gdbarch software_single_step frame_info to regcache: spu
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
618f726f 3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "language.h"
30#include "gdbcore.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbtypes.h"
34#include "target.h"
28d069e6 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
70f80edf 37#include "osabi.h"
d1973055 38#include "mips-tdep.h"
fe898f56 39#include "block.h"
a4b8ebc8 40#include "reggroups.h"
c906108c 41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
a4b8ebc8 45#include "sim-regno.h"
a89aa300 46#include "dis-asm.h"
edfae063
AC
47#include "frame-unwind.h"
48#include "frame-base.h"
49#include "trad-frame.h"
7d9b040b 50#include "infcall.h"
fed7ba43 51#include "floatformat.h"
29709017
DJ
52#include "remote.h"
53#include "target-descriptions.h"
2bd0c3d7 54#include "dwarf2-frame.h"
f8b73d13 55#include "user-regs.h"
79a45b7d 56#include "valprint.h"
175ff332 57#include "ax.h"
325fac50 58#include <algorithm>
c906108c 59
8d5f9dcb
DJ
60static const struct objfile_data *mips_pdr_data;
61
5bbcb741 62static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 63
ab50adb6
MR
64static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
65 ULONGEST inst);
66static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
67static int mips16_instruction_has_delay_slot (unsigned short inst,
68 int mustbe32);
69
70static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
71 CORE_ADDR addr);
72static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
73 CORE_ADDR addr, int mustbe32);
74static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
75 CORE_ADDR addr, int mustbe32);
4cc0665f 76
1bab7383
YQ
77static void mips_print_float_info (struct gdbarch *, struct ui_file *,
78 struct frame_info *, const char *);
79
24e05951 80/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
81/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
82#define ST0_FR (1 << 26)
83
b0069a17
AC
84/* The sizes of floating point registers. */
85
86enum
87{
88 MIPS_FPU_SINGLE_REGSIZE = 4,
89 MIPS_FPU_DOUBLE_REGSIZE = 8
90};
91
1a69e1e4
DJ
92enum
93{
94 MIPS32_REGSIZE = 4,
95 MIPS64_REGSIZE = 8
96};
0dadbba0 97
2e4ebe70
DJ
98static const char *mips_abi_string;
99
40478521 100static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
101 "auto",
102 "n32",
103 "o32",
28d169de 104 "n64",
2e4ebe70
DJ
105 "o64",
106 "eabi32",
107 "eabi64",
108 NULL
109};
110
44f1c4d7
YQ
111/* Enum describing the different kinds of breakpoints. */
112
113enum mips_breakpoint_kind
114{
115 /* 16-bit MIPS16 mode breakpoint. */
116 MIPS_BP_KIND_MIPS16 = 2,
117
118 /* 16-bit microMIPS mode breakpoint. */
119 MIPS_BP_KIND_MICROMIPS16 = 3,
120
121 /* 32-bit standard MIPS mode breakpoint. */
122 MIPS_BP_KIND_MIPS32 = 4,
123
124 /* 32-bit microMIPS mode breakpoint. */
125 MIPS_BP_KIND_MICROMIPS32 = 5,
126};
127
4cc0665f
MR
128/* For backwards compatibility we default to MIPS16. This flag is
129 overridden as soon as unambiguous ELF file flags tell us the
130 compressed ISA encoding used. */
131static const char mips_compression_mips16[] = "mips16";
132static const char mips_compression_micromips[] = "micromips";
133static const char *const mips_compression_strings[] =
134{
135 mips_compression_mips16,
136 mips_compression_micromips,
137 NULL
138};
139
140static const char *mips_compression_string = mips_compression_mips16;
141
f8b73d13
DJ
142/* The standard register names, and all the valid aliases for them. */
143struct register_alias
144{
145 const char *name;
146 int regnum;
147};
148
149/* Aliases for o32 and most other ABIs. */
150const struct register_alias mips_o32_aliases[] = {
151 { "ta0", 12 },
152 { "ta1", 13 },
153 { "ta2", 14 },
154 { "ta3", 15 }
155};
156
157/* Aliases for n32 and n64. */
158const struct register_alias mips_n32_n64_aliases[] = {
159 { "ta0", 8 },
160 { "ta1", 9 },
161 { "ta2", 10 },
162 { "ta3", 11 }
163};
164
165/* Aliases for ABI-independent registers. */
166const struct register_alias mips_register_aliases[] = {
167 /* The architecture manuals specify these ABI-independent names for
168 the GPRs. */
169#define R(n) { "r" #n, n }
170 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
171 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
172 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
173 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
174#undef R
175
176 /* k0 and k1 are sometimes called these instead (for "kernel
177 temp"). */
178 { "kt0", 26 },
179 { "kt1", 27 },
180
181 /* This is the traditional GDB name for the CP0 status register. */
182 { "sr", MIPS_PS_REGNUM },
183
184 /* This is the traditional GDB name for the CP0 BadVAddr register. */
185 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
186
187 /* This is the traditional GDB name for the FCSR. */
188 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
189};
190
865093a3
AR
191const struct register_alias mips_numeric_register_aliases[] = {
192#define R(n) { #n, n }
193 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
194 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
195 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
196 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
197#undef R
198};
199
c906108c
SS
200#ifndef MIPS_DEFAULT_FPU_TYPE
201#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
202#endif
203static int mips_fpu_type_auto = 1;
204static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 205
ccce17b0 206static unsigned int mips_debug = 0;
7a292a7a 207
29709017
DJ
208/* Properties (for struct target_desc) describing the g/G packet
209 layout. */
210#define PROPERTY_GP32 "internal: transfers-32bit-registers"
211#define PROPERTY_GP64 "internal: transfers-64bit-registers"
212
4eb0ad19
DJ
213struct target_desc *mips_tdesc_gp32;
214struct target_desc *mips_tdesc_gp64;
215
56cea623
AC
216const struct mips_regnum *
217mips_regnum (struct gdbarch *gdbarch)
218{
219 return gdbarch_tdep (gdbarch)->regnum;
220}
221
222static int
223mips_fpa0_regnum (struct gdbarch *gdbarch)
224{
225 return mips_regnum (gdbarch)->fp0 + 12;
226}
227
004159a2
MR
228/* Return 1 if REGNUM refers to a floating-point general register, raw
229 or cooked. Otherwise return 0. */
230
231static int
232mips_float_register_p (struct gdbarch *gdbarch, int regnum)
233{
234 int rawnum = regnum % gdbarch_num_regs (gdbarch);
235
236 return (rawnum >= mips_regnum (gdbarch)->fp0
237 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
238}
239
74ed0bb4
MD
240#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
241 == MIPS_ABI_EABI32 \
242 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 243
025bb325
MS
244#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
245 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 246
025bb325
MS
247#define MIPS_LAST_ARG_REGNUM(gdbarch) \
248 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 249
74ed0bb4 250#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 251
d1973055
KB
252/* Return the MIPS ABI associated with GDBARCH. */
253enum mips_abi
254mips_abi (struct gdbarch *gdbarch)
255{
256 return gdbarch_tdep (gdbarch)->mips_abi;
257}
258
4246e332 259int
1b13c4f6 260mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 261{
29709017
DJ
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* If we know how big the registers are, use that size. */
265 if (tdep->register_size_valid_p)
266 return tdep->register_size;
267
268 /* Fall back to the previous behavior. */
4246e332
AC
269 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
270 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
271}
272
025bb325 273/* Return the currently configured (or set) saved register size. */
480d3dd2 274
e6bc2e8a 275unsigned int
13326b4e 276mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 277{
1a69e1e4
DJ
278 switch (mips_abi (gdbarch))
279 {
280 case MIPS_ABI_EABI32:
281 case MIPS_ABI_O32:
282 return 4;
283 case MIPS_ABI_N32:
284 case MIPS_ABI_N64:
285 case MIPS_ABI_O64:
286 case MIPS_ABI_EABI64:
287 return 8;
288 case MIPS_ABI_UNKNOWN:
289 case MIPS_ABI_LAST:
290 default:
291 internal_error (__FILE__, __LINE__, _("bad switch"));
292 }
d929b26f
AC
293}
294
4cc0665f
MR
295/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
296 are some functions to handle addresses associated with compressed
297 code including but not limited to testing, setting, or clearing
298 bit 0 of such addresses. */
742c84f6 299
4cc0665f
MR
300/* Return one iff compressed code is the MIPS16 instruction set. */
301
302static int
303is_mips16_isa (struct gdbarch *gdbarch)
304{
305 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
306}
307
308/* Return one iff compressed code is the microMIPS instruction set. */
309
310static int
311is_micromips_isa (struct gdbarch *gdbarch)
312{
313 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
314}
315
316/* Return one iff ADDR denotes compressed code. */
317
318static int
319is_compact_addr (CORE_ADDR addr)
742c84f6
MR
320{
321 return ((addr) & 1);
322}
323
4cc0665f
MR
324/* Return one iff ADDR denotes standard ISA code. */
325
326static int
327is_mips_addr (CORE_ADDR addr)
328{
329 return !is_compact_addr (addr);
330}
331
332/* Return one iff ADDR denotes MIPS16 code. */
333
334static int
335is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
336{
337 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
338}
339
340/* Return one iff ADDR denotes microMIPS code. */
341
342static int
343is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
344{
345 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
346}
347
348/* Strip the ISA (compression) bit off from ADDR. */
349
742c84f6 350static CORE_ADDR
4cc0665f 351unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
352{
353 return ((addr) & ~(CORE_ADDR) 1);
354}
355
4cc0665f
MR
356/* Add the ISA (compression) bit to ADDR. */
357
742c84f6 358static CORE_ADDR
4cc0665f 359make_compact_addr (CORE_ADDR addr)
742c84f6
MR
360{
361 return ((addr) | (CORE_ADDR) 1);
362}
363
3e29f34a
MR
364/* Extern version of unmake_compact_addr; we use a separate function
365 so that unmake_compact_addr can be inlined throughout this file. */
366
367CORE_ADDR
368mips_unmake_compact_addr (CORE_ADDR addr)
369{
370 return unmake_compact_addr (addr);
371}
372
71b8ef93 373/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
374 marks it as MIPS16 or microMIPS function. The MSB of the minimal
375 symbol's "info" field is used for this purpose.
5a89d8aa 376
4cc0665f
MR
377 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
378 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
379 one of the "special" bits in a minimal symbol to mark it accordingly.
380 The test checks an ELF-private flag that is valid for true function
1bbce132
MR
381 symbols only; for synthetic symbols such as for PLT stubs that have
382 no ELF-private part at all the MIPS BFD backend arranges for this
383 information to be carried in the asymbol's udata field instead.
5a89d8aa 384
4cc0665f
MR
385 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
386 in a minimal symbol. */
5a89d8aa 387
5a89d8aa 388static void
6d82d43b
AC
389mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
390{
4cc0665f 391 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
1bbce132 392 unsigned char st_other;
4cc0665f 393
1bbce132
MR
394 if ((sym->flags & BSF_SYNTHETIC) == 0)
395 st_other = elfsym->internal_elf_sym.st_other;
396 else if ((sym->flags & BSF_FUNCTION) != 0)
397 st_other = sym->udata.i;
398 else
4cc0665f
MR
399 return;
400
1bbce132 401 if (ELF_ST_IS_MICROMIPS (st_other))
3e29f34a 402 {
f161c171 403 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
3e29f34a
MR
404 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
405 }
1bbce132 406 else if (ELF_ST_IS_MIPS16 (st_other))
3e29f34a 407 {
f161c171 408 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
3e29f34a
MR
409 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
410 }
4cc0665f
MR
411}
412
413/* Return one iff MSYM refers to standard ISA code. */
414
415static int
416msymbol_is_mips (struct minimal_symbol *msym)
417{
f161c171
MR
418 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
419 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
5a89d8aa
MS
420}
421
4cc0665f
MR
422/* Return one iff MSYM refers to MIPS16 code. */
423
71b8ef93 424static int
4cc0665f 425msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 426{
f161c171 427 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
71b8ef93
MS
428}
429
4cc0665f
MR
430/* Return one iff MSYM refers to microMIPS code. */
431
432static int
433msymbol_is_micromips (struct minimal_symbol *msym)
434{
f161c171 435 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
4cc0665f
MR
436}
437
3e29f34a
MR
438/* Set the ISA bit in the main symbol too, complementing the corresponding
439 minimal symbol setting and reflecting the run-time value of the symbol.
440 The need for comes from the ISA bit having been cleared as code in
441 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
442 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
443 of symbols referring to compressed code different in GDB to the values
444 used by actual code. That in turn makes them evaluate incorrectly in
445 expressions, producing results different to what the same expressions
446 yield when compiled into the program being debugged. */
447
448static void
449mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
450{
451 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
452 {
453 /* We are in symbol reading so it is OK to cast away constness. */
454 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
455 CORE_ADDR compact_block_start;
456 struct bound_minimal_symbol msym;
457
458 compact_block_start = BLOCK_START (block) | 1;
459 msym = lookup_minimal_symbol_by_pc (compact_block_start);
460 if (msym.minsym && !msymbol_is_mips (msym.minsym))
461 {
462 BLOCK_START (block) = compact_block_start;
463 }
464 }
465}
466
88658117
AC
467/* XFER a value from the big/little/left end of the register.
468 Depending on the size of the value it might occupy the entire
469 register or just part of it. Make an allowance for this, aligning
470 things accordingly. */
471
472static void
ba32f989
DJ
473mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
474 int reg_num, int length,
870cd05e
MK
475 enum bfd_endian endian, gdb_byte *in,
476 const gdb_byte *out, int buf_offset)
88658117 477{
88658117 478 int reg_offset = 0;
72a155b4
UW
479
480 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
481 /* Need to transfer the left or right part of the register, based on
482 the targets byte order. */
88658117
AC
483 switch (endian)
484 {
485 case BFD_ENDIAN_BIG:
72a155b4 486 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
487 break;
488 case BFD_ENDIAN_LITTLE:
489 reg_offset = 0;
490 break;
6d82d43b 491 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
492 reg_offset = 0;
493 break;
494 default:
e2e0b3e5 495 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
496 }
497 if (mips_debug)
cb1d2653
AC
498 fprintf_unfiltered (gdb_stderr,
499 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
500 reg_num, reg_offset, buf_offset, length);
88658117
AC
501 if (mips_debug && out != NULL)
502 {
503 int i;
cb1d2653 504 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 505 for (i = 0; i < length; i++)
cb1d2653 506 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
507 }
508 if (in != NULL)
6d82d43b
AC
509 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
510 in + buf_offset);
88658117 511 if (out != NULL)
6d82d43b
AC
512 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
513 out + buf_offset);
88658117
AC
514 if (mips_debug && in != NULL)
515 {
516 int i;
cb1d2653 517 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 518 for (i = 0; i < length; i++)
cb1d2653 519 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
520 }
521 if (mips_debug)
522 fprintf_unfiltered (gdb_stdlog, "\n");
523}
524
dd824b04
DJ
525/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
526 compatiblity mode. A return value of 1 means that we have
527 physical 64-bit registers, but should treat them as 32-bit registers. */
528
529static int
9c9acae0 530mips2_fp_compat (struct frame_info *frame)
dd824b04 531{
72a155b4 532 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
533 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
534 meaningful. */
72a155b4 535 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
536 return 0;
537
538#if 0
539 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
540 in all the places we deal with FP registers. PR gdb/413. */
541 /* Otherwise check the FR bit in the status register - it controls
542 the FP compatiblity mode. If it is clear we are in compatibility
543 mode. */
9c9acae0 544 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
545 return 1;
546#endif
361d1df0 547
dd824b04
DJ
548 return 0;
549}
550
7a292a7a 551#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 552
74ed0bb4 553static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 554
a14ed312 555static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 556
025bb325 557/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
558
559static struct cmd_list_element *setmipscmdlist = NULL;
560static struct cmd_list_element *showmipscmdlist = NULL;
561
5e2e9765
KB
562/* Integer registers 0 thru 31 are handled explicitly by
563 mips_register_name(). Processor specific registers 32 and above
8a9fc081 564 are listed in the following tables. */
691c0433 565
6d82d43b
AC
566enum
567{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
568
569/* Generic MIPS. */
570
571static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
572 "sr", "lo", "hi", "bad", "cause", "pc",
573 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
574 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
575 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
576 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 577 "fsr", "fir",
691c0433
AC
578};
579
691c0433
AC
580/* Names of tx39 registers. */
581
582static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
583 "sr", "lo", "hi", "bad", "cause", "pc",
584 "", "", "", "", "", "", "", "",
585 "", "", "", "", "", "", "", "",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "",
589 "", "", "", "", "", "", "", "",
1faeff08 590 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
591};
592
44099a67 593/* Names of registers with Linux kernels. */
1faeff08
MR
594static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
597 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
598 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
599 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
600 "fsr", "fir"
601};
602
cce74817 603
5e2e9765 604/* Return the name of the register corresponding to REGNO. */
5a89d8aa 605static const char *
d93859e2 606mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 607{
d93859e2 608 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
609 /* GPR names for all ABIs other than n32/n64. */
610 static char *mips_gpr_names[] = {
6d82d43b
AC
611 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
612 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
613 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
614 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
615 };
616
617 /* GPR names for n32 and n64 ABIs. */
618 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
619 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
620 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
621 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
622 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
623 };
624
d93859e2 625 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 626
f57d151a 627 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
628 but then don't make the raw register names visible. This (upper)
629 range of user visible register numbers are the pseudo-registers.
630
631 This approach was adopted accommodate the following scenario:
632 It is possible to debug a 64-bit device using a 32-bit
633 programming model. In such instances, the raw registers are
634 configured to be 64-bits wide, while the pseudo registers are
635 configured to be 32-bits wide. The registers that the user
636 sees - the pseudo registers - match the users expectations
637 given the programming model being used. */
d93859e2
UW
638 int rawnum = regno % gdbarch_num_regs (gdbarch);
639 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
640 return "";
641
5e2e9765
KB
642 /* The MIPS integer registers are always mapped from 0 to 31. The
643 names of the registers (which reflects the conventions regarding
644 register use) vary depending on the ABI. */
a4b8ebc8 645 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
646 {
647 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 648 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 649 else
a4b8ebc8 650 return mips_gpr_names[rawnum];
5e2e9765 651 }
d93859e2
UW
652 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
653 return tdesc_register_name (gdbarch, rawnum);
654 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
655 {
656 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
657 if (tdep->mips_processor_reg_names[rawnum - 32])
658 return tdep->mips_processor_reg_names[rawnum - 32];
659 return "";
691c0433 660 }
5e2e9765
KB
661 else
662 internal_error (__FILE__, __LINE__,
e2e0b3e5 663 _("mips_register_name: bad register number %d"), rawnum);
cce74817 664}
5e2e9765 665
a4b8ebc8 666/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 667
a4b8ebc8
AC
668static int
669mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
670 struct reggroup *reggroup)
671{
672 int vector_p;
673 int float_p;
674 int raw_p;
72a155b4
UW
675 int rawnum = regnum % gdbarch_num_regs (gdbarch);
676 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
677 if (reggroup == all_reggroup)
678 return pseudo;
679 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
680 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
681 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
682 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
683 raw_p = rawnum < gdbarch_num_regs (gdbarch);
684 if (gdbarch_register_name (gdbarch, regnum) == NULL
685 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
686 return 0;
687 if (reggroup == float_reggroup)
688 return float_p && pseudo;
689 if (reggroup == vector_reggroup)
690 return vector_p && pseudo;
691 if (reggroup == general_reggroup)
692 return (!vector_p && !float_p) && pseudo;
693 /* Save the pseudo registers. Need to make certain that any code
694 extracting register values from a saved register cache also uses
695 pseudo registers. */
696 if (reggroup == save_reggroup)
697 return raw_p && pseudo;
698 /* Restore the same pseudo register. */
699 if (reggroup == restore_reggroup)
700 return raw_p && pseudo;
6d82d43b 701 return 0;
a4b8ebc8
AC
702}
703
f8b73d13
DJ
704/* Return the groups that a MIPS register can be categorised into.
705 This version is only used if we have a target description which
706 describes real registers (and their groups). */
707
708static int
709mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
710 struct reggroup *reggroup)
711{
712 int rawnum = regnum % gdbarch_num_regs (gdbarch);
713 int pseudo = regnum / gdbarch_num_regs (gdbarch);
714 int ret;
715
716 /* Only save, restore, and display the pseudo registers. Need to
717 make certain that any code extracting register values from a
718 saved register cache also uses pseudo registers.
719
720 Note: saving and restoring the pseudo registers is slightly
721 strange; if we have 64 bits, we should save and restore all
722 64 bits. But this is hard and has little benefit. */
723 if (!pseudo)
724 return 0;
725
726 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
727 if (ret != -1)
728 return ret;
729
730 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
731}
732
a4b8ebc8 733/* Map the symbol table registers which live in the range [1 *
f57d151a 734 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 735 registers. Take care of alignment and size problems. */
c5aa993b 736
05d1431c 737static enum register_status
a4b8ebc8 738mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 739 int cookednum, gdb_byte *buf)
a4b8ebc8 740{
72a155b4
UW
741 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
742 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
743 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 744 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
05d1431c 745 return regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
746 else if (register_size (gdbarch, rawnum) >
747 register_size (gdbarch, cookednum))
47ebcfbe 748 {
8bdf35dc 749 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
05d1431c 750 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
47ebcfbe 751 else
8bdf35dc
KB
752 {
753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
754 LONGEST regval;
05d1431c
PA
755 enum register_status status;
756
757 status = regcache_raw_read_signed (regcache, rawnum, &regval);
758 if (status == REG_VALID)
759 store_signed_integer (buf, 4, byte_order, regval);
760 return status;
8bdf35dc 761 }
47ebcfbe
AC
762 }
763 else
e2e0b3e5 764 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
765}
766
767static void
6d82d43b
AC
768mips_pseudo_register_write (struct gdbarch *gdbarch,
769 struct regcache *regcache, int cookednum,
47a35522 770 const gdb_byte *buf)
a4b8ebc8 771{
72a155b4
UW
772 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
773 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
774 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 775 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 776 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
777 else if (register_size (gdbarch, rawnum) >
778 register_size (gdbarch, cookednum))
47ebcfbe 779 {
8bdf35dc 780 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
47ebcfbe
AC
781 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
782 else
8bdf35dc
KB
783 {
784 /* Sign extend the shortened version of the register prior
785 to placing it in the raw register. This is required for
786 some mips64 parts in order to avoid unpredictable behavior. */
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
789 regcache_raw_write_signed (regcache, rawnum, regval);
790 }
47ebcfbe
AC
791 }
792 else
e2e0b3e5 793 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 794}
c5aa993b 795
175ff332
HZ
796static int
797mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
798 struct agent_expr *ax, int reg)
799{
800 int rawnum = reg % gdbarch_num_regs (gdbarch);
801 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
802 && reg < 2 * gdbarch_num_regs (gdbarch));
803
804 ax_reg_mask (ax, rawnum);
805
806 return 0;
807}
808
809static int
810mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
811 struct agent_expr *ax, int reg)
812{
813 int rawnum = reg % gdbarch_num_regs (gdbarch);
814 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
815 && reg < 2 * gdbarch_num_regs (gdbarch));
816 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
817 {
818 ax_reg (ax, rawnum);
819
820 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
821 {
822 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
823 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
824 {
825 ax_const_l (ax, 32);
826 ax_simple (ax, aop_lsh);
827 }
828 ax_const_l (ax, 32);
829 ax_simple (ax, aop_rsh_signed);
830 }
831 }
832 else
833 internal_error (__FILE__, __LINE__, _("bad register size"));
834
835 return 0;
836}
837
4cc0665f 838/* Table to translate 3-bit register field to actual register number. */
d467df4e 839static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
840
841/* Heuristic_proc_start may hunt through the text section for a long
842 time across a 2400 baud serial line. Allows the user to limit this
843 search. */
844
44096aee 845static int heuristic_fence_post = 0;
c906108c 846
46cd78fb 847/* Number of bytes of storage in the actual machine representation for
719ec221
AC
848 register N. NOTE: This defines the pseudo register type so need to
849 rebuild the architecture vector. */
43e526b9
JM
850
851static int mips64_transfers_32bit_regs_p = 0;
852
719ec221
AC
853static void
854set_mips64_transfers_32bit_regs (char *args, int from_tty,
855 struct cmd_list_element *c)
43e526b9 856{
719ec221
AC
857 struct gdbarch_info info;
858 gdbarch_info_init (&info);
859 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
860 instead of relying on globals. Doing that would let generic code
861 handle the search for this specific architecture. */
862 if (!gdbarch_update_p (info))
a4b8ebc8 863 {
719ec221 864 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 865 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 866 }
a4b8ebc8
AC
867}
868
47ebcfbe 869/* Convert to/from a register and the corresponding memory value. */
43e526b9 870
ee51a8c7
KB
871/* This predicate tests for the case of an 8 byte floating point
872 value that is being transferred to or from a pair of floating point
873 registers each of which are (or are considered to be) only 4 bytes
874 wide. */
ff2e87ac 875static int
ee51a8c7
KB
876mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
877 struct type *type)
ff2e87ac 878{
0abe36f5
MD
879 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
880 && register_size (gdbarch, regnum) == 4
004159a2 881 && mips_float_register_p (gdbarch, regnum)
6d82d43b 882 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
883}
884
ee51a8c7
KB
885/* This predicate tests for the case of a value of less than 8
886 bytes in width that is being transfered to or from an 8 byte
887 general purpose register. */
888static int
889mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
890 struct type *type)
891{
892 int num_regs = gdbarch_num_regs (gdbarch);
893
894 return (register_size (gdbarch, regnum) == 8
895 && regnum % num_regs > 0 && regnum % num_regs < 32
896 && TYPE_LENGTH (type) < 8);
897}
898
899static int
025bb325
MS
900mips_convert_register_p (struct gdbarch *gdbarch,
901 int regnum, struct type *type)
ee51a8c7 902{
eaa05d59
MR
903 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
904 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
905}
906
8dccd430 907static int
ff2e87ac 908mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
909 struct type *type, gdb_byte *to,
910 int *optimizedp, int *unavailablep)
102182a9 911{
ee51a8c7
KB
912 struct gdbarch *gdbarch = get_frame_arch (frame);
913
914 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
915 {
916 get_frame_register (frame, regnum + 0, to + 4);
917 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
918
919 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
920 optimizedp, unavailablep))
921 return 0;
922
923 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
924 optimizedp, unavailablep))
925 return 0;
926 *optimizedp = *unavailablep = 0;
927 return 1;
ee51a8c7
KB
928 }
929 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
930 {
931 int len = TYPE_LENGTH (type);
8dccd430
PA
932 CORE_ADDR offset;
933
934 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
935 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
936 optimizedp, unavailablep))
937 return 0;
938
939 *optimizedp = *unavailablep = 0;
940 return 1;
ee51a8c7
KB
941 }
942 else
943 {
944 internal_error (__FILE__, __LINE__,
945 _("mips_register_to_value: unrecognized case"));
946 }
102182a9
MS
947}
948
42c466d7 949static void
ff2e87ac 950mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 951 struct type *type, const gdb_byte *from)
102182a9 952{
ee51a8c7
KB
953 struct gdbarch *gdbarch = get_frame_arch (frame);
954
955 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
956 {
957 put_frame_register (frame, regnum + 0, from + 4);
958 put_frame_register (frame, regnum + 1, from + 0);
959 }
960 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
961 {
962 gdb_byte fill[8];
963 int len = TYPE_LENGTH (type);
964
965 /* Sign extend values, irrespective of type, that are stored to
966 a 64-bit general purpose register. (32-bit unsigned values
967 are stored as signed quantities within a 64-bit register.
968 When performing an operation, in compiled code, that combines
969 a 32-bit unsigned value with a signed 64-bit value, a type
970 conversion is first performed that zeroes out the high 32 bits.) */
971 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
972 {
973 if (from[0] & 0x80)
974 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
975 else
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
977 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
978 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
979 }
980 else
981 {
982 if (from[len-1] & 0x80)
983 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
984 else
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
986 put_frame_register_bytes (frame, regnum, 0, len, from);
987 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
988 }
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 _("mips_value_to_register: unrecognized case"));
994 }
102182a9
MS
995}
996
a4b8ebc8
AC
997/* Return the GDB type object for the "standard" data type of data in
998 register REG. */
78fde5f8
KB
999
1000static struct type *
a4b8ebc8
AC
1001mips_register_type (struct gdbarch *gdbarch, int regnum)
1002{
72a155b4 1003 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 1004 if (mips_float_register_p (gdbarch, regnum))
a6425924 1005 {
5ef80fb0 1006 /* The floating-point registers raw, or cooked, always match
1b13c4f6 1007 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 1008 if (mips_isa_regsize (gdbarch) == 4)
27067745 1009 return builtin_type (gdbarch)->builtin_float;
8da61cc4 1010 else
27067745 1011 return builtin_type (gdbarch)->builtin_double;
a6425924 1012 }
72a155b4 1013 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
1014 {
1015 /* The raw or ISA registers. These are all sized according to
1016 the ISA regsize. */
1017 if (mips_isa_regsize (gdbarch) == 4)
df4df182 1018 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 1019 else
df4df182 1020 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1021 }
78fde5f8 1022 else
d5ac5a39 1023 {
1faeff08
MR
1024 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1025
d5ac5a39
AC
1026 /* The cooked or ABI registers. These are sized according to
1027 the ABI (with a few complications). */
1faeff08
MR
1028 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1029 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1030 return builtin_type (gdbarch)->builtin_int32;
de4bfa86 1031 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1faeff08
MR
1032 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1033 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
1034 /* The pseudo/cooked view of the embedded registers is always
1035 32-bit. The raw view is handled below. */
df4df182 1036 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1037 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1038 /* The target, while possibly using a 64-bit register buffer,
1039 is only transfering 32-bits of each integer register.
1040 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 1041 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1042 else if (mips_abi_regsize (gdbarch) == 4)
1043 /* The ABI is restricted to 32-bit registers (the ISA could be
1044 32- or 64-bit). */
df4df182 1045 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1046 else
1047 /* 64-bit ABI. */
df4df182 1048 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1049 }
78fde5f8
KB
1050}
1051
f8b73d13
DJ
1052/* Return the GDB type for the pseudo register REGNUM, which is the
1053 ABI-level view. This function is only called if there is a target
1054 description which includes registers, so we know precisely the
1055 types of hardware registers. */
1056
1057static struct type *
1058mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1059{
1060 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1061 int rawnum = regnum % num_regs;
1062 struct type *rawtype;
1063
1064 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1065
1066 /* Absent registers are still absent. */
1067 rawtype = gdbarch_register_type (gdbarch, rawnum);
1068 if (TYPE_LENGTH (rawtype) == 0)
1069 return rawtype;
1070
a6912260
MR
1071 /* Present the floating point registers however the hardware did;
1072 do not try to convert between FPU layouts. */
de13fcf2 1073 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1074 return rawtype;
1075
78b86327
MR
1076 /* Floating-point control registers are always 32-bit even though for
1077 backwards compatibility reasons 64-bit targets will transfer them
1078 as 64-bit quantities even if using XML descriptions. */
1079 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1080 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1081 return builtin_type (gdbarch)->builtin_int32;
1082
f8b73d13
DJ
1083 /* Use pointer types for registers if we can. For n32 we can not,
1084 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1085 if (mips_abi_regsize (gdbarch)
1086 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1087 {
1faeff08
MR
1088 if (rawnum == MIPS_SP_REGNUM
1089 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1090 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1091 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1092 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1093 }
1094
1095 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1096 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1097 || rawnum == mips_regnum (gdbarch)->lo
1098 || rawnum == mips_regnum (gdbarch)->hi
1099 || rawnum == mips_regnum (gdbarch)->badvaddr
1100 || rawnum == mips_regnum (gdbarch)->cause
1101 || rawnum == mips_regnum (gdbarch)->pc
1102 || (mips_regnum (gdbarch)->dspacc != -1
1103 && rawnum >= mips_regnum (gdbarch)->dspacc
1104 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1105 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1106
a6912260
MR
1107 /* The pseudo/cooked view of embedded registers is always
1108 32-bit, even if the target transfers 64-bit values for them.
1109 New targets relying on XML descriptions should only transfer
1110 the necessary 32 bits, but older versions of GDB expected 64,
1111 so allow the target to provide 64 bits without interfering
1112 with the displayed type. */
de4bfa86 1113 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
78b86327 1114 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1faeff08 1115 && rawnum <= MIPS_LAST_EMBED_REGNUM)
a6912260 1116 return builtin_type (gdbarch)->builtin_int32;
1faeff08 1117
f8b73d13
DJ
1118 /* For all other registers, pass through the hardware type. */
1119 return rawtype;
1120}
bcb0cc15 1121
025bb325 1122/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 1123enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1124
1125static int
480d3dd2 1126mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1127{
1128 switch (mask_address_var)
1129 {
7f19b9a2 1130 case AUTO_BOOLEAN_TRUE:
4014092b 1131 return 1;
7f19b9a2 1132 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1133 return 0;
1134 break;
7f19b9a2 1135 case AUTO_BOOLEAN_AUTO:
480d3dd2 1136 return tdep->default_mask_address_p;
4014092b 1137 default:
025bb325
MS
1138 internal_error (__FILE__, __LINE__,
1139 _("mips_mask_address_p: bad switch"));
4014092b 1140 return -1;
361d1df0 1141 }
4014092b
AC
1142}
1143
1144static void
08546159
AC
1145show_mask_address (struct ui_file *file, int from_tty,
1146 struct cmd_list_element *c, const char *value)
4014092b 1147{
f5656ead 1148 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1149
1150 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1151 switch (mask_address_var)
1152 {
7f19b9a2 1153 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1154 printf_filtered ("The 32 bit mips address mask is enabled\n");
1155 break;
7f19b9a2 1156 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1157 printf_filtered ("The 32 bit mips address mask is disabled\n");
1158 break;
7f19b9a2 1159 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1160 printf_filtered
1161 ("The 32 bit address mask is set automatically. Currently %s\n",
1162 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1163 break;
1164 default:
e2e0b3e5 1165 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1166 break;
361d1df0 1167 }
4014092b 1168}
c906108c 1169
4cc0665f
MR
1170/* Tell if the program counter value in MEMADDR is in a standard ISA
1171 function. */
1172
1173int
1174mips_pc_is_mips (CORE_ADDR memaddr)
1175{
7cbd4a93 1176 struct bound_minimal_symbol sym;
4cc0665f
MR
1177
1178 /* Flags indicating that this is a MIPS16 or microMIPS function is
1179 stored by elfread.c in the high bit of the info field. Use this
1180 to decide if the function is standard MIPS. Otherwise if bit 0
1181 of the address is clear, then this is a standard MIPS function. */
3e29f34a 1182 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1183 if (sym.minsym)
1184 return msymbol_is_mips (sym.minsym);
4cc0665f
MR
1185 else
1186 return is_mips_addr (memaddr);
1187}
1188
c906108c
SS
1189/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1190
0fe7e7c8 1191int
4cc0665f 1192mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c 1193{
7cbd4a93 1194 struct bound_minimal_symbol sym;
c906108c 1195
91912e4d
MR
1196 /* A flag indicating that this is a MIPS16 function is stored by
1197 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1198 if the function is MIPS16. Otherwise if bit 0 of the address is
1199 set, then ELF file flags will tell if this is a MIPS16 function. */
3e29f34a 1200 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1201 if (sym.minsym)
1202 return msymbol_is_mips16 (sym.minsym);
4cc0665f
MR
1203 else
1204 return is_mips16_addr (gdbarch, memaddr);
1205}
1206
1207/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1208
1209int
1210mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1211{
7cbd4a93 1212 struct bound_minimal_symbol sym;
4cc0665f
MR
1213
1214 /* A flag indicating that this is a microMIPS function is stored by
1215 elfread.c in the high bit of the info field. Use this to decide
1216 if the function is microMIPS. Otherwise if bit 0 of the address
1217 is set, then ELF file flags will tell if this is a microMIPS
1218 function. */
3e29f34a 1219 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1220 if (sym.minsym)
1221 return msymbol_is_micromips (sym.minsym);
4cc0665f
MR
1222 else
1223 return is_micromips_addr (gdbarch, memaddr);
1224}
1225
1226/* Tell the ISA type of the function the program counter value in MEMADDR
1227 is in. */
1228
1229static enum mips_isa
1230mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1231{
7cbd4a93 1232 struct bound_minimal_symbol sym;
4cc0665f
MR
1233
1234 /* A flag indicating that this is a MIPS16 or a microMIPS function
1235 is stored by elfread.c in the high bit of the info field. Use
1236 this to decide if the function is MIPS16 or microMIPS or normal
1237 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1238 flags will tell if this is a MIPS16 or a microMIPS function. */
3e29f34a 1239 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93 1240 if (sym.minsym)
4cc0665f 1241 {
7cbd4a93 1242 if (msymbol_is_micromips (sym.minsym))
4cc0665f 1243 return ISA_MICROMIPS;
7cbd4a93 1244 else if (msymbol_is_mips16 (sym.minsym))
4cc0665f
MR
1245 return ISA_MIPS16;
1246 else
1247 return ISA_MIPS;
1248 }
c906108c 1249 else
4cc0665f
MR
1250 {
1251 if (is_mips_addr (memaddr))
1252 return ISA_MIPS;
1253 else if (is_micromips_addr (gdbarch, memaddr))
1254 return ISA_MICROMIPS;
1255 else
1256 return ISA_MIPS16;
1257 }
c906108c
SS
1258}
1259
3e29f34a
MR
1260/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1261 The need for comes from the ISA bit having been cleared, making
1262 addresses in FDE, range records, etc. referring to compressed code
1263 different to those in line information, the symbol table and finally
1264 the PC register. That in turn confuses many operations. */
1265
1266static CORE_ADDR
1267mips_adjust_dwarf2_addr (CORE_ADDR pc)
1268{
1269 pc = unmake_compact_addr (pc);
1270 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1271}
1272
1273/* Recalculate the line record requested so that the resulting PC has
1274 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1275 this adjustment comes from some records associated with compressed
1276 code having the ISA bit cleared, most notably at function prologue
1277 ends. The ISA bit is in this context retrieved from the minimal
1278 symbol covering the address requested, which in turn has been
1279 constructed from the binary's symbol table rather than DWARF-2
1280 information. The correct setting of the ISA bit is required for
1281 breakpoint addresses to correctly match against the stop PC.
