpu_type_auto = 0;
9e364162 5150 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5151}
5152
c906108c 5153static void
acdb74a0 5154set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5155{
5156 mips_fpu_type = MIPS_FPU_DOUBLE;
5157 mips_fpu_type_auto = 0;
9e364162 5158 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5159}
5160
c906108c 5161static void
acdb74a0 5162set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5163{
5164 mips_fpu_type = MIPS_FPU_NONE;
5165 mips_fpu_type_auto = 0;
9e364162 5166 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5167}
5168
c906108c 5169static void
acdb74a0 5170set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5171{
5172 mips_fpu_type_auto = 1;
5173}
5174
5175/* Command to set the processor type. */
5176
5177void
acdb74a0 5178mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5179{
5180 int i;
5181
5182 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5183 {
5184 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5185 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5186 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5187
5188 /* Restore the value. */
4fcf66da 5189 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5190
5191 return;
5192 }
c5aa993b 5193
c906108c
SS
5194 if (!mips_set_processor_type (tmp_mips_processor_type))
5195 {
5196 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5197 /* Restore its value. */
4fcf66da 5198 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5199 }
5200}
5201
5202static void
acdb74a0 5203mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5204{
5205}
5206
5207/* Modify the actual processor type. */
5208
5a89d8aa 5209static int
acdb74a0 5210mips_set_processor_type (char *str)
c906108c 5211{
1012bd0e 5212 int i;
c906108c
SS
5213
5214 if (str == NULL)
5215 return 0;
5216
5217 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5218 {
5219 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5220 {
5221 mips_processor_type = str;
cce74817 5222 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5223 return 1;
c906108c
SS
5224 /* FIXME tweak fpu flag too */
5225 }
5226 }
5227
5228 return 0;
5229}
5230
5231/* Attempt to identify the particular processor model by reading the
5232 processor id. */
5233
5234char *
acdb74a0 5235mips_read_processor_type (void)
c906108c
SS
5236{
5237 CORE_ADDR prid;
5238
5239 prid = read_register (PRID_REGNUM);
5240
5241 if ((prid & ~0xf) == 0x700)
c5aa993b 5242 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5243
5244 return NULL;
5245}
5246
5247/* Just like reinit_frame_cache, but with the right arguments to be
5248 callable as an sfunc. */
5249
5250static void
acdb74a0
AC
5251reinit_frame_cache_sfunc (char *args, int from_tty,
5252 struct cmd_list_element *c)
c906108c
SS
5253{
5254 reinit_frame_cache ();
5255}
5256
a89aa300
AC
5257static int
5258gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 5259{
e5ab0dce 5260 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5261 mips_extra_func_info_t proc_desc;
5262
5263 /* Search for the function containing this address. Set the low bit
5264 of the address when searching, in case we were given an even address
5265 that is the start of a 16-bit function. If we didn't do this,
5266 the search would fail because the symbol table says the function
5267 starts at an odd address, i.e. 1 byte past the given address. */
5268 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5269 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5270
5271 /* Make an attempt to determine if this is a 16-bit function. If
5272 the procedure descriptor exists and the address therein is odd,
5273 it's definitely a 16-bit function. Otherwise, we have to just
5274 guess that if the address passed in is odd, it's 16-bits. */
d31431ed
AC
5275 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5276 disassembler needs to be able to locally determine the ISA, and
5277 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5278 work. */
c906108c 5279 if (proc_desc)
d31431ed
AC
5280 {
5281 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5282 info->mach = bfd_mach_mips16;
5283 }
c906108c 5284 else
d31431ed
AC
5285 {
5286 if (pc_is_mips16 (memaddr))
5287 info->mach = bfd_mach_mips16;
5288 }
c906108c
SS
5289
5290 /* Round down the instruction address to the appropriate boundary. */
65c11066 5291 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5292
e5ab0dce
AC
5293 /* Set the disassembler options. */
5294 if (tdep->mips_abi == MIPS_ABI_N32
5295 || tdep->mips_abi == MIPS_ABI_N64)
5296 {
5297 /* Set up the disassembler info, so that we get the right
5298 register names from libopcodes. */
5299 if (tdep->mips_abi == MIPS_ABI_N32)
5300 info->disassembler_options = "gpr-names=n32";
5301 else
5302 info->disassembler_options = "gpr-names=64";
5303 info->flavour = bfd_target_elf_flavour;
5304 }
5305 else
5306 /* This string is not recognized explicitly by the disassembler,
5307 but it tells the disassembler to not try to guess the ABI from
5308 the bfd elf headers, such that, if the user overrides the ABI
5309 of a program linked as NewABI, the disassembly will follow the
5310 register naming conventions specified by the user. */
5311 info->disassembler_options = "gpr-names=32";
5312
c906108c 5313 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5314 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5315 return print_insn_big_mips (memaddr, info);
5316 else
5317 return print_insn_little_mips (memaddr, info);
5318}
5319
c906108c
SS
5320/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5321 counter value to determine whether a 16- or 32-bit breakpoint should be
5322 used. It returns a pointer to a string of bytes that encode a breakpoint
5323 instruction, stores the length of the string to *lenptr, and adjusts pc
5324 (if necessary) to point to the actual memory location where the
5325 breakpoint should be inserted. */
5326
f7ab6ec6 5327static const unsigned char *
acdb74a0 5328mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5329{
d7449b42 5330 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5331 {
5332 if (pc_is_mips16 (*pcptr))
5333 {
aaab4dba 5334 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5335 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5336 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5337 return mips16_big_breakpoint;
5338 }
5339 else
5340 {
aaab4dba
AC
5341 /* The IDT board uses an unusual breakpoint value, and
5342 sometimes gets confused when it sees the usual MIPS
5343 breakpoint instruction. */
5344 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5345 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5346 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5347
c5aa993b 5348 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5349
5350 if (strcmp (target_shortname, "mips") == 0)
5351 return idt_big_breakpoint;
5352 else if (strcmp (target_shortname, "ddb") == 0
5353 || strcmp (target_shortname, "pmon") == 0
5354 || strcmp (target_shortname, "lsi") == 0)
5355 return pmon_big_breakpoint;
5356 else
5357 return big_breakpoint;
5358 }
5359 }
5360 else
5361 {
5362 if (pc_is_mips16 (*pcptr))
5363 {
aaab4dba 5364 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5365 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5366 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5367 return mips16_little_breakpoint;
5368 }
5369 else
5370 {
aaab4dba
AC
5371 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5372 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5373 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5374
c5aa993b 5375 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5376
5377 if (strcmp (target_shortname, "mips") == 0)
5378 return idt_little_breakpoint;
5379 else if (strcmp (target_shortname, "ddb") == 0
5380 || strcmp (target_shortname, "pmon") == 0
5381 || strcmp (target_shortname, "lsi") == 0)
5382 return pmon_little_breakpoint;
5383 else
5384 return little_breakpoint;
5385 }
5386 }
5387}
5388
5389/* If PC is in a mips16 call or return stub, return the address of the target
5390 PC, which is either the callee or the caller. There are several
5391 cases which must be handled:
5392
5393 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5394 target PC is in $31 ($ra).
