* mips-tdep.c (mips_next_pc): Use is_mips16_addr() instead of
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
197e01b6
EZ
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
edfae063
AC
53#include "frame-unwind.h"
54#include "frame-base.h"
55#include "trad-frame.h"
7d9b040b 56#include "infcall.h"
fed7ba43 57#include "floatformat.h"
29709017
DJ
58#include "remote.h"
59#include "target-descriptions.h"
2bd0c3d7 60#include "dwarf2-frame.h"
f8b73d13 61#include "user-regs.h"
c906108c 62
8d5f9dcb
DJ
63static const struct objfile_data *mips_pdr_data;
64
5bbcb741 65static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 66
24e05951 67/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
68/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
69#define ST0_FR (1 << 26)
70
b0069a17
AC
71/* The sizes of floating point registers. */
72
73enum
74{
75 MIPS_FPU_SINGLE_REGSIZE = 4,
76 MIPS_FPU_DOUBLE_REGSIZE = 8
77};
78
1a69e1e4
DJ
79enum
80{
81 MIPS32_REGSIZE = 4,
82 MIPS64_REGSIZE = 8
83};
0dadbba0 84
2e4ebe70
DJ
85static const char *mips_abi_string;
86
87static const char *mips_abi_strings[] = {
88 "auto",
89 "n32",
90 "o32",
28d169de 91 "n64",
2e4ebe70
DJ
92 "o64",
93 "eabi32",
94 "eabi64",
95 NULL
96};
97
f8b73d13
DJ
98/* The standard register names, and all the valid aliases for them. */
99struct register_alias
100{
101 const char *name;
102 int regnum;
103};
104
105/* Aliases for o32 and most other ABIs. */
106const struct register_alias mips_o32_aliases[] = {
107 { "ta0", 12 },
108 { "ta1", 13 },
109 { "ta2", 14 },
110 { "ta3", 15 }
111};
112
113/* Aliases for n32 and n64. */
114const struct register_alias mips_n32_n64_aliases[] = {
115 { "ta0", 8 },
116 { "ta1", 9 },
117 { "ta2", 10 },
118 { "ta3", 11 }
119};
120
121/* Aliases for ABI-independent registers. */
122const struct register_alias mips_register_aliases[] = {
123 /* The architecture manuals specify these ABI-independent names for
124 the GPRs. */
125#define R(n) { "r" #n, n }
126 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
127 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
128 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
129 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
130#undef R
131
132 /* k0 and k1 are sometimes called these instead (for "kernel
133 temp"). */
134 { "kt0", 26 },
135 { "kt1", 27 },
136
137 /* This is the traditional GDB name for the CP0 status register. */
138 { "sr", MIPS_PS_REGNUM },
139
140 /* This is the traditional GDB name for the CP0 BadVAddr register. */
141 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
142
143 /* This is the traditional GDB name for the FCSR. */
144 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
145};
146
7a292a7a 147/* Some MIPS boards don't support floating point while others only
ceae6e75 148 support single-precision floating-point operations. */
c906108c
SS
149
150enum mips_fpu_type
6d82d43b
AC
151{
152 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
153 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
154 MIPS_FPU_NONE /* No floating point. */
155};
c906108c
SS
156
157#ifndef MIPS_DEFAULT_FPU_TYPE
158#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
159#endif
160static int mips_fpu_type_auto = 1;
161static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 162
9ace0497 163static int mips_debug = 0;
7a292a7a 164
29709017
DJ
165/* Properties (for struct target_desc) describing the g/G packet
166 layout. */
167#define PROPERTY_GP32 "internal: transfers-32bit-registers"
168#define PROPERTY_GP64 "internal: transfers-64bit-registers"
169
c2d11a7d
JM
170/* MIPS specific per-architecture information */
171struct gdbarch_tdep
6d82d43b
AC
172{
173 /* from the elf header */
174 int elf_flags;
175
176 /* mips options */
177 enum mips_abi mips_abi;
178 enum mips_abi found_abi;
179 enum mips_fpu_type mips_fpu_type;
180 int mips_last_arg_regnum;
181 int mips_last_fp_arg_regnum;
6d82d43b
AC
182 int default_mask_address_p;
183 /* Is the target using 64-bit raw integer registers but only
184 storing a left-aligned 32-bit value in each? */
185 int mips64_transfers_32bit_regs_p;
186 /* Indexes for various registers. IRIX and embedded have
187 different values. This contains the "public" fields. Don't
188 add any that do not need to be public. */
189 const struct mips_regnum *regnum;
190 /* Register names table for the current register set. */
191 const char **mips_processor_reg_names;
29709017
DJ
192
193 /* The size of register data available from the target, if known.
194 This doesn't quite obsolete the manual
195 mips64_transfers_32bit_regs_p, since that is documented to force
196 left alignment even for big endian (very strange). */
197 int register_size_valid_p;
198 int register_size;
6d82d43b 199};
c2d11a7d 200
fed7ba43
JB
201static int
202n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 203 const void *from)
fed7ba43
JB
204{
205 return 1;
206}
207
208/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
209 They are implemented as a pair of 64bit doubles where the high
210 part holds the result of the operation rounded to double, and
211 the low double holds the difference between the exact result and
212 the rounded result. So "high" + "low" contains the result with
213 added precision. Unfortunately, the floatformat structure used
214 by GDB is not powerful enough to describe this format. As a temporary
215 measure, we define a 128bit floatformat that only uses the high part.
216 We lose a bit of precision but that's probably the best we can do
217 for now with the current infrastructure. */
218
219static const struct floatformat floatformat_n32n64_long_double_big =
220{
221 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
222 floatformat_intbit_no,
8da61cc4 223 "floatformat_n32n64_long_double_big",
fed7ba43
JB
224 n32n64_floatformat_always_valid
225};
226
8da61cc4
DJ
227static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
228{
229 &floatformat_n32n64_long_double_big,
230 &floatformat_n32n64_long_double_big
231};
232
56cea623
AC
233const struct mips_regnum *
234mips_regnum (struct gdbarch *gdbarch)
235{
236 return gdbarch_tdep (gdbarch)->regnum;
237}
238
239static int
240mips_fpa0_regnum (struct gdbarch *gdbarch)
241{
242 return mips_regnum (gdbarch)->fp0 + 12;
243}
244
0dadbba0 245#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 246 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 247
c2d11a7d 248#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 249
c2d11a7d 250#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 251
c2d11a7d 252#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 253
95404a3e
AC
254/* MIPS16 function addresses are odd (bit 0 is set). Here are some
255 functions to test, set, or clear bit 0 of addresses. */
256
257static CORE_ADDR
258is_mips16_addr (CORE_ADDR addr)
259{
260 return ((addr) & 1);
261}
262
95404a3e
AC
263static CORE_ADDR
264unmake_mips16_addr (CORE_ADDR addr)
265{
5b652102 266 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
267}
268
d1973055
KB
269/* Return the MIPS ABI associated with GDBARCH. */
270enum mips_abi
271mips_abi (struct gdbarch *gdbarch)
272{
273 return gdbarch_tdep (gdbarch)->mips_abi;
274}
275
4246e332 276int
1b13c4f6 277mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 278{
29709017
DJ
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 /* If we know how big the registers are, use that size. */
282 if (tdep->register_size_valid_p)
283 return tdep->register_size;
284
285 /* Fall back to the previous behavior. */
4246e332
AC
286 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
287 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
288}
289
480d3dd2
AC
290/* Return the currently configured (or set) saved register size. */
291
e6bc2e8a 292unsigned int
13326b4e 293mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 294{
1a69e1e4
DJ
295 switch (mips_abi (gdbarch))
296 {
297 case MIPS_ABI_EABI32:
298 case MIPS_ABI_O32:
299 return 4;
300 case MIPS_ABI_N32:
301 case MIPS_ABI_N64:
302 case MIPS_ABI_O64:
303 case MIPS_ABI_EABI64:
304 return 8;
305 case MIPS_ABI_UNKNOWN:
306 case MIPS_ABI_LAST:
307 default:
308 internal_error (__FILE__, __LINE__, _("bad switch"));
309 }
d929b26f
AC
310}
311
71b8ef93 312/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 313 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 314 "info" field is used for this purpose.
5a89d8aa 315
95f1da47 316 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
5a89d8aa
MS
317 i.e. refers to a 16-bit function, and sets a "special" bit in a
318 minimal symbol to mark it as a 16-bit function
319
f594e5e9 320 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 321
5a89d8aa 322static void
6d82d43b
AC
323mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
324{
325 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
326 {
327 MSYMBOL_INFO (msym) = (char *)
328 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
329 SYMBOL_VALUE_ADDRESS (msym) |= 1;
330 }
5a89d8aa
MS
331}
332
71b8ef93
MS
333static int
334msymbol_is_special (struct minimal_symbol *msym)
335{
336 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
337}
338
88658117
AC
339/* XFER a value from the big/little/left end of the register.
