2003-11-22 Jakub Jelinek <jakub@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
a4b8ebc8 45#include "reggroups.h"
c906108c 46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
a4b8ebc8 50#include "sim-regno.h"
a89aa300 51#include "dis-asm.h"
c906108c 52
e0f7ec59 53static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
5bbcb741 54static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 55
dd824b04
DJ
56/* A useful bit in the CP0 status register (PS_REGNUM). */
57/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58#define ST0_FR (1 << 26)
59
b0069a17
AC
60/* The sizes of floating point registers. */
61
62enum
63{
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66};
67
0dadbba0 68
2e4ebe70
DJ
69static const char *mips_abi_string;
70
71static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
28d169de 75 "n64",
2e4ebe70
DJ
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80};
81
cce74817 82struct frame_extra_info
c5aa993b
JM
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
cce74817 87
d929b26f
AC
88/* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
53904c9e
AC
92static const char size_auto[] = "auto";
93static const char size_32[] = "32";
94static const char size_64[] = "64";
d929b26f 95
53904c9e 96static const char *size_enums[] = {
d929b26f
AC
97 size_auto,
98 size_32,
99 size_64,
a5ea2558
AC
100 0
101};
102
7a292a7a
SS
103/* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
c906108c
SS
106
107enum mips_fpu_type
c5aa993b
JM
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
c906108c
SS
113
114#ifndef MIPS_DEFAULT_FPU_TYPE
115#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116#endif
117static int mips_fpu_type_auto = 1;
118static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 119
9ace0497 120static int mips_debug = 0;
7a292a7a 121
c2d11a7d
JM
122/* MIPS specific per-architecture information */
123struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
70f80edf 127
c2d11a7d 128 /* mips options */
0dadbba0 129 enum mips_abi mips_abi;
2e4ebe70 130 enum mips_abi found_abi;
c2d11a7d
JM
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
a5ea2558 134 int mips_default_saved_regsize;
c2d11a7d 135 int mips_fp_register_double;
d929b26f 136 int mips_default_stack_argsize;
4014092b 137 int default_mask_address_p;
719ec221
AC
138 /* Is the target using 64-bit raw integer registers but only
139 storing a left-aligned 32-bit value in each? */
140 int mips64_transfers_32bit_regs_p;
56cea623
AC
141 /* Indexes for various registers. IRIX and embedded have
142 different values. This contains the "public" fields. Don't
143 add any that do not need to be public. */
144 const struct mips_regnum *regnum;
691c0433
AC
145 /* Register names table for the current register set. */
146 const char **mips_processor_reg_names;
c2d11a7d
JM
147 };
148
56cea623
AC
149const struct mips_regnum *
150mips_regnum (struct gdbarch *gdbarch)
151{
152 return gdbarch_tdep (gdbarch)->regnum;
153}
154
155static int
156mips_fpa0_regnum (struct gdbarch *gdbarch)
157{
158 return mips_regnum (gdbarch)->fp0 + 12;
159}
160
0dadbba0 161#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 162 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 163
c2d11a7d 164#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 165
c2d11a7d 166#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 167
c2d11a7d 168#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 169
d929b26f
AC
170/* Return the currently configured (or set) saved register size. */
171
a5ea2558 172#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 173
53904c9e 174static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
175
176#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
177
95404a3e
AC
178/* MIPS16 function addresses are odd (bit 0 is set). Here are some
179 functions to test, set, or clear bit 0 of addresses. */
180
181static CORE_ADDR
182is_mips16_addr (CORE_ADDR addr)
183{
184 return ((addr) & 1);
185}
186
187static CORE_ADDR
188make_mips16_addr (CORE_ADDR addr)
189{
190 return ((addr) | 1);
191}
192
193static CORE_ADDR
194unmake_mips16_addr (CORE_ADDR addr)
195{
196 return ((addr) & ~1);
197}
198
22540ece
AC
199/* Return the contents of register REGNUM as a signed integer. */
200
201static LONGEST
202read_signed_register (int regnum)
203{
719ec221 204 void *buf = alloca (register_size (current_gdbarch, regnum));
22540ece 205 deprecated_read_register_gen (regnum, buf);
719ec221 206 return (extract_signed_integer (buf, register_size (current_gdbarch, regnum)));
22540ece
AC
207}
208
209static LONGEST
210read_signed_register_pid (int regnum, ptid_t ptid)
211{
212 ptid_t save_ptid;
213 LONGEST retval;
214
215 if (ptid_equal (ptid, inferior_ptid))
216 return read_signed_register (regnum);
217
218 save_ptid = inferior_ptid;
219
220 inferior_ptid = ptid;
221
222 retval = read_signed_register (regnum);
223
224 inferior_ptid = save_ptid;
225
226 return retval;
227}
228
d1973055
KB
229/* Return the MIPS ABI associated with GDBARCH. */
230enum mips_abi
231mips_abi (struct gdbarch *gdbarch)
232{
233 return gdbarch_tdep (gdbarch)->mips_abi;
234}
235
4246e332
AC
236int
237mips_regsize (struct gdbarch *gdbarch)
238{
239 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
240 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
241}
242
d929b26f 243static unsigned int
acdb74a0 244mips_saved_regsize (void)
d929b26f
AC
245{
246 if (mips_saved_regsize_string == size_auto)
247 return MIPS_DEFAULT_SAVED_REGSIZE;
248 else if (mips_saved_regsize_string == size_64)
249 return 8;
250 else /* if (mips_saved_regsize_string == size_32) */
251 return 4;
252}
253
71b8ef93 254/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 255 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 256 "info" field is used for this purpose.
5a89d8aa
MS
257
258 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
259 i.e. refers to a 16-bit function, and sets a "special" bit in a
260 minimal symbol to mark it as a 16-bit function
261
f594e5e9 262 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 263
5a89d8aa
MS
264static void
265mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
266{
267 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
268 {
269 MSYMBOL_INFO (msym) = (char *)
270 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
271 SYMBOL_VALUE_ADDRESS (msym) |= 1;
272 }
273}
274
71b8ef93
MS
275static int
276msymbol_is_special (struct minimal_symbol *msym)
277{
278 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
279}
280
88658117
AC
281/* XFER a value from the big/little/left end of the register.
282 Depending on the size of the value it might occupy the entire
283 register or just part of it. Make an allowance for this, aligning
284 things accordingly. */
285
286static void
287mips_xfer_register (struct regcache *regcache, int reg_num, int length,
288 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
289 int buf_offset)
290{
d9d9c31f 291 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 292 int reg_offset = 0;
a4b8ebc8 293 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
294 /* Need to transfer the left or right part of the register, based on
295 the targets byte order. */
88658117
AC
296 switch (endian)
297 {
298 case BFD_ENDIAN_BIG:
719ec221 299 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
300 break;
301 case BFD_ENDIAN_LITTLE:
302 reg_offset = 0;
303 break;
304 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
305 reg_offset = 0;
306 break;
307 default:
308 internal_error (__FILE__, __LINE__, "bad switch");
309 }
310 if (mips_debug)
cb1d2653
AC
311 fprintf_unfiltered (gdb_stderr,
312 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
313 reg_num, reg_offset, buf_offset, length);
88658117
AC
314 if (mips_debug && out != NULL)
315 {
316 int i;
cb1d2653 317 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 318 for (i = 0; i < length; i++)
cb1d2653 319 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
320 }
321 if (in != NULL)
a4b8ebc8 322 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
88658117 323 if (out != NULL)
a4b8ebc8 324 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
88658117
AC
325 if (mips_debug && in != NULL)
326 {
327 int i;
cb1d2653 328 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 329 for (i = 0; i < length; i++)
cb1d2653 330 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
331 }
332 if (mips_debug)
333 fprintf_unfiltered (gdb_stdlog, "\n");
334}
335
dd824b04
DJ
336/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
337 compatiblity mode. A return value of 1 means that we have
338 physical 64-bit registers, but should treat them as 32-bit registers. */
339
340static int
341mips2_fp_compat (void)
342{
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
344 meaningful. */
56cea623 345 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 4)
dd824b04
DJ
346 return 0;
347
348#if 0
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
353 mode. */
354 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
355 return 1;
356#endif
361d1df0 357
dd824b04
DJ
358 return 0;
359}
360
c2d11a7d
JM
361/* Indicate that the ABI makes use of double-precision registers
362 provided by the FPU (rather than combining pairs of registers to
8fa9cfa1 363 form double-precision values). See also MIPS_FPU_TYPE. */
c2d11a7d 364#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 365
d929b26f
AC
366/* The amount of space reserved on the stack for registers. This is
367 different to MIPS_SAVED_REGSIZE as it determines the alignment of
368 data allocated after the registers have run out. */
369
0dadbba0 370#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
371
372#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
373
53904c9e 374static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
375
376static unsigned int
377mips_stack_argsize (void)
378{
379 if (mips_stack_argsize_string == size_auto)
380 return MIPS_DEFAULT_STACK_ARGSIZE;
381 else if (mips_stack_argsize_string == size_64)
382 return 8;
383 else /* if (mips_stack_argsize_string == size_32) */
384 return 4;
385}
386
92e1c15c 387#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 388
7a292a7a 389#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 390
570b8f7c
AC
391static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
392 struct frame_info *, int);
c906108c 393
a14ed312 394static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 395
a14ed312 396static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 397
a14ed312 398static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 399
570b8f7c
AC
400static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
401 struct frame_info *next_frame,
402 int cur_frame);
c906108c 403
a14ed312
KB
404static CORE_ADDR after_prologue (CORE_ADDR pc,
405 mips_extra_func_info_t proc_desc);
c906108c 406
67b2c998
DJ
407static struct type *mips_float_register_type (void);
408static struct type *mips_double_register_type (void);
409
acdb74a0
AC
410/* The list of available "set mips " and "show mips " commands */
411
412static struct cmd_list_element *setmipscmdlist = NULL;
413static struct cmd_list_element *showmipscmdlist = NULL;
414
5e2e9765
KB
415/* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
691c0433
AC
417 are listed in the followign tables. */
418
419enum { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
420
421/* Generic MIPS. */
422
423static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
424 "sr", "lo", "hi", "bad", "cause","pc",
425 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
426 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
427 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
428 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
429 "fsr", "fir", ""/*"fp"*/, "",
430 "", "", "", "", "", "", "", "",
431 "", "", "", "", "", "", "", "",
432};
433
434/* Names of IDT R3041 registers. */
435
436static const char *mips_r3041_reg_names[] = {
437 "sr", "lo", "hi", "bad", "cause","pc",
438 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
439 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
440 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
441 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
442 "fsr", "fir", "",/*"fp"*/ "",
443 "", "", "bus", "ccfg", "", "", "", "",
444 "", "", "port", "cmp", "", "", "epc", "prid",
445};
446
447/* Names of tx39 registers. */
448
449static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
450 "sr", "lo", "hi", "bad", "cause","pc",
451 "", "", "", "", "", "", "", "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "",
456 "", "", "", "", "", "", "", "",
457 "", "", "config", "cache", "debug", "depc", "epc", ""
458};
459
460/* Names of IRIX registers. */
461static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
467};
468
cce74817 469
5e2e9765 470/* Return the name of the register corresponding to REGNO. */
5a89d8aa 471static const char *
5e2e9765 472mips_register_name (int regno)
cce74817 473{
691c0433 474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
475 /* GPR names for all ABIs other than n32/n64. */
476 static char *mips_gpr_names[] = {
477 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
478 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
479 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
480 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
481 };
482
483 /* GPR names for n32 and n64 ABIs. */
484 static char *mips_n32_n64_gpr_names[] = {
485 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
486 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
487 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
488 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
489 };
490
491 enum mips_abi abi = mips_abi (current_gdbarch);
492
a4b8ebc8
AC
493 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
494 don't make the raw register names visible. */
495 int rawnum = regno % NUM_REGS;
496 if (regno < NUM_REGS)
497 return "";
498
5e2e9765
KB
499 /* The MIPS integer registers are always mapped from 0 to 31. The
500 names of the registers (which reflects the conventions regarding
501 register use) vary depending on the ABI. */
a4b8ebc8 502 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
503 {
504 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 505 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 506 else
a4b8ebc8 507 return mips_gpr_names[rawnum];
5e2e9765 508 }
a4b8ebc8 509 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
510 {
511 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
512 return tdep->mips_processor_reg_names[rawnum - 32];
513 }
5e2e9765
KB
514 else
515 internal_error (__FILE__, __LINE__,
a4b8ebc8 516 "mips_register_name: bad register number %d", rawnum);
cce74817 517}
5e2e9765 518
a4b8ebc8 519/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 520
a4b8ebc8
AC
521static int
522mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
524{
525 int vector_p;
526 int float_p;
527 int raw_p;
528 int rawnum = regnum % NUM_REGS;
529 int pseudo = regnum / NUM_REGS;
530 if (reggroup == all_reggroup)
531 return pseudo;
532 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
533 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
534 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
535 (gdbarch), as not all architectures are multi-arch. */
536 raw_p = rawnum < NUM_REGS;
537 if (REGISTER_NAME (regnum) == NULL
538 || REGISTER_NAME (regnum)[0] == '\0')
539 return 0;
540 if (reggroup == float_reggroup)
541 return float_p && pseudo;
542 if (reggroup == vector_reggroup)
543 return vector_p && pseudo;
544 if (reggroup == general_reggroup)
545 return (!vector_p && !float_p) && pseudo;
546 /* Save the pseudo registers. Need to make certain that any code
547 extracting register values from a saved register cache also uses
548 pseudo registers. */
549 if (reggroup == save_reggroup)
550 return raw_p && pseudo;
551 /* Restore the same pseudo register. */
552 if (reggroup == restore_reggroup)
553 return raw_p && pseudo;
554 return 0;
555}
556
557/* Map the symbol table registers which live in the range [1 *
558 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
559 registers. */
c5aa993b 560
a4b8ebc8
AC
561static void
562mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
563 int cookednum, void *buf)
564{
565 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
566 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
567}
568
569static void
570mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, const void *buf)
572{
573 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
574 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
575}
c5aa993b 576
c906108c 577/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
578static int mips16_to_32_reg[8] =
579{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
580
581/* Heuristic_proc_start may hunt through the text section for a long
582 time across a 2400 baud serial line. Allows the user to limit this
583 search. */
584
585static unsigned int heuristic_fence_post = 0;
586
c5aa993b
JM
587#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
588#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
589#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
590#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
591#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
592#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
593#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
594#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
595#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
596#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
597/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
598 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
599#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
600#define _PROC_MAGIC_ 0x0F0F0F0F
601#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
602#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
603
604struct linked_proc_info
c5aa993b
JM
605 {
606 struct mips_extra_func_info info;
607 struct linked_proc_info *next;
608 }
609 *linked_proc_desc_table = NULL;
c906108c 610
46cd78fb 611/* Number of bytes of storage in the actual machine representation for
719ec221
AC
612 register N. NOTE: This defines the pseudo register type so need to
613 rebuild the architecture vector. */
43e526b9
JM
614
615static int mips64_transfers_32bit_regs_p = 0;
616
719ec221
AC
617static void
618set_mips64_transfers_32bit_regs (char *args, int from_tty,
619 struct cmd_list_element *c)
43e526b9 620{
719ec221
AC
621 struct gdbarch_info info;
622 gdbarch_info_init (&info);
623 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
624 instead of relying on globals. Doing that would let generic code
625 handle the search for this specific architecture. */
626 if (!gdbarch_update_p (info))
a4b8ebc8 627 {
719ec221
AC
628 mips64_transfers_32bit_regs_p = 0;
629 error ("32-bit compatibility mode not supported");
a4b8ebc8 630 }
a4b8ebc8
AC
631}
632
46cd78fb
AC
633/* Convert between RAW and VIRTUAL registers. The RAW register size
634 defines the remote-gdb packet. */
635
d05285fa 636static int
acdb74a0 637mips_register_convertible (int reg_nr)
43e526b9 638{
719ec221 639 if (gdbarch_tdep (current_gdbarch)->mips64_transfers_32bit_regs_p)
43e526b9
JM
640 return 0;
641 else
719ec221 642 return (register_size (current_gdbarch, reg_nr) > register_size (current_gdbarch, reg_nr));
43e526b9
JM
643}
644
d05285fa 645static void
acdb74a0
AC
646mips_register_convert_to_virtual (int n, struct type *virtual_type,
647 char *raw_buf, char *virt_buf)
43e526b9 648{
d7449b42 649 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9 650 memcpy (virt_buf,
719ec221 651 raw_buf + (register_size (current_gdbarch, n) - TYPE_LENGTH (virtual_type)),
43e526b9
JM
652 TYPE_LENGTH (virtual_type));
653 else
654 memcpy (virt_buf,
655 raw_buf,
656 TYPE_LENGTH (virtual_type));
657}
658
d05285fa 659static void
acdb74a0 660mips_register_convert_to_raw (struct type *virtual_type, int n,
781a750d 661 const char *virt_buf, char *raw_buf)
43e526b9 662{
719ec221 663 memset (raw_buf, 0, register_size (current_gdbarch, n));
d7449b42 664 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221 665 memcpy (raw_buf + (register_size (current_gdbarch, n) - TYPE_LENGTH (virtual_type)),
43e526b9
JM
666 virt_buf,
667 TYPE_LENGTH (virtual_type));
668 else
669 memcpy (raw_buf,
670 virt_buf,
671 TYPE_LENGTH (virtual_type));
672}
673
ff2e87ac
AC
674static int
675mips_convert_register_p (int regnum, struct type *type)
676{
677 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 678 && register_size (current_gdbarch, regnum) == 4
56cea623 679 && (regnum) >= mips_regnum (current_gdbarch)->fp0 && (regnum) < mips_regnum (current_gdbarch)->fp0 + 32
ff2e87ac
AC
680 && TYPE_CODE(type) == TYPE_CODE_FLT
681 && TYPE_LENGTH(type) == 8);
682}
683
42c466d7 684static void
ff2e87ac
AC
685mips_register_to_value (struct frame_info *frame, int regnum,
686 struct type *type, void *to)
102182a9 687{
7f5f525d
AC
688 get_frame_register (frame, regnum + 0, (char *) to + 4);
689 get_frame_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
690}
691
42c466d7 692static void
ff2e87ac
AC
693mips_value_to_register (struct frame_info *frame, int regnum,
694 struct type *type, const void *from)
102182a9 695{
ff2e87ac
AC
696 put_frame_register (frame, regnum + 0, (const char *) from + 4);
697 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
698}
699
a4b8ebc8
AC
700/* Return the GDB type object for the "standard" data type of data in
701 register REG. */
78fde5f8
KB
702
703static struct type *
a4b8ebc8
AC
704mips_register_type (struct gdbarch *gdbarch, int regnum)
705{
5ef80fb0 706 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
707 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
708 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 709 {
5ef80fb0
AC
710 /* The floating-point registers raw, or cooked, always match
711 mips_regsize(), and also map 1:1, byte for byte. */
712 switch (gdbarch_byte_order (gdbarch))
713 {
714 case BFD_ENDIAN_BIG:
715 if (mips_regsize (gdbarch) == 4)
716 return builtin_type_ieee_single_big;
717 else
718 return builtin_type_ieee_double_big;
719 case BFD_ENDIAN_LITTLE:
720 if (mips_regsize (gdbarch) == 4)
721 return builtin_type_ieee_single_little;
722 else
723 return builtin_type_ieee_double_little;
724 case BFD_ENDIAN_UNKNOWN:
725 default:
726 internal_error (__FILE__, __LINE__, "bad switch");
727 }
a6425924 728 }
56cea623 729 else if (regnum >= (NUM_REGS + mips_regnum (current_gdbarch)->fp_control_status)
5ef80fb0
AC
730 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
719ec221
AC
734 else if (regnum >= NUM_REGS && mips_regsize (gdbarch)
735 && gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
736 /* The target, while using a 64-bit register buffer, is only
737 transfering 32-bits of each integer register. Reflect this in
738 the cooked/pseudo register value. */
739 return builtin_type_int32;
5ef80fb0
AC
740 else if (mips_regsize (gdbarch) == 8)
741 /* 64-bit ISA. */
742 return builtin_type_int64;
78fde5f8 743 else
5ef80fb0
AC
744 /* 32-bit ISA. */
745 return builtin_type_int32;
78fde5f8
KB
746}
747
bcb0cc15
MS
748/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
749
750static CORE_ADDR
751mips_read_sp (void)
752{
e227b13c 753 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
754}
755
c906108c 756/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 757enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
758
759static int
760mips_mask_address_p (void)
761{
762 switch (mask_address_var)
763 {
7f19b9a2 764 case AUTO_BOOLEAN_TRUE:
4014092b 765 return 1;
7f19b9a2 766 case AUTO_BOOLEAN_FALSE:
4014092b
AC
767 return 0;
768 break;
7f19b9a2 769 case AUTO_BOOLEAN_AUTO:
92e1c15c 770 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 771 default:
8e65ff28
AC
772 internal_error (__FILE__, __LINE__,
773 "mips_mask_address_p: bad switch");
4014092b 774 return -1;
361d1df0 775 }
4014092b
AC
776}
777
778static void
e9e68a56 779show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
780{
781 switch (mask_address_var)
782 {
7f19b9a2 783 case AUTO_BOOLEAN_TRUE:
4014092b
AC
784 printf_filtered ("The 32 bit mips address mask is enabled\n");
785 break;
7f19b9a2 786 case AUTO_BOOLEAN_FALSE:
4014092b
AC
787 printf_filtered ("The 32 bit mips address mask is disabled\n");
788 break;
7f19b9a2 789 case AUTO_BOOLEAN_AUTO:
4014092b
AC
790 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
791 mips_mask_address_p () ? "enabled" : "disabled");
792 break;
793 default:
8e65ff28
AC
794 internal_error (__FILE__, __LINE__,
795 "show_mask_address: bad switch");
4014092b 796 break;
361d1df0 797 }
4014092b 798}
c906108c
SS
799
800/* Should call_function allocate stack space for a struct return? */
cb811fe7 801
f7ab6ec6 802static int
cb811fe7 803mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 804{
cb811fe7
MS
805 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
806}
807
f7ab6ec6 808static int
cb811fe7
MS
809mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
810{
b78bcb18 811 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
812}
813
8b389c40
MS
814/* Should call_function pass struct by reference?