c906108c 5395 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5396 and the target PC is in $2.
c906108c 5397 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5398 before the jal instruction, this is effectively a call stub
5399 and the the target PC is in $2. Otherwise this is effectively
5400 a return stub and the target PC is in $18.
c906108c
SS
5401
5402 See the source code for the stubs in gcc/config/mips/mips16.S for
5403 gory details.
5404
5405 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5406 */
c906108c 5407
757a7cc6 5408static CORE_ADDR
acdb74a0 5409mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5410{
5411 char *name;
5412 CORE_ADDR start_addr;
5413
5414 /* Find the starting address and name of the function containing the PC. */
5415 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5416 return 0;
5417
5418 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5419 target PC is in $31 ($ra). */
5420 if (strcmp (name, "__mips16_ret_sf") == 0
5421 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5422 return read_signed_register (RA_REGNUM);
c906108c
SS
5423
5424 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5425 {
5426 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5427 and the target PC is in $2. */
5428 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5429 return read_signed_register (2);
c906108c
SS
5430
5431 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5432 before the jal instruction, this is effectively a call stub
5433 and the the target PC is in $2. Otherwise this is effectively
5434 a return stub and the target PC is in $18. */
c906108c
SS
5435 else if (name[19] == 's' || name[19] == 'd')
5436 {
5437 if (pc == start_addr)
5438 {
5439 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5440 stub. Such a stub for a function bar might have a name
5441 like __fn_stub_bar, and might look like this:
5442 mfc1 $4,$f13
5443 mfc1 $5,$f12
5444 mfc1 $6,$f15
5445 mfc1 $7,$f14
5446 la $1,bar (becomes a lui/addiu pair)
5447 jr $1
5448 So scan down to the lui/addi and extract the target
5449 address from those two instructions. */
c906108c 5450
6c997a34 5451 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5452 t_inst inst;
5453 int i;
5454
5455 /* See if the name of the target function is __fn_stub_*. */
5456 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5457 return target_pc;
5458 if (strncmp (name, "__fn_stub_", 10) != 0
5459 && strcmp (name, "etext") != 0
5460 && strcmp (name, "_etext") != 0)
5461 return target_pc;
5462
5463 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5464 The limit on the search is arbitrarily set to 20
5465 instructions. FIXME. */
c906108c
SS
5466 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5467 {
c5aa993b
JM
5468 inst = mips_fetch_instruction (target_pc);
5469 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5470 pc = (inst << 16) & 0xffff0000; /* high word */
5471 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5472 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5473 }
5474
5475 /* Couldn't find the lui/addui pair, so return stub address. */
5476 return target_pc;
5477 }
5478 else
5479 /* This is the 'return' part of a call stub. The return
5480 address is in $r18. */
6c997a34 5481 return read_signed_register (18);
c906108c
SS
5482 }
5483 }
c5aa993b 5484 return 0; /* not a stub */
c906108c
SS
5485}
5486
5487
5488/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5489 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5490
757a7cc6 5491static int
acdb74a0 5492mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5493{
5494 CORE_ADDR start_addr;
5495
5496 /* Find the starting address of the function containing the PC. If the
5497 caller didn't give us a name, look it up at the same time. */
5498 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5499 return 0;
5500
5501 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5502 {
5503 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5504 if (name[19] >= '0' && name[19] <= '9')
5505 return 1;
5506 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5507 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5508 else if (name[19] == 's' || name[19] == 'd')
5509 return pc == start_addr;
5510 }
5511
c5aa993b 5512 return 0; /* not a stub */
c906108c
SS
5513}
5514
5515
5516/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5517 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5518
e41b17f0 5519static int
acdb74a0 5520mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5521{
5522 CORE_ADDR start_addr;
5523
5524 /* Find the starting address of the function containing the PC. */
5525 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5526 return 0;
5527
5528 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5529 if (strcmp (name, "__mips16_ret_sf") == 0
5530 || strcmp (name, "__mips16_ret_df") == 0)
5531 return 1;
5532
5533 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5534 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5535 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5536 && (name[19] == 's' || name[19] == 'd')
5537 && pc != start_addr)
5538 return 1;
5539
c5aa993b 5540 return 0; /* not a stub */
c906108c
SS
5541}
5542
5543
5544/* Return non-zero if the PC is in a library helper function that should
5545 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5546
5547int
acdb74a0 5548mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5549{
5550 char *name;
5551
5552 /* Find the starting address and name of the function containing the PC. */
5553 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5554 return 0;
5555
5556 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5557 that we want to ignore. */
5558 return (strcmp (name, "__mips16_ret_sf") == 0
5559 || strcmp (name, "__mips16_ret_df") == 0);
5560}
5561
5562
47a8d4ba
AC
5563/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5564 the register stored on the stack (32) is different to its real raw
5565 size (64). The below ensures that registers are fetched from the
5566 stack using their ABI size and then stored into the RAW_BUFFER
5567 using their raw size.