340 Depending on the size of the value it might occupy the entire
341 register or just part of it. Make an allowance for this, aligning
342 things accordingly. */
343
344static void
345mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
346 enum bfd_endian endian, gdb_byte *in,
347 const gdb_byte *out, int buf_offset)
88658117 348{
88658117 349 int reg_offset = 0;
f57d151a 350 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
cb1d2653
AC
351 /* Need to transfer the left or right part of the register, based on
352 the targets byte order. */
88658117
AC
353 switch (endian)
354 {
355 case BFD_ENDIAN_BIG:
719ec221 356 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
357 break;
358 case BFD_ENDIAN_LITTLE:
359 reg_offset = 0;
360 break;
6d82d43b 361 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
362 reg_offset = 0;
363 break;
364 default:
e2e0b3e5 365 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
366 }
367 if (mips_debug)
cb1d2653
AC
368 fprintf_unfiltered (gdb_stderr,
369 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
370 reg_num, reg_offset, buf_offset, length);
88658117
AC
371 if (mips_debug && out != NULL)
372 {
373 int i;
cb1d2653 374 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 375 for (i = 0; i < length; i++)
cb1d2653 376 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
377 }
378 if (in != NULL)
6d82d43b
AC
379 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
380 in + buf_offset);
88658117 381 if (out != NULL)
6d82d43b
AC
382 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
383 out + buf_offset);
88658117
AC
384 if (mips_debug && in != NULL)
385 {
386 int i;
cb1d2653 387 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 388 for (i = 0; i < length; i++)
cb1d2653 389 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
390 }
391 if (mips_debug)
392 fprintf_unfiltered (gdb_stdlog, "\n");
393}
394
dd824b04
DJ
395/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
396 compatiblity mode. A return value of 1 means that we have
397 physical 64-bit registers, but should treat them as 32-bit registers. */
398
399static int
9c9acae0 400mips2_fp_compat (struct frame_info *frame)
dd824b04
DJ
401{
402 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
403 meaningful. */
6d82d43b
AC
404 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
405 4)
dd824b04
DJ
406 return 0;
407
408#if 0
409 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
410 in all the places we deal with FP registers. PR gdb/413. */
411 /* Otherwise check the FR bit in the status register - it controls
412 the FP compatiblity mode. If it is clear we are in compatibility
413 mode. */
9c9acae0 414 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
415 return 1;
416#endif
361d1df0 417
dd824b04
DJ
418 return 0;
419}
420
7a292a7a 421#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 422
a14ed312 423static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 424
a14ed312 425static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 426
67b2c998
DJ
427static struct type *mips_float_register_type (void);
428static struct type *mips_double_register_type (void);
429
acdb74a0
AC
430/* The list of available "set mips " and "show mips " commands */
431
432static struct cmd_list_element *setmipscmdlist = NULL;
433static struct cmd_list_element *showmipscmdlist = NULL;
434
5e2e9765
KB
435/* Integer registers 0 thru 31 are handled explicitly by
436 mips_register_name(). Processor specific registers 32 and above
8a9fc081 437 are listed in the following tables. */
691c0433 438
6d82d43b
AC
439enum
440{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
441
442/* Generic MIPS. */
443
444static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
445 "sr", "lo", "hi", "bad", "cause", "pc",
446 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
447 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
448 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
449 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
450 "fsr", "fir", "" /*"fp" */ , "",
451 "", "", "", "", "", "", "", "",
452 "", "", "", "", "", "", "", "",
691c0433
AC
453};
454
455/* Names of IDT R3041 registers. */
456
457static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
458 "sr", "lo", "hi", "bad", "cause", "pc",
459 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
460 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
461 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
462 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
463 "fsr", "fir", "", /*"fp" */ "",
464 "", "", "bus", "ccfg", "", "", "", "",
465 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
466};
467
468/* Names of tx39 registers. */
469
470static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
471 "sr", "lo", "hi", "bad", "cause", "pc",
472 "", "", "", "", "", "", "", "",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "",
477 "", "", "", "", "", "", "", "",
478 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
479};
480
481/* Names of IRIX registers. */
482static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
483 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
484 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
485 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
486 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
487 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
488};
489
cce74817 490
5e2e9765 491/* Return the name of the register corresponding to REGNO. */
5a89d8aa 492static const char *
5e2e9765 493mips_register_name (int regno)
cce74817 494{
691c0433 495 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
496 /* GPR names for all ABIs other than n32/n64. */
497 static char *mips_gpr_names[] = {
6d82d43b
AC
498 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
499 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
500 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
501 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
502 };
503
504 /* GPR names for n32 and n64 ABIs. */
505 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
506 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
507 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
508 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
509 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
510 };
511
512 enum mips_abi abi = mips_abi (current_gdbarch);
513
f57d151a
UW
514 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
515 but then don't make the raw register names visible. */
516 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
517 if (regno < gdbarch_num_regs (current_gdbarch))
a4b8ebc8
AC
518 return "";
519
5e2e9765
KB
520 /* The MIPS integer registers are always mapped from 0 to 31. The
521 names of the registers (which reflects the conventions regarding
522 register use) vary depending on the ABI. */
a4b8ebc8 523 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
524 {
525 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 526 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 527 else
a4b8ebc8 528 return mips_gpr_names[rawnum];
5e2e9765 529 }
f8b73d13
DJ
530 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
531 return tdesc_register_name (rawnum);
f57d151a 532 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
691c0433
AC
533 {
534 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
535 return tdep->mips_processor_reg_names[rawnum - 32];
536 }
5e2e9765
KB
537 else
538 internal_error (__FILE__, __LINE__,
e2e0b3e5 539 _("mips_register_name: bad register number %d"), rawnum);
cce74817 540}
5e2e9765 541
a4b8ebc8 542/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 543
a4b8ebc8
AC
544static int
545mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
546 struct reggroup *reggroup)
547{
548 int vector_p;
549 int float_p;
550 int raw_p;
f57d151a
UW
551 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
552 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
a4b8ebc8
AC
553 if (reggroup == all_reggroup)
554 return pseudo;
555 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
556 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
557 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
558 (gdbarch), as not all architectures are multi-arch. */
f57d151a 559 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
c9f4d572
UW
560 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
561 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
562 return 0;
563 if (reggroup == float_reggroup)
564 return float_p && pseudo;
565 if (reggroup == vector_reggroup)
566 return vector_p && pseudo;
567 if (reggroup == general_reggroup)
568 return (!vector_p && !float_p) && pseudo;
569 /* Save the pseudo registers. Need to make certain that any code
570 extracting register values from a saved register cache also uses
571 pseudo registers. */
572 if (reggroup == save_reggroup)
573 return raw_p && pseudo;
574 /* Restore the same pseudo register. */
575 if (reggroup == restore_reggroup)
576 return raw_p && pseudo;
6d82d43b 577 return 0;
a4b8ebc8
AC
578}
579
f8b73d13
DJ
580/* Return the groups that a MIPS register can be categorised into.
581 This version is only used if we have a target description which
582 describes real registers (and their groups). */
583
584static int
585mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
586 struct reggroup *reggroup)
587{
588 int rawnum = regnum % gdbarch_num_regs (gdbarch);
589 int pseudo = regnum / gdbarch_num_regs (gdbarch);
590 int ret;
591
592 /* Only save, restore, and display the pseudo registers. Need to
593 make certain that any code extracting register values from a
594 saved register cache also uses pseudo registers.
595
596 Note: saving and restoring the pseudo registers is slightly
597 strange; if we have 64 bits, we should save and restore all
598 64 bits. But this is hard and has little benefit. */
599 if (!pseudo)
600 return 0;
601
602 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
603 if (ret != -1)
604 return ret;
605
606 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
607}
608
a4b8ebc8 609/* Map the symbol table registers which live in the range [1 *
f57d151a 610 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 611 registers. Take care of alignment and size problems. */
c5aa993b 612
a4b8ebc8
AC
613static void
614mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 615 int cookednum, gdb_byte *buf)
a4b8ebc8 616{
f57d151a
UW
617 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
618 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
619 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
47ebcfbe 620 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 621 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
622 else if (register_size (gdbarch, rawnum) >
623 register_size (gdbarch, cookednum))
47ebcfbe
AC
624 {
625 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
4c6b5505 626 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
627 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
628 else
629 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
630 }
631 else
e2e0b3e5 632 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
633}
634
635static void
6d82d43b
AC
636mips_pseudo_register_write (struct gdbarch *gdbarch,
637 struct regcache *regcache, int cookednum,
47a35522 638 const gdb_byte *buf)
a4b8ebc8 639{
f57d151a
UW
640 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
641 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
642 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
47ebcfbe 643 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 644 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
645 else if (register_size (gdbarch, rawnum) >
646 register_size (gdbarch, cookednum))
47ebcfbe
AC
647 {
648 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
4c6b5505 649 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
650 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
651 else
652 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
653 }
654 else
e2e0b3e5 655 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 656}
c5aa993b 657
c906108c 658/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 659static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
660
661/* Heuristic_proc_start may hunt through the text section for a long
662 time across a 2400 baud serial line. Allows the user to limit this
663 search. */
664
665static unsigned int heuristic_fence_post = 0;
666
46cd78fb 667/* Number of bytes of storage in the actual machine representation for
719ec221
AC
668 register N. NOTE: This defines the pseudo register type so need to
669 rebuild the architecture vector. */
43e526b9
JM
670
671static int mips64_transfers_32bit_regs_p = 0;
672
719ec221
AC
673static void
674set_mips64_transfers_32bit_regs (char *args, int from_tty,
675 struct cmd_list_element *c)
43e526b9 676{
719ec221
AC
677 struct gdbarch_info info;
678 gdbarch_info_init (&info);
679 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
680 instead of relying on globals. Doing that would let generic code
681 handle the search for this specific architecture. */
682 if (!gdbarch_update_p (info))
a4b8ebc8 683 {
719ec221 684 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 685 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 686 }
a4b8ebc8
AC
687}
688
47ebcfbe 689/* Convert to/from a register and the corresponding memory value. */
43e526b9 690
ff2e87ac
AC
691static int
692mips_convert_register_p (int regnum, struct type *type)
693{
4c6b5505 694 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
719ec221 695 && register_size (current_gdbarch, regnum) == 4
f57d151a
UW
696 && (regnum % gdbarch_num_regs (current_gdbarch))
697 >= mips_regnum (current_gdbarch)->fp0
698 && (regnum % gdbarch_num_regs (current_gdbarch))
699 < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 700 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
701}
702
42c466d7 703static void
ff2e87ac 704mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 705 struct type *type, gdb_byte *to)
102182a9 706{
47a35522
MK
707 get_frame_register (frame, regnum + 0, to + 4);
708 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
709}
710
42c466d7 711static void
ff2e87ac 712mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 713 struct type *type, const gdb_byte *from)
102182a9 714{
47a35522
MK
715 put_frame_register (frame, regnum + 0, from + 4);
716 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
717}
718
a4b8ebc8
AC
719/* Return the GDB type object for the "standard" data type of data in
720 register REG. */
78fde5f8
KB
721
722static struct type *
a4b8ebc8
AC
723mips_register_type (struct gdbarch *gdbarch, int regnum)
724{
f57d151a
UW
725 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
726 if ((regnum % gdbarch_num_regs (current_gdbarch))
727 >= mips_regnum (current_gdbarch)->fp0
728 && (regnum % gdbarch_num_regs (current_gdbarch))
729 < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 730 {
5ef80fb0 731 /* The floating-point registers raw, or cooked, always match
1b13c4f6 732 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
733 if (mips_isa_regsize (gdbarch) == 4)
734 return builtin_type_ieee_single;
735 else
736 return builtin_type_ieee_double;
a6425924 737 }
f57d151a 738 else if (regnum < gdbarch_num_regs (current_gdbarch))
d5ac5a39
AC
739 {
740 /* The raw or ISA registers. These are all sized according to
741 the ISA regsize. */
742 if (mips_isa_regsize (gdbarch) == 4)
743 return builtin_type_int32;
744 else
745 return builtin_type_int64;
746 }
78fde5f8 747 else
d5ac5a39
AC
748 {
749 /* The cooked or ABI registers. These are sized according to
750 the ABI (with a few complications). */
f57d151a 751 if (regnum >= (gdbarch_num_regs (current_gdbarch)
d5ac5a39 752 + mips_regnum (current_gdbarch)->fp_control_status)
f57d151a
UW
753 && regnum <= gdbarch_num_regs (current_gdbarch)
754 + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
755 /* The pseudo/cooked view of the embedded registers is always
756 32-bit. The raw view is handled below. */
757 return builtin_type_int32;
758 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
759 /* The target, while possibly using a 64-bit register buffer,
760 is only transfering 32-bits of each integer register.
761 Reflect this in the cooked/pseudo (ABI) register value. */
762 return builtin_type_int32;
763 else if (mips_abi_regsize (gdbarch) == 4)
764 /* The ABI is restricted to 32-bit registers (the ISA could be
765 32- or 64-bit). */
766 return builtin_type_int32;
767 else
768 /* 64-bit ABI. */
769 return builtin_type_int64;
770 }
78fde5f8
KB
771}
772
f8b73d13
DJ
773/* Return the GDB type for the pseudo register REGNUM, which is the
774 ABI-level view. This function is only called if there is a target
775 description which includes registers, so we know precisely the
776 types of hardware registers. */
777
778static struct type *
779mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
780{
781 const int num_regs = gdbarch_num_regs (gdbarch);
782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
783 int rawnum = regnum % num_regs;
784 struct type *rawtype;
785
786 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
787
788 /* Absent registers are still absent. */
789 rawtype = gdbarch_register_type (gdbarch, rawnum);
790 if (TYPE_LENGTH (rawtype) == 0)
791 return rawtype;
792
793 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
794 /* Present the floating point registers however the hardware did;
795 do not try to convert between FPU layouts. */
796 return rawtype;
797
798 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
799 {
800 /* The pseudo/cooked view of embedded registers is always
801 32-bit, even if the target transfers 64-bit values for them.