815 For each architecture, structs are passed either by
816 value or by reference, depending on their size. */
817
818static int
819mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
820{
821 enum type_code typecode = TYPE_CODE (check_typedef (type));
822 int len = TYPE_LENGTH (check_typedef (type));
823
824 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
825 return (len > MIPS_SAVED_REGSIZE);
826
827 return 0;
828}
829
830static int
831mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
832{
833 return 0; /* Assumption: N32/N64 never passes struct by ref. */
834}
835
f7ab6ec6 836static int
8b389c40
MS
837mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
838{
839 return 0; /* Assumption: O32/O64 never passes struct by ref. */
840}
841
c906108c
SS
842/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
843
844static int
845pc_is_mips16 (bfd_vma memaddr)
846{
847 struct minimal_symbol *sym;
848
849 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 850 if (is_mips16_addr (memaddr))
c906108c
SS
851 return 1;
852
853 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
854 the high bit of the info field. Use this to decide if the function is
855 MIPS16 or normal MIPS. */
856 sym = lookup_minimal_symbol_by_pc (memaddr);
857 if (sym)
71b8ef93 858 return msymbol_is_special (sym);
c906108c
SS
859 else
860 return 0;
861}
862
6c997a34
AC
863/* MIPS believes that the PC has a sign extended value. Perhaphs the
864 all registers should be sign extended for simplicity? */
865
866static CORE_ADDR
39f77062 867mips_read_pc (ptid_t ptid)
6c997a34 868{
39f77062 869 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 870}
c906108c
SS
871
872/* This returns the PC of the first inst after the prologue. If we can't
873 find the prologue, then return 0. */
874
875static CORE_ADDR
acdb74a0
AC
876after_prologue (CORE_ADDR pc,
877 mips_extra_func_info_t proc_desc)
c906108c
SS
878{
879 struct symtab_and_line sal;
880 CORE_ADDR func_addr, func_end;
881
479412cd
DJ
882 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
883 to read the stack pointer from the current machine state, because
884 the current machine state has nothing to do with the information
885 we need from the proc_desc; and the process may or may not exist
886 right now. */
c906108c 887 if (!proc_desc)
479412cd 888 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
889
890 if (proc_desc)
891 {
892 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 893 strongly suspect that frameless always means prologueless... */
c906108c
SS
894 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
895 && PROC_FRAME_OFFSET (proc_desc) == 0)
896 return 0;
897 }
898
899 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
900 return 0; /* Unknown */
901
902 sal = find_pc_line (func_addr, 0);
903
904 if (sal.end < func_end)
905 return sal.end;
906
907 /* The line after the prologue is after the end of the function. In this
908 case, tell the caller to find the prologue the hard way. */
909
910 return 0;
911}
912
913/* Decode a MIPS32 instruction that saves a register in the stack, and
914 set the appropriate bit in the general register mask or float register mask
915 to indicate which register is saved. This is a helper function
916 for mips_find_saved_regs. */
917
918static void
acdb74a0
AC
919mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
920 unsigned long *float_mask)
c906108c
SS
921{
922 int reg;
923
924 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
925 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
926 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
927 {
928 /* It might be possible to use the instruction to
c5aa993b
JM
929 find the offset, rather than the code below which
930 is based on things being in a certain order in the
931 frame, but figuring out what the instruction's offset
932 is relative to might be a little tricky. */
c906108c
SS
933 reg = (inst & 0x001f0000) >> 16;
934 *gen_mask |= (1 << reg);
935 }
936 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
937 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
938 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
939
940 {
941 reg = ((inst & 0x001f0000) >> 16);
942 *float_mask |= (1 << reg);
943 }
944}
945
946/* Decode a MIPS16 instruction that saves a register in the stack, and
947 set the appropriate bit in the general register or float register mask
948 to indicate which register is saved. This is a helper function
949 for mips_find_saved_regs. */
950
951static void
acdb74a0 952mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 953{
c5aa993b 954 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
955 {
956 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
957 *gen_mask |= (1 << reg);
958 }
c5aa993b 959 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
960 {
961 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
962 *gen_mask |= (1 << reg);
963 }
c5aa993b 964 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
965 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
966 *gen_mask |= (1 << RA_REGNUM);
967}
968
969
970/* Fetch and return instruction from the specified location. If the PC
971 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
972
973static t_inst
acdb74a0 974mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
975{
976 char buf[MIPS_INSTLEN];
977 int instlen;
978 int status;
979
980 if (pc_is_mips16 (addr))
981 {
982 instlen = MIPS16_INSTLEN;
95404a3e 983 addr = unmake_mips16_addr (addr);
c906108c
SS
984 }
985 else
c5aa993b 986 instlen = MIPS_INSTLEN;
c906108c
SS
987 status = read_memory_nobpt (addr, buf, instlen);
988 if (status)
989 memory_error (status, addr);
990 return extract_unsigned_integer (buf, instlen);
991}
992
993
994/* These the fields of 32 bit mips instructions */
e135b889
DJ
995#define mips32_op(x) (x >> 26)
996#define itype_op(x) (x >> 26)
997#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 998#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 999#define itype_immediate(x) (x & 0xffff)
c906108c 1000
e135b889
DJ
1001#define jtype_op(x) (x >> 26)
1002#define jtype_target(x) (x & 0x03ffffff)
c906108c 1003
e135b889
DJ
1004#define rtype_op(x) (x >> 26)
1005#define rtype_rs(x) ((x >> 21) & 0x1f)
1006#define rtype_rt(x) ((x >> 16) & 0x1f)
1007#define rtype_rd(x) ((x >> 11) & 0x1f)
1008#define rtype_shamt(x) ((x >> 6) & 0x1f)
1009#define rtype_funct(x) (x & 0x3f)
c906108c
SS
1010
1011static CORE_ADDR
c5aa993b
JM
1012mips32_relative_offset (unsigned long inst)
1013{
1014 long x;
1015 x = itype_immediate (inst);
1016 if (x & 0x8000) /* sign bit set */
c906108c 1017 {
c5aa993b 1018 x |= 0xffff0000; /* sign extension */
c906108c 1019 }
c5aa993b
JM
1020 x = x << 2;
1021 return x;
c906108c
SS
1022}
1023
1024/* Determine whate to set a single step breakpoint while considering
1025 branch prediction */
5a89d8aa 1026static CORE_ADDR
c5aa993b
JM
1027mips32_next_pc (CORE_ADDR pc)
1028{
1029 unsigned long inst;
1030 int op;
1031 inst = mips_fetch_instruction (pc);
e135b889 1032 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1033 {
e135b889
DJ
1034 if (itype_op (inst) >> 2 == 5)
1035 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1036 {
e135b889 1037 op = (itype_op (inst) & 0x03);
c906108c
SS
1038 switch (op)
1039 {
e135b889
DJ
1040 case 0: /* BEQL */
1041 goto equal_branch;
1042 case 1: /* BNEL */
1043 goto neq_branch;
1044 case 2: /* BLEZL */
1045 goto less_branch;
1046 case 3: /* BGTZ */
1047 goto greater_branch;
c5aa993b
JM
1048 default:
1049 pc += 4;
c906108c
SS
1050 }
1051 }
e135b889
DJ
1052 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1053 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1054 {
1055 int tf = itype_rt (inst) & 0x01;
1056 int cnum = itype_rt (inst) >> 2;
56cea623 1057 int fcrcs = read_signed_register (mips_regnum (current_gdbarch)->fp_control_status);
e135b889
DJ
1058 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1059
1060 if (((cond >> cnum) & 0x01) == tf)
1061 pc += mips32_relative_offset (inst) + 4;
1062 else
1063 pc += 8;
1064 }
c5aa993b
JM
1065 else
1066 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1067 }
1068 else
c5aa993b
JM
1069 { /* This gets way messy */
1070
c906108c 1071 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1072 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1073 {
c5aa993b
JM
1074 case 0: /* SPECIAL */
1075 op = rtype_funct (inst);
1076 switch (op)
1077 {
1078 case 8: /* JR */
1079 case 9: /* JALR */
6c997a34
AC
1080 /* Set PC to that address */
1081 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1082 break;
1083 default:
1084 pc += 4;
1085 }
1086
e135b889 1087 break; /* end SPECIAL */
c5aa993b 1088 case 1: /* REGIMM */
c906108c 1089 {
e135b889
DJ
1090 op = itype_rt (inst); /* branch condition */
1091 switch (op)
c906108c 1092 {
c5aa993b 1093 case 0: /* BLTZ */
e135b889
DJ
1094 case 2: /* BLTZL */
1095 case 16: /* BLTZAL */
c5aa993b 1096 case 18: /* BLTZALL */
c906108c 1097 less_branch:
6c997a34 1098 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1099 pc += mips32_relative_offset (inst) + 4;
1100 else
1101 pc += 8; /* after the delay slot */
1102 break;
e135b889 1103 case 1: /* BGEZ */
c5aa993b
JM
1104 case 3: /* BGEZL */
1105 case 17: /* BGEZAL */
1106 case 19: /* BGEZALL */
c906108c 1107 greater_equal_branch:
6c997a34 1108 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1109 pc += mips32_relative_offset (inst) + 4;
1110 else
1111 pc += 8; /* after the delay slot */
1112 break;
e135b889 1113 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1114 default:
1115 pc += 4;
c906108c
SS
1116 }
1117 }
e135b889 1118 break; /* end REGIMM */
c5aa993b
JM
1119 case 2: /* J */
1120 case 3: /* JAL */
1121 {
1122 unsigned long reg;
1123 reg = jtype_target (inst) << 2;
e135b889 1124 /* Upper four bits get never changed... */
c5aa993b 1125 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1126 }
c5aa993b
JM
1127 break;
1128 /* FIXME case JALX : */
1129 {
1130 unsigned long reg;
1131 reg = jtype_target (inst) << 2;
1132 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1133 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1134 }
c5aa993b 1135 break; /* The new PC will be alternate mode */
e135b889 1136 case 4: /* BEQ, BEQL */
c5aa993b 1137 equal_branch:
6c997a34
AC
1138 if (read_signed_register (itype_rs (inst)) ==
1139 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1140 pc += mips32_relative_offset (inst) + 4;
1141 else
1142 pc += 8;
1143 break;
e135b889 1144 case 5: /* BNE, BNEL */
c5aa993b 1145 neq_branch:
6c997a34 1146 if (read_signed_register (itype_rs (inst)) !=
e135b889 1147 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1148 pc += mips32_relative_offset (inst) + 4;
1149 else
1150 pc += 8;
1151 break;
e135b889 1152 case 6: /* BLEZ, BLEZL */
c906108c 1153 less_zero_branch:
6c997a34 1154 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1155 pc += mips32_relative_offset (inst) + 4;
1156 else
1157 pc += 8;
1158 break;
1159 case 7:
e135b889
DJ
1160 default:
1161 greater_branch: /* BGTZ, BGTZL */
6c997a34 1162 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1163 pc += mips32_relative_offset (inst) + 4;
1164 else
1165 pc += 8;
1166 break;
c5aa993b
JM
1167 } /* switch */
1168 } /* else */
1169 return pc;
1170} /* mips32_next_pc */
c906108c
SS
1171
1172/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1173 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1174 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1175 We dont want to set a single step instruction on the extend instruction
1176 either.
c5aa993b 1177 */
c906108c
SS
1178
1179/* Lots of mips16 instruction formats */
1180/* Predicting jumps requires itype,ritype,i8type
1181 and their extensions extItype,extritype,extI8type
c5aa993b 1182 */
c906108c
SS
1183enum mips16_inst_fmts
1184{
c5aa993b
JM
1185 itype, /* 0 immediate 5,10 */
1186 ritype, /* 1 5,3,8 */
1187 rrtype, /* 2 5,3,3,5 */
1188 rritype, /* 3 5,3,3,5 */
1189 rrrtype, /* 4 5,3,3,3,2 */
1190 rriatype, /* 5 5,3,3,1,4 */
1191 shifttype, /* 6 5,3,3,3,2 */
1192 i8type, /* 7 5,3,8 */
1193 i8movtype, /* 8 5,3,3,5 */
1194 i8mov32rtype, /* 9 5,3,5,3 */
1195 i64type, /* 10 5,3,8 */
1196 ri64type, /* 11 5,3,3,5 */
1197 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1198 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1199 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1200 extRRItype, /* 15 5,5,5,5,3,3,5 */
1201 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1202 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1203 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1204 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1205 extRi64type, /* 20 5,6,5,5,3,3,5 */
1206 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1207};
12f02c2a
AC
1208/* I am heaping all the fields of the formats into one structure and
1209 then, only the fields which are involved in instruction extension */
c906108c 1210struct upk_mips16
c5aa993b 1211 {
12f02c2a 1212 CORE_ADDR offset;
c5aa993b
JM
1213 unsigned int regx; /* Function in i8 type */
1214 unsigned int regy;
1215 };
c906108c
SS
1216
1217
12f02c2a
AC
1218/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1219 for the bits which make up the immediatate extension. */
c906108c 1220
12f02c2a
AC
1221static CORE_ADDR
1222extended_offset (unsigned int extension)
c906108c 1223{
12f02c2a 1224 CORE_ADDR value;
c5aa993b
JM
1225 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1226 value = value << 6;
1227 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1228 value = value << 5;
1229 value |= extension & 0x01f; /* extract 4:0 */
1230 return value;
c906108c
SS
1231}
1232
1233/* Only call this function if you know that this is an extendable
1234 instruction, It wont malfunction, but why make excess remote memory references?
1235 If the immediate operands get sign extended or somthing, do it after
1236 the extension is performed.
c5aa993b 1237 */
c906108c
SS
1238/* FIXME: Every one of these cases needs to worry about sign extension
1239 when the offset is to be used in relative addressing */
1240
1241
12f02c2a 1242static unsigned int
c5aa993b 1243fetch_mips_16 (CORE_ADDR pc)
c906108c 1244{
c5aa993b
JM
1245 char buf[8];
1246 pc &= 0xfffffffe; /* clear the low order bit */
1247 target_read_memory (pc, buf, 2);
1248 return extract_unsigned_integer (buf, 2);
c906108c
SS
1249}
1250
1251static void
c5aa993b 1252unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1253 unsigned int extension,
1254 unsigned int inst,
1255 enum mips16_inst_fmts insn_format,
c5aa993b 1256 struct upk_mips16 *upk)
c906108c 1257{
12f02c2a
AC
1258 CORE_ADDR offset;
1259 int regx;
1260 int regy;
1261 switch (insn_format)
c906108c 1262 {
c5aa993b 1263 case itype:
c906108c 1264 {
12f02c2a
AC
1265 CORE_ADDR value;
1266 if (extension)
c5aa993b
JM
1267 {
1268 value = extended_offset (extension);
1269 value = value << 11; /* rom for the original value */
12f02c2a 1270 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1271 }
1272 else
c5aa993b 1273 {
12f02c2a 1274 value = inst & 0x7ff;
c5aa993b 1275 /* FIXME : Consider sign extension */
c906108c 1276 }
12f02c2a
AC
1277 offset = value;
1278 regx = -1;
1279 regy = -1;
c906108c 1280 }
c5aa993b
JM
1281 break;
1282 case ritype:
1283 case i8type:
1284 { /* A register identifier and an offset */
c906108c
SS
1285 /* Most of the fields are the same as I type but the
1286 immediate value is of a different length */
12f02c2a
AC
1287 CORE_ADDR value;
1288 if (extension)
c906108c 1289 {
c5aa993b
JM
1290 value = extended_offset (extension);
1291 value = value << 8; /* from the original instruction */
12f02c2a
AC
1292 value |= inst & 0xff; /* eleven bits from instruction */
1293 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1294 if (value & 0x4000) /* test the sign bit , bit 26 */
1295 {
1296 value &= ~0x3fff; /* remove the sign bit */
1297 value = -value;
c906108c
SS
1298 }
1299 }
c5aa993b
JM
1300 else
1301 {
12f02c2a
AC
1302 value = inst & 0xff; /* 8 bits */
1303 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1304 /* FIXME: Do sign extension , this format needs it */
1305 if (value & 0x80) /* THIS CONFUSES ME */
1306 {
1307 value &= 0xef; /* remove the sign bit */
1308 value = -value;
1309 }
c5aa993b 1310 }
12f02c2a
AC
1311 offset = value;
1312 regy = -1;
c5aa993b 1313 break;
c906108c 1314 }
c5aa993b 1315 case jalxtype:
c906108c 1316 {
c5aa993b 1317 unsigned long value;
12f02c2a
AC
1318 unsigned int nexthalf;
1319 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1320 value = value << 16;
1321 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1322 value |= nexthalf;
12f02c2a
AC
1323 offset = value;
1324 regx = -1;
1325 regy = -1;
c5aa993b 1326 break;
c906108c
SS
1327 }
1328 default:
8e65ff28
AC
1329 internal_error (__FILE__, __LINE__,
1330 "bad switch");
c906108c 1331 }
12f02c2a
AC
1332 upk->offset = offset;
1333 upk->regx = regx;
1334 upk->regy = regy;
c906108c
SS
1335}
1336
1337
c5aa993b
JM
1338static CORE_ADDR
1339add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1340{
c5aa993b 1341 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1342}
1343
12f02c2a
AC
1344static CORE_ADDR
1345extended_mips16_next_pc (CORE_ADDR pc,
1346 unsigned int extension,
1347 unsigned int insn)
c906108c 1348{
12f02c2a
AC
1349 int op = (insn >> 11);
1350 switch (op)
c906108c 1351 {
12f02c2a
AC
1352 case 2: /* Branch */
1353 {
1354 CORE_ADDR offset;
1355 struct upk_mips16 upk;
1356 unpack_mips16 (pc, extension, insn, itype, &upk);
1357 offset = upk.offset;
1358 if (offset & 0x800)
1359 {
1360 offset &= 0xeff;
1361 offset = -offset;
1362 }
1363 pc += (offset << 1) + 2;
1364 break;
1365 }
1366 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1367 {
1368 struct upk_mips16 upk;
1369 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1370 pc = add_offset_16 (pc, upk.offset);
1371 if ((insn >> 10) & 0x01) /* Exchange mode */
1372 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1373 else
1374 pc |= 0x01;
1375 break;
1376 }
1377 case 4: /* beqz */
1378 {
1379 struct upk_mips16 upk;
1380 int reg;
1381 unpack_mips16 (pc, extension, insn, ritype, &upk);
1382 reg = read_signed_register (upk.regx);
1383 if (reg == 0)
1384 pc += (upk.offset << 1) + 2;
1385 else
1386 pc += 2;
1387 break;
1388 }
1389 case 5: /* bnez */
1390 {
1391 struct upk_mips16 upk;
1392 int reg;
1393 unpack_mips16 (pc, extension, insn, ritype, &upk);
1394 reg = read_signed_register (upk.regx);
1395 if (reg != 0)
1396 pc += (upk.offset << 1) + 2;
1397 else
1398 pc += 2;
1399 break;
1400 }
1401 case 12: /* I8 Formats btez btnez */
1402 {
1403 struct upk_mips16 upk;
1404 int reg;
1405 unpack_mips16 (pc, extension, insn, i8type, &upk);
1406 /* upk.regx contains the opcode */
1407 reg = read_signed_register (24); /* Test register is 24 */
1408 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1409 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1410 /* pc = add_offset_16(pc,upk.offset) ; */
1411 pc += (upk.offset << 1) + 2;
1412 else
1413 pc += 2;
1414 break;
1415 }
1416 case 29: /* RR Formats JR, JALR, JALR-RA */
1417 {
1418 struct upk_mips16 upk;
1419 /* upk.fmt = rrtype; */
1420 op = insn & 0x1f;
1421 if (op == 0)
c5aa993b 1422 {
12f02c2a
AC
1423 int reg;
1424 upk.regx = (insn >> 8) & 0x07;
1425 upk.regy = (insn >> 5) & 0x07;
1426 switch (upk.regy)
c5aa993b 1427 {
12f02c2a
AC
1428 case 0:
1429 reg = upk.regx;
1430 break;
1431 case 1:
1432 reg = 31;
1433 break; /* Function return instruction */
1434 case 2:
1435 reg = upk.regx;
1436 break;
1437 default:
1438 reg = 31;
1439 break; /* BOGUS Guess */
c906108c 1440 }
12f02c2a 1441 pc = read_signed_register (reg);
c906108c 1442 }
12f02c2a 1443 else
c5aa993b 1444 pc += 2;
12f02c2a
AC
1445 break;
1446 }
1447 case 30:
1448 /* This is an instruction extension. Fetch the real instruction
1449 (which follows the extension) and decode things based on
1450 that. */
1451 {
1452 pc += 2;
1453 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1454 break;
1455 }
1456 default:
1457 {
1458 pc += 2;
1459 break;
1460 }
c906108c 1461 }
c5aa993b 1462 return pc;
12f02c2a 1463}
c906108c 1464
5a89d8aa 1465static CORE_ADDR
12f02c2a
AC
1466mips16_next_pc (CORE_ADDR pc)
1467{
1468 unsigned int insn = fetch_mips_16 (pc);
1469 return extended_mips16_next_pc (pc, 0, insn);
1470}
1471
1472/* The mips_next_pc function supports single_step when the remote
7e73cedf 1473 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1474 It works by decoding the current instruction and predicting where a
1475 branch will go. This isnt hard because all the data is available.
1476 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1477CORE_ADDR
1478mips_next_pc (CORE_ADDR pc)
c906108c 1479{
c5aa993b
JM
1480 if (pc & 0x01)
1481 return mips16_next_pc (pc);
1482 else
1483 return mips32_next_pc (pc);
12f02c2a 1484}
c906108c 1485
e0f7ec59
AC
1486/* Set up the 'saved_regs' array. This is a data structure containing
1487 the addresses on the stack where each register has been saved, for
1488 each stack frame. Registers that have not been saved will have
1489 zero here. The stack pointer register is special: rather than the
1490 address where the stack register has been saved,
1491 saved_regs[SP_REGNUM] will have the actual value of the previous
1492 frame's stack register. */
c906108c 1493
d28e01f4 1494static void
acdb74a0 1495mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1496{
1497 int ireg;
c906108c
SS
1498 /* r0 bit means kernel trap */
1499 int kernel_trap;
1500 /* What registers have been saved? Bitmasks. */
1501 unsigned long gen_mask, float_mask;
1502 mips_extra_func_info_t proc_desc;
1503 t_inst inst;
e0f7ec59 1504 CORE_ADDR *saved_regs;
c906108c 1505
1b1d3794 1506 if (deprecated_get_frame_saved_regs (fci) != NULL)
e0f7ec59
AC
1507 return;
1508 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1509
1510 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1511 in a sigcontext structure somewhere on the stack. If the stack
1512 layout for sigtramp changes we might have to change these
1513 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1514#ifndef SIGFRAME_BASE
e0f7ec59
AC
1515 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1516 above the sigtramp frame. */
4246e332 1517#define SIGFRAME_BASE mips_regsize (current_gdbarch)
c906108c 1518/* FIXME! Are these correct?? */
4246e332
AC
1519#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1520#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
c906108c 1521#define SIGFRAME_FPREGSAVE_OFF \
4246e332 1522 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
c906108c
SS
1523#endif
1524#ifndef SIGFRAME_REG_SIZE
e0f7ec59 1525 /* FIXME! Is this correct?? */
4246e332 1526#define SIGFRAME_REG_SIZE mips_regsize (current_gdbarch)
c906108c 1527#endif
5a203e44 1528 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1529 {
1530 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1531 {
e0f7ec59
AC
1532 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1533 + ireg * SIGFRAME_REG_SIZE);
1534 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1535 }
1536 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1537 {
e0f7ec59
AC
1538 CORE_ADDR reg_position = (get_frame_base (fci)
1539 + SIGFRAME_FPREGSAVE_OFF
1540 + ireg * SIGFRAME_REG_SIZE);
56cea623 1541 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
c906108c 1542 }
e0f7ec59
AC
1543
1544 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1545 /* SP_REGNUM, contains the value and not the address. */
1546 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1547 return;
1548 }
1549
da50a4b7 1550 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1551 if (proc_desc == NULL)
e0f7ec59
AC
1552 /* I'm not sure how/whether this can happen. Normally when we
1553 can't find a proc_desc, we "synthesize" one using
1554 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1555 return;
1556
c5aa993b
JM
1557 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1558 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1559 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1560
e0f7ec59
AC
1561 if (/* In any frame other than the innermost or a frame interrupted
1562 by a signal, we assume that all registers have been saved.
1563 This assumes that all register saves in a function happen
1564 before the first function call. */
11c02a10
AC
1565 (get_next_frame (fci) == NULL
1566 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1567
e0f7ec59 1568 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1569 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1570
e0f7ec59
AC
1571 /* Don't bother unless we are inside a function prologue.
1572 Outside the prologue, we know where everything is. */
c906108c 1573
50abf9e5 1574 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1575
e0f7ec59
AC
1576 /* Not sure exactly what kernel_trap means, but if it means the
1577 kernel saves the registers without a prologue doing it, we
1578 better not examine the prologue to see whether registers
1579 have been saved yet. */
c5aa993b 1580 && !kernel_trap)
c906108c 1581 {
e0f7ec59
AC
1582 /* We need to figure out whether the registers that the
1583 proc_desc claims are saved have been saved yet. */
c906108c
SS
1584
1585 CORE_ADDR addr;
1586
1587 /* Bitmasks; set if we have found a save for the register. */
1588 unsigned long gen_save_found = 0;
1589 unsigned long float_save_found = 0;
1590 int instlen;
1591
1592 /* If the address is odd, assume this is MIPS16 code. */
1593 addr = PROC_LOW_ADDR (proc_desc);
1594 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1595
e0f7ec59
AC
1596 /* Scan through this function's instructions preceding the
1597 current PC, and look for those that save registers. */
50abf9e5 1598 while (addr < get_frame_pc (fci))
c906108c
SS
1599 {
1600 inst = mips_fetch_instruction (addr);
1601 if (pc_is_mips16 (addr))
1602 mips16_decode_reg_save (inst, &gen_save_found);
1603 else
1604 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1605 addr += instlen;
1606 }
1607 gen_mask = gen_save_found;
1608 float_mask = float_save_found;
1609 }
1610
e0f7ec59
AC
1611 /* Fill in the offsets for the registers which gen_mask says were
1612 saved. */
1613 {
1614 CORE_ADDR reg_position = (get_frame_base (fci)
1615 + PROC_REG_OFFSET (proc_desc));
1616 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1617 if (gen_mask & 0x80000000)
1618 {
1619 set_reg_offset (saved_regs, ireg, reg_position);
1620 reg_position -= MIPS_SAVED_REGSIZE;
1621 }
1622 }
c906108c 1623
e0f7ec59
AC
1624 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1625 order of that normally used by gcc. Therefore, we have to fetch
1626 the first instruction of the function, and if it's an entry
1627 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1628 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1629 {
1630 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1631 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1632 /* entry */
c906108c
SS
1633 {
1634 int reg;
1635 int sreg_count = (inst >> 6) & 3;
c5aa993b 1636
c906108c 1637 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1638 CORE_ADDR reg_position = (get_frame_base (fci)
1639 + PROC_REG_OFFSET (proc_desc));
c906108c 1640 if (inst & 0x20)
7a292a7a 1641 reg_position -= MIPS_SAVED_REGSIZE;
c906108c 1642
e0f7ec59
AC
1643 /* Check if the s0 and s1 registers were pushed on the
1644 stack. */
c5aa993b 1645 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1646 {
e0f7ec59 1647 set_reg_offset (saved_regs, reg, reg_position);
7a292a7a 1648 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1649 }
1650 }
1651 }
1652
e0f7ec59
AC
1653 /* Fill in the offsets for the registers which float_mask says were
1654 saved. */
1655 {
1656 CORE_ADDR reg_position = (get_frame_base (fci)
1657 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1658
e0f7ec59
AC
1659 /* Fill in the offsets for the float registers which float_mask
1660 says were saved. */
1661 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1662 if (float_mask & 0x80000000)
1663 {
c57bb9fa
AC
1664 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1665 {
1666 /* On a big endian 32 bit ABI, floating point registers
1667 are paired to form doubles such that the most
1668 significant part is in $f[N+1] and the least
1669 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1670 registers are also spilled as a pair and stored as a
1671 double.
1672
1673 When little-endian the least significant part is
1674 stored first leading to the memory order $f[N] and
1675 then $f[N+1].
1676
ce2826aa 1677 Unfortunately, when big-endian the most significant
c57bb9fa
AC
1678 part of the double is stored first, and the least
1679 significant is stored second. This leads to the
1680 registers being ordered in memory as firt $f[N+1] and
1681 then $f[N].