5568
5569 The alternative to adding this function would be to add an ABI
5570 macro - REGISTER_STACK_SIZE(). */
5571
5572static void
acdb74a0 5573mips_get_saved_register (char *raw_buffer,
795e1e11 5574 int *optimizedp,
acdb74a0
AC
5575 CORE_ADDR *addrp,
5576 struct frame_info *frame,
5577 int regnum,
795e1e11 5578 enum lval_type *lvalp)
47a8d4ba 5579{
795e1e11
AC
5580 CORE_ADDR addrx;
5581 enum lval_type lvalx;
5582 int optimizedx;
6e51443a 5583 int realnumx;
47a8d4ba 5584
a4b8ebc8
AC
5585 /* Always a pseudo. */
5586 gdb_assert (regnum >= NUM_REGS);
47a8d4ba 5587
795e1e11
AC
5588 /* Make certain that all needed parameters are present. */
5589 if (addrp == NULL)
5590 addrp = &addrx;
5591 if (lvalp == NULL)
5592 lvalp = &lvalx;
5593 if (optimizedp == NULL)
5594 optimizedp = &optimizedx;
a4b8ebc8
AC
5595
5596 if ((regnum % NUM_REGS) == SP_REGNUM)
5597 /* The SP_REGNUM is special, its value is stored in saved_regs.
5598 In fact, it is so special that it can even only be fetched
5599 using a raw register number! Once this code as been converted
5600 to frame-unwind the problem goes away. */
5601 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5602 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5603 &realnumx, raw_buffer);
5604 else
5605 /* Get it from the next frame. */
5606 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5607 regnum, optimizedp, lvalp, addrp,
5608 &realnumx, raw_buffer);
47a8d4ba 5609}
2acceee2 5610
f7b9e9fc
AC
5611/* Immediately after a function call, return the saved pc.
5612 Can't always go through the frames for this because on some machines
5613 the new frame is not set up until the new function executes
5614 some instructions. */
5615
5616static CORE_ADDR
5617mips_saved_pc_after_call (struct frame_info *frame)
5618{
6c997a34 5619 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5620}
5621
5622
a4b8ebc8
AC
5623/* Convert a dbx stab register number (from `r' declaration) to a GDB
5624 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5625
5626static int
5627mips_stab_reg_to_regnum (int num)
5628{
a4b8ebc8 5629 int regnum;
2f38ef89 5630 if (num >= 0 && num < 32)
a4b8ebc8 5631 regnum = num;
2f38ef89 5632 else if (num >= 38 && num < 70)
a4b8ebc8 5633 regnum = num + FP0_REGNUM - 38;
040b99fd 5634 else if (num == 70)
a4b8ebc8 5635 regnum = HI_REGNUM;
040b99fd 5636 else if (num == 71)
a4b8ebc8 5637 regnum = LO_REGNUM;
2f38ef89 5638 else
a4b8ebc8
AC
5639 /* This will hopefully (eventually) provoke a warning. Should
5640 we be calling complaint() here? */
5641 return NUM_REGS + NUM_PSEUDO_REGS;
5642 return NUM_REGS + regnum;
88c72b7d
AC
5643}
5644
2f38ef89 5645
a4b8ebc8
AC
5646/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5647 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5648
5649static int
2f38ef89 5650mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5651{
a4b8ebc8 5652 int regnum;
2f38ef89 5653 if (num >= 0 && num < 32)
a4b8ebc8 5654 regnum = num;
2f38ef89 5655 else if (num >= 32 && num < 64)
a4b8ebc8 5656 regnum = num + FP0_REGNUM - 32;
040b99fd 5657 else if (num == 64)
a4b8ebc8 5658 regnum = HI_REGNUM;
040b99fd 5659 else if (num == 65)
a4b8ebc8 5660 regnum = LO_REGNUM;
2f38ef89 5661 else
a4b8ebc8
AC
5662 /* This will hopefully (eventually) provoke a warning. Should we
5663 be calling complaint() here? */
5664 return NUM_REGS + NUM_PSEUDO_REGS;
5665 return NUM_REGS + regnum;
5666}
5667
5668static int
5669mips_register_sim_regno (int regnum)
5670{
5671 /* Only makes sense to supply raw registers. */
5672 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5673 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5674 decide if it is valid. Should instead define a standard sim/gdb
5675 register numbering scheme. */
5676 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5677 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5678 return regnum;
5679 else
5680 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5681}
5682
2f38ef89 5683
fc0c74b1
AC
5684/* Convert an integer into an address. By first converting the value
5685 into a pointer and then extracting it signed, the address is
5686 guarenteed to be correctly sign extended. */
5687
5688static CORE_ADDR
5689mips_integer_to_address (struct type *type, void *buf)
5690{
5691 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5692 LONGEST val = unpack_long (type, buf);
5693 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5694 return extract_signed_integer (tmp,
5695 TYPE_LENGTH (builtin_type_void_data_ptr));
5696}
5697
caaa3122
DJ
5698static void
5699mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5700{
5701 enum mips_abi *abip = (enum mips_abi *) obj;
5702 const char *name = bfd_get_section_name (abfd, sect);
5703
5704 if (*abip != MIPS_ABI_UNKNOWN)
5705 return;
5706
5707 if (strncmp (name, ".mdebug.", 8) != 0)
5708 return;
5709
5710 if (strcmp (name, ".mdebug.abi32") == 0)
5711 *abip = MIPS_ABI_O32;
5712 else if (strcmp (name, ".mdebug.abiN32") == 0)
5713 *abip = MIPS_ABI_N32;
62a49b2c 5714 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5715 *abip = MIPS_ABI_N64;
caaa3122
DJ
5716 else if (strcmp (name, ".mdebug.abiO64") == 0)
5717 *abip = MIPS_ABI_O64;
5718 else if (strcmp (name, ".mdebug.eabi32") == 0)
5719 *abip = MIPS_ABI_EABI32;
5720 else if (strcmp (name, ".mdebug.eabi64") == 0)
5721 *abip = MIPS_ABI_EABI64;
5722 else
5723 warning ("unsupported ABI %s.", name + 8);
5724}
5725
2e4ebe70
DJ
5726static enum mips_abi
5727global_mips_abi (void)
5728{
5729 int i;
5730
5731 for (i = 0; mips_abi_strings[i] != NULL; i++)
5732 if (mips_abi_strings[i] == mips_abi_string)
5733 return (enum mips_abi) i;
5734
5735 internal_error (__FILE__, __LINE__,
5736 "unknown ABI string");
5737}
5738
c2d11a7d 5739static struct gdbarch *
acdb74a0