1282
1283 As line entries can specify relative address adjustments we need to
1284 keep track of the absolute value of the last line address recorded
1285 in line information, so that we can calculate the actual address to
1286 apply the ISA bit adjustment to. We use PC for this tracking and
1287 keep the original address there.
1288
1289 As such relative address adjustments can be odd within compressed
1290 code we need to keep track of the last line address with the ISA
1291 bit adjustment applied too, as the original address may or may not
1292 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1293 the adjusted address there.
1294
1295 For relative address adjustments we then use these variables to
1296 calculate the address intended by line information, which will be
1297 PC-relative, and return an updated adjustment carrying ISA bit
1298 information, which will be ADJ_PC-relative. For absolute address
1299 adjustments we just return the same address that we store in ADJ_PC
1300 too.
1301
1302 As the first line entry can be relative to an implied address value
1303 of 0 we need to have the initial address set up that we store in PC
1304 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1305 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1306
1307static CORE_ADDR
1308mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1309{
1310 static CORE_ADDR adj_pc;
1311 static CORE_ADDR pc;
1312 CORE_ADDR isa_pc;
1313
1314 pc = rel ? pc + addr : addr;
1315 isa_pc = mips_adjust_dwarf2_addr (pc);
1316 addr = rel ? isa_pc - adj_pc : isa_pc;
1317 adj_pc = isa_pc;
1318 return addr;
1319}
1320
14132e89
MR
1321/* Various MIPS16 thunk (aka stub or trampoline) names. */
1322
1323static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1324static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1325static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1326static const char mips_str_call_stub[] = "__call_stub_";
1327static const char mips_str_fn_stub[] = "__fn_stub_";
1328
1329/* This is used as a PIC thunk prefix. */
1330
1331static const char mips_str_pic[] = ".pic.";
1332
1333/* Return non-zero if the PC is inside a call thunk (aka stub or
1334 trampoline) that should be treated as a temporary frame. */
1335
1336static int
1337mips_in_frame_stub (CORE_ADDR pc)
1338{
1339 CORE_ADDR start_addr;
1340 const char *name;
1341
1342 /* Find the starting address of the function containing the PC. */
1343 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1344 return 0;
1345
1346 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
61012eef 1347 if (startswith (name, mips_str_mips16_call_stub))
14132e89
MR
1348 return 1;
1349 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
61012eef 1350 if (startswith (name, mips_str_call_stub))
14132e89
MR
1351 return 1;
1352 /* If the PC is in __fn_stub_*, this is a call stub. */
61012eef 1353 if (startswith (name, mips_str_fn_stub))
14132e89
MR
1354 return 1;
1355
1356 return 0; /* Not a stub. */
1357}
1358
b2fa5097 1359/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1360 all registers should be sign extended for simplicity? */
6c997a34
AC
1361
1362static CORE_ADDR
61a1198a 1363mips_read_pc (struct regcache *regcache)
6c997a34 1364{
8376de04 1365 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
70242eb1 1366 LONGEST pc;
8376de04 1367
61a1198a
UW
1368 regcache_cooked_read_signed (regcache, regnum, &pc);
1369 return pc;
b6cb9035
AC
1370}
1371
58dfe9ff
AC
1372static CORE_ADDR
1373mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1374{
14132e89 1375 CORE_ADDR pc;
930bd0e0 1376
8376de04 1377 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
14132e89
MR
1378 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1379 intermediate frames. In this case we can get the caller's address
1380 from $ra, or if $ra contains an address within a thunk as well, then
1381 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1382 and thus the caller's address is in $s2. */
1383 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1384 {
1385 pc = frame_unwind_register_signed
1386 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
14132e89 1387 if (mips_in_frame_stub (pc))
3e29f34a
MR
1388 pc = frame_unwind_register_signed
1389 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
14132e89 1390 }
930bd0e0 1391 return pc;
edfae063
AC
1392}
1393
30244cd8
UW
1394static CORE_ADDR
1395mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1396{
72a155b4
UW
1397 return frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1399}
1400
b8a22b94 1401/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1402 dummy frame. The frame ID's base needs to match the TOS value
1403 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1404 breakpoint. */
1405
1406static struct frame_id
b8a22b94 1407mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1408{
f57d151a 1409 return frame_id_build
b8a22b94
DJ
1410 (get_frame_register_signed (this_frame,
1411 gdbarch_num_regs (gdbarch)
1412 + MIPS_SP_REGNUM),
1413 get_frame_pc (this_frame));
58dfe9ff
AC
1414}
1415
5a439849
MR
1416/* Implement the "write_pc" gdbarch method. */
1417
1418void
61a1198a 1419mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1420{
8376de04
MR
1421 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1422
3e29f34a 1423 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 1424}
c906108c 1425
4cc0665f
MR
1426/* Fetch and return instruction from the specified location. Handle
1427 MIPS16/microMIPS as appropriate. */
c906108c 1428
d37cca3d 1429static ULONGEST
4cc0665f 1430mips_fetch_instruction (struct gdbarch *gdbarch,
d09f2c3f 1431 enum mips_isa isa, CORE_ADDR addr, int *errp)
c906108c 1432{
e17a4113 1433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1434 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c 1435 int instlen;
d09f2c3f 1436 int err;
c906108c 1437
4cc0665f 1438 switch (isa)
c906108c 1439 {
4cc0665f
MR
1440 case ISA_MICROMIPS:
1441 case ISA_MIPS16:
95ac2dcf 1442 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1443 addr = unmake_compact_addr (addr);
1444 break;
1445 case ISA_MIPS:
1446 instlen = MIPS_INSN32_SIZE;
1447 break;
1448 default:
1449 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1450 break;
c906108c 1451 }
d09f2c3f
PA
1452 err = target_read_memory (addr, buf, instlen);
1453 if (errp != NULL)
1454 *errp = err;
1455 if (err != 0)
4cc0665f 1456 {
d09f2c3f
PA
1457 if (errp == NULL)
1458 memory_error (TARGET_XFER_E_IO, addr);
4cc0665f
MR
1459 return 0;
1460 }
e17a4113 1461 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1462}
1463
025bb325 1464/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1465#define mips32_op(x) (x >> 26)
1466#define itype_op(x) (x >> 26)
1467#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1468#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1469#define itype_immediate(x) (x & 0xffff)
c906108c 1470
e135b889
DJ
1471#define jtype_op(x) (x >> 26)
1472#define jtype_target(x) (x & 0x03ffffff)
c906108c 1473
e135b889
DJ
1474#define rtype_op(x) (x >> 26)
1475#define rtype_rs(x) ((x >> 21) & 0x1f)
1476#define rtype_rt(x) ((x >> 16) & 0x1f)
1477#define rtype_rd(x) ((x >> 11) & 0x1f)
1478#define rtype_shamt(x) ((x >> 6) & 0x1f)
1479#define rtype_funct(x) (x & 0x3f)
c906108c 1480
4cc0665f
MR
1481/* MicroMIPS instruction fields. */
1482#define micromips_op(x) ((x) >> 10)
1483
1484/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1485 bit and the size respectively of the field extracted. */
1486#define b0s4_imm(x) ((x) & 0xf)
1487#define b0s5_imm(x) ((x) & 0x1f)
1488#define b0s5_reg(x) ((x) & 0x1f)
1489#define b0s7_imm(x) ((x) & 0x7f)
1490#define b0s10_imm(x) ((x) & 0x3ff)
1491#define b1s4_imm(x) (((x) >> 1) & 0xf)
1492#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1493#define b2s3_cc(x) (((x) >> 2) & 0x7)
1494#define b4s2_regl(x) (((x) >> 4) & 0x3)
1495#define b5s5_op(x) (((x) >> 5) & 0x1f)
1496#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1497#define b6s4_op(x) (((x) >> 6) & 0xf)
1498#define b7s3_reg(x) (((x) >> 7) & 0x7)
1499
1500/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1501 respectively of the field extracted. */
1502#define b0s6_op(x) ((x) & 0x3f)
1503#define b0s11_op(x) ((x) & 0x7ff)
1504#define b0s12_imm(x) ((x) & 0xfff)
1505#define b0s16_imm(x) ((x) & 0xffff)
1506#define b0s26_imm(x) ((x) & 0x3ffffff)
1507#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1508#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1509#define b12s4_op(x) (((x) >> 12) & 0xf)
1510
1511/* Return the size in bytes of the instruction INSN encoded in the ISA
1512 instruction set. */
1513
1514static int
1515mips_insn_size (enum mips_isa isa, ULONGEST insn)
1516{
1517 switch (isa)
1518 {
1519 case ISA_MICROMIPS:
100b4f2e
MR
1520 if ((micromips_op (insn) & 0x4) == 0x4
1521 || (micromips_op (insn) & 0x7) == 0x0)
4cc0665f
MR
1522 return 2 * MIPS_INSN16_SIZE;
1523 else
1524 return MIPS_INSN16_SIZE;
1525 case ISA_MIPS16:
1526 if ((insn & 0xf800) == 0xf000)
1527 return 2 * MIPS_INSN16_SIZE;
1528 else
1529 return MIPS_INSN16_SIZE;
1530 case ISA_MIPS:
1531 return MIPS_INSN32_SIZE;
1532 }
1533 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1534}
1535
06987e64
MK
1536static LONGEST
1537mips32_relative_offset (ULONGEST inst)
c5aa993b 1538{
06987e64 1539 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1540}
1541
a385295e
MR
1542/* Determine the address of the next instruction executed after the INST
1543 floating condition branch instruction at PC. COUNT specifies the
1544 number of the floating condition bits tested by the branch. */
1545
1546static CORE_ADDR
7113a196 1547mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
a385295e
MR
1548 ULONGEST inst, CORE_ADDR pc, int count)
1549{
1550 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1551 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1552 int tf = itype_rt (inst) & 1;
1553 int mask = (1 << count) - 1;
1554 ULONGEST fcs;
1555 int cond;
1556
1557 if (fcsr == -1)
1558 /* No way to handle; it'll most likely trap anyway. */
1559 return pc;
1560
7113a196 1561 fcs = regcache_raw_get_unsigned (regcache, fcsr);
a385295e
MR
1562 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1563
1564 if (((cond >> cnum) & mask) != mask * !tf)
1565 pc += mips32_relative_offset (inst);
1566 else
1567 pc += 4;
1568
1569 return pc;
1570}
1571
f94363d7
AP
1572/* Return nonzero if the gdbarch is an Octeon series. */
1573
1574static int
1575is_octeon (struct gdbarch *gdbarch)
1576{
1577 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1578
1579 return (info->mach == bfd_mach_mips_octeon
1580 || info->mach == bfd_mach_mips_octeonp
1581 || info->mach == bfd_mach_mips_octeon2);
1582}
1583
1584/* Return true if the OP represents the Octeon's BBIT instruction. */
1585
1586static int
1587is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1588{
1589 if (!is_octeon (gdbarch))
1590 return 0;
1591 /* BBIT0 is encoded as LWC2: 110 010. */
1592 /* BBIT032 is encoded as LDC2: 110 110. */
1593 /* BBIT1 is encoded as SWC2: 111 010. */
1594 /* BBIT132 is encoded as SDC2: 111 110. */
1595 if (op == 50 || op == 54 || op == 58 || op == 62)
1596 return 1;
1597 return 0;
1598}
1599
1600
f49e4e6d
MS
1601/* Determine where to set a single step breakpoint while considering
1602 branch prediction. */
78a59c2f 1603
5a89d8aa 1604static CORE_ADDR
7113a196 1605mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
c5aa993b 1606{
7113a196 1607 struct gdbarch *gdbarch = get_regcache_arch (regcache);
c5aa993b
JM
1608 unsigned long inst;
1609 int op;
4cc0665f 1610 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1611 op = itype_op (inst);
025bb325
MS
1612 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1613 instruction. */
c5aa993b 1614 {
4f5bcb50 1615 if (op >> 2 == 5)
6d82d43b 1616 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1617 {
4f5bcb50 1618 switch (op & 0x03)
c906108c 1619 {
e135b889
DJ
1620 case 0: /* BEQL */
1621 goto equal_branch;
1622 case 1: /* BNEL */
1623 goto neq_branch;
1624 case 2: /* BLEZL */
1625 goto less_branch;
313628cc 1626 case 3: /* BGTZL */
e135b889 1627 goto greater_branch;
c5aa993b
JM
1628 default:
1629 pc += 4;
c906108c
SS
1630 }
1631 }
4f5bcb50 1632 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1633 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7113a196 1634 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
4f5bcb50 1635 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1636 && (itype_rt (inst) & 2) == 0)
1637 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
7113a196 1638 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
4f5bcb50 1639 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1640 && (itype_rt (inst) & 2) == 0)
1641 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
7113a196 1642 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
4f5bcb50 1643 else if (op == 29)
9e8da49c
MR
1644 /* JALX: 011101 */
1645 /* The new PC will be alternate mode. */
1646 {
1647 unsigned long reg;
1648
1649 reg = jtype_target (inst) << 2;
1650 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1651 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1652 }
f94363d7
AP
1653 else if (is_octeon_bbit_op (op, gdbarch))
1654 {
1655 int bit, branch_if;
1656
1657 branch_if = op == 58 || op == 62;
1658 bit = itype_rt (inst);
1659
1660 /* Take into account the *32 instructions. */
1661 if (op == 54 || op == 62)
1662 bit += 32;
1663
7113a196
YQ
1664 if (((regcache_raw_get_signed (regcache,
1665 itype_rs (inst)) >> bit) & 1)
f94363d7
AP
1666 == branch_if)
1667 pc += mips32_relative_offset (inst) + 4;
1668 else
1669 pc += 8; /* After the delay slot. */
1670 }
1671
c5aa993b 1672 else
025bb325 1673 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1674 }
1675 else
025bb325 1676 { /* This gets way messy. */
c5aa993b 1677
025bb325 1678 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1679 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1680 {
c5aa993b
JM
1681 case 0: /* SPECIAL */
1682 op = rtype_funct (inst);
1683 switch (op)
1684 {
1685 case 8: /* JR */
1686 case 9: /* JALR */
025bb325 1687 /* Set PC to that address. */
7113a196 1688 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
c5aa993b 1689 break;
e38d4e1a
DJ
1690 case 12: /* SYSCALL */
1691 {
1692 struct gdbarch_tdep *tdep;
1693
7113a196 1694 tdep = gdbarch_tdep (gdbarch);
e38d4e1a 1695 if (tdep->syscall_next_pc != NULL)
7113a196 1696 pc = tdep->syscall_next_pc (get_current_frame ());
e38d4e1a
DJ
1697 else
1698 pc += 4;
1699 }
1700 break;
c5aa993b
JM
1701 default:
1702 pc += 4;
1703 }
1704
6d82d43b 1705 break; /* end SPECIAL */
025bb325 1706 case 1: /* REGIMM */
c906108c 1707 {
e135b889
DJ
1708 op = itype_rt (inst); /* branch condition */
1709 switch (op)
c906108c 1710 {
c5aa993b 1711 case 0: /* BLTZ */
e135b889
DJ
1712 case 2: /* BLTZL */
1713 case 16: /* BLTZAL */
c5aa993b 1714 case 18: /* BLTZALL */
c906108c 1715 less_branch:
7113a196 1716 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
c5aa993b
JM
1717 pc += mips32_relative_offset (inst) + 4;
1718 else
1719 pc += 8; /* after the delay slot */
1720 break;
e135b889 1721 case 1: /* BGEZ */
c5aa993b
JM
1722 case 3: /* BGEZL */
1723 case 17: /* BGEZAL */
1724 case 19: /* BGEZALL */
7113a196 1725 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
c5aa993b
JM
1726 pc += mips32_relative_offset (inst) + 4;
1727 else
1728 pc += 8; /* after the delay slot */
1729 break;
a385295e
MR
1730 case 0x1c: /* BPOSGE32 */
1731 case 0x1e: /* BPOSGE64 */
1732 pc += 4;
1733 if (itype_rs (inst) == 0)
1734 {
1735 unsigned int pos = (op & 2) ? 64 : 32;
1736 int dspctl = mips_regnum (gdbarch)->dspctl;
1737
1738 if (dspctl == -1)
1739 /* No way to handle; it'll most likely trap anyway. */
1740 break;
1741
7113a196
YQ
1742 if ((regcache_raw_get_unsigned (regcache,
1743 dspctl) & 0x7f) >= pos)
a385295e
MR
1744 pc += mips32_relative_offset (inst);
1745 else
1746 pc += 4;
1747 }
1748 break;
e135b889 1749 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1750 default:
1751 pc += 4;
c906108c
SS
1752 }
1753 }
6d82d43b 1754 break; /* end REGIMM */
c5aa993b
JM
1755 case 2: /* J */
1756 case 3: /* JAL */
1757 {
1758 unsigned long reg;
1759 reg = jtype_target (inst) << 2;
025bb325 1760 /* Upper four bits get never changed... */
5b652102 1761 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1762 }
c5aa993b 1763 break;
e135b889 1764 case 4: /* BEQ, BEQL */
c5aa993b 1765 equal_branch:
7113a196
YQ
1766 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1767 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1768 pc += mips32_relative_offset (inst) + 4;
1769 else
1770 pc += 8;
1771 break;
e135b889 1772 case 5: /* BNE, BNEL */
c5aa993b 1773 neq_branch:
7113a196
YQ
1774 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1775 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1776 pc += mips32_relative_offset (inst) + 4;
1777 else
1778 pc += 8;
1779 break;
e135b889 1780 case 6: /* BLEZ, BLEZL */
7113a196 1781 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
c5aa993b
JM
1782 pc += mips32_relative_offset (inst) + 4;
1783 else
1784 pc += 8;
1785 break;
1786 case 7:
e135b889
DJ
1787 default:
1788 greater_branch: /* BGTZ, BGTZL */
7113a196 1789 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
c5aa993b
JM
1790 pc += mips32_relative_offset (inst) + 4;
1791 else
1792 pc += 8;
1793 break;
c5aa993b
JM
1794 } /* switch */
1795 } /* else */
1796 return pc;
1797} /* mips32_next_pc */
c906108c 1798
4cc0665f
MR
1799/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1800 INSN. */
1801
1802static LONGEST
1803micromips_relative_offset7 (ULONGEST insn)
1804{
1805 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1806}
1807
1808/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1809 INSN. */
1810
1811static LONGEST
1812micromips_relative_offset10 (ULONGEST insn)
1813{
1814 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1815}
1816
1817/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1818 INSN. */
1819
1820static LONGEST
1821micromips_relative_offset16 (ULONGEST insn)
1822{
1823 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1824}
1825
1826/* Return the size in bytes of the microMIPS instruction at the address PC. */
1827
1828static int
1829micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1830{
1831 ULONGEST insn;
1832
1833 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1834 return mips_insn_size (ISA_MICROMIPS, insn);
1835}
1836
1837/* Calculate the address of the next microMIPS instruction to execute
1838 after the INSN coprocessor 1 conditional branch instruction at the
1839 address PC. COUNT denotes the number of coprocessor condition bits
1840 examined by the branch. */
1841
1842static CORE_ADDR
7113a196 1843micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
4cc0665f
MR
1844 ULONGEST insn, CORE_ADDR pc, int count)
1845{
1846 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1847 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1848 int tf = b5s5_op (insn >> 16) & 1;
1849 int mask = (1 << count) - 1;
1850 ULONGEST fcs;
1851 int cond;
1852
1853 if (fcsr == -1)
1854 /* No way to handle; it'll most likely trap anyway. */
1855 return pc;
1856
7113a196 1857 fcs = regcache_raw_get_unsigned (regcache, fcsr);
4cc0665f
MR
1858 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1859
1860 if (((cond >> cnum) & mask) != mask * !tf)
1861 pc += micromips_relative_offset16 (insn);
1862 else
1863 pc += micromips_pc_insn_size (gdbarch, pc);
1864
1865 return pc;
1866}
1867
1868/* Calculate the address of the next microMIPS instruction to execute
1869 after the instruction at the address PC. */
1870
1871static CORE_ADDR
7113a196 1872micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
4cc0665f 1873{
7113a196 1874 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4cc0665f
MR
1875 ULONGEST insn;
1876
1877 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1878 pc += MIPS_INSN16_SIZE;
1879 switch (mips_insn_size (ISA_MICROMIPS, insn))
1880 {
4cc0665f
MR
1881 /* 32-bit instructions. */
1882 case 2 * MIPS_INSN16_SIZE:
1883 insn <<= 16;
1884 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1885 pc += MIPS_INSN16_SIZE;
1886 switch (micromips_op (insn >> 16))
1887 {
1888 case 0x00: /* POOL32A: bits 000000 */
1889 if (b0s6_op (insn) == 0x3c
1890 /* POOL32Axf: bits 000000 ... 111100 */
1891 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1892 /* JALR, JALR.HB: 000000 000x111100 111100 */
1893 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7113a196 1894 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
4cc0665f
MR
1895 break;
1896
1897 case 0x10: /* POOL32I: bits 010000 */
1898 switch (b5s5_op (insn >> 16))
1899 {
1900 case 0x00: /* BLTZ: bits 010000 00000 */
1901 case 0x01: /* BLTZAL: bits 010000 00001 */
1902 case 0x11: /* BLTZALS: bits 010000 10001 */
7113a196
YQ
1903 if (regcache_raw_get_signed (regcache,
1904 b0s5_reg (insn >> 16)) < 0)
4cc0665f
MR
1905 pc += micromips_relative_offset16 (insn);
1906 else
1907 pc += micromips_pc_insn_size (gdbarch, pc);
1908 break;
1909
1910 case 0x02: /* BGEZ: bits 010000 00010 */
1911 case 0x03: /* BGEZAL: bits 010000 00011 */
1912 case 0x13: /* BGEZALS: bits 010000 10011 */
7113a196
YQ
1913 if (regcache_raw_get_signed (regcache,
1914 b0s5_reg (insn >> 16)) >= 0)
4cc0665f
MR
1915 pc += micromips_relative_offset16 (insn);
1916 else
1917 pc += micromips_pc_insn_size (gdbarch, pc);
1918 break;
1919
1920 case 0x04: /* BLEZ: bits 010000 00100 */
7113a196
YQ
1921 if (regcache_raw_get_signed (regcache,
1922 b0s5_reg (insn >> 16)) <= 0)
4cc0665f
MR
1923 pc += micromips_relative_offset16 (insn);
1924 else
1925 pc += micromips_pc_insn_size (gdbarch, pc);
1926 break;
1927
1928 case 0x05: /* BNEZC: bits 010000 00101 */
7113a196
YQ
1929 if (regcache_raw_get_signed (regcache,
1930 b0s5_reg (insn >> 16)) != 0)
4cc0665f
MR
1931 pc += micromips_relative_offset16 (insn);
1932 break;
1933
1934 case 0x06: /* BGTZ: bits 010000 00110 */
7113a196
YQ
1935 if (regcache_raw_get_signed (regcache,
1936 b0s5_reg (insn >> 16)) > 0)
4cc0665f
MR
1937 pc += micromips_relative_offset16 (insn);
1938 else
1939 pc += micromips_pc_insn_size (gdbarch, pc);
1940 break;
1941
1942 case 0x07: /* BEQZC: bits 010000 00111 */
7113a196
YQ
1943 if (regcache_raw_get_signed (regcache,
1944 b0s5_reg (insn >> 16)) == 0)
4cc0665f
MR
1945 pc += micromips_relative_offset16 (insn);
1946 break;
1947
1948 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1949 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1950 if (((insn >> 16) & 0x3) == 0x0)
1951 /* BC2F, BC2T: don't know how to handle these. */
1952 break;
1953 break;
1954
1955 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1956 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1957 {
1958 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1959 int dspctl = mips_regnum (gdbarch)->dspctl;
1960
1961 if (dspctl == -1)
1962 /* No way to handle; it'll most likely trap anyway. */
1963 break;
1964
7113a196
YQ
1965 if ((regcache_raw_get_unsigned (regcache,
1966 dspctl) & 0x7f) >= pos)
4cc0665f
MR
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 }
1971 break;
1972
1973 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1974 /* BC1ANY2F: bits 010000 11100 xxx01 */
1975 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1976 /* BC1ANY2T: bits 010000 11101 xxx01 */
1977 if (((insn >> 16) & 0x2) == 0x0)
7113a196 1978 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
4cc0665f
MR
1979 ((insn >> 16) & 0x1) + 1);
1980 break;
1981
1982 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1983 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1984 if (((insn >> 16) & 0x3) == 0x1)
7113a196 1985 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
4cc0665f
MR
1986 break;
1987 }
1988 break;
1989
1990 case 0x1d: /* JALS: bits 011101 */
1991 case 0x35: /* J: bits 110101 */
1992 case 0x3d: /* JAL: bits 111101 */
1993 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1994 break;
1995
1996 case 0x25: /* BEQ: bits 100101 */
7113a196
YQ
1997 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
1998 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
1999 pc += micromips_relative_offset16 (insn);
2000 else
2001 pc += micromips_pc_insn_size (gdbarch, pc);
2002 break;
2003
2004 case 0x2d: /* BNE: bits 101101 */
7113a196
YQ
2005 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2006 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2007 pc += micromips_relative_offset16 (insn);
2008 else
2009 pc += micromips_pc_insn_size (gdbarch, pc);
2010 break;
2011
2012 case 0x3c: /* JALX: bits 111100 */
2013 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2014 break;
2015 }
2016 break;
2017
2018 /* 16-bit instructions. */
2019 case MIPS_INSN16_SIZE:
2020 switch (micromips_op (insn))
2021 {
2022 case 0x11: /* POOL16C: bits 010001 */
2023 if ((b5s5_op (insn) & 0x1c) == 0xc)
2024 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
7113a196 2025 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
4cc0665f
MR
2026 else if (b5s5_op (insn) == 0x18)
2027 /* JRADDIUSP: bits 010001 11000 */
7113a196 2028 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
4cc0665f
MR
2029 break;
2030
2031 case 0x23: /* BEQZ16: bits 100011 */
2032 {
2033 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2034
7113a196 2035 if (regcache_raw_get_signed (regcache, rs) == 0)
4cc0665f
MR
2036 pc += micromips_relative_offset7 (insn);
2037 else
2038 pc += micromips_pc_insn_size (gdbarch, pc);
2039 }
2040 break;
2041
2042 case 0x2b: /* BNEZ16: bits 101011 */
2043 {
2044 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2045
7113a196 2046 if (regcache_raw_get_signed (regcache, rs) != 0)
4cc0665f
MR
2047 pc += micromips_relative_offset7 (insn);
2048 else
2049 pc += micromips_pc_insn_size (gdbarch, pc);
2050 }
2051 break;
2052
2053 case 0x33: /* B16: bits 110011 */
2054 pc += micromips_relative_offset10 (insn);
2055 break;
2056 }
2057 break;
2058 }
2059
2060 return pc;
2061}
2062
c906108c 2063/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
2064 mips 16 variant, but fortunately, there fewer instructions. We have
2065 to cope ith extensions for 16 bit instructions and a pair of actual
2066 32 bit instructions. We dont want to set a single step instruction
2067 on the extend instruction either. */
c906108c
SS
2068
2069/* Lots of mips16 instruction formats */
2070/* Predicting jumps requires itype,ritype,i8type
025bb325 2071 and their extensions extItype,extritype,extI8type. */
c906108c
SS
2072enum mips16_inst_fmts
2073{
c5aa993b
JM
2074 itype, /* 0 immediate 5,10 */
2075 ritype, /* 1 5,3,8 */
2076 rrtype, /* 2 5,3,3,5 */
2077 rritype, /* 3 5,3,3,5 */
2078 rrrtype, /* 4 5,3,3,3,2 */
2079 rriatype, /* 5 5,3,3,1,4 */
2080 shifttype, /* 6 5,3,3,3,2 */
2081 i8type, /* 7 5,3,8 */
2082 i8movtype, /* 8 5,3,3,5 */
2083 i8mov32rtype, /* 9 5,3,5,3 */
2084 i64type, /* 10 5,3,8 */
2085 ri64type, /* 11 5,3,3,5 */
2086 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2087 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2088 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2089 extRRItype, /* 15 5,5,5,5,3,3,5 */
2090 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2091 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2092 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2093 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2094 extRi64type, /* 20 5,6,5,5,3,3,5 */
2095 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2096};
12f02c2a 2097/* I am heaping all the fields of the formats into one structure and
025bb325 2098 then, only the fields which are involved in instruction extension. */
c906108c 2099struct upk_mips16
6d82d43b
AC
2100{
2101 CORE_ADDR offset;
025bb325 2102 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2103 unsigned int regy;
2104};
c906108c
SS
2105
2106
12f02c2a 2107/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2108 for the bits which make up the immediate extension. */
c906108c 2109
12f02c2a
AC
2110static CORE_ADDR
2111extended_offset (unsigned int extension)
c906108c 2112{
12f02c2a 2113 CORE_ADDR value;
130854df 2114
4c2051c6 2115 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2116 value = value << 6;
4c2051c6 2117 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2118 value = value << 5;
130854df
MR
2119 value |= extension & 0x1f; /* Extract 4:0. */
2120
c5aa993b 2121 return value;
c906108c
SS
2122}
2123
2124/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2125 instruction. It won't malfunction, but why make excess remote memory
2126 references? If the immediate operands get sign extended or something,
2127 do it after the extension is performed. */
c906108c 2128/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2129 when the offset is to be used in relative addressing. */
c906108c 2130
12f02c2a 2131static unsigned int
e17a4113 2132fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2133{
e17a4113 2134 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2135 gdb_byte buf[8];
a2fb2cee
MR
2136
2137 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
c5aa993b 2138 target_read_memory (pc, buf, 2);
e17a4113 2139 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2140}
2141
2142static void
e17a4113 2143unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2144 unsigned int extension,
2145 unsigned int inst,
6d82d43b 2146 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2147{
12f02c2a
AC
2148 CORE_ADDR offset;
2149 int regx;
2150 int regy;
2151 switch (insn_format)
c906108c 2152 {
c5aa993b 2153 case itype:
c906108c 2154 {
12f02c2a
AC
2155 CORE_ADDR value;
2156 if (extension)
c5aa993b 2157 {
4c2051c6
MR
2158 value = extended_offset ((extension << 16) | inst);
2159 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2160 }
2161 else
c5aa993b 2162 {
12f02c2a 2163 value = inst & 0x7ff;
4c2051c6 2164 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2165 }
12f02c2a
AC
2166 offset = value;
2167 regx = -1;
2168 regy = -1;
c906108c 2169 }
c5aa993b
JM
2170 break;
2171 case ritype:
2172 case i8type:
025bb325 2173 { /* A register identifier and an offset. */
c906108c 2174 /* Most of the fields are the same as I type but the
025bb325 2175 immediate value is of a different length. */
12f02c2a
AC
2176 CORE_ADDR value;
2177 if (extension)
c906108c 2178 {
4c2051c6
MR
2179 value = extended_offset ((extension << 16) | inst);
2180 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2181 }
c5aa993b
JM
2182 else
2183 {
4c2051c6
MR
2184 value = inst & 0xff; /* 8 bits */
2185 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2186 }
12f02c2a 2187 offset = value;
4c2051c6 2188 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2189 regy = -1;
c5aa993b 2190 break;
c906108c 2191 }
c5aa993b 2192 case jalxtype:
c906108c 2193 {
c5aa993b 2194 unsigned long value;
12f02c2a
AC
2195 unsigned int nexthalf;
2196 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2197 value = value << 16;
4cc0665f
MR
2198 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2199 /* Low bit still set. */
c5aa993b 2200 value |= nexthalf;
12f02c2a
AC
2201 offset = value;
2202 regx = -1;
2203 regy = -1;
c5aa993b 2204 break;
c906108c
SS
2205 }
2206 default:
e2e0b3e5 2207 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2208 }
12f02c2a
AC
2209 upk->offset = offset;
2210 upk->regx = regx;
2211 upk->regy = regy;
c906108c
SS
2212}
2213
2214
484933d1
MR
2215/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2216 and having a signed 16-bit OFFSET. */
2217
c5aa993b
JM
2218static CORE_ADDR
2219add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2220{
484933d1 2221 return pc + (offset << 1) + 2;
c906108c
SS
2222}
2223
12f02c2a 2224static CORE_ADDR
7113a196 2225extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
6d82d43b 2226 unsigned int extension, unsigned int insn)
c906108c 2227{
7113a196 2228 struct gdbarch *gdbarch = get_regcache_arch (regcache);
12f02c2a
AC
2229 int op = (insn >> 11);
2230 switch (op)
c906108c 2231 {
6d82d43b 2232 case 2: /* Branch */
12f02c2a 2233 {
12f02c2a 2234 struct upk_mips16 upk;
e17a4113 2235 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
484933d1 2236 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2237 break;
2238 }
025bb325
MS
2239 case 3: /* JAL , JALX - Watch out, these are 32 bit
2240 instructions. */
12f02c2a
AC
2241 {
2242 struct upk_mips16 upk;
e17a4113 2243 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
484933d1 2244 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
12f02c2a 2245 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2246 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2247 else
2248 pc |= 0x01;
2249 break;
2250 }
6d82d43b 2251 case 4: /* beqz */
12f02c2a
AC
2252 {
2253 struct upk_mips16 upk;
2254 int reg;
e17a4113 2255 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2256 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2257 if (reg == 0)
484933d1 2258 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2259 else
2260 pc += 2;
2261 break;
2262 }
6d82d43b 2263 case 5: /* bnez */
12f02c2a
AC
2264 {
2265 struct upk_mips16 upk;
2266 int reg;
e17a4113 2267 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2268 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2269 if (reg != 0)
484933d1 2270 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2271 else
2272 pc += 2;
2273 break;
2274 }
6d82d43b 2275 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2276 {
2277 struct upk_mips16 upk;
2278 int reg;
e17a4113 2279 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2280 /* upk.regx contains the opcode */
7113a196
YQ
2281 /* Test register is 24 */
2282 reg = regcache_raw_get_signed (regcache, 24);
12f02c2a
AC
2283 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2284 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
484933d1 2285 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2286 else
2287 pc += 2;
2288 break;
2289 }
6d82d43b 2290 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2291 {
2292 struct upk_mips16 upk;
2293 /* upk.fmt = rrtype; */
2294 op = insn & 0x1f;
2295 if (op == 0)
c5aa993b 2296 {
12f02c2a
AC
2297 int reg;
2298 upk.regx = (insn >> 8) & 0x07;
2299 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2300 if ((upk.regy & 1) == 0)
4cc0665f 2301 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2302 else
2303 reg = 31; /* Function return instruction. */
7113a196 2304 pc = regcache_raw_get_signed (regcache, reg);
c906108c 2305 }
12f02c2a 2306 else
c5aa993b 2307 pc += 2;
12f02c2a
AC
2308 break;
2309 }
2310 case 30:
2311 /* This is an instruction extension. Fetch the real instruction
2312 (which follows the extension) and decode things based on
025bb325 2313 that. */
12f02c2a
AC
2314 {
2315 pc += 2;
7113a196 2316 pc = extended_mips16_next_pc (regcache, pc, insn,
e17a4113 2317 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2318 break;
2319 }
2320 default:
2321 {
2322 pc += 2;
2323 break;
2324 }
c906108c 2325 }
c5aa993b 2326 return pc;
12f02c2a 2327}
c906108c 2328
5a89d8aa 2329static CORE_ADDR
7113a196 2330mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
12f02c2a 2331{
7113a196 2332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 2333 unsigned int insn = fetch_mips_16 (gdbarch, pc);
7113a196 2334 return extended_mips16_next_pc (regcache, pc, 0, insn);
12f02c2a
AC
2335}
2336
2337/* The mips_next_pc function supports single_step when the remote
7e73cedf 2338 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2339 It works by decoding the current instruction and predicting where a
1aee363c 2340 branch will go. This isn't hard because all the data is available.