1682
1683 For the big-endian case make certain that the
1684 addresses point at the correct (swapped) locations
1685 $f[N] and $f[N+1] pair (keep in mind that
1686 reg_position is decremented each time through the
1687 loop). */
1688 if ((ireg & 1))
56cea623 1689 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
c57bb9fa
AC
1690 reg_position - MIPS_SAVED_REGSIZE);
1691 else
56cea623 1692 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
c57bb9fa
AC
1693 reg_position + MIPS_SAVED_REGSIZE);
1694 }
1695 else
56cea623 1696 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
e0f7ec59
AC
1697 reg_position -= MIPS_SAVED_REGSIZE;
1698 }
c906108c 1699
e0f7ec59
AC
1700 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1701 }
d28e01f4 1702
e0f7ec59
AC
1703 /* SP_REGNUM, contains the value and not the address. */
1704 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1705}
1706
c906108c 1707static CORE_ADDR
acdb74a0 1708read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1709{
a4b8ebc8
AC
1710 /* Always a pseudo. */
1711 gdb_assert (regno >= NUM_REGS);
f796e4be 1712 if (fi == NULL)
c906108c 1713 {
a4b8ebc8
AC
1714 LONGEST val;
1715 regcache_cooked_read_signed (current_regcache, regno, &val);
1716 return val;
f796e4be 1717 }
a4b8ebc8
AC
1718 else if ((regno % NUM_REGS) == SP_REGNUM)
1719 /* The SP_REGNUM is special, its value is stored in saved_regs.
1720 In fact, it is so special that it can even only be fetched
1721 using a raw register number! Once this code as been converted
1722 to frame-unwind the problem goes away. */
1723 return frame_unwind_register_signed (fi, regno % NUM_REGS);
f796e4be 1724 else
a4b8ebc8 1725 return frame_unwind_register_signed (fi, regno);
64159455 1726
c906108c
SS
1727}
1728
1729/* mips_addr_bits_remove - remove useless address bits */
1730
875e1767 1731static CORE_ADDR
acdb74a0 1732mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1733{
8fa9cfa1
AC
1734 if (mips_mask_address_p ()
1735 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1736 /* This hack is a work-around for existing boards using PMON, the
1737 simulator, and any other 64-bit targets that doesn't have true
1738 64-bit addressing. On these targets, the upper 32 bits of
1739 addresses are ignored by the hardware. Thus, the PC or SP are
1740 likely to have been sign extended to all 1s by instruction
1741 sequences that load 32-bit addresses. For example, a typical
1742 piece of code that loads an address is this:
1743
1744 lui $r2, <upper 16 bits>
1745 ori $r2, <lower 16 bits>
1746
1747 But the lui sign-extends the value such that the upper 32 bits
1748 may be all 1s. The workaround is simply to mask off these
1749 bits. In the future, gcc may be changed to support true 64-bit
1750 addressing, and this masking will have to be disabled. */
1751 return addr &= 0xffffffffUL;
1752 else
1753 return addr;
c906108c
SS
1754}
1755
9022177c
DJ
1756/* mips_software_single_step() is called just before we want to resume
1757 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1758 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1759 the target of the coming instruction and breakpoint it.
1760
1761 single_step is also called just after the inferior stops. If we had
1762 set up a simulated single-step, we undo our damage. */
1763
1764void
1765mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1766{
1767 static CORE_ADDR next_pc;
1768 typedef char binsn_quantum[BREAKPOINT_MAX];
1769 static binsn_quantum break_mem;
1770 CORE_ADDR pc;
1771
1772 if (insert_breakpoints_p)
1773 {
1774 pc = read_register (PC_REGNUM);
1775 next_pc = mips_next_pc (pc);
1776
1777 target_insert_breakpoint (next_pc, break_mem);
1778 }
1779 else
1780 target_remove_breakpoint (next_pc, break_mem);
1781}
1782
97f46953 1783static CORE_ADDR
acdb74a0 1784mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1785{
1786 CORE_ADDR pc, tmp;
1787
11c02a10 1788 pc = ((fromleaf)
6913c89a 1789 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1790 : get_next_frame (prev)
8bedc050 1791 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1792 : read_pc ());
5a89d8aa 1793 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1794 return tmp ? tmp : pc;
c906108c
SS
1795}
1796
1797
f7ab6ec6 1798static CORE_ADDR
acdb74a0 1799mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1800{
1801 CORE_ADDR saved_pc;
c906108c 1802
50abf9e5 1803 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1804 {
1805 LONGEST tmp;
a4b8ebc8
AC
1806 /* Always unwind the cooked PC register value. */
1807 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
cedea778
AC
1808 saved_pc = tmp;
1809 }
c906108c 1810 else
a4b8ebc8
AC
1811 {
1812 mips_extra_func_info_t proc_desc
1813 = get_frame_extra_info (frame)->proc_desc;
1814 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1815 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1816 else
1817 {
1818 /* We have to get the saved pc from the sigcontext if it is
1819 a signal handler frame. */
1820 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1821 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1822 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1823 }
1824 }
c906108c
SS
1825 return ADDR_BITS_REMOVE (saved_pc);
1826}
1827
1828static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1829
1830/* This hack will go away once the get_prev_frame() code has been
1831 modified to set the frame's type first. That is BEFORE init extra
1832 frame info et.al. is called. This is because it will become
1833 possible to skip the init extra info call for sigtramp and dummy
1834 frames. */
1835static CORE_ADDR *temp_saved_regs;
c906108c 1836
e0f7ec59
AC
1837/* Set a register's saved stack address in temp_saved_regs. If an
1838 address has already been set for this register, do nothing; this
1839 way we will only recognize the first save of a given register in a
a4b8ebc8
AC
1840 function prologue.
1841
1842 For simplicity, save the address in both [0 .. NUM_REGS) and
1843 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1844 is used as it is only second range (the ABI instead of ISA
1845 registers) that comes into play when finding saved registers in a
1846 frame. */
c906108c
SS
1847
1848static void
e0f7ec59 1849set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1850{
e0f7ec59 1851 if (saved_regs[regno] == 0)
a4b8ebc8
AC
1852 {
1853 saved_regs[regno + 0 * NUM_REGS] = offset;
1854 saved_regs[regno + 1 * NUM_REGS] = offset;
1855 }
c906108c
SS
1856}
1857
1858
1859/* Test whether the PC points to the return instruction at the
1860 end of a function. */
1861
c5aa993b 1862static int
acdb74a0 1863mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1864{
1865 if (pc_is_mips16 (pc))
1866 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1867 generates a "jr $ra"; other times it generates code to load
1868 the return address from the stack to an accessible register (such
1869 as $a3), then a "jr" using that register. This second case
1870 is almost impossible to distinguish from an indirect jump
1871 used for switch statements, so we don't even try. */
1872 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1873 else
1874 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1875}
1876
1877
1878/* This fencepost looks highly suspicious to me. Removing it also
1879 seems suspicious as it could affect remote debugging across serial
1880 lines. */
1881
1882static CORE_ADDR
acdb74a0 1883heuristic_proc_start (CORE_ADDR pc)
c906108c 1884{
c5aa993b
JM
1885 CORE_ADDR start_pc;
1886 CORE_ADDR fence;
1887 int instlen;
1888 int seen_adjsp = 0;
c906108c 1889
c5aa993b
JM
1890 pc = ADDR_BITS_REMOVE (pc);
1891 start_pc = pc;
1892 fence = start_pc - heuristic_fence_post;
1893 if (start_pc == 0)
1894 return 0;
c906108c 1895
c5aa993b
JM
1896 if (heuristic_fence_post == UINT_MAX
1897 || fence < VM_MIN_ADDRESS)
1898 fence = VM_MIN_ADDRESS;
c906108c 1899
c5aa993b 1900 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1901
c5aa993b
JM
1902 /* search back for previous return */
1903 for (start_pc -= instlen;; start_pc -= instlen)
1904 if (start_pc < fence)
1905 {
1906 /* It's not clear to me why we reach this point when
c0236d92 1907 stop_soon, but with this test, at least we
c5aa993b
JM
1908 don't print out warnings for every child forked (eg, on
1909 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1910 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1911 {
c5aa993b
JM
1912 static int blurb_printed = 0;
1913
1914 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1915 paddr_nz (pc));
1916
1917 if (!blurb_printed)
c906108c 1918 {
c5aa993b
JM
1919 /* This actually happens frequently in embedded
1920 development, when you first connect to a board
1921 and your stack pointer and pc are nowhere in
1922 particular. This message needs to give people
1923 in that situation enough information to
1924 determine that it's no big deal. */
1925 printf_filtered ("\n\
cd0fc7c3
SS
1926 GDB is unable to find the start of the function at 0x%s\n\
1927and thus can't determine the size of that function's stack frame.\n\
1928This means that GDB may be unable to access that stack frame, or\n\
1929the frames below it.\n\
1930 This problem is most likely caused by an invalid program counter or\n\
1931stack pointer.\n\
1932 However, if you think GDB should simply search farther back\n\
1933from 0x%s for code which looks like the beginning of a\n\
1934function, you can increase the range of the search using the `set\n\
1935heuristic-fence-post' command.\n",
c5aa993b
JM
1936 paddr_nz (pc), paddr_nz (pc));
1937 blurb_printed = 1;
c906108c 1938 }
c906108c
SS
1939 }
1940
c5aa993b
JM
1941 return 0;
1942 }
1943 else if (pc_is_mips16 (start_pc))
1944 {
1945 unsigned short inst;
1946
1947 /* On MIPS16, any one of the following is likely to be the
1948 start of a function:
1949 entry
1950 addiu sp,-n
1951 daddiu sp,-n
1952 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1953 inst = mips_fetch_instruction (start_pc);
1954 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1955 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1956 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1957 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1958 break;
1959 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1960 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1961 seen_adjsp = 1;
1962 else
1963 seen_adjsp = 0;
1964 }
1965 else if (mips_about_to_return (start_pc))
1966 {
1967 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1968 break;
1969 }
1970
c5aa993b 1971 return start_pc;
c906108c
SS
1972}
1973
1974/* Fetch the immediate value from a MIPS16 instruction.
1975 If the previous instruction was an EXTEND, use it to extend
1976 the upper bits of the immediate value. This is a helper function
1977 for mips16_heuristic_proc_desc. */
1978
1979static int
acdb74a0
AC
1980mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1981 unsigned short inst, /* current instruction */
1982 int nbits, /* number of bits in imm field */
1983 int scale, /* scale factor to be applied to imm */
1984 int is_signed) /* is the imm field signed? */
c906108c
SS
1985{
1986 int offset;
1987
1988 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1989 {
1990 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1991 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1992 offset = 0 - (0x10000 - (offset & 0xffff));
1993 return offset | (inst & 0x1f);
1994 }
1995 else
1996 {
1997 int max_imm = 1 << nbits;
1998 int mask = max_imm - 1;
1999 int sign_bit = max_imm >> 1;
2000
2001 offset = inst & mask;
2002 if (is_signed && (offset & sign_bit))
2003 offset = 0 - (max_imm - offset);
2004 return offset * scale;
2005 }
2006}
2007
2008
2009/* Fill in values in temp_proc_desc based on the MIPS16 instruction
2010 stream from start_pc to limit_pc. */
2011
2012static void
acdb74a0
AC
2013mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2014 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2015{
2016 CORE_ADDR cur_pc;
2017 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2018 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2019 unsigned inst = 0; /* current instruction */
2020 unsigned entry_inst = 0; /* the entry instruction */
2021 int reg, offset;
2022
c5aa993b
JM
2023 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2024 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
2025
2026 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2027 {
2028 /* Save the previous instruction. If it's an EXTEND, we'll extract
2029 the immediate offset extension from it in mips16_get_imm. */
2030 prev_inst = inst;
2031
2032 /* Fetch and decode the instruction. */
2033 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 2034 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
2035 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2036 {
2037 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
2038 if (offset < 0) /* negative stack adjustment? */
2039 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
2040 else
2041 /* Exit loop if a positive stack adjustment is found, which
2042 usually means that the stack cleanup code in the function
2043 epilogue is reached. */
2044 break;
2045 }
2046 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2047 {
2048 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2049 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 2050 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2051 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2052 }
2053 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2054 {
2055 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2056 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2057 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2058 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2059 }
2060 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2061 {
2062 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2063 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2064 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2065 }
2066 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2067 {
2068 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2069 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2070 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2071 }
c5aa993b 2072 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2073 {
2074 frame_addr = sp;
2075 PROC_FRAME_REG (&temp_proc_desc) = 17;
2076 }
2077 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2078 {
2079 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2080 frame_addr = sp + offset;
2081 PROC_FRAME_REG (&temp_proc_desc) = 17;
2082 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2083 }
2084 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2085 {
2086 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2087 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2088 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2089 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2090 }
2091 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2092 {
2093 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2094 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2095 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2096 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2097 }
c5aa993b
JM
2098 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2099 entry_inst = inst; /* save for later processing */
c906108c 2100 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2101 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2102 }
2103
c5aa993b
JM
2104 /* The entry instruction is typically the first instruction in a function,
2105 and it stores registers at offsets relative to the value of the old SP
2106 (before the prologue). But the value of the sp parameter to this
2107 function is the new SP (after the prologue has been executed). So we
2108 can't calculate those offsets until we've seen the entire prologue,
2109 and can calculate what the old SP must have been. */
2110 if (entry_inst != 0)
2111 {
2112 int areg_count = (entry_inst >> 8) & 7;
2113 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2114
c5aa993b
JM
2115 /* The entry instruction always subtracts 32 from the SP. */
2116 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2117
c5aa993b
JM
2118 /* Now we can calculate what the SP must have been at the
2119 start of the function prologue. */
2120 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2121
c5aa993b
JM
2122 /* Check if a0-a3 were saved in the caller's argument save area. */
2123 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2124 {
2125 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2126 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2127 offset += MIPS_SAVED_REGSIZE;
2128 }
c906108c 2129
c5aa993b
JM
2130 /* Check if the ra register was pushed on the stack. */
2131 offset = -4;
2132 if (entry_inst & 0x20)
2133 {
2134 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2135 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c5aa993b
JM
2136 offset -= MIPS_SAVED_REGSIZE;
2137 }
c906108c 2138
c5aa993b
JM
2139 /* Check if the s0 and s1 registers were pushed on the stack. */
2140 for (reg = 16; reg < sreg_count + 16; reg++)
2141 {
2142 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2143 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2144 offset -= MIPS_SAVED_REGSIZE;
2145 }
2146 }
c906108c
SS
2147}
2148
2149static void
fba45db2
KB
2150mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2151 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2152{
2153 CORE_ADDR cur_pc;
c5aa993b 2154 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2155restart:
fe29b929 2156 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2157 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2158 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2159 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2160 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2161 {
2162 unsigned long inst, high_word, low_word;
2163 int reg;
2164
2165 /* Fetch the instruction. */
2166 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2167
2168 /* Save some code by pre-extracting some useful fields. */
2169 high_word = (inst >> 16) & 0xffff;
2170 low_word = inst & 0xffff;
2171 reg = high_word & 0x1f;
2172
c5aa993b 2173 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2174 || high_word == 0x23bd /* addi $sp,$sp,-i */
2175 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2176 {
2177 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2178 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2179 else
2180 /* Exit loop if a positive stack adjustment is found, which
2181 usually means that the stack cleanup code in the function
2182 epilogue is reached. */
2183 break;
2184 }
2185 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2186 {
c5aa993b 2187 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2188 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2189 }
2190 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2191 {
2192 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2193 but the register size used is only 32 bits. Make the address
2194 for the saved register point to the lower 32 bits. */
c5aa993b 2195 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
4246e332 2196 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
c906108c 2197 }
c5aa993b 2198 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2199 {
2200 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2201 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2202 frame_addr = sp + low_word;
c906108c
SS
2203 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2204 {
2205 unsigned alloca_adjust;
2206 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2207 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2208 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2209 if (alloca_adjust > 0)
2210 {
2211 /* FP > SP + frame_size. This may be because
2212 * of an alloca or somethings similar.
2213 * Fix sp to "pre-alloca" value, and try again.
2214 */
2215 sp += alloca_adjust;
2216 goto restart;
2217 }
2218 }
2219 }
c5aa993b
JM
2220 /* move $30,$sp. With different versions of gas this will be either
2221 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2222 Accept any one of these. */
c906108c
SS
2223 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2224 {
2225 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2226 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2227 {
2228 unsigned alloca_adjust;
2229 PROC_FRAME_REG (&temp_proc_desc) = 30;
a4b8ebc8 2230 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
c5aa993b 2231 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2232 if (alloca_adjust > 0)
2233 {
2234 /* FP > SP + frame_size. This may be because
2235 * of an alloca or somethings similar.
2236 * Fix sp to "pre-alloca" value, and try again.
2237 */
2238 sp += alloca_adjust;
2239 goto restart;
2240 }
2241 }
2242 }
c5aa993b 2243 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2244 {
c5aa993b 2245 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2246 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2247 }
2248 }
2249}
2250
2251static mips_extra_func_info_t
acdb74a0 2252heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2253 struct frame_info *next_frame, int cur_frame)
c906108c 2254{
479412cd
DJ
2255 CORE_ADDR sp;
2256
2257 if (cur_frame)
a4b8ebc8 2258 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
479412cd
DJ
2259 else
2260 sp = 0;
c906108c 2261
c5aa993b
JM
2262 if (start_pc == 0)
2263 return NULL;
2264 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2265 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2266 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2267 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2268 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2269 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2270
2271 if (start_pc + 200 < limit_pc)
2272 limit_pc = start_pc + 200;
2273 if (pc_is_mips16 (start_pc))
2274 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2275 else
2276 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2277 return &temp_proc_desc;
2278}
2279
6c0d6680
DJ
2280struct mips_objfile_private
2281{
2282 bfd_size_type size;
2283 char *contents;
2284};
2285
2286/* Global used to communicate between non_heuristic_proc_desc and
2287 compare_pdr_entries within qsort (). */
2288static bfd *the_bfd;
2289
2290static int
2291compare_pdr_entries (const void *a, const void *b)
2292{
2293 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2294 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2295
2296 if (lhs < rhs)
2297 return -1;
2298 else if (lhs == rhs)
2299 return 0;
2300 else
2301 return 1;
2302}
2303
c906108c 2304static mips_extra_func_info_t
acdb74a0 2305non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2306{
2307 CORE_ADDR startaddr;
2308 mips_extra_func_info_t proc_desc;
c5aa993b 2309 struct block *b = block_for_pc (pc);
c906108c 2310 struct symbol *sym;
6c0d6680
DJ
2311 struct obj_section *sec;
2312 struct mips_objfile_private *priv;
2313
ae45cd16 2314 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2315 return NULL;
c906108c
SS
2316
2317 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2318 if (addrptr)
2319 *addrptr = startaddr;
6c0d6680
DJ
2320
2321 priv = NULL;
2322
2323 sec = find_pc_section (pc);
2324 if (sec != NULL)
c906108c 2325 {
6c0d6680
DJ
2326 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2327
2328 /* Search the ".pdr" section generated by GAS. This includes most of
2329 the information normally found in ECOFF PDRs. */
2330
2331 the_bfd = sec->objfile->obfd;
2332 if (priv == NULL
2333 && (the_bfd->format == bfd_object
2334 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2335 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2336 {
2337 /* Right now GAS only outputs the address as a four-byte sequence.
2338 This means that we should not bother with this method on 64-bit
2339 targets (until that is fixed). */
2340
2341 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2342 sizeof (struct mips_objfile_private));
2343 priv->size = 0;
2344 sec->objfile->obj_private = priv;
2345 }
2346 else if (priv == NULL)
2347 {
2348 asection *bfdsec;
2349
2350 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2351 sizeof (struct mips_objfile_private));
2352
2353 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2354 if (bfdsec != NULL)
2355 {
2356 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2357 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2358 priv->size);
2359 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2360 priv->contents, 0, priv->size);
2361
2362 /* In general, the .pdr section is sorted. However, in the
2363 presence of multiple code sections (and other corner cases)
2364 it can become unsorted. Sort it so that we can use a faster
2365 binary search. */
2366 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2367 }
2368 else
2369 priv->size = 0;
2370
2371 sec->objfile->obj_private = priv;
2372 }
2373 the_bfd = NULL;
2374
2375 if (priv->size != 0)
2376 {
2377 int low, mid, high;
2378 char *ptr;
2379
2380 low = 0;
2381 high = priv->size / 32;
2382
2383 do
2384 {
2385 CORE_ADDR pdr_pc;
2386
2387 mid = (low + high) / 2;
2388
2389 ptr = priv->contents + mid * 32;
2390 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2391 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2392 SECT_OFF_TEXT (sec->objfile));
2393 if (pdr_pc == startaddr)
2394 break;
2395 if (pdr_pc > startaddr)
2396 high = mid;
2397 else
2398 low = mid + 1;
2399 }
2400 while (low != high);
2401
2402 if (low != high)
2403 {
2404 struct symbol *sym = find_pc_function (pc);
2405
2406 /* Fill in what we need of the proc_desc. */
2407 proc_desc = (mips_extra_func_info_t)
2408 obstack_alloc (&sec->objfile->psymbol_obstack,
2409 sizeof (struct mips_extra_func_info));
2410 PROC_LOW_ADDR (proc_desc) = startaddr;
2411
2412 /* Only used for dummy frames. */
2413 PROC_HIGH_ADDR (proc_desc) = 0;
2414
2415 PROC_FRAME_OFFSET (proc_desc)
2416 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2417 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2418 ptr + 24);
2419 PROC_FRAME_ADJUST (proc_desc) = 0;
2420 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2421 ptr + 4);
2422 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2423 ptr + 12);
2424 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2425 ptr + 8);
2426 PROC_FREG_OFFSET (proc_desc)
2427 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2428 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2429 ptr + 28);
2430 proc_desc->pdr.isym = (long) sym;
2431
2432 return proc_desc;
2433 }
2434 }
c906108c
SS
2435 }
2436
6c0d6680
DJ
2437 if (b == NULL)
2438 return NULL;
2439
2440 if (startaddr > BLOCK_START (b))
2441 {
2442 /* This is the "pathological" case referred to in a comment in
2443 print_frame_info. It might be better to move this check into
2444 symbol reading. */
2445 return NULL;
2446 }
2447
176620f1 2448 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2449
c906108c
SS
2450 /* If we never found a PDR for this function in symbol reading, then
2451 examine prologues to find the information. */
2452 if (sym)
2453 {
2454 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2455 if (PROC_FRAME_REG (proc_desc) == -1)
2456 return NULL;
2457 else
2458 return proc_desc;
2459 }
2460 else
2461 return NULL;
2462}
2463
2464
2465static mips_extra_func_info_t
479412cd 2466find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2467{
2468 mips_extra_func_info_t proc_desc;
4e0df2df 2469 CORE_ADDR startaddr = 0;
c906108c
SS
2470
2471 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2472
2473 if (proc_desc)
2474 {
2475 /* IF this is the topmost frame AND
2476 * (this proc does not have debugging information OR
2477 * the PC is in the procedure prologue)
2478 * THEN create a "heuristic" proc_desc (by analyzing
2479 * the actual code) to replace the "official" proc_desc.