802 New targets relying on XML descriptions should only transfer
803 the necessary 32 bits, but older versions of GDB expected 64,
804 so allow the target to provide 64 bits without interfering
805 with the displayed type. */
806 return builtin_type_int32;
807 }
808
809 /* Use pointer types for registers if we can. For n32 we can not,
810 since we do not have a 64-bit pointer type. */
811 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
812 {
813 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
814 return builtin_type_void_data_ptr;
815 else if (rawnum == MIPS_EMBED_PC_REGNUM)
816 return builtin_type_void_func_ptr;
817 }
818
819 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
820 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
821 return builtin_type_int32;
822
823 /* For all other registers, pass through the hardware type. */
824 return rawtype;
825}
bcb0cc15 826
c906108c 827/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 828enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
829
830static int
480d3dd2 831mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
832{
833 switch (mask_address_var)
834 {
7f19b9a2 835 case AUTO_BOOLEAN_TRUE:
4014092b 836 return 1;
7f19b9a2 837 case AUTO_BOOLEAN_FALSE:
4014092b
AC
838 return 0;
839 break;
7f19b9a2 840 case AUTO_BOOLEAN_AUTO:
480d3dd2 841 return tdep->default_mask_address_p;
4014092b 842 default:
e2e0b3e5 843 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 844 return -1;
361d1df0 845 }
4014092b
AC
846}
847
848static void
08546159
AC
849show_mask_address (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
4014092b 851{
480d3dd2 852 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
853
854 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
855 switch (mask_address_var)
856 {
7f19b9a2 857 case AUTO_BOOLEAN_TRUE:
4014092b
AC
858 printf_filtered ("The 32 bit mips address mask is enabled\n");
859 break;
7f19b9a2 860 case AUTO_BOOLEAN_FALSE:
4014092b
AC
861 printf_filtered ("The 32 bit mips address mask is disabled\n");
862 break;
7f19b9a2 863 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
864 printf_filtered
865 ("The 32 bit address mask is set automatically. Currently %s\n",
866 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
867 break;
868 default:
e2e0b3e5 869 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 870 break;
361d1df0 871 }
4014092b 872}
c906108c 873
c906108c
SS
874/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
875
0fe7e7c8
AC
876int
877mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
878{
879 struct minimal_symbol *sym;
880
881 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 882 if (is_mips16_addr (memaddr))
c906108c
SS
883 return 1;
884
885 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
886 the high bit of the info field. Use this to decide if the function is
887 MIPS16 or normal MIPS. */
888 sym = lookup_minimal_symbol_by_pc (memaddr);
889 if (sym)
71b8ef93 890 return msymbol_is_special (sym);
c906108c
SS
891 else
892 return 0;
893}
894
b2fa5097 895/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
896 all registers should be sign extended for simplicity? */
897
898static CORE_ADDR
61a1198a 899mips_read_pc (struct regcache *regcache)
6c997a34 900{
61a1198a
UW
901 ULONGEST pc;
902 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
903 regcache_cooked_read_signed (regcache, regnum, &pc);
904 return pc;
b6cb9035
AC
905}
906
58dfe9ff
AC
907static CORE_ADDR
908mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
909{
edfae063 910 return frame_unwind_register_signed (next_frame,
f57d151a
UW
911 gdbarch_num_regs (current_gdbarch)
912 + mips_regnum (gdbarch)->pc);
edfae063
AC
913}
914
30244cd8
UW
915static CORE_ADDR
916mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
917{
f57d151a
UW
918 return frame_unwind_register_signed (next_frame,
919 gdbarch_num_regs (current_gdbarch)
920 + MIPS_SP_REGNUM);
30244cd8
UW
921}
922
edfae063
AC
923/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
924 dummy frame. The frame ID's base needs to match the TOS value
925 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
926 breakpoint. */
927
928static struct frame_id
929mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
930{
f57d151a
UW
931 return frame_id_build
932 (frame_unwind_register_signed (next_frame,
933 gdbarch_num_regs (current_gdbarch)
934 + MIPS_SP_REGNUM),
935 frame_pc_unwind (next_frame));
58dfe9ff
AC
936}
937
b6cb9035 938static void
61a1198a 939mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 940{
61a1198a
UW
941 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
942 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 943}
c906108c 944
c906108c
SS
945/* Fetch and return instruction from the specified location. If the PC
946 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
947
d37cca3d 948static ULONGEST
acdb74a0 949mips_fetch_instruction (CORE_ADDR addr)
c906108c 950{
47a35522 951 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
952 int instlen;
953 int status;
954
0fe7e7c8 955 if (mips_pc_is_mips16 (addr))
c906108c 956 {
95ac2dcf 957 instlen = MIPS_INSN16_SIZE;
95404a3e 958 addr = unmake_mips16_addr (addr);
c906108c
SS
959 }
960 else
95ac2dcf 961 instlen = MIPS_INSN32_SIZE;
359a9262 962 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
963 if (status)
964 memory_error (status, addr);
965 return extract_unsigned_integer (buf, instlen);
966}
967
c906108c 968/* These the fields of 32 bit mips instructions */
e135b889
DJ
969#define mips32_op(x) (x >> 26)
970#define itype_op(x) (x >> 26)
971#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 972#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 973#define itype_immediate(x) (x & 0xffff)
c906108c 974
e135b889
DJ
975#define jtype_op(x) (x >> 26)
976#define jtype_target(x) (x & 0x03ffffff)
c906108c 977
e135b889
DJ
978#define rtype_op(x) (x >> 26)
979#define rtype_rs(x) ((x >> 21) & 0x1f)
980#define rtype_rt(x) ((x >> 16) & 0x1f)
981#define rtype_rd(x) ((x >> 11) & 0x1f)
982#define rtype_shamt(x) ((x >> 6) & 0x1f)
983#define rtype_funct(x) (x & 0x3f)
c906108c 984
06987e64
MK
985static LONGEST
986mips32_relative_offset (ULONGEST inst)
c5aa993b 987{
06987e64 988 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
989}
990
f49e4e6d
MS
991/* Determine where to set a single step breakpoint while considering
992 branch prediction. */
5a89d8aa 993static CORE_ADDR
0b1b3e42 994mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b
JM
995{
996 unsigned long inst;
997 int op;
998 inst = mips_fetch_instruction (pc);
e135b889 999 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1000 {
e135b889 1001 if (itype_op (inst) >> 2 == 5)
6d82d43b 1002 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1003 {
e135b889 1004 op = (itype_op (inst) & 0x03);
c906108c
SS
1005 switch (op)
1006 {
e135b889
DJ
1007 case 0: /* BEQL */
1008 goto equal_branch;
1009 case 1: /* BNEL */
1010 goto neq_branch;
1011 case 2: /* BLEZL */
1012 goto less_branch;
1013 case 3: /* BGTZ */
1014 goto greater_branch;
c5aa993b
JM
1015 default:
1016 pc += 4;
c906108c
SS
1017 }
1018 }
e135b889 1019 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 1020 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
1021 {
1022 int tf = itype_rt (inst) & 0x01;
1023 int cnum = itype_rt (inst) >> 2;
6d82d43b 1024 int fcrcs =
0b1b3e42
UW
1025 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1026 fp_control_status);
e135b889
DJ
1027 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1028
1029 if (((cond >> cnum) & 0x01) == tf)
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 }
c5aa993b
JM
1034 else
1035 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1036 }
1037 else
c5aa993b
JM
1038 { /* This gets way messy */
1039
c906108c 1040 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1041 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1042 {
c5aa993b
JM
1043 case 0: /* SPECIAL */
1044 op = rtype_funct (inst);
1045 switch (op)
1046 {
1047 case 8: /* JR */
1048 case 9: /* JALR */
6c997a34 1049 /* Set PC to that address */
0b1b3e42 1050 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b
JM
1051 break;
1052 default:
1053 pc += 4;
1054 }
1055
6d82d43b 1056 break; /* end SPECIAL */
c5aa993b 1057 case 1: /* REGIMM */
c906108c 1058 {
e135b889
DJ
1059 op = itype_rt (inst); /* branch condition */
1060 switch (op)
c906108c 1061 {
c5aa993b 1062 case 0: /* BLTZ */
e135b889
DJ
1063 case 2: /* BLTZL */
1064 case 16: /* BLTZAL */
c5aa993b 1065 case 18: /* BLTZALL */
c906108c 1066 less_branch:
0b1b3e42 1067 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1068 pc += mips32_relative_offset (inst) + 4;
1069 else
1070 pc += 8; /* after the delay slot */
1071 break;
e135b889 1072 case 1: /* BGEZ */
c5aa993b
JM
1073 case 3: /* BGEZL */
1074 case 17: /* BGEZAL */
1075 case 19: /* BGEZALL */
0b1b3e42 1076 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1077 pc += mips32_relative_offset (inst) + 4;
1078 else
1079 pc += 8; /* after the delay slot */
1080 break;
e135b889 1081 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1082 default:
1083 pc += 4;
c906108c
SS
1084 }
1085 }
6d82d43b 1086 break; /* end REGIMM */
c5aa993b
JM
1087 case 2: /* J */
1088 case 3: /* JAL */
1089 {
1090 unsigned long reg;
1091 reg = jtype_target (inst) << 2;
e135b889 1092 /* Upper four bits get never changed... */
5b652102 1093 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1094 }
c5aa993b
JM
1095 break;
1096 /* FIXME case JALX : */
1097 {
1098 unsigned long reg;
1099 reg = jtype_target (inst) << 2;
5b652102 1100 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1101 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1102 }
c5aa993b 1103 break; /* The new PC will be alternate mode */
e135b889 1104 case 4: /* BEQ, BEQL */
c5aa993b 1105 equal_branch:
0b1b3e42
UW
1106 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1107 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
e135b889 1112 case 5: /* BNE, BNEL */
c5aa993b 1113 neq_branch:
0b1b3e42
UW
1114 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1115 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1116 pc += mips32_relative_offset (inst) + 4;
1117 else
1118 pc += 8;
1119 break;
e135b889 1120 case 6: /* BLEZ, BLEZL */
0b1b3e42 1121 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1122 pc += mips32_relative_offset (inst) + 4;
1123 else
1124 pc += 8;
1125 break;
1126 case 7:
e135b889
DJ
1127 default:
1128 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1129 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1130 pc += mips32_relative_offset (inst) + 4;
1131 else
1132 pc += 8;
1133 break;
c5aa993b
JM
1134 } /* switch */
1135 } /* else */
1136 return pc;
1137} /* mips32_next_pc */
c906108c
SS
1138
1139/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1140 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1141 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1142 We dont want to set a single step instruction on the extend instruction
1143 either.