AC
5740mips_gdbarch_init (struct gdbarch_info info,
5741 struct gdbarch_list *arches)
c2d11a7d 5742{
c2d11a7d
JM
5743 struct gdbarch *gdbarch;
5744 struct gdbarch_tdep *tdep;
5745 int elf_flags;
2e4ebe70 5746 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 5747 int num_regs;
c2d11a7d 5748
70f80edf
JT
5749 elf_flags = 0;
5750
5751 if (info.abfd)
5752 {
5753 /* First of all, extract the elf_flags, if available. */
5754 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5755 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5756 }
c2d11a7d 5757
102182a9 5758 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5759 switch ((elf_flags & EF_MIPS_ABI))
5760 {
5761 case E_MIPS_ABI_O32:
5762 mips_abi = MIPS_ABI_O32;
5763 break;
5764 case E_MIPS_ABI_O64:
5765 mips_abi = MIPS_ABI_O64;
5766 break;
5767 case E_MIPS_ABI_EABI32:
5768 mips_abi = MIPS_ABI_EABI32;
5769 break;
5770 case E_MIPS_ABI_EABI64:
4a7f7ba8 5771 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5772 break;
5773 default:
acdb74a0
AC
5774 if ((elf_flags & EF_MIPS_ABI2))
5775 mips_abi = MIPS_ABI_N32;
5776 else
5777 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5778 break;
5779 }
acdb74a0 5780
caaa3122
DJ
5781 /* GCC creates a pseudo-section whose name describes the ABI. */
5782 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5783 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5784
2e4ebe70
DJ
5785 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5786 Use the ABI from the last architecture if there is one. */
5787 if (info.abfd == NULL && arches != NULL)
5788 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5789
32a6503c 5790 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5791 if (mips_abi == MIPS_ABI_UNKNOWN
5792 && info.bfd_arch_info != NULL
5793 && info.bfd_arch_info->arch == bfd_arch_mips)
5794 {
5795 switch (info.bfd_arch_info->mach)
5796 {
5797 case bfd_mach_mips3900:
5798 mips_abi = MIPS_ABI_EABI32;
5799 break;
5800 case bfd_mach_mips4100:
5801 case bfd_mach_mips5000:
5802 mips_abi = MIPS_ABI_EABI64;
5803 break;
1d06468c
EZ
5804 case bfd_mach_mips8000:
5805 case bfd_mach_mips10000:
32a6503c
KB
5806 /* On Irix, ELF64 executables use the N64 ABI. The
5807 pseudo-sections which describe the ABI aren't present
5808 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5809 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5810 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5811 mips_abi = MIPS_ABI_N64;
5812 else
5813 mips_abi = MIPS_ABI_N32;
1d06468c 5814 break;
bf64bfd6
AC
5815 }
5816 }
2e4ebe70 5817
2e4ebe70
DJ
5818 if (mips_abi == MIPS_ABI_UNKNOWN)
5819 mips_abi = MIPS_ABI_O32;
5820
5821 /* Now that we have found what the ABI for this binary would be,
5822 check whether the user is overriding it. */
5823 found_abi = mips_abi;
5824 wanted_abi = global_mips_abi ();
5825 if (wanted_abi != MIPS_ABI_UNKNOWN)
5826 mips_abi = wanted_abi;
5827
4b9b3959
AC
5828 if (gdbarch_debug)
5829 {
5830 fprintf_unfiltered (gdb_stdlog,
9ace0497 5831 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5832 elf_flags);
4b9b3959
AC
5833 fprintf_unfiltered (gdb_stdlog,
5834 "mips_gdbarch_init: mips_abi = %d\n",
5835 mips_abi);
2e4ebe70
DJ
5836 fprintf_unfiltered (gdb_stdlog,
5837 "mips_gdbarch_init: found_mips_abi = %d\n",
5838 found_abi);
4b9b3959 5839 }
0dadbba0 5840
c2d11a7d
JM
5841 /* try to find a pre-existing architecture */
5842 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5843 arches != NULL;
5844 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5845 {
5846 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5847 using. */
9103eae0 5848 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5849 continue;
9103eae0 5850 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5851 continue;
4be87837 5852 return arches->gdbarch;
c2d11a7d
JM
5853 }
5854
102182a9 5855 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5856 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5857 gdbarch = gdbarch_alloc (&info, tdep);
5858 tdep->elf_flags = elf_flags;
5859
102182a9 5860 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5861 set_gdbarch_short_bit (gdbarch, 16);
5862 set_gdbarch_int_bit (gdbarch, 32);
5863 set_gdbarch_float_bit (gdbarch, 32);
5864 set_gdbarch_double_bit (gdbarch, 64);
5865 set_gdbarch_long_double_bit (gdbarch, 64);
9c04cab7 5866 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
a4b8ebc8
AC
5867 set_gdbarch_deprecated_register_byte (gdbarch, mips_register_byte);
5868 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5869 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5870 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
2e4ebe70 5871 tdep->found_abi = found_abi;
0dadbba0 5872 tdep->mips_abi = mips_abi;
1d06468c 5873
f7ab6ec6
MS
5874 set_gdbarch_elf_make_msymbol_special (gdbarch,
5875 mips_elf_make_msymbol_special);
5876
a4b8ebc8 5877
4be87837 5878 if (info.osabi == GDB_OSABI_IRIX)
a4b8ebc8 5879 num_regs = 71;
fe29b929 5880 else
a4b8ebc8
AC
5881 num_regs = 90;
5882 set_gdbarch_num_regs (gdbarch, num_regs);
5883 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
fe29b929 5884
0dadbba0 5885 switch (mips_abi)
c2d11a7d 5886 {
0dadbba0 5887 case MIPS_ABI_O32:
25ab4790 5888 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
ebba8386 5889 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5890 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5891 tdep->mips_default_saved_regsize = 4;
0dadbba0 5892 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5893 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5894 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5895 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5896 tdep->gdb_target_is_mips64 = 0;
4014092b 5897 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5898 set_gdbarch_long_bit (gdbarch, 32);