2480 */
2481 if (next_frame == NULL)
2482 {
2483 struct symtab_and_line val;
2484 struct symbol *proc_symbol =
c86b5b38 2485 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2486
2487 if (proc_symbol)
2488 {
2489 val = find_pc_line (BLOCK_START
c5aa993b 2490 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2491 0);
2492 val.pc = val.end ? val.end : pc;
2493 }
2494 if (!proc_symbol || pc < val.pc)
2495 {
2496 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2497 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2498 pc, next_frame, cur_frame);
c906108c
SS
2499 if (found_heuristic)
2500 proc_desc = found_heuristic;
2501 }
2502 }
2503 }
2504 else
2505 {
2506 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2507 by procedure call dummys. However, the procedures being called ought
2508 to have their own proc_descs, and even if they don't,
2509 heuristic_proc_desc knows how to create them! */
c906108c 2510
aa1ee363 2511 struct linked_proc_info *link;
c906108c
SS
2512
2513 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2514 if (PROC_LOW_ADDR (&link->info) <= pc
2515 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2516 return &link->info;
2517
2518 if (startaddr == 0)
2519 startaddr = heuristic_proc_start (pc);
2520
2521 proc_desc =
479412cd 2522 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2523 }
2524 return proc_desc;
2525}
2526
2527static CORE_ADDR
acdb74a0
AC
2528get_frame_pointer (struct frame_info *frame,
2529 mips_extra_func_info_t proc_desc)
c906108c 2530{
a4b8ebc8 2531 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
e227b13c
AC
2532 + PROC_FRAME_OFFSET (proc_desc)
2533 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2534}
2535
5a89d8aa 2536static mips_extra_func_info_t cached_proc_desc;
c906108c 2537
f7ab6ec6 2538static CORE_ADDR
acdb74a0 2539mips_frame_chain (struct frame_info *frame)
c906108c
SS
2540{
2541 mips_extra_func_info_t proc_desc;
2542 CORE_ADDR tmp;
8bedc050 2543 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c 2544
627b3ba2 2545 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
c906108c
SS
2546 return 0;
2547
2548 /* Check if the PC is inside a call stub. If it is, fetch the
2549 PC of the caller of that stub. */
5a89d8aa 2550 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2551 saved_pc = tmp;
2552
ae45cd16 2553 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2554 {
2555 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2556 is well, frame->frame the bottom of the current frame will
2557 contain that value. */
1e2330ba 2558 return get_frame_base (frame);
cedea778
AC
2559 }
2560
c906108c 2561 /* Look up the procedure descriptor for this PC. */
479412cd 2562 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2563 if (!proc_desc)
2564 return 0;
2565
2566 cached_proc_desc = proc_desc;
2567
2568 /* If no frame pointer and frame size is zero, we must be at end
2569 of stack (or otherwise hosed). If we don't check frame size,
2570 we loop forever if we see a zero size frame. */
2571 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2572 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2573 /* The previous frame from a sigtramp frame might be frameless
2574 and have frame size zero. */
5a203e44 2575 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2576 /* For a generic dummy frame, let get_frame_pointer() unwind a
2577 register value saved as part of the dummy frame call. */
50abf9e5 2578 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2579 return 0;
2580 else
2581 return get_frame_pointer (frame, proc_desc);
2582}
2583
f7ab6ec6 2584static void
acdb74a0 2585mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2586{
2587 int regnum;
f2c16bd6
KB
2588 mips_extra_func_info_t proc_desc;
2589
2590 if (get_frame_type (fci) == DUMMY_FRAME)
2591 return;
c906108c 2592
f796e4be
KB
2593 /* Use proc_desc calculated in frame_chain. When there is no
2594 next frame, i.e, get_next_frame (fci) == NULL, we call
2595 find_proc_desc () to calculate it, passing an explicit
2596 NULL as the frame parameter. */
f2c16bd6 2597 proc_desc =
11c02a10
AC
2598 get_next_frame (fci)
2599 ? cached_proc_desc
f796e4be
KB
2600 : find_proc_desc (get_frame_pc (fci),
2601 NULL /* i.e, get_next_frame (fci) */,
2602 1);
c906108c 2603
a00a19e9 2604 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2605
7b5849cc 2606 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2607 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2608 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2609 if (proc_desc)
2610 {
2611 /* Fixup frame-pointer - only needed for top frame */
2612 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2613 Get the value of the frame relative sp, procedure might have been
2614 interrupted by a signal at it's very start. */
50abf9e5 2615 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2616 && !PROC_DESC_IS_DUMMY (proc_desc))
a4b8ebc8 2617 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
50abf9e5 2618 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2619 /* Do not ``fix'' fci->frame. It will have the value of the
2620 generic dummy frame's top-of-stack (since the draft
2621 fci->frame is obtained by returning the unwound stack
2622 pointer) and that is what we want. That way the fci->frame
2623 value will match the top-of-stack value that was saved as
2624 part of the dummy frames data. */
2625 /* Do nothing. */;
c906108c 2626 else
11c02a10 2627 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2628
2629 if (proc_desc == &temp_proc_desc)
2630 {
2631 char *name;
2632
2633 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2634 mips_find_saved_registers will do that for us. We can't
2635 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2636 yet set. */
2637 /* FIXME: cagney/2002-11-18: This problem will go away once
2638 frame.c:get_prev_frame() is modified to set the frame's
2639 type before calling functions like this. */
50abf9e5 2640 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2641 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2642 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2643 {
c5aa993b 2644 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2645 /* Set value of previous frame's stack pointer.
2646 Remember that saved_regs[SP_REGNUM] is special in
2647 that it contains the value of the stack pointer
2648 register. The other saved_regs values are addresses
2649 (in the inferior) at which a given register's value
2650 may be found. */
2651 set_reg_offset (temp_saved_regs, SP_REGNUM,
2652 get_frame_base (fci));
2653 set_reg_offset (temp_saved_regs, PC_REGNUM,
2654 temp_saved_regs[RA_REGNUM]);
1b1d3794 2655 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
e0f7ec59 2656 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2657 }
2658 }
2659
2660 /* hack: if argument regs are saved, guess these contain args */
cce74817 2661 /* assume we can't tell how many args for now */
da50a4b7 2662 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2663 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2664 {
c5aa993b 2665 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2666 {
da50a4b7 2667 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2668 break;
2669 }
c5aa993b 2670 }
c906108c
SS
2671 }
2672}
2673
2674/* MIPS stack frames are almost impenetrable. When execution stops,
2675 we basically have to look at symbol information for the function
2676 that we stopped in, which tells us *which* register (if any) is
2677 the base of the frame pointer, and what offset from that register
361d1df0 2678 the frame itself is at.
c906108c
SS
2679
2680 This presents a problem when trying to examine a stack in memory
2681 (that isn't executing at the moment), using the "frame" command. We
2682 don't have a PC, nor do we have any registers except SP.
2683
2684 This routine takes two arguments, SP and PC, and tries to make the
2685 cached frames look as if these two arguments defined a frame on the
2686 cache. This allows the rest of info frame to extract the important
2687 arguments without difficulty. */
2688
2689struct frame_info *
acdb74a0 2690setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2691{
2692 if (argc != 2)
2693 error ("MIPS frame specifications require two arguments: sp and pc");
2694
2695 return create_new_frame (argv[0], argv[1]);
2696}
2697
f09ded24
AC
2698/* According to the current ABI, should the type be passed in a
2699 floating-point register (assuming that there is space)? When there
2700 is no FPU, FP are not even considered as possibile candidates for
2701 FP registers and, consequently this returns false - forces FP
2702 arguments into integer registers. */
2703
2704static int
2705fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2706{
2707 return ((typecode == TYPE_CODE_FLT
2708 || (MIPS_EABI
2709 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2710 && TYPE_NFIELDS (arg_type) == 1
2711 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2712 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2713}
2714
49e790b0
DJ
2715/* On o32, argument passing in GPRs depends on the alignment of the type being
2716 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2717
2718static int
2719mips_type_needs_double_align (struct type *type)
2720{
2721 enum type_code typecode = TYPE_CODE (type);
361d1df0 2722
49e790b0
DJ
2723 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2724 return 1;
2725 else if (typecode == TYPE_CODE_STRUCT)
2726 {
2727 if (TYPE_NFIELDS (type) < 1)
2728 return 0;
2729 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2730 }
2731 else if (typecode == TYPE_CODE_UNION)
2732 {
361d1df0 2733 int i, n;
49e790b0
DJ
2734
2735 n = TYPE_NFIELDS (type);
2736 for (i = 0; i < n; i++)
2737 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2738 return 1;
2739 return 0;
2740 }
2741 return 0;
2742}
2743
dc604539
AC
2744/* Adjust the address downward (direction of stack growth) so that it
2745 is correctly aligned for a new stack frame. */
2746static CORE_ADDR
2747mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2748{
5b03f266 2749 return align_down (addr, 16);
dc604539
AC
2750}
2751
f7ab6ec6 2752static CORE_ADDR
25ab4790
AC
2753mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2754 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2755 struct value **args, CORE_ADDR sp, int struct_return,
2756 CORE_ADDR struct_addr)
c906108c
SS
2757{
2758 int argreg;
2759 int float_argreg;
2760 int argnum;
2761 int len = 0;
2762 int stack_offset = 0;
2763
25ab4790
AC
2764 /* For shared libraries, "t9" needs to point at the function
2765 address. */
2766 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2767
2768 /* Set the return address register to point to the entry point of
2769 the program, where a breakpoint lies in wait. */
2770 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2771
c906108c 2772 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2773 are properly aligned. The stack has to be at least 64-bit
2774 aligned even on 32-bit machines, because doubles must be 64-bit
2775 aligned. For n32 and n64, stack frames need to be 128-bit
2776 aligned, so we round to this widest known alignment. */
2777
5b03f266
AC
2778 sp = align_down (sp, 16);
2779 struct_addr = align_down (struct_addr, 16);
c5aa993b 2780
46e0f506 2781 /* Now make space on the stack for the args. We allocate more
c906108c 2782 than necessary for EABI, because the first few arguments are
46e0f506 2783 passed in registers, but that's OK. */
c906108c 2784 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 2785 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
46e0f506 2786 MIPS_STACK_ARGSIZE);
5b03f266 2787 sp -= align_up (len, 16);
c906108c 2788
9ace0497 2789 if (mips_debug)
46e0f506 2790 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2791 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2792 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2793
c906108c
SS
2794 /* Initialize the integer and float register pointers. */
2795 argreg = A0_REGNUM;
56cea623 2796 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2797
46e0f506 2798 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2799 if (struct_return)
9ace0497
AC
2800 {
2801 if (mips_debug)
2802 fprintf_unfiltered (gdb_stdlog,
25ab4790 2803 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2804 argreg, paddr_nz (struct_addr));
9ace0497
AC
2805 write_register (argreg++, struct_addr);
2806 }
c906108c
SS
2807
2808 /* Now load as many as possible of the first arguments into
2809 registers, and push the rest onto the stack. Loop thru args
2810 from first to last. */
2811 for (argnum = 0; argnum < nargs; argnum++)
2812 {
2813 char *val;
d9d9c31f 2814 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2815 struct value *arg = args[argnum];
c906108c
SS
2816 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2817 int len = TYPE_LENGTH (arg_type);
2818 enum type_code typecode = TYPE_CODE (arg_type);
2819
9ace0497
AC
2820 if (mips_debug)
2821 fprintf_unfiltered (gdb_stdlog,
25ab4790 2822 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2823 argnum + 1, len, (int) typecode);
9ace0497 2824
c906108c 2825 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2826 reference. */
2827 if (len > MIPS_SAVED_REGSIZE
9ace0497 2828 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2829 {
fbd9dcd3 2830 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2831 typecode = TYPE_CODE_PTR;
7a292a7a 2832 len = MIPS_SAVED_REGSIZE;
c906108c 2833 val = valbuf;
9ace0497
AC
2834 if (mips_debug)
2835 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2836 }
2837 else
c5aa993b 2838 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2839
2840 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2841 even-numbered floating point register. Round the FP register
2842 up before the check to see if there are any FP registers
46e0f506
MS
2843 left. Non MIPS_EABI targets also pass the FP in the integer
2844 registers so also round up normal registers. */
acdb74a0
AC
2845 if (!FP_REGISTER_DOUBLE
2846 && fp_register_arg_p (typecode, arg_type))
2847 {
2848 if ((float_argreg & 1))
2849 float_argreg++;
2850 }
c906108c
SS
2851
2852 /* Floating point arguments passed in registers have to be
2853 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2854 are passed in register pairs; the even register gets
2855 the low word, and the odd register gets the high word.
2856 On non-EABI processors, the first two floating point arguments are
2857 also copied to general registers, because MIPS16 functions
2858 don't use float registers for arguments. This duplication of
2859 arguments in general registers can't hurt non-MIPS16 functions
2860 because those registers are normally skipped. */
1012bd0e
EZ
2861 /* MIPS_EABI squeezes a struct that contains a single floating
2862 point value into an FP register instead of pushing it onto the
46e0f506 2863 stack. */
f09ded24
AC
2864 if (fp_register_arg_p (typecode, arg_type)
2865 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2866 {
2867 if (!FP_REGISTER_DOUBLE && len == 8)
2868 {
d7449b42 2869 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2870 unsigned long regval;
2871
2872 /* Write the low word of the double to the even register(s). */
c5aa993b 2873 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2874 if (mips_debug)
acdb74a0 2875 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2876 float_argreg, phex (regval, 4));
c906108c 2877 write_register (float_argreg++, regval);
c906108c
SS
2878
2879 /* Write the high word of the double to the odd register(s). */
c5aa993b 2880 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2881 if (mips_debug)
acdb74a0 2882 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2883 float_argreg, phex (regval, 4));
c906108c 2884 write_register (float_argreg++, regval);
c906108c
SS
2885 }
2886 else
2887 {
2888 /* This is a floating point value that fits entirely
2889 in a single register. */
53a5351d 2890 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2891 above to ensure that it is even register aligned. */
9ace0497
AC
2892 LONGEST regval = extract_unsigned_integer (val, len);
2893 if (mips_debug)
acdb74a0 2894 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2895 float_argreg, phex (regval, len));
c906108c 2896 write_register (float_argreg++, regval);
c906108c
SS
2897 }
2898 }
2899 else
2900 {
2901 /* Copy the argument to general registers or the stack in
2902 register-sized pieces. Large arguments are split between
2903 registers and stack. */
4246e332
AC
2904 /* Note: structs whose size is not a multiple of
2905 mips_regsize() are treated specially: Irix cc passes them
2906 in registers where gcc sometimes puts them on the stack.
2907 For maximum compatibility, we will put them in both
2908 places. */
c5aa993b 2909 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2910 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2911
f09ded24 2912 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2913 register are only written to memory. */
c906108c
SS
2914 while (len > 0)
2915 {
ebafbe83 2916 /* Remember if the argument was written to the stack. */
566f0f7a 2917 int stack_used_p = 0;
46e0f506
MS
2918 int partial_len =
2919 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2920
acdb74a0
AC
2921 if (mips_debug)
2922 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2923 partial_len);
2924
566f0f7a 2925 /* Write this portion of the argument to the stack. */
f09ded24
AC
2926 if (argreg > MIPS_LAST_ARG_REGNUM
2927 || odd_sized_struct
2928 || fp_register_arg_p (typecode, arg_type))
c906108c 2929 {
c906108c
SS
2930 /* Should shorter than int integer values be
2931 promoted to int before being stored? */
c906108c 2932 int longword_offset = 0;
9ace0497 2933 CORE_ADDR addr;
566f0f7a 2934 stack_used_p = 1;
d7449b42 2935 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2936 {
d929b26f 2937 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2938 (typecode == TYPE_CODE_INT ||
2939 typecode == TYPE_CODE_PTR ||
2940 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2941 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2942 else if ((typecode == TYPE_CODE_STRUCT ||
2943 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2944 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2945 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2946 }
c5aa993b 2947
9ace0497
AC
2948 if (mips_debug)
2949 {
cb3d25d1
MS
2950 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2951 paddr_nz (stack_offset));
2952 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2953 paddr_nz (longword_offset));
9ace0497 2954 }
361d1df0 2955
9ace0497
AC
2956 addr = sp + stack_offset + longword_offset;
2957
2958 if (mips_debug)
2959 {
2960 int i;
cb3d25d1
MS
2961 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2962 paddr_nz (addr));
9ace0497
AC
2963 for (i = 0; i < partial_len; i++)
2964 {
cb3d25d1
MS
2965 fprintf_unfiltered (gdb_stdlog, "%02x",
2966 val[i] & 0xff);
9ace0497
AC
2967 }
2968 }
2969 write_memory (addr, val, partial_len);
c906108c
SS
2970 }
2971
f09ded24
AC
2972 /* Note!!! This is NOT an else clause. Odd sized
2973 structs may go thru BOTH paths. Floating point
46e0f506 2974 arguments will not. */
566f0f7a 2975 /* Write this portion of the argument to a general
46e0f506 2976 purpose register. */
f09ded24
AC
2977 if (argreg <= MIPS_LAST_ARG_REGNUM
2978 && !fp_register_arg_p (typecode, arg_type))
c906108c 2979 {
9ace0497 2980 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2981
9ace0497 2982 if (mips_debug)
acdb74a0 2983 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2984 argreg,
2985 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2986 write_register (argreg, regval);
2987 argreg++;
c906108c 2988 }
c5aa993b 2989
c906108c
SS
2990 len -= partial_len;
2991 val += partial_len;
2992
566f0f7a
AC
2993 /* Compute the the offset into the stack at which we
2994 will copy the next parameter.
2995
566f0f7a 2996 In the new EABI (and the NABI32), the stack_offset
46e0f506 2997 only needs to be adjusted when it has been used. */
c906108c 2998
46e0f506 2999 if (stack_used_p)
5b03f266 3000 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
3001 }
3002 }
9ace0497
AC
3003 if (mips_debug)
3004 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
3005 }
3006
310e9b6a
AC
3007 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3008
0f71a2f6
JM
3009 /* Return adjusted stack pointer. */
3010 return sp;
3011}
3012
25ab4790 3013/* N32/N64 version of push_dummy_call. */
ebafbe83 3014
f7ab6ec6 3015static CORE_ADDR
25ab4790
AC
3016mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3017 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3018 struct value **args, CORE_ADDR sp, int struct_return,
3019 CORE_ADDR struct_addr)
cb3d25d1
MS
3020{
3021 int argreg;
3022 int float_argreg;
3023 int argnum;
3024 int len = 0;
3025 int stack_offset = 0;
3026
25ab4790
AC
3027 /* For shared libraries, "t9" needs to point at the function
3028 address. */
3029 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3030
3031 /* Set the return address register to point to the entry point of
3032 the program, where a breakpoint lies in wait. */
3033 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3034
cb3d25d1
MS
3035 /* First ensure that the stack and structure return address (if any)
3036 are properly aligned. The stack has to be at least 64-bit
3037 aligned even on 32-bit machines, because doubles must be 64-bit
3038 aligned. For n32 and n64, stack frames need to be 128-bit
3039 aligned, so we round to this widest known alignment. */
3040
5b03f266
AC
3041 sp = align_down (sp, 16);
3042 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
3043
3044 /* Now make space on the stack for the args. */
3045 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3046 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
cb3d25d1 3047 MIPS_STACK_ARGSIZE);
5b03f266 3048 sp -= align_up (len, 16);
cb3d25d1
MS
3049
3050 if (mips_debug)
3051 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3052 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3053 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
3054
3055 /* Initialize the integer and float register pointers. */
3056 argreg = A0_REGNUM;
56cea623 3057 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 3058
46e0f506 3059 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3060 if (struct_return)
3061 {
3062 if (mips_debug)
3063 fprintf_unfiltered (gdb_stdlog,
25ab4790 3064 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3065 argreg, paddr_nz (struct_addr));
3066 write_register (argreg++, struct_addr);
3067 }
3068
3069 /* Now load as many as possible of the first arguments into
3070 registers, and push the rest onto the stack. Loop thru args
3071 from first to last. */
3072 for (argnum = 0; argnum < nargs; argnum++)
3073 {
3074 char *val;
d9d9c31f 3075 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3076 struct value *arg = args[argnum];
3077 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3078 int len = TYPE_LENGTH (arg_type);
3079 enum type_code typecode = TYPE_CODE (arg_type);
3080
3081 if (mips_debug)
3082 fprintf_unfiltered (gdb_stdlog,
25ab4790 3083 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3084 argnum + 1, len, (int) typecode);
3085
3086 val = (char *) VALUE_CONTENTS (arg);
3087
3088 if (fp_register_arg_p (typecode, arg_type)
3089 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3090 {
3091 /* This is a floating point value that fits entirely
3092 in a single register. */
3093 /* On 32 bit ABI's the float_argreg is further adjusted
3094 above to ensure that it is even register aligned. */
3095 LONGEST regval = extract_unsigned_integer (val, len);
3096 if (mips_debug)
3097 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3098 float_argreg, phex (regval, len));
3099 write_register (float_argreg++, regval);
3100
3101 if (mips_debug)
3102 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3103 argreg, phex (regval, len));
3104 write_register (argreg, regval);
3105 argreg += 1;
3106 }
3107 else
3108 {
3109 /* Copy the argument to general registers or the stack in
3110 register-sized pieces. Large arguments are split between
3111 registers and stack. */
4246e332
AC
3112 /* Note: structs whose size is not a multiple of
3113 mips_regsize() are treated specially: Irix cc passes them
3114 in registers where gcc sometimes puts them on the stack.
3115 For maximum compatibility, we will put them in both
3116 places. */
cb3d25d1
MS
3117 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3118 (len % MIPS_SAVED_REGSIZE != 0));
3119 /* Note: Floating-point values that didn't fit into an FP
3120 register are only written to memory. */
3121 while (len > 0)
3122 {
3123 /* Rememer if the argument was written to the stack. */
3124 int stack_used_p = 0;
3125 int partial_len = len < MIPS_SAVED_REGSIZE ?
3126 len : MIPS_SAVED_REGSIZE;
3127
3128 if (mips_debug)
3129 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3130 partial_len);
3131
3132 /* Write this portion of the argument to the stack. */
3133 if (argreg > MIPS_LAST_ARG_REGNUM
3134 || odd_sized_struct
3135 || fp_register_arg_p (typecode, arg_type))
3136 {
3137 /* Should shorter than int integer values be
3138 promoted to int before being stored? */
3139 int longword_offset = 0;
3140 CORE_ADDR addr;
3141 stack_used_p = 1;
3142 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3143 {
3144 if (MIPS_STACK_ARGSIZE == 8 &&
3145 (typecode == TYPE_CODE_INT ||
3146 typecode == TYPE_CODE_PTR ||
3147 typecode == TYPE_CODE_FLT) && len <= 4)
3148 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3149 }
3150
3151 if (mips_debug)
3152 {
3153 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3154 paddr_nz (stack_offset));
3155 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3156 paddr_nz (longword_offset));
3157 }
3158
3159 addr = sp + stack_offset + longword_offset;
3160
3161 if (mips_debug)
3162 {
3163 int i;
3164 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3165 paddr_nz (addr));
3166 for (i = 0; i < partial_len; i++)
3167 {
3168 fprintf_unfiltered (gdb_stdlog, "%02x",
3169 val[i] & 0xff);
3170 }
3171 }
3172 write_memory (addr, val, partial_len);
3173 }
3174
3175 /* Note!!! This is NOT an else clause. Odd sized
3176 structs may go thru BOTH paths. Floating point
3177 arguments will not. */
3178 /* Write this portion of the argument to a general
3179 purpose register. */
3180 if (argreg <= MIPS_LAST_ARG_REGNUM
3181 && !fp_register_arg_p (typecode, arg_type))
3182 {
3183 LONGEST regval = extract_unsigned_integer (val, partial_len);
3184
3185 /* A non-floating-point argument being passed in a
3186 general register. If a struct or union, and if
3187 the remaining length is smaller than the register
3188 size, we have to adjust the register value on
3189 big endian targets.
3190
3191 It does not seem to be necessary to do the
3192 same for integral types.
3193
3194 cagney/2001-07-23: gdb/179: Also, GCC, when
3195 outputting LE O32 with sizeof (struct) <
3196 MIPS_SAVED_REGSIZE, generates a left shift as
3197 part of storing the argument in a register a
3198 register (the left shift isn't generated when
3199 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3200 is quite possible that this is GCC contradicting
3201 the LE/O32 ABI, GDB has not been adjusted to
3202 accommodate this. Either someone needs to
3203 demonstrate that the LE/O32 ABI specifies such a
3204 left shift OR this new ABI gets identified as
3205 such and GDB gets tweaked accordingly. */
3206
3207 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3208 && partial_len < MIPS_SAVED_REGSIZE
3209 && (typecode == TYPE_CODE_STRUCT ||
3210 typecode == TYPE_CODE_UNION))
3211 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3212 TARGET_CHAR_BIT);
3213
3214 if (mips_debug)
3215 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3216 argreg,
3217 phex (regval, MIPS_SAVED_REGSIZE));
3218 write_register (argreg, regval);
3219 argreg++;
3220 }
3221
3222 len -= partial_len;
3223 val += partial_len;
3224
3225 /* Compute the the offset into the stack at which we
3226 will copy the next parameter.
3227
3228 In N32 (N64?), the stack_offset only needs to be
3229 adjusted when it has been used. */
3230
3231 if (stack_used_p)
5b03f266 3232 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
cb3d25d1
MS
3233 }
3234 }
3235 if (mips_debug)
3236 fprintf_unfiltered (gdb_stdlog, "\n");
3237 }
3238
310e9b6a
AC
3239 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3240
cb3d25d1
MS
3241 /* Return adjusted stack pointer. */
3242 return sp;
3243}
3244
25ab4790 3245/* O32 version of push_dummy_call. */
ebafbe83 3246
46cac009 3247static CORE_ADDR
25ab4790
AC
3248mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3249 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3250 struct value **args, CORE_ADDR sp, int struct_return,
3251 CORE_ADDR struct_addr)
ebafbe83
MS
3252{
3253 int argreg;
3254 int float_argreg;
3255 int argnum;
3256 int len = 0;
3257 int stack_offset = 0;
ebafbe83 3258
25ab4790
AC
3259 /* For shared libraries, "t9" needs to point at the function
3260 address. */
3261 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3262
3263 /* Set the return address register to point to the entry point of
3264 the program, where a breakpoint lies in wait. */
3265 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3266
ebafbe83
MS
3267 /* First ensure that the stack and structure return address (if any)
3268 are properly aligned. The stack has to be at least 64-bit
3269 aligned even on 32-bit machines, because doubles must be 64-bit
3270 aligned. For n32 and n64, stack frames need to be 128-bit
3271 aligned, so we round to this widest known alignment. */
3272
5b03f266
AC
3273 sp = align_down (sp, 16);
3274 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3275
3276 /* Now make space on the stack for the args. */
3277 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3278 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
ebafbe83 3279 MIPS_STACK_ARGSIZE);
5b03f266 3280 sp -= align_up (len, 16);
ebafbe83
MS
3281
3282 if (mips_debug)
3283 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3284 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3285 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3286
3287 /* Initialize the integer and float register pointers. */
3288 argreg = A0_REGNUM;
56cea623 3289 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3290
bcb0cc15 3291 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3292 if (struct_return)
3293 {
3294 if (mips_debug)
3295 fprintf_unfiltered (gdb_stdlog,
25ab4790 3296 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3297 argreg, paddr_nz (struct_addr));
3298 write_register (argreg++, struct_addr);
3299 stack_offset += MIPS_STACK_ARGSIZE;
3300 }
3301
3302 /* Now load as many as possible of the first arguments into
3303 registers, and push the rest onto the stack. Loop thru args
3304 from first to last. */
3305 for (argnum = 0; argnum < nargs; argnum++)
3306 {
3307 char *val;
d9d9c31f 3308 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3309 struct value *arg = args[argnum];
3310 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3311 int len = TYPE_LENGTH (arg_type);
3312 enum type_code typecode = TYPE_CODE (arg_type);
3313
3314 if (mips_debug)
3315 fprintf_unfiltered (gdb_stdlog,
25ab4790 3316 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3317 argnum + 1, len, (int) typecode);
3318
3319 val = (char *) VALUE_CONTENTS (arg);
3320
3321 /* 32-bit ABIs always start floating point arguments in an
3322 even-numbered floating point register. Round the FP register
3323 up before the check to see if there are any FP registers
3324 left. O32/O64 targets also pass the FP in the integer
3325 registers so also round up normal registers. */
3326 if (!FP_REGISTER_DOUBLE
3327 && fp_register_arg_p (typecode, arg_type))
3328 {
3329 if ((float_argreg & 1))
3330 float_argreg++;
3331 }
3332
3333 /* Floating point arguments passed in registers have to be
3334 treated specially. On 32-bit architectures, doubles
3335 are passed in register pairs; the even register gets
3336 the low word, and the odd register gets the high word.