c5aa993b 1144 */
c906108c
SS
1145
1146/* Lots of mips16 instruction formats */
1147/* Predicting jumps requires itype,ritype,i8type
1148 and their extensions extItype,extritype,extI8type
c5aa993b 1149 */
c906108c
SS
1150enum mips16_inst_fmts
1151{
c5aa993b
JM
1152 itype, /* 0 immediate 5,10 */
1153 ritype, /* 1 5,3,8 */
1154 rrtype, /* 2 5,3,3,5 */
1155 rritype, /* 3 5,3,3,5 */
1156 rrrtype, /* 4 5,3,3,3,2 */
1157 rriatype, /* 5 5,3,3,1,4 */
1158 shifttype, /* 6 5,3,3,3,2 */
1159 i8type, /* 7 5,3,8 */
1160 i8movtype, /* 8 5,3,3,5 */
1161 i8mov32rtype, /* 9 5,3,5,3 */
1162 i64type, /* 10 5,3,8 */
1163 ri64type, /* 11 5,3,3,5 */
1164 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1165 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1166 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1167 extRRItype, /* 15 5,5,5,5,3,3,5 */
1168 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1169 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1170 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1171 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1172 extRi64type, /* 20 5,6,5,5,3,3,5 */
1173 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1174};
12f02c2a
AC
1175/* I am heaping all the fields of the formats into one structure and
1176 then, only the fields which are involved in instruction extension */
c906108c 1177struct upk_mips16
6d82d43b
AC
1178{
1179 CORE_ADDR offset;
1180 unsigned int regx; /* Function in i8 type */
1181 unsigned int regy;
1182};
c906108c
SS
1183
1184
12f02c2a
AC
1185/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1186 for the bits which make up the immediatate extension. */
c906108c 1187
12f02c2a
AC
1188static CORE_ADDR
1189extended_offset (unsigned int extension)
c906108c 1190{
12f02c2a 1191 CORE_ADDR value;
c5aa993b
JM
1192 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1193 value = value << 6;
1194 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1195 value = value << 5;
1196 value |= extension & 0x01f; /* extract 4:0 */
1197 return value;
c906108c
SS
1198}
1199
1200/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1201 instruction. It won't malfunction, but why make excess remote memory
1202 references? If the immediate operands get sign extended or something,
1203 do it after the extension is performed. */
c906108c 1204/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1205 when the offset is to be used in relative addressing. */
c906108c 1206
12f02c2a 1207static unsigned int
c5aa993b 1208fetch_mips_16 (CORE_ADDR pc)
c906108c 1209{
47a35522 1210 gdb_byte buf[8];
c5aa993b
JM
1211 pc &= 0xfffffffe; /* clear the low order bit */
1212 target_read_memory (pc, buf, 2);
1213 return extract_unsigned_integer (buf, 2);
c906108c
SS
1214}
1215
1216static void
c5aa993b 1217unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1218 unsigned int extension,
1219 unsigned int inst,
6d82d43b 1220 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1221{
12f02c2a
AC
1222 CORE_ADDR offset;
1223 int regx;
1224 int regy;
1225 switch (insn_format)
c906108c 1226 {
c5aa993b 1227 case itype:
c906108c 1228 {
12f02c2a
AC
1229 CORE_ADDR value;
1230 if (extension)
c5aa993b
JM
1231 {
1232 value = extended_offset (extension);
1233 value = value << 11; /* rom for the original value */
6d82d43b 1234 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1235 }
1236 else
c5aa993b 1237 {
12f02c2a 1238 value = inst & 0x7ff;
c5aa993b 1239 /* FIXME : Consider sign extension */
c906108c 1240 }
12f02c2a
AC
1241 offset = value;
1242 regx = -1;
1243 regy = -1;
c906108c 1244 }
c5aa993b
JM
1245 break;
1246 case ritype:
1247 case i8type:
1248 { /* A register identifier and an offset */
c906108c
SS
1249 /* Most of the fields are the same as I type but the
1250 immediate value is of a different length */
12f02c2a
AC
1251 CORE_ADDR value;
1252 if (extension)
c906108c 1253 {
c5aa993b
JM
1254 value = extended_offset (extension);
1255 value = value << 8; /* from the original instruction */
12f02c2a
AC
1256 value |= inst & 0xff; /* eleven bits from instruction */
1257 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1258 if (value & 0x4000) /* test the sign bit , bit 26 */
1259 {
1260 value &= ~0x3fff; /* remove the sign bit */
1261 value = -value;
c906108c
SS
1262 }
1263 }
c5aa993b
JM
1264 else
1265 {
12f02c2a
AC
1266 value = inst & 0xff; /* 8 bits */
1267 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1268 /* FIXME: Do sign extension , this format needs it */
1269 if (value & 0x80) /* THIS CONFUSES ME */
1270 {
1271 value &= 0xef; /* remove the sign bit */
1272 value = -value;
1273 }
c5aa993b 1274 }
12f02c2a
AC
1275 offset = value;
1276 regy = -1;
c5aa993b 1277 break;
c906108c 1278 }
c5aa993b 1279 case jalxtype:
c906108c 1280 {
c5aa993b 1281 unsigned long value;
12f02c2a
AC
1282 unsigned int nexthalf;
1283 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1284 value = value << 16;
1285 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1286 value |= nexthalf;
12f02c2a
AC
1287 offset = value;
1288 regx = -1;
1289 regy = -1;
c5aa993b 1290 break;
c906108c
SS
1291 }
1292 default:
e2e0b3e5 1293 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1294 }
12f02c2a
AC
1295 upk->offset = offset;
1296 upk->regx = regx;
1297 upk->regy = regy;
c906108c
SS
1298}
1299
1300
c5aa993b
JM
1301static CORE_ADDR
1302add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1303{
5b652102 1304 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1305}
1306
12f02c2a 1307static CORE_ADDR
0b1b3e42 1308extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 1309 unsigned int extension, unsigned int insn)
c906108c 1310{
12f02c2a
AC
1311 int op = (insn >> 11);
1312 switch (op)
c906108c 1313 {
6d82d43b 1314 case 2: /* Branch */
12f02c2a
AC
1315 {
1316 CORE_ADDR offset;
1317 struct upk_mips16 upk;
1318 unpack_mips16 (pc, extension, insn, itype, &upk);
1319 offset = upk.offset;
1320 if (offset & 0x800)
1321 {
1322 offset &= 0xeff;
1323 offset = -offset;
1324 }
1325 pc += (offset << 1) + 2;
1326 break;
1327 }
6d82d43b 1328 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1329 {
1330 struct upk_mips16 upk;
1331 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1332 pc = add_offset_16 (pc, upk.offset);
1333 if ((insn >> 10) & 0x01) /* Exchange mode */
1334 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1335 else
1336 pc |= 0x01;
1337 break;
1338 }
6d82d43b 1339 case 4: /* beqz */
12f02c2a
AC
1340 {
1341 struct upk_mips16 upk;
1342 int reg;
1343 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1344 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1345 if (reg == 0)
1346 pc += (upk.offset << 1) + 2;
1347 else
1348 pc += 2;
1349 break;
1350 }
6d82d43b 1351 case 5: /* bnez */
12f02c2a
AC
1352 {
1353 struct upk_mips16 upk;
1354 int reg;
1355 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1356 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1357 if (reg != 0)
1358 pc += (upk.offset << 1) + 2;
1359 else
1360 pc += 2;
1361 break;
1362 }
6d82d43b 1363 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1364 {
1365 struct upk_mips16 upk;
1366 int reg;
1367 unpack_mips16 (pc, extension, insn, i8type, &upk);
1368 /* upk.regx contains the opcode */
0b1b3e42 1369 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
1370 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1371 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1372 /* pc = add_offset_16(pc,upk.offset) ; */
1373 pc += (upk.offset << 1) + 2;
1374 else
1375 pc += 2;
1376 break;
1377 }
6d82d43b 1378 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1379 {
1380 struct upk_mips16 upk;
1381 /* upk.fmt = rrtype; */
1382 op = insn & 0x1f;
1383 if (op == 0)
c5aa993b 1384 {
12f02c2a
AC
1385 int reg;
1386 upk.regx = (insn >> 8) & 0x07;
1387 upk.regy = (insn >> 5) & 0x07;
1388 switch (upk.regy)
c5aa993b 1389 {
12f02c2a
AC
1390 case 0:
1391 reg = upk.regx;
1392 break;
1393 case 1:
1394 reg = 31;
6d82d43b 1395 break; /* Function return instruction */
12f02c2a
AC
1396 case 2:
1397 reg = upk.regx;
1398 break;
1399 default:
1400 reg = 31;
6d82d43b 1401 break; /* BOGUS Guess */
c906108c 1402 }
0b1b3e42 1403 pc = get_frame_register_signed (frame, reg);
c906108c 1404 }
12f02c2a 1405 else
c5aa993b 1406 pc += 2;
12f02c2a
AC
1407 break;
1408 }
1409 case 30:
1410 /* This is an instruction extension. Fetch the real instruction
1411 (which follows the extension) and decode things based on
1412 that. */
1413 {
1414 pc += 2;
0b1b3e42 1415 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
12f02c2a
AC
1416 break;
1417 }
1418 default:
1419 {
1420 pc += 2;
1421 break;
1422 }
c906108c 1423 }
c5aa993b 1424 return pc;
12f02c2a 1425}
c906108c 1426
5a89d8aa 1427static CORE_ADDR
0b1b3e42 1428mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a
AC
1429{
1430 unsigned int insn = fetch_mips_16 (pc);
0b1b3e42 1431 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
1432}
1433
1434/* The mips_next_pc function supports single_step when the remote
7e73cedf 1435 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1436 It works by decoding the current instruction and predicting where a
1437 branch will go. This isnt hard because all the data is available.
ce1f96de 1438 The MIPS32 and MIPS16 variants are quite different. */
ad527d2e 1439static CORE_ADDR
0b1b3e42 1440mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1441{
ce1f96de 1442 if (is_mips16_addr (pc))
0b1b3e42 1443 return mips16_next_pc (frame, pc);
c5aa993b 1444 else
0b1b3e42 1445 return mips32_next_pc (frame, pc);
12f02c2a 1446}
c906108c 1447
edfae063
AC
1448struct mips_frame_cache
1449{
1450 CORE_ADDR base;
1451 struct trad_frame_saved_reg *saved_regs;
1452};
1453
29639122
JB
1454/* Set a register's saved stack address in temp_saved_regs. If an
1455 address has already been set for this register, do nothing; this
1456 way we will only recognize the first save of a given register in a
1457 function prologue.
eec63939 1458
f57d151a
UW
1459 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1460 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1461 Strictly speaking, only the second range is used as it is only second
1462 range (the ABI instead of ISA registers) that comes into play when finding
1463 saved registers in a frame. */
eec63939
AC
1464
1465static void
29639122
JB
1466set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1467 CORE_ADDR offset)
eec63939 1468{
29639122
JB
1469 if (this_cache != NULL
1470 && this_cache->saved_regs[regnum].addr == -1)
1471 {
f57d151a
UW
1472 this_cache->saved_regs[regnum
1473 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1474 = offset;
1475 this_cache->saved_regs[regnum
1476 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1477 = offset;
29639122 1478 }
eec63939
AC
1479}
1480
eec63939 1481
29639122
JB
1482/* Fetch the immediate value from a MIPS16 instruction.