4cc0665f 2341 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2342static CORE_ADDR
7113a196 2343mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 2344{
7113a196 2345 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4cc0665f
MR
2346
2347 if (mips_pc_is_mips16 (gdbarch, pc))
7113a196 2348 return mips16_next_pc (regcache, pc);
4cc0665f 2349 else if (mips_pc_is_micromips (gdbarch, pc))
7113a196 2350 return micromips_next_pc (regcache, pc);
c5aa993b 2351 else
7113a196 2352 return mips32_next_pc (regcache, pc);
12f02c2a 2353}
c906108c 2354
ab50adb6
MR
2355/* Return non-zero if the MIPS16 instruction INSN is a compact branch
2356 or jump. */
2357
2358static int
2359mips16_instruction_is_compact_branch (unsigned short insn)
2360{
2361 switch (insn & 0xf800)
2362 {
2363 case 0xe800:
2364 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2365 case 0x6000:
2366 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2367 case 0x2800: /* BNEZ */
2368 case 0x2000: /* BEQZ */
2369 case 0x1000: /* B */
2370 return 1;
2371 default:
2372 return 0;
2373 }
2374}
2375
2376/* Return non-zero if the microMIPS instruction INSN is a compact branch
2377 or jump. */
2378
2379static int
2380micromips_instruction_is_compact_branch (unsigned short insn)
2381{
2382 switch (micromips_op (insn))
2383 {
2384 case 0x11: /* POOL16C: bits 010001 */
2385 return (b5s5_op (insn) == 0x18
2386 /* JRADDIUSP: bits 010001 11000 */
2387 || b5s5_op (insn) == 0xd);
2388 /* JRC: bits 010011 01101 */
2389 case 0x10: /* POOL32I: bits 010000 */
2390 return (b5s5_op (insn) & 0x1d) == 0x5;
2391 /* BEQZC/BNEZC: bits 010000 001x1 */
2392 default:
2393 return 0;
2394 }
2395}
2396
edfae063
AC
2397struct mips_frame_cache
2398{
2399 CORE_ADDR base;
2400 struct trad_frame_saved_reg *saved_regs;
2401};
2402
29639122
JB
2403/* Set a register's saved stack address in temp_saved_regs. If an
2404 address has already been set for this register, do nothing; this
2405 way we will only recognize the first save of a given register in a
2406 function prologue.
eec63939 2407
f57d151a
UW
2408 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2409 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2410 Strictly speaking, only the second range is used as it is only second
2411 range (the ABI instead of ISA registers) that comes into play when finding
2412 saved registers in a frame. */
eec63939
AC
2413
2414static void
74ed0bb4
MD
2415set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2416 int regnum, CORE_ADDR offset)
eec63939 2417{
29639122
JB
2418 if (this_cache != NULL
2419 && this_cache->saved_regs[regnum].addr == -1)
2420 {
74ed0bb4
MD
2421 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2422 = offset;
2423 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
29639122 2425 }
eec63939
AC
2426}
2427
eec63939 2428
29639122
JB
2429/* Fetch the immediate value from a MIPS16 instruction.
2430 If the previous instruction was an EXTEND, use it to extend
2431 the upper bits of the immediate value. This is a helper function
2432 for mips16_scan_prologue. */
eec63939 2433
29639122
JB
2434static int
2435mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2436 unsigned short inst, /* current instruction */
2437 int nbits, /* number of bits in imm field */
2438 int scale, /* scale factor to be applied to imm */
025bb325 2439 int is_signed) /* is the imm field signed? */
eec63939 2440{
29639122 2441 int offset;
eec63939 2442
29639122
JB
2443 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2444 {
2445 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2446 if (offset & 0x8000) /* check for negative extend */
2447 offset = 0 - (0x10000 - (offset & 0xffff));
2448 return offset | (inst & 0x1f);
2449 }
eec63939 2450 else
29639122
JB
2451 {
2452 int max_imm = 1 << nbits;
2453 int mask = max_imm - 1;
2454 int sign_bit = max_imm >> 1;
45c9dd44 2455
29639122
JB
2456 offset = inst & mask;
2457 if (is_signed && (offset & sign_bit))
2458 offset = 0 - (max_imm - offset);
2459 return offset * scale;
2460 }
2461}
eec63939 2462
65596487 2463
29639122
JB
2464/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2465 the associated FRAME_CACHE if not null.
2466 Return the address of the first instruction past the prologue. */
eec63939 2467
29639122 2468static CORE_ADDR
e17a4113
UW
2469mips16_scan_prologue (struct gdbarch *gdbarch,
2470 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2471 struct frame_info *this_frame,
29639122
JB
2472 struct mips_frame_cache *this_cache)
2473{
ab50adb6
MR
2474 int prev_non_prologue_insn = 0;
2475 int this_non_prologue_insn;
2476 int non_prologue_insns = 0;
2477 CORE_ADDR prev_pc;
29639122 2478 CORE_ADDR cur_pc;
025bb325 2479 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2480 CORE_ADDR sp;
2481 long frame_offset = 0; /* Size of stack frame. */
2482 long frame_adjust = 0; /* Offset of FP from SP. */
2483 int frame_reg = MIPS_SP_REGNUM;
025bb325 2484 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2485 unsigned inst = 0; /* current instruction */
2486 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2487 unsigned save_inst = 0; /* the save instruction */
ab50adb6
MR
2488 int prev_delay_slot = 0;
2489 int in_delay_slot;
29639122 2490 int reg, offset;
a343eb3c 2491
29639122 2492 int extend_bytes = 0;
ab50adb6
MR
2493 int prev_extend_bytes = 0;
2494 CORE_ADDR end_prologue_addr;
a343eb3c 2495
29639122 2496 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2497 THIS_FRAME. */
2498 if (this_frame != NULL)
2499 sp = get_frame_register_signed (this_frame,
2500 gdbarch_num_regs (gdbarch)
2501 + MIPS_SP_REGNUM);
29639122
JB
2502 else
2503 sp = 0;
eec63939 2504
29639122
JB
2505 if (limit_pc > start_pc + 200)
2506 limit_pc = start_pc + 200;
ab50adb6 2507 prev_pc = start_pc;
eec63939 2508
ab50adb6
MR
2509 /* Permit at most one non-prologue non-control-transfer instruction
2510 in the middle which may have been reordered by the compiler for
2511 optimisation. */
95ac2dcf 2512 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122 2513 {
ab50adb6
MR
2514 this_non_prologue_insn = 0;
2515 in_delay_slot = 0;
2516
29639122
JB
2517 /* Save the previous instruction. If it's an EXTEND, we'll extract
2518 the immediate offset extension from it in mips16_get_imm. */
2519 prev_inst = inst;
eec63939 2520
025bb325 2521 /* Fetch and decode the instruction. */
4cc0665f
MR
2522 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2523 cur_pc, NULL);
eec63939 2524
29639122
JB
2525 /* Normally we ignore extend instructions. However, if it is
2526 not followed by a valid prologue instruction, then this
2527 instruction is not part of the prologue either. We must
2528 remember in this case to adjust the end_prologue_addr back
2529 over the extend. */
2530 if ((inst & 0xf800) == 0xf000) /* extend */
2531 {
95ac2dcf 2532 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2533 continue;
2534 }
eec63939 2535
29639122
JB
2536 prev_extend_bytes = extend_bytes;
2537 extend_bytes = 0;
eec63939 2538
29639122
JB
2539 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2540 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2541 {
2542 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2543 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2544 frame_offset -= offset;
2545 else
2546 /* Exit loop if a positive stack adjustment is found, which
2547 usually means that the stack cleanup code in the function
2548 epilogue is reached. */
2549 break;
2550 }
2551 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2552 {
2553 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2554 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2556 }
2557 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2558 {
2559 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2560 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2561 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2562 }
2563 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2564 {
2565 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2566 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2567 }
2568 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2569 {
2570 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2571 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2572 }
2573 else if (inst == 0x673d) /* move $s1, $sp */
2574 {
2575 frame_addr = sp;
2576 frame_reg = 17;
2577 }
2578 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2579 {
2580 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2581 frame_addr = sp + offset;
2582 frame_reg = 17;
2583 frame_adjust = offset;
2584 }
2585 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2586 {
2587 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2588 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2589 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2590 }
2591 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2592 {
2593 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2594 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2595 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2596 }
2597 else if ((inst & 0xf81f) == 0xe809
2598 && (inst & 0x700) != 0x700) /* entry */
025bb325 2599 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2600 else if ((inst & 0xff80) == 0x6480) /* save */
2601 {
025bb325 2602 save_inst = inst; /* Save for later processing. */
2207132d
MR
2603 if (prev_extend_bytes) /* extend */
2604 save_inst |= prev_inst << 16;
2605 }
29639122
JB
2606 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2607 {
2608 /* This instruction is part of the prologue, but we don't
2609 need to do anything special to handle it. */
2610 }
ab50adb6
MR
2611 else if (mips16_instruction_has_delay_slot (inst, 0))
2612 /* JAL/JALR/JALX/JR */
2613 {
2614 /* The instruction in the delay slot can be a part
2615 of the prologue, so move forward once more. */
2616 in_delay_slot = 1;
2617 if (mips16_instruction_has_delay_slot (inst, 1))
2618 /* JAL/JALX */
2619 {
2620 prev_extend_bytes = MIPS_INSN16_SIZE;
2621 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2622 }
2623 }
29639122
JB
2624 else
2625 {
ab50adb6 2626 this_non_prologue_insn = 1;
29639122 2627 }
ab50adb6
MR
2628
2629 non_prologue_insns += this_non_prologue_insn;
2630
2631 /* A jump or branch, or enough non-prologue insns seen? If so,
2632 then we must have reached the end of the prologue by now. */
2633 if (prev_delay_slot || non_prologue_insns > 1
2634 || mips16_instruction_is_compact_branch (inst))
2635 break;
2636
2637 prev_non_prologue_insn = this_non_prologue_insn;
2638 prev_delay_slot = in_delay_slot;
2639 prev_pc = cur_pc - prev_extend_bytes;
29639122 2640 }
eec63939 2641
29639122
JB
2642 /* The entry instruction is typically the first instruction in a function,
2643 and it stores registers at offsets relative to the value of the old SP
2644 (before the prologue). But the value of the sp parameter to this
2645 function is the new SP (after the prologue has been executed). So we
2646 can't calculate those offsets until we've seen the entire prologue,
025bb325 2647 and can calculate what the old SP must have been. */
29639122
JB
2648 if (entry_inst != 0)
2649 {
2650 int areg_count = (entry_inst >> 8) & 7;
2651 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2652
29639122
JB
2653 /* The entry instruction always subtracts 32 from the SP. */
2654 frame_offset += 32;
2655
2656 /* Now we can calculate what the SP must have been at the
2657 start of the function prologue. */
2658 sp += frame_offset;
2659
2660 /* Check if a0-a3 were saved in the caller's argument save area. */
2661 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2662 {
74ed0bb4 2663 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2664 offset += mips_abi_regsize (gdbarch);
29639122
JB
2665 }
2666
2667 /* Check if the ra register was pushed on the stack. */
2668 offset = -4;
2669 if (entry_inst & 0x20)
2670 {
74ed0bb4 2671 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2672 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2673 }
2674
2675 /* Check if the s0 and s1 registers were pushed on the stack. */
2676 for (reg = 16; reg < sreg_count + 16; reg++)
2677 {
74ed0bb4 2678 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2679 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2680 }
2681 }
2682
2207132d
MR
2683 /* The SAVE instruction is similar to ENTRY, except that defined by the
2684 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2685 size of the frame is specified as an immediate field of instruction
2686 and an extended variation exists which lets additional registers and
2687 frame space to be specified. The instruction always treats registers
2688 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2689 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2690 {
2691 static int args_table[16] = {
2692 0, 0, 0, 0, 1, 1, 1, 1,
2693 2, 2, 2, 0, 3, 3, 4, -1,
2694 };
2695 static int astatic_table[16] = {
2696 0, 1, 2, 3, 0, 1, 2, 3,
2697 0, 1, 2, 4, 0, 1, 0, -1,
2698 };
2699 int aregs = (save_inst >> 16) & 0xf;
2700 int xsregs = (save_inst >> 24) & 0x7;
2701 int args = args_table[aregs];
2702 int astatic = astatic_table[aregs];
2703 long frame_size;
2704
2705 if (args < 0)
2706 {
2707 warning (_("Invalid number of argument registers encoded in SAVE."));
2708 args = 0;
2709 }
2710 if (astatic < 0)
2711 {
2712 warning (_("Invalid number of static registers encoded in SAVE."));
2713 astatic = 0;
2714 }
2715
2716 /* For standard SAVE the frame size of 0 means 128. */
2717 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2718 if (frame_size == 0 && (save_inst >> 16) == 0)
2719 frame_size = 16;
2720 frame_size *= 8;
2721 frame_offset += frame_size;
2722
2723 /* Now we can calculate what the SP must have been at the
2724 start of the function prologue. */
2725 sp += frame_offset;
2726
2727 /* Check if A0-A3 were saved in the caller's argument save area. */
2728 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2729 {
74ed0bb4 2730 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2731 offset += mips_abi_regsize (gdbarch);
2732 }
2733
2734 offset = -4;
2735
2736 /* Check if the RA register was pushed on the stack. */
2737 if (save_inst & 0x40)
2738 {
74ed0bb4 2739 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2740 offset -= mips_abi_regsize (gdbarch);
2741 }
2742
2743 /* Check if the S8 register was pushed on the stack. */
2744 if (xsregs > 6)
2745 {
74ed0bb4 2746 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2747 offset -= mips_abi_regsize (gdbarch);
2748 xsregs--;
2749 }
2750 /* Check if S2-S7 were pushed on the stack. */
2751 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2752 {
74ed0bb4 2753 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2754 offset -= mips_abi_regsize (gdbarch);
2755 }
2756
2757 /* Check if the S1 register was pushed on the stack. */
2758 if (save_inst & 0x10)
2759 {
74ed0bb4 2760 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2761 offset -= mips_abi_regsize (gdbarch);
2762 }
2763 /* Check if the S0 register was pushed on the stack. */
2764 if (save_inst & 0x20)
2765 {
74ed0bb4 2766 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2767 offset -= mips_abi_regsize (gdbarch);
2768 }
2769
4cc0665f
MR
2770 /* Check if A0-A3 were pushed on the stack. */
2771 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2772 {
2773 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2774 offset -= mips_abi_regsize (gdbarch);
2775 }
2776 }
2777
2778 if (this_cache != NULL)
2779 {
2780 this_cache->base =
2781 (get_frame_register_signed (this_frame,
2782 gdbarch_num_regs (gdbarch) + frame_reg)
2783 + frame_offset - frame_adjust);
2784 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2785 be able to get rid of the assignment below, evetually. But it's
2786 still needed for now. */
2787 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2788 + mips_regnum (gdbarch)->pc]
2789 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2790 }
2791
ab50adb6
MR
2792 /* Set end_prologue_addr to the address of the instruction immediately
2793 after the last one we scanned. Unless the last one looked like a
2794 non-prologue instruction (and we looked ahead), in which case use
2795 its address instead. */
2796 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2797 ? prev_pc : cur_pc - prev_extend_bytes);
4cc0665f
MR
2798
2799 return end_prologue_addr;
2800}
2801
2802/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2803 Procedures that use the 32-bit instruction set are handled by the
2804 mips_insn32 unwinder. */
2805
2806static struct mips_frame_cache *
2807mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2808{
2809 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2810 struct mips_frame_cache *cache;
2811
2812 if ((*this_cache) != NULL)
19ba03f4 2813 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2814 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2815 (*this_cache) = cache;
2816 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2817
2818 /* Analyze the function prologue. */
2819 {
2820 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2821 CORE_ADDR start_addr;
2822
2823 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2824 if (start_addr == 0)
2825 start_addr = heuristic_proc_start (gdbarch, pc);
2826 /* We can't analyze the prologue if we couldn't find the begining
2827 of the function. */
2828 if (start_addr == 0)
2829 return cache;
2830
19ba03f4
SM
2831 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2832 (struct mips_frame_cache *) *this_cache);
4cc0665f
MR
2833 }
2834
2835 /* gdbarch_sp_regnum contains the value and not the address. */
2836 trad_frame_set_value (cache->saved_regs,
2837 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2838 cache->base);
2839
19ba03f4 2840 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2841}
2842
2843static void
2844mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2845 struct frame_id *this_id)
2846{
2847 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2848 this_cache);
2849 /* This marks the outermost frame. */
2850 if (info->base == 0)
2851 return;
2852 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2853}
2854
2855static struct value *
2856mips_insn16_frame_prev_register (struct frame_info *this_frame,
2857 void **this_cache, int regnum)
2858{
2859 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2860 this_cache);
2861 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2862}
2863
2864static int
2865mips_insn16_frame_sniffer (const struct frame_unwind *self,
2866 struct frame_info *this_frame, void **this_cache)
2867{
2868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2869 CORE_ADDR pc = get_frame_pc (this_frame);
2870 if (mips_pc_is_mips16 (gdbarch, pc))
2871 return 1;
2872 return 0;
2873}
2874
2875static const struct frame_unwind mips_insn16_frame_unwind =
2876{
2877 NORMAL_FRAME,
2878 default_frame_unwind_stop_reason,
2879 mips_insn16_frame_this_id,
2880 mips_insn16_frame_prev_register,
2881 NULL,
2882 mips_insn16_frame_sniffer
2883};
2884
2885static CORE_ADDR
2886mips_insn16_frame_base_address (struct frame_info *this_frame,
2887 void **this_cache)
2888{
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return info->base;
2892}
2893
2894static const struct frame_base mips_insn16_frame_base =
2895{
2896 &mips_insn16_frame_unwind,
2897 mips_insn16_frame_base_address,
2898 mips_insn16_frame_base_address,
2899 mips_insn16_frame_base_address
2900};
2901
2902static const struct frame_base *
2903mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2904{
2905 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2906 CORE_ADDR pc = get_frame_pc (this_frame);
2907 if (mips_pc_is_mips16 (gdbarch, pc))
2908 return &mips_insn16_frame_base;
2909 else
2910 return NULL;
2911}
2912
2913/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2914 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2915 interpreted directly, and then multiplied by 4. */
2916
2917static int
2918micromips_decode_imm9 (int imm)
2919{
2920 imm = (imm ^ 0x100) - 0x100;
2921 if (imm > -3 && imm < 2)
2922 imm ^= 0x100;
2923 return imm << 2;
2924}
2925
2926/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2927 the address of the first instruction past the prologue. */
2928
2929static CORE_ADDR
2930micromips_scan_prologue (struct gdbarch *gdbarch,
2931 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2932 struct frame_info *this_frame,
2933 struct mips_frame_cache *this_cache)
2934{
ab50adb6 2935 CORE_ADDR end_prologue_addr;
4cc0665f
MR
2936 int prev_non_prologue_insn = 0;
2937 int frame_reg = MIPS_SP_REGNUM;
2938 int this_non_prologue_insn;
2939 int non_prologue_insns = 0;
2940 long frame_offset = 0; /* Size of stack frame. */
2941 long frame_adjust = 0; /* Offset of FP from SP. */
ab50adb6
MR
2942 int prev_delay_slot = 0;
2943 int in_delay_slot;
4cc0665f
MR
2944 CORE_ADDR prev_pc;
2945 CORE_ADDR cur_pc;
2946 ULONGEST insn; /* current instruction */
2947 CORE_ADDR sp;
2948 long offset;
2949 long sp_adj;
2950 long v1_off = 0; /* The assumption is LUI will replace it. */
2951 int reglist;
2952 int breg;
2953 int dreg;
2954 int sreg;
2955 int treg;
2956 int loc;
2957 int op;
2958 int s;
2959 int i;
2960
2961 /* Can be called when there's no process, and hence when there's no
2962 THIS_FRAME. */
2963 if (this_frame != NULL)
2964 sp = get_frame_register_signed (this_frame,
2965 gdbarch_num_regs (gdbarch)
2966 + MIPS_SP_REGNUM);
2967 else
2968 sp = 0;
2969
2970 if (limit_pc > start_pc + 200)
2971 limit_pc = start_pc + 200;
2972 prev_pc = start_pc;
2973
2974 /* Permit at most one non-prologue non-control-transfer instruction
2975 in the middle which may have been reordered by the compiler for
2976 optimisation. */
2977 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2978 {
2979 this_non_prologue_insn = 0;
ab50adb6 2980 in_delay_slot = 0;
4cc0665f
MR
2981 sp_adj = 0;
2982 loc = 0;
2983 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2984 loc += MIPS_INSN16_SIZE;
2985 switch (mips_insn_size (ISA_MICROMIPS, insn))
2986 {
4cc0665f
MR
2987 /* 32-bit instructions. */
2988 case 2 * MIPS_INSN16_SIZE:
2989 insn <<= 16;
2990 insn |= mips_fetch_instruction (gdbarch,
2991 ISA_MICROMIPS, cur_pc + loc, NULL);
2992 loc += MIPS_INSN16_SIZE;
2993 switch (micromips_op (insn >> 16))
2994 {
2995 /* Record $sp/$fp adjustment. */
2996 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2997 case 0x0: /* POOL32A: bits 000000 */
2998 case 0x16: /* POOL32S: bits 010110 */
2999 op = b0s11_op (insn);
3000 sreg = b0s5_reg (insn >> 16);
3001 treg = b5s5_reg (insn >> 16);
3002 dreg = b11s5_reg (insn);
3003 if (op == 0x1d0
3004 /* SUBU: bits 000000 00111010000 */
3005 /* DSUBU: bits 010110 00111010000 */
3006 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3007 && treg == 3)
3008 /* (D)SUBU $sp, $v1 */
3009 sp_adj = v1_off;
3010 else if (op != 0x150
3011 /* ADDU: bits 000000 00101010000 */
3012 /* DADDU: bits 010110 00101010000 */
3013 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3014 this_non_prologue_insn = 1;
3015 break;
3016
3017 case 0x8: /* POOL32B: bits 001000 */
3018 op = b12s4_op (insn);
3019 breg = b0s5_reg (insn >> 16);
3020 reglist = sreg = b5s5_reg (insn >> 16);
3021 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3022 if ((op == 0x9 || op == 0xc)
3023 /* SWP: bits 001000 1001 */
3024 /* SDP: bits 001000 1100 */
3025 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3026 /* S[DW]P reg,offset($sp) */
3027 {
3028 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3029 set_reg_offset (gdbarch, this_cache,
3030 sreg, sp + offset);
3031 set_reg_offset (gdbarch, this_cache,
3032 sreg + 1, sp + offset + s);
3033 }
3034 else if ((op == 0xd || op == 0xf)
3035 /* SWM: bits 001000 1101 */
3036 /* SDM: bits 001000 1111 */
3037 && breg == MIPS_SP_REGNUM
3038 /* SWM reglist,offset($sp) */
3039 && ((reglist >= 1 && reglist <= 9)
3040 || (reglist >= 16 && reglist <= 25)))
3041 {
325fac50 3042 int sreglist = std::min(reglist & 0xf, 8);
4cc0665f
MR
3043
3044 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3045 for (i = 0; i < sreglist; i++)
3046 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3047 if ((reglist & 0xf) > 8)
3048 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3049 if ((reglist & 0x10) == 0x10)
3050 set_reg_offset (gdbarch, this_cache,
3051 MIPS_RA_REGNUM, sp + s * i++);
3052 }
3053 else
3054 this_non_prologue_insn = 1;
3055 break;
3056
3057 /* Record $sp/$fp adjustment. */
3058 /* Discard (D)ADDIU $gp used for PIC code. */
3059 case 0xc: /* ADDIU: bits 001100 */
3060 case 0x17: /* DADDIU: bits 010111 */
3061 sreg = b0s5_reg (insn >> 16);
3062 dreg = b5s5_reg (insn >> 16);
3063 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3064 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3065 /* (D)ADDIU $sp, imm */
3066 sp_adj = offset;
3067 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3068 /* (D)ADDIU $fp, $sp, imm */
3069 {
4cc0665f
MR
3070 frame_adjust = offset;
3071 frame_reg = 30;
3072 }
3073 else if (sreg != 28 || dreg != 28)
3074 /* (D)ADDIU $gp, imm */
3075 this_non_prologue_insn = 1;
3076 break;
3077
3078 /* LUI $v1 is used for larger $sp adjustments. */
3356937a 3079 /* Discard LUI $gp used for PIC code. */
4cc0665f
MR
3080 case 0x10: /* POOL32I: bits 010000 */
3081 if (b5s5_op (insn >> 16) == 0xd
3082 /* LUI: bits 010000 001101 */
3083 && b0s5_reg (insn >> 16) == 3)
3084 /* LUI $v1, imm */
3085 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3086 else if (b5s5_op (insn >> 16) != 0xd
3087 /* LUI: bits 010000 001101 */
3088 || b0s5_reg (insn >> 16) != 28)
3089 /* LUI $gp, imm */
3090 this_non_prologue_insn = 1;
3091 break;
3092
3093 /* ORI $v1 is used for larger $sp adjustments. */
3094 case 0x14: /* ORI: bits 010100 */
3095 sreg = b0s5_reg (insn >> 16);
3096 dreg = b5s5_reg (insn >> 16);
3097 if (sreg == 3 && dreg == 3)
3098 /* ORI $v1, imm */
3099 v1_off |= b0s16_imm (insn);
3100 else
3101 this_non_prologue_insn = 1;
3102 break;
3103
3104 case 0x26: /* SWC1: bits 100110 */
3105 case 0x2e: /* SDC1: bits 101110 */
3106 breg = b0s5_reg (insn >> 16);
3107 if (breg != MIPS_SP_REGNUM)
3108 /* S[DW]C1 reg,offset($sp) */
3109 this_non_prologue_insn = 1;
3110 break;
3111
3112 case 0x36: /* SD: bits 110110 */
3113 case 0x3e: /* SW: bits 111110 */
3114 breg = b0s5_reg (insn >> 16);
3115 sreg = b5s5_reg (insn >> 16);
3116 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3117 if (breg == MIPS_SP_REGNUM)
3118 /* S[DW] reg,offset($sp) */
3119 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3120 else
3121 this_non_prologue_insn = 1;
3122 break;
3123
3124 default:
ab50adb6
MR
3125 /* The instruction in the delay slot can be a part
3126 of the prologue, so move forward once more. */
3127 if (micromips_instruction_has_delay_slot (insn, 0))
3128 in_delay_slot = 1;
3129 else
3130 this_non_prologue_insn = 1;
4cc0665f
MR
3131 break;
3132 }
ab50adb6 3133 insn >>= 16;
4cc0665f
MR
3134 break;
3135
3136 /* 16-bit instructions. */
3137 case MIPS_INSN16_SIZE:
3138 switch (micromips_op (insn))
3139 {
3140 case 0x3: /* MOVE: bits 000011 */
3141 sreg = b0s5_reg (insn);
3142 dreg = b5s5_reg (insn);
3143 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3144 /* MOVE $fp, $sp */
78cc6c2d 3145 frame_reg = 30;
4cc0665f
MR
3146 else if ((sreg & 0x1c) != 0x4)
3147 /* MOVE reg, $a0-$a3 */
3148 this_non_prologue_insn = 1;
3149 break;
3150
3151 case 0x11: /* POOL16C: bits 010001 */
3152 if (b6s4_op (insn) == 0x5)
3153 /* SWM: bits 010001 0101 */
3154 {
3155 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3156 reglist = b4s2_regl (insn);
3157 for (i = 0; i <= reglist; i++)
3158 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3159 set_reg_offset (gdbarch, this_cache,
3160 MIPS_RA_REGNUM, sp + 4 * i++);
3161 }
3162 else
3163 this_non_prologue_insn = 1;
3164 break;
3165
3166 case 0x13: /* POOL16D: bits 010011 */
3167 if ((insn & 0x1) == 0x1)
3168 /* ADDIUSP: bits 010011 1 */
3169 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3170 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3171 /* ADDIUS5: bits 010011 0 */
3172 /* ADDIUS5 $sp, imm */
3173 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3174 else
3175 this_non_prologue_insn = 1;
3176 break;
3177
3178 case 0x32: /* SWSP: bits 110010 */
3179 offset = b0s5_imm (insn) << 2;
3180 sreg = b5s5_reg (insn);
3181 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3182 break;
3183
3184 default:
ab50adb6
MR
3185 /* The instruction in the delay slot can be a part
3186 of the prologue, so move forward once more. */
3187 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3188 in_delay_slot = 1;
3189 else
3190 this_non_prologue_insn = 1;
4cc0665f
MR
3191 break;
3192 }
3193 break;
3194 }
3195 if (sp_adj < 0)
3196 frame_offset -= sp_adj;
3197
3198 non_prologue_insns += this_non_prologue_insn;
ab50adb6
MR
3199
3200 /* A jump or branch, enough non-prologue insns seen or positive
3201 stack adjustment? If so, then we must have reached the end
3202 of the prologue by now. */
3203 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3204 || micromips_instruction_is_compact_branch (insn))
3205 break;
3206
4cc0665f 3207 prev_non_prologue_insn = this_non_prologue_insn;
ab50adb6 3208 prev_delay_slot = in_delay_slot;
4cc0665f 3209 prev_pc = cur_pc;
2207132d
MR
3210 }
3211
29639122
JB
3212 if (this_cache != NULL)
3213 {
3214 this_cache->base =
4cc0665f 3215 (get_frame_register_signed (this_frame,
b8a22b94 3216 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3217 + frame_offset - frame_adjust);
29639122 3218 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3219 be able to get rid of the assignment below, evetually. But it's
3220 still needed for now. */
72a155b4
UW
3221 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3222 + mips_regnum (gdbarch)->pc]
4cc0665f 3223 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3224 }
3225
ab50adb6
MR
3226 /* Set end_prologue_addr to the address of the instruction immediately
3227 after the last one we scanned. Unless the last one looked like a
3228 non-prologue instruction (and we looked ahead), in which case use
3229 its address instead. */
3230 end_prologue_addr
3231 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3232
3233 return end_prologue_addr;
eec63939
AC
3234}
3235
4cc0665f 3236/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3237 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3238 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3239
3240static struct mips_frame_cache *
4cc0665f 3241mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3242{
e17a4113 3243 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3244 struct mips_frame_cache *cache;
eec63939
AC
3245
3246 if ((*this_cache) != NULL)
19ba03f4 3247 return (struct mips_frame_cache *) (*this_cache);
4cc0665f 3248
29639122
JB
3249 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3250 (*this_cache) = cache;
b8a22b94 3251 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3252
29639122
JB
3253 /* Analyze the function prologue. */
3254 {
b8a22b94 3255 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3256 CORE_ADDR start_addr;
eec63939 3257
29639122
JB
3258 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3259 if (start_addr == 0)
4cc0665f 3260 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3261 /* We can't analyze the prologue if we couldn't find the begining
3262 of the function. */
3263 if (start_addr == 0)
3264 return cache;
eec63939 3265
19ba03f4
SM
3266 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3267 (struct mips_frame_cache *) *this_cache);
29639122 3268 }
4cc0665f 3269
3e8c568d 3270 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3271 trad_frame_set_value (cache->saved_regs,
e17a4113 3272 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3273 cache->base);
eec63939 3274
19ba03f4 3275 return (struct mips_frame_cache *) (*this_cache);
eec63939
AC
3276}
3277
3278static void
4cc0665f
MR
3279mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3280 struct frame_id *this_id)
eec63939 3281{
4cc0665f
MR
3282 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3283 this_cache);
21327321
DJ
3284 /* This marks the outermost frame. */
3285 if (info->base == 0)
3286 return;
b8a22b94 3287 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3288}
3289
b8a22b94 3290static struct value *
4cc0665f
MR
3291mips_micro_frame_prev_register (struct frame_info *this_frame,
3292 void **this_cache, int regnum)
eec63939 3293{
4cc0665f
MR
3294 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3295 this_cache);
b8a22b94
DJ
3296 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3297}
3298
3299static int
4cc0665f
MR
3300mips_micro_frame_sniffer (const struct frame_unwind *self,
3301 struct frame_info *this_frame, void **this_cache)
b8a22b94 3302{
4cc0665f 3303 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3304 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3305
3306 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3307 return 1;
3308 return 0;
eec63939
AC
3309}
3310
4cc0665f 3311static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3312{
3313 NORMAL_FRAME,
8fbca658 3314 default_frame_unwind_stop_reason,
4cc0665f
MR
3315 mips_micro_frame_this_id,
3316 mips_micro_frame_prev_register,
b8a22b94 3317 NULL,
4cc0665f 3318 mips_micro_frame_sniffer
eec63939
AC
3319};
3320
eec63939 3321static CORE_ADDR
4cc0665f
MR
3322mips_micro_frame_base_address (struct frame_info *this_frame,
3323 void **this_cache)
eec63939 3324{
4cc0665f
MR
3325 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3326 this_cache);
29639122 3327 return info->base;
eec63939
AC
3328}
3329
4cc0665f 3330static const struct frame_base mips_micro_frame_base =
eec63939 3331{
4cc0665f
MR
3332 &mips_micro_frame_unwind,
3333 mips_micro_frame_base_address,
3334 mips_micro_frame_base_address,
3335 mips_micro_frame_base_address
eec63939
AC
3336};
3337
3338static const struct frame_base *
4cc0665f 3339mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3340{
4cc0665f 3341 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3342 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3343
3344 if (mips_pc_is_micromips (gdbarch, pc))
3345 return &mips_micro_frame_base;
eec63939
AC
3346 else
3347 return NULL;
edfae063
AC
3348}
3349
29639122
JB
3350/* Mark all the registers as unset in the saved_regs array
3351 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3352
74ed0bb4
MD
3353static void
3354reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3355{
29639122
JB
3356 if (this_cache == NULL || this_cache->saved_regs == NULL)
3357 return;
3358
3359 {
74ed0bb4 3360 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3361 int i;
64159455 3362
29639122
JB
3363 for (i = 0; i < num_regs; i++)
3364 {
3365 this_cache->saved_regs[i].addr = -1;
3366 }
3367 }
c906108c
SS
3368}
3369
025bb325 3370/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3371 the associated FRAME_CACHE if not null.