3337 On O32/O64, the first two floating point arguments are
3338 also copied to general registers, because MIPS16 functions
3339 don't use float registers for arguments. This duplication of
3340 arguments in general registers can't hurt non-MIPS16 functions
3341 because those registers are normally skipped. */
3342
3343 if (fp_register_arg_p (typecode, arg_type)
3344 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3345 {
3346 if (!FP_REGISTER_DOUBLE && len == 8)
3347 {
3348 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3349 unsigned long regval;
3350
3351 /* Write the low word of the double to the even register(s). */
3352 regval = extract_unsigned_integer (val + low_offset, 4);
3353 if (mips_debug)
3354 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3355 float_argreg, phex (regval, 4));
3356 write_register (float_argreg++, regval);
3357 if (mips_debug)
3358 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3359 argreg, phex (regval, 4));
3360 write_register (argreg++, regval);
3361
3362 /* Write the high word of the double to the odd register(s). */
3363 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3364 if (mips_debug)
3365 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3366 float_argreg, phex (regval, 4));
3367 write_register (float_argreg++, regval);
3368
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3371 argreg, phex (regval, 4));
3372 write_register (argreg++, regval);
3373 }
3374 else
3375 {
3376 /* This is a floating point value that fits entirely
3377 in a single register. */
3378 /* On 32 bit ABI's the float_argreg is further adjusted
3379 above to ensure that it is even register aligned. */
3380 LONGEST regval = extract_unsigned_integer (val, len);
3381 if (mips_debug)
3382 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3383 float_argreg, phex (regval, len));
3384 write_register (float_argreg++, regval);
3385 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3386 registers for each argument. The below is (my
3387 guess) to ensure that the corresponding integer
3388 register has reserved the same space. */
3389 if (mips_debug)
3390 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3391 argreg, phex (regval, len));
3392 write_register (argreg, regval);
3393 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3394 }
3395 /* Reserve space for the FP register. */
5b03f266 3396 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
46cac009
AC
3397 }
3398 else
3399 {
3400 /* Copy the argument to general registers or the stack in
3401 register-sized pieces. Large arguments are split between
3402 registers and stack. */
4246e332
AC
3403 /* Note: structs whose size is not a multiple of
3404 mips_regsize() are treated specially: Irix cc passes them
3405 in registers where gcc sometimes puts them on the stack.
3406 For maximum compatibility, we will put them in both
3407 places. */
46cac009
AC
3408 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3409 (len % MIPS_SAVED_REGSIZE != 0));
3410 /* Structures should be aligned to eight bytes (even arg registers)
3411 on MIPS_ABI_O32, if their first member has double precision. */
3412 if (MIPS_SAVED_REGSIZE < 8
3413 && mips_type_needs_double_align (arg_type))
3414 {
3415 if ((argreg & 1))
3416 argreg++;
3417 }
3418 /* Note: Floating-point values that didn't fit into an FP
3419 register are only written to memory. */
3420 while (len > 0)
3421 {
3422 /* Remember if the argument was written to the stack. */
3423 int stack_used_p = 0;
3424 int partial_len =
3425 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3426
3427 if (mips_debug)
3428 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3429 partial_len);
3430
3431 /* Write this portion of the argument to the stack. */
3432 if (argreg > MIPS_LAST_ARG_REGNUM
3433 || odd_sized_struct
3434 || fp_register_arg_p (typecode, arg_type))
3435 {
3436 /* Should shorter than int integer values be
3437 promoted to int before being stored? */
3438 int longword_offset = 0;
3439 CORE_ADDR addr;
3440 stack_used_p = 1;
3441 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3442 {
3443 if (MIPS_STACK_ARGSIZE == 8 &&
3444 (typecode == TYPE_CODE_INT ||
3445 typecode == TYPE_CODE_PTR ||
3446 typecode == TYPE_CODE_FLT) && len <= 4)
3447 longword_offset = MIPS_STACK_ARGSIZE - len;
3448 }
3449
3450 if (mips_debug)
3451 {
3452 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3453 paddr_nz (stack_offset));
3454 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3455 paddr_nz (longword_offset));
3456 }
3457
3458 addr = sp + stack_offset + longword_offset;
3459
3460 if (mips_debug)
3461 {
3462 int i;
3463 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3464 paddr_nz (addr));
3465 for (i = 0; i < partial_len; i++)
3466 {
3467 fprintf_unfiltered (gdb_stdlog, "%02x",
3468 val[i] & 0xff);
3469 }
3470 }
3471 write_memory (addr, val, partial_len);
3472 }
3473
3474 /* Note!!! This is NOT an else clause. Odd sized
3475 structs may go thru BOTH paths. Floating point
3476 arguments will not. */
3477 /* Write this portion of the argument to a general
3478 purpose register. */
3479 if (argreg <= MIPS_LAST_ARG_REGNUM
3480 && !fp_register_arg_p (typecode, arg_type))
3481 {
3482 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332
AC
3483 /* Value may need to be sign extended, because
3484 mips_regsize() != MIPS_SAVED_REGSIZE. */
46cac009
AC
3485
3486 /* A non-floating-point argument being passed in a
3487 general register. If a struct or union, and if
3488 the remaining length is smaller than the register
3489 size, we have to adjust the register value on
3490 big endian targets.
3491
3492 It does not seem to be necessary to do the
3493 same for integral types.
3494
3495 Also don't do this adjustment on O64 binaries.
3496
3497 cagney/2001-07-23: gdb/179: Also, GCC, when
3498 outputting LE O32 with sizeof (struct) <
3499 MIPS_SAVED_REGSIZE, generates a left shift as
3500 part of storing the argument in a register a
3501 register (the left shift isn't generated when
3502 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3503 is quite possible that this is GCC contradicting
3504 the LE/O32 ABI, GDB has not been adjusted to
3505 accommodate this. Either someone needs to
3506 demonstrate that the LE/O32 ABI specifies such a
3507 left shift OR this new ABI gets identified as
3508 such and GDB gets tweaked accordingly. */
3509
3510 if (MIPS_SAVED_REGSIZE < 8
3511 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3512 && partial_len < MIPS_SAVED_REGSIZE
3513 && (typecode == TYPE_CODE_STRUCT ||
3514 typecode == TYPE_CODE_UNION))
3515 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3516 TARGET_CHAR_BIT);
3517
3518 if (mips_debug)
3519 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3520 argreg,
3521 phex (regval, MIPS_SAVED_REGSIZE));
3522 write_register (argreg, regval);
3523 argreg++;
3524
3525 /* Prevent subsequent floating point arguments from
3526 being passed in floating point registers. */
3527 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3528 }
3529
3530 len -= partial_len;
3531 val += partial_len;
3532
3533 /* Compute the the offset into the stack at which we
3534 will copy the next parameter.
3535
3536 In older ABIs, the caller reserved space for
3537 registers that contained arguments. This was loosely
3538 refered to as their "home". Consequently, space is
3539 always allocated. */
3540
5b03f266 3541 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
46cac009
AC
3542 }
3543 }
3544 if (mips_debug)
3545 fprintf_unfiltered (gdb_stdlog, "\n");
3546 }
3547
310e9b6a
AC
3548 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3549
46cac009
AC
3550 /* Return adjusted stack pointer. */
3551 return sp;
3552}
3553
25ab4790 3554/* O64 version of push_dummy_call. */
46cac009
AC
3555
3556static CORE_ADDR
25ab4790
AC
3557mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3558 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3559 struct value **args, CORE_ADDR sp, int struct_return,
3560 CORE_ADDR struct_addr)
46cac009
AC
3561{
3562 int argreg;
3563 int float_argreg;
3564 int argnum;
3565 int len = 0;
3566 int stack_offset = 0;
3567
25ab4790
AC
3568 /* For shared libraries, "t9" needs to point at the function
3569 address. */
3570 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3571
3572 /* Set the return address register to point to the entry point of
3573 the program, where a breakpoint lies in wait. */
3574 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3575
46cac009
AC
3576 /* First ensure that the stack and structure return address (if any)
3577 are properly aligned. The stack has to be at least 64-bit
3578 aligned even on 32-bit machines, because doubles must be 64-bit
3579 aligned. For n32 and n64, stack frames need to be 128-bit
3580 aligned, so we round to this widest known alignment. */
3581
5b03f266
AC
3582 sp = align_down (sp, 16);
3583 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3584
3585 /* Now make space on the stack for the args. */
3586 for (argnum = 0; argnum < nargs; argnum++)
5b03f266 3587 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
46cac009 3588 MIPS_STACK_ARGSIZE);
5b03f266 3589 sp -= align_up (len, 16);
46cac009
AC
3590
3591 if (mips_debug)
3592 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3593 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3594 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3595
3596 /* Initialize the integer and float register pointers. */
3597 argreg = A0_REGNUM;
56cea623 3598 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3599
3600 /* The struct_return pointer occupies the first parameter-passing reg. */
3601 if (struct_return)
3602 {
3603 if (mips_debug)
3604 fprintf_unfiltered (gdb_stdlog,
25ab4790 3605 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3606 argreg, paddr_nz (struct_addr));
3607 write_register (argreg++, struct_addr);
3608 stack_offset += MIPS_STACK_ARGSIZE;
3609 }
3610
3611 /* Now load as many as possible of the first arguments into
3612 registers, and push the rest onto the stack. Loop thru args
3613 from first to last. */
3614 for (argnum = 0; argnum < nargs; argnum++)
3615 {
3616 char *val;
d9d9c31f 3617 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3618 struct value *arg = args[argnum];
3619 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3620 int len = TYPE_LENGTH (arg_type);
3621 enum type_code typecode = TYPE_CODE (arg_type);
3622
3623 if (mips_debug)
3624 fprintf_unfiltered (gdb_stdlog,
25ab4790 3625 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3626 argnum + 1, len, (int) typecode);
3627
3628 val = (char *) VALUE_CONTENTS (arg);
3629
3630 /* 32-bit ABIs always start floating point arguments in an
3631 even-numbered floating point register. Round the FP register
3632 up before the check to see if there are any FP registers
3633 left. O32/O64 targets also pass the FP in the integer
3634 registers so also round up normal registers. */
3635 if (!FP_REGISTER_DOUBLE
3636 && fp_register_arg_p (typecode, arg_type))
3637 {
3638 if ((float_argreg & 1))
3639 float_argreg++;
3640 }
3641
3642 /* Floating point arguments passed in registers have to be
3643 treated specially. On 32-bit architectures, doubles
3644 are passed in register pairs; the even register gets
3645 the low word, and the odd register gets the high word.
3646 On O32/O64, the first two floating point arguments are
3647 also copied to general registers, because MIPS16 functions
3648 don't use float registers for arguments. This duplication of
3649 arguments in general registers can't hurt non-MIPS16 functions
3650 because those registers are normally skipped. */
3651
3652 if (fp_register_arg_p (typecode, arg_type)
3653 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3654 {
3655 if (!FP_REGISTER_DOUBLE && len == 8)
3656 {
3657 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3658 unsigned long regval;
3659
3660 /* Write the low word of the double to the even register(s). */
3661 regval = extract_unsigned_integer (val + low_offset, 4);
3662 if (mips_debug)
3663 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3664 float_argreg, phex (regval, 4));
3665 write_register (float_argreg++, regval);
3666 if (mips_debug)
3667 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3668 argreg, phex (regval, 4));
3669 write_register (argreg++, regval);
3670
3671 /* Write the high word of the double to the odd register(s). */
3672 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3673 if (mips_debug)
3674 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3675 float_argreg, phex (regval, 4));
3676 write_register (float_argreg++, regval);
3677
3678 if (mips_debug)
3679 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3680 argreg, phex (regval, 4));
3681 write_register (argreg++, regval);
3682 }
3683 else
3684 {
3685 /* This is a floating point value that fits entirely
3686 in a single register. */
3687 /* On 32 bit ABI's the float_argreg is further adjusted
3688 above to ensure that it is even register aligned. */
3689 LONGEST regval = extract_unsigned_integer (val, len);
3690 if (mips_debug)
3691 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3692 float_argreg, phex (regval, len));
3693 write_register (float_argreg++, regval);
3694 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3695 registers for each argument. The below is (my
3696 guess) to ensure that the corresponding integer
3697 register has reserved the same space. */
3698 if (mips_debug)
3699 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3700 argreg, phex (regval, len));
3701 write_register (argreg, regval);
3702 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3703 }
3704 /* Reserve space for the FP register. */
5b03f266 3705 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
ebafbe83
MS
3706 }
3707 else
3708 {
3709 /* Copy the argument to general registers or the stack in
3710 register-sized pieces. Large arguments are split between
3711 registers and stack. */
4246e332
AC
3712 /* Note: structs whose size is not a multiple of
3713 mips_regsize() are treated specially: Irix cc passes them
3714 in registers where gcc sometimes puts them on the stack.
3715 For maximum compatibility, we will put them in both
3716 places. */
ebafbe83
MS
3717 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3718 (len % MIPS_SAVED_REGSIZE != 0));
3719 /* Structures should be aligned to eight bytes (even arg registers)
3720 on MIPS_ABI_O32, if their first member has double precision. */
3721 if (MIPS_SAVED_REGSIZE < 8
3722 && mips_type_needs_double_align (arg_type))
3723 {
3724 if ((argreg & 1))
3725 argreg++;
3726 }
3727 /* Note: Floating-point values that didn't fit into an FP
3728 register are only written to memory. */
3729 while (len > 0)
3730 {
3731 /* Remember if the argument was written to the stack. */
3732 int stack_used_p = 0;
3733 int partial_len =
3734 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3735
3736 if (mips_debug)
3737 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3738 partial_len);
3739
3740 /* Write this portion of the argument to the stack. */
3741 if (argreg > MIPS_LAST_ARG_REGNUM
3742 || odd_sized_struct
3743 || fp_register_arg_p (typecode, arg_type))
3744 {
3745 /* Should shorter than int integer values be
3746 promoted to int before being stored? */
3747 int longword_offset = 0;
3748 CORE_ADDR addr;
3749 stack_used_p = 1;
3750 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3751 {
3752 if (MIPS_STACK_ARGSIZE == 8 &&
3753 (typecode == TYPE_CODE_INT ||
3754 typecode == TYPE_CODE_PTR ||
3755 typecode == TYPE_CODE_FLT) && len <= 4)
3756 longword_offset = MIPS_STACK_ARGSIZE - len;
3757 }
3758
3759 if (mips_debug)
3760 {
3761 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3762 paddr_nz (stack_offset));
3763 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3764 paddr_nz (longword_offset));
3765 }
3766
3767 addr = sp + stack_offset + longword_offset;
3768
3769 if (mips_debug)
3770 {
3771 int i;
3772 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3773 paddr_nz (addr));
3774 for (i = 0; i < partial_len; i++)
3775 {
3776 fprintf_unfiltered (gdb_stdlog, "%02x",
3777 val[i] & 0xff);
3778 }
3779 }
3780 write_memory (addr, val, partial_len);
3781 }
3782
3783 /* Note!!! This is NOT an else clause. Odd sized
3784 structs may go thru BOTH paths. Floating point
3785 arguments will not. */
3786 /* Write this portion of the argument to a general
3787 purpose register. */
3788 if (argreg <= MIPS_LAST_ARG_REGNUM
3789 && !fp_register_arg_p (typecode, arg_type))
3790 {
3791 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332
AC
3792 /* Value may need to be sign extended, because
3793 mips_regsize() != MIPS_SAVED_REGSIZE. */
ebafbe83
MS
3794
3795 /* A non-floating-point argument being passed in a
3796 general register. If a struct or union, and if
3797 the remaining length is smaller than the register
3798 size, we have to adjust the register value on
3799 big endian targets.
3800
3801 It does not seem to be necessary to do the
3802 same for integral types.
3803
3804 Also don't do this adjustment on O64 binaries.
3805
3806 cagney/2001-07-23: gdb/179: Also, GCC, when
3807 outputting LE O32 with sizeof (struct) <
3808 MIPS_SAVED_REGSIZE, generates a left shift as
3809 part of storing the argument in a register a
3810 register (the left shift isn't generated when
3811 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3812 is quite possible that this is GCC contradicting
3813 the LE/O32 ABI, GDB has not been adjusted to
3814 accommodate this. Either someone needs to
3815 demonstrate that the LE/O32 ABI specifies such a
3816 left shift OR this new ABI gets identified as
3817 such and GDB gets tweaked accordingly. */
3818
3819 if (MIPS_SAVED_REGSIZE < 8
3820 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3821 && partial_len < MIPS_SAVED_REGSIZE
3822 && (typecode == TYPE_CODE_STRUCT ||
3823 typecode == TYPE_CODE_UNION))
3824 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3825 TARGET_CHAR_BIT);
3826
3827 if (mips_debug)
3828 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3829 argreg,
3830 phex (regval, MIPS_SAVED_REGSIZE));
3831 write_register (argreg, regval);
3832 argreg++;
3833
3834 /* Prevent subsequent floating point arguments from
3835 being passed in floating point registers. */
3836 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3837 }
3838
3839 len -= partial_len;
3840 val += partial_len;
3841
3842 /* Compute the the offset into the stack at which we
3843 will copy the next parameter.
3844
3845 In older ABIs, the caller reserved space for
3846 registers that contained arguments. This was loosely
3847 refered to as their "home". Consequently, space is
3848 always allocated. */
3849
5b03f266 3850 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
ebafbe83
MS
3851 }
3852 }
3853 if (mips_debug)
3854 fprintf_unfiltered (gdb_stdlog, "\n");
3855 }
3856
310e9b6a
AC
3857 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3858
ebafbe83
MS
3859 /* Return adjusted stack pointer. */
3860 return sp;
3861}
3862
f7ab6ec6 3863static void
acdb74a0 3864mips_pop_frame (void)
c906108c 3865{
52f0bd74 3866 int regnum;
c906108c 3867 struct frame_info *frame = get_current_frame ();
c193f6ac 3868 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3869 mips_extra_func_info_t proc_desc;
c906108c 3870
50abf9e5 3871 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3872 {
3873 generic_pop_dummy_frame ();
3874 flush_cached_frames ();
3875 return;
3876 }
3877
e227b13c 3878 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3879 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3880 mips_find_saved_regs (frame);
c906108c 3881 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3882 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1b1d3794 3883 && deprecated_get_frame_saved_regs (frame)[regnum])
21f87145
MS
3884 {
3885 /* Floating point registers must not be sign extended,
3886 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3887
56cea623 3888 if (mips_regnum (current_gdbarch)->fp0 <= regnum && regnum < mips_regnum (current_gdbarch)->fp0 + 32)
21f87145 3889 write_register (regnum,
1b1d3794 3890 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
21f87145
MS
3891 MIPS_SAVED_REGSIZE));
3892 else
3893 write_register (regnum,
1b1d3794 3894 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
21f87145
MS
3895 MIPS_SAVED_REGSIZE));
3896 }
757a7cc6 3897
c906108c
SS
3898 write_register (SP_REGNUM, new_sp);
3899 flush_cached_frames ();
3900
c5aa993b 3901 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3902 {
3903 struct linked_proc_info *pi_ptr, *prev_ptr;
3904
3905 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3906 pi_ptr != NULL;
3907 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3908 {
3909 if (&pi_ptr->info == proc_desc)
3910 break;
3911 }
3912
3913 if (pi_ptr == NULL)
3914 error ("Can't locate dummy extra frame info\n");
3915
3916 if (prev_ptr != NULL)
3917 prev_ptr->next = pi_ptr->next;
3918 else
3919 linked_proc_desc_table = pi_ptr->next;
3920
b8c9b27d 3921 xfree (pi_ptr);
c906108c 3922
56cea623 3923 write_register (mips_regnum (current_gdbarch)->hi,
c5aa993b 3924 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3925 MIPS_SAVED_REGSIZE));
56cea623 3926 write_register (mips_regnum (current_gdbarch)->lo,
c5aa993b 3927 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3928 MIPS_SAVED_REGSIZE));
c906108c 3929 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
56cea623 3930 write_register (mips_regnum (current_gdbarch)->fp_control_status,
c5aa993b 3931 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3932 MIPS_SAVED_REGSIZE));
c906108c
SS
3933 }
3934}
3935
dd824b04
DJ
3936/* Floating point register management.
3937
3938 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3939 64bit operations, these early MIPS cpus treat fp register pairs
3940 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3941 registers and offer a compatibility mode that emulates the MIPS2 fp
3942 model. When operating in MIPS2 fp compat mode, later cpu's split
3943 double precision floats into two 32-bit chunks and store them in
3944 consecutive fp regs. To display 64-bit floats stored in this
3945 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3946 Throw in user-configurable endianness and you have a real mess.
3947
3948 The way this works is:
3949 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3950 double-precision value will be split across two logical registers.
3951 The lower-numbered logical register will hold the low-order bits,
3952 regardless of the processor's endianness.
3953 - If we are on a 64-bit processor, and we are looking for a
3954 single-precision value, it will be in the low ordered bits
3955 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3956 save slot in memory.
3957 - If we are in 64-bit mode, everything is straightforward.
3958
3959 Note that this code only deals with "live" registers at the top of the
3960 stack. We will attempt to deal with saved registers later, when
3961 the raw/cooked register interface is in place. (We need a general
3962 interface that can deal with dynamic saved register sizes -- fp
3963 regs could be 32 bits wide in one frame and 64 on the frame above
3964 and below). */
3965
67b2c998
DJ
3966static struct type *
3967mips_float_register_type (void)
3968{
361d1df0 3969 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3970 return builtin_type_ieee_single_big;
3971 else
3972 return builtin_type_ieee_single_little;
3973}
3974
3975static struct type *
3976mips_double_register_type (void)
3977{
361d1df0 3978 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3979 return builtin_type_ieee_double_big;
3980 else
3981 return builtin_type_ieee_double_little;
3982}
3983
dd824b04
DJ
3984/* Copy a 32-bit single-precision value from the current frame
3985 into rare_buffer. */
3986
3987static void
e11c53d2
AC
3988mips_read_fp_register_single (struct frame_info *frame, int regno,
3989 char *rare_buffer)
dd824b04 3990{
719ec221 3991 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3992 char *raw_buffer = alloca (raw_size);
3993
e11c53d2 3994 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3995 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3996 if (raw_size == 8)
3997 {
3998 /* We have a 64-bit value for this register. Find the low-order
3999 32 bits. */
4000 int offset;
4001
4002 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4003 offset = 4;
4004 else
4005 offset = 0;
4006
4007 memcpy (rare_buffer, raw_buffer + offset, 4);
4008 }
4009 else
4010 {
4011 memcpy (rare_buffer, raw_buffer, 4);
4012 }
4013}
4014
4015/* Copy a 64-bit double-precision value from the current frame into
4016 rare_buffer. This may include getting half of it from the next
4017 register. */
4018
4019static void
e11c53d2
AC
4020mips_read_fp_register_double (struct frame_info *frame, int regno,
4021 char *rare_buffer)
dd824b04 4022{
719ec221 4023 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
4024
4025 if (raw_size == 8 && !mips2_fp_compat ())
4026 {
4027 /* We have a 64-bit value for this register, and we should use
4028 all 64 bits. */
e11c53d2 4029 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
4030 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4031 }
4032 else
4033 {
56cea623 4034 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04
DJ
4035 internal_error (__FILE__, __LINE__,
4036 "mips_read_fp_register_double: bad access to "
4037 "odd-numbered FP register");
4038
4039 /* mips_read_fp_register_single will find the correct 32 bits from
4040 each register. */
4041 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4042 {
e11c53d2
AC
4043 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4044 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4045 }
361d1df0 4046 else
dd824b04 4047 {
e11c53d2
AC
4048 mips_read_fp_register_single (frame, regno, rare_buffer);
4049 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4050 }
4051 }
4052}
4053
c906108c 4054static void
e11c53d2
AC
4055mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4056 int regnum)
c5aa993b 4057{ /* do values for FP (float) regs */
dd824b04 4058 char *raw_buffer;
c906108c 4059 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4060 int inv1, inv2, namelen;
c5aa993b 4061
56cea623 4062 raw_buffer = (char *) alloca (2 * register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0));
c906108c 4063
e11c53d2
AC
4064 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4065 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4066 "");
f0ef6b29 4067
719ec221 4068 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 4069 {
f0ef6b29
KB
4070 /* 4-byte registers: Print hex and floating. Also print even
4071 numbered registers as doubles. */
e11c53d2 4072 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4073 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4074
e11c53d2 4075 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4076
e11c53d2 4077 fprintf_filtered (file, " flt: ");
1adad886 4078 if (inv1)
e11c53d2 4079 fprintf_filtered (file, " <invalid float> ");
1adad886 4080 else
e11c53d2 4081 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4082
f0ef6b29
KB
4083 if (regnum % 2 == 0)
4084 {
e11c53d2 4085 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4086 doub = unpack_double (mips_double_register_type (), raw_buffer,
4087 &inv2);
1adad886 4088
e11c53d2 4089 fprintf_filtered (file, " dbl: ");
f0ef6b29 4090 if (inv2)
e11c53d2 4091 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4092 else
e11c53d2 4093 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4094 }
c906108c
SS
4095 }
4096 else
dd824b04 4097 {
f0ef6b29 4098 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4099 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4100 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4101
e11c53d2 4102 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4103 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4104
361d1df0 4105
e11c53d2 4106 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4107
e11c53d2 4108 fprintf_filtered (file, " flt: ");
1adad886 4109 if (inv1)
e11c53d2 4110 fprintf_filtered (file, "<invalid float>");
1adad886 4111 else
e11c53d2 4112 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4113
e11c53d2 4114 fprintf_filtered (file, " dbl: ");
f0ef6b29 4115 if (inv2)
e11c53d2 4116 fprintf_filtered (file, "<invalid double>");
1adad886 4117 else
e11c53d2 4118 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4119 }
4120}
4121
4122static void
e11c53d2
AC
4123mips_print_register (struct ui_file *file, struct frame_info *frame,
4124 int regnum, int all)
f0ef6b29 4125{
a4b8ebc8 4126 struct gdbarch *gdbarch = get_frame_arch (frame);
d9d9c31f 4127 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4128 int offset;
1adad886 4129
a4b8ebc8 4130 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4131 {
e11c53d2 4132 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4133 return;
4134 }
4135
4136 /* Get the data in raw format. */
e11c53d2 4137 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4138 {
e11c53d2 4139 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4140 return;
c906108c 4141 }
f0ef6b29 4142
e11c53d2 4143 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4144
4145 /* The problem with printing numeric register names (r26, etc.) is that
4146 the user can't use them on input. Probably the best solution is to
4147 fix it so that either the numeric or the funky (a2, etc.) names
4148 are accepted on input. */
4149 if (regnum < MIPS_NUMREGS)
e11c53d2 4150 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4151 else
e11c53d2 4152 fprintf_filtered (file, ": ");
f0ef6b29
KB
4153
4154 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221 4155 offset = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4156 else
4157 offset = 0;
4158
a4b8ebc8 4159 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
e11c53d2 4160 'x', 0, file);
c906108c
SS
4161}
4162
f0ef6b29
KB
4163/* Replacement for generic do_registers_info.