5899 set_gdbarch_ptr_bit (gdbarch, 32);
5900 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5901 set_gdbarch_deprecated_reg_struct_has_addr
5902 (gdbarch, mips_o32_reg_struct_has_addr);
cb811fe7 5903 set_gdbarch_use_struct_convention (gdbarch,
1fd35568 5904 always_use_struct_convention);
c2d11a7d 5905 break;
0dadbba0 5906 case MIPS_ABI_O64:
25ab4790 5907 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5908 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5909 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5910 tdep->mips_default_saved_regsize = 8;
0dadbba0 5911 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5912 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5913 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5914 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5915 tdep->gdb_target_is_mips64 = 1;
361d1df0 5916 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5917 set_gdbarch_long_bit (gdbarch, 32);
5918 set_gdbarch_ptr_bit (gdbarch, 32);
5919 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5920 set_gdbarch_deprecated_reg_struct_has_addr
5921 (gdbarch, mips_o32_reg_struct_has_addr);
b060cbea 5922 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
c2d11a7d 5923 break;
0dadbba0 5924 case MIPS_ABI_EABI32:
25ab4790 5925 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5926 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5927 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5928 tdep->mips_default_saved_regsize = 4;
0dadbba0 5929 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5930 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5931 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5932 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5933 tdep->gdb_target_is_mips64 = 0;
4014092b 5934 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5935 set_gdbarch_long_bit (gdbarch, 32);
5936 set_gdbarch_ptr_bit (gdbarch, 32);
5937 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5938 set_gdbarch_deprecated_reg_struct_has_addr
5939 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5940 set_gdbarch_use_struct_convention (gdbarch,
5941 mips_eabi_use_struct_convention);
c2d11a7d 5942 break;
0dadbba0 5943 case MIPS_ABI_EABI64:
25ab4790 5944 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5945 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5946 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5947 tdep->mips_default_saved_regsize = 8;
0dadbba0 5948 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5949 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5950 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5951 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5952 tdep->gdb_target_is_mips64 = 1;
4014092b 5953 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5954 set_gdbarch_long_bit (gdbarch, 64);
5955 set_gdbarch_ptr_bit (gdbarch, 64);
5956 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5957 set_gdbarch_deprecated_reg_struct_has_addr
5958 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5959 set_gdbarch_use_struct_convention (gdbarch,
5960 mips_eabi_use_struct_convention);
c2d11a7d 5961 break;
0dadbba0 5962 case MIPS_ABI_N32:
25ab4790 5963 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5964 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5965 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5966 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5967 tdep->mips_default_stack_argsize = 8;
5968 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5969 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5970 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5971 tdep->gdb_target_is_mips64 = 1;
4014092b 5972 tdep->default_mask_address_p = 0;
0dadbba0
AC
5973 set_gdbarch_long_bit (gdbarch, 32);
5974 set_gdbarch_ptr_bit (gdbarch, 32);
5975 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5976 set_gdbarch_use_struct_convention (gdbarch,
5977 mips_n32n64_use_struct_convention);
2110b94f
MK
5978 set_gdbarch_deprecated_reg_struct_has_addr
5979 (gdbarch, mips_n32n64_reg_struct_has_addr);
28d169de
KB
5980 break;
5981 case MIPS_ABI_N64:
25ab4790 5982 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5983 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5984 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5985 tdep->mips_default_saved_regsize = 8;
5986 tdep->mips_default_stack_argsize = 8;
5987 tdep->mips_fp_register_double = 1;
5988 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5989 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5990 tdep->gdb_target_is_mips64 = 1;
5991 tdep->default_mask_address_p = 0;
5992 set_gdbarch_long_bit (gdbarch, 64);
5993 set_gdbarch_ptr_bit (gdbarch, 64);
5994 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5995 set_gdbarch_use_struct_convention (gdbarch,
5996 mips_n32n64_use_struct_convention);
2110b94f
MK
5997 set_gdbarch_deprecated_reg_struct_has_addr
5998 (gdbarch, mips_n32n64_reg_struct_has_addr);
0dadbba0 5999 break;
c2d11a7d 6000 default:
2e4ebe70
DJ
6001 internal_error (__FILE__, __LINE__,
6002 "unknown ABI in switch");
c2d11a7d
JM
6003 }
6004
a5ea2558
AC
6005 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6006 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6007 comment:
6008
6009 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6010 flag in object files because to do so would make it impossible to
102182a9 6011 link with libraries compiled without "-gp32". This is
a5ea2558 6012 unnecessarily restrictive.
361d1df0 6013
a5ea2558
AC
6014 We could solve this problem by adding "-gp32" multilibs to gcc,
6015 but to set this flag before gcc is built with such multilibs will
6016 break too many systems.''