3372 Return the address of the first instruction past the prologue. */
c906108c 3373
875e1767 3374static CORE_ADDR
e17a4113
UW
3375mips32_scan_prologue (struct gdbarch *gdbarch,
3376 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3377 struct frame_info *this_frame,
29639122 3378 struct mips_frame_cache *this_cache)
c906108c 3379{
ab50adb6
MR
3380 int prev_non_prologue_insn;
3381 int this_non_prologue_insn;
3382 int non_prologue_insns;
025bb325
MS
3383 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3384 frame-pointer. */
ab50adb6
MR
3385 int prev_delay_slot;
3386 CORE_ADDR prev_pc;
3387 CORE_ADDR cur_pc;
29639122
JB
3388 CORE_ADDR sp;
3389 long frame_offset;
3390 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3391
ab50adb6 3392 CORE_ADDR end_prologue_addr;
29639122
JB
3393 int seen_sp_adjust = 0;
3394 int load_immediate_bytes = 0;
ab50adb6 3395 int in_delay_slot;
7d1e6fb8 3396 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3397
29639122 3398 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3399 THIS_FRAME. */
3400 if (this_frame != NULL)
3401 sp = get_frame_register_signed (this_frame,
3402 gdbarch_num_regs (gdbarch)
3403 + MIPS_SP_REGNUM);
8fa9cfa1 3404 else
29639122 3405 sp = 0;
9022177c 3406
29639122
JB
3407 if (limit_pc > start_pc + 200)
3408 limit_pc = start_pc + 200;
9022177c 3409
29639122 3410restart:
ab50adb6
MR
3411 prev_non_prologue_insn = 0;
3412 non_prologue_insns = 0;
3413 prev_delay_slot = 0;
3414 prev_pc = start_pc;
9022177c 3415
ab50adb6
MR
3416 /* Permit at most one non-prologue non-control-transfer instruction
3417 in the middle which may have been reordered by the compiler for
3418 optimisation. */
29639122 3419 frame_offset = 0;
95ac2dcf 3420 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3421 {
eaa6a9a4
MR
3422 unsigned long inst, high_word;
3423 long offset;
29639122 3424 int reg;
9022177c 3425
ab50adb6
MR
3426 this_non_prologue_insn = 0;
3427 in_delay_slot = 0;
3428
025bb325 3429 /* Fetch the instruction. */
4cc0665f
MR
3430 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3431 cur_pc, NULL);
9022177c 3432
29639122
JB
3433 /* Save some code by pre-extracting some useful fields. */
3434 high_word = (inst >> 16) & 0xffff;
eaa6a9a4 3435 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
29639122 3436 reg = high_word & 0x1f;
fe29b929 3437
025bb325 3438 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3439 || high_word == 0x23bd /* addi $sp,$sp,-i */
3440 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3441 {
eaa6a9a4
MR
3442 if (offset < 0) /* Negative stack adjustment? */
3443 frame_offset -= offset;
29639122
JB
3444 else
3445 /* Exit loop if a positive stack adjustment is found, which
3446 usually means that the stack cleanup code in the function
3447 epilogue is reached. */
3448 break;
3449 seen_sp_adjust = 1;
3450 }
7d1e6fb8
KB
3451 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3452 && !regsize_is_64_bits)
29639122 3453 {
eaa6a9a4 3454 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122 3455 }
7d1e6fb8
KB
3456 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3457 && regsize_is_64_bits)
29639122
JB
3458 {
3459 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
eaa6a9a4 3460 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
3461 }
3462 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3463 {
3464 /* Old gcc frame, r30 is virtual frame pointer. */
eaa6a9a4
MR
3465 if (offset != frame_offset)
3466 frame_addr = sp + offset;
b8a22b94 3467 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3468 {
3469 unsigned alloca_adjust;
a4b8ebc8 3470
29639122 3471 frame_reg = 30;
b8a22b94
DJ
3472 frame_addr = get_frame_register_signed
3473 (this_frame, gdbarch_num_regs (gdbarch) + 30);
ca9c94ef 3474 frame_offset = 0;
d2ca4222 3475
eaa6a9a4 3476 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
29639122
JB
3477 if (alloca_adjust > 0)
3478 {
025bb325 3479 /* FP > SP + frame_size. This may be because of
29639122
JB
3480 an alloca or somethings similar. Fix sp to
3481 "pre-alloca" value, and try again. */
3482 sp += alloca_adjust;
3483 /* Need to reset the status of all registers. Otherwise,
3484 we will hit a guard that prevents the new address
3485 for each register to be recomputed during the second
3486 pass. */
74ed0bb4 3487 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3488 goto restart;
3489 }
3490 }
3491 }
3492 /* move $30,$sp. With different versions of gas this will be either
3493 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3494 Accept any one of these. */
3495 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3496 {
3497 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3498 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3499 {
3500 unsigned alloca_adjust;
c906108c 3501
29639122 3502 frame_reg = 30;
b8a22b94
DJ
3503 frame_addr = get_frame_register_signed
3504 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3505
29639122
JB
3506 alloca_adjust = (unsigned) (frame_addr - sp);
3507 if (alloca_adjust > 0)
3508 {
025bb325 3509 /* FP > SP + frame_size. This may be because of
29639122
JB
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp = frame_addr;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
74ed0bb4 3517 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3518 goto restart;
3519 }
3520 }
3521 }
7d1e6fb8
KB
3522 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3523 && !regsize_is_64_bits)
29639122 3524 {
eaa6a9a4 3525 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
3526 }
3527 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3528 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3529 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3530 || high_word == 0x3c1c /* lui $gp,n */
3531 || high_word == 0x279c /* addiu $gp,$gp,n */
3532 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3533 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3534 )
19080931
MR
3535 {
3536 /* These instructions are part of the prologue, but we don't
3537 need to do anything special to handle them. */
3538 }
29639122
JB
3539 /* The instructions below load $at or $t0 with an immediate
3540 value in preparation for a stack adjustment via
025bb325 3541 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3542 initialize a local variable, so we accept them only before
3543 a stack adjustment instruction was seen. */
3544 else if (!seen_sp_adjust
ab50adb6 3545 && !prev_delay_slot
19080931
MR
3546 && (high_word == 0x3c01 /* lui $at,n */
3547 || high_word == 0x3c08 /* lui $t0,n */
3548 || high_word == 0x3421 /* ori $at,$at,n */
3549 || high_word == 0x3508 /* ori $t0,$t0,n */
3550 || high_word == 0x3401 /* ori $at,$zero,n */
3551 || high_word == 0x3408 /* ori $t0,$zero,n */
3552 ))
3553 {
ab50adb6 3554 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
19080931 3555 }
ab50adb6
MR
3556 /* Check for branches and jumps. The instruction in the delay
3557 slot can be a part of the prologue, so move forward once more. */
3558 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3559 {
3560 in_delay_slot = 1;
3561 }
3562 /* This instruction is not an instruction typically found
3563 in a prologue, so we must have reached the end of the
3564 prologue. */
29639122 3565 else
19080931 3566 {
ab50adb6 3567 this_non_prologue_insn = 1;
19080931 3568 }
db5f024e 3569
ab50adb6
MR
3570 non_prologue_insns += this_non_prologue_insn;
3571
3572 /* A jump or branch, or enough non-prologue insns seen? If so,
3573 then we must have reached the end of the prologue by now. */
3574 if (prev_delay_slot || non_prologue_insns > 1)
db5f024e 3575 break;
ab50adb6
MR
3576
3577 prev_non_prologue_insn = this_non_prologue_insn;
3578 prev_delay_slot = in_delay_slot;
3579 prev_pc = cur_pc;
a4b8ebc8 3580 }
c906108c 3581
29639122
JB
3582 if (this_cache != NULL)
3583 {
3584 this_cache->base =
b8a22b94
DJ
3585 (get_frame_register_signed (this_frame,
3586 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3587 + frame_offset);
3588 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3589 this assignment below, eventually. But it's still needed
3590 for now. */
72a155b4
UW
3591 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3592 + mips_regnum (gdbarch)->pc]
3593 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3594 + MIPS_RA_REGNUM];
29639122 3595 }
c906108c 3596
ab50adb6
MR
3597 /* Set end_prologue_addr to the address of the instruction immediately
3598 after the last one we scanned. Unless the last one looked like a
3599 non-prologue instruction (and we looked ahead), in which case use
3600 its address instead. */
3601 end_prologue_addr
3602 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3603
3604 /* In a frameless function, we might have incorrectly
025bb325 3605 skipped some load immediate instructions. Undo the skipping
29639122
JB
3606 if the load immediate was not followed by a stack adjustment. */
3607 if (load_immediate_bytes && !seen_sp_adjust)
3608 end_prologue_addr -= load_immediate_bytes;
c906108c 3609
29639122 3610 return end_prologue_addr;
c906108c
SS
3611}
3612
29639122
JB
3613/* Heuristic unwinder for procedures using 32-bit instructions (covers
3614 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3615 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3616 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3617
29639122 3618static struct mips_frame_cache *
b8a22b94 3619mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3620{
e17a4113 3621 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3622 struct mips_frame_cache *cache;
c906108c 3623
29639122 3624 if ((*this_cache) != NULL)
19ba03f4 3625 return (struct mips_frame_cache *) (*this_cache);
c5aa993b 3626
29639122
JB
3627 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3628 (*this_cache) = cache;
b8a22b94 3629 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3630
29639122
JB
3631 /* Analyze the function prologue. */
3632 {
b8a22b94 3633 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3634 CORE_ADDR start_addr;
c906108c 3635
29639122
JB
3636 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3637 if (start_addr == 0)
e17a4113 3638 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3639 /* We can't analyze the prologue if we couldn't find the begining
3640 of the function. */
3641 if (start_addr == 0)
3642 return cache;
c5aa993b 3643
19ba03f4
SM
3644 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3645 (struct mips_frame_cache *) *this_cache);
29639122
JB
3646 }
3647
3e8c568d 3648 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3649 trad_frame_set_value (cache->saved_regs,
e17a4113 3650 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3651 cache->base);
c5aa993b 3652
19ba03f4 3653 return (struct mips_frame_cache *) (*this_cache);
c906108c
SS
3654}
3655
29639122 3656static void
b8a22b94 3657mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3658 struct frame_id *this_id)
c906108c 3659{
b8a22b94 3660 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3661 this_cache);
21327321
DJ
3662 /* This marks the outermost frame. */
3663 if (info->base == 0)
3664 return;
b8a22b94 3665 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3666}
c906108c 3667
b8a22b94
DJ
3668static struct value *
3669mips_insn32_frame_prev_register (struct frame_info *this_frame,
3670 void **this_cache, int regnum)
29639122 3671{
b8a22b94 3672 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3673 this_cache);
b8a22b94
DJ
3674 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3675}
3676
3677static int
3678mips_insn32_frame_sniffer (const struct frame_unwind *self,
3679 struct frame_info *this_frame, void **this_cache)
3680{
3681 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3682 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3683 return 1;
3684 return 0;
c906108c
SS
3685}
3686
29639122
JB
3687static const struct frame_unwind mips_insn32_frame_unwind =
3688{
3689 NORMAL_FRAME,
8fbca658 3690 default_frame_unwind_stop_reason,
29639122 3691 mips_insn32_frame_this_id,
b8a22b94
DJ
3692 mips_insn32_frame_prev_register,
3693 NULL,
3694 mips_insn32_frame_sniffer
29639122 3695};
c906108c 3696
1c645fec 3697static CORE_ADDR
b8a22b94 3698mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3699 void **this_cache)
c906108c 3700{
b8a22b94 3701 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3702 this_cache);
3703 return info->base;
3704}
c906108c 3705
29639122
JB
3706static const struct frame_base mips_insn32_frame_base =
3707{
3708 &mips_insn32_frame_unwind,
3709 mips_insn32_frame_base_address,
3710 mips_insn32_frame_base_address,
3711 mips_insn32_frame_base_address
3712};
1c645fec 3713
29639122 3714static const struct frame_base *
b8a22b94 3715mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3716{
b8a22b94 3717 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3718 if (mips_pc_is_mips (pc))
29639122 3719 return &mips_insn32_frame_base;
a65bbe44 3720 else
29639122
JB
3721 return NULL;
3722}
a65bbe44 3723
29639122 3724static struct trad_frame_cache *
b8a22b94 3725mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3726{
3727 CORE_ADDR pc;
3728 CORE_ADDR start_addr;
3729 CORE_ADDR stack_addr;
3730 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3731 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3732 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3733
29639122 3734 if ((*this_cache) != NULL)
19ba03f4 3735 return (struct trad_frame_cache *) (*this_cache);
b8a22b94 3736 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3737 (*this_cache) = this_trad_cache;
1c645fec 3738
29639122 3739 /* The return address is in the link register. */
3e8c568d 3740 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3741 gdbarch_pc_regnum (gdbarch),
b8a22b94 3742 num_regs + MIPS_RA_REGNUM);
1c645fec 3743
29639122
JB
3744 /* Frame ID, since it's a frameless / stackless function, no stack
3745 space is allocated and SP on entry is the current SP. */
b8a22b94 3746 pc = get_frame_pc (this_frame);
29639122 3747 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3748 stack_addr = get_frame_register_signed (this_frame,
3749 num_regs + MIPS_SP_REGNUM);
aa6c981f 3750 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3751
29639122
JB
3752 /* Assume that the frame's base is the same as the
3753 stack-pointer. */
3754 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3755
29639122
JB
3756 return this_trad_cache;
3757}
c906108c 3758
29639122 3759static void
b8a22b94 3760mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3761 struct frame_id *this_id)
3762{
3763 struct trad_frame_cache *this_trad_cache
b8a22b94 3764 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3765 trad_frame_get_id (this_trad_cache, this_id);
3766}
c906108c 3767
b8a22b94
DJ
3768static struct value *
3769mips_stub_frame_prev_register (struct frame_info *this_frame,
3770 void **this_cache, int regnum)
29639122
JB
3771{
3772 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3773 = mips_stub_frame_cache (this_frame, this_cache);
3774 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3775}
c906108c 3776
b8a22b94
DJ
3777static int
3778mips_stub_frame_sniffer (const struct frame_unwind *self,
3779 struct frame_info *this_frame, void **this_cache)
29639122 3780{
aa6c981f 3781 gdb_byte dummy[4];
979b38e0 3782 struct obj_section *s;
b8a22b94 3783 CORE_ADDR pc = get_frame_address_in_block (this_frame);
7cbd4a93 3784 struct bound_minimal_symbol msym;
979b38e0 3785
aa6c981f 3786 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3787 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3788 return 1;
aa6c981f 3789
3e5d3a5a 3790 if (in_plt_section (pc) || in_mips_stubs_section (pc))
b8a22b94 3791 return 1;
979b38e0 3792
db5f024e
DJ
3793 /* Calling a PIC function from a non-PIC function passes through a
3794 stub. The stub for foo is named ".pic.foo". */
3795 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 3796 if (msym.minsym != NULL
efd66ac6 3797 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
61012eef 3798 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
3799 return 1;
3800
b8a22b94 3801 return 0;
29639122 3802}
c906108c 3803
b8a22b94
DJ
3804static const struct frame_unwind mips_stub_frame_unwind =
3805{
3806 NORMAL_FRAME,
8fbca658 3807 default_frame_unwind_stop_reason,
b8a22b94
DJ
3808 mips_stub_frame_this_id,
3809 mips_stub_frame_prev_register,
3810 NULL,
3811 mips_stub_frame_sniffer
3812};
3813
29639122 3814static CORE_ADDR
b8a22b94 3815mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3816 void **this_cache)
3817{
3818 struct trad_frame_cache *this_trad_cache
b8a22b94 3819 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3820 return trad_frame_get_this_base (this_trad_cache);
3821}
0fce0821 3822
29639122
JB
3823static const struct frame_base mips_stub_frame_base =
3824{
3825 &mips_stub_frame_unwind,
3826 mips_stub_frame_base_address,
3827 mips_stub_frame_base_address,
3828 mips_stub_frame_base_address
3829};
3830
3831static const struct frame_base *
b8a22b94 3832mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3833{
b8a22b94 3834 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3835 return &mips_stub_frame_base;
3836 else
3837 return NULL;
3838}
3839
29639122 3840/* mips_addr_bits_remove - remove useless address bits */
65596487 3841
29639122 3842static CORE_ADDR
24568a2c 3843mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3844{
24568a2c 3845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3846
29639122
JB
3847 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3848 /* This hack is a work-around for existing boards using PMON, the
3849 simulator, and any other 64-bit targets that doesn't have true
3850 64-bit addressing. On these targets, the upper 32 bits of
3851 addresses are ignored by the hardware. Thus, the PC or SP are
3852 likely to have been sign extended to all 1s by instruction
3853 sequences that load 32-bit addresses. For example, a typical
3854 piece of code that loads an address is this:
65596487 3855
29639122
JB
3856 lui $r2, <upper 16 bits>
3857 ori $r2, <lower 16 bits>
65596487 3858
29639122
JB
3859 But the lui sign-extends the value such that the upper 32 bits
3860 may be all 1s. The workaround is simply to mask off these
3861 bits. In the future, gcc may be changed to support true 64-bit
3862 addressing, and this masking will have to be disabled. */
3863 return addr &= 0xffffffffUL;
3864 else
3865 return addr;
65596487
JB
3866}
3867
3d5f6d12
DJ
3868
3869/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3870 instruction and ending with a SC/SCD instruction. If such a sequence
3871 is found, attempt to step through it. A breakpoint is placed at the end of
3872 the sequence. */
3873
4cc0665f
MR
3874/* Instructions used during single-stepping of atomic sequences, standard
3875 ISA version. */
3876#define LL_OPCODE 0x30
3877#define LLD_OPCODE 0x34
3878#define SC_OPCODE 0x38
3879#define SCD_OPCODE 0x3c
3880
93f9a11f
YQ
3881static VEC (CORE_ADDR) *
3882mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3d5f6d12
DJ
3883{
3884 CORE_ADDR breaks[2] = {-1, -1};
3885 CORE_ADDR loc = pc;
3886 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3887 ULONGEST insn;
3d5f6d12
DJ
3888 int insn_count;
3889 int index;
3890 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3891 const int atomic_sequence_length = 16; /* Instruction sequence length. */
93f9a11f 3892 VEC (CORE_ADDR) *next_pcs = NULL;
3d5f6d12 3893
4cc0665f 3894 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3895 /* Assume all atomic sequences start with a ll/lld instruction. */
3896 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
93f9a11f 3897 return NULL;
3d5f6d12
DJ
3898
3899 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3900 instructions. */
3901 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3902 {
3903 int is_branch = 0;
3904 loc += MIPS_INSN32_SIZE;
4cc0665f 3905 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3906
3907 /* Assume that there is at most one branch in the atomic
3908 sequence. If a branch is found, put a breakpoint in its
3909 destination address. */
3910 switch (itype_op (insn))
3911 {
3912 case 0: /* SPECIAL */
3913 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
025bb325 3914 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3915 break;
3916 case 1: /* REGIMM */
a385295e
MR
3917 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3918 || ((itype_rt (insn) & 0x1e) == 0
3919 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3920 break;
3921 case 2: /* J */
3922 case 3: /* JAL */
025bb325 3923 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3924 case 4: /* BEQ */
3925 case 5: /* BNE */
3926 case 6: /* BLEZ */
3927 case 7: /* BGTZ */
3928 case 20: /* BEQL */
3929 case 21: /* BNEL */
3930 case 22: /* BLEZL */
3931 case 23: /* BGTTL */
3932 is_branch = 1;
3933 break;
3934 case 17: /* COP1 */
a385295e
MR
3935 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3936 && (itype_rt (insn) & 0x2) == 0);
3937 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3938 break;
3939 /* Fall through. */
3d5f6d12
DJ
3940 case 18: /* COP2 */
3941 case 19: /* COP3 */
3942 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3943 break;
3944 }
3945 if (is_branch)
3946 {
3947 branch_bp = loc + mips32_relative_offset (insn) + 4;
3948 if (last_breakpoint >= 1)
3949 return 0; /* More than one branch found, fallback to the
3950 standard single-step code. */
3951 breaks[1] = branch_bp;
3952 last_breakpoint++;
3953 }
3954
3955 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3956 break;
3957 }
3958
3959 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3960 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
93f9a11f 3961 return NULL;
3d5f6d12
DJ
3962
3963 loc += MIPS_INSN32_SIZE;
3964
3965 /* Insert a breakpoint right after the end of the atomic sequence. */
3966 breaks[0] = loc;
3967
3968 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3969 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3970 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3971 last_breakpoint = 0;
3972
3973 /* Effectively inserts the breakpoints. */
3974 for (index = 0; index <= last_breakpoint; index++)
93f9a11f 3975 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
3d5f6d12 3976
93f9a11f 3977 return next_pcs;
3d5f6d12
DJ
3978}
3979
93f9a11f 3980static VEC (CORE_ADDR) *
4cc0665f 3981micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4cc0665f
MR
3982 CORE_ADDR pc)
3983{
3984 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3985 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3986 CORE_ADDR breaks[2] = {-1, -1};
4b844a38
AT
3987 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3988 destination. */
4cc0665f
MR
3989 CORE_ADDR loc = pc;
3990 int sc_found = 0;
3991 ULONGEST insn;
3992 int insn_count;
3993 int index;
93f9a11f 3994 VEC (CORE_ADDR) *next_pcs = NULL;
4cc0665f
MR
3995
3996 /* Assume all atomic sequences start with a ll/lld instruction. */
3997 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3998 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
93f9a11f 3999 return NULL;
4cc0665f
MR
4000 loc += MIPS_INSN16_SIZE;
4001 insn <<= 16;
4002 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4003 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
93f9a11f 4004 return NULL;
4cc0665f
MR
4005 loc += MIPS_INSN16_SIZE;
4006
4007 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4008 that no atomic sequence is longer than "atomic_sequence_length"
4009 instructions. */
4010 for (insn_count = 0;
4011 !sc_found && insn_count < atomic_sequence_length;
4012 ++insn_count)
4013 {
4014 int is_branch = 0;
4015
4016 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4017 loc += MIPS_INSN16_SIZE;
4018
4019 /* Assume that there is at most one conditional branch in the
4020 atomic sequence. If a branch is found, put a breakpoint in
4021 its destination address. */
4022 switch (mips_insn_size (ISA_MICROMIPS, insn))
4023 {
4cc0665f
MR
4024 /* 32-bit instructions. */
4025 case 2 * MIPS_INSN16_SIZE:
4026 switch (micromips_op (insn))
4027 {
4028 case 0x10: /* POOL32I: bits 010000 */
4029 if ((b5s5_op (insn) & 0x18) != 0x0
4030 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4031 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4032 && (b5s5_op (insn) & 0x1d) != 0x11
4033 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4034 && ((b5s5_op (insn) & 0x1e) != 0x14
4035 || (insn & 0x3) != 0x0)
4036 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4037 && (b5s5_op (insn) & 0x1e) != 0x1a
4038 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4039 && ((b5s5_op (insn) & 0x1e) != 0x1c
4040 || (insn & 0x3) != 0x0)
4041 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4042 && ((b5s5_op (insn) & 0x1c) != 0x1c
4043 || (insn & 0x3) != 0x1))
4044 /* BC1ANY*: bits 010000 111xx xxx01 */
4045 break;
4046 /* Fall through. */
4047
4048 case 0x25: /* BEQ: bits 100101 */
4049 case 0x2d: /* BNE: bits 101101 */
4050 insn <<= 16;
4051 insn |= mips_fetch_instruction (gdbarch,
4052 ISA_MICROMIPS, loc, NULL);
4053 branch_bp = (loc + MIPS_INSN16_SIZE
4054 + micromips_relative_offset16 (insn));
4055 is_branch = 1;
4056 break;
4057
4058 case 0x00: /* POOL32A: bits 000000 */
4059 insn <<= 16;
4060 insn |= mips_fetch_instruction (gdbarch,
4061 ISA_MICROMIPS, loc, NULL);
4062 if (b0s6_op (insn) != 0x3c
4063 /* POOL32Axf: bits 000000 ... 111100 */
4064 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4065 /* JALR, JALR.HB: 000000 000x111100 111100 */
4066 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4067 break;
4068 /* Fall through. */
4069
4070 case 0x1d: /* JALS: bits 011101 */
4071 case 0x35: /* J: bits 110101 */
4072 case 0x3d: /* JAL: bits 111101 */
4073 case 0x3c: /* JALX: bits 111100 */
4074 return 0; /* Fall back to the standard single-step code. */
4075
4076 case 0x18: /* POOL32C: bits 011000 */
4077 if ((b12s4_op (insn) & 0xb) == 0xb)
4078 /* SC, SCD: bits 011000 1x11 */
4079 sc_found = 1;
4080 break;
4081 }
4082 loc += MIPS_INSN16_SIZE;
4083 break;
4084
4085 /* 16-bit instructions. */
4086 case MIPS_INSN16_SIZE:
4087 switch (micromips_op (insn))
4088 {
4089 case 0x23: /* BEQZ16: bits 100011 */
4090 case 0x2b: /* BNEZ16: bits 101011 */
4091 branch_bp = loc + micromips_relative_offset7 (insn);
4092 is_branch = 1;
4093 break;
4094
4095 case 0x11: /* POOL16C: bits 010001 */
4096 if ((b5s5_op (insn) & 0x1c) != 0xc
4097 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4098 && b5s5_op (insn) != 0x18)
4099 /* JRADDIUSP: bits 010001 11000 */
4100 break;
93f9a11f 4101 return NULL; /* Fall back to the standard single-step code. */
4cc0665f
MR
4102
4103 case 0x33: /* B16: bits 110011 */
93f9a11f 4104 return NULL; /* Fall back to the standard single-step code. */
4cc0665f
MR
4105 }
4106 break;
4107 }
4108 if (is_branch)
4109 {
4110 if (last_breakpoint >= 1)
93f9a11f 4111 return NULL; /* More than one branch found, fallback to the
4cc0665f
MR
4112 standard single-step code. */
4113 breaks[1] = branch_bp;
4114 last_breakpoint++;
4115 }
4116 }
4117 if (!sc_found)
93f9a11f 4118 return NULL;
4cc0665f
MR
4119
4120 /* Insert a breakpoint right after the end of the atomic sequence. */
4121 breaks[0] = loc;
4122
4123 /* Check for duplicated breakpoints. Check also for a breakpoint
4124 placed (branch instruction's destination) in the atomic sequence */
4125 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4126 last_breakpoint = 0;
4127
4128 /* Effectively inserts the breakpoints. */
4129 for (index = 0; index <= last_breakpoint; index++)
93f9a11f 4130 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
4cc0665f 4131
93f9a11f 4132 return next_pcs;
4cc0665f
MR
4133}
4134
93f9a11f
YQ
4135static VEC (CORE_ADDR) *
4136deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
4137{
4138 if (mips_pc_is_mips (pc))
93f9a11f 4139 return mips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4140 else if (mips_pc_is_micromips (gdbarch, pc))
93f9a11f 4141 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4142 else
93f9a11f 4143 return NULL;
4cc0665f
MR
4144}
4145
29639122
JB
4146/* mips_software_single_step() is called just before we want to resume
4147 the inferior, if we want to single-step it but there is no hardware
4148 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 4149 the target of the coming instruction and breakpoint it. */
29639122 4150
93f9a11f 4151VEC (CORE_ADDR) *
0b1b3e42 4152mips_software_single_step (struct frame_info *frame)
c906108c 4153{
7113a196
YQ
4154 struct regcache *regcache = get_current_regcache ();
4155 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8181d85f 4156 CORE_ADDR pc, next_pc;
93f9a11f 4157 VEC (CORE_ADDR) *next_pcs;
65596487 4158
7113a196 4159 pc = regcache_read_pc (regcache);
93f9a11f
YQ
4160 next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4161 if (next_pcs != NULL)
4162 return next_pcs;
3d5f6d12 4163
7113a196 4164 next_pc = mips_next_pc (regcache, pc);
e6590a1b 4165
93f9a11f
YQ
4166 VEC_safe_push (CORE_ADDR, next_pcs, next_pc);
4167 return next_pcs;
29639122 4168}
a65bbe44 4169
29639122 4170/* Test whether the PC points to the return instruction at the
025bb325 4171 end of a function. */
65596487 4172
29639122 4173static int
e17a4113 4174mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 4175{
6321c22a
MR
4176 ULONGEST insn;
4177 ULONGEST hint;
4178
4179 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
4180 called for MIPS16 functions. And likewise microMIPS ones. */
4181 gdb_assert (mips_pc_is_mips (pc));
6321c22a 4182
4cc0665f 4183 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
4184 hint = 0x7c0;
4185 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4186}
c906108c 4187
c906108c 4188
29639122
JB
4189/* This fencepost looks highly suspicious to me. Removing it also
4190 seems suspicious as it could affect remote debugging across serial
4191 lines. */
c906108c 4192
29639122 4193static CORE_ADDR
74ed0bb4 4194heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4195{
4196 CORE_ADDR start_pc;
4197 CORE_ADDR fence;
4198 int instlen;
4199 int seen_adjsp = 0;
d6b48e9c 4200 struct inferior *inf;
65596487 4201
74ed0bb4 4202 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4203 start_pc = pc;
4204 fence = start_pc - heuristic_fence_post;
4205 if (start_pc == 0)
4206 return 0;
65596487 4207
44096aee 4208 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
29639122 4209 fence = VM_MIN_ADDRESS;
65596487 4210
4cc0665f 4211 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4212
d6b48e9c
PA
4213 inf = current_inferior ();
4214
025bb325 4215 /* Search back for previous return. */
29639122
JB
4216 for (start_pc -= instlen;; start_pc -= instlen)
4217 if (start_pc < fence)
4218 {
4219 /* It's not clear to me why we reach this point when
4220 stop_soon, but with this test, at least we
4221 don't print out warnings for every child forked (eg, on
4222 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4223 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4224 {
4225 static int blurb_printed = 0;
98b4dd94 4226
5af949e3
UW
4227 warning (_("GDB can't find the start of the function at %s."),
4228 paddress (gdbarch, pc));
29639122
JB
4229
4230 if (!blurb_printed)
4231 {
4232 /* This actually happens frequently in embedded
4233 development, when you first connect to a board
4234 and your stack pointer and pc are nowhere in
4235 particular. This message needs to give people
4236 in that situation enough information to
4237 determine that it's no big deal. */
4238 printf_filtered ("\n\
5af949e3 4239 GDB is unable to find the start of the function at %s\n\
29639122
JB
4240and thus can't determine the size of that function's stack frame.\n\
4241This means that GDB may be unable to access that stack frame, or\n\
4242the frames below it.\n\
4243 This problem is most likely caused by an invalid program counter or\n\
4244stack pointer.\n\
4245 However, if you think GDB should simply search farther back\n\
5af949e3 4246from %s for code which looks like the beginning of a\n\
29639122 4247function, you can increase the range of the search using the `set\n\
5af949e3
UW
4248heuristic-fence-post' command.\n",
4249 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4250 blurb_printed = 1;
4251 }
4252 }
4253
4254 return 0;
4255 }
4cc0665f 4256 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4257 {
4258 unsigned short inst;
4259
4260 /* On MIPS16, any one of the following is likely to be the
4261 start of a function:
193774b3
MR
4262 extend save
4263 save
29639122
JB
4264 entry
4265 addiu sp,-n
4266 daddiu sp,-n
025bb325 4267 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4268 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4269 if ((inst & 0xff80) == 0x6480) /* save */
4270 {
4271 if (start_pc - instlen >= fence)
4272 {
4cc0665f
MR
4273 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4274 start_pc - instlen, NULL);
193774b3
MR
4275 if ((inst & 0xf800) == 0xf000) /* extend */
4276 start_pc -= instlen;
4277 }
4278 break;
4279 }
4280 else if (((inst & 0xf81f) == 0xe809
4281 && (inst & 0x700) != 0x700) /* entry */
4282 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4283 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4284 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4285 break;
4286 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4287 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4288 seen_adjsp = 1;
4289 else
4290 seen_adjsp = 0;
4291 }
4cc0665f
MR
4292 else if (mips_pc_is_micromips (gdbarch, start_pc))
4293 {
4294 ULONGEST insn;
4295 int stop = 0;
4296 long offset;
4297 int dreg;
4298 int sreg;
4299
4300 /* On microMIPS, any one of the following is likely to be the
4301 start of a function:
4302 ADDIUSP -imm
4303 (D)ADDIU $sp, -imm
4304 LUI $gp, imm */
4305 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4306 switch (micromips_op (insn))
4307 {
4308 case 0xc: /* ADDIU: bits 001100 */
4309 case 0x17: /* DADDIU: bits 010111 */
4310 sreg = b0s5_reg (insn);
4311 dreg = b5s5_reg (insn);
4312 insn <<= 16;
4313 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4314 pc + MIPS_INSN16_SIZE, NULL);
4315 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4316 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4317 /* (D)ADDIU $sp, imm */
4318 && offset < 0)
4319 stop = 1;
4320 break;
4321
4322 case 0x10: /* POOL32I: bits 010000 */
4323 if (b5s5_op (insn) == 0xd
4324 /* LUI: bits 010000 001101 */
4325 && b0s5_reg (insn >> 16) == 28)
4326 /* LUI $gp, imm */
4327 stop = 1;
4328 break;
4329
4330 case 0x13: /* POOL16D: bits 010011 */
4331 if ((insn & 0x1) == 0x1)
4332 /* ADDIUSP: bits 010011 1 */
4333 {
4334 offset = micromips_decode_imm9 (b1s9_imm (insn));
4335 if (offset < 0)
4336 /* ADDIUSP -imm */
4337 stop = 1;
4338 }
4339 else
4340 /* ADDIUS5: bits 010011 0 */
4341 {
4342 dreg = b5s5_reg (insn);
4343 offset = (b1s4_imm (insn) ^ 8) - 8;
4344 if (dreg == MIPS_SP_REGNUM && offset < 0)
4345 /* ADDIUS5 $sp, -imm */
4346 stop = 1;
4347 }
4348 break;
4349 }
4350 if (stop)
4351 break;
4352 }
e17a4113 4353 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4354 {
4c7d22cb 4355 /* Skip return and its delay slot. */
95ac2dcf 4356 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4357 break;
4358 }
4359
4360 return start_pc;
c906108c
SS
4361}
4362
6c0d6680
DJ
4363struct mips_objfile_private
4364{
4365 bfd_size_type size;
4366 char *contents;
4367};
4368
f09ded24
AC
4369/* According to the current ABI, should the type be passed in a
4370 floating-point register (assuming that there is space)? When there
a1f5b845 4371 is no FPU, FP are not even considered as possible candidates for
f09ded24 4372 FP registers and, consequently this returns false - forces FP
025bb325 4373 arguments into integer registers. */
f09ded24
AC
4374
4375static int
74ed0bb4
MD
4376fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4377 struct type *arg_type)
f09ded24
AC
4378{
4379 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4380 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4381 && (typecode == TYPE_CODE_STRUCT
4382 || typecode == TYPE_CODE_UNION)
f09ded24 4383 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4384 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4385 == TYPE_CODE_FLT))
74ed0bb4 4386 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4387}
4388
49e790b0 4389/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4390 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4391
4392static int
4393mips_type_needs_double_align (struct type *type)
4394{
4395 enum type_code typecode = TYPE_CODE (type);
361d1df0 4396
49e790b0
DJ
4397 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4398 return 1;
4399 else if (typecode == TYPE_CODE_STRUCT)
4400 {
4401 if (TYPE_NFIELDS (type) < 1)
4402 return 0;
4403 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4404 }
4405 else if (typecode == TYPE_CODE_UNION)
4406 {
361d1df0 4407 int i, n;
49e790b0
DJ
4408
4409 n = TYPE_NFIELDS (type);
4410 for (i = 0; i < n; i++)
4411 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4412 return 1;
4413 return 0;
4414 }
4415 return 0;
4416}
4417
dc604539
AC
4418/* Adjust the address downward (direction of stack growth) so that it
4419 is correctly aligned for a new stack frame. */
4420static CORE_ADDR
4421mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4422{
5b03f266 4423 return align_down (addr, 16);
dc604539
AC
4424}
4425
8ae38c14 4426/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4427
4428static CORE_ADDR
4429mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4430 CORE_ADDR funaddr, struct value **args,
4431 int nargs, struct type *value_type,
4432 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4433 struct regcache *regcache)
4434{
2c76a0c7 4435 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4436 CORE_ADDR nop_addr;
4437 CORE_ADDR bp_slot;
2c76a0c7
JB
4438
4439 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4440 bp_slot = sp - sizeof (nop_insn);
4441
4442 /* Return to microMIPS mode if calling microMIPS code to avoid
4443 triggering an address error exception on processors that only
4444 support microMIPS execution. */
4445 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4446 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4447
4448 /* The breakpoint layer automatically adjusts the address of
4449 breakpoints inserted in a branch delay slot. With enough
4450 bad luck, the 4 bytes located just before our breakpoint
4451 instruction could look like a branch instruction, and thus
4452 trigger the adjustement, and break the function call entirely.
4453 So, we reserve those 4 bytes and write a nop instruction
4454 to prevent that from happening. */
2e81047f 4455 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4456 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4457 sp = mips_frame_align (gdbarch, nop_addr);
4458
4459 /* Inferior resumes at the function entry point. */
4460 *real_pc = funaddr;
4461
4462 return sp;
4463}
4464
f7ab6ec6 4465static CORE_ADDR
7d9b040b 4466mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4467 struct regcache *regcache, CORE_ADDR bp_addr,
4468 int nargs, struct value **args, CORE_ADDR sp,
4469 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4470{
4471 int argreg;
4472 int float_argreg;
4473 int argnum;
4474 int len = 0;
4475 int stack_offset = 0;
e17a4113 4476 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4477 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 4478 int regsize = mips_abi_regsize (gdbarch);
c906108c 4479
25ab4790
AC
4480 /* For shared libraries, "t9" needs to point at the function
4481 address. */
4c7d22cb 4482 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4483
4484 /* Set the return address register to point to the entry point of
4485 the program, where a breakpoint lies in wait. */
4c7d22cb 4486 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4487
c906108c 4488 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4489 are properly aligned. The stack has to be at least 64-bit
4490 aligned even on 32-bit machines, because doubles must be 64-bit
4491 aligned. For n32 and n64, stack frames need to be 128-bit
4492 aligned, so we round to this widest known alignment. */
4493
5b03f266
AC
4494 sp = align_down (sp, 16);
4495 struct_addr = align_down (struct_addr, 16);
c5aa993b 4496
46e0f506 4497 /* Now make space on the stack for the args. We allocate more
c906108c 4498 than necessary for EABI, because the first few arguments are
46e0f506 4499 passed in registers, but that's OK. */
c906108c 4500 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4501 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 4502 sp -= align_up (len, 16);
c906108c 4503
9ace0497 4504 if (mips_debug)
6d82d43b 4505 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4506 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4507 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4508
c906108c 4509 /* Initialize the integer and float register pointers. */
4c7d22cb 4510 argreg = MIPS_A0_REGNUM;
72a155b4 4511 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4512
46e0f506 4513 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4514 if (struct_return)
9ace0497
AC
4515 {
4516 if (mips_debug)
4517 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4518 "mips_eabi_push_dummy_call: "
4519 "struct_return reg=%d %s\n",
5af949e3 4520 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4521 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4522 }
c906108c
SS
4523
4524 /* Now load as many as possible of the first arguments into
4525 registers, and push the rest onto the stack. Loop thru args
4526 from first to last. */
4527 for (argnum = 0; argnum < nargs; argnum++)
4528 {
47a35522
MK
4529 const gdb_byte *val;
4530 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 4531 struct value *arg = args[argnum];
4991999e 4532 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4533 int len = TYPE_LENGTH (arg_type);
4534 enum type_code typecode = TYPE_CODE (arg_type);
4535
9ace0497
AC
4536 if (mips_debug)
4537 fprintf_unfiltered (gdb_stdlog,
25ab4790 4538 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4539 argnum + 1, len, (int) typecode);
9ace0497 4540
c906108c 4541 /* The EABI passes structures that do not fit in a register by
46e0f506 4542 reference. */
3e29f34a 4543 if (len > regsize
9ace0497 4544 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4545 {
e17a4113
UW
4546 store_unsigned_integer (valbuf, regsize, byte_order,
4547 value_address (arg));
c906108c 4548 typecode = TYPE_CODE_PTR;
1a69e1e4 4549 len = regsize;
c906108c 4550 val = valbuf;
9ace0497
AC
4551 if (mips_debug)
4552 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4553 }
4554 else
47a35522 4555 val = value_contents (arg);
c906108c
SS
4556
4557 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4558 even-numbered floating point register. Round the FP register
4559 up before the check to see if there are any FP registers
46e0f506
MS
4560 left. Non MIPS_EABI targets also pass the FP in the integer
4561 registers so also round up normal registers. */
74ed0bb4 4562 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4563 {
4564 if ((float_argreg & 1))
4565 float_argreg++;
4566 }
c906108c
SS
4567
4568 /* Floating point arguments passed in registers have to be
4569 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4570 are passed in register pairs; the even register gets
4571 the low word, and the odd register gets the high word.