1483 If the previous instruction was an EXTEND, use it to extend
1484 the upper bits of the immediate value. This is a helper function
1485 for mips16_scan_prologue. */
eec63939 1486
29639122
JB
1487static int
1488mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1489 unsigned short inst, /* current instruction */
1490 int nbits, /* number of bits in imm field */
1491 int scale, /* scale factor to be applied to imm */
1492 int is_signed) /* is the imm field signed? */
eec63939 1493{
29639122 1494 int offset;
eec63939 1495
29639122
JB
1496 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1497 {
1498 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1499 if (offset & 0x8000) /* check for negative extend */
1500 offset = 0 - (0x10000 - (offset & 0xffff));
1501 return offset | (inst & 0x1f);
1502 }
eec63939 1503 else
29639122
JB
1504 {
1505 int max_imm = 1 << nbits;
1506 int mask = max_imm - 1;
1507 int sign_bit = max_imm >> 1;
45c9dd44 1508
29639122
JB
1509 offset = inst & mask;
1510 if (is_signed && (offset & sign_bit))
1511 offset = 0 - (max_imm - offset);
1512 return offset * scale;
1513 }
1514}
eec63939 1515
65596487 1516
29639122
JB
1517/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1518 the associated FRAME_CACHE if not null.
1519 Return the address of the first instruction past the prologue. */
eec63939 1520
29639122
JB
1521static CORE_ADDR
1522mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1523 struct frame_info *next_frame,
1524 struct mips_frame_cache *this_cache)
1525{
1526 CORE_ADDR cur_pc;
1527 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1528 CORE_ADDR sp;
1529 long frame_offset = 0; /* Size of stack frame. */
1530 long frame_adjust = 0; /* Offset of FP from SP. */
1531 int frame_reg = MIPS_SP_REGNUM;
1532 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1533 unsigned inst = 0; /* current instruction */
1534 unsigned entry_inst = 0; /* the entry instruction */
1535 int reg, offset;
a343eb3c 1536
29639122
JB
1537 int extend_bytes = 0;
1538 int prev_extend_bytes;
1539 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1540
29639122
JB
1541 /* Can be called when there's no process, and hence when there's no
1542 NEXT_FRAME. */
1543 if (next_frame != NULL)
d2ca4222
UW
1544 sp = frame_unwind_register_signed (next_frame,
1545 gdbarch_num_regs (current_gdbarch)
1546 + MIPS_SP_REGNUM);
29639122
JB
1547 else
1548 sp = 0;
eec63939 1549
29639122
JB
1550 if (limit_pc > start_pc + 200)
1551 limit_pc = start_pc + 200;
eec63939 1552
95ac2dcf 1553 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1554 {
1555 /* Save the previous instruction. If it's an EXTEND, we'll extract
1556 the immediate offset extension from it in mips16_get_imm. */
1557 prev_inst = inst;
eec63939 1558
29639122
JB
1559 /* Fetch and decode the instruction. */
1560 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1561
29639122
JB
1562 /* Normally we ignore extend instructions. However, if it is
1563 not followed by a valid prologue instruction, then this
1564 instruction is not part of the prologue either. We must
1565 remember in this case to adjust the end_prologue_addr back
1566 over the extend. */
1567 if ((inst & 0xf800) == 0xf000) /* extend */
1568 {
95ac2dcf 1569 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1570 continue;
1571 }
eec63939 1572
29639122
JB
1573 prev_extend_bytes = extend_bytes;
1574 extend_bytes = 0;
eec63939 1575
29639122
JB
1576 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1577 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1578 {
1579 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1580 if (offset < 0) /* negative stack adjustment? */
1581 frame_offset -= offset;
1582 else
1583 /* Exit loop if a positive stack adjustment is found, which
1584 usually means that the stack cleanup code in the function
1585 epilogue is reached. */
1586 break;
1587 }
1588 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1589 {
1590 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1591 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1592 set_reg_offset (this_cache, reg, sp + offset);
1593 }
1594 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1595 {
1596 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1597 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1598 set_reg_offset (this_cache, reg, sp + offset);
1599 }
1600 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1601 {
1602 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1603 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1604 }
1605 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1606 {
1607 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1608 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1609 }
1610 else if (inst == 0x673d) /* move $s1, $sp */
1611 {
1612 frame_addr = sp;
1613 frame_reg = 17;
1614 }
1615 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1616 {
1617 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1618 frame_addr = sp + offset;
1619 frame_reg = 17;
1620 frame_adjust = offset;
1621 }
1622 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1623 {
1624 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1625 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1626 set_reg_offset (this_cache, reg, frame_addr + offset);
1627 }
1628 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1629 {
1630 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1631 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1632 set_reg_offset (this_cache, reg, frame_addr + offset);
1633 }
1634 else if ((inst & 0xf81f) == 0xe809
1635 && (inst & 0x700) != 0x700) /* entry */
1636 entry_inst = inst; /* save for later processing */
1637 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1638 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1639 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1640 {
1641 /* This instruction is part of the prologue, but we don't
1642 need to do anything special to handle it. */
1643 }
1644 else
1645 {
1646 /* This instruction is not an instruction typically found
1647 in a prologue, so we must have reached the end of the
1648 prologue. */
1649 if (end_prologue_addr == 0)
1650 end_prologue_addr = cur_pc - prev_extend_bytes;
1651 }
1652 }
eec63939 1653
29639122
JB
1654 /* The entry instruction is typically the first instruction in a function,
1655 and it stores registers at offsets relative to the value of the old SP
1656 (before the prologue). But the value of the sp parameter to this
1657 function is the new SP (after the prologue has been executed). So we
1658 can't calculate those offsets until we've seen the entire prologue,
1659 and can calculate what the old SP must have been. */
1660 if (entry_inst != 0)
1661 {
1662 int areg_count = (entry_inst >> 8) & 7;
1663 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1664
29639122
JB
1665 /* The entry instruction always subtracts 32 from the SP. */
1666 frame_offset += 32;
1667
1668 /* Now we can calculate what the SP must have been at the
1669 start of the function prologue. */
1670 sp += frame_offset;
1671
1672 /* Check if a0-a3 were saved in the caller's argument save area. */
1673 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1674 {
1675 set_reg_offset (this_cache, reg, sp + offset);
1676 offset += mips_abi_regsize (current_gdbarch);
1677 }
1678
1679 /* Check if the ra register was pushed on the stack. */
1680 offset = -4;
1681 if (entry_inst & 0x20)
1682 {
4c7d22cb 1683 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1684 offset -= mips_abi_regsize (current_gdbarch);
1685 }
1686
1687 /* Check if the s0 and s1 registers were pushed on the stack. */
1688 for (reg = 16; reg < sreg_count + 16; reg++)
1689 {
1690 set_reg_offset (this_cache, reg, sp + offset);
1691 offset -= mips_abi_regsize (current_gdbarch);
1692 }
1693 }
1694
1695 if (this_cache != NULL)
1696 {
1697 this_cache->base =
f57d151a
UW
1698 (frame_unwind_register_signed (next_frame,
1699 gdbarch_num_regs (current_gdbarch)
1700 + frame_reg)
29639122
JB
1701 + frame_offset - frame_adjust);
1702 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1703 be able to get rid of the assignment below, evetually. But it's
1704 still needed for now. */
f57d151a
UW
1705 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1706 + mips_regnum (current_gdbarch)->pc]
1707 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1708 + MIPS_RA_REGNUM];
29639122
JB
1709 }
1710
1711 /* If we didn't reach the end of the prologue when scanning the function
1712 instructions, then set end_prologue_addr to the address of the
1713 instruction immediately after the last one we scanned. */
1714 if (end_prologue_addr == 0)
1715 end_prologue_addr = cur_pc;
1716
1717 return end_prologue_addr;
eec63939
AC
1718}
1719
29639122
JB
1720/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1721 Procedures that use the 32-bit instruction set are handled by the
1722 mips_insn32 unwinder. */
1723
1724static struct mips_frame_cache *
1725mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1726{
29639122 1727 struct mips_frame_cache *cache;
eec63939
AC
1728
1729 if ((*this_cache) != NULL)
1730 return (*this_cache);
29639122
JB
1731 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1732 (*this_cache) = cache;
1733 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1734
29639122
JB
1735 /* Analyze the function prologue. */
1736 {
6de5b849
JB
1737 const CORE_ADDR pc =
1738 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1739 CORE_ADDR start_addr;
eec63939 1740
29639122
JB
1741 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1742 if (start_addr == 0)
1743 start_addr = heuristic_proc_start (pc);
1744 /* We can't analyze the prologue if we couldn't find the begining
1745 of the function. */
1746 if (start_addr == 0)
1747 return cache;
eec63939 1748
29639122
JB
1749 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1750 }
1751
3e8c568d 1752 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a
UW
1753 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1754 + MIPS_SP_REGNUM, cache->base);
eec63939 1755
29639122 1756 return (*this_cache);
eec63939
AC
1757}
1758
1759static void
29639122
JB
1760mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1761 struct frame_id *this_id)
eec63939 1762{
29639122
JB
1763 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1764 this_cache);
93d42b30
DJ
1765 (*this_id) = frame_id_build (info->base,
1766 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1767}
1768
1769static void
29639122 1770mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1771 void **this_cache,
1772 int regnum, int *optimizedp,
1773 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1774 int *realnump, gdb_byte *valuep)
eec63939 1775{
29639122
JB
1776 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1777 this_cache);
1778 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1779 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1780}
1781
29639122 1782static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1783{
1784 NORMAL_FRAME,
29639122
JB
1785 mips_insn16_frame_this_id,
1786 mips_insn16_frame_prev_register
eec63939
AC
1787};
1788
1789static const struct frame_unwind *
29639122 1790mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1791{
6de5b849 1792 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1793 if (mips_pc_is_mips16 (pc))
29639122
JB
1794 return &mips_insn16_frame_unwind;
1795 return NULL;
eec63939
AC
1796}
1797
1798static CORE_ADDR
29639122
JB
1799mips_insn16_frame_base_address (struct frame_info *next_frame,
1800 void **this_cache)
eec63939 1801{
29639122
JB
1802 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1803 this_cache);
1804 return info->base;
eec63939
AC
1805}
1806
29639122 1807static const struct frame_base mips_insn16_frame_base =
eec63939 1808{
29639122
JB
1809 &mips_insn16_frame_unwind,
1810 mips_insn16_frame_base_address,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address
eec63939
AC
1813};
1814
1815static const struct frame_base *
29639122 1816mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1817{
29639122
JB
1818 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1819 return &mips_insn16_frame_base;
eec63939
AC
1820 else
1821 return NULL;
edfae063
AC
1822}
1823
29639122
JB
1824/* Mark all the registers as unset in the saved_regs array
1825 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1826
1827void
1828reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1829{
29639122
JB
1830 if (this_cache == NULL || this_cache->saved_regs == NULL)
1831 return;
1832
1833 {
f57d151a 1834 const int num_regs = gdbarch_num_regs (current_gdbarch);
29639122 1835 int i;
64159455 1836
29639122
JB
1837 for (i = 0; i < num_regs; i++)
1838 {
1839 this_cache->saved_regs[i].addr = -1;
1840 }
1841 }
c906108c
SS
1842}
1843
29639122
JB
1844/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1845 the associated FRAME_CACHE if not null.