6017
6018 But even more unhelpfully, the default linker output target for
6019 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6020 for 64-bit programs - you need to change the ABI to change this,
102182a9 6021 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
6022 this flag to detect 32-bit mode would do the wrong thing given
6023 the current gcc - it would make GDB treat these 64-bit programs
102182a9 6024 as 32-bit programs by default. */
a5ea2558 6025
c2d11a7d
JM
6026 /* enable/disable the MIPS FPU */
6027 if (!mips_fpu_type_auto)
6028 tdep->mips_fpu_type = mips_fpu_type;
6029 else if (info.bfd_arch_info != NULL
6030 && info.bfd_arch_info->arch == bfd_arch_mips)
6031 switch (info.bfd_arch_info->mach)
6032 {
b0069a17 6033 case bfd_mach_mips3900:
c2d11a7d 6034 case bfd_mach_mips4100:
ed9a39eb 6035 case bfd_mach_mips4111:
c2d11a7d
JM
6036 tdep->mips_fpu_type = MIPS_FPU_NONE;
6037 break;
bf64bfd6
AC
6038 case bfd_mach_mips4650:
6039 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
6040 break;
c2d11a7d
JM
6041 default:
6042 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6043 break;
6044 }
6045 else
6046 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6047
6048 /* MIPS version of register names. NOTE: At present the MIPS
6049 register name management is part way between the old -
77949794 6050 #undef/#define MIPS_REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 6051 Further work on it is required. */
c2d11a7d 6052 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 6053 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 6054 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 6055 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 6056 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 6057
102182a9
MS
6058 /* Add/remove bits from an address. The MIPS needs be careful to
6059 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
6060 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6061
10312cc4 6062 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
6063 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6064 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
a5afb99f 6065 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 6066
102182a9 6067 /* Map debug register numbers onto internal register numbers. */
88c72b7d 6068 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
6069 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6070 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6071 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 6072 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 6073
c2d11a7d 6074 /* Initialize a frame */
e0f7ec59 6075 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 6076 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
6077
6078 /* MIPS version of CALL_DUMMY */
6079
9710e734
AC
6080 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6081 replaced by a command, and all targets will default to on stack
6082 (regardless of the stack's execute status). */
6083 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
749b82f6 6084 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 6085 set_gdbarch_frame_align (gdbarch, mips_frame_align);
a59fe496 6086 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
781a750d
AC
6087 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6088 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6089 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
d05285fa 6090
618ce49f 6091 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
6092 set_gdbarch_frameless_function_invocation (gdbarch,
6093 generic_frameless_function_invocation_not);
8bedc050 6094 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
6095 set_gdbarch_frame_args_skip (gdbarch, 0);
6096
129c1cd6 6097 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 6098
f7b9e9fc
AC
6099 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6100 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6101 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
6102
6103 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 6104 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 6105
fc0c74b1
AC
6106 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6107 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6108 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6109
102182a9
MS
6110 set_gdbarch_function_start_offset (gdbarch, 0);
6111
a4b8ebc8 6112 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 6113
e11c53d2 6114 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 6115 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6116
e5ab0dce
AC
6117 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6118
3a3bc038
AC
6119 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6120 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6121 need to all be folded into the target vector. Since they are
6122 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6123 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6124 is sitting on? */
6125 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6126
70f80edf 6127 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6128 gdbarch_init_osabi (info, gdbarch);
70f80edf 6129
2f1488ce
MS
6130 set_gdbarch_extract_struct_value_address (gdbarch,
6131 mips_extract_struct_value_address);
757a7cc6
MS
6132
6133 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6134
6135 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6136 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6137
4b9b3959
AC
6138 return gdbarch;
6139}
6140
2e4ebe70
DJ
6141static void
6142mips_abi_update (char *ignore_args, int from_tty,
6143 struct cmd_list_element *c)
6144{
6145 struct gdbarch_info info;
6146
6147 /* Force the architecture to update, and (if it's a MIPS architecture)
6148 mips_gdbarch_init will take care of the rest. */
6149 gdbarch_info_init (&info);
6150 gdbarch_update_p (info);
6151}
6152
ad188201
KB
6153/* Print out which MIPS ABI is in use. */
6154
6155static void
6156show_mips_abi (char *ignore_args, int from_tty)
6157{
6158 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6159 printf_filtered (
6160 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6161 else
6162 {
6163 enum mips_abi global_abi = global_mips_abi ();
6164 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6165 const char *actual_abi_str = mips_abi_strings[actual_abi];
6166
6167 if (global_abi == MIPS_ABI_UNKNOWN)
6168 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6169 actual_abi_str);
6170 else if (global_abi == actual_abi)
6171 printf_filtered (
6172 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6173 actual_abi_str);
6174 else
6175 {
6176 /* Probably shouldn't happen... */
6177 printf_filtered (
6178 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6179 actual_abi_str,
6180 mips_abi_strings[global_abi]);
6181 }
6182 }
6183}
6184
4b9b3959
AC
6185static void
6186mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6187{
6188 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6189 if (tdep != NULL)
c2d11a7d 6190 {
acdb74a0
AC
6191 int ef_mips_arch;
6192 int ef_mips_32bitmode;
6193 /* determine the ISA */
6194 switch (tdep->elf_flags & EF_MIPS_ARCH)
6195 {
6196 case E_MIPS_ARCH_1:
6197 ef_mips_arch = 1;
6198 break;
6199 case E_MIPS_ARCH_2:
6200 ef_mips_arch = 2;
6201 break;
6202 case E_MIPS_ARCH_3:
6203 ef_mips_arch = 3;
6204 break;
6205 case E_MIPS_ARCH_4:
93d56215 6206 ef_mips_arch = 4;
acdb74a0
AC
6207 break;
6208 default:
93d56215 6209 ef_mips_arch = 0;
acdb74a0
AC
6210 break;
6211 }
6212 /* determine the size of a pointer */
6213 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6216 tdep->elf_flags);
4b9b3959 6217 fprintf_unfiltered (file,