4572 On non-EABI processors, the first two floating point arguments are
4573 also copied to general registers, because MIPS16 functions
4574 don't use float registers for arguments. This duplication of
4575 arguments in general registers can't hurt non-MIPS16 functions
4576 because those registers are normally skipped. */
1012bd0e
EZ
4577 /* MIPS_EABI squeezes a struct that contains a single floating
4578 point value into an FP register instead of pushing it onto the
46e0f506 4579 stack. */
74ed0bb4
MD
4580 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4581 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4582 {
6da397e0
KB
4583 /* EABI32 will pass doubles in consecutive registers, even on
4584 64-bit cores. At one time, we used to check the size of
4585 `float_argreg' to determine whether or not to pass doubles
4586 in consecutive registers, but this is not sufficient for
4587 making the ABI determination. */
4588 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4589 {
72a155b4 4590 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4591 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4592 long regval;
c906108c
SS
4593
4594 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4595 regval = extract_signed_integer (val + low_offset,
4596 4, byte_order);
9ace0497 4597 if (mips_debug)
acdb74a0 4598 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4599 float_argreg, phex (regval, 4));
a8852dc5 4600 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4601
4602 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4603 regval = extract_signed_integer (val + 4 - low_offset,
4604 4, byte_order);
9ace0497 4605 if (mips_debug)
acdb74a0 4606 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4607 float_argreg, phex (regval, 4));
a8852dc5 4608 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4609 }
4610 else
4611 {
4612 /* This is a floating point value that fits entirely
4613 in a single register. */
53a5351d 4614 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4615 above to ensure that it is even register aligned. */
a8852dc5 4616 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4617 if (mips_debug)
acdb74a0 4618 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4619 float_argreg, phex (regval, len));
a8852dc5 4620 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4621 }
4622 }
4623 else
4624 {
4625 /* Copy the argument to general registers or the stack in
4626 register-sized pieces. Large arguments are split between
4627 registers and stack. */
1a69e1e4
DJ
4628 /* Note: structs whose size is not a multiple of regsize
4629 are treated specially: Irix cc passes
d5ac5a39
AC
4630 them in registers where gcc sometimes puts them on the
4631 stack. For maximum compatibility, we will put them in
4632 both places. */
1a69e1e4 4633 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 4634
f09ded24 4635 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4636 register are only written to memory. */
c906108c
SS
4637 while (len > 0)
4638 {
ebafbe83 4639 /* Remember if the argument was written to the stack. */
566f0f7a 4640 int stack_used_p = 0;
1a69e1e4 4641 int partial_len = (len < regsize ? len : regsize);
c906108c 4642
acdb74a0
AC
4643 if (mips_debug)
4644 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4645 partial_len);
4646
566f0f7a 4647 /* Write this portion of the argument to the stack. */
74ed0bb4 4648 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4649 || odd_sized_struct
74ed0bb4 4650 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4651 {
c906108c 4652 /* Should shorter than int integer values be
025bb325 4653 promoted to int before being stored? */
c906108c 4654 int longword_offset = 0;
9ace0497 4655 CORE_ADDR addr;
566f0f7a 4656 stack_used_p = 1;
72a155b4 4657 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4658 {
1a69e1e4 4659 if (regsize == 8
480d3dd2
AC
4660 && (typecode == TYPE_CODE_INT
4661 || typecode == TYPE_CODE_PTR
6d82d43b 4662 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 4663 longword_offset = regsize - len;
480d3dd2
AC
4664 else if ((typecode == TYPE_CODE_STRUCT
4665 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
4666 && TYPE_LENGTH (arg_type) < regsize)
4667 longword_offset = regsize - len;
7a292a7a 4668 }
c5aa993b 4669
9ace0497
AC
4670 if (mips_debug)
4671 {
5af949e3
UW
4672 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4673 paddress (gdbarch, stack_offset));
4674 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4675 paddress (gdbarch, longword_offset));
9ace0497 4676 }
361d1df0 4677
9ace0497
AC
4678 addr = sp + stack_offset + longword_offset;
4679
4680 if (mips_debug)
4681 {
4682 int i;
5af949e3
UW
4683 fprintf_unfiltered (gdb_stdlog, " @%s ",
4684 paddress (gdbarch, addr));
9ace0497
AC
4685 for (i = 0; i < partial_len; i++)
4686 {
6d82d43b 4687 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4688 val[i] & 0xff);
9ace0497
AC
4689 }
4690 }
4691 write_memory (addr, val, partial_len);
c906108c
SS
4692 }
4693
f09ded24
AC
4694 /* Note!!! This is NOT an else clause. Odd sized
4695 structs may go thru BOTH paths. Floating point
46e0f506 4696 arguments will not. */
566f0f7a 4697 /* Write this portion of the argument to a general
6d82d43b 4698 purpose register. */
74ed0bb4
MD
4699 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4700 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4701 {
6d82d43b 4702 LONGEST regval =
a8852dc5 4703 extract_signed_integer (val, partial_len, byte_order);
c906108c 4704
9ace0497 4705 if (mips_debug)
acdb74a0 4706 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4707 argreg,
1a69e1e4 4708 phex (regval, regsize));
a8852dc5 4709 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4710 argreg++;
c906108c 4711 }
c5aa993b 4712
c906108c
SS
4713 len -= partial_len;
4714 val += partial_len;
4715
b021a221
MS
4716 /* Compute the offset into the stack at which we will
4717 copy the next parameter.
566f0f7a 4718
566f0f7a 4719 In the new EABI (and the NABI32), the stack_offset
46e0f506 4720 only needs to be adjusted when it has been used. */
c906108c 4721
46e0f506 4722 if (stack_used_p)
1a69e1e4 4723 stack_offset += align_up (partial_len, regsize);
c906108c
SS
4724 }
4725 }
9ace0497
AC
4726 if (mips_debug)
4727 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4728 }
4729
f10683bb 4730 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4731
0f71a2f6
JM
4732 /* Return adjusted stack pointer. */
4733 return sp;
4734}
4735
a1f5b845 4736/* Determine the return value convention being used. */
6d82d43b 4737
9c8fdbfa 4738static enum return_value_convention
6a3a010b 4739mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4740 struct type *type, struct regcache *regcache,
47a35522 4741 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4742{
609ba780
JM
4743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4744 int fp_return_type = 0;
4745 int offset, regnum, xfer;
4746
9c8fdbfa
AC
4747 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4748 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4749
4750 /* Floating point type? */
4751 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4752 {
4753 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4754 fp_return_type = 1;
4755 /* Structs with a single field of float type
4756 are returned in a floating point register. */
4757 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4758 || TYPE_CODE (type) == TYPE_CODE_UNION)
4759 && TYPE_NFIELDS (type) == 1)
4760 {
4761 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4762
4763 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4764 fp_return_type = 1;
4765 }
4766 }
4767
4768 if (fp_return_type)
4769 {
4770 /* A floating-point value belongs in the least significant part
4771 of FP0/FP1. */
4772 if (mips_debug)
4773 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4774 regnum = mips_regnum (gdbarch)->fp0;
4775 }
4776 else
4777 {
4778 /* An integer value goes in V0/V1. */
4779 if (mips_debug)
4780 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4781 regnum = MIPS_V0_REGNUM;
4782 }
4783 for (offset = 0;
4784 offset < TYPE_LENGTH (type);
4785 offset += mips_abi_regsize (gdbarch), regnum++)
4786 {
4787 xfer = mips_abi_regsize (gdbarch);
4788 if (offset + xfer > TYPE_LENGTH (type))
4789 xfer = TYPE_LENGTH (type) - offset;
4790 mips_xfer_register (gdbarch, regcache,
4791 gdbarch_num_regs (gdbarch) + regnum, xfer,
4792 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4793 offset);
4794 }
4795
9c8fdbfa 4796 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4797}
4798
6d82d43b
AC
4799
4800/* N32/N64 ABI stuff. */
ebafbe83 4801
8d26208a
DJ
4802/* Search for a naturally aligned double at OFFSET inside a struct
4803 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4804 registers. */
4805
4806static int
74ed0bb4
MD
4807mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4808 int offset)
8d26208a
DJ
4809{
4810 int i;
4811
4812 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4813 return 0;
4814
74ed0bb4 4815 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4816 return 0;
4817
4818 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4819 return 0;
4820
4821 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4822 {
4823 int pos;
4824 struct type *field_type;
4825
4826 /* We're only looking at normal fields. */
5bc60cfb 4827 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4828 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4829 continue;
4830
4831 /* If we have gone past the offset, there is no double to pass. */
4832 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4833 if (pos > offset)
4834 return 0;
4835
4836 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4837
4838 /* If this field is entirely before the requested offset, go
4839 on to the next one. */
4840 if (pos + TYPE_LENGTH (field_type) <= offset)
4841 continue;
4842
4843 /* If this is our special aligned double, we can stop. */
4844 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4845 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4846 return 1;
4847
4848 /* This field starts at or before the requested offset, and
4849 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4850 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4851 }
4852
4853 return 0;
4854}
4855
f7ab6ec6 4856static CORE_ADDR
7d9b040b 4857mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4858 struct regcache *regcache, CORE_ADDR bp_addr,
4859 int nargs, struct value **args, CORE_ADDR sp,
4860 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4861{
4862 int argreg;
4863 int float_argreg;
4864 int argnum;
4865 int len = 0;
4866 int stack_offset = 0;
e17a4113 4867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4868 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4869
25ab4790
AC
4870 /* For shared libraries, "t9" needs to point at the function
4871 address. */
4c7d22cb 4872 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4873
4874 /* Set the return address register to point to the entry point of
4875 the program, where a breakpoint lies in wait. */
4c7d22cb 4876 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4877
cb3d25d1
MS
4878 /* First ensure that the stack and structure return address (if any)
4879 are properly aligned. The stack has to be at least 64-bit
4880 aligned even on 32-bit machines, because doubles must be 64-bit
4881 aligned. For n32 and n64, stack frames need to be 128-bit
4882 aligned, so we round to this widest known alignment. */
4883
5b03f266
AC
4884 sp = align_down (sp, 16);
4885 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4886
4887 /* Now make space on the stack for the args. */
4888 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4889 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4890 sp -= align_up (len, 16);
cb3d25d1
MS
4891
4892 if (mips_debug)
6d82d43b 4893 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4894 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4895 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4896
4897 /* Initialize the integer and float register pointers. */
4c7d22cb 4898 argreg = MIPS_A0_REGNUM;
72a155b4 4899 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4900
46e0f506 4901 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4902 if (struct_return)
4903 {
4904 if (mips_debug)
4905 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4906 "mips_n32n64_push_dummy_call: "
4907 "struct_return reg=%d %s\n",
5af949e3 4908 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4909 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4910 }
4911
4912 /* Now load as many as possible of the first arguments into
4913 registers, and push the rest onto the stack. Loop thru args
4914 from first to last. */
4915 for (argnum = 0; argnum < nargs; argnum++)
4916 {
47a35522 4917 const gdb_byte *val;
cb3d25d1 4918 struct value *arg = args[argnum];
4991999e 4919 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4920 int len = TYPE_LENGTH (arg_type);
4921 enum type_code typecode = TYPE_CODE (arg_type);
4922
4923 if (mips_debug)
4924 fprintf_unfiltered (gdb_stdlog,
25ab4790 4925 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4926 argnum + 1, len, (int) typecode);
4927
47a35522 4928 val = value_contents (arg);
cb3d25d1 4929
5b68030f
JM
4930 /* A 128-bit long double value requires an even-odd pair of
4931 floating-point registers. */
4932 if (len == 16
4933 && fp_register_arg_p (gdbarch, typecode, arg_type)
4934 && (float_argreg & 1))
4935 {
4936 float_argreg++;
4937 argreg++;
4938 }
4939
74ed0bb4
MD
4940 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4941 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4942 {
4943 /* This is a floating point value that fits entirely
5b68030f
JM
4944 in a single register or a pair of registers. */
4945 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4946 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4947 if (mips_debug)
4948 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4949 float_argreg, phex (regval, reglen));
8d26208a 4950 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4951
4952 if (mips_debug)
4953 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4954 argreg, phex (regval, reglen));
9c9acae0 4955 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4956 float_argreg++;
4957 argreg++;
5b68030f
JM
4958 if (len == 16)
4959 {
e17a4113
UW
4960 regval = extract_unsigned_integer (val + reglen,
4961 reglen, byte_order);
5b68030f
JM
4962 if (mips_debug)
4963 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4964 float_argreg, phex (regval, reglen));
4965 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4966
4967 if (mips_debug)
4968 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4969 argreg, phex (regval, reglen));
4970 regcache_cooked_write_unsigned (regcache, argreg, regval);
4971 float_argreg++;
4972 argreg++;
4973 }
cb3d25d1
MS
4974 }
4975 else
4976 {
4977 /* Copy the argument to general registers or the stack in
4978 register-sized pieces. Large arguments are split between
4979 registers and stack. */
ab2e1992
MR
4980 /* For N32/N64, structs, unions, or other composite types are
4981 treated as a sequence of doublewords, and are passed in integer
4982 or floating point registers as though they were simple scalar
4983 parameters to the extent that they fit, with any excess on the
4984 stack packed according to the normal memory layout of the
4985 object.
4986 The caller does not reserve space for the register arguments;
4987 the callee is responsible for reserving it if required. */
cb3d25d1 4988 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4989 register are only written to memory. */
cb3d25d1
MS
4990 while (len > 0)
4991 {
ad018eee 4992 /* Remember if the argument was written to the stack. */
cb3d25d1 4993 int stack_used_p = 0;
1a69e1e4 4994 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
4995
4996 if (mips_debug)
4997 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4998 partial_len);
4999
74ed0bb4
MD
5000 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5001 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 5002
cb3d25d1 5003 /* Write this portion of the argument to the stack. */
74ed0bb4 5004 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
5005 {
5006 /* Should shorter than int integer values be
025bb325 5007 promoted to int before being stored? */
cb3d25d1
MS
5008 int longword_offset = 0;
5009 CORE_ADDR addr;
5010 stack_used_p = 1;
72a155b4 5011 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 5012 {
1a69e1e4 5013 if ((typecode == TYPE_CODE_INT
5b68030f 5014 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
5015 && len <= 4)
5016 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
5017 }
5018
5019 if (mips_debug)
5020 {
5af949e3
UW
5021 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5022 paddress (gdbarch, stack_offset));
5023 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5024 paddress (gdbarch, longword_offset));
cb3d25d1
MS
5025 }
5026
5027 addr = sp + stack_offset + longword_offset;
5028
5029 if (mips_debug)
5030 {
5031 int i;
5af949e3
UW
5032 fprintf_unfiltered (gdb_stdlog, " @%s ",
5033 paddress (gdbarch, addr));
cb3d25d1
MS
5034 for (i = 0; i < partial_len; i++)
5035 {
6d82d43b 5036 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
5037 val[i] & 0xff);
5038 }
5039 }
5040 write_memory (addr, val, partial_len);
5041 }
5042
5043 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 5044 structs may go thru BOTH paths. */
cb3d25d1 5045 /* Write this portion of the argument to a general
6d82d43b 5046 purpose register. */
74ed0bb4 5047 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 5048 {
5863b5d5
MR
5049 LONGEST regval;
5050
5051 /* Sign extend pointers, 32-bit integers and signed
5052 16-bit and 8-bit integers; everything else is taken
5053 as is. */
5054
5055 if ((partial_len == 4
5056 && (typecode == TYPE_CODE_PTR
5057 || typecode == TYPE_CODE_INT))
5058 || (partial_len < 4
5059 && typecode == TYPE_CODE_INT
5060 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
5061 regval = extract_signed_integer (val, partial_len,
5062 byte_order);
5863b5d5 5063 else
e17a4113
UW
5064 regval = extract_unsigned_integer (val, partial_len,
5065 byte_order);
cb3d25d1
MS
5066
5067 /* A non-floating-point argument being passed in a
5068 general register. If a struct or union, and if
5069 the remaining length is smaller than the register
5070 size, we have to adjust the register value on
5071 big endian targets.
5072
5073 It does not seem to be necessary to do the
1a69e1e4 5074 same for integral types. */
cb3d25d1 5075
72a155b4 5076 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5077 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5078 && (typecode == TYPE_CODE_STRUCT
5079 || typecode == TYPE_CODE_UNION))
1a69e1e4 5080 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5081 * TARGET_CHAR_BIT);
cb3d25d1
MS
5082
5083 if (mips_debug)
5084 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5085 argreg,
1a69e1e4 5086 phex (regval, MIPS64_REGSIZE));
9c9acae0 5087 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 5088
74ed0bb4 5089 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
5090 TYPE_LENGTH (arg_type) - len))
5091 {
5092 if (mips_debug)
5093 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5094 float_argreg,
5095 phex (regval, MIPS64_REGSIZE));
5096 regcache_cooked_write_unsigned (regcache, float_argreg,
5097 regval);
5098 }
5099
5100 float_argreg++;
cb3d25d1
MS
5101 argreg++;
5102 }
5103
5104 len -= partial_len;
5105 val += partial_len;
5106
b021a221
MS
5107 /* Compute the offset into the stack at which we will
5108 copy the next parameter.
cb3d25d1
MS
5109
5110 In N32 (N64?), the stack_offset only needs to be
5111 adjusted when it has been used. */
5112
5113 if (stack_used_p)
1a69e1e4 5114 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
5115 }
5116 }
5117 if (mips_debug)
5118 fprintf_unfiltered (gdb_stdlog, "\n");
5119 }
5120
f10683bb 5121 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5122
cb3d25d1
MS
5123 /* Return adjusted stack pointer. */
5124 return sp;
5125}
5126
6d82d43b 5127static enum return_value_convention
6a3a010b 5128mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 5129 struct type *type, struct regcache *regcache,
47a35522 5130 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 5131{
72a155b4 5132 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
5133
5134 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5135
5136 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5137 if needed), as appropriate for the type. Composite results (struct,
5138 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5139 following rules:
5140
5141 * A struct with only one or two floating point fields is returned in $f0
5142 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5143 case.
5144
f08877ba 5145 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
5146 $2 (first 64 bits) and $3 (remainder, if necessary).
5147
5148 * Larger composite results are handled by converting the function to a
5149 procedure with an implicit first parameter, which is a pointer to an area
5150 reserved by the caller to receive the result. [The o32-bit ABI requires
5151 that all composite results be handled by conversion to implicit first
5152 parameters. The MIPS/SGI Fortran implementation has always made a
5153 specific exception to return COMPLEX results in the floating point
5154 registers.] */
5155
f08877ba 5156 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 5157 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
5158 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5159 && TYPE_LENGTH (type) == 16
5160 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5161 {
5162 /* A 128-bit floating-point value fills both $f0 and $f2. The
5163 two registers are used in the same as memory order, so the
5164 eight bytes with the lower memory address are in $f0. */
5165 if (mips_debug)
5166 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 5167 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5168 (gdbarch_num_regs (gdbarch)
5169 + mips_regnum (gdbarch)->fp0),
72a155b4 5170 8, gdbarch_byte_order (gdbarch),
4c6b5505 5171 readbuf, writebuf, 0);
ba32f989 5172 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5173 (gdbarch_num_regs (gdbarch)
5174 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5175 8, gdbarch_byte_order (gdbarch),
4c6b5505 5176 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5177 writebuf ? writebuf + 8 : writebuf, 0);
5178 return RETURN_VALUE_REGISTER_CONVENTION;
5179 }
6d82d43b
AC
5180 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5181 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5182 {
59aa1faa 5183 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5184 if (mips_debug)
5185 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5186 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5187 (gdbarch_num_regs (gdbarch)
5188 + mips_regnum (gdbarch)->fp0),
6d82d43b 5189 TYPE_LENGTH (type),
72a155b4 5190 gdbarch_byte_order (gdbarch),
4c6b5505 5191 readbuf, writebuf, 0);
6d82d43b
AC
5192 return RETURN_VALUE_REGISTER_CONVENTION;
5193 }
5194 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5195 && TYPE_NFIELDS (type) <= 2
5196 && TYPE_NFIELDS (type) >= 1
5197 && ((TYPE_NFIELDS (type) == 1
b18bb924 5198 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5199 == TYPE_CODE_FLT))
5200 || (TYPE_NFIELDS (type) == 2
b18bb924 5201 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5202 == TYPE_CODE_FLT)
b18bb924 5203 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5204 == TYPE_CODE_FLT))))
6d82d43b
AC
5205 {
5206 /* A struct that contains one or two floats. Each value is part
5207 in the least significant part of their floating point
5b68030f 5208 register (or GPR, for soft float). */
6d82d43b
AC
5209 int regnum;
5210 int field;
5b68030f
JM
5211 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5212 ? mips_regnum (gdbarch)->fp0
5213 : MIPS_V0_REGNUM);
6d82d43b
AC
5214 field < TYPE_NFIELDS (type); field++, regnum += 2)
5215 {
5216 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5217 / TARGET_CHAR_BIT);
5218 if (mips_debug)
5219 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5220 offset);
5b68030f
JM
5221 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5222 {
5223 /* A 16-byte long double field goes in two consecutive
5224 registers. */
5225 mips_xfer_register (gdbarch, regcache,
5226 gdbarch_num_regs (gdbarch) + regnum,
5227 8,
5228 gdbarch_byte_order (gdbarch),
5229 readbuf, writebuf, offset);
5230 mips_xfer_register (gdbarch, regcache,
5231 gdbarch_num_regs (gdbarch) + regnum + 1,
5232 8,
5233 gdbarch_byte_order (gdbarch),
5234 readbuf, writebuf, offset + 8);
5235 }
5236 else
5237 mips_xfer_register (gdbarch, regcache,
5238 gdbarch_num_regs (gdbarch) + regnum,
5239 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5240 gdbarch_byte_order (gdbarch),
5241 readbuf, writebuf, offset);
6d82d43b
AC
5242 }
5243 return RETURN_VALUE_REGISTER_CONVENTION;
5244 }
5245 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5246 || TYPE_CODE (type) == TYPE_CODE_UNION
5247 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5248 {
f08877ba 5249 /* A composite type. Extract the left justified value,
6d82d43b
AC
5250 regardless of the byte order. I.e. DO NOT USE
5251 mips_xfer_lower. */
5252 int offset;
5253 int regnum;
4c7d22cb 5254 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5255 offset < TYPE_LENGTH (type);
72a155b4 5256 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5257 {
72a155b4 5258 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5259 if (offset + xfer > TYPE_LENGTH (type))
5260 xfer = TYPE_LENGTH (type) - offset;
5261 if (mips_debug)
5262 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5263 offset, xfer, regnum);
ba32f989
DJ
5264 mips_xfer_register (gdbarch, regcache,
5265 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5266 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5267 offset);
6d82d43b
AC
5268 }
5269 return RETURN_VALUE_REGISTER_CONVENTION;
5270 }
5271 else
5272 {
5273 /* A scalar extract each part but least-significant-byte
5274 justified. */
5275 int offset;
5276 int regnum;
4c7d22cb 5277 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5278 offset < TYPE_LENGTH (type);
72a155b4 5279 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5280 {
72a155b4 5281 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5282 if (offset + xfer > TYPE_LENGTH (type))
5283 xfer = TYPE_LENGTH (type) - offset;
5284 if (mips_debug)
5285 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5286 offset, xfer, regnum);
ba32f989
DJ
5287 mips_xfer_register (gdbarch, regcache,
5288 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5289 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5290 readbuf, writebuf, offset);
6d82d43b
AC
5291 }
5292 return RETURN_VALUE_REGISTER_CONVENTION;
5293 }
5294}
5295
6a3a010b
MR
5296/* Which registers to use for passing floating-point values between
5297 function calls, one of floating-point, general and both kinds of
5298 registers. O32 and O64 use different register kinds for standard
5299 MIPS and MIPS16 code; to make the handling of cases where we may
5300 not know what kind of code is being used (e.g. no debug information)
5301 easier we sometimes use both kinds. */
5302
5303enum mips_fval_reg
5304{
5305 mips_fval_fpr,
5306 mips_fval_gpr,
5307 mips_fval_both
5308};
5309
6d82d43b
AC
5310/* O32 ABI stuff. */
5311
5312static CORE_ADDR
7d9b040b 5313mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5314 struct regcache *regcache, CORE_ADDR bp_addr,
5315 int nargs, struct value **args, CORE_ADDR sp,
5316 int struct_return, CORE_ADDR struct_addr)
5317{
5318 int argreg;
5319 int float_argreg;
5320 int argnum;
5321 int len = 0;
5322 int stack_offset = 0;
e17a4113 5323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5324 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5325
5326 /* For shared libraries, "t9" needs to point at the function
5327 address. */
4c7d22cb 5328 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5329
5330 /* Set the return address register to point to the entry point of
5331 the program, where a breakpoint lies in wait. */
4c7d22cb 5332 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5333
5334 /* First ensure that the stack and structure return address (if any)
5335 are properly aligned. The stack has to be at least 64-bit
5336 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5337 aligned. For n32 and n64, stack frames need to be 128-bit
5338 aligned, so we round to this widest known alignment. */
5339
5b03f266
AC
5340 sp = align_down (sp, 16);
5341 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5342
5343 /* Now make space on the stack for the args. */
5344 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5345 {
5346 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5347
5348 /* Align to double-word if necessary. */
2afd3f0a 5349 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5350 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5351 /* Allocate space on the stack. */
354ecfd5 5352 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5353 }
5b03f266 5354 sp -= align_up (len, 16);
ebafbe83
MS
5355
5356 if (mips_debug)
6d82d43b 5357 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5358 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5359 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5360
5361 /* Initialize the integer and float register pointers. */
4c7d22cb 5362 argreg = MIPS_A0_REGNUM;
72a155b4 5363 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5364
bcb0cc15 5365 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5366 if (struct_return)
5367 {
5368 if (mips_debug)
5369 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5370 "mips_o32_push_dummy_call: "
5371 "struct_return reg=%d %s\n",
5af949e3 5372 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5373 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5374 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5375 }
5376
5377 /* Now load as many as possible of the first arguments into
5378 registers, and push the rest onto the stack. Loop thru args
5379 from first to last. */
5380 for (argnum = 0; argnum < nargs; argnum++)
5381 {
47a35522 5382 const gdb_byte *val;
ebafbe83 5383 struct value *arg = args[argnum];
4991999e 5384 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5385 int len = TYPE_LENGTH (arg_type);
5386 enum type_code typecode = TYPE_CODE (arg_type);
5387
5388 if (mips_debug)
5389 fprintf_unfiltered (gdb_stdlog,
25ab4790 5390 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5391 argnum + 1, len, (int) typecode);
5392
47a35522 5393 val = value_contents (arg);
46cac009
AC
5394
5395 /* 32-bit ABIs always start floating point arguments in an
5396 even-numbered floating point register. Round the FP register
5397 up before the check to see if there are any FP registers
6a3a010b
MR
5398 left. O32 targets also pass the FP in the integer registers
5399 so also round up normal registers. */
74ed0bb4 5400 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5401 {
5402 if ((float_argreg & 1))
5403 float_argreg++;
5404 }
5405
5406 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5407 treated specially. On 32-bit architectures, doubles are
5408 passed in register pairs; the even FP register gets the
5409 low word, and the odd FP register gets the high word.
5410 On O32, the first two floating point arguments are also
5411 copied to general registers, following their memory order,
5412 because MIPS16 functions don't use float registers for
5413 arguments. This duplication of arguments in general
5414 registers can't hurt non-MIPS16 functions, because those
5415 registers are normally skipped. */
46cac009 5416
74ed0bb4
MD
5417 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5418 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5419 {
8b07f6d8 5420 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5421 {
6a3a010b
MR
5422 int freg_offset = gdbarch_byte_order (gdbarch)
5423 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5424 unsigned long regval;
5425
6a3a010b
MR
5426 /* First word. */
5427 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5428 if (mips_debug)
5429 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5430 float_argreg + freg_offset,
5431 phex (regval, 4));
025bb325 5432 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5433 float_argreg++ + freg_offset,
5434 regval);
46cac009
AC
5435 if (mips_debug)
5436 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5437 argreg, phex (regval, 4));
9c9acae0 5438 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5439
6a3a010b
MR
5440 /* Second word. */
5441 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5442 if (mips_debug)
5443 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5444 float_argreg - freg_offset,
5445 phex (regval, 4));
025bb325 5446 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5447 float_argreg++ - freg_offset,
5448 regval);
46cac009
AC
5449 if (mips_debug)
5450 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5451 argreg, phex (regval, 4));
9c9acae0 5452 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5453 }
5454 else
5455 {
5456 /* This is a floating point value that fits entirely
5457 in a single register. */
5458 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5459 above to ensure that it is even register aligned. */
e17a4113 5460 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5461 if (mips_debug)
5462 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5463 float_argreg, phex (regval, len));
025bb325
MS
5464 regcache_cooked_write_unsigned (regcache,
5465 float_argreg++, regval);
5b68030f
JM
5466 /* Although two FP registers are reserved for each
5467 argument, only one corresponding integer register is
5468 reserved. */
46cac009
AC
5469 if (mips_debug)
5470 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5471 argreg, phex (regval, len));
5b68030f 5472 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5473 }
5474 /* Reserve space for the FP register. */
1a69e1e4 5475 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5476 }
5477 else
5478 {
5479 /* Copy the argument to general registers or the stack in
5480 register-sized pieces. Large arguments are split between
5481 registers and stack. */
1a69e1e4
DJ
5482 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5483 are treated specially: Irix cc passes
d5ac5a39
AC
5484 them in registers where gcc sometimes puts them on the
5485 stack. For maximum compatibility, we will put them in
5486 both places. */
1a69e1e4
DJ
5487 int odd_sized_struct = (len > MIPS32_REGSIZE
5488 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5489 /* Structures should be aligned to eight bytes (even arg registers)
5490 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5491 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5492 {
5493 if ((argreg & 1))
968b5391
MR
5494 {
5495 argreg++;
1a69e1e4 5496 stack_offset += MIPS32_REGSIZE;
968b5391 5497 }
46cac009 5498 }
46cac009
AC
5499 while (len > 0)
5500 {
1a69e1e4 5501 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5502
5503 if (mips_debug)
5504 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5505 partial_len);
5506
5507 /* Write this portion of the argument to the stack. */
74ed0bb4 5508 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5509 || odd_sized_struct)
46cac009
AC
5510 {
5511 /* Should shorter than int integer values be
025bb325 5512 promoted to int before being stored? */
46cac009
AC
5513 int longword_offset = 0;
5514 CORE_ADDR addr;
46cac009
AC
5515
5516 if (mips_debug)
5517 {
5af949e3
UW
5518 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5519 paddress (gdbarch, stack_offset));
5520 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5521 paddress (gdbarch, longword_offset));
46cac009
AC
5522 }
5523
5524 addr = sp + stack_offset + longword_offset;
5525
5526 if (mips_debug)
5527 {
5528 int i;
5af949e3
UW
5529 fprintf_unfiltered (gdb_stdlog, " @%s ",
5530 paddress (gdbarch, addr));
46cac009
AC
5531 for (i = 0; i < partial_len; i++)
5532 {
6d82d43b 5533 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5534 val[i] & 0xff);
5535 }
5536 }
5537 write_memory (addr, val, partial_len);
5538 }
5539
5540 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5541 structs may go thru BOTH paths. */
46cac009 5542 /* Write this portion of the argument to a general
6d82d43b 5543 purpose register. */
74ed0bb4 5544 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5545 {
e17a4113
UW
5546 LONGEST regval = extract_signed_integer (val, partial_len,
5547 byte_order);
4246e332 5548 /* Value may need to be sign extended, because
1b13c4f6 5549 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5550
5551 /* A non-floating-point argument being passed in a
5552 general register. If a struct or union, and if
5553 the remaining length is smaller than the register
5554 size, we have to adjust the register value on
5555 big endian targets.
5556
5557 It does not seem to be necessary to do the
5558 same for integral types.
5559
5560 Also don't do this adjustment on O64 binaries.
5561
5562 cagney/2001-07-23: gdb/179: Also, GCC, when
5563 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5564 mips_abi_regsize(), generates a left shift
5565 as part of storing the argument in a register
5566 (the left shift isn't generated when
1b13c4f6 5567 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5568 it is quite possible that this is GCC
5569 contradicting the LE/O32 ABI, GDB has not been
5570 adjusted to accommodate this. Either someone
5571 needs to demonstrate that the LE/O32 ABI
5572 specifies such a left shift OR this new ABI gets
5573 identified as such and GDB gets tweaked
5574 accordingly. */
5575
72a155b4 5576 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5577 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5578 && (typecode == TYPE_CODE_STRUCT
5579 || typecode == TYPE_CODE_UNION))
1a69e1e4 5580 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5581 * TARGET_CHAR_BIT);
46cac009
AC
5582
5583 if (mips_debug)
5584 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5585 argreg,
1a69e1e4 5586 phex (regval, MIPS32_REGSIZE));
9c9acae0 5587 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5588 argreg++;
5589
5590 /* Prevent subsequent floating point arguments from
5591 being passed in floating point registers. */
74ed0bb4 5592 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5593 }
5594
5595 len -= partial_len;
5596 val += partial_len;
5597
b021a221
MS
5598 /* Compute the offset into the stack at which we will
5599 copy the next parameter.