4164 Print regs in pretty columns. */
4165
4166static int
e11c53d2
AC
4167print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4168 int regnum)
f0ef6b29 4169{
e11c53d2
AC
4170 fprintf_filtered (file, " ");
4171 mips_print_fp_register (file, frame, regnum);
4172 fprintf_filtered (file, "\n");
f0ef6b29
KB
4173 return regnum + 1;
4174}
4175
4176
c906108c
SS
4177/* Print a row's worth of GP (int) registers, with name labels above */
4178
4179static int
e11c53d2 4180print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4181 int start_regnum)
c906108c 4182{
a4b8ebc8 4183 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4184 /* do values for GP (int) regs */
d9d9c31f 4185 char raw_buffer[MAX_REGISTER_SIZE];
4246e332 4186 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4187 int col, byte;
a4b8ebc8 4188 int regnum;
c906108c
SS
4189
4190 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4191 fprintf_filtered (file, " ");
a4b8ebc8
AC
4192 for (col = 0, regnum = start_regnum;
4193 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4194 regnum++)
c906108c
SS
4195 {
4196 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4197 continue; /* unused register */
a4b8ebc8 4198 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4199 break; /* end the row: reached FP register */
4246e332 4200 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4201 REGISTER_NAME (regnum));
c906108c
SS
4202 col++;
4203 }
a4b8ebc8 4204 /* print the R0 to R31 names */
20e6603c
AC
4205 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4206 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4207 else
4208 fprintf_filtered (file, "\n ");
c906108c 4209
c906108c 4210 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8
AC
4211 for (col = 0, regnum = start_regnum;
4212 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4213 regnum++)
c906108c
SS
4214 {
4215 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4216 continue; /* unused register */
a4b8ebc8 4217 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c5aa993b 4218 break; /* end row: reached FP register */
c906108c 4219 /* OK: get the data in raw format. */
e11c53d2 4220 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4221 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4222 /* pad small registers */
4246e332
AC
4223 for (byte = 0;
4224 byte < (mips_regsize (current_gdbarch)
c73e8f27 4225 - register_size (current_gdbarch, regnum));
4246e332 4226 byte++)
c906108c
SS
4227 printf_filtered (" ");
4228 /* Now print the register value in hex, endian order. */
d7449b42 4229 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
719ec221
AC
4230 for (byte = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4231 byte < register_size (current_gdbarch, regnum);
43e526b9 4232 byte++)
e11c53d2 4233 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4234 else
c73e8f27 4235 for (byte = register_size (current_gdbarch, regnum) - 1;
43e526b9
JM
4236 byte >= 0;
4237 byte--)
e11c53d2
AC
4238 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4239 fprintf_filtered (file, " ");
c906108c
SS
4240 col++;
4241 }
c5aa993b 4242 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4243 fprintf_filtered (file, "\n");
c906108c
SS
4244
4245 return regnum;
4246}
4247
4248/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4249
bf1f5b4c 4250static void
e11c53d2
AC
4251mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4252 struct frame_info *frame, int regnum, int all)
c906108c 4253{
c5aa993b 4254 if (regnum != -1) /* do one specified register */
c906108c 4255 {
a4b8ebc8 4256 gdb_assert (regnum >= NUM_REGS);
c906108c
SS
4257 if (*(REGISTER_NAME (regnum)) == '\0')
4258 error ("Not a valid register for the current processor type");
4259
e11c53d2
AC
4260 mips_print_register (file, frame, regnum, 0);
4261 fprintf_filtered (file, "\n");
c906108c 4262 }
c5aa993b
JM
4263 else
4264 /* do all (or most) registers */
c906108c 4265 {
a4b8ebc8
AC
4266 regnum = NUM_REGS;
4267 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4268 {
a4b8ebc8 4269 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4270 {
4271 if (all) /* true for "INFO ALL-REGISTERS" command */
4272 regnum = print_fp_register_row (file, frame, regnum);
4273 else
4274 regnum += MIPS_NUMREGS; /* skip floating point regs */
4275 }
c906108c 4276 else
e11c53d2 4277 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4278 }
4279 }
4280}
4281
c906108c
SS
4282/* Is this a branch with a delay slot? */
4283
a14ed312 4284static int is_delayed (unsigned long);
c906108c
SS
4285
4286static int
acdb74a0 4287is_delayed (unsigned long insn)
c906108c
SS
4288{
4289 int i;
4290 for (i = 0; i < NUMOPCODES; ++i)
4291 if (mips_opcodes[i].pinfo != INSN_MACRO
4292 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4293 break;
4294 return (i < NUMOPCODES
4295 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4296 | INSN_COND_BRANCH_DELAY
4297 | INSN_COND_BRANCH_LIKELY)));
4298}
4299
4300int
acdb74a0 4301mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4302{
4303 char buf[MIPS_INSTLEN];
4304
4305 /* There is no branch delay slot on MIPS16. */
4306 if (pc_is_mips16 (pc))
4307 return 0;
4308
4309 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4310 /* If error reading memory, guess that it is not a delayed branch. */
4311 return 0;
c5aa993b 4312 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4313}
4314
4315
4316/* Skip the PC past function prologue instructions (32-bit version).
4317 This is a helper function for mips_skip_prologue. */
4318
4319static CORE_ADDR
f7b9e9fc 4320mips32_skip_prologue (CORE_ADDR pc)
c906108c 4321{
c5aa993b
JM
4322 t_inst inst;
4323 CORE_ADDR end_pc;
4324 int seen_sp_adjust = 0;
4325 int load_immediate_bytes = 0;
4326
4327 /* Skip the typical prologue instructions. These are the stack adjustment
4328 instruction and the instructions that save registers on the stack
4329 or in the gcc frame. */
4330 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4331 {
4332 unsigned long high_word;
c906108c 4333
c5aa993b
JM
4334 inst = mips_fetch_instruction (pc);
4335 high_word = (inst >> 16) & 0xffff;
c906108c 4336
c5aa993b
JM
4337 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4338 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4339 seen_sp_adjust = 1;
4340 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4341 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4342 seen_sp_adjust = 1;
4343 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4344 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4345 && (inst & 0x001F0000)) /* reg != $zero */
4346 continue;
4347
4348 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4349 continue;
4350 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4351 /* sx reg,n($s8) */
4352 continue; /* reg != $zero */
4353
4354 /* move $s8,$sp. With different versions of gas this will be either
4355 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4356 Accept any one of these. */
4357 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4358 continue;
4359
4360 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4361 continue;
4362 else if (high_word == 0x3c1c) /* lui $gp,n */
4363 continue;
4364 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4365 continue;
4366 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4367 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4368 continue;
4369 /* The following instructions load $at or $t0 with an immediate
4370 value in preparation for a stack adjustment via
4371 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4372 a local variable, so we accept them only before a stack adjustment
4373 instruction was seen. */
4374 else if (!seen_sp_adjust)
4375 {
4376 if (high_word == 0x3c01 || /* lui $at,n */
4377 high_word == 0x3c08) /* lui $t0,n */
4378 {
4379 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4380 continue;
4381 }
4382 else if (high_word == 0x3421 || /* ori $at,$at,n */
4383 high_word == 0x3508 || /* ori $t0,$t0,n */
4384 high_word == 0x3401 || /* ori $at,$zero,n */
4385 high_word == 0x3408) /* ori $t0,$zero,n */
4386 {
4387 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4388 continue;
4389 }
4390 else
4391 break;
4392 }
4393 else
4394 break;
c906108c
SS
4395 }
4396
c5aa993b
JM
4397 /* In a frameless function, we might have incorrectly
4398 skipped some load immediate instructions. Undo the skipping
4399 if the load immediate was not followed by a stack adjustment. */
4400 if (load_immediate_bytes && !seen_sp_adjust)
4401 pc -= load_immediate_bytes;
4402 return pc;
c906108c
SS
4403}
4404
4405/* Skip the PC past function prologue instructions (16-bit version).
4406 This is a helper function for mips_skip_prologue. */
4407
4408static CORE_ADDR
f7b9e9fc 4409mips16_skip_prologue (CORE_ADDR pc)
c906108c 4410{
c5aa993b
JM
4411 CORE_ADDR end_pc;
4412 int extend_bytes = 0;
4413 int prev_extend_bytes;
c906108c 4414
c5aa993b
JM
4415 /* Table of instructions likely to be found in a function prologue. */
4416 static struct
c906108c
SS
4417 {
4418 unsigned short inst;
4419 unsigned short mask;
c5aa993b
JM
4420 }
4421 table[] =
4422 {
c906108c 4423 {
c5aa993b
JM
4424 0x6300, 0xff00
4425 }
4426 , /* addiu $sp,offset */
4427 {
4428 0xfb00, 0xff00
4429 }
4430 , /* daddiu $sp,offset */
4431 {
4432 0xd000, 0xf800
4433 }
4434 , /* sw reg,n($sp) */
4435 {
4436 0xf900, 0xff00
4437 }
4438 , /* sd reg,n($sp) */
4439 {
4440 0x6200, 0xff00
4441 }
4442 , /* sw $ra,n($sp) */
4443 {
4444 0xfa00, 0xff00
4445 }
4446 , /* sd $ra,n($sp) */
4447 {
4448 0x673d, 0xffff
4449 }
4450 , /* move $s1,sp */
4451 {
4452 0xd980, 0xff80
4453 }
4454 , /* sw $a0-$a3,n($s1) */
4455 {
4456 0x6704, 0xff1c
4457 }
4458 , /* move reg,$a0-$a3 */
4459 {
4460 0xe809, 0xf81f
4461 }
4462 , /* entry pseudo-op */
4463 {
4464 0x0100, 0xff00
4465 }
4466 , /* addiu $s1,$sp,n */
4467 {
4468 0, 0
4469 } /* end of table marker */
4470 };
4471
4472 /* Skip the typical prologue instructions. These are the stack adjustment
4473 instruction and the instructions that save registers on the stack
4474 or in the gcc frame. */
4475 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4476 {
4477 unsigned short inst;
4478 int i;
c906108c 4479
c5aa993b 4480 inst = mips_fetch_instruction (pc);
c906108c 4481
c5aa993b
JM
4482 /* Normally we ignore an extend instruction. However, if it is
4483 not followed by a valid prologue instruction, we must adjust
4484 the pc back over the extend so that it won't be considered
4485 part of the prologue. */
4486 if ((inst & 0xf800) == 0xf000) /* extend */
4487 {
4488 extend_bytes = MIPS16_INSTLEN;
4489 continue;
4490 }
4491 prev_extend_bytes = extend_bytes;
4492 extend_bytes = 0;
c906108c 4493
c5aa993b
JM
4494 /* Check for other valid prologue instructions besides extend. */
4495 for (i = 0; table[i].mask != 0; i++)
4496 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4497 break;
4498 if (table[i].mask != 0) /* it was in table? */
4499 continue; /* ignore it */
4500 else
4501 /* non-prologue */
4502 {
4503 /* Return the current pc, adjusted backwards by 2 if
4504 the previous instruction was an extend. */
4505 return pc - prev_extend_bytes;
4506 }
c906108c
SS
4507 }
4508 return pc;
4509}
4510
4511/* To skip prologues, I use this predicate. Returns either PC itself
4512 if the code at PC does not look like a function prologue; otherwise
4513 returns an address that (if we're lucky) follows the prologue. If
4514 LENIENT, then we must skip everything which is involved in setting
4515 up the frame (it's OK to skip more, just so long as we don't skip
4516 anything which might clobber the registers which are being saved.
4517 We must skip more in the case where part of the prologue is in the
4518 delay slot of a non-prologue instruction). */
4519
f7ab6ec6 4520static CORE_ADDR
f7b9e9fc 4521mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4522{
4523 /* See if we can determine the end of the prologue via the symbol table.
4524 If so, then return either PC, or the PC after the prologue, whichever
4525 is greater. */
4526
4527 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4528
4529 if (post_prologue_pc != 0)
4530 return max (pc, post_prologue_pc);
4531
4532 /* Can't determine prologue from the symbol table, need to examine
4533 instructions. */
4534
4535 if (pc_is_mips16 (pc))
f7b9e9fc 4536 return mips16_skip_prologue (pc);
c906108c 4537 else
f7b9e9fc 4538 return mips32_skip_prologue (pc);
c906108c 4539}
c906108c 4540
7a292a7a
SS
4541/* Determine how a return value is stored within the MIPS register
4542 file, given the return type `valtype'. */
4543
4544struct return_value_word
4545{
4546 int len;
4547 int reg;
4548 int reg_offset;
4549 int buf_offset;
4550};
4551
7a292a7a 4552static void
acdb74a0
AC
4553return_value_location (struct type *valtype,
4554 struct return_value_word *hi,
4555 struct return_value_word *lo)
7a292a7a
SS
4556{
4557 int len = TYPE_LENGTH (valtype);
c5aa993b 4558
7a292a7a
SS
4559 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4560 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4561 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4562 {
4563 if (!FP_REGISTER_DOUBLE && len == 8)
4564 {
4565 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4566 spread them across a floating-point register pair. */
d7449b42
AC
4567 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4568 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4569 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4570 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8)
7a292a7a
SS
4571 ? 4 : 0);
4572 hi->reg_offset = lo->reg_offset;
56cea623
AC
4573 lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
4574 hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
7a292a7a
SS
4575 lo->len = 4;
4576 hi->len = 4;
4577 }
4578 else
4579 {
4580 /* The floating point value fits in a single floating-point
c5aa993b 4581 register. */
d7449b42 4582 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
56cea623 4583 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8
7a292a7a
SS
4584 && len == 4)
4585 ? 4 : 0);
56cea623 4586 lo->reg = mips_regnum (current_gdbarch)->fp0;
7a292a7a
SS
4587 lo->len = len;
4588 lo->buf_offset = 0;
4589 hi->len = 0;
4590 hi->reg_offset = 0;
4591 hi->buf_offset = 0;
4592 hi->reg = 0;
4593 }
4594 }
4595 else
4596 {
4597 /* Locate a result possibly spread across two registers. */
4598 int regnum = 2;
4599 lo->reg = regnum + 0;
4600 hi->reg = regnum + 1;
d7449b42 4601 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4602 && len < MIPS_SAVED_REGSIZE)
4603 {
bf1f5b4c
MS
4604 /* "un-left-justify" the value in the low register */
4605 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4606 lo->len = len;
bf1f5b4c 4607 hi->reg_offset = 0;
7a292a7a
SS
4608 hi->len = 0;
4609 }
d7449b42 4610 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4611 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4612 && len < MIPS_SAVED_REGSIZE * 2
4613 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4614 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4615 {
4616 /* "un-left-justify" the value spread across two registers. */
4617 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4618 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4619 hi->reg_offset = 0;
4620 hi->len = len - lo->len;
4621 }
4622 else
4623 {
4624 /* Only perform a partial copy of the second register. */
4625 lo->reg_offset = 0;
4626 hi->reg_offset = 0;
4627 if (len > MIPS_SAVED_REGSIZE)
4628 {
4629 lo->len = MIPS_SAVED_REGSIZE;
4630 hi->len = len - MIPS_SAVED_REGSIZE;
4631 }
4632 else
4633 {
4634 lo->len = len;
4635 hi->len = 0;
4636 }
4637 }
d7449b42 4638 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 4639 && register_size (current_gdbarch, regnum) == 8
7a292a7a
SS
4640 && MIPS_SAVED_REGSIZE == 4)
4641 {
4642 /* Account for the fact that only the least-signficant part
c5aa993b 4643 of the register is being used */
7a292a7a
SS
4644 lo->reg_offset += 4;
4645 hi->reg_offset += 4;
4646 }
4647 lo->buf_offset = 0;
4648 hi->buf_offset = lo->len;
4649 }
4650}
4651
4652/* Given a return value in `regbuf' with a type `valtype', extract and
4653 copy its value into `valbuf'. */
4654
46cac009
AC
4655static void
4656mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4657 char regbuf[],
46cac009
AC
4658 char *valbuf)
4659{
4660 struct return_value_word lo;
4661 struct return_value_word hi;
4662 return_value_location (valtype, &hi, &lo);
4663
4664 memcpy (valbuf + lo.buf_offset,
62700349 4665 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4666 lo.len);
4667
4668 if (hi.len > 0)
4669 memcpy (valbuf + hi.buf_offset,
62700349 4670 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4671 hi.len);
4672}
4673
46cac009
AC
4674static void
4675mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4676 char regbuf[],
46cac009
AC
4677 char *valbuf)
4678{
4679 struct return_value_word lo;
4680 struct return_value_word hi;
4681 return_value_location (valtype, &hi, &lo);
4682
4683 memcpy (valbuf + lo.buf_offset,
62700349 4684 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
46cac009
AC
4685 lo.len);
4686
4687 if (hi.len > 0)
4688 memcpy (valbuf + hi.buf_offset,
62700349 4689 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
46cac009
AC
4690 hi.len);
4691}
4692
7a292a7a
SS
4693/* Given a return value in `valbuf' with a type `valtype', write it's
4694 value into the appropriate register. */
4695
46cac009
AC
4696static void
4697mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4698{
d9d9c31f 4699 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4700 struct return_value_word lo;
4701 struct return_value_word hi;
4702 return_value_location (valtype, &hi, &lo);
4703
4704 memset (raw_buffer, 0, sizeof (raw_buffer));
4705 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4706 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4707 register_size (current_gdbarch, lo.reg));
46cac009
AC
4708
4709 if (hi.len > 0)
4710 {
4711 memset (raw_buffer, 0, sizeof (raw_buffer));
4712 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4713 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4714 register_size (current_gdbarch, hi.reg));
46cac009
AC
4715 }
4716}
4717
4718static void
cb1d2653 4719mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4720{
d9d9c31f 4721 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4722 struct return_value_word lo;
4723 struct return_value_word hi;
4724 return_value_location (valtype, &hi, &lo);
4725
4726 memset (raw_buffer, 0, sizeof (raw_buffer));
4727 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
62700349 4728 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
719ec221 4729 register_size (current_gdbarch, lo.reg));
46cac009
AC
4730
4731 if (hi.len > 0)
4732 {
4733 memset (raw_buffer, 0, sizeof (raw_buffer));
4734 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
62700349 4735 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
719ec221 4736 register_size (current_gdbarch, hi.reg));
46cac009
AC
4737 }
4738}
4739
cb1d2653
AC
4740/* O32 ABI stuff. */
4741
46cac009 4742static void
cb1d2653
AC
4743mips_o32_xfer_return_value (struct type *type,
4744 struct regcache *regcache,
4745 bfd_byte *in, const bfd_byte *out)
46cac009 4746{
cb1d2653
AC
4747 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4748 if (TYPE_CODE (type) == TYPE_CODE_FLT
4749 && TYPE_LENGTH (type) == 4
4750 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4751 {
cb1d2653
AC
4752 /* A single-precision floating-point value. It fits in the
4753 least significant part of FP0. */
4754 if (mips_debug)
4755 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
56cea623 4756 mips_xfer_register (regcache, NUM_REGS + mips_regnum (current_gdbarch)->fp0, TYPE_LENGTH (type),
cb1d2653
AC
4757 TARGET_BYTE_ORDER, in, out, 0);
4758 }
4759 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4760 && TYPE_LENGTH (type) == 8
4761 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4762 {
a4b8ebc8
AC
4763 /* A double-precision floating-point value. The most
4764 significant part goes in FP1, and the least significant in
4765 FP0. */
cb1d2653 4766 if (mips_debug)
a4b8ebc8 4767 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
cb1d2653
AC
4768 switch (TARGET_BYTE_ORDER)
4769 {
4770 case BFD_ENDIAN_LITTLE:
56cea623 4771 mips_xfer_register (regcache, NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0, 4,
cb1d2653 4772 TARGET_BYTE_ORDER, in, out, 0);
56cea623 4773 mips_xfer_register (regcache, NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1, 4,
cb1d2653
AC
4774 TARGET_BYTE_ORDER, in, out, 4);
4775 break;
4776 case BFD_ENDIAN_BIG:
56cea623 4777 mips_xfer_register (regcache, NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1, 4,
cb1d2653 4778 TARGET_BYTE_ORDER, in, out, 0);
56cea623 4779 mips_xfer_register (regcache, NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0, 4,
cb1d2653
AC
4780 TARGET_BYTE_ORDER, in, out, 4);
4781 break;
4782 default:
4783 internal_error (__FILE__, __LINE__, "bad switch");
4784 }
4785 }
4786#if 0
4787 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4788 && TYPE_NFIELDS (type) <= 2
4789 && TYPE_NFIELDS (type) >= 1
4790 && ((TYPE_NFIELDS (type) == 1
4791 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4792 == TYPE_CODE_FLT))
4793 || (TYPE_NFIELDS (type) == 2
4794 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4795 == TYPE_CODE_FLT)
4796 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4797 == TYPE_CODE_FLT)))
4798 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4799 {
4800 /* A struct that contains one or two floats. Each value is part
4801 in the least significant part of their floating point
4802 register.. */
d9d9c31f 4803 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4804 int regnum;
4805 int field;
56cea623 4806 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
cb1d2653
AC
4807 field < TYPE_NFIELDS (type);
4808 field++, regnum += 2)
4809 {
4810 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4811 / TARGET_CHAR_BIT);
4812 if (mips_debug)
4813 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4814 mips_xfer_register (regcache, NUM_REGS + regnum,
4815 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
cb1d2653
AC
4816 TARGET_BYTE_ORDER, in, out, offset);
4817 }
4818 }
4819#endif
4820#if 0
4821 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4822 || TYPE_CODE (type) == TYPE_CODE_UNION)
4823 {
4824 /* A structure or union. Extract the left justified value,
4825 regardless of the byte order. I.e. DO NOT USE
4826 mips_xfer_lower. */
4827 int offset;
4828 int regnum;
4829 for (offset = 0, regnum = V0_REGNUM;
4830 offset < TYPE_LENGTH (type);
719ec221 4831 offset += register_size (current_gdbarch, regnum), regnum++)