acdb74a0
AC
6218 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6219 ef_mips_32bitmode);
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: ef_mips_arch = %d\n",
6222 ef_mips_arch);
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6225 tdep->mips_abi,
2e4ebe70 6226 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6229 mips_mask_address_p (),
6230 tdep->default_mask_address_p);
c2d11a7d 6231 }
4b9b3959
AC
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6234 FP_REGISTER_DOUBLE);
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6237 MIPS_DEFAULT_FPU_TYPE,
6238 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6239 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6240 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6241 : "???"));
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: MIPS_EABI = %d\n",
6244 MIPS_EABI);
6245 fprintf_unfiltered (file,
acdb74a0
AC
6246 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6247 MIPS_LAST_FP_ARG_REGNUM,
6248 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6251 MIPS_FPU_TYPE,
6252 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6253 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6254 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6255 : "???"));
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6258 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6261 FP_REGISTER_DOUBLE);
4b9b3959
AC
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6264 MIPS_DEFAULT_STACK_ARGSIZE);
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6267 MIPS_STACK_ARGSIZE);
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6270 MIPS_REGSIZE);
2475bac3
AC
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: A0_REGNUM = %d\n",
6273 A0_REGNUM);
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6276 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6279 XSTRING (ATTACH_DETACH));
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6282 BADVADDR_REGNUM);
2475bac3
AC
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6285 CAUSE_REGNUM);
2475bac3
AC
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6288 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6291 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6294 FCRCS_REGNUM);
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6297 FCRIR_REGNUM);
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6300 FIRST_EMBED_REGNUM);
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6303 FPA0_REGNUM);
6304 fprintf_unfiltered (file,
6305 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6306 GDB_TARGET_IS_MIPS64);
2475bac3
AC
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: HI_REGNUM = %d\n",
6309 HI_REGNUM);
2475bac3
AC
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6312 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6315 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6318 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6321 LAST_EMBED_REGNUM);
2475bac3
AC
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: LO_REGNUM = %d\n",
6324 LO_REGNUM);
6325#ifdef MACHINE_CPROC_FP_OFFSET
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6328 MACHINE_CPROC_FP_OFFSET);
6329#endif
6330#ifdef MACHINE_CPROC_PC_OFFSET
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6333 MACHINE_CPROC_PC_OFFSET);
6334#endif
6335#ifdef MACHINE_CPROC_SP_OFFSET
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6338 MACHINE_CPROC_SP_OFFSET);
6339#endif
2475bac3
AC
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6342 MIPS16_INSTLEN);
2475bac3
AC
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6349 MIPS_INSTLEN);
6350 fprintf_unfiltered (file,
acdb74a0
AC
6351 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6352 MIPS_LAST_ARG_REGNUM,
6353 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6356 MIPS_NUMREGS);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6361 MIPS_SAVED_REGSIZE);
2475bac3
AC
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: OP_LDFPR = used?\n");
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: OP_LDGPR = used?\n");
2475bac3
AC
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: PRID_REGNUM = %d\n",
6368 PRID_REGNUM);
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6371 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6374 fprintf_unfiltered (file,
6375 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6388 fprintf_unfiltered (file,
6389 "mips_dump_tdep: PROC_PC_REG = function?\n");
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: PS_REGNUM = %d\n",
6398 PS_REGNUM);
2475bac3
AC
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: RA_REGNUM = %d\n",
6401 RA_REGNUM);
2475bac3
AC
6402 fprintf_unfiltered (file,
6403 "mips_dump_tdep: ROUND_DOWN = function?\n");
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: ROUND_UP = function?\n");
6406#ifdef SAVED_BYTES
6407 fprintf_unfiltered (file,
6408 "mips_dump_tdep: SAVED_BYTES = %d\n",
6409 SAVED_BYTES);
6410#endif
6411#ifdef SAVED_FP
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: SAVED_FP = %d\n",
6414 SAVED_FP);
6415#endif
6416#ifdef SAVED_PC
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: SAVED_PC = %d\n",
6419 SAVED_PC);
6420#endif
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6423 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6424 fprintf_unfiltered (file,
6425 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6426 fprintf_unfiltered (file,
6427 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6428 SIGFRAME_BASE);
6429 fprintf_unfiltered (file,
6430 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6431 SIGFRAME_FPREGSAVE_OFF);
6432 fprintf_unfiltered (file,
6433 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6434 SIGFRAME_PC_OFF);
6435 fprintf_unfiltered (file,
6436 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6437 SIGFRAME_REGSAVE_OFF);
6438 fprintf_unfiltered (file,
6439 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6440 SIGFRAME_REG_SIZE);
6441 fprintf_unfiltered (file,
6442 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6443 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6444 fprintf_unfiltered (file,
6445 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6446 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6447 fprintf_unfiltered (file,
b0ed3589
AC
6448 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6449 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6450 fprintf_unfiltered (file,
6451 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6452 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6453#ifdef STACK_END_ADDR
6454 fprintf_unfiltered (file,
6455 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6456 STACK_END_ADDR);
6457#endif
6458 fprintf_unfiltered (file,
6459 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6460 XSTRING (STEP_SKIPS_DELAY (PC)));
6461 fprintf_unfiltered (file,
6462 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6463 STEP_SKIPS_DELAY_P);
6464 fprintf_unfiltered (file,
6465 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6466 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6467 fprintf_unfiltered (file,
6468 "mips_dump_tdep: T9_REGNUM = %d\n",
6469 T9_REGNUM);
6470 fprintf_unfiltered (file,
6471 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6472 fprintf_unfiltered (file,
6473 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6474 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6475 fprintf_unfiltered (file,
6476 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6477 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6478#ifdef TRACE_CLEAR
6479 fprintf_unfiltered (file,