46cac009 5600
6d82d43b
AC
5601 In older ABIs, the caller reserved space for
5602 registers that contained arguments. This was loosely
5603 refered to as their "home". Consequently, space is
5604 always allocated. */
46cac009 5605
1a69e1e4 5606 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5607 }
5608 }
5609 if (mips_debug)
5610 fprintf_unfiltered (gdb_stdlog, "\n");
5611 }
5612
f10683bb 5613 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5614
46cac009
AC
5615 /* Return adjusted stack pointer. */
5616 return sp;
5617}
5618
6d82d43b 5619static enum return_value_convention
6a3a010b 5620mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5621 struct type *type, struct regcache *regcache,
47a35522 5622 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5623{
6a3a010b 5624 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5625 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5627 enum mips_fval_reg fval_reg;
6d82d43b 5628
6a3a010b 5629 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5630 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5631 || TYPE_CODE (type) == TYPE_CODE_UNION
5632 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5633 return RETURN_VALUE_STRUCT_CONVENTION;
5634 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5635 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5636 {
6a3a010b
MR
5637 /* A single-precision floating-point value. If reading in or copying,
5638 then we get it from/put it to FP0 for standard MIPS code or GPR2
5639 for MIPS16 code. If writing out only, then we put it to both FP0
5640 and GPR2. We do not support reading in with no function known, if
5641 this safety check ever triggers, then we'll have to try harder. */
5642 gdb_assert (function || !readbuf);
6d82d43b 5643 if (mips_debug)
6a3a010b
MR
5644 switch (fval_reg)
5645 {
5646 case mips_fval_fpr:
5647 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5648 break;
5649 case mips_fval_gpr:
5650 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5651 break;
5652 case mips_fval_both:
5653 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5654 break;
5655 }
5656 if (fval_reg != mips_fval_gpr)
5657 mips_xfer_register (gdbarch, regcache,
5658 (gdbarch_num_regs (gdbarch)
5659 + mips_regnum (gdbarch)->fp0),
5660 TYPE_LENGTH (type),
5661 gdbarch_byte_order (gdbarch),
5662 readbuf, writebuf, 0);
5663 if (fval_reg != mips_fval_fpr)
5664 mips_xfer_register (gdbarch, regcache,
5665 gdbarch_num_regs (gdbarch) + 2,
5666 TYPE_LENGTH (type),
5667 gdbarch_byte_order (gdbarch),
5668 readbuf, writebuf, 0);
6d82d43b
AC
5669 return RETURN_VALUE_REGISTER_CONVENTION;
5670 }
5671 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5672 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5673 {
6a3a010b
MR
5674 /* A double-precision floating-point value. If reading in or copying,
5675 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5676 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5677 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5678 no function known, if this safety check ever triggers, then we'll
5679 have to try harder. */
5680 gdb_assert (function || !readbuf);
6d82d43b 5681 if (mips_debug)
6a3a010b
MR
5682 switch (fval_reg)
5683 {
5684 case mips_fval_fpr:
5685 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5686 break;
5687 case mips_fval_gpr:
5688 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5689 break;
5690 case mips_fval_both:
5691 fprintf_unfiltered (gdb_stderr,
5692 "Return float in $fp1/$fp0 and $2/$3\n");
5693 break;
5694 }
5695 if (fval_reg != mips_fval_gpr)
6d82d43b 5696 {
6a3a010b
MR
5697 /* The most significant part goes in FP1, and the least significant
5698 in FP0. */
5699 switch (gdbarch_byte_order (gdbarch))
5700 {
5701 case BFD_ENDIAN_LITTLE:
5702 mips_xfer_register (gdbarch, regcache,
5703 (gdbarch_num_regs (gdbarch)
5704 + mips_regnum (gdbarch)->fp0 + 0),
5705 4, gdbarch_byte_order (gdbarch),
5706 readbuf, writebuf, 0);
5707 mips_xfer_register (gdbarch, regcache,
5708 (gdbarch_num_regs (gdbarch)
5709 + mips_regnum (gdbarch)->fp0 + 1),
5710 4, gdbarch_byte_order (gdbarch),
5711 readbuf, writebuf, 4);
5712 break;
5713 case BFD_ENDIAN_BIG:
5714 mips_xfer_register (gdbarch, regcache,
5715 (gdbarch_num_regs (gdbarch)
5716 + mips_regnum (gdbarch)->fp0 + 1),
5717 4, gdbarch_byte_order (gdbarch),
5718 readbuf, writebuf, 0);
5719 mips_xfer_register (gdbarch, regcache,
5720 (gdbarch_num_regs (gdbarch)
5721 + mips_regnum (gdbarch)->fp0 + 0),
5722 4, gdbarch_byte_order (gdbarch),
5723 readbuf, writebuf, 4);
5724 break;
5725 default:
5726 internal_error (__FILE__, __LINE__, _("bad switch"));
5727 }
5728 }
5729 if (fval_reg != mips_fval_fpr)
5730 {
5731 /* The two 32-bit parts are always placed in GPR2 and GPR3
5732 following these registers' memory order. */
ba32f989 5733 mips_xfer_register (gdbarch, regcache,
6a3a010b 5734 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5735 4, gdbarch_byte_order (gdbarch),
4c6b5505 5736 readbuf, writebuf, 0);
ba32f989 5737 mips_xfer_register (gdbarch, regcache,
6a3a010b 5738 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5739 4, gdbarch_byte_order (gdbarch),
4c6b5505 5740 readbuf, writebuf, 4);
6d82d43b
AC
5741 }
5742 return RETURN_VALUE_REGISTER_CONVENTION;
5743 }
5744#if 0
5745 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5746 && TYPE_NFIELDS (type) <= 2
5747 && TYPE_NFIELDS (type) >= 1
5748 && ((TYPE_NFIELDS (type) == 1
5749 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5750 == TYPE_CODE_FLT))
5751 || (TYPE_NFIELDS (type) == 2
5752 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5753 == TYPE_CODE_FLT)
5754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5755 == TYPE_CODE_FLT)))
5756 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5757 {
5758 /* A struct that contains one or two floats. Each value is part
5759 in the least significant part of their floating point
5760 register.. */
870cd05e 5761 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
5762 int regnum;
5763 int field;
72a155b4 5764 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5765 field < TYPE_NFIELDS (type); field++, regnum += 2)
5766 {
5767 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5768 / TARGET_CHAR_BIT);
5769 if (mips_debug)
5770 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5771 offset);
ba32f989
DJ
5772 mips_xfer_register (gdbarch, regcache,
5773 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5774 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5775 gdbarch_byte_order (gdbarch),
4c6b5505 5776 readbuf, writebuf, offset);
6d82d43b
AC
5777 }
5778 return RETURN_VALUE_REGISTER_CONVENTION;
5779 }
5780#endif
5781#if 0
5782 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5783 || TYPE_CODE (type) == TYPE_CODE_UNION)
5784 {
5785 /* A structure or union. Extract the left justified value,
5786 regardless of the byte order. I.e. DO NOT USE
5787 mips_xfer_lower. */
5788 int offset;
5789 int regnum;
4c7d22cb 5790 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5791 offset < TYPE_LENGTH (type);
72a155b4 5792 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5793 {
72a155b4 5794 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5795 if (offset + xfer > TYPE_LENGTH (type))
5796 xfer = TYPE_LENGTH (type) - offset;
5797 if (mips_debug)
5798 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5799 offset, xfer, regnum);
ba32f989
DJ
5800 mips_xfer_register (gdbarch, regcache,
5801 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5802 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5803 }
5804 return RETURN_VALUE_REGISTER_CONVENTION;
5805 }
5806#endif
5807 else
5808 {
5809 /* A scalar extract each part but least-significant-byte
5810 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5811 the ISA. */
6d82d43b
AC
5812 int offset;
5813 int regnum;
4c7d22cb 5814 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5815 offset < TYPE_LENGTH (type);
1a69e1e4 5816 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5817 {
1a69e1e4 5818 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5819 if (offset + xfer > TYPE_LENGTH (type))
5820 xfer = TYPE_LENGTH (type) - offset;
5821 if (mips_debug)
5822 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5823 offset, xfer, regnum);
ba32f989
DJ
5824 mips_xfer_register (gdbarch, regcache,
5825 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5826 gdbarch_byte_order (gdbarch),
4c6b5505 5827 readbuf, writebuf, offset);
6d82d43b
AC
5828 }
5829 return RETURN_VALUE_REGISTER_CONVENTION;
5830 }
5831}
5832
5833/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5834 ABI. */
46cac009
AC
5835
5836static CORE_ADDR
7d9b040b 5837mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5838 struct regcache *regcache, CORE_ADDR bp_addr,
5839 int nargs,
5840 struct value **args, CORE_ADDR sp,
5841 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5842{
5843 int argreg;
5844 int float_argreg;
5845 int argnum;
5846 int len = 0;
5847 int stack_offset = 0;
e17a4113 5848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5849 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5850
25ab4790
AC
5851 /* For shared libraries, "t9" needs to point at the function
5852 address. */
4c7d22cb 5853 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5854
5855 /* Set the return address register to point to the entry point of
5856 the program, where a breakpoint lies in wait. */
4c7d22cb 5857 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5858
46cac009
AC
5859 /* First ensure that the stack and structure return address (if any)
5860 are properly aligned. The stack has to be at least 64-bit
5861 aligned even on 32-bit machines, because doubles must be 64-bit
5862 aligned. For n32 and n64, stack frames need to be 128-bit
5863 aligned, so we round to this widest known alignment. */
5864
5b03f266
AC
5865 sp = align_down (sp, 16);
5866 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5867
5868 /* Now make space on the stack for the args. */
5869 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5870 {
5871 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5872
968b5391 5873 /* Allocate space on the stack. */
354ecfd5 5874 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5875 }
5b03f266 5876 sp -= align_up (len, 16);
46cac009
AC
5877
5878 if (mips_debug)
6d82d43b 5879 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5880 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5881 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5882
5883 /* Initialize the integer and float register pointers. */
4c7d22cb 5884 argreg = MIPS_A0_REGNUM;
72a155b4 5885 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5886
5887 /* The struct_return pointer occupies the first parameter-passing reg. */
5888 if (struct_return)
5889 {
5890 if (mips_debug)
5891 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5892 "mips_o64_push_dummy_call: "
5893 "struct_return reg=%d %s\n",
5af949e3 5894 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5895 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5896 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5897 }
5898
5899 /* Now load as many as possible of the first arguments into
5900 registers, and push the rest onto the stack. Loop thru args
5901 from first to last. */
5902 for (argnum = 0; argnum < nargs; argnum++)
5903 {
47a35522 5904 const gdb_byte *val;
46cac009 5905 struct value *arg = args[argnum];
4991999e 5906 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5907 int len = TYPE_LENGTH (arg_type);
5908 enum type_code typecode = TYPE_CODE (arg_type);
5909
5910 if (mips_debug)
5911 fprintf_unfiltered (gdb_stdlog,
25ab4790 5912 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5913 argnum + 1, len, (int) typecode);
5914
47a35522 5915 val = value_contents (arg);
ebafbe83 5916
ebafbe83 5917 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5918 treated specially. On 32-bit architectures, doubles are
5919 passed in register pairs; the even FP register gets the
5920 low word, and the odd FP register gets the high word.
5921 On O64, the first two floating point arguments are also
5922 copied to general registers, because MIPS16 functions
5923 don't use float registers for arguments. This duplication
5924 of arguments in general registers can't hurt non-MIPS16
5925 functions because those registers are normally skipped. */
ebafbe83 5926
74ed0bb4
MD
5927 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5928 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5929 {
e17a4113 5930 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5931 if (mips_debug)
5932 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5933 float_argreg, phex (regval, len));
9c9acae0 5934 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5935 if (mips_debug)
5936 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5937 argreg, phex (regval, len));
9c9acae0 5938 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5939 argreg++;
ebafbe83 5940 /* Reserve space for the FP register. */
1a69e1e4 5941 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5942 }
5943 else
5944 {
5945 /* Copy the argument to general registers or the stack in
5946 register-sized pieces. Large arguments are split between
5947 registers and stack. */
1a69e1e4 5948 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5949 are treated specially: Irix cc passes them in registers
5950 where gcc sometimes puts them on the stack. For maximum
5951 compatibility, we will put them in both places. */
1a69e1e4
DJ
5952 int odd_sized_struct = (len > MIPS64_REGSIZE
5953 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5954 while (len > 0)
5955 {
1a69e1e4 5956 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5957
5958 if (mips_debug)
5959 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5960 partial_len);
5961
5962 /* Write this portion of the argument to the stack. */
74ed0bb4 5963 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5964 || odd_sized_struct)
ebafbe83
MS
5965 {
5966 /* Should shorter than int integer values be
025bb325 5967 promoted to int before being stored? */
ebafbe83
MS
5968 int longword_offset = 0;
5969 CORE_ADDR addr;
72a155b4 5970 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 5971 {
1a69e1e4
DJ
5972 if ((typecode == TYPE_CODE_INT
5973 || typecode == TYPE_CODE_PTR
5974 || typecode == TYPE_CODE_FLT)
5975 && len <= 4)
5976 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
5977 }
5978
5979 if (mips_debug)
5980 {
5af949e3
UW
5981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5982 paddress (gdbarch, stack_offset));
5983 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5984 paddress (gdbarch, longword_offset));
ebafbe83
MS
5985 }
5986
5987 addr = sp + stack_offset + longword_offset;
5988
5989 if (mips_debug)
5990 {
5991 int i;
5af949e3
UW
5992 fprintf_unfiltered (gdb_stdlog, " @%s ",
5993 paddress (gdbarch, addr));
ebafbe83
MS
5994 for (i = 0; i < partial_len; i++)
5995 {
6d82d43b 5996 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
5997 val[i] & 0xff);
5998 }
5999 }
6000 write_memory (addr, val, partial_len);
6001 }
6002
6003 /* Note!!! This is NOT an else clause. Odd sized
968b5391 6004 structs may go thru BOTH paths. */
ebafbe83 6005 /* Write this portion of the argument to a general
6d82d43b 6006 purpose register. */
74ed0bb4 6007 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 6008 {
e17a4113
UW
6009 LONGEST regval = extract_signed_integer (val, partial_len,
6010 byte_order);
4246e332 6011 /* Value may need to be sign extended, because
1b13c4f6 6012 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
6013
6014 /* A non-floating-point argument being passed in a
6015 general register. If a struct or union, and if
6016 the remaining length is smaller than the register
6017 size, we have to adjust the register value on
6018 big endian targets.
6019
6020 It does not seem to be necessary to do the
025bb325 6021 same for integral types. */
480d3dd2 6022
72a155b4 6023 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 6024 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
6025 && (typecode == TYPE_CODE_STRUCT
6026 || typecode == TYPE_CODE_UNION))
1a69e1e4 6027 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 6028 * TARGET_CHAR_BIT);
ebafbe83
MS
6029
6030 if (mips_debug)
6031 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6032 argreg,
1a69e1e4 6033 phex (regval, MIPS64_REGSIZE));
9c9acae0 6034 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
6035 argreg++;
6036
6037 /* Prevent subsequent floating point arguments from
6038 being passed in floating point registers. */
74ed0bb4 6039 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
6040 }
6041
6042 len -= partial_len;
6043 val += partial_len;
6044
b021a221
MS
6045 /* Compute the offset into the stack at which we will
6046 copy the next parameter.
ebafbe83 6047
6d82d43b
AC
6048 In older ABIs, the caller reserved space for
6049 registers that contained arguments. This was loosely
6050 refered to as their "home". Consequently, space is
6051 always allocated. */
ebafbe83 6052
1a69e1e4 6053 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
6054 }
6055 }
6056 if (mips_debug)
6057 fprintf_unfiltered (gdb_stdlog, "\n");
6058 }
6059
f10683bb 6060 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 6061
ebafbe83
MS
6062 /* Return adjusted stack pointer. */
6063 return sp;
6064}
6065
9c8fdbfa 6066static enum return_value_convention
6a3a010b 6067mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 6068 struct type *type, struct regcache *regcache,
47a35522 6069 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 6070{
6a3a010b 6071 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 6072 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 6073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 6074 enum mips_fval_reg fval_reg;
7a076fd2 6075
6a3a010b 6076 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
6077 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6078 || TYPE_CODE (type) == TYPE_CODE_UNION
6079 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6080 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 6081 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 6082 {
6a3a010b
MR
6083 /* A floating-point value. If reading in or copying, then we get it
6084 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6085 If writing out only, then we put it to both FP0 and GPR2. We do
6086 not support reading in with no function known, if this safety
6087 check ever triggers, then we'll have to try harder. */
6088 gdb_assert (function || !readbuf);
7a076fd2 6089 if (mips_debug)
6a3a010b
MR
6090 switch (fval_reg)
6091 {
6092 case mips_fval_fpr:
6093 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6094 break;
6095 case mips_fval_gpr:
6096 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6097 break;
6098 case mips_fval_both:
6099 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6100 break;
6101 }
6102 if (fval_reg != mips_fval_gpr)
6103 mips_xfer_register (gdbarch, regcache,
6104 (gdbarch_num_regs (gdbarch)
6105 + mips_regnum (gdbarch)->fp0),
6106 TYPE_LENGTH (type),
6107 gdbarch_byte_order (gdbarch),
6108 readbuf, writebuf, 0);
6109 if (fval_reg != mips_fval_fpr)
6110 mips_xfer_register (gdbarch, regcache,
6111 gdbarch_num_regs (gdbarch) + 2,
6112 TYPE_LENGTH (type),
6113 gdbarch_byte_order (gdbarch),
6114 readbuf, writebuf, 0);
7a076fd2
FF
6115 return RETURN_VALUE_REGISTER_CONVENTION;
6116 }
6117 else
6118 {
6119 /* A scalar extract each part but least-significant-byte
025bb325 6120 justified. */
7a076fd2
FF
6121 int offset;
6122 int regnum;
6123 for (offset = 0, regnum = MIPS_V0_REGNUM;
6124 offset < TYPE_LENGTH (type);
1a69e1e4 6125 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 6126 {
1a69e1e4 6127 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
6128 if (offset + xfer > TYPE_LENGTH (type))
6129 xfer = TYPE_LENGTH (type) - offset;
6130 if (mips_debug)
6131 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6132 offset, xfer, regnum);
ba32f989
DJ
6133 mips_xfer_register (gdbarch, regcache,
6134 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 6135 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 6136 readbuf, writebuf, offset);
7a076fd2
FF
6137 }
6138 return RETURN_VALUE_REGISTER_CONVENTION;
6139 }
6d82d43b
AC
6140}
6141
dd824b04
DJ
6142/* Floating point register management.
6143
6144 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6145 64bit operations, these early MIPS cpus treat fp register pairs
6146 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6147 registers and offer a compatibility mode that emulates the MIPS2 fp
6148 model. When operating in MIPS2 fp compat mode, later cpu's split
6149 double precision floats into two 32-bit chunks and store them in
6150 consecutive fp regs. To display 64-bit floats stored in this
6151 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6152 Throw in user-configurable endianness and you have a real mess.
6153
6154 The way this works is:
6155 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6156 double-precision value will be split across two logical registers.
6157 The lower-numbered logical register will hold the low-order bits,
6158 regardless of the processor's endianness.
6159 - If we are on a 64-bit processor, and we are looking for a
6160 single-precision value, it will be in the low ordered bits
6161 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6162 save slot in memory.
6163 - If we are in 64-bit mode, everything is straightforward.
6164
6165 Note that this code only deals with "live" registers at the top of the
6166 stack. We will attempt to deal with saved registers later, when
025bb325 6167 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6168 interface that can deal with dynamic saved register sizes -- fp
6169 regs could be 32 bits wide in one frame and 64 on the frame above
6170 and below). */
6171
6172/* Copy a 32-bit single-precision value from the current frame
6173 into rare_buffer. */
6174
6175static void
e11c53d2 6176mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6177 gdb_byte *rare_buffer)
dd824b04 6178{
72a155b4
UW
6179 struct gdbarch *gdbarch = get_frame_arch (frame);
6180 int raw_size = register_size (gdbarch, regno);
224c3ddb 6181 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
dd824b04 6182
ca9d61b9 6183 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6184 error (_("can't read register %d (%s)"),
72a155b4 6185 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6186 if (raw_size == 8)
6187 {
6188 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6189 32 bits. */
dd824b04
DJ
6190 int offset;
6191
72a155b4 6192 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6193 offset = 4;
6194 else
6195 offset = 0;
6196
6197 memcpy (rare_buffer, raw_buffer + offset, 4);
6198 }
6199 else
6200 {
6201 memcpy (rare_buffer, raw_buffer, 4);
6202 }
6203}
6204
6205/* Copy a 64-bit double-precision value from the current frame into
6206 rare_buffer. This may include getting half of it from the next
6207 register. */
6208
6209static void
e11c53d2 6210mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6211 gdb_byte *rare_buffer)
dd824b04 6212{
72a155b4
UW
6213 struct gdbarch *gdbarch = get_frame_arch (frame);
6214 int raw_size = register_size (gdbarch, regno);
dd824b04 6215
9c9acae0 6216 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6217 {
6218 /* We have a 64-bit value for this register, and we should use
6d82d43b 6219 all 64 bits. */
ca9d61b9 6220 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6221 error (_("can't read register %d (%s)"),
72a155b4 6222 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6223 }
6224 else
6225 {
72a155b4 6226 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6227
72a155b4 6228 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6229 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6230 _("mips_read_fp_register_double: bad access to "
6231 "odd-numbered FP register"));
dd824b04
DJ
6232
6233 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6234 each register. */
72a155b4 6235 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6236 {
e11c53d2
AC
6237 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6238 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6239 }
361d1df0 6240 else
dd824b04 6241 {
e11c53d2
AC
6242 mips_read_fp_register_single (frame, regno, rare_buffer);
6243 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6244 }
6245 }
6246}
6247
c906108c 6248static void
e11c53d2
AC
6249mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6250 int regnum)
025bb325 6251{ /* Do values for FP (float) regs. */
72a155b4 6252 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6253 gdb_byte *raw_buffer;
025bb325 6254 double doub, flt1; /* Doubles extracted from raw hex data. */
3903d437 6255 int inv1, inv2;
c5aa993b 6256
224c3ddb
SM
6257 raw_buffer
6258 = ((gdb_byte *)
6259 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
c906108c 6260
72a155b4 6261 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6262 fprintf_filtered (file, "%*s",
72a155b4 6263 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6264 "");
f0ef6b29 6265
72a155b4 6266 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6267 {
79a45b7d
TT
6268 struct value_print_options opts;
6269
f0ef6b29
KB
6270 /* 4-byte registers: Print hex and floating. Also print even
6271 numbered registers as doubles. */
e11c53d2 6272 mips_read_fp_register_single (frame, regnum, raw_buffer);
025bb325
MS
6273 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6274 raw_buffer, &inv1);
c5aa993b 6275
79a45b7d 6276 get_formatted_print_options (&opts, 'x');
df4df182
UW
6277 print_scalar_formatted (raw_buffer,
6278 builtin_type (gdbarch)->builtin_uint32,
6279 &opts, 'w', file);
dd824b04 6280
e11c53d2 6281 fprintf_filtered (file, " flt: ");
1adad886 6282 if (inv1)
e11c53d2 6283 fprintf_filtered (file, " <invalid float> ");
1adad886 6284 else
e11c53d2 6285 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6286
72a155b4 6287 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6288 {
e11c53d2 6289 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6290 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6291 raw_buffer, &inv2);
1adad886 6292
e11c53d2 6293 fprintf_filtered (file, " dbl: ");
f0ef6b29 6294 if (inv2)
e11c53d2 6295 fprintf_filtered (file, "<invalid double>");
f0ef6b29 6296 else
e11c53d2 6297 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 6298 }
c906108c
SS
6299 }
6300 else
dd824b04 6301 {
79a45b7d
TT
6302 struct value_print_options opts;
6303
f0ef6b29 6304 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6305 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745
UW
6306 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6307 raw_buffer, &inv1);
c906108c 6308
e11c53d2 6309 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6310 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6311 raw_buffer, &inv2);
f0ef6b29 6312
79a45b7d 6313 get_formatted_print_options (&opts, 'x');
df4df182
UW
6314 print_scalar_formatted (raw_buffer,
6315 builtin_type (gdbarch)->builtin_uint64,
6316 &opts, 'g', file);
f0ef6b29 6317
e11c53d2 6318 fprintf_filtered (file, " flt: ");
1adad886 6319 if (inv1)
e11c53d2 6320 fprintf_filtered (file, "<invalid float>");
1adad886 6321 else
e11c53d2 6322 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6323
e11c53d2 6324 fprintf_filtered (file, " dbl: ");
f0ef6b29 6325 if (inv2)
e11c53d2 6326 fprintf_filtered (file, "<invalid double>");
1adad886 6327 else
e11c53d2 6328 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
6329 }
6330}
6331
6332static void
e11c53d2 6333mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6334 int regnum)
f0ef6b29 6335{
a4b8ebc8 6336 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6337 struct value_print_options opts;
de15c4ab 6338 struct value *val;
1adad886 6339
004159a2 6340 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6341 {
e11c53d2 6342 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6343 return;
6344 }
6345
de15c4ab 6346 val = get_frame_register_value (frame, regnum);
f0ef6b29 6347
72a155b4 6348 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6349
6350 /* The problem with printing numeric register names (r26, etc.) is that
6351 the user can't use them on input. Probably the best solution is to
6352 fix it so that either the numeric or the funky (a2, etc.) names
6353 are accepted on input. */
6354 if (regnum < MIPS_NUMREGS)
e11c53d2 6355 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6356 else
e11c53d2 6357 fprintf_filtered (file, ": ");
f0ef6b29 6358
79a45b7d 6359 get_formatted_print_options (&opts, 'x');
de15c4ab 6360 val_print_scalar_formatted (value_type (val),
de15c4ab
PA
6361 value_embedded_offset (val),
6362 val,
6363 &opts, 0, file);
c906108c
SS
6364}
6365
1bab7383
YQ
6366/* Print IEEE exception condition bits in FLAGS. */
6367
6368static void
6369print_fpu_flags (struct ui_file *file, int flags)
6370{
6371 if (flags & (1 << 0))
6372 fputs_filtered (" inexact", file);
6373 if (flags & (1 << 1))
6374 fputs_filtered (" uflow", file);
6375 if (flags & (1 << 2))
6376 fputs_filtered (" oflow", file);
6377 if (flags & (1 << 3))
6378 fputs_filtered (" div0", file);
6379 if (flags & (1 << 4))
6380 fputs_filtered (" inval", file);
6381 if (flags & (1 << 5))
6382 fputs_filtered (" unimp", file);
6383 fputc_filtered ('\n', file);
6384}
6385
6386/* Print interesting information about the floating point processor
6387 (if present) or emulator. */
6388
6389static void
6390mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6391 struct frame_info *frame, const char *args)
6392{
6393 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6394 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6395 ULONGEST fcs = 0;
6396 int i;
6397
6398 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6399 type = MIPS_FPU_NONE;
6400
6401 fprintf_filtered (file, "fpu type: %s\n",
6402 type == MIPS_FPU_DOUBLE ? "double-precision"
6403 : type == MIPS_FPU_SINGLE ? "single-precision"
6404 : "none / unused");
6405
6406 if (type == MIPS_FPU_NONE)
6407 return;
6408
6409 fprintf_filtered (file, "reg size: %d bits\n",
6410 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6411
6412 fputs_filtered ("cond :", file);
6413 if (fcs & (1 << 23))
6414 fputs_filtered (" 0", file);
6415 for (i = 1; i <= 7; i++)
6416 if (fcs & (1 << (24 + i)))
6417 fprintf_filtered (file, " %d", i);
6418 fputc_filtered ('\n', file);
6419
6420 fputs_filtered ("cause :", file);
6421 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6422 fputs ("mask :", stdout);
6423 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6424 fputs ("flags :", stdout);
6425 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6426
6427 fputs_filtered ("rounding: ", file);
6428 switch (fcs & 3)
6429 {
6430 case 0: fputs_filtered ("nearest\n", file); break;
6431 case 1: fputs_filtered ("zero\n", file); break;
6432 case 2: fputs_filtered ("+inf\n", file); break;
6433 case 3: fputs_filtered ("-inf\n", file); break;
6434 }
6435
6436 fputs_filtered ("flush :", file);
6437 if (fcs & (1 << 21))
6438 fputs_filtered (" nearest", file);
6439 if (fcs & (1 << 22))
6440 fputs_filtered (" override", file);
6441 if (fcs & (1 << 24))
6442 fputs_filtered (" zero", file);
6443 if ((fcs & (0xb << 21)) == 0)
6444 fputs_filtered (" no", file);
6445 fputc_filtered ('\n', file);
6446
6447 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6448 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6449 fputc_filtered ('\n', file);
6450
6451 default_print_float_info (gdbarch, file, frame, args);
6452}
6453
f0ef6b29
KB
6454/* Replacement for generic do_registers_info.
6455 Print regs in pretty columns. */
6456
6457static int
e11c53d2
AC
6458print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6459 int regnum)
f0ef6b29 6460{
e11c53d2
AC
6461 fprintf_filtered (file, " ");
6462 mips_print_fp_register (file, frame, regnum);
6463 fprintf_filtered (file, "\n");
f0ef6b29
KB
6464 return regnum + 1;
6465}
6466
6467
025bb325 6468/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6469
6470static int
e11c53d2 6471print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6472 int start_regnum)
c906108c 6473{
a4b8ebc8 6474 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6475 /* Do values for GP (int) regs. */
47a35522 6476 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
025bb325
MS
6477 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6478 per row. */
c906108c 6479 int col, byte;
a4b8ebc8 6480 int regnum;
c906108c 6481
025bb325 6482 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6483 for (col = 0, regnum = start_regnum;
72a155b4
UW
6484 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6485 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6486 regnum++)
c906108c 6487 {
72a155b4 6488 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6489 continue; /* unused register */
004159a2 6490 if (mips_float_register_p (gdbarch, regnum))
025bb325 6491 break; /* End the row: reached FP register. */
0cc93a06 6492 /* Large registers are handled separately. */
72a155b4 6493 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6494 {
6495 if (col > 0)
6496 break; /* End the row before this register. */
6497
6498 /* Print this register on a row by itself. */
6499 mips_print_register (file, frame, regnum);
6500 fprintf_filtered (file, "\n");
6501 return regnum + 1;
6502 }
d05f6826
DJ
6503 if (col == 0)
6504 fprintf_filtered (file, " ");
6d82d43b 6505 fprintf_filtered (file,
72a155b4
UW
6506 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6507 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6508 col++;
6509 }
d05f6826
DJ
6510
6511 if (col == 0)
6512 return regnum;
6513
025bb325 6514 /* Print the R0 to R31 names. */
72a155b4 6515 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6516 fprintf_filtered (file, "\n R%-4d",
72a155b4 6517 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6518 else
6519 fprintf_filtered (file, "\n ");
c906108c 6520
025bb325 6521 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6522 for (col = 0, regnum = start_regnum;
72a155b4
UW
6523 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6524 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6525 regnum++)
c906108c 6526 {
72a155b4 6527 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6528 continue; /* unused register */
004159a2 6529 if (mips_float_register_p (gdbarch, regnum))
025bb325 6530 break; /* End row: reached FP register. */
72a155b4 6531 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6532 break; /* End row: large register. */
6533
c906108c 6534 /* OK: get the data in raw format. */
ca9d61b9 6535 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
c9f4d572 6536 error (_("can't read register %d (%s)"),
72a155b4 6537 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 6538 /* pad small registers */
4246e332 6539 for (byte = 0;
72a155b4
UW
6540 byte < (mips_abi_regsize (gdbarch)
6541 - register_size (gdbarch, regnum)); byte++)
c906108c 6542 printf_filtered (" ");
025bb325 6543 /* Now print the register value in hex, endian order. */
72a155b4 6544 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6545 for (byte =
72a155b4
UW
6546 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6547 byte < register_size (gdbarch, regnum); byte++)
47a35522 6548 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6549 else
72a155b4 6550 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6551 byte >= 0; byte--)
47a35522 6552 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6553 fprintf_filtered (file, " ");
c906108c
SS
6554 col++;
6555 }
025bb325 6556 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6557 fprintf_filtered (file, "\n");
c906108c
SS
6558
6559 return regnum;
6560}
6561
025bb325 6562/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6563
bf1f5b4c 6564static void
e11c53d2
AC
6565mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6566 struct frame_info *frame, int regnum, int all)
c906108c 6567{
025bb325 6568 if (regnum != -1) /* Do one specified register. */
c906108c 6569 {
72a155b4
UW
6570 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6571 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6572 error (_("Not a valid register for the current processor type"));
c906108c 6573
0cc93a06 6574 mips_print_register (file, frame, regnum);
e11c53d2 6575 fprintf_filtered (file, "\n");
c906108c 6576 }
c5aa993b 6577 else
025bb325 6578 /* Do all (or most) registers. */
c906108c 6579 {
72a155b4
UW
6580 regnum = gdbarch_num_regs (gdbarch);
6581 while (regnum < gdbarch_num_regs (gdbarch)
6582 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6583 {
004159a2 6584 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6585 {
025bb325 6586 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6587 regnum = print_fp_register_row (file, frame, regnum);
6588 else
025bb325 6589 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6590 }
c906108c 6591 else
e11c53d2 6592 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6593 }
6594 }
6595}
6596
63807e1d 6597static int
3352ef37
AC
6598mips_single_step_through_delay (struct gdbarch *gdbarch,
6599 struct frame_info *frame)
c906108c 6600{
e17a4113 6601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3352ef37 6602 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6603 struct address_space *aspace;
6604 enum mips_isa isa;
6605 ULONGEST insn;
6606 int status;
6607 int size;
6608
6609 if ((mips_pc_is_mips (pc)
ab50adb6 6610 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
4cc0665f 6611 || (mips_pc_is_micromips (gdbarch, pc)
ab50adb6 6612 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
4cc0665f 6613 || (mips_pc_is_mips16 (gdbarch, pc)
ab50adb6 6614 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6615 return 0;
6616
4cc0665f
MR
6617 isa = mips_pc_isa (gdbarch, pc);
6618 /* _has_delay_slot above will have validated the read. */
6619 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6620 size = mips_insn_size (isa, insn);
6621 aspace = get_frame_address_space (frame);
6622 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6623}
6624
6d82d43b
AC
6625/* To skip prologues, I use this predicate. Returns either PC itself
6626 if the code at PC does not look like a function prologue; otherwise
6627 returns an address that (if we're lucky) follows the prologue. If
6628 LENIENT, then we must skip everything which is involved in setting
6629 up the frame (it's OK to skip more, just so long as we don't skip
6630 anything which might clobber the registers which are being saved.
6631 We must skip more in the case where part of the prologue is in the
6632 delay slot of a non-prologue instruction). */
6633
6634static CORE_ADDR
6093d2eb 6635mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6636{
8b622e6a
AC
6637 CORE_ADDR limit_pc;
6638 CORE_ADDR func_addr;
6639
6d82d43b
AC
6640 /* See if we can determine the end of the prologue via the symbol table.
6641 If so, then return either PC, or the PC after the prologue, whichever
6642 is greater. */
8b622e6a
AC
6643 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6644 {
d80b854b
UW
6645 CORE_ADDR post_prologue_pc
6646 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a 6647 if (post_prologue_pc != 0)
325fac50 6648 return std::max (pc, post_prologue_pc);
8b622e6a 6649 }
6d82d43b
AC
6650
6651 /* Can't determine prologue from the symbol table, need to examine
6652 instructions. */
6653
98b4dd94
JB
6654 /* Find an upper limit on the function prologue using the debug
6655 information. If the debug information could not be used to provide
6656 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6657 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6658 if (limit_pc == 0)
6659 limit_pc = pc + 100; /* Magic. */
6660
4cc0665f 6661 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6662 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6663 else if (mips_pc_is_micromips (gdbarch, pc))
6664 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6665 else
e17a4113 6666 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6667}
6668
c9cf6e20
MG
6669/* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6670 This is a helper function for mips_stack_frame_destroyed_p. */
6671
97ab0fdd 6672static int
c9cf6e20 6673mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6674{
6675 CORE_ADDR func_addr = 0, func_end = 0;
6676
6677 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6678 {
6679 /* The MIPS epilogue is max. 12 bytes long. */
6680 CORE_ADDR addr = func_end - 12;
6681
6682 if (addr < func_addr + 4)
6683 addr = func_addr + 4;
6684 if (pc < addr)
6685 return 0;
6686
6687 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6688 {
6689 unsigned long high_word;
6690 unsigned long inst;
6691
4cc0665f 6692 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6693 high_word = (inst >> 16) & 0xffff;
6694
6695 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6696 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6697 && inst != 0x03e00008 /* jr $ra */
6698 && inst != 0x00000000) /* nop */
6699 return 0;
6700 }
6701
6702 return 1;
6703 }
6704
6705 return 0;
6706}
6707
c9cf6e20
MG
6708/* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6709 This is a helper function for mips_stack_frame_destroyed_p. */
4cc0665f
MR
6710
6711static int
c9cf6e20 6712micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
6713{
6714 CORE_ADDR func_addr = 0;
6715 CORE_ADDR func_end = 0;
6716 CORE_ADDR addr;
6717 ULONGEST insn;
6718 long offset;
6719 int dreg;
6720 int sreg;
6721 int loc;
6722
6723 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6724 return 0;
6725
6726 /* The microMIPS epilogue is max. 12 bytes long. */
6727 addr = func_end - 12;
6728
6729 if (addr < func_addr + 2)
6730 addr = func_addr + 2;
6731 if (pc < addr)
6732 return 0;
6733
6734 for (; pc < func_end; pc += loc)
6735 {
6736 loc = 0;
6737 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6738 loc += MIPS_INSN16_SIZE;
6739 switch (mips_insn_size (ISA_MICROMIPS, insn))
6740 {
4cc0665f
MR
6741 /* 32-bit instructions. */
6742 case 2 * MIPS_INSN16_SIZE:
6743 insn <<= 16;
6744 insn |= mips_fetch_instruction (gdbarch,
6745 ISA_MICROMIPS, pc + loc, NULL);
6746 loc += MIPS_INSN16_SIZE;
6747 switch (micromips_op (insn >> 16))
6748 {
6749 case 0xc: /* ADDIU: bits 001100 */
6750 case 0x17: /* DADDIU: bits 010111 */
6751 sreg = b0s5_reg (insn >> 16);
6752 dreg = b5s5_reg (insn >> 16);
6753 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6754 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6755 /* (D)ADDIU $sp, imm */
6756 && offset >= 0)
6757 break;
6758 return 0;
6759
6760 default:
6761 return 0;
6762 }
6763 break;
6764
6765 /* 16-bit instructions. */
6766 case MIPS_INSN16_SIZE:
6767 switch (micromips_op (insn))
6768 {
6769 case 0x3: /* MOVE: bits 000011 */
6770 sreg = b0s5_reg (insn);
6771 dreg = b5s5_reg (insn);
6772 if (sreg == 0 && dreg == 0)
6773 /* MOVE $zero, $zero aka NOP */
6774 break;
6775 return 0;
6776
6777 case 0x11: /* POOL16C: bits 010001 */
6778 if (b5s5_op (insn) == 0x18
6779 /* JRADDIUSP: bits 010011 11000 */
6780 || (b5s5_op (insn) == 0xd
6781 /* JRC: bits 010011 01101 */
6782 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6783 /* JRC $ra */
6784 break;
6785 return 0;
6786
6787 case 0x13: /* POOL16D: bits 010011 */
6788 offset = micromips_decode_imm9 (b1s9_imm (insn));
6789 if ((insn & 0x1) == 0x1
6790 /* ADDIUSP: bits 010011 1 */
6791 && offset > 0)
6792 break;
6793 return 0;
6794
6795 default:
6796 return 0;
6797 }
6798 }
6799 }
6800
6801 return 1;
6802}
6803
c9cf6e20
MG
6804/* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6805 This is a helper function for mips_stack_frame_destroyed_p. */
6806
97ab0fdd 6807static int
c9cf6e20 6808mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6809{
6810 CORE_ADDR func_addr = 0, func_end = 0;
6811
6812 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6813 {
6814 /* The MIPS epilogue is max. 12 bytes long. */
6815 CORE_ADDR addr = func_end - 12;
6816
6817 if (addr < func_addr + 4)
6818 addr = func_addr + 4;
6819 if (pc < addr)
6820 return 0;
6821
6822 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6823 {
6824 unsigned short inst;
6825
4cc0665f 6826 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6827
6828 if ((inst & 0xf800) == 0xf000) /* extend */
6829 continue;
6830
6831 if (inst != 0x6300 /* addiu $sp,offset */
6832 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6833 && inst != 0xe820 /* jr $ra */
6834 && inst != 0xe8a0 /* jrc $ra */
6835 && inst != 0x6500) /* nop */
6836 return 0;
6837 }
6838
6839 return 1;
6840 }
6841
6842 return 0;
6843}
6844
c9cf6e20
MG
6845/* Implement the stack_frame_destroyed_p gdbarch method.