1846 Return the address of the first instruction past the prologue. */
c906108c 1847
875e1767 1848static CORE_ADDR
29639122
JB
1849mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1850 struct frame_info *next_frame,
1851 struct mips_frame_cache *this_cache)
c906108c 1852{
29639122
JB
1853 CORE_ADDR cur_pc;
1854 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1855 CORE_ADDR sp;
1856 long frame_offset;
1857 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1858
29639122
JB
1859 CORE_ADDR end_prologue_addr = 0;
1860 int seen_sp_adjust = 0;
1861 int load_immediate_bytes = 0;
8fa9cfa1 1862
29639122
JB
1863 /* Can be called when there's no process, and hence when there's no
1864 NEXT_FRAME. */
1865 if (next_frame != NULL)
d2ca4222
UW
1866 sp = frame_unwind_register_signed (next_frame,
1867 gdbarch_num_regs (current_gdbarch)
1868 + MIPS_SP_REGNUM);
8fa9cfa1 1869 else
29639122 1870 sp = 0;
9022177c 1871
29639122
JB
1872 if (limit_pc > start_pc + 200)
1873 limit_pc = start_pc + 200;
9022177c 1874
29639122 1875restart:
9022177c 1876
29639122 1877 frame_offset = 0;
95ac2dcf 1878 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1879 {
29639122
JB
1880 unsigned long inst, high_word, low_word;
1881 int reg;
9022177c 1882
29639122
JB
1883 /* Fetch the instruction. */
1884 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1885
29639122
JB
1886 /* Save some code by pre-extracting some useful fields. */
1887 high_word = (inst >> 16) & 0xffff;
1888 low_word = inst & 0xffff;
1889 reg = high_word & 0x1f;
fe29b929 1890
29639122
JB
1891 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1892 || high_word == 0x23bd /* addi $sp,$sp,-i */
1893 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1894 {
1895 if (low_word & 0x8000) /* negative stack adjustment? */
1896 frame_offset += 0x10000 - low_word;
1897 else
1898 /* Exit loop if a positive stack adjustment is found, which
1899 usually means that the stack cleanup code in the function
1900 epilogue is reached. */
1901 break;
1902 seen_sp_adjust = 1;
1903 }
1904 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1905 {
1906 set_reg_offset (this_cache, reg, sp + low_word);
1907 }
1908 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1909 {
1910 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1911 set_reg_offset (this_cache, reg, sp + low_word);
1912 }
1913 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1914 {
1915 /* Old gcc frame, r30 is virtual frame pointer. */
1916 if ((long) low_word != frame_offset)
1917 frame_addr = sp + low_word;
d2ca4222 1918 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1919 {
1920 unsigned alloca_adjust;
a4b8ebc8 1921
29639122 1922 frame_reg = 30;
d2ca4222
UW
1923 frame_addr = frame_unwind_register_signed
1924 (next_frame,
1925 gdbarch_num_regs (current_gdbarch) + 30);
1926
29639122
JB
1927 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1928 if (alloca_adjust > 0)
1929 {
1930 /* FP > SP + frame_size. This may be because of
1931 an alloca or somethings similar. Fix sp to
1932 "pre-alloca" value, and try again. */
1933 sp += alloca_adjust;
1934 /* Need to reset the status of all registers. Otherwise,
1935 we will hit a guard that prevents the new address
1936 for each register to be recomputed during the second
1937 pass. */
1938 reset_saved_regs (this_cache);
1939 goto restart;
1940 }
1941 }
1942 }
1943 /* move $30,$sp. With different versions of gas this will be either
1944 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1945 Accept any one of these. */
1946 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1947 {
1948 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
d2ca4222 1949 if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1950 {
1951 unsigned alloca_adjust;
c906108c 1952
29639122 1953 frame_reg = 30;
d2ca4222
UW
1954 frame_addr = frame_unwind_register_signed
1955 (next_frame,
1956 gdbarch_num_regs (current_gdbarch) + 30);
1957
29639122
JB
1958 alloca_adjust = (unsigned) (frame_addr - sp);
1959 if (alloca_adjust > 0)
1960 {
1961 /* FP > SP + frame_size. This may be because of
1962 an alloca or somethings similar. Fix sp to
1963 "pre-alloca" value, and try again. */
1964 sp = frame_addr;
1965 /* Need to reset the status of all registers. Otherwise,
1966 we will hit a guard that prevents the new address
1967 for each register to be recomputed during the second
1968 pass. */
1969 reset_saved_regs (this_cache);
1970 goto restart;
1971 }
1972 }
1973 }
1974 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1975 {
1976 set_reg_offset (this_cache, reg, frame_addr + low_word);
1977 }
1978 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1979 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1980 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1981 || high_word == 0x3c1c /* lui $gp,n */
1982 || high_word == 0x279c /* addiu $gp,$gp,n */
1983 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1984 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1985 )
1986 {
1987 /* These instructions are part of the prologue, but we don't
1988 need to do anything special to handle them. */
1989 }
1990 /* The instructions below load $at or $t0 with an immediate
1991 value in preparation for a stack adjustment via
1992 subu $sp,$sp,[$at,$t0]. These instructions could also
1993 initialize a local variable, so we accept them only before
1994 a stack adjustment instruction was seen. */
1995 else if (!seen_sp_adjust
1996 && (high_word == 0x3c01 /* lui $at,n */
1997 || high_word == 0x3c08 /* lui $t0,n */
1998 || high_word == 0x3421 /* ori $at,$at,n */
1999 || high_word == 0x3508 /* ori $t0,$t0,n */
2000 || high_word == 0x3401 /* ori $at,$zero,n */
2001 || high_word == 0x3408 /* ori $t0,$zero,n */
2002 ))
2003 {
95ac2dcf 2004 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
2005 }
2006 else
2007 {
2008 /* This instruction is not an instruction typically found
2009 in a prologue, so we must have reached the end of the
2010 prologue. */
2011 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2012 loop now? Why would we need to continue scanning the function
2013 instructions? */
2014 if (end_prologue_addr == 0)
2015 end_prologue_addr = cur_pc;
2016 }
a4b8ebc8 2017 }
c906108c 2018
29639122
JB
2019 if (this_cache != NULL)
2020 {
2021 this_cache->base =
f57d151a
UW
2022 (frame_unwind_register_signed (next_frame,
2023 gdbarch_num_regs (current_gdbarch)
2024 + frame_reg)
29639122
JB
2025 + frame_offset);
2026 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2027 this assignment below, eventually. But it's still needed
2028 for now. */
f57d151a
UW
2029 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2030 + mips_regnum (current_gdbarch)->pc]
2031 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2032 + MIPS_RA_REGNUM];
29639122 2033 }
c906108c 2034
29639122
JB
2035 /* If we didn't reach the end of the prologue when scanning the function
2036 instructions, then set end_prologue_addr to the address of the
2037 instruction immediately after the last one we scanned. */
2038 /* brobecker/2004-10-10: I don't think this would ever happen, but
2039 we may as well be careful and do our best if we have a null
2040 end_prologue_addr. */
2041 if (end_prologue_addr == 0)
2042 end_prologue_addr = cur_pc;
2043
2044 /* In a frameless function, we might have incorrectly
2045 skipped some load immediate instructions. Undo the skipping
2046 if the load immediate was not followed by a stack adjustment. */
2047 if (load_immediate_bytes && !seen_sp_adjust)
2048 end_prologue_addr -= load_immediate_bytes;
c906108c 2049
29639122 2050 return end_prologue_addr;
c906108c
SS
2051}
2052
29639122
JB
2053/* Heuristic unwinder for procedures using 32-bit instructions (covers
2054 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2055 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2056 unwinder. */
c906108c 2057
29639122
JB
2058static struct mips_frame_cache *
2059mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 2060{
29639122 2061 struct mips_frame_cache *cache;
c906108c 2062
29639122
JB
2063 if ((*this_cache) != NULL)
2064 return (*this_cache);
c5aa993b 2065
29639122
JB
2066 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2067 (*this_cache) = cache;
2068 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 2069
29639122
JB
2070 /* Analyze the function prologue. */
2071 {
6de5b849
JB
2072 const CORE_ADDR pc =
2073 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 2074 CORE_ADDR start_addr;
c906108c 2075
29639122
JB
2076 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2077 if (start_addr == 0)
2078 start_addr = heuristic_proc_start (pc);
2079 /* We can't analyze the prologue if we couldn't find the begining
2080 of the function. */
2081 if (start_addr == 0)
2082 return cache;
c5aa993b 2083
29639122
JB
2084 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2085 }
2086
3e8c568d 2087 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a
UW
2088 trad_frame_set_value (cache->saved_regs,
2089 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2090 cache->base);
c5aa993b 2091
29639122 2092 return (*this_cache);
c906108c
SS
2093}
2094
29639122
JB
2095static void
2096mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2097 struct frame_id *this_id)
c906108c 2098{
29639122
JB
2099 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2100 this_cache);
93d42b30
DJ
2101 (*this_id) = frame_id_build (info->base,
2102 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 2103}
c906108c 2104
29639122
JB
2105static void
2106mips_insn32_frame_prev_register (struct frame_info *next_frame,
2107 void **this_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2110 int *realnump, gdb_byte *valuep)
29639122
JB
2111{
2112 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2113 this_cache);
2114 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2115 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2116}
2117
29639122
JB
2118static const struct frame_unwind mips_insn32_frame_unwind =
2119{
2120 NORMAL_FRAME,
2121 mips_insn32_frame_this_id,
2122 mips_insn32_frame_prev_register
2123};
c906108c 2124
29639122
JB
2125static const struct frame_unwind *
2126mips_insn32_frame_sniffer (struct frame_info *next_frame)
2127{
6de5b849 2128 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2129 if (! mips_pc_is_mips16 (pc))
29639122
JB
2130 return &mips_insn32_frame_unwind;
2131 return NULL;
2132}
c906108c 2133
1c645fec 2134static CORE_ADDR
29639122
JB
2135mips_insn32_frame_base_address (struct frame_info *next_frame,
2136 void **this_cache)
c906108c 2137{
29639122
JB
2138 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2139 this_cache);
2140 return info->base;
2141}
c906108c 2142
29639122
JB
2143static const struct frame_base mips_insn32_frame_base =
2144{
2145 &mips_insn32_frame_unwind,
2146 mips_insn32_frame_base_address,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address
2149};
1c645fec 2150
29639122
JB
2151static const struct frame_base *
2152mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2153{
2154 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2155 return &mips_insn32_frame_base;
a65bbe44 2156 else
29639122
JB
2157 return NULL;
2158}
a65bbe44 2159
29639122
JB
2160static struct trad_frame_cache *
2161mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2162{
2163 CORE_ADDR pc;
2164 CORE_ADDR start_addr;
2165 CORE_ADDR stack_addr;
2166 struct trad_frame_cache *this_trad_cache;
c906108c 2167
29639122
JB
2168 if ((*this_cache) != NULL)
2169 return (*this_cache);
2170 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2171 (*this_cache) = this_trad_cache;
1c645fec 2172
29639122 2173 /* The return address is in the link register. */
3e8c568d
UW
2174 trad_frame_set_reg_realreg (this_trad_cache,
2175 gdbarch_pc_regnum (current_gdbarch),
2176 MIPS_RA_REGNUM);
1c645fec 2177
29639122
JB
2178 /* Frame ID, since it's a frameless / stackless function, no stack
2179 space is allocated and SP on entry is the current SP. */
2180 pc = frame_pc_unwind (next_frame);
2181 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2182 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
29639122 2183 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
1c645fec 2184
29639122
JB
2185 /* Assume that the frame's base is the same as the
2186 stack-pointer. */
2187 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2188
29639122
JB
2189 return this_trad_cache;
2190}
c906108c 2191
29639122
JB
2192static void
2193mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2194 struct frame_id *this_id)
2195{
2196 struct trad_frame_cache *this_trad_cache
2197 = mips_stub_frame_cache (next_frame, this_cache);
2198 trad_frame_get_id (this_trad_cache, this_id);
2199}
c906108c 2200
29639122
JB
2201static void
2202mips_stub_frame_prev_register (struct frame_info *next_frame,
2203 void **this_cache,
2204 int regnum, int *optimizedp,
2205 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2206 int *realnump, gdb_byte *valuep)
29639122
JB
2207{
2208 struct trad_frame_cache *this_trad_cache
2209 = mips_stub_frame_cache (next_frame, this_cache);
2210 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2211 lvalp, addrp, realnump, valuep);
2212}
c906108c 2213
29639122
JB
2214static const struct frame_unwind mips_stub_frame_unwind =
2215{
2216 NORMAL_FRAME,
2217 mips_stub_frame_this_id,
2218 mips_stub_frame_prev_register
2219};
c906108c 2220
29639122
JB
2221static const struct frame_unwind *
2222mips_stub_frame_sniffer (struct frame_info *next_frame)
2223{
979b38e0 2224 struct obj_section *s;
93d42b30 2225 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2226