cb1d2653 4832 {
719ec221 4833 int xfer = register_size (current_gdbarch, regnum);
cb1d2653
AC
4834 if (offset + xfer > TYPE_LENGTH (type))
4835 xfer = TYPE_LENGTH (type) - offset;
4836 if (mips_debug)
4837 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4838 offset, xfer, regnum);
a4b8ebc8
AC
4839 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4840 BFD_ENDIAN_UNKNOWN, in, out, offset);
cb1d2653
AC
4841 }
4842 }
4843#endif
4844 else
4845 {
4846 /* A scalar extract each part but least-significant-byte
4847 justified. o32 thinks registers are 4 byte, regardless of
4848 the ISA. mips_stack_argsize controls this. */
4849 int offset;
4850 int regnum;
4851 for (offset = 0, regnum = V0_REGNUM;
4852 offset < TYPE_LENGTH (type);
4853 offset += mips_stack_argsize (), regnum++)
4854 {
4855 int xfer = mips_stack_argsize ();
4856 int pos = 0;
4857 if (offset + xfer > TYPE_LENGTH (type))
4858 xfer = TYPE_LENGTH (type) - offset;
4859 if (mips_debug)
4860 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4861 offset, xfer, regnum);
a4b8ebc8
AC
4862 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4863 TARGET_BYTE_ORDER, in, out, offset);
cb1d2653 4864 }
46cac009
AC
4865 }
4866}
4867
cb1d2653
AC
4868static void
4869mips_o32_extract_return_value (struct type *type,
4870 struct regcache *regcache,
ebba8386 4871 void *valbuf)
cb1d2653
AC
4872{
4873 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4874}
4875
4876static void
4877mips_o32_store_return_value (struct type *type, char *valbuf)
4878{
4879 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4880}
4881
4882/* N32/N44 ABI stuff. */
4883
46cac009 4884static void
88658117
AC
4885mips_n32n64_xfer_return_value (struct type *type,
4886 struct regcache *regcache,
4887 bfd_byte *in, const bfd_byte *out)
c906108c 4888{
88658117
AC
4889 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4890 if (TYPE_CODE (type) == TYPE_CODE_FLT
4891 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4892 {
88658117
AC
4893 /* A floating-point value belongs in the least significant part
4894 of FP0. */
4895 if (mips_debug)
4896 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
56cea623 4897 mips_xfer_register (regcache, NUM_REGS + mips_regnum (current_gdbarch)->fp0, TYPE_LENGTH (type),
88658117
AC
4898 TARGET_BYTE_ORDER, in, out, 0);
4899 }
4900 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4901 && TYPE_NFIELDS (type) <= 2
4902 && TYPE_NFIELDS (type) >= 1
4903 && ((TYPE_NFIELDS (type) == 1
4904 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4905 == TYPE_CODE_FLT))
4906 || (TYPE_NFIELDS (type) == 2
4907 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4908 == TYPE_CODE_FLT)
4909 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4910 == TYPE_CODE_FLT)))
4911 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4912 {
4913 /* A struct that contains one or two floats. Each value is part
4914 in the least significant part of their floating point
4915 register.. */
d9d9c31f 4916 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4917 int regnum;
4918 int field;
56cea623 4919 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
88658117
AC
4920 field < TYPE_NFIELDS (type);
4921 field++, regnum += 2)
4922 {
4923 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4924 / TARGET_CHAR_BIT);
4925 if (mips_debug)
4926 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
a4b8ebc8
AC
4927 mips_xfer_register (regcache, NUM_REGS + regnum,
4928 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
88658117
AC
4929 TARGET_BYTE_ORDER, in, out, offset);
4930 }
7a292a7a 4931 }
88658117
AC
4932 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4933 || TYPE_CODE (type) == TYPE_CODE_UNION)
4934 {
4935 /* A structure or union. Extract the left justified value,
4936 regardless of the byte order. I.e. DO NOT USE
4937 mips_xfer_lower. */
4938 int offset;
4939 int regnum;
4940 for (offset = 0, regnum = V0_REGNUM;
4941 offset < TYPE_LENGTH (type);
719ec221 4942 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 4943 {
719ec221 4944 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
4945 if (offset + xfer > TYPE_LENGTH (type))
4946 xfer = TYPE_LENGTH (type) - offset;
4947 if (mips_debug)
4948 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4949 offset, xfer, regnum);
a4b8ebc8
AC
4950 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4951 BFD_ENDIAN_UNKNOWN, in, out, offset);
88658117
AC
4952 }
4953 }
4954 else
4955 {
4956 /* A scalar extract each part but least-significant-byte
4957 justified. */
4958 int offset;
4959 int regnum;
4960 for (offset = 0, regnum = V0_REGNUM;
4961 offset < TYPE_LENGTH (type);
719ec221 4962 offset += register_size (current_gdbarch, regnum), regnum++)
88658117 4963 {
719ec221 4964 int xfer = register_size (current_gdbarch, regnum);
88658117
AC
4965 int pos = 0;
4966 if (offset + xfer > TYPE_LENGTH (type))
4967 xfer = TYPE_LENGTH (type) - offset;
4968 if (mips_debug)
4969 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4970 offset, xfer, regnum);
a4b8ebc8
AC
4971 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4972 TARGET_BYTE_ORDER, in, out, offset);
88658117
AC
4973 }
4974 }
4975}
4976
4977static void
4978mips_n32n64_extract_return_value (struct type *type,
4979 struct regcache *regcache,
ebba8386 4980 void *valbuf)
88658117
AC
4981{
4982 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4983}
4984
4985static void
4986mips_n32n64_store_return_value (struct type *type, char *valbuf)
4987{
4988 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4989}
4990
2f1488ce 4991static CORE_ADDR
6672060b 4992mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4993{
4994 /* FIXME: This will only work at random. The caller passes the
4995 struct_return address in V0, but it is not preserved. It may
4996 still be there, or this may be a random value. */
77d8f2b4
MS
4997 LONGEST val;
4998
4999 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 5000 return val;
2f1488ce
MS
5001}
5002
c906108c
SS
5003/* Exported procedure: Is PC in the signal trampoline code */
5004
102182a9
MS
5005static int
5006mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
5007{
5008 if (sigtramp_address == 0)
5009 fixup_sigtramp ();
5010 return (pc >= sigtramp_address && pc < sigtramp_end);
5011}
5012
a5ea2558
AC
5013/* Root of all "set mips "/"show mips " commands. This will eventually be
5014 used for all MIPS-specific commands. */
5015
a5ea2558 5016static void
acdb74a0 5017show_mips_command (char *args, int from_tty)
a5ea2558
AC
5018{
5019 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5020}
5021
a5ea2558 5022static void
acdb74a0 5023set_mips_command (char *args, int from_tty)
a5ea2558
AC
5024{
5025 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5026 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5027}
5028
c906108c
SS
5029/* Commands to show/set the MIPS FPU type. */
5030
c906108c 5031static void
acdb74a0 5032show_mipsfpu_command (char *args, int from_tty)
c906108c 5033{
c906108c
SS
5034 char *fpu;
5035 switch (MIPS_FPU_TYPE)
5036 {
5037 case MIPS_FPU_SINGLE:
5038 fpu = "single-precision";
5039 break;
5040 case MIPS_FPU_DOUBLE:
5041 fpu = "double-precision";
5042 break;
5043 case MIPS_FPU_NONE:
5044 fpu = "absent (none)";
5045 break;
93d56215
AC
5046 default:
5047 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5048 }
5049 if (mips_fpu_type_auto)
5050 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5051 fpu);
5052 else
5053 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5054 fpu);
5055}
5056
5057
c906108c 5058static void
acdb74a0 5059set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5060{
5061 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5062 show_mipsfpu_command (args, from_tty);
5063}
5064
c906108c 5065static void
acdb74a0 5066set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5067{
5068 mips_fpu_type = MIPS_FPU_SINGLE;
5069 mips_fpu_type_auto = 0;
9e364162 5070 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5071}
5072
c906108c 5073static void
acdb74a0 5074set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5075{
5076 mips_fpu_type = MIPS_FPU_DOUBLE;
5077 mips_fpu_type_auto = 0;
9e364162 5078 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5079}
5080
c906108c 5081static void
acdb74a0 5082set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5083{
5084 mips_fpu_type = MIPS_FPU_NONE;
5085 mips_fpu_type_auto = 0;
9e364162 5086 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5087}
5088
c906108c 5089static void
acdb74a0 5090set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5091{
5092 mips_fpu_type_auto = 1;
5093}
5094
c906108c 5095/* Attempt to identify the particular processor model by reading the
691c0433
AC
5096 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5097 the relevant processor still exists (it dates back to '94) and
5098 secondly this is not the way to do this. The processor type should
5099 be set by forcing an architecture change. */
c906108c 5100
691c0433
AC
5101void
5102deprecated_mips_set_processor_regs_hack (void)
c906108c 5103{
691c0433 5104 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5105 CORE_ADDR prid;
5106
5107 prid = read_register (PRID_REGNUM);
5108
5109 if ((prid & ~0xf) == 0x700)
691c0433 5110 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
5111}
5112
5113/* Just like reinit_frame_cache, but with the right arguments to be
5114 callable as an sfunc. */
5115
5116static void
acdb74a0
AC
5117reinit_frame_cache_sfunc (char *args, int from_tty,
5118 struct cmd_list_element *c)
c906108c
SS
5119{
5120 reinit_frame_cache ();
5121}
5122
a89aa300
AC
5123static int
5124gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 5125{
e5ab0dce 5126 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
5127 mips_extra_func_info_t proc_desc;
5128
5129 /* Search for the function containing this address. Set the low bit
5130 of the address when searching, in case we were given an even address
5131 that is the start of a 16-bit function. If we didn't do this,
5132 the search would fail because the symbol table says the function
5133 starts at an odd address, i.e. 1 byte past the given address. */
5134 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5135 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5136
5137 /* Make an attempt to determine if this is a 16-bit function. If
5138 the procedure descriptor exists and the address therein is odd,
5139 it's definitely a 16-bit function. Otherwise, we have to just
5140 guess that if the address passed in is odd, it's 16-bits. */
d31431ed
AC
5141 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5142 disassembler needs to be able to locally determine the ISA, and
5143 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5144 work. */
c906108c 5145 if (proc_desc)
d31431ed
AC
5146 {
5147 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5148 info->mach = bfd_mach_mips16;
5149 }
c906108c 5150 else
d31431ed
AC
5151 {
5152 if (pc_is_mips16 (memaddr))
5153 info->mach = bfd_mach_mips16;
5154 }
c906108c
SS
5155
5156 /* Round down the instruction address to the appropriate boundary. */
65c11066 5157 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5158
e5ab0dce
AC
5159 /* Set the disassembler options. */
5160 if (tdep->mips_abi == MIPS_ABI_N32
5161 || tdep->mips_abi == MIPS_ABI_N64)
5162 {
5163 /* Set up the disassembler info, so that we get the right
5164 register names from libopcodes. */
5165 if (tdep->mips_abi == MIPS_ABI_N32)
5166 info->disassembler_options = "gpr-names=n32";
5167 else
5168 info->disassembler_options = "gpr-names=64";
5169 info->flavour = bfd_target_elf_flavour;
5170 }
5171 else
5172 /* This string is not recognized explicitly by the disassembler,
5173 but it tells the disassembler to not try to guess the ABI from
5174 the bfd elf headers, such that, if the user overrides the ABI
5175 of a program linked as NewABI, the disassembly will follow the
5176 register naming conventions specified by the user. */
5177 info->disassembler_options = "gpr-names=32";
5178
c906108c 5179 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5180 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5181 return print_insn_big_mips (memaddr, info);
5182 else
5183 return print_insn_little_mips (memaddr, info);
5184}
5185
c906108c
SS
5186/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5187 counter value to determine whether a 16- or 32-bit breakpoint should be
5188 used. It returns a pointer to a string of bytes that encode a breakpoint
5189 instruction, stores the length of the string to *lenptr, and adjusts pc
5190 (if necessary) to point to the actual memory location where the
5191 breakpoint should be inserted. */
5192
f7ab6ec6 5193static const unsigned char *
acdb74a0 5194mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5195{
d7449b42 5196 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5197 {
5198 if (pc_is_mips16 (*pcptr))
5199 {
aaab4dba 5200 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5201 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5202 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5203 return mips16_big_breakpoint;
5204 }
5205 else
5206 {
aaab4dba
AC
5207 /* The IDT board uses an unusual breakpoint value, and
5208 sometimes gets confused when it sees the usual MIPS
5209 breakpoint instruction. */
5210 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5211 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5212 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5213
c5aa993b 5214 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5215
5216 if (strcmp (target_shortname, "mips") == 0)
5217 return idt_big_breakpoint;
5218 else if (strcmp (target_shortname, "ddb") == 0
5219 || strcmp (target_shortname, "pmon") == 0
5220 || strcmp (target_shortname, "lsi") == 0)
5221 return pmon_big_breakpoint;
5222 else
5223 return big_breakpoint;
5224 }
5225 }
5226 else
5227 {
5228 if (pc_is_mips16 (*pcptr))
5229 {
aaab4dba 5230 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5231 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5232 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5233 return mips16_little_breakpoint;
5234 }
5235 else
5236 {
aaab4dba
AC
5237 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5238 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5239 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5240
c5aa993b 5241 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5242
5243 if (strcmp (target_shortname, "mips") == 0)
5244 return idt_little_breakpoint;
5245 else if (strcmp (target_shortname, "ddb") == 0
5246 || strcmp (target_shortname, "pmon") == 0
5247 || strcmp (target_shortname, "lsi") == 0)
5248 return pmon_little_breakpoint;
5249 else
5250 return little_breakpoint;
5251 }
5252 }
5253}
5254
5255/* If PC is in a mips16 call or return stub, return the address of the target
5256 PC, which is either the callee or the caller. There are several
5257 cases which must be handled:
5258
5259 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5260 target PC is in $31 ($ra).
c906108c 5261 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5262 and the target PC is in $2.
c906108c 5263 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5264 before the jal instruction, this is effectively a call stub
5265 and the the target PC is in $2. Otherwise this is effectively
5266 a return stub and the target PC is in $18.
c906108c
SS
5267
5268 See the source code for the stubs in gcc/config/mips/mips16.S for
5269 gory details.
5270
5271 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5272 */
c906108c 5273
757a7cc6 5274static CORE_ADDR
acdb74a0 5275mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5276{
5277 char *name;
5278 CORE_ADDR start_addr;
5279
5280 /* Find the starting address and name of the function containing the PC. */
5281 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5282 return 0;
5283
5284 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5285 target PC is in $31 ($ra). */
5286 if (strcmp (name, "__mips16_ret_sf") == 0
5287 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5288 return read_signed_register (RA_REGNUM);
c906108c
SS
5289
5290 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5291 {
5292 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5293 and the target PC is in $2. */
5294 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5295 return read_signed_register (2);
c906108c
SS
5296
5297 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5298 before the jal instruction, this is effectively a call stub
5299 and the the target PC is in $2. Otherwise this is effectively
5300 a return stub and the target PC is in $18. */
c906108c
SS
5301 else if (name[19] == 's' || name[19] == 'd')
5302 {
5303 if (pc == start_addr)
5304 {
5305 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5306 stub. Such a stub for a function bar might have a name
5307 like __fn_stub_bar, and might look like this:
5308 mfc1 $4,$f13
5309 mfc1 $5,$f12
5310 mfc1 $6,$f15
5311 mfc1 $7,$f14
5312 la $1,bar (becomes a lui/addiu pair)
5313 jr $1
5314 So scan down to the lui/addi and extract the target
5315 address from those two instructions. */
c906108c 5316
6c997a34 5317 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5318 t_inst inst;
5319 int i;
5320
5321 /* See if the name of the target function is __fn_stub_*. */
5322 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5323 return target_pc;
5324 if (strncmp (name, "__fn_stub_", 10) != 0
5325 && strcmp (name, "etext") != 0
5326 && strcmp (name, "_etext") != 0)
5327 return target_pc;
5328
5329 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5330 The limit on the search is arbitrarily set to 20
5331 instructions. FIXME. */
c906108c
SS
5332 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5333 {
c5aa993b
JM
5334 inst = mips_fetch_instruction (target_pc);
5335 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5336 pc = (inst << 16) & 0xffff0000; /* high word */
5337 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5338 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5339 }
5340
5341 /* Couldn't find the lui/addui pair, so return stub address. */
5342 return target_pc;
5343 }
5344 else
5345 /* This is the 'return' part of a call stub. The return
5346 address is in $r18. */
6c997a34 5347 return read_signed_register (18);
c906108c
SS
5348 }
5349 }
c5aa993b 5350 return 0; /* not a stub */
c906108c
SS
5351}
5352
5353
5354/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5355 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5356
757a7cc6 5357static int
acdb74a0 5358mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5359{
5360 CORE_ADDR start_addr;
5361
5362 /* Find the starting address of the function containing the PC. If the
5363 caller didn't give us a name, look it up at the same time. */
5364 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5365 return 0;
5366
5367 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5368 {
5369 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5370 if (name[19] >= '0' && name[19] <= '9')
5371 return 1;
5372 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5373 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5374 else if (name[19] == 's' || name[19] == 'd')
5375 return pc == start_addr;
5376 }
5377
c5aa993b 5378 return 0; /* not a stub */
c906108c
SS
5379}
5380
5381
5382/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5383 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5384
e41b17f0 5385static int
acdb74a0 5386mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5387{
5388 CORE_ADDR start_addr;
5389
5390 /* Find the starting address of the function containing the PC. */
5391 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5392 return 0;
5393
5394 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5395 if (strcmp (name, "__mips16_ret_sf") == 0
5396 || strcmp (name, "__mips16_ret_df") == 0)
5397 return 1;
5398
5399 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5400 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5401 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5402 && (name[19] == 's' || name[19] == 'd')
5403 && pc != start_addr)
5404 return 1;
5405
c5aa993b 5406 return 0; /* not a stub */
c906108c
SS
5407}
5408
5409
5410/* Return non-zero if the PC is in a library helper function that should
5411 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5412
5413int
acdb74a0 5414mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5415{
5416 char *name;
5417
5418 /* Find the starting address and name of the function containing the PC. */
5419 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5420 return 0;
5421
5422 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5423 that we want to ignore. */
5424 return (strcmp (name, "__mips16_ret_sf") == 0
5425 || strcmp (name, "__mips16_ret_df") == 0);
5426}
5427
5428
47a8d4ba
AC
5429/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5430 the register stored on the stack (32) is different to its real raw
5431 size (64). The below ensures that registers are fetched from the
5432 stack using their ABI size and then stored into the RAW_BUFFER
5433 using their raw size.
5434
5435 The alternative to adding this function would be to add an ABI
5436 macro - REGISTER_STACK_SIZE(). */
5437
5438static void
acdb74a0 5439mips_get_saved_register (char *raw_buffer,
795e1e11 5440 int *optimizedp,
acdb74a0
AC
5441 CORE_ADDR *addrp,
5442 struct frame_info *frame,
5443 int regnum,
795e1e11 5444 enum lval_type *lvalp)
47a8d4ba 5445{
795e1e11
AC
5446 CORE_ADDR addrx;
5447 enum lval_type lvalx;
5448 int optimizedx;
6e51443a 5449 int realnumx;
47a8d4ba 5450
a4b8ebc8
AC
5451 /* Always a pseudo. */
5452 gdb_assert (regnum >= NUM_REGS);
47a8d4ba 5453
795e1e11
AC
5454 /* Make certain that all needed parameters are present. */
5455 if (addrp == NULL)
5456 addrp = &addrx;
5457 if (lvalp == NULL)
5458 lvalp = &lvalx;
5459 if (optimizedp == NULL)
5460 optimizedp = &optimizedx;
a4b8ebc8
AC
5461
5462 if ((regnum % NUM_REGS) == SP_REGNUM)
5463 /* The SP_REGNUM is special, its value is stored in saved_regs.
5464 In fact, it is so special that it can even only be fetched
5465 using a raw register number! Once this code as been converted
5466 to frame-unwind the problem goes away. */
5467 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5468 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5469 &realnumx, raw_buffer);
5470 else
5471 /* Get it from the next frame. */
5472 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5473 regnum, optimizedp, lvalp, addrp,
5474 &realnumx, raw_buffer);
47a8d4ba 5475}
2acceee2 5476
f7b9e9fc
AC
5477/* Immediately after a function call, return the saved pc.