6846
6847 The epilogue is defined here as the area at the end of a function,
97ab0fdd 6848 after an instruction which destroys the function's stack frame. */
c9cf6e20 6849
97ab0fdd 6850static int
c9cf6e20 6851mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd 6852{
4cc0665f 6853 if (mips_pc_is_mips16 (gdbarch, pc))
c9cf6e20 6854 return mips16_stack_frame_destroyed_p (gdbarch, pc);
4cc0665f 6855 else if (mips_pc_is_micromips (gdbarch, pc))
c9cf6e20 6856 return micromips_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd 6857 else
c9cf6e20 6858 return mips32_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd
MR
6859}
6860
025bb325 6861/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6862 used for all MIPS-specific commands. */
6863
a5ea2558 6864static void
acdb74a0 6865show_mips_command (char *args, int from_tty)
a5ea2558
AC
6866{
6867 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6868}
6869
a5ea2558 6870static void
acdb74a0 6871set_mips_command (char *args, int from_tty)
a5ea2558 6872{
6d82d43b
AC
6873 printf_unfiltered
6874 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6875 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6876}
6877
c906108c
SS
6878/* Commands to show/set the MIPS FPU type. */
6879
c906108c 6880static void
acdb74a0 6881show_mipsfpu_command (char *args, int from_tty)
c906108c 6882{
c906108c 6883 char *fpu;
6ca0852e 6884
f5656ead 6885 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6886 {
6887 printf_unfiltered
6888 ("The MIPS floating-point coprocessor is unknown "
6889 "because the current architecture is not MIPS.\n");
6890 return;
6891 }
6892
f5656ead 6893 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6894 {
6895 case MIPS_FPU_SINGLE:
6896 fpu = "single-precision";
6897 break;
6898 case MIPS_FPU_DOUBLE:
6899 fpu = "double-precision";
6900 break;
6901 case MIPS_FPU_NONE:
6902 fpu = "absent (none)";
6903 break;
93d56215 6904 default:
e2e0b3e5 6905 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6906 }
6907 if (mips_fpu_type_auto)
025bb325
MS
6908 printf_unfiltered ("The MIPS floating-point coprocessor "
6909 "is set automatically (currently %s)\n",
6910 fpu);
c906108c 6911 else
6d82d43b
AC
6912 printf_unfiltered
6913 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6914}
6915
6916
c906108c 6917static void
acdb74a0 6918set_mipsfpu_command (char *args, int from_tty)
c906108c 6919{
025bb325
MS
6920 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6921 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6922 show_mipsfpu_command (args, from_tty);
6923}
6924
c906108c 6925static void
acdb74a0 6926set_mipsfpu_single_command (char *args, int from_tty)
c906108c 6927{
8d5838b5
AC
6928 struct gdbarch_info info;
6929 gdbarch_info_init (&info);
c906108c
SS
6930 mips_fpu_type = MIPS_FPU_SINGLE;
6931 mips_fpu_type_auto = 0;
8d5838b5
AC
6932 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6933 instead of relying on globals. Doing that would let generic code
6934 handle the search for this specific architecture. */
6935 if (!gdbarch_update_p (info))
e2e0b3e5 6936 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6937}
6938
c906108c 6939static void
acdb74a0 6940set_mipsfpu_double_command (char *args, int from_tty)
c906108c 6941{
8d5838b5
AC
6942 struct gdbarch_info info;
6943 gdbarch_info_init (&info);
c906108c
SS
6944 mips_fpu_type = MIPS_FPU_DOUBLE;
6945 mips_fpu_type_auto = 0;
8d5838b5
AC
6946 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6947 instead of relying on globals. Doing that would let generic code
6948 handle the search for this specific architecture. */
6949 if (!gdbarch_update_p (info))
e2e0b3e5 6950 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6951}
6952
c906108c 6953static void
acdb74a0 6954set_mipsfpu_none_command (char *args, int from_tty)
c906108c 6955{
8d5838b5
AC
6956 struct gdbarch_info info;
6957 gdbarch_info_init (&info);
c906108c
SS
6958 mips_fpu_type = MIPS_FPU_NONE;
6959 mips_fpu_type_auto = 0;
8d5838b5
AC
6960 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6961 instead of relying on globals. Doing that would let generic code
6962 handle the search for this specific architecture. */
6963 if (!gdbarch_update_p (info))
e2e0b3e5 6964 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6965}
6966
c906108c 6967static void
acdb74a0 6968set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
6969{
6970 mips_fpu_type_auto = 1;
6971}
6972
c906108c
SS
6973/* Just like reinit_frame_cache, but with the right arguments to be
6974 callable as an sfunc. */
6975
6976static void
acdb74a0
AC
6977reinit_frame_cache_sfunc (char *args, int from_tty,
6978 struct cmd_list_element *c)
c906108c
SS
6979{
6980 reinit_frame_cache ();
6981}
6982
a89aa300
AC
6983static int
6984gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 6985{
19ba03f4 6986 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
4cc0665f 6987
d31431ed
AC
6988 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6989 disassembler needs to be able to locally determine the ISA, and
6990 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6991 work. */
4cc0665f 6992 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 6993 info->mach = bfd_mach_mips16;
4cc0665f
MR
6994 else if (mips_pc_is_micromips (gdbarch, memaddr))
6995 info->mach = bfd_mach_mips_micromips;
c906108c
SS
6996
6997 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
6998 memaddr &= (info->mach == bfd_mach_mips16
6999 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 7000
e5ab0dce 7001 /* Set the disassembler options. */
9dae60cc 7002 if (!info->disassembler_options)
e5ab0dce
AC
7003 /* This string is not recognized explicitly by the disassembler,
7004 but it tells the disassembler to not try to guess the ABI from
7005 the bfd elf headers, such that, if the user overrides the ABI
7006 of a program linked as NewABI, the disassembly will follow the
7007 register naming conventions specified by the user. */
7008 info->disassembler_options = "gpr-names=32";
7009
c906108c 7010 /* Call the appropriate disassembler based on the target endian-ness. */
40887e1a 7011 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
7012 return print_insn_big_mips (memaddr, info);
7013 else
7014 return print_insn_little_mips (memaddr, info);
7015}
7016
9dae60cc
UW
7017static int
7018gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7019{
7020 /* Set up the disassembler info, so that we get the right
7021 register names from libopcodes. */
7022 info->disassembler_options = "gpr-names=n32";
7023 info->flavour = bfd_target_elf_flavour;
7024
7025 return gdb_print_insn_mips (memaddr, info);
7026}
7027
7028static int
7029gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7030{
7031 /* Set up the disassembler info, so that we get the right
7032 register names from libopcodes. */
7033 info->disassembler_options = "gpr-names=64";
7034 info->flavour = bfd_target_elf_flavour;
7035
7036 return gdb_print_insn_mips (memaddr, info);
7037}
7038
cd6c3b4f
YQ
7039/* Implement the breakpoint_kind_from_pc gdbarch method. */
7040
d19280ad
YQ
7041static int
7042mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
c906108c 7043{
4cc0665f
MR
7044 CORE_ADDR pc = *pcptr;
7045
d19280ad 7046 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7047 {
d19280ad
YQ
7048 *pcptr = unmake_compact_addr (pc);
7049 return MIPS_BP_KIND_MIPS16;
7050 }
7051 else if (mips_pc_is_micromips (gdbarch, pc))
7052 {
7053 ULONGEST insn;
7054 int status;
c906108c 7055
d19280ad
YQ
7056 *pcptr = unmake_compact_addr (pc);
7057 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7058 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7059 return MIPS_BP_KIND_MICROMIPS16;
7060 else
7061 return MIPS_BP_KIND_MICROMIPS32;
c906108c
SS
7062 }
7063 else
d19280ad
YQ
7064 return MIPS_BP_KIND_MIPS32;
7065}
7066
cd6c3b4f
YQ
7067/* Implement the sw_breakpoint_from_kind gdbarch method. */
7068
d19280ad
YQ
7069static const gdb_byte *
7070mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7071{
7072 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7073
7074 switch (kind)
c906108c 7075 {
d19280ad
YQ
7076 case MIPS_BP_KIND_MIPS16:
7077 {
7078 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7079 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7080
7081 *size = 2;
7082 if (byte_order_for_code == BFD_ENDIAN_BIG)
7083 return mips16_big_breakpoint;
7084 else
c906108c 7085 return mips16_little_breakpoint;
d19280ad
YQ
7086 }
7087 case MIPS_BP_KIND_MICROMIPS16:
7088 {
7089 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7090 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7091
7092 *size = 2;
7093
7094 if (byte_order_for_code == BFD_ENDIAN_BIG)
7095 return micromips16_big_breakpoint;
7096 else
7097 return micromips16_little_breakpoint;
7098 }
7099 case MIPS_BP_KIND_MICROMIPS32:
7100 {
7101 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7102 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7103
7104 *size = 4;
7105 if (byte_order_for_code == BFD_ENDIAN_BIG)
7106 return micromips32_big_breakpoint;
7107 else
7108 return micromips32_little_breakpoint;
7109 }
7110 case MIPS_BP_KIND_MIPS32:
7111 {
7112 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7113 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
c906108c 7114
d19280ad
YQ
7115 *size = 4;
7116 if (byte_order_for_code == BFD_ENDIAN_BIG)
7117 return big_breakpoint;
7118 else
7e3d947d 7119 return little_breakpoint;
d19280ad
YQ
7120 }
7121 default:
7122 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7123 };
c906108c
SS
7124}
7125
ab50adb6
MR
7126/* Return non-zero if the standard MIPS instruction INST has a branch
7127 delay slot (i.e. it is a jump or branch instruction). This function
7128 is based on mips32_next_pc. */
c8cef75f
MR
7129
7130static int
ab50adb6 7131mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
c8cef75f 7132{
c8cef75f 7133 int op;
a385295e
MR
7134 int rs;
7135 int rt;
c8cef75f 7136
c8cef75f
MR
7137 op = itype_op (inst);
7138 if ((inst & 0xe0000000) != 0)
a385295e
MR
7139 {
7140 rs = itype_rs (inst);
7141 rt = itype_rt (inst);
f94363d7
AP
7142 return (is_octeon_bbit_op (op, gdbarch)
7143 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
7144 || op == 29 /* JALX: bits 011101 */
7145 || (op == 17
7146 && (rs == 8
c8cef75f 7147 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7148 || (rs == 9 && (rt & 0x2) == 0)
7149 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7150 || (rs == 10 && (rt & 0x2) == 0))));
7151 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7152 }
c8cef75f
MR
7153 else
7154 switch (op & 0x07) /* extract bits 28,27,26 */
7155 {
7156 case 0: /* SPECIAL */
7157 op = rtype_funct (inst);
7158 return (op == 8 /* JR */
7159 || op == 9); /* JALR */
7160 break; /* end SPECIAL */
7161 case 1: /* REGIMM */
a385295e
MR
7162 rs = itype_rs (inst);
7163 rt = itype_rt (inst); /* branch condition */
7164 return ((rt & 0xc) == 0
c8cef75f
MR
7165 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7166 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7167 || ((rt & 0x1e) == 0x1c && rs == 0));
7168 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7169 break; /* end REGIMM */
7170 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7171 return 1;
7172 break;
7173 }
7174}
7175
ab50adb6
MR
7176/* Return non-zero if a standard MIPS instruction at ADDR has a branch
7177 delay slot (i.e. it is a jump or branch instruction). */
c8cef75f 7178
4cc0665f 7179static int
ab50adb6 7180mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
4cc0665f
MR
7181{
7182 ULONGEST insn;
7183 int status;
7184
ab50adb6 7185 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
4cc0665f
MR
7186 if (status)
7187 return 0;
7188
ab50adb6
MR
7189 return mips32_instruction_has_delay_slot (gdbarch, insn);
7190}
4cc0665f 7191
ab50adb6
MR
7192/* Return non-zero if the microMIPS instruction INSN, comprising the
7193 16-bit major opcode word in the high 16 bits and any second word
7194 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7195 jump or branch instruction). The instruction must be 32-bit if
7196 MUSTBE32 is set or can be any instruction otherwise. */
7197
7198static int
7199micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7200{
7201 ULONGEST major = insn >> 16;
4cc0665f 7202
ab50adb6
MR
7203 switch (micromips_op (major))
7204 {
7205 /* 16-bit instructions. */
7206 case 0x33: /* B16: bits 110011 */
7207 case 0x2b: /* BNEZ16: bits 101011 */
7208 case 0x23: /* BEQZ16: bits 100011 */
7209 return !mustbe32;
7210 case 0x11: /* POOL16C: bits 010001 */
7211 return (!mustbe32
7212 && ((b5s5_op (major) == 0xc
7213 /* JR16: bits 010001 01100 */
7214 || (b5s5_op (major) & 0x1e) == 0xe)));
7215 /* JALR16, JALRS16: bits 010001 0111x */
7216 /* 32-bit instructions. */
7217 case 0x3d: /* JAL: bits 111101 */
7218 case 0x3c: /* JALX: bits 111100 */
7219 case 0x35: /* J: bits 110101 */
7220 case 0x2d: /* BNE: bits 101101 */
7221 case 0x25: /* BEQ: bits 100101 */
7222 case 0x1d: /* JALS: bits 011101 */
7223 return 1;
7224 case 0x10: /* POOL32I: bits 010000 */
7225 return ((b5s5_op (major) & 0x1c) == 0x0
4cc0665f 7226 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
ab50adb6 7227 || (b5s5_op (major) & 0x1d) == 0x4
4cc0665f 7228 /* BLEZ, BGTZ: bits 010000 001x0 */
ab50adb6 7229 || (b5s5_op (major) & 0x1d) == 0x11
4cc0665f 7230 /* BLTZALS, BGEZALS: bits 010000 100x1 */
ab50adb6
MR
7231 || ((b5s5_op (major) & 0x1e) == 0x14
7232 && (major & 0x3) == 0x0)
4cc0665f 7233 /* BC2F, BC2T: bits 010000 1010x xxx00 */
ab50adb6 7234 || (b5s5_op (major) & 0x1e) == 0x1a
4cc0665f 7235 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
ab50adb6
MR
7236 || ((b5s5_op (major) & 0x1e) == 0x1c
7237 && (major & 0x3) == 0x0)
4cc0665f 7238 /* BC1F, BC1T: bits 010000 1110x xxx00 */
ab50adb6
MR
7239 || ((b5s5_op (major) & 0x1c) == 0x1c
7240 && (major & 0x3) == 0x1));
4cc0665f 7241 /* BC1ANY*: bits 010000 111xx xxx01 */
ab50adb6
MR
7242 case 0x0: /* POOL32A: bits 000000 */
7243 return (b0s6_op (insn) == 0x3c
7244 /* POOL32Axf: bits 000000 ... 111100 */
7245 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7246 /* JALR, JALR.HB: 000000 000x111100 111100 */
7247 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7248 default:
7249 return 0;
7250 }
4cc0665f
MR
7251}
7252
ab50adb6 7253/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
ae790652
MR
7254 slot (i.e. it is a non-compact jump instruction). The instruction
7255 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7256
c8cef75f 7257static int
ab50adb6
MR
7258micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7259 CORE_ADDR addr, int mustbe32)
c8cef75f 7260{
ab50adb6 7261 ULONGEST insn;
c8cef75f 7262 int status;
3f7f3650 7263 int size;
c8cef75f 7264
ab50adb6 7265 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
c8cef75f
MR
7266 if (status)
7267 return 0;
3f7f3650 7268 size = mips_insn_size (ISA_MICROMIPS, insn);
ab50adb6 7269 insn <<= 16;
3f7f3650 7270 if (size == 2 * MIPS_INSN16_SIZE)
ab50adb6
MR
7271 {
7272 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7273 if (status)
7274 return 0;
7275 }
7276
7277 return micromips_instruction_has_delay_slot (insn, mustbe32);
7278}
c8cef75f 7279
ab50adb6
MR
7280/* Return non-zero if the MIPS16 instruction INST, which must be
7281 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7282 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7283 instruction). This function is based on mips16_next_pc. */
7284
7285static int
7286mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7287{
ae790652
MR
7288 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7289 return !mustbe32;
c8cef75f
MR
7290 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7291}
7292
ab50adb6
MR
7293/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7294 slot (i.e. it is a non-compact jump instruction). The instruction
7295 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7296
7297static int
7298mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7299 CORE_ADDR addr, int mustbe32)
7300{
7301 unsigned short insn;
7302 int status;
7303
7304 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7305 if (status)
7306 return 0;
7307
7308 return mips16_instruction_has_delay_slot (insn, mustbe32);
7309}
7310
c8cef75f
MR
7311/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7312 This assumes KSSEG exists. */
7313
7314static CORE_ADDR
7315mips_segment_boundary (CORE_ADDR bpaddr)
7316{
7317 CORE_ADDR mask = CORE_ADDR_MAX;
7318 int segsize;
7319
7320 if (sizeof (CORE_ADDR) == 8)
7321 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7322 a compiler warning produced where CORE_ADDR is a 32-bit type even
7323 though in that case this is dead code). */
7324 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7325 {
7326 case 3:
7327 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7328 segsize = 29; /* 32-bit compatibility segment */
7329 else
7330 segsize = 62; /* xkseg */
7331 break;
7332 case 2: /* xkphys */
7333 segsize = 59;
7334 break;
7335 default: /* xksseg (1), xkuseg/kuseg (0) */
7336 segsize = 62;
7337 break;
7338 }
7339 else if (bpaddr & 0x80000000) /* kernel segment */
7340 segsize = 29;
7341 else
7342 segsize = 31; /* user segment */
7343 mask <<= segsize;
7344 return bpaddr & mask;
7345}
7346
7347/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7348 it backwards if necessary. Return the address of the new location. */
7349
7350static CORE_ADDR
7351mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7352{
22e048c9 7353 CORE_ADDR prev_addr;
c8cef75f
MR
7354 CORE_ADDR boundary;
7355 CORE_ADDR func_addr;
7356
7357 /* If a breakpoint is set on the instruction in a branch delay slot,
7358 GDB gets confused. When the breakpoint is hit, the PC isn't on
7359 the instruction in the branch delay slot, the PC will point to
7360 the branch instruction. Since the PC doesn't match any known
7361 breakpoints, GDB reports a trap exception.
7362
7363 There are two possible fixes for this problem.
7364
7365 1) When the breakpoint gets hit, see if the BD bit is set in the
7366 Cause register (which indicates the last exception occurred in a
7367 branch delay slot). If the BD bit is set, fix the PC to point to
7368 the instruction in the branch delay slot.
7369
7370 2) When the user sets the breakpoint, don't allow him to set the
7371 breakpoint on the instruction in the branch delay slot. Instead
7372 move the breakpoint to the branch instruction (which will have
7373 the same result).
7374
7375 The problem with the first solution is that if the user then
7376 single-steps the processor, the branch instruction will get
7377 skipped (since GDB thinks the PC is on the instruction in the
7378 branch delay slot).
7379
7380 So, we'll use the second solution. To do this we need to know if
7381 the instruction we're trying to set the breakpoint on is in the
7382 branch delay slot. */
7383
7384 boundary = mips_segment_boundary (bpaddr);
7385
7386 /* Make sure we don't scan back before the beginning of the current
7387 function, since we may fetch constant data or insns that look like
7388 a jump. Of course we might do that anyway if the compiler has
7389 moved constants inline. :-( */
7390 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7391 && func_addr > boundary && func_addr <= bpaddr)
7392 boundary = func_addr;
7393
4cc0665f 7394 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7395 {
7396 if (bpaddr == boundary)
7397 return bpaddr;
7398
7399 /* If the previous instruction has a branch delay slot, we have
7400 to move the breakpoint to the branch instruction. */
7401 prev_addr = bpaddr - 4;
ab50adb6 7402 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
c8cef75f
MR
7403 bpaddr = prev_addr;
7404 }
7405 else
7406 {
ab50adb6 7407 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7408 CORE_ADDR addr, jmpaddr;
7409 int i;
7410
4cc0665f 7411 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7412
7413 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7414 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7415 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7416 The microMIPS ASE has a whole range of jumps and branches
7417 with delay slots, some of which take 4 bytes and some take
7418 2 bytes, so the idea is the same.
c8cef75f
MR
7419 FIXME: We have to assume that bpaddr is not the second half
7420 of an extended instruction. */
ab50adb6
MR
7421 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7422 ? micromips_insn_at_pc_has_delay_slot
7423 : mips16_insn_at_pc_has_delay_slot);
c8cef75f
MR
7424
7425 jmpaddr = 0;
7426 addr = bpaddr;
7427 for (i = 1; i < 4; i++)
7428 {
4cc0665f 7429 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7430 break;
4cc0665f 7431 addr -= MIPS_INSN16_SIZE;
ab50adb6 7432 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7433 /* Looks like a JR/JALR at [target-1], but it could be
7434 the second word of a previous JAL/JALX, so record it
7435 and check back one more. */
7436 jmpaddr = addr;
ab50adb6 7437 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7438 {
7439 if (i == 2)
7440 /* Looks like a JAL/JALX at [target-2], but it could also
7441 be the second word of a previous JAL/JALX, record it,
7442 and check back one more. */
7443 jmpaddr = addr;
7444 else
7445 /* Looks like a JAL/JALX at [target-3], so any previously
7446 recorded JAL/JALX or JR/JALR must be wrong, because:
7447
7448 >-3: JAL
7449 -2: JAL-ext (can't be JAL/JALX)
7450 -1: bdslot (can't be JR/JALR)
7451 0: target insn
7452
7453 Of course it could be another JAL-ext which looks
7454 like a JAL, but in that case we'd have broken out
7455 of this loop at [target-2]:
7456
7457 -4: JAL
7458 >-3: JAL-ext
7459 -2: bdslot (can't be jmp)
7460 -1: JR/JALR
7461 0: target insn */
7462 jmpaddr = 0;
7463 }
7464 else
7465 {
7466 /* Not a jump instruction: if we're at [target-1] this
7467 could be the second word of a JAL/JALX, so continue;
7468 otherwise we're done. */
7469 if (i > 1)
7470 break;
7471 }
7472 }
7473
7474 if (jmpaddr)
7475 bpaddr = jmpaddr;
7476 }
7477
7478 return bpaddr;
7479}
7480
14132e89
MR
7481/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7482 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7483
7484static int
7485mips_is_stub_suffix (const char *suffix, int zero)
7486{
7487 switch (suffix[0])
7488 {
7489 case '0':
7490 return zero && suffix[1] == '\0';
7491 case '1':
7492 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7493 case '2':
7494 case '5':
7495 case '6':
7496 case '9':
7497 return suffix[1] == '\0';
7498 default:
7499 return 0;
7500 }
7501}
7502
7503/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7504 call stubs, one of sf, df, sc, or dc. */
7505
7506static int
7507mips_is_stub_mode (const char *mode)
7508{
7509 return ((mode[0] == 's' || mode[0] == 'd')
7510 && (mode[1] == 'f' || mode[1] == 'c'));
7511}
7512
7513/* Code at PC is a compiler-generated stub. Such a stub for a function
7514 bar might have a name like __fn_stub_bar, and might look like this:
7515
7516 mfc1 $4, $f13
7517 mfc1 $5, $f12
7518 mfc1 $6, $f15
7519 mfc1 $7, $f14
7520
7521 followed by (or interspersed with):
7522
7523 j bar
7524
7525 or:
7526
7527 lui $25, %hi(bar)
7528 addiu $25, $25, %lo(bar)
7529 jr $25
7530
7531 ($1 may be used in old code; for robustness we accept any register)
7532 or, in PIC code:
7533
7534 lui $28, %hi(_gp_disp)
7535 addiu $28, $28, %lo(_gp_disp)
7536 addu $28, $28, $25
7537 lw $25, %got(bar)
7538 addiu $25, $25, %lo(bar)
7539 jr $25
7540
7541 In the case of a __call_stub_bar stub, the sequence to set up
7542 arguments might look like this:
7543
7544 mtc1 $4, $f13
7545 mtc1 $5, $f12
7546 mtc1 $6, $f15
7547 mtc1 $7, $f14
7548
7549 followed by (or interspersed with) one of the jump sequences above.
7550
7551 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7552 of J or JR, respectively, followed by:
7553
7554 mfc1 $2, $f0
7555 mfc1 $3, $f1
7556 jr $18
7557
7558 We are at the beginning of the stub here, and scan down and extract
7559 the target address from the jump immediate instruction or, if a jump
7560 register instruction is used, from the register referred. Return
7561 the value of PC calculated or 0 if inconclusive.
7562
7563 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7564
7565static CORE_ADDR
7566mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7567{
7568 struct gdbarch *gdbarch = get_frame_arch (frame);
7569 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7570 int addrreg = MIPS_ZERO_REGNUM;
7571 CORE_ADDR start_pc = pc;
7572 CORE_ADDR target_pc = 0;
7573 CORE_ADDR addr = 0;
7574 CORE_ADDR gp = 0;
7575 int status = 0;
7576 int i;
7577
7578 for (i = 0;
7579 status == 0 && target_pc == 0 && i < 20;
7580 i++, pc += MIPS_INSN32_SIZE)
7581 {
4cc0665f 7582 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7583 CORE_ADDR imm;
7584 int rt;
7585 int rs;
7586 int rd;
7587
7588 switch (itype_op (inst))
7589 {
7590 case 0: /* SPECIAL */
7591 switch (rtype_funct (inst))
7592 {
7593 case 8: /* JR */
7594 case 9: /* JALR */
7595 rs = rtype_rs (inst);
7596 if (rs == MIPS_GP_REGNUM)
7597 target_pc = gp; /* Hmm... */
7598 else if (rs == addrreg)
7599 target_pc = addr;
7600 break;
7601
7602 case 0x21: /* ADDU */
7603 rt = rtype_rt (inst);
7604 rs = rtype_rs (inst);
7605 rd = rtype_rd (inst);
7606 if (rd == MIPS_GP_REGNUM
7607 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7608 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7609 gp += start_pc;
7610 break;
7611 }
7612 break;
7613
7614 case 2: /* J */
7615 case 3: /* JAL */
7616 target_pc = jtype_target (inst) << 2;
7617 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7618 break;
7619
7620 case 9: /* ADDIU */
7621 rt = itype_rt (inst);
7622 rs = itype_rs (inst);
7623 if (rt == rs)
7624 {
7625 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7626 if (rt == MIPS_GP_REGNUM)
7627 gp += imm;
7628 else if (rt == addrreg)
7629 addr += imm;
7630 }
7631 break;
7632
7633 case 0xf: /* LUI */
7634 rt = itype_rt (inst);
7635 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7636 if (rt == MIPS_GP_REGNUM)
7637 gp = imm;
7638 else if (rt != MIPS_ZERO_REGNUM)
7639 {
7640 addrreg = rt;
7641 addr = imm;
7642 }
7643 break;
7644
7645 case 0x23: /* LW */
7646 rt = itype_rt (inst);
7647 rs = itype_rs (inst);
7648 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7649 if (gp != 0 && rs == MIPS_GP_REGNUM)
7650 {
7651 gdb_byte buf[4];
7652
7653 memset (buf, 0, sizeof (buf));
7654 status = target_read_memory (gp + imm, buf, sizeof (buf));
7655 addrreg = rt;
7656 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7657 }
7658 break;
7659 }
7660 }
7661
7662 return target_pc;
7663}
7664
7665/* If PC is in a MIPS16 call or return stub, return the address of the
7666 target PC, which is either the callee or the caller. There are several
c906108c
SS
7667 cases which must be handled:
7668
14132e89
MR
7669 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7670 and the target PC is in $31 ($ra).
c906108c 7671 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7672 and the target PC is in $2.
7673 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7674 i.e. before the JALR instruction, this is effectively a call stub
7675 and the target PC is in $2. Otherwise this is effectively
7676 a return stub and the target PC is in $18.
7677 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7678 JAL or JALR instruction, this is effectively a call stub and the
7679 target PC is buried in the instruction stream. Otherwise this
7680 is effectively a return stub and the target PC is in $18.
7681 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7682 stub and the target PC is buried in the instruction stream.
7683
7684 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7685 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7686 gory details. */
c906108c 7687
757a7cc6 7688static CORE_ADDR
db5f024e 7689mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7690{
e17a4113 7691 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7692 CORE_ADDR start_addr;
14132e89
MR
7693 const char *name;
7694 size_t prefixlen;
c906108c
SS
7695
7696 /* Find the starting address and name of the function containing the PC. */
7697 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7698 return 0;
7699
14132e89
MR
7700 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7701 and the target PC is in $31 ($ra). */
7702 prefixlen = strlen (mips_str_mips16_ret_stub);
7703 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7704 && mips_is_stub_mode (name + prefixlen)
7705 && name[prefixlen + 2] == '\0')
7706 return get_frame_register_signed
7707 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7708
7709 /* If the PC is in __mips16_call_stub_*, this is one of the call
7710 call/return stubs. */
7711 prefixlen = strlen (mips_str_mips16_call_stub);
7712 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7713 {
7714 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7715 and the target PC is in $2. */
14132e89
MR
7716 if (mips_is_stub_suffix (name + prefixlen, 0))
7717 return get_frame_register_signed
7718 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7719
14132e89
MR
7720 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7721 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7722 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7723 a return stub and the target PC is in $18. */
14132e89
MR
7724 else if (mips_is_stub_mode (name + prefixlen)
7725 && name[prefixlen + 2] == '_'
7726 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7727 {
7728 if (pc == start_addr)
14132e89
MR
7729 /* This is the 'call' part of a call stub. The return
7730 address is in $2. */
7731 return get_frame_register_signed
7732 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7733 else
7734 /* This is the 'return' part of a call stub. The return
14132e89
MR
7735 address is in $18. */
7736 return get_frame_register_signed
7737 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7738 }
14132e89
MR
7739 else
7740 return 0; /* Not a stub. */
7741 }
7742
7743 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7744 compiler-generated call or call/return stubs. */
61012eef
GB
7745 if (startswith (name, mips_str_fn_stub)
7746 || startswith (name, mips_str_call_stub))
14132e89
MR
7747 {
7748 if (pc == start_addr)
7749 /* This is the 'call' part of a call stub. Call this helper
7750 to scan through this code for interesting instructions
7751 and determine the final PC. */
7752 return mips_get_mips16_fn_stub_pc (frame, pc);
7753 else
7754 /* This is the 'return' part of a call stub. The return address
7755 is in $18. */
7756 return get_frame_register_signed
7757 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7758 }
14132e89
MR
7759
7760 return 0; /* Not a stub. */
7761}
7762
7763/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7764 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7765
7766static int
7767mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7768{
7769 CORE_ADDR start_addr;
7770 size_t prefixlen;
7771
7772 /* Find the starting address of the function containing the PC. */
7773 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7774 return 0;
7775
7776 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7777 the start, i.e. after the JALR instruction, this is effectively
7778 a return stub. */
7779 prefixlen = strlen (mips_str_mips16_call_stub);
7780 if (pc != start_addr
7781 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7782 && mips_is_stub_mode (name + prefixlen)
7783 && name[prefixlen + 2] == '_'
7784 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7785 return 1;
7786
7787 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7788 the JAL or JALR instruction, this is effectively a return stub. */
7789 prefixlen = strlen (mips_str_call_fp_stub);
7790 if (pc != start_addr
7791 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7792 return 1;
7793
7794 /* Consume the .pic. prefix of any PIC stub, this function must return
7795 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7796 or the call stub path will trigger in handle_inferior_event causing
7797 it to go astray. */
7798 prefixlen = strlen (mips_str_pic);
7799 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7800 name += prefixlen;
7801
7802 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7803 prefixlen = strlen (mips_str_mips16_ret_stub);
7804 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7805 && mips_is_stub_mode (name + prefixlen)
7806 && name[prefixlen + 2] == '\0')
7807 return 1;
7808
7809 return 0; /* Not a stub. */
c906108c
SS
7810}
7811
db5f024e
DJ
7812/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7813 PC of the stub target. The stub just loads $t9 and jumps to it,
7814 so that $t9 has the correct value at function entry. */
7815
7816static CORE_ADDR
7817mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7818{
e17a4113
UW
7819 struct gdbarch *gdbarch = get_frame_arch (frame);
7820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7cbd4a93 7821 struct bound_minimal_symbol msym;
db5f024e
DJ
7822 int i;
7823 gdb_byte stub_code[16];
7824 int32_t stub_words[4];
7825
7826 /* The stub for foo is named ".pic.foo", and is either two
7827 instructions inserted before foo or a three instruction sequence
7828 which jumps to foo. */
7829 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 7830 if (msym.minsym == NULL
77e371c0 7831 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
efd66ac6 7832 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
61012eef 7833 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
7834 return 0;
7835
7836 /* A two-instruction header. */
7cbd4a93 7837 if (MSYMBOL_SIZE (msym.minsym) == 8)
db5f024e
DJ
7838 return pc + 8;
7839
7840 /* A three-instruction (plus delay slot) trampoline. */
7cbd4a93 7841 if (MSYMBOL_SIZE (msym.minsym) == 16)
db5f024e
DJ
7842 {
7843 if (target_read_memory (pc, stub_code, 16) != 0)
7844 return 0;
7845 for (i = 0; i < 4; i++)
e17a4113
UW
7846 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7847 4, byte_order);
db5f024e
DJ
7848
7849 /* A stub contains these instructions:
7850 lui t9, %hi(target)
7851 j target
7852 addiu t9, t9, %lo(target)
7853 nop
7854
7855 This works even for N64, since stubs are only generated with
7856 -msym32. */
7857 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7858 && (stub_words[1] & 0xfc000000U) == 0x08000000
7859 && (stub_words[2] & 0xffff0000U) == 0x27390000
7860 && stub_words[3] == 0x00000000)
34b192ce
MR
7861 return ((((stub_words[0] & 0x0000ffff) << 16)
7862 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7863 }
7864
7865 /* Not a recognized stub. */
7866 return 0;
7867}
7868
7869static CORE_ADDR
7870mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7871{
14132e89 7872 CORE_ADDR requested_pc = pc;
db5f024e 7873 CORE_ADDR target_pc;
14132e89
MR
7874 CORE_ADDR new_pc;
7875
7876 do
7877 {
7878 target_pc = pc;
db5f024e 7879
14132e89
MR
7880 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7881 if (new_pc)
3e29f34a 7882 pc = new_pc;
db5f024e 7883
14132e89
MR
7884 new_pc = find_solib_trampoline_target (frame, pc);
7885 if (new_pc)
3e29f34a 7886 pc = new_pc;
db5f024e 7887
14132e89
MR
7888 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7889 if (new_pc)
3e29f34a 7890 pc = new_pc;
14132e89
MR
7891 }
7892 while (pc != target_pc);
db5f024e 7893
14132e89 7894 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7895}
7896
a4b8ebc8 7897/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7898 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7899
7900static int
d3f73121 7901mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7902{
a4b8ebc8 7903 int regnum;
2f38ef89 7904 if (num >= 0 && num < 32)
a4b8ebc8 7905 regnum = num;
2f38ef89 7906 else if (num >= 38 && num < 70)
d3f73121 7907 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7908 else if (num == 70)
d3f73121 7909 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7910 else if (num == 71)
d3f73121 7911 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7912 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7913 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7914 else
0fde2c53 7915 return -1;
d3f73121 7916 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7917}
7918
2f38ef89 7919
a4b8ebc8 7920/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7921 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7922
7923static int
d3f73121 7924mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7925{
a4b8ebc8 7926 int regnum;
2f38ef89 7927 if (num >= 0 && num < 32)
a4b8ebc8 7928 regnum = num;
2f38ef89 7929 else if (num >= 32 && num < 64)
d3f73121 7930 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7931 else if (num == 64)
d3f73121 7932 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7933 else if (num == 65)
d3f73121 7934 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7935 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7936 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7937 else
0fde2c53 7938 return -1;
d3f73121 7939 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7940}
7941
7942static int
e7faf938 7943mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7944{
7945 /* Only makes sense to supply raw registers. */
e7faf938 7946 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7947 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7948 decide if it is valid. Should instead define a standard sim/gdb
7949 register numbering scheme. */
e7faf938
MD
7950 if (gdbarch_register_name (gdbarch,
7951 gdbarch_num_regs (gdbarch) + regnum) != NULL
7952 && gdbarch_register_name (gdbarch,
025bb325
MS
7953 gdbarch_num_regs (gdbarch)
7954 + regnum)[0] != '\0')
a4b8ebc8
AC
7955 return regnum;
7956 else
6d82d43b 7957 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7958}
7959
2f38ef89 7960
4844f454
CV
7961/* Convert an integer into an address. Extracting the value signed
7962 guarantees a correctly sign extended address. */
fc0c74b1
AC
7963
7964static CORE_ADDR
79dd2d24 7965mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7966 struct type *type, const gdb_byte *buf)
fc0c74b1 7967{
e17a4113
UW
7968 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7969 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7970}
7971
82e91389
DJ
7972/* Dummy virtual frame pointer method. This is no more or less accurate
7973 than most other architectures; we just need to be explicit about it,
7974 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7975 an assertion failure. */
7976
7977static void
a54fba4c
MD
7978mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7979 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7980{
7981 *reg = MIPS_SP_REGNUM;
7982 *offset = 0;
7983}
7984
caaa3122
DJ
7985static void
7986mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7987{
7988 enum mips_abi *abip = (enum mips_abi *) obj;
7989 const char *name = bfd_get_section_name (abfd, sect);
7990
7991 if (*abip != MIPS_ABI_UNKNOWN)
7992 return;
7993
61012eef 7994 if (!startswith (name, ".mdebug."))