29639122
JB
2227 if (in_plt_section (pc, NULL))
2228 return &mips_stub_frame_unwind;
979b38e0
DJ
2229
2230 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2231 s = find_pc_section (pc);
2232
2233 if (s != NULL
2234 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2235 ".MIPS.stubs") == 0)
2236 return &mips_stub_frame_unwind;
2237
2238 return NULL;
29639122 2239}
c906108c 2240
29639122
JB
2241static CORE_ADDR
2242mips_stub_frame_base_address (struct frame_info *next_frame,
2243 void **this_cache)
2244{
2245 struct trad_frame_cache *this_trad_cache
2246 = mips_stub_frame_cache (next_frame, this_cache);
2247 return trad_frame_get_this_base (this_trad_cache);
2248}
0fce0821 2249
29639122
JB
2250static const struct frame_base mips_stub_frame_base =
2251{
2252 &mips_stub_frame_unwind,
2253 mips_stub_frame_base_address,
2254 mips_stub_frame_base_address,
2255 mips_stub_frame_base_address
2256};
2257
2258static const struct frame_base *
2259mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2260{
2261 if (mips_stub_frame_sniffer (next_frame) != NULL)
2262 return &mips_stub_frame_base;
2263 else
2264 return NULL;
2265}
2266
29639122 2267/* mips_addr_bits_remove - remove useless address bits */
65596487 2268
29639122
JB
2269static CORE_ADDR
2270mips_addr_bits_remove (CORE_ADDR addr)
65596487 2271{
29639122
JB
2272 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2273 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2274 /* This hack is a work-around for existing boards using PMON, the
2275 simulator, and any other 64-bit targets that doesn't have true
2276 64-bit addressing. On these targets, the upper 32 bits of
2277 addresses are ignored by the hardware. Thus, the PC or SP are
2278 likely to have been sign extended to all 1s by instruction
2279 sequences that load 32-bit addresses. For example, a typical
2280 piece of code that loads an address is this:
65596487 2281
29639122
JB
2282 lui $r2, <upper 16 bits>
2283 ori $r2, <lower 16 bits>
65596487 2284
29639122
JB
2285 But the lui sign-extends the value such that the upper 32 bits
2286 may be all 1s. The workaround is simply to mask off these
2287 bits. In the future, gcc may be changed to support true 64-bit
2288 addressing, and this masking will have to be disabled. */
2289 return addr &= 0xffffffffUL;
2290 else
2291 return addr;
65596487
JB
2292}
2293
29639122
JB
2294/* mips_software_single_step() is called just before we want to resume
2295 the inferior, if we want to single-step it but there is no hardware
2296 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2297 the target of the coming instruction and breakpoint it. */
29639122 2298
e6590a1b 2299int
0b1b3e42 2300mips_software_single_step (struct frame_info *frame)
c906108c 2301{
8181d85f 2302 CORE_ADDR pc, next_pc;
65596487 2303
0b1b3e42
UW
2304 pc = get_frame_pc (frame);
2305 next_pc = mips_next_pc (frame, pc);
e6590a1b 2306
e0cd558a 2307 insert_single_step_breakpoint (next_pc);
e6590a1b 2308 return 1;
29639122 2309}
a65bbe44 2310
29639122
JB
2311/* Test whether the PC points to the return instruction at the
2312 end of a function. */
65596487 2313
29639122
JB
2314static int
2315mips_about_to_return (CORE_ADDR pc)
2316{
0fe7e7c8 2317 if (mips_pc_is_mips16 (pc))
29639122
JB
2318 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2319 generates a "jr $ra"; other times it generates code to load
2320 the return address from the stack to an accessible register (such
2321 as $a3), then a "jr" using that register. This second case
2322 is almost impossible to distinguish from an indirect jump
2323 used for switch statements, so we don't even try. */
2324 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2325 else
2326 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2327}
c906108c 2328
c906108c 2329
29639122
JB
2330/* This fencepost looks highly suspicious to me. Removing it also
2331 seems suspicious as it could affect remote debugging across serial
2332 lines. */
c906108c 2333
29639122
JB
2334static CORE_ADDR
2335heuristic_proc_start (CORE_ADDR pc)
2336{
2337 CORE_ADDR start_pc;
2338 CORE_ADDR fence;
2339 int instlen;
2340 int seen_adjsp = 0;
65596487 2341
bf6ae464 2342 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
29639122
JB
2343 start_pc = pc;
2344 fence = start_pc - heuristic_fence_post;
2345 if (start_pc == 0)
2346 return 0;
65596487 2347
29639122
JB
2348 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2349 fence = VM_MIN_ADDRESS;
65596487 2350
95ac2dcf 2351 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2352
29639122
JB
2353 /* search back for previous return */
2354 for (start_pc -= instlen;; start_pc -= instlen)
2355 if (start_pc < fence)
2356 {
2357 /* It's not clear to me why we reach this point when
2358 stop_soon, but with this test, at least we
2359 don't print out warnings for every child forked (eg, on
2360 decstation). 22apr93 rich@cygnus.com. */
2361 if (stop_soon == NO_STOP_QUIETLY)
2362 {
2363 static int blurb_printed = 0;
98b4dd94 2364
8a3fe4f8 2365 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2366 paddr_nz (pc));
2367
2368 if (!blurb_printed)
2369 {
2370 /* This actually happens frequently in embedded
2371 development, when you first connect to a board
2372 and your stack pointer and pc are nowhere in
2373 particular. This message needs to give people
2374 in that situation enough information to
2375 determine that it's no big deal. */
2376 printf_filtered ("\n\
2377 GDB is unable to find the start of the function at 0x%s\n\
2378and thus can't determine the size of that function's stack frame.\n\
2379This means that GDB may be unable to access that stack frame, or\n\
2380the frames below it.\n\
2381 This problem is most likely caused by an invalid program counter or\n\
2382stack pointer.\n\
2383 However, if you think GDB should simply search farther back\n\
2384from 0x%s for code which looks like the beginning of a\n\
2385function, you can increase the range of the search using the `set\n\
2386heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2387 blurb_printed = 1;
2388 }
2389 }
2390
2391 return 0;
2392 }
0fe7e7c8 2393 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2394 {
2395 unsigned short inst;
2396
2397 /* On MIPS16, any one of the following is likely to be the
2398 start of a function:
2399 entry
2400 addiu sp,-n
2401 daddiu sp,-n
2402 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2403 inst = mips_fetch_instruction (start_pc);
2404 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2405 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2406 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2407 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2408 break;
2409 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2410 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2411 seen_adjsp = 1;
2412 else
2413 seen_adjsp = 0;
2414 }
2415 else if (mips_about_to_return (start_pc))
2416 {
4c7d22cb 2417 /* Skip return and its delay slot. */
95ac2dcf 2418 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2419 break;
2420 }
2421
2422 return start_pc;
c906108c
SS
2423}
2424
6c0d6680
DJ
2425struct mips_objfile_private
2426{
2427 bfd_size_type size;
2428 char *contents;
2429};
2430
f09ded24
AC
2431/* According to the current ABI, should the type be passed in a
2432 floating-point register (assuming that there is space)? When there
a1f5b845 2433 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2434 FP registers and, consequently this returns false - forces FP
2435 arguments into integer registers. */
2436
2437static int
2438fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2439{
2440 return ((typecode == TYPE_CODE_FLT
2441 || (MIPS_EABI
6d82d43b
AC
2442 && (typecode == TYPE_CODE_STRUCT
2443 || typecode == TYPE_CODE_UNION)
f09ded24 2444 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2445 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2446 == TYPE_CODE_FLT))
c86b5b38 2447 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2448}
2449
49e790b0
DJ
2450/* On o32, argument passing in GPRs depends on the alignment of the type being
2451 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2452
2453static int
2454mips_type_needs_double_align (struct type *type)
2455{
2456 enum type_code typecode = TYPE_CODE (type);
361d1df0 2457
49e790b0
DJ
2458 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2459 return 1;
2460 else if (typecode == TYPE_CODE_STRUCT)
2461 {
2462 if (TYPE_NFIELDS (type) < 1)
2463 return 0;
2464 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2465 }
2466 else if (typecode == TYPE_CODE_UNION)
2467 {
361d1df0 2468 int i, n;
49e790b0
DJ
2469
2470 n = TYPE_NFIELDS (type);
2471 for (i = 0; i < n; i++)
2472 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2473 return 1;
2474 return 0;
2475 }
2476 return 0;
2477}
2478
dc604539
AC
2479/* Adjust the address downward (direction of stack growth) so that it
2480 is correctly aligned for a new stack frame. */
2481static CORE_ADDR
2482mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2483{
5b03f266 2484 return align_down (addr, 16);
dc604539
AC
2485}
2486
f7ab6ec6 2487static CORE_ADDR
7d9b040b 2488mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2489 struct regcache *regcache, CORE_ADDR bp_addr,
2490 int nargs, struct value **args, CORE_ADDR sp,
2491 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2492{
2493 int argreg;
2494 int float_argreg;
2495 int argnum;
2496 int len = 0;
2497 int stack_offset = 0;
480d3dd2 2498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2499 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 2500 int regsize = mips_abi_regsize (gdbarch);
c906108c 2501
25ab4790
AC
2502 /* For shared libraries, "t9" needs to point at the function
2503 address. */
4c7d22cb 2504 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2505
2506 /* Set the return address register to point to the entry point of
2507 the program, where a breakpoint lies in wait. */
4c7d22cb 2508 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2509
c906108c 2510 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2511 are properly aligned. The stack has to be at least 64-bit
2512 aligned even on 32-bit machines, because doubles must be 64-bit
2513 aligned. For n32 and n64, stack frames need to be 128-bit
2514 aligned, so we round to this widest known alignment. */
2515
5b03f266
AC
2516 sp = align_down (sp, 16);
2517 struct_addr = align_down (struct_addr, 16);
c5aa993b 2518
46e0f506 2519 /* Now make space on the stack for the args. We allocate more
c906108c 2520 than necessary for EABI, because the first few arguments are
46e0f506 2521 passed in registers, but that's OK. */
c906108c 2522 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2523 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 2524 sp -= align_up (len, 16);
c906108c 2525
9ace0497 2526 if (mips_debug)
6d82d43b 2527 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2528 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2529 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2530
c906108c 2531 /* Initialize the integer and float register pointers. */
4c7d22cb 2532 argreg = MIPS_A0_REGNUM;
56cea623 2533 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2534
46e0f506 2535 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2536 if (struct_return)
9ace0497
AC
2537 {
2538 if (mips_debug)
2539 fprintf_unfiltered (gdb_stdlog,
25ab4790 2540 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2541 argreg, paddr_nz (struct_addr));
9c9acae0 2542 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 2543 }
c906108c
SS
2544
2545 /* Now load as many as possible of the first arguments into
2546 registers, and push the rest onto the stack. Loop thru args
2547 from first to last. */
2548 for (argnum = 0; argnum < nargs; argnum++)
2549 {
47a35522
MK
2550 const gdb_byte *val;
2551 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2552 struct value *arg = args[argnum];
4991999e 2553 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2554 int len = TYPE_LENGTH (arg_type);
2555 enum type_code typecode = TYPE_CODE (arg_type);
2556
9ace0497
AC
2557 if (mips_debug)
2558 fprintf_unfiltered (gdb_stdlog,
25ab4790 2559 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2560 argnum + 1, len, (int) typecode);
9ace0497 2561
c906108c 2562 /* The EABI passes structures that do not fit in a register by
46e0f506 2563 reference. */
1a69e1e4 2564 if (len > regsize
9ace0497 2565 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2566 {
1a69e1e4 2567 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
c906108c 2568 typecode = TYPE_CODE_PTR;
1a69e1e4 2569 len = regsize;
c906108c 2570 val = valbuf;
9ace0497
AC
2571 if (mips_debug)
2572 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2573 }
2574 else
47a35522 2575 val = value_contents (arg);
c906108c
SS
2576
2577 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2578 even-numbered floating point register. Round the FP register
2579 up before the check to see if there are any FP registers
46e0f506
MS
2580 left. Non MIPS_EABI targets also pass the FP in the integer
2581 registers so also round up normal registers. */
1a69e1e4 2582 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2583 {
2584 if ((float_argreg & 1))
2585 float_argreg++;
2586 }
c906108c
SS
2587
2588 /* Floating point arguments passed in registers have to be
2589 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2590 are passed in register pairs; the even register gets
2591 the low word, and the odd register gets the high word.