6480 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6481 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6482#endif
6483#ifdef TRACE_FLAVOR
6484 fprintf_unfiltered (file,
6485 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6486 TRACE_FLAVOR);
6487#endif
6488#ifdef TRACE_FLAVOR_SIZE
6489 fprintf_unfiltered (file,
6490 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6491 TRACE_FLAVOR_SIZE);
6492#endif
6493#ifdef TRACE_SET
6494 fprintf_unfiltered (file,
6495 "mips_dump_tdep: TRACE_SET # %s\n",
6496 XSTRING (TRACE_SET (X,STATE)));
6497#endif
2475bac3
AC
6498#ifdef UNUSED_REGNUM
6499 fprintf_unfiltered (file,
6500 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6501 UNUSED_REGNUM);
6502#endif
6503 fprintf_unfiltered (file,
6504 "mips_dump_tdep: V0_REGNUM = %d\n",
6505 V0_REGNUM);
6506 fprintf_unfiltered (file,
6507 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6508 (long) VM_MIN_ADDRESS);
6509#ifdef VX_NUM_REGS
6510 fprintf_unfiltered (file,
6511 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6512 VX_NUM_REGS);
6513#endif
6514 fprintf_unfiltered (file,
6515 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6516 ZERO_REGNUM);
6517 fprintf_unfiltered (file,
6518 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6519 _PROC_MAGIC_);
c2d11a7d
JM
6520}
6521
a78f21af
AC
6522extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6523
c906108c 6524void
acdb74a0 6525_initialize_mips_tdep (void)
c906108c
SS
6526{
6527 static struct cmd_list_element *mipsfpulist = NULL;
6528 struct cmd_list_element *c;
6529
2e4ebe70
DJ
6530 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6531 if (MIPS_ABI_LAST + 1
6532 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6533 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6534
4b9b3959 6535 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 6536
a5ea2558
AC
6537 /* Add root prefix command for all "set mips"/"show mips" commands */
6538 add_prefix_cmd ("mips", no_class, set_mips_command,
6539 "Various MIPS specific commands.",
6540 &setmipscmdlist, "set mips ", 0, &setlist);
6541
6542 add_prefix_cmd ("mips", no_class, show_mips_command,
6543 "Various MIPS specific commands.",
6544 &showmipscmdlist, "show mips ", 0, &showlist);
6545
6546 /* Allow the user to override the saved register size. */
6547 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6548 class_obscure,
6549 size_enums,
6550 &mips_saved_regsize_string, "\
a5ea2558
AC
6551Set size of general purpose registers saved on the stack.\n\
6552This option can be set to one of:\n\
6553 32 - Force GDB to treat saved GP registers as 32-bit\n\
6554 64 - Force GDB to treat saved GP registers as 64-bit\n\
6555 auto - Allow GDB to use the target's default setting or autodetect the\n\
6556 saved GP register size from information contained in the executable.\n\
6557 (default: auto)",
1ed2a135 6558 &setmipscmdlist),
a5ea2558
AC
6559 &showmipscmdlist);
6560
d929b26f
AC
6561 /* Allow the user to override the argument stack size. */
6562 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6563 class_obscure,
6564 size_enums,
1ed2a135 6565 &mips_stack_argsize_string, "\
d929b26f
AC
6566Set the amount of stack space reserved for each argument.\n\
6567This option can be set to one of:\n\
6568 32 - Force GDB to allocate 32-bit chunks per argument\n\
6569 64 - Force GDB to allocate 64-bit chunks per argument\n\
6570 auto - Allow GDB to determine the correct setting from the current\n\
6571 target and executable (default)",
6572 &setmipscmdlist),
6573 &showmipscmdlist);
6574
2e4ebe70
DJ
6575 /* Allow the user to override the ABI. */
6576 c = add_set_enum_cmd
6577 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6578 "Set the ABI used by this program.\n"
6579 "This option can be set to one of:\n"
6580 " auto - the default ABI associated with the current binary\n"
6581 " o32\n"
6582 " o64\n"
6583 " n32\n"
f3a7b3a5 6584 " n64\n"
2e4ebe70
DJ
6585 " eabi32\n"
6586 " eabi64",
6587 &setmipscmdlist);
2e4ebe70 6588 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6589 add_cmd ("abi", class_obscure, show_mips_abi,
6590 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6591
c906108c
SS
6592 /* Let the user turn off floating point and set the fence post for
6593 heuristic_proc_start. */
6594
6595 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6596 "Set use of MIPS floating-point coprocessor.",
6597 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6598 add_cmd ("single", class_support, set_mipsfpu_single_command,
6599 "Select single-precision MIPS floating-point coprocessor.",
6600 &mipsfpulist);
6601 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6602 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6603 &mipsfpulist);
6604 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6605 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6606 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6607 add_cmd ("none", class_support, set_mipsfpu_none_command,
6608 "Select no MIPS floating-point coprocessor.",
6609 &mipsfpulist);
6610 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6611 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6612 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6613 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6614 "Select MIPS floating-point coprocessor automatically.",
6615 &mipsfpulist);
6616 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6617 "Show current use of MIPS floating-point coprocessor target.",
6618 &showlist);
6619
c906108c
SS
6620 /* We really would like to have both "0" and "unlimited" work, but
6621 command.c doesn't deal with that. So make it a var_zinteger
6622 because the user can always use "999999" or some such for unlimited. */
6623 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6624 (char *) &heuristic_fence_post,
6625 "\
6626Set the distance searched for the start of a function.\n\
6627If you are debugging a stripped executable, GDB needs to search through the\n\
6628program for the start of a function. This command sets the distance of the\n\
6629search. The only need to set it is when debugging a stripped executable.",
6630 &setlist);
6631 /* We need to throw away the frame cache when we set this, since it
6632 might change our ability to get backtraces. */
9f60d481 6633 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6634 add_show_from_set (c, &showlist);
6635
6636 /* Allow the user to control whether the upper bits of 64-bit
6637 addresses should be zeroed. */
e9e68a56
AC
6638 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6639Set zeroing of upper 32 bits of 64-bit addresses.\n\
6640Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6641allow GDB to determine the correct value.\n", "\
6642Show zeroing of upper 32 bits of 64-bit addresses.",
6643 NULL, show_mask_address,
6644 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6645
6646 /* Allow the user to control the size of 32 bit registers within the
6647 raw remote packet. */
6648 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6649 class_obscure,
6650 var_boolean,
6651 (char *)&mips64_transfers_32bit_regs_p, "\
6652Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6653Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6654that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
665564 bits for others. Use \"off\" to disable compatibility mode",
6656 &setlist),
6657 &showlist);
9ace0497
AC
6658
6659 /* Debug this files internals. */
6660 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6661 &mips_debug, "Set mips debugging.\n\
6662When non-zero, mips specific debugging is enabled.", &setdebuglist),
6663 &showdebuglist);
c906108c 6664}
This page took 1.080783 seconds and 4 git commands to generate.