caaa3122
DJ
7995 return;
7996
7997 if (strcmp (name, ".mdebug.abi32") == 0)
7998 *abip = MIPS_ABI_O32;
7999 else if (strcmp (name, ".mdebug.abiN32") == 0)
8000 *abip = MIPS_ABI_N32;
62a49b2c 8001 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 8002 *abip = MIPS_ABI_N64;
caaa3122
DJ
8003 else if (strcmp (name, ".mdebug.abiO64") == 0)
8004 *abip = MIPS_ABI_O64;
8005 else if (strcmp (name, ".mdebug.eabi32") == 0)
8006 *abip = MIPS_ABI_EABI32;
8007 else if (strcmp (name, ".mdebug.eabi64") == 0)
8008 *abip = MIPS_ABI_EABI64;
8009 else
8a3fe4f8 8010 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
8011}
8012
22e47e37
FF
8013static void
8014mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8015{
8016 int *lbp = (int *) obj;
8017 const char *name = bfd_get_section_name (abfd, sect);
8018
61012eef 8019 if (startswith (name, ".gcc_compiled_long32"))
22e47e37 8020 *lbp = 32;
61012eef 8021 else if (startswith (name, ".gcc_compiled_long64"))
22e47e37 8022 *lbp = 64;
61012eef 8023 else if (startswith (name, ".gcc_compiled_long"))
22e47e37
FF
8024 warning (_("unrecognized .gcc_compiled_longXX"));
8025}
8026
2e4ebe70
DJ
8027static enum mips_abi
8028global_mips_abi (void)
8029{
8030 int i;
8031
8032 for (i = 0; mips_abi_strings[i] != NULL; i++)
8033 if (mips_abi_strings[i] == mips_abi_string)
8034 return (enum mips_abi) i;
8035
e2e0b3e5 8036 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
8037}
8038
4cc0665f
MR
8039/* Return the default compressed instruction set, either of MIPS16
8040 or microMIPS, selected when none could have been determined from
8041 the ELF header of the binary being executed (or no binary has been
8042 selected. */
8043
8044static enum mips_isa
8045global_mips_compression (void)
8046{
8047 int i;
8048
8049 for (i = 0; mips_compression_strings[i] != NULL; i++)
8050 if (mips_compression_strings[i] == mips_compression_string)
8051 return (enum mips_isa) i;
8052
8053 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8054}
8055
29709017
DJ
8056static void
8057mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8058{
29709017
DJ
8059 /* If the size matches the set of 32-bit or 64-bit integer registers,
8060 assume that's what we've got. */
4eb0ad19
DJ
8061 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8062 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
8063
8064 /* If the size matches the full set of registers GDB traditionally
8065 knows about, including floating point, for either 32-bit or
8066 64-bit, assume that's what we've got. */
4eb0ad19
DJ
8067 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8068 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
8069
8070 /* Otherwise we don't have a useful guess. */
8071}
8072
f8b73d13
DJ
8073static struct value *
8074value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8075{
19ba03f4 8076 const int *reg_p = (const int *) baton;
f8b73d13
DJ
8077 return value_of_register (*reg_p, frame);
8078}
8079
c2d11a7d 8080static struct gdbarch *
6d82d43b 8081mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 8082{
c2d11a7d
JM
8083 struct gdbarch *gdbarch;
8084 struct gdbarch_tdep *tdep;
8085 int elf_flags;
2e4ebe70 8086 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 8087 int i, num_regs;
8d5838b5 8088 enum mips_fpu_type fpu_type;
f8b73d13 8089 struct tdesc_arch_data *tdesc_data = NULL;
d929bc19 8090 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
1faeff08
MR
8091 const char **reg_names;
8092 struct mips_regnum mips_regnum, *regnum;
4cc0665f 8093 enum mips_isa mips_isa;
1faeff08
MR
8094 int dspacc;
8095 int dspctl;
8096
8097 /* Fill in the OS dependent register numbers and names. */
de4bfa86 8098 if (info.osabi == GDB_OSABI_LINUX)
1faeff08
MR
8099 {
8100 mips_regnum.fp0 = 38;
8101 mips_regnum.pc = 37;
8102 mips_regnum.cause = 36;
8103 mips_regnum.badvaddr = 35;
8104 mips_regnum.hi = 34;
8105 mips_regnum.lo = 33;
8106 mips_regnum.fp_control_status = 70;
8107 mips_regnum.fp_implementation_revision = 71;
8108 mips_regnum.dspacc = -1;
8109 mips_regnum.dspctl = -1;
8110 dspacc = 72;
8111 dspctl = 78;
3877922e 8112 num_regs = 90;
1faeff08
MR
8113 reg_names = mips_linux_reg_names;
8114 }
8115 else
8116 {
8117 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8118 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8119 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8120 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8121 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8122 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8123 mips_regnum.fp_control_status = 70;
8124 mips_regnum.fp_implementation_revision = 71;
8125 mips_regnum.dspacc = dspacc = -1;
8126 mips_regnum.dspctl = dspctl = -1;
8127 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8128 if (info.bfd_arch_info != NULL
8129 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8130 reg_names = mips_tx39_reg_names;
8131 else
8132 reg_names = mips_generic_reg_names;
8133 }
f8b73d13
DJ
8134
8135 /* Check any target description for validity. */
8136 if (tdesc_has_registers (info.target_desc))
8137 {
8138 static const char *const mips_gprs[] = {
8139 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8140 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8141 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8142 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8143 };
8144 static const char *const mips_fprs[] = {
8145 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8146 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8147 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8148 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8149 };
8150
8151 const struct tdesc_feature *feature;
8152 int valid_p;
8153
8154 feature = tdesc_find_feature (info.target_desc,
8155 "org.gnu.gdb.mips.cpu");
8156 if (feature == NULL)
8157 return NULL;
8158
8159 tdesc_data = tdesc_data_alloc ();
8160
8161 valid_p = 1;
8162 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8163 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8164 mips_gprs[i]);
8165
8166
8167 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8168 mips_regnum.lo, "lo");
f8b73d13 8169 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8170 mips_regnum.hi, "hi");
f8b73d13 8171 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8172 mips_regnum.pc, "pc");
f8b73d13
DJ
8173
8174 if (!valid_p)
8175 {
8176 tdesc_data_cleanup (tdesc_data);
8177 return NULL;
8178 }
8179
8180 feature = tdesc_find_feature (info.target_desc,
8181 "org.gnu.gdb.mips.cp0");
8182 if (feature == NULL)
8183 {
8184 tdesc_data_cleanup (tdesc_data);
8185 return NULL;
8186 }
8187
8188 valid_p = 1;
8189 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8190 mips_regnum.badvaddr, "badvaddr");
f8b73d13
DJ
8191 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8192 MIPS_PS_REGNUM, "status");
8193 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8194 mips_regnum.cause, "cause");
f8b73d13
DJ
8195
8196 if (!valid_p)
8197 {
8198 tdesc_data_cleanup (tdesc_data);
8199 return NULL;
8200 }
8201
8202 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8203 backend is not prepared for that, though. */
8204 feature = tdesc_find_feature (info.target_desc,
8205 "org.gnu.gdb.mips.fpu");
8206 if (feature == NULL)
8207 {
8208 tdesc_data_cleanup (tdesc_data);
8209 return NULL;
8210 }
8211
8212 valid_p = 1;
8213 for (i = 0; i < 32; i++)
8214 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8215 i + mips_regnum.fp0, mips_fprs[i]);
f8b73d13
DJ
8216
8217 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08
MR
8218 mips_regnum.fp_control_status,
8219 "fcsr");
8220 valid_p
8221 &= tdesc_numbered_register (feature, tdesc_data,
8222 mips_regnum.fp_implementation_revision,
8223 "fir");
f8b73d13
DJ
8224
8225 if (!valid_p)
8226 {
8227 tdesc_data_cleanup (tdesc_data);
8228 return NULL;
8229 }
8230
3877922e
MR
8231 num_regs = mips_regnum.fp_implementation_revision + 1;
8232
1faeff08
MR
8233 if (dspacc >= 0)
8234 {
8235 feature = tdesc_find_feature (info.target_desc,
8236 "org.gnu.gdb.mips.dsp");
8237 /* The DSP registers are optional; it's OK if they are absent. */
8238 if (feature != NULL)
8239 {
8240 i = 0;
8241 valid_p = 1;
8242 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8243 dspacc + i++, "hi1");
8244 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8245 dspacc + i++, "lo1");
8246 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8247 dspacc + i++, "hi2");
8248 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8249 dspacc + i++, "lo2");
8250 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8251 dspacc + i++, "hi3");
8252 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8253 dspacc + i++, "lo3");
8254
8255 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8256 dspctl, "dspctl");
8257
8258 if (!valid_p)
8259 {
8260 tdesc_data_cleanup (tdesc_data);
8261 return NULL;
8262 }
8263
8264 mips_regnum.dspacc = dspacc;
8265 mips_regnum.dspctl = dspctl;
3877922e
MR
8266
8267 num_regs = mips_regnum.dspctl + 1;
1faeff08
MR
8268 }
8269 }
8270
f8b73d13
DJ
8271 /* It would be nice to detect an attempt to use a 64-bit ABI
8272 when only 32-bit registers are provided. */
1faeff08 8273 reg_names = NULL;
f8b73d13 8274 }
c2d11a7d 8275
ec03c1ac
AC
8276 /* First of all, extract the elf_flags, if available. */
8277 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8278 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8279 else if (arches != NULL)
8280 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8281 else
8282 elf_flags = 0;
8283 if (gdbarch_debug)
8284 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8285 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8286
102182a9 8287 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8288 switch ((elf_flags & EF_MIPS_ABI))
8289 {
8290 case E_MIPS_ABI_O32:
ec03c1ac 8291 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8292 break;
8293 case E_MIPS_ABI_O64:
ec03c1ac 8294 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8295 break;
8296 case E_MIPS_ABI_EABI32:
ec03c1ac 8297 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8298 break;
8299 case E_MIPS_ABI_EABI64:
ec03c1ac 8300 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8301 break;
8302 default:
acdb74a0 8303 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8304 found_abi = MIPS_ABI_N32;
acdb74a0 8305 else
ec03c1ac 8306 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8307 break;
8308 }
acdb74a0 8309
caaa3122 8310 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8311 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8312 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8313
dc305454 8314 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8315 MIPS architecture (if there is one). */
8316 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8317 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8318
32a6503c 8319 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8320 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8321 && info.bfd_arch_info != NULL
8322 && info.bfd_arch_info->arch == bfd_arch_mips)
8323 {
8324 switch (info.bfd_arch_info->mach)
8325 {
8326 case bfd_mach_mips3900:
ec03c1ac 8327 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8328 break;
8329 case bfd_mach_mips4100:
8330 case bfd_mach_mips5000:
ec03c1ac 8331 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8332 break;
1d06468c
EZ
8333 case bfd_mach_mips8000:
8334 case bfd_mach_mips10000:
32a6503c
KB
8335 /* On Irix, ELF64 executables use the N64 ABI. The
8336 pseudo-sections which describe the ABI aren't present
8337 on IRIX. (Even for executables created by gcc.) */
e6c2f47b
PA
8338 if (info.abfd != NULL
8339 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
28d169de 8340 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8341 found_abi = MIPS_ABI_N64;
28d169de 8342 else
ec03c1ac 8343 found_abi = MIPS_ABI_N32;
1d06468c 8344 break;
bf64bfd6
AC
8345 }
8346 }
2e4ebe70 8347
26c53e50
DJ
8348 /* Default 64-bit objects to N64 instead of O32. */
8349 if (found_abi == MIPS_ABI_UNKNOWN
8350 && info.abfd != NULL
8351 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8352 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8353 found_abi = MIPS_ABI_N64;
8354
ec03c1ac
AC
8355 if (gdbarch_debug)
8356 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8357 found_abi);
8358
8359 /* What has the user specified from the command line? */
8360 wanted_abi = global_mips_abi ();
8361 if (gdbarch_debug)
8362 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8363 wanted_abi);
2e4ebe70
DJ
8364
8365 /* Now that we have found what the ABI for this binary would be,
8366 check whether the user is overriding it. */
2e4ebe70
DJ
8367 if (wanted_abi != MIPS_ABI_UNKNOWN)
8368 mips_abi = wanted_abi;
ec03c1ac
AC
8369 else if (found_abi != MIPS_ABI_UNKNOWN)
8370 mips_abi = found_abi;
8371 else
8372 mips_abi = MIPS_ABI_O32;
8373 if (gdbarch_debug)
8374 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8375 mips_abi);
2e4ebe70 8376
4cc0665f
MR
8377 /* Determine the default compressed ISA. */
8378 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8379 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8380 mips_isa = ISA_MICROMIPS;
8381 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8382 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8383 mips_isa = ISA_MIPS16;
8384 else
8385 mips_isa = global_mips_compression ();
8386 mips_compression_string = mips_compression_strings[mips_isa];
8387
ec03c1ac 8388 /* Also used when doing an architecture lookup. */
4b9b3959 8389 if (gdbarch_debug)
ec03c1ac 8390 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8391 "mips_gdbarch_init: "
8392 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8393 mips64_transfers_32bit_regs_p);
0dadbba0 8394
8d5838b5 8395 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8396#ifdef HAVE_ELF
8397 if (info.abfd
8398 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8399 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8400 Tag_GNU_MIPS_ABI_FP);
8401#endif /* HAVE_ELF */
8402
8d5838b5
AC
8403 if (!mips_fpu_type_auto)
8404 fpu_type = mips_fpu_type;
d929bc19 8405 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
609ca2b9
DJ
8406 {
8407 switch (elf_fpu_type)
8408 {
d929bc19 8409 case Val_GNU_MIPS_ABI_FP_DOUBLE:
609ca2b9
DJ
8410 fpu_type = MIPS_FPU_DOUBLE;
8411 break;
d929bc19 8412 case Val_GNU_MIPS_ABI_FP_SINGLE:
609ca2b9
DJ
8413 fpu_type = MIPS_FPU_SINGLE;
8414 break;
d929bc19 8415 case Val_GNU_MIPS_ABI_FP_SOFT:
609ca2b9
DJ
8416 default:
8417 /* Soft float or unknown. */
8418 fpu_type = MIPS_FPU_NONE;
8419 break;
8420 }
8421 }
8d5838b5
AC
8422 else if (info.bfd_arch_info != NULL
8423 && info.bfd_arch_info->arch == bfd_arch_mips)
8424 switch (info.bfd_arch_info->mach)
8425 {
8426 case bfd_mach_mips3900:
8427 case bfd_mach_mips4100:
8428 case bfd_mach_mips4111:
a9d61c86 8429 case bfd_mach_mips4120:
8d5838b5
AC
8430 fpu_type = MIPS_FPU_NONE;
8431 break;
8432 case bfd_mach_mips4650:
8433 fpu_type = MIPS_FPU_SINGLE;
8434 break;
8435 default:
8436 fpu_type = MIPS_FPU_DOUBLE;
8437 break;
8438 }
8439 else if (arches != NULL)
8440 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8441 else
8442 fpu_type = MIPS_FPU_DOUBLE;
8443 if (gdbarch_debug)
8444 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8445 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8446
29709017
DJ
8447 /* Check for blatant incompatibilities. */
8448
8449 /* If we have only 32-bit registers, then we can't debug a 64-bit
8450 ABI. */
8451 if (info.target_desc
8452 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8453 && mips_abi != MIPS_ABI_EABI32
8454 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
8455 {
8456 if (tdesc_data != NULL)
8457 tdesc_data_cleanup (tdesc_data);
8458 return NULL;
8459 }
29709017 8460
025bb325 8461 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8462 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8463 arches != NULL;
8464 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8465 {
d54398a7
MR
8466 /* MIPS needs to be pedantic about which ABI and the compressed
8467 ISA variation the object is using. */
9103eae0 8468 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8469 continue;
9103eae0 8470 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8471 continue;
d54398a7
MR
8472 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8473 continue;
719ec221
AC
8474 /* Need to be pedantic about which register virtual size is
8475 used. */
8476 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8477 != mips64_transfers_32bit_regs_p)
8478 continue;
8d5838b5
AC
8479 /* Be pedantic about which FPU is selected. */
8480 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8481 continue;
f8b73d13
DJ
8482
8483 if (tdesc_data != NULL)
8484 tdesc_data_cleanup (tdesc_data);
4be87837 8485 return arches->gdbarch;
c2d11a7d
JM
8486 }
8487
102182a9 8488 /* Need a new architecture. Fill in a target specific vector. */
8d749320 8489 tdep = XNEW (struct gdbarch_tdep);
c2d11a7d
JM
8490 gdbarch = gdbarch_alloc (&info, tdep);
8491 tdep->elf_flags = elf_flags;
719ec221 8492 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8493 tdep->found_abi = found_abi;
8494 tdep->mips_abi = mips_abi;
4cc0665f 8495 tdep->mips_isa = mips_isa;
8d5838b5 8496 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8497 tdep->register_size_valid_p = 0;
8498 tdep->register_size = 0;
8499
8500 if (info.target_desc)
8501 {
8502 /* Some useful properties can be inferred from the target. */
8503 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8504 {
8505 tdep->register_size_valid_p = 1;
8506 tdep->register_size = 4;
8507 }
8508 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8509 {
8510 tdep->register_size_valid_p = 1;
8511 tdep->register_size = 8;
8512 }
8513 }
c2d11a7d 8514
102182a9 8515 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8516 set_gdbarch_short_bit (gdbarch, 16);
8517 set_gdbarch_int_bit (gdbarch, 32);
8518 set_gdbarch_float_bit (gdbarch, 32);
8519 set_gdbarch_double_bit (gdbarch, 64);
8520 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8521 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8522 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8523 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8524
175ff332
HZ
8525 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8526 mips_ax_pseudo_register_collect);
8527 set_gdbarch_ax_pseudo_register_push_stack
8528 (gdbarch, mips_ax_pseudo_register_push_stack);
8529
6d82d43b 8530 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6 8531 mips_elf_make_msymbol_special);
3e29f34a
MR
8532 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8533 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8534 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
f7ab6ec6 8535
1faeff08
MR
8536 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8537 *regnum = mips_regnum;
1faeff08
MR
8538 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8539 set_gdbarch_num_regs (gdbarch, num_regs);
8540 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8541 set_gdbarch_register_name (gdbarch, mips_register_name);
8542 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8543 tdep->mips_processor_reg_names = reg_names;
8544 tdep->regnum = regnum;
fe29b929 8545
0dadbba0 8546 switch (mips_abi)
c2d11a7d 8547 {
0dadbba0 8548 case MIPS_ABI_O32:
25ab4790 8549 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8550 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8551 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8552 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8553 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8554 set_gdbarch_long_bit (gdbarch, 32);
8555 set_gdbarch_ptr_bit (gdbarch, 32);
8556 set_gdbarch_long_long_bit (gdbarch, 64);
8557 break;
0dadbba0 8558 case MIPS_ABI_O64:
25ab4790 8559 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8560 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8561 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8562 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8563 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8564 set_gdbarch_long_bit (gdbarch, 32);
8565 set_gdbarch_ptr_bit (gdbarch, 32);
8566 set_gdbarch_long_long_bit (gdbarch, 64);
8567 break;
0dadbba0 8568 case MIPS_ABI_EABI32:
25ab4790 8569 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8570 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8571 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8572 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8573 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8574 set_gdbarch_long_bit (gdbarch, 32);
8575 set_gdbarch_ptr_bit (gdbarch, 32);
8576 set_gdbarch_long_long_bit (gdbarch, 64);
8577 break;
0dadbba0 8578 case MIPS_ABI_EABI64:
25ab4790 8579 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8580 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8581 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8582 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8583 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8584 set_gdbarch_long_bit (gdbarch, 64);
8585 set_gdbarch_ptr_bit (gdbarch, 64);
8586 set_gdbarch_long_long_bit (gdbarch, 64);
8587 break;
0dadbba0 8588 case MIPS_ABI_N32:
25ab4790 8589 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8590 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8591 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8592 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8593 tdep->default_mask_address_p = 0;
0dadbba0
AC
8594 set_gdbarch_long_bit (gdbarch, 32);
8595 set_gdbarch_ptr_bit (gdbarch, 32);
8596 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8597 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8598 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8599 break;
8600 case MIPS_ABI_N64:
25ab4790 8601 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8602 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8603 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8604 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8605 tdep->default_mask_address_p = 0;
8606 set_gdbarch_long_bit (gdbarch, 64);
8607 set_gdbarch_ptr_bit (gdbarch, 64);
8608 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8609 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8610 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8611 break;
c2d11a7d 8612 default:
e2e0b3e5 8613 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8614 }
8615
22e47e37
FF
8616 /* GCC creates a pseudo-section whose name specifies the size of
8617 longs, since -mlong32 or -mlong64 may be used independent of
8618 other options. How those options affect pointer sizes is ABI and
8619 architecture dependent, so use them to override the default sizes
8620 set by the ABI. This table shows the relationship between ABI,
8621 -mlongXX, and size of pointers:
8622
8623 ABI -mlongXX ptr bits
8624 --- -------- --------
8625 o32 32 32
8626 o32 64 32
8627 n32 32 32
8628 n32 64 64
8629 o64 32 32
8630 o64 64 64
8631 n64 32 32
8632 n64 64 64
8633 eabi32 32 32
8634 eabi32 64 32
8635 eabi64 32 32
8636 eabi64 64 64
8637
8638 Note that for o32 and eabi32, pointers are always 32 bits
8639 regardless of any -mlongXX option. For all others, pointers and
025bb325 8640 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8641
8642 if (info.abfd != NULL)
8643 {
8644 int long_bit = 0;
8645
8646 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8647 if (long_bit)
8648 {
8649 set_gdbarch_long_bit (gdbarch, long_bit);
8650 switch (mips_abi)
8651 {
8652 case MIPS_ABI_O32:
8653 case MIPS_ABI_EABI32:
8654 break;
8655 case MIPS_ABI_N32:
8656 case MIPS_ABI_O64:
8657 case MIPS_ABI_N64:
8658 case MIPS_ABI_EABI64:
8659 set_gdbarch_ptr_bit (gdbarch, long_bit);
8660 break;
8661 default:
8662 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8663 }
8664 }
8665 }
8666
a5ea2558
AC
8667 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8668 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8669 comment:
8670
8671 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8672 flag in object files because to do so would make it impossible to
102182a9 8673 link with libraries compiled without "-gp32". This is
a5ea2558 8674 unnecessarily restrictive.
361d1df0 8675
a5ea2558
AC
8676 We could solve this problem by adding "-gp32" multilibs to gcc,
8677 but to set this flag before gcc is built with such multilibs will
8678 break too many systems.''
8679
8680 But even more unhelpfully, the default linker output target for
8681 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8682 for 64-bit programs - you need to change the ABI to change this,
102182a9 8683 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8684 this flag to detect 32-bit mode would do the wrong thing given
8685 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8686 as 32-bit programs by default. */
a5ea2558 8687
6c997a34 8688 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8689 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8690
102182a9
MS
8691 /* Add/remove bits from an address. The MIPS needs be careful to
8692 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8693 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8694
58dfe9ff
AC
8695 /* Unwind the frame. */
8696 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8697 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8698 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8699
102182a9 8700 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8701 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8702 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8703 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8704 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8705 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8706 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8707
025bb325 8708 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8709
2c76a0c7
JB
8710 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8711 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8712 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8713
1bab7383
YQ
8714 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8715
87783b8b
AC
8716 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8717 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8718 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8719
f7b9e9fc 8720 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
8721 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8722 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
c8cef75f
MR
8723 set_gdbarch_adjust_breakpoint_address (gdbarch,
8724 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8725
8726 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8727
c9cf6e20 8728 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
97ab0fdd 8729
fc0c74b1
AC
8730 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8731 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8732 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8733
a4b8ebc8 8734 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8735
e11c53d2 8736 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8737
9dae60cc
UW
8738 if (mips_abi == MIPS_ABI_N32)
8739 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8740 else if (mips_abi == MIPS_ABI_N64)
8741 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8742 else
8743 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 8744
d92524f1
PM
8745 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8746 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8747 need to all be folded into the target vector. Since they are
d92524f1
PM
8748 being used as guards for target_stopped_by_watchpoint, why not have
8749 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8750 is sitting on? */
8751 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8752
e7d6a6d2 8753 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8754
14132e89
MR
8755 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8756 to support MIPS16. This is a bad thing. Make sure not to do it
8757 if we have an OS ABI that actually supports shared libraries, since
8758 shared library support is more important. If we have an OS someday
8759 that supports both shared libraries and MIPS16, we'll have to find
8760 a better place for these.
8761 macro/2012-04-25: But that applies to return trampolines only and
8762 currently no MIPS OS ABI uses shared libraries that have them. */
8763 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8764
025bb325
MS
8765 set_gdbarch_single_step_through_delay (gdbarch,
8766 mips_single_step_through_delay);
3352ef37 8767
0d5de010
DJ
8768 /* Virtual tables. */
8769 set_gdbarch_vbit_in_delta (gdbarch, 1);
8770
29709017
DJ
8771 mips_register_g_packet_guesses (gdbarch);
8772
6de918a6 8773 /* Hook in OS ABI-specific overrides, if they have been registered. */
ede5f151 8774 info.tdep_info = tdesc_data;
6de918a6 8775 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8776
9aac7884
MR
8777 /* The hook may have adjusted num_regs, fetch the final value and
8778 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8779 num_regs = gdbarch_num_regs (gdbarch);
8780 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8781 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8782
5792a79b 8783 /* Unwind the frame. */
b8a22b94
DJ
8784 dwarf2_append_unwinders (gdbarch);
8785 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8786 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8787 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8788 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8789 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8790 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8791 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8792 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8793 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8794
f8b73d13
DJ
8795 if (tdesc_data)
8796 {
8797 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8798 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8799
8800 /* Override the normal target description methods to handle our
8801 dual real and pseudo registers. */
8802 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8803 set_gdbarch_register_reggroup_p (gdbarch,
8804 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8805
8806 num_regs = gdbarch_num_regs (gdbarch);
8807 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8808 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8809 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8810 }
8811
8812 /* Add ABI-specific aliases for the registers. */
8813 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8814 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8815 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8816 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8817 else
8818 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8819 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8820 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8821
8822 /* Add some other standard aliases. */
8823 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8824 user_reg_add (gdbarch, mips_register_aliases[i].name,
8825 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8826
865093a3
AR
8827 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8828 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8829 value_of_mips_user_reg,
8830 &mips_numeric_register_aliases[i].regnum);
8831
4b9b3959
AC
8832 return gdbarch;
8833}
8834
2e4ebe70 8835static void
6d82d43b 8836mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8837{
8838 struct gdbarch_info info;
8839
8840 /* Force the architecture to update, and (if it's a MIPS architecture)
8841 mips_gdbarch_init will take care of the rest. */
8842 gdbarch_info_init (&info);
8843 gdbarch_update_p (info);
8844}
8845
ad188201
KB
8846/* Print out which MIPS ABI is in use. */
8847
8848static void
1f8ca57c
JB
8849show_mips_abi (struct ui_file *file,
8850 int from_tty,
8851 struct cmd_list_element *ignored_cmd,
8852 const char *ignored_value)
ad188201 8853{
f5656ead 8854 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8855 fprintf_filtered
8856 (file,
8857 "The MIPS ABI is unknown because the current architecture "
8858 "is not MIPS.\n");
ad188201
KB
8859 else
8860 {
8861 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8862 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8863 const char *actual_abi_str = mips_abi_strings[actual_abi];
8864
8865 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8866 fprintf_filtered
8867 (file,
8868 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8869 actual_abi_str);
ad188201 8870 else if (global_abi == actual_abi)
1f8ca57c
JB
8871 fprintf_filtered
8872 (file,
8873 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8874 actual_abi_str);
ad188201
KB
8875 else
8876 {
8877 /* Probably shouldn't happen... */
025bb325
MS
8878 fprintf_filtered (file,
8879 "The (auto detected) MIPS ABI \"%s\" is in use "
8880 "even though the user setting was \"%s\".\n",
6d82d43b 8881 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8882 }
8883 }
8884}
8885
4cc0665f
MR
8886/* Print out which MIPS compressed ISA encoding is used. */
8887
8888static void
8889show_mips_compression (struct ui_file *file, int from_tty,
8890 struct cmd_list_element *c, const char *value)
8891{
8892 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8893 value);
8894}
8895
4b9b3959 8896static void
72a155b4 8897mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8898{
72a155b4 8899 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8900 if (tdep != NULL)
c2d11a7d 8901 {
acdb74a0
AC
8902 int ef_mips_arch;
8903 int ef_mips_32bitmode;
f49e4e6d 8904 /* Determine the ISA. */
acdb74a0
AC
8905 switch (tdep->elf_flags & EF_MIPS_ARCH)
8906 {
8907 case E_MIPS_ARCH_1:
8908 ef_mips_arch = 1;
8909 break;
8910 case E_MIPS_ARCH_2:
8911 ef_mips_arch = 2;
8912 break;
8913 case E_MIPS_ARCH_3:
8914 ef_mips_arch = 3;
8915 break;
8916 case E_MIPS_ARCH_4:
93d56215 8917 ef_mips_arch = 4;
acdb74a0
AC
8918 break;
8919 default:
93d56215 8920 ef_mips_arch = 0;
acdb74a0
AC
8921 break;
8922 }
f49e4e6d 8923 /* Determine the size of a pointer. */
acdb74a0 8924 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8925 fprintf_unfiltered (file,
8926 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8927 tdep->elf_flags);
4b9b3959 8928 fprintf_unfiltered (file,
acdb74a0
AC
8929 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8930 ef_mips_32bitmode);
8931 fprintf_unfiltered (file,
8932 "mips_dump_tdep: ef_mips_arch = %d\n",
8933 ef_mips_arch);
8934 fprintf_unfiltered (file,
8935 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8936 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8937 fprintf_unfiltered (file,
025bb325
MS
8938 "mips_dump_tdep: "
8939 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8940 mips_mask_address_p (tdep),
4014092b 8941 tdep->default_mask_address_p);
c2d11a7d 8942 }
4b9b3959
AC
8943 fprintf_unfiltered (file,
8944 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8945 MIPS_DEFAULT_FPU_TYPE,
8946 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8947 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8948 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8949 : "???"));
74ed0bb4
MD
8950 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8951 MIPS_EABI (gdbarch));
4b9b3959
AC
8952 fprintf_unfiltered (file,
8953 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4
MD
8954 MIPS_FPU_TYPE (gdbarch),
8955 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8956 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8957 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
4b9b3959 8958 : "???"));
c2d11a7d
JM
8959}
8960
025bb325 8961extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 8962
c906108c 8963void
acdb74a0 8964_initialize_mips_tdep (void)
c906108c
SS
8965{
8966 static struct cmd_list_element *mipsfpulist = NULL;
8967 struct cmd_list_element *c;
8968
6d82d43b 8969 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8970 if (MIPS_ABI_LAST + 1
8971 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8972 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8973
4b9b3959 8974 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8975
8d5f9dcb
DJ
8976 mips_pdr_data = register_objfile_data ();
8977
4eb0ad19
DJ
8978 /* Create feature sets with the appropriate properties. The values
8979 are not important. */
8980 mips_tdesc_gp32 = allocate_target_description ();
8981 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8982
8983 mips_tdesc_gp64 = allocate_target_description ();
8984 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8985
025bb325 8986 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8987 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8988 _("Various MIPS specific commands."),
a5ea2558
AC
8989 &setmipscmdlist, "set mips ", 0, &setlist);
8990
8991 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 8992 _("Various MIPS specific commands."),
a5ea2558
AC
8993 &showmipscmdlist, "show mips ", 0, &showlist);
8994
025bb325 8995 /* Allow the user to override the ABI. */
7ab04401
AC
8996 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8997 &mips_abi_string, _("\
8998Set the MIPS ABI used by this program."), _("\
8999Show the MIPS ABI used by this program."), _("\
9000This option can be set to one of:\n\
9001 auto - the default ABI associated with the current binary\n\
9002 o32\n\
9003 o64\n\
9004 n32\n\
9005 n64\n\
9006 eabi32\n\
9007 eabi64"),
9008 mips_abi_update,
9009 show_mips_abi,
9010 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 9011
4cc0665f
MR
9012 /* Allow the user to set the ISA to assume for compressed code if ELF
9013 file flags don't tell or there is no program file selected. This
9014 setting is updated whenever unambiguous ELF file flags are interpreted,
9015 and carried over to subsequent sessions. */
9016 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9017 &mips_compression_string, _("\
9018Set the compressed ISA encoding used by MIPS code."), _("\
9019Show the compressed ISA encoding used by MIPS code."), _("\
9020Select the compressed ISA encoding used in functions that have no symbol\n\
9021information available. The encoding can be set to either of:\n\
9022 mips16\n\
9023 micromips\n\
9024and is updated automatically from ELF file flags if available."),
9025 mips_abi_update,
9026 show_mips_compression,
9027 &setmipscmdlist, &showmipscmdlist);
9028
c906108c
SS
9029 /* Let the user turn off floating point and set the fence post for
9030 heuristic_proc_start. */
9031
9032 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 9033 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
9034 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9035 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 9036 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
9037 &mipsfpulist);
9038 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 9039 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
9040 &mipsfpulist);
9041 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9042 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9043 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9044 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 9045 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
9046 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9047 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9048 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9049 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 9050 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
9051 &mipsfpulist);
9052 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 9053 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
9054 &showlist);
9055
c906108c
SS
9056 /* We really would like to have both "0" and "unlimited" work, but
9057 command.c doesn't deal with that. So make it a var_zinteger
9058 because the user can always use "999999" or some such for unlimited. */
6bcadd06 9059 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
9060 &heuristic_fence_post, _("\
9061Set the distance searched for the start of a function."), _("\
9062Show the distance searched for the start of a function."), _("\
c906108c
SS
9063If you are debugging a stripped executable, GDB needs to search through the\n\
9064program for the start of a function. This command sets the distance of the\n\
7915a72c 9065search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 9066 reinit_frame_cache_sfunc,
025bb325
MS
9067 NULL, /* FIXME: i18n: The distance searched for
9068 the start of a function is %s. */
6bcadd06 9069 &setlist, &showlist);
c906108c
SS
9070
9071 /* Allow the user to control whether the upper bits of 64-bit
9072 addresses should be zeroed. */
7915a72c
AC
9073 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9074 &mask_address_var, _("\
9075Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9076Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 9077Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 9078allow GDB to determine the correct value."),
08546159
AC
9079 NULL, show_mask_address,
9080 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
9081
9082 /* Allow the user to control the size of 32 bit registers within the
9083 raw remote packet. */
b3f42336 9084 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
9085 &mips64_transfers_32bit_regs_p, _("\
9086Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9087 _("\
9088Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9089 _("\
719ec221
AC
9090Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9091that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 909264 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 9093 set_mips64_transfers_32bit_regs,
025bb325
MS
9094 NULL, /* FIXME: i18n: Compatibility with 64-bit
9095 MIPS target that transfers 32-bit
9096 quantities is %s. */
7915a72c 9097 &setlist, &showlist);
9ace0497 9098
025bb325 9099 /* Debug this files internals. */
ccce17b0
YQ
9100 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9101 &mips_debug, _("\
7915a72c
AC
9102Set mips debugging."), _("\
9103Show mips debugging."), _("\
9104When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
9105 NULL,
9106 NULL, /* FIXME: i18n: Mips debugging is
9107 currently %s. */
9108 &setdebuglist, &showdebuglist);
c906108c 9109}
This page took 2.412984 seconds and 4 git commands to generate.