5478 Can't always go through the frames for this because on some machines
5479 the new frame is not set up until the new function executes
5480 some instructions. */
5481
5482static CORE_ADDR
5483mips_saved_pc_after_call (struct frame_info *frame)
5484{
6c997a34 5485 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5486}
5487
5488
a4b8ebc8
AC
5489/* Convert a dbx stab register number (from `r' declaration) to a GDB
5490 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5491
5492static int
5493mips_stab_reg_to_regnum (int num)
5494{
a4b8ebc8 5495 int regnum;
2f38ef89 5496 if (num >= 0 && num < 32)
a4b8ebc8 5497 regnum = num;
2f38ef89 5498 else if (num >= 38 && num < 70)
56cea623 5499 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 5500 else if (num == 70)
56cea623 5501 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5502 else if (num == 71)
56cea623 5503 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5504 else
a4b8ebc8
AC
5505 /* This will hopefully (eventually) provoke a warning. Should
5506 we be calling complaint() here? */
5507 return NUM_REGS + NUM_PSEUDO_REGS;
5508 return NUM_REGS + regnum;
88c72b7d
AC
5509}
5510
2f38ef89 5511
a4b8ebc8
AC
5512/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5513 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
5514
5515static int
2f38ef89 5516mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5517{
a4b8ebc8 5518 int regnum;
2f38ef89 5519 if (num >= 0 && num < 32)
a4b8ebc8 5520 regnum = num;
2f38ef89 5521 else if (num >= 32 && num < 64)
56cea623 5522 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 5523 else if (num == 64)
56cea623 5524 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 5525 else if (num == 65)
56cea623 5526 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 5527 else
a4b8ebc8
AC
5528 /* This will hopefully (eventually) provoke a warning. Should we
5529 be calling complaint() here? */
5530 return NUM_REGS + NUM_PSEUDO_REGS;
5531 return NUM_REGS + regnum;
5532}
5533
5534static int
5535mips_register_sim_regno (int regnum)
5536{
5537 /* Only makes sense to supply raw registers. */
5538 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5539 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5540 decide if it is valid. Should instead define a standard sim/gdb
5541 register numbering scheme. */
5542 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5543 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5544 return regnum;
5545 else
5546 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5547}
5548
2f38ef89 5549
fc0c74b1
AC
5550/* Convert an integer into an address. By first converting the value
5551 into a pointer and then extracting it signed, the address is
5552 guarenteed to be correctly sign extended. */
5553
5554static CORE_ADDR
5555mips_integer_to_address (struct type *type, void *buf)
5556{
5557 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5558 LONGEST val = unpack_long (type, buf);
5559 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5560 return extract_signed_integer (tmp,
5561 TYPE_LENGTH (builtin_type_void_data_ptr));
5562}
5563
caaa3122
DJ
5564static void
5565mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5566{
5567 enum mips_abi *abip = (enum mips_abi *) obj;
5568 const char *name = bfd_get_section_name (abfd, sect);
5569
5570 if (*abip != MIPS_ABI_UNKNOWN)
5571 return;
5572
5573 if (strncmp (name, ".mdebug.", 8) != 0)
5574 return;
5575
5576 if (strcmp (name, ".mdebug.abi32") == 0)
5577 *abip = MIPS_ABI_O32;
5578 else if (strcmp (name, ".mdebug.abiN32") == 0)
5579 *abip = MIPS_ABI_N32;
62a49b2c 5580 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5581 *abip = MIPS_ABI_N64;
caaa3122
DJ
5582 else if (strcmp (name, ".mdebug.abiO64") == 0)
5583 *abip = MIPS_ABI_O64;
5584 else if (strcmp (name, ".mdebug.eabi32") == 0)
5585 *abip = MIPS_ABI_EABI32;
5586 else if (strcmp (name, ".mdebug.eabi64") == 0)
5587 *abip = MIPS_ABI_EABI64;
5588 else
5589 warning ("unsupported ABI %s.", name + 8);
5590}
5591
2e4ebe70
DJ
5592static enum mips_abi
5593global_mips_abi (void)
5594{
5595 int i;
5596
5597 for (i = 0; mips_abi_strings[i] != NULL; i++)
5598 if (mips_abi_strings[i] == mips_abi_string)
5599 return (enum mips_abi) i;
5600
5601 internal_error (__FILE__, __LINE__,
5602 "unknown ABI string");
5603}
5604
c2d11a7d 5605static struct gdbarch *
acdb74a0
AC
5606mips_gdbarch_init (struct gdbarch_info info,
5607 struct gdbarch_list *arches)
c2d11a7d 5608{
c2d11a7d
JM
5609 struct gdbarch *gdbarch;
5610 struct gdbarch_tdep *tdep;
5611 int elf_flags;
2e4ebe70 5612 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 5613 int num_regs;
c2d11a7d 5614
70f80edf
JT
5615 elf_flags = 0;
5616
5617 if (info.abfd)
5618 {
5619 /* First of all, extract the elf_flags, if available. */
5620 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5621 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5622 }
c2d11a7d 5623
102182a9 5624 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5625 switch ((elf_flags & EF_MIPS_ABI))
5626 {
5627 case E_MIPS_ABI_O32:
5628 mips_abi = MIPS_ABI_O32;
5629 break;
5630 case E_MIPS_ABI_O64:
5631 mips_abi = MIPS_ABI_O64;
5632 break;
5633 case E_MIPS_ABI_EABI32:
5634 mips_abi = MIPS_ABI_EABI32;
5635 break;
5636 case E_MIPS_ABI_EABI64:
4a7f7ba8 5637 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5638 break;
5639 default:
acdb74a0
AC
5640 if ((elf_flags & EF_MIPS_ABI2))
5641 mips_abi = MIPS_ABI_N32;
5642 else
5643 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5644 break;
5645 }
acdb74a0 5646
caaa3122
DJ
5647 /* GCC creates a pseudo-section whose name describes the ABI. */
5648 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5649 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5650
2e4ebe70
DJ
5651 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5652 Use the ABI from the last architecture if there is one. */
5653 if (info.abfd == NULL && arches != NULL)
5654 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5655
32a6503c 5656 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5657 if (mips_abi == MIPS_ABI_UNKNOWN
5658 && info.bfd_arch_info != NULL
5659 && info.bfd_arch_info->arch == bfd_arch_mips)
5660 {
5661 switch (info.bfd_arch_info->mach)
5662 {
5663 case bfd_mach_mips3900:
5664 mips_abi = MIPS_ABI_EABI32;
5665 break;
5666 case bfd_mach_mips4100:
5667 case bfd_mach_mips5000:
5668 mips_abi = MIPS_ABI_EABI64;
5669 break;
1d06468c
EZ
5670 case bfd_mach_mips8000:
5671 case bfd_mach_mips10000:
32a6503c
KB
5672 /* On Irix, ELF64 executables use the N64 ABI. The
5673 pseudo-sections which describe the ABI aren't present
5674 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5675 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5676 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5677 mips_abi = MIPS_ABI_N64;
5678 else
5679 mips_abi = MIPS_ABI_N32;
1d06468c 5680 break;
bf64bfd6
AC
5681 }
5682 }
2e4ebe70 5683
2e4ebe70
DJ
5684 if (mips_abi == MIPS_ABI_UNKNOWN)
5685 mips_abi = MIPS_ABI_O32;
5686
5687 /* Now that we have found what the ABI for this binary would be,
5688 check whether the user is overriding it. */
5689 found_abi = mips_abi;
5690 wanted_abi = global_mips_abi ();
5691 if (wanted_abi != MIPS_ABI_UNKNOWN)
5692 mips_abi = wanted_abi;
5693
4b9b3959
AC
5694 if (gdbarch_debug)
5695 {
5696 fprintf_unfiltered (gdb_stdlog,
9ace0497 5697 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5698 elf_flags);
4b9b3959
AC
5699 fprintf_unfiltered (gdb_stdlog,
5700 "mips_gdbarch_init: mips_abi = %d\n",
5701 mips_abi);
2e4ebe70
DJ
5702 fprintf_unfiltered (gdb_stdlog,
5703 "mips_gdbarch_init: found_mips_abi = %d\n",
5704 found_abi);
4b9b3959 5705 }
0dadbba0 5706
c2d11a7d
JM
5707 /* try to find a pre-existing architecture */
5708 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5709 arches != NULL;
5710 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5711 {
5712 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5713 using. */
9103eae0 5714 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5715 continue;
9103eae0 5716 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5717 continue;
719ec221
AC
5718 /* Need to be pedantic about which register virtual size is
5719 used. */
5720 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5721 != mips64_transfers_32bit_regs_p)
5722 continue;
4be87837 5723 return arches->gdbarch;
c2d11a7d
JM
5724 }
5725
102182a9 5726 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5727 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5728 gdbarch = gdbarch_alloc (&info, tdep);
5729 tdep->elf_flags = elf_flags;
719ec221 5730 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
c2d11a7d 5731
102182a9 5732 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5733 set_gdbarch_short_bit (gdbarch, 16);
5734 set_gdbarch_int_bit (gdbarch, 32);
5735 set_gdbarch_float_bit (gdbarch, 32);
5736 set_gdbarch_double_bit (gdbarch, 64);
5737 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5738 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5739 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5740 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
2e4ebe70 5741 tdep->found_abi = found_abi;
0dadbba0 5742 tdep->mips_abi = mips_abi;
1d06468c 5743
f7ab6ec6
MS
5744 set_gdbarch_elf_make_msymbol_special (gdbarch,
5745 mips_elf_make_msymbol_special);
5746
56cea623
AC
5747 /* Fill in the OS dependant register numbers. */
5748 {
5749 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5750 struct mips_regnum);
5751 tdep->regnum = regnum;
5752 if (info.osabi == GDB_OSABI_IRIX)
5753 {
5754 regnum->fp0 = 32;
5755 regnum->pc = 64;
5756 regnum->cause = 65;
5757 regnum->badvaddr = 66;
5758 regnum->hi = 67;
5759 regnum->lo = 68;
5760 regnum->fp_control_status = 69;
5761 regnum->fp_implementation_revision = 70;
5762 num_regs = 71;
5763 }
5764 else
5765 {
5766 regnum->lo = MIPS_EMBED_LO_REGNUM;
5767 regnum->hi = MIPS_EMBED_HI_REGNUM;
5768 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5769 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5770 regnum->pc = MIPS_EMBED_PC_REGNUM;
5771 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5772 regnum->fp_control_status = 70;
5773 regnum->fp_implementation_revision = 71;
5774 num_regs = 90;
5775 }
5776 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5777 replaced by read_pc? */
5778 set_gdbarch_pc_regnum (gdbarch, regnum->pc);
5779 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5780 set_gdbarch_num_regs (gdbarch, num_regs);
5781 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5782 }
fe29b929 5783
0dadbba0 5784 switch (mips_abi)
c2d11a7d 5785 {
0dadbba0 5786 case MIPS_ABI_O32:
25ab4790 5787 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
ebba8386 5788 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5789 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5790 tdep->mips_default_saved_regsize = 4;
0dadbba0 5791 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5792 tdep->mips_fp_register_double = 0;
acdb74a0 5793 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5794 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5795 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5796 set_gdbarch_long_bit (gdbarch, 32);
5797 set_gdbarch_ptr_bit (gdbarch, 32);
5798 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5799 set_gdbarch_deprecated_reg_struct_has_addr
5800 (gdbarch, mips_o32_reg_struct_has_addr);
cb811fe7 5801 set_gdbarch_use_struct_convention (gdbarch,
1fd35568 5802 always_use_struct_convention);
c2d11a7d 5803 break;
0dadbba0 5804 case MIPS_ABI_O64:
25ab4790 5805 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5806 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5807 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5808 tdep->mips_default_saved_regsize = 8;
0dadbba0 5809 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5810 tdep->mips_fp_register_double = 1;
acdb74a0 5811 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
56cea623 5812 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5813 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5814 set_gdbarch_long_bit (gdbarch, 32);
5815 set_gdbarch_ptr_bit (gdbarch, 32);
5816 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5817 set_gdbarch_deprecated_reg_struct_has_addr
5818 (gdbarch, mips_o32_reg_struct_has_addr);
b060cbea 5819 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
c2d11a7d 5820 break;
0dadbba0 5821 case MIPS_ABI_EABI32:
25ab4790 5822 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5823 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5824 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5825 tdep->mips_default_saved_regsize = 4;
0dadbba0 5826 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5827 tdep->mips_fp_register_double = 0;
acdb74a0 5828 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5829 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5830 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5831 set_gdbarch_long_bit (gdbarch, 32);
5832 set_gdbarch_ptr_bit (gdbarch, 32);
5833 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5834 set_gdbarch_deprecated_reg_struct_has_addr
5835 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5836 set_gdbarch_use_struct_convention (gdbarch,
5837 mips_eabi_use_struct_convention);
c2d11a7d 5838 break;
0dadbba0 5839 case MIPS_ABI_EABI64:
25ab4790 5840 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5841 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5842 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5843 tdep->mips_default_saved_regsize = 8;
0dadbba0 5844 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5845 tdep->mips_fp_register_double = 1;
acdb74a0 5846 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5847 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5848 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5849 set_gdbarch_long_bit (gdbarch, 64);
5850 set_gdbarch_ptr_bit (gdbarch, 64);
5851 set_gdbarch_long_long_bit (gdbarch, 64);
2110b94f
MK
5852 set_gdbarch_deprecated_reg_struct_has_addr
5853 (gdbarch, mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5854 set_gdbarch_use_struct_convention (gdbarch,
5855 mips_eabi_use_struct_convention);
c2d11a7d 5856 break;
0dadbba0 5857 case MIPS_ABI_N32:
25ab4790 5858 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5859 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5860 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5861 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5862 tdep->mips_default_stack_argsize = 8;
5863 tdep->mips_fp_register_double = 1;
acdb74a0 5864 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5865 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5866 tdep->default_mask_address_p = 0;
0dadbba0
AC
5867 set_gdbarch_long_bit (gdbarch, 32);
5868 set_gdbarch_ptr_bit (gdbarch, 32);
5869 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5870 set_gdbarch_use_struct_convention (gdbarch,
5871 mips_n32n64_use_struct_convention);
2110b94f
MK
5872 set_gdbarch_deprecated_reg_struct_has_addr
5873 (gdbarch, mips_n32n64_reg_struct_has_addr);
28d169de
KB
5874 break;
5875 case MIPS_ABI_N64:
25ab4790 5876 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5877 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5878 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5879 tdep->mips_default_saved_regsize = 8;
5880 tdep->mips_default_stack_argsize = 8;
5881 tdep->mips_fp_register_double = 1;
5882 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
56cea623 5883 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5884 tdep->default_mask_address_p = 0;
5885 set_gdbarch_long_bit (gdbarch, 64);
5886 set_gdbarch_ptr_bit (gdbarch, 64);
5887 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5888 set_gdbarch_use_struct_convention (gdbarch,
5889 mips_n32n64_use_struct_convention);
2110b94f
MK
5890 set_gdbarch_deprecated_reg_struct_has_addr
5891 (gdbarch, mips_n32n64_reg_struct_has_addr);
0dadbba0 5892 break;
c2d11a7d 5893 default:
2e4ebe70
DJ
5894 internal_error (__FILE__, __LINE__,
5895 "unknown ABI in switch");
c2d11a7d
JM
5896 }
5897
a5ea2558
AC
5898 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5899 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5900 comment:
5901
5902 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5903 flag in object files because to do so would make it impossible to
102182a9 5904 link with libraries compiled without "-gp32". This is
a5ea2558 5905 unnecessarily restrictive.
361d1df0 5906
a5ea2558
AC
5907 We could solve this problem by adding "-gp32" multilibs to gcc,
5908 but to set this flag before gcc is built with such multilibs will
5909 break too many systems.''
5910
5911 But even more unhelpfully, the default linker output target for
5912 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5913 for 64-bit programs - you need to change the ABI to change this,
102182a9 5914 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5915 this flag to detect 32-bit mode would do the wrong thing given
5916 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5917 as 32-bit programs by default. */
a5ea2558 5918
c2d11a7d
JM
5919 /* enable/disable the MIPS FPU */
5920 if (!mips_fpu_type_auto)
5921 tdep->mips_fpu_type = mips_fpu_type;
5922 else if (info.bfd_arch_info != NULL
5923 && info.bfd_arch_info->arch == bfd_arch_mips)
5924 switch (info.bfd_arch_info->mach)
5925 {
b0069a17 5926 case bfd_mach_mips3900:
c2d11a7d 5927 case bfd_mach_mips4100:
ed9a39eb 5928 case bfd_mach_mips4111:
c2d11a7d
JM
5929 tdep->mips_fpu_type = MIPS_FPU_NONE;
5930 break;
bf64bfd6
AC
5931 case bfd_mach_mips4650:
5932 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5933 break;
c2d11a7d
JM
5934 default:
5935 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5936 break;
5937 }
5938 else
5939 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5940
691c0433 5941 /* MIPS version of register names. */
c2d11a7d 5942 set_gdbarch_register_name (gdbarch, mips_register_name);
691c0433
AC
5943 if (info.osabi == GDB_OSABI_IRIX)
5944 tdep->mips_processor_reg_names = mips_irix_reg_names;
5945 else if (info.bfd_arch_info != NULL && info.bfd_arch_info->mach == bfd_mach_mips3900)
5946 tdep->mips_processor_reg_names = mips_tx39_reg_names;
5947 else
5948 tdep->mips_processor_reg_names = mips_generic_reg_names;
6c997a34 5949 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5950 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 5951 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5952 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5953
102182a9
MS
5954 /* Add/remove bits from an address. The MIPS needs be careful to
5955 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5956 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5957
10312cc4 5958 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5959 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5960 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
10312cc4 5961
102182a9 5962 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5963 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
5964 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5965 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5966 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5967 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5968
c2d11a7d 5969 /* Initialize a frame */
e0f7ec59 5970 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 5971 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
5972
5973 /* MIPS version of CALL_DUMMY */
5974
9710e734
AC
5975 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5976 replaced by a command, and all targets will default to on stack
5977 (regardless of the stack's execute status). */
5978 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
749b82f6 5979 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 5980 set_gdbarch_frame_align (gdbarch, mips_frame_align);
a59fe496 5981 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
781a750d
AC
5982 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
5983 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
5984 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
d05285fa 5985
618ce49f 5986 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
5987 set_gdbarch_frameless_function_invocation (gdbarch,
5988 generic_frameless_function_invocation_not);
8bedc050 5989 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
5990 set_gdbarch_frame_args_skip (gdbarch, 0);
5991
129c1cd6 5992 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5993
f7b9e9fc
AC
5994 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5995 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5996 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5997
5998 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 5999 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 6000
fc0c74b1
AC
6001 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6002 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6003 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6004
102182a9
MS
6005 set_gdbarch_function_start_offset (gdbarch, 0);
6006
a4b8ebc8 6007 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 6008
e11c53d2 6009 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 6010 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6011
e5ab0dce
AC
6012 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6013
3a3bc038
AC
6014 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6015 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6016 need to all be folded into the target vector. Since they are
6017 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6018 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6019 is sitting on? */
6020 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6021
70f80edf 6022 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6023 gdbarch_init_osabi (info, gdbarch);
70f80edf 6024
2f1488ce
MS
6025 set_gdbarch_extract_struct_value_address (gdbarch,
6026 mips_extract_struct_value_address);
757a7cc6
MS
6027
6028 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6029
6030 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6031 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6032
4b9b3959
AC
6033 return gdbarch;
6034}
6035
2e4ebe70
DJ
6036static void
6037mips_abi_update (char *ignore_args, int from_tty,
6038 struct cmd_list_element *c)
6039{
6040 struct gdbarch_info info;
6041
6042 /* Force the architecture to update, and (if it's a MIPS architecture)
6043 mips_gdbarch_init will take care of the rest. */
6044 gdbarch_info_init (&info);
6045 gdbarch_update_p (info);
6046}
6047
ad188201
KB
6048/* Print out which MIPS ABI is in use. */
6049
6050static void
6051show_mips_abi (char *ignore_args, int from_tty)
6052{
6053 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6054 printf_filtered (
6055 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6056 else
6057 {
6058 enum mips_abi global_abi = global_mips_abi ();
6059 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6060 const char *actual_abi_str = mips_abi_strings[actual_abi];
6061
6062 if (global_abi == MIPS_ABI_UNKNOWN)
6063 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6064 actual_abi_str);
6065 else if (global_abi == actual_abi)
6066 printf_filtered (
6067 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6068 actual_abi_str);
6069 else
6070 {
6071 /* Probably shouldn't happen... */
6072 printf_filtered (
6073 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6074 actual_abi_str,
6075 mips_abi_strings[global_abi]);
6076 }
6077 }
6078}
6079
4b9b3959
AC
6080static void
6081mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6082{
6083 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6084 if (tdep != NULL)
c2d11a7d 6085 {
acdb74a0
AC
6086 int ef_mips_arch;
6087 int ef_mips_32bitmode;
6088 /* determine the ISA */
6089 switch (tdep->elf_flags & EF_MIPS_ARCH)
6090 {
6091 case E_MIPS_ARCH_1:
6092 ef_mips_arch = 1;
6093 break;
6094 case E_MIPS_ARCH_2:
6095 ef_mips_arch = 2;
6096 break;
6097 case E_MIPS_ARCH_3:
6098 ef_mips_arch = 3;
6099 break;
6100 case E_MIPS_ARCH_4:
93d56215 6101 ef_mips_arch = 4;
acdb74a0
AC
6102 break;
6103 default:
93d56215 6104 ef_mips_arch = 0;
acdb74a0
AC
6105 break;
6106 }
6107 /* determine the size of a pointer */
6108 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6109 fprintf_unfiltered (file,
6110 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6111 tdep->elf_flags);
4b9b3959 6112 fprintf_unfiltered (file,
acdb74a0
AC
6113 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6114 ef_mips_32bitmode);
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: ef_mips_arch = %d\n",
6117 ef_mips_arch);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6120 tdep->mips_abi,
2e4ebe70 6121 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6122 fprintf_unfiltered (file,
6123 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6124 mips_mask_address_p (),
6125 tdep->default_mask_address_p);
c2d11a7d 6126 }
4b9b3959
AC
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6129 FP_REGISTER_DOUBLE);
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6132 MIPS_DEFAULT_FPU_TYPE,
6133 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6134 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6135 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6136 : "???"));
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: MIPS_EABI = %d\n",
6139 MIPS_EABI);
4b9b3959
AC
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6142 MIPS_FPU_TYPE,
6143 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6144 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6145 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6146 : "???"));
6147 fprintf_unfiltered (file,
6148 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6149 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6150 fprintf_unfiltered (file,
6151 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6152 FP_REGISTER_DOUBLE);
4b9b3959
AC
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6155 MIPS_DEFAULT_STACK_ARGSIZE);
6156 fprintf_unfiltered (file,
6157 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6158 MIPS_STACK_ARGSIZE);
2475bac3
AC
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: A0_REGNUM = %d\n",
6161 A0_REGNUM);
6162 fprintf_unfiltered (file,
6163 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6164 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6165 fprintf_unfiltered (file,
6166 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6167 XSTRING (ATTACH_DETACH));
2475bac3
AC
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6170 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6173 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6176 FIRST_EMBED_REGNUM);
2475bac3
AC
6177 fprintf_unfiltered (file,
6178 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6179 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6182 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6185 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6188 LAST_EMBED_REGNUM);
2475bac3
AC
6189#ifdef MACHINE_CPROC_FP_OFFSET
6190 fprintf_unfiltered (file,
6191 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6192 MACHINE_CPROC_FP_OFFSET);
6193#endif
6194#ifdef MACHINE_CPROC_PC_OFFSET
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6197 MACHINE_CPROC_PC_OFFSET);
6198#endif
6199#ifdef MACHINE_CPROC_SP_OFFSET
6200 fprintf_unfiltered (file,
6201 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6202 MACHINE_CPROC_SP_OFFSET);
6203#endif
2475bac3
AC
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6206 MIPS16_INSTLEN);
2475bac3
AC
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6213 MIPS_INSTLEN);
6214 fprintf_unfiltered (file,
acdb74a0
AC
6215 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6216 MIPS_LAST_ARG_REGNUM,
6217 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6220 MIPS_NUMREGS);
2475bac3
AC
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6223 MIPS_SAVED_REGSIZE);
2475bac3
AC
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: PRID_REGNUM = %d\n",
6226 PRID_REGNUM);
2475bac3
AC
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: PROC_PC_REG = function?\n");
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PS_REGNUM = %d\n",
6253 PS_REGNUM);
2475bac3
AC
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: RA_REGNUM = %d\n",
6256 RA_REGNUM);
2475bac3
AC
6257#ifdef SAVED_BYTES
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: SAVED_BYTES = %d\n",
6260 SAVED_BYTES);
6261#endif
6262#ifdef SAVED_FP
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: SAVED_FP = %d\n",
6265 SAVED_FP);
6266#endif
6267#ifdef SAVED_PC
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: SAVED_PC = %d\n",
6270 SAVED_PC);
6271#endif
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6274 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6279 SIGFRAME_BASE);
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6282 SIGFRAME_FPREGSAVE_OFF);
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6285 SIGFRAME_PC_OFF);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6288 SIGFRAME_REGSAVE_OFF);
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6291 SIGFRAME_REG_SIZE);
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6294 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6297 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6298 fprintf_unfiltered (file,
b0ed3589
AC
6299 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6300 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6303 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6304#ifdef STACK_END_ADDR
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6307 STACK_END_ADDR);
6308#endif
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6311 XSTRING (STEP_SKIPS_DELAY (PC)));
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6314 STEP_SKIPS_DELAY_P);
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6317 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: T9_REGNUM = %d\n",
6320 T9_REGNUM);
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6325 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6328 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6329#ifdef TRACE_CLEAR
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6332 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6333#endif
6334#ifdef TRACE_FLAVOR
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6337 TRACE_FLAVOR);
6338#endif
6339#ifdef TRACE_FLAVOR_SIZE
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6342 TRACE_FLAVOR_SIZE);
6343#endif
6344#ifdef TRACE_SET
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: TRACE_SET # %s\n",
6347 XSTRING (TRACE_SET (X,STATE)));
6348#endif
2475bac3
AC
6349#ifdef UNUSED_REGNUM
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6352 UNUSED_REGNUM);
6353#endif
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: V0_REGNUM = %d\n",
6356 V0_REGNUM);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6359 (long) VM_MIN_ADDRESS);
2475bac3
AC
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6362 ZERO_REGNUM);
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6365 _PROC_MAGIC_);
c2d11a7d
JM
6366}
6367
a78f21af
AC
6368extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6369
c906108c 6370void
acdb74a0 6371_initialize_mips_tdep (void)
c906108c
SS
6372{
6373 static struct cmd_list_element *mipsfpulist = NULL;
6374 struct cmd_list_element *c;
6375
2e4ebe70
DJ
6376 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6377 if (MIPS_ABI_LAST + 1
6378 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6379 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6380
4b9b3959 6381 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 6382
a5ea2558
AC
6383 /* Add root prefix command for all "set mips"/"show mips" commands */
6384 add_prefix_cmd ("mips", no_class, set_mips_command,
6385 "Various MIPS specific commands.",
6386 &setmipscmdlist, "set mips ", 0, &setlist);
6387
6388 add_prefix_cmd ("mips", no_class, show_mips_command,
6389 "Various MIPS specific commands.",
6390 &showmipscmdlist, "show mips ", 0, &showlist);
6391
6392 /* Allow the user to override the saved register size. */
6393 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6394 class_obscure,
6395 size_enums,
6396 &mips_saved_regsize_string, "\
a5ea2558
AC
6397Set size of general purpose registers saved on the stack.\n\
6398This option can be set to one of:\n\
6399 32 - Force GDB to treat saved GP registers as 32-bit\n\
6400 64 - Force GDB to treat saved GP registers as 64-bit\n\
6401 auto - Allow GDB to use the target's default setting or autodetect the\n\
6402 saved GP register size from information contained in the executable.\n\
6403 (default: auto)",
1ed2a135 6404 &setmipscmdlist),
a5ea2558
AC
6405 &showmipscmdlist);
6406
d929b26f
AC
6407 /* Allow the user to override the argument stack size. */
6408 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6409 class_obscure,
6410 size_enums,
1ed2a135 6411 &mips_stack_argsize_string, "\
d929b26f
AC
6412Set the amount of stack space reserved for each argument.\n\
6413This option can be set to one of:\n\
6414 32 - Force GDB to allocate 32-bit chunks per argument\n\
6415 64 - Force GDB to allocate 64-bit chunks per argument\n\
6416 auto - Allow GDB to determine the correct setting from the current\n\
6417 target and executable (default)",
6418 &setmipscmdlist),
6419 &showmipscmdlist);
6420
2e4ebe70
DJ
6421 /* Allow the user to override the ABI. */
6422 c = add_set_enum_cmd
6423 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6424 "Set the ABI used by this program.\n"
6425 "This option can be set to one of:\n"
6426 " auto - the default ABI associated with the current binary\n"
6427 " o32\n"
6428 " o64\n"
6429 " n32\n"
f3a7b3a5 6430 " n64\n"
2e4ebe70
DJ
6431 " eabi32\n"
6432 " eabi64",
6433 &setmipscmdlist);
2e4ebe70 6434 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6435 add_cmd ("abi", class_obscure, show_mips_abi,
6436 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6437
c906108c
SS
6438 /* Let the user turn off floating point and set the fence post for
6439 heuristic_proc_start. */
6440
6441 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6442 "Set use of MIPS floating-point coprocessor.",
6443 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6444 add_cmd ("single", class_support, set_mipsfpu_single_command,
6445 "Select single-precision MIPS floating-point coprocessor.",
6446 &mipsfpulist);
6447 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6448 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6449 &mipsfpulist);
6450 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6451 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6452 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6453 add_cmd ("none", class_support, set_mipsfpu_none_command,
6454 "Select no MIPS floating-point coprocessor.",
6455 &mipsfpulist);
6456 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6457 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6458 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6459 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6460 "Select MIPS floating-point coprocessor automatically.",
6461 &mipsfpulist);
6462 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6463 "Show current use of MIPS floating-point coprocessor target.",
6464 &showlist);
6465
c906108c
SS
6466 /* We really would like to have both "0" and "unlimited" work, but
6467 command.c doesn't deal with that. So make it a var_zinteger
6468 because the user can always use "999999" or some such for unlimited. */
6469 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6470 (char *) &heuristic_fence_post,
6471 "\
6472Set the distance searched for the start of a function.\n\
6473If you are debugging a stripped executable, GDB needs to search through the\n\
6474program for the start of a function. This command sets the distance of the\n\
6475search. The only need to set it is when debugging a stripped executable.",
6476 &setlist);
6477 /* We need to throw away the frame cache when we set this, since it
6478 might change our ability to get backtraces. */
9f60d481 6479 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6480 add_show_from_set (c, &showlist);
6481
6482 /* Allow the user to control whether the upper bits of 64-bit
6483 addresses should be zeroed. */
e9e68a56
AC
6484 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6485Set zeroing of upper 32 bits of 64-bit addresses.\n\
6486Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6487allow GDB to determine the correct value.\n", "\
6488Show zeroing of upper 32 bits of 64-bit addresses.",
6489 NULL, show_mask_address,
6490 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6491
6492 /* Allow the user to control the size of 32 bit registers within the
6493 raw remote packet. */
719ec221
AC
6494 add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6495 var_boolean, &mips64_transfers_32bit_regs_p, "\
6496Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6497Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6498that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
649964 bits for others. Use \"off\" to disable compatibility mode", "\
6500Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
43e526b9
JM
6501Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6502that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
650364 bits for others. Use \"off\" to disable compatibility mode",
719ec221
AC
6504 set_mips64_transfers_32bit_regs, NULL,
6505 &setlist, &showlist);
9ace0497
AC
6506
6507 /* Debug this files internals. */
6508 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6509 &mips_debug, "Set mips debugging.\n\
6510When non-zero, mips specific debugging is enabled.", &setdebuglist),
6511 &showdebuglist);
c906108c 6512}
This page took 0.801342 seconds and 4 git commands to generate.