2592 On non-EABI processors, the first two floating point arguments are
2593 also copied to general registers, because MIPS16 functions
2594 don't use float registers for arguments. This duplication of
2595 arguments in general registers can't hurt non-MIPS16 functions
2596 because those registers are normally skipped. */
1012bd0e
EZ
2597 /* MIPS_EABI squeezes a struct that contains a single floating
2598 point value into an FP register instead of pushing it onto the
46e0f506 2599 stack. */
f09ded24
AC
2600 if (fp_register_arg_p (typecode, arg_type)
2601 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2602 {
6da397e0
KB
2603 /* EABI32 will pass doubles in consecutive registers, even on
2604 64-bit cores. At one time, we used to check the size of
2605 `float_argreg' to determine whether or not to pass doubles
2606 in consecutive registers, but this is not sufficient for
2607 making the ABI determination. */
2608 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2609 {
4c6b5505
UW
2610 int low_offset = gdbarch_byte_order (current_gdbarch)
2611 == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2612 unsigned long regval;
2613
2614 /* Write the low word of the double to the even register(s). */
c5aa993b 2615 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2616 if (mips_debug)
acdb74a0 2617 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2618 float_argreg, phex (regval, 4));
9c9acae0 2619 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2620
2621 /* Write the high word of the double to the odd register(s). */
c5aa993b 2622 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2623 if (mips_debug)
acdb74a0 2624 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2625 float_argreg, phex (regval, 4));
9c9acae0 2626 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2627 }
2628 else
2629 {
2630 /* This is a floating point value that fits entirely
2631 in a single register. */
53a5351d 2632 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2633 above to ensure that it is even register aligned. */
9ace0497
AC
2634 LONGEST regval = extract_unsigned_integer (val, len);
2635 if (mips_debug)
acdb74a0 2636 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2637 float_argreg, phex (regval, len));
9c9acae0 2638 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2639 }
2640 }
2641 else
2642 {
2643 /* Copy the argument to general registers or the stack in
2644 register-sized pieces. Large arguments are split between
2645 registers and stack. */
1a69e1e4
DJ
2646 /* Note: structs whose size is not a multiple of regsize
2647 are treated specially: Irix cc passes
d5ac5a39
AC
2648 them in registers where gcc sometimes puts them on the
2649 stack. For maximum compatibility, we will put them in
2650 both places. */
1a69e1e4 2651 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 2652
f09ded24 2653 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2654 register are only written to memory. */
c906108c
SS
2655 while (len > 0)
2656 {
ebafbe83 2657 /* Remember if the argument was written to the stack. */
566f0f7a 2658 int stack_used_p = 0;
1a69e1e4 2659 int partial_len = (len < regsize ? len : regsize);
c906108c 2660
acdb74a0
AC
2661 if (mips_debug)
2662 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2663 partial_len);
2664
566f0f7a 2665 /* Write this portion of the argument to the stack. */
f09ded24
AC
2666 if (argreg > MIPS_LAST_ARG_REGNUM
2667 || odd_sized_struct
2668 || fp_register_arg_p (typecode, arg_type))
c906108c 2669 {
c906108c
SS
2670 /* Should shorter than int integer values be
2671 promoted to int before being stored? */
c906108c 2672 int longword_offset = 0;
9ace0497 2673 CORE_ADDR addr;
566f0f7a 2674 stack_used_p = 1;
4c6b5505 2675 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 2676 {
1a69e1e4 2677 if (regsize == 8
480d3dd2
AC
2678 && (typecode == TYPE_CODE_INT
2679 || typecode == TYPE_CODE_PTR
6d82d43b 2680 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 2681 longword_offset = regsize - len;
480d3dd2
AC
2682 else if ((typecode == TYPE_CODE_STRUCT
2683 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
2684 && TYPE_LENGTH (arg_type) < regsize)
2685 longword_offset = regsize - len;
7a292a7a 2686 }
c5aa993b 2687
9ace0497
AC
2688 if (mips_debug)
2689 {
cb3d25d1
MS
2690 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2691 paddr_nz (stack_offset));
2692 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2693 paddr_nz (longword_offset));
9ace0497 2694 }
361d1df0 2695
9ace0497
AC
2696 addr = sp + stack_offset + longword_offset;
2697
2698 if (mips_debug)
2699 {
2700 int i;
6d82d43b 2701 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2702 paddr_nz (addr));
9ace0497
AC
2703 for (i = 0; i < partial_len; i++)
2704 {
6d82d43b 2705 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2706 val[i] & 0xff);
9ace0497
AC
2707 }
2708 }
2709 write_memory (addr, val, partial_len);
c906108c
SS
2710 }
2711
f09ded24
AC
2712 /* Note!!! This is NOT an else clause. Odd sized
2713 structs may go thru BOTH paths. Floating point
46e0f506 2714 arguments will not. */
566f0f7a 2715 /* Write this portion of the argument to a general
6d82d43b 2716 purpose register. */
f09ded24
AC
2717 if (argreg <= MIPS_LAST_ARG_REGNUM
2718 && !fp_register_arg_p (typecode, arg_type))
c906108c 2719 {
6d82d43b
AC
2720 LONGEST regval =
2721 extract_unsigned_integer (val, partial_len);
c906108c 2722
9ace0497 2723 if (mips_debug)
acdb74a0 2724 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2725 argreg,
1a69e1e4 2726 phex (regval, regsize));
9c9acae0 2727 regcache_cooked_write_unsigned (regcache, argreg, regval);
c906108c 2728 argreg++;
c906108c 2729 }
c5aa993b 2730
c906108c
SS
2731 len -= partial_len;
2732 val += partial_len;
2733
566f0f7a 2734 /* Compute the the offset into the stack at which we
6d82d43b 2735 will copy the next parameter.
566f0f7a 2736
566f0f7a 2737 In the new EABI (and the NABI32), the stack_offset
46e0f506 2738 only needs to be adjusted when it has been used. */
c906108c 2739
46e0f506 2740 if (stack_used_p)
1a69e1e4 2741 stack_offset += align_up (partial_len, regsize);
c906108c
SS
2742 }
2743 }
9ace0497
AC
2744 if (mips_debug)
2745 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2746 }
2747
f10683bb 2748 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2749
0f71a2f6
JM
2750 /* Return adjusted stack pointer. */
2751 return sp;
2752}
2753
a1f5b845 2754/* Determine the return value convention being used. */
6d82d43b 2755
9c8fdbfa
AC
2756static enum return_value_convention
2757mips_eabi_return_value (struct gdbarch *gdbarch,
2758 struct type *type, struct regcache *regcache,
47a35522 2759 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2760{
9c8fdbfa
AC
2761 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2762 return RETURN_VALUE_STRUCT_CONVENTION;
2763 if (readbuf)
2764 memset (readbuf, 0, TYPE_LENGTH (type));
2765 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2766}
2767
6d82d43b
AC
2768
2769/* N32/N64 ABI stuff. */
ebafbe83 2770
f7ab6ec6 2771static CORE_ADDR
7d9b040b 2772mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2773 struct regcache *regcache, CORE_ADDR bp_addr,
2774 int nargs, struct value **args, CORE_ADDR sp,
2775 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2776{
2777 int argreg;
2778 int float_argreg;
2779 int argnum;
2780 int len = 0;
2781 int stack_offset = 0;
480d3dd2 2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2783 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2784
25ab4790
AC
2785 /* For shared libraries, "t9" needs to point at the function
2786 address. */
4c7d22cb 2787 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2788
2789 /* Set the return address register to point to the entry point of
2790 the program, where a breakpoint lies in wait. */
4c7d22cb 2791 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2792
cb3d25d1
MS
2793 /* First ensure that the stack and structure return address (if any)
2794 are properly aligned. The stack has to be at least 64-bit
2795 aligned even on 32-bit machines, because doubles must be 64-bit
2796 aligned. For n32 and n64, stack frames need to be 128-bit
2797 aligned, so we round to this widest known alignment. */
2798
5b03f266
AC
2799 sp = align_down (sp, 16);
2800 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2801
2802 /* Now make space on the stack for the args. */
2803 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2804 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 2805 sp -= align_up (len, 16);
cb3d25d1
MS
2806
2807 if (mips_debug)
6d82d43b 2808 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2809 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2810 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2811
2812 /* Initialize the integer and float register pointers. */
4c7d22cb 2813 argreg = MIPS_A0_REGNUM;
56cea623 2814 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2815
46e0f506 2816 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2817 if (struct_return)
2818 {
2819 if (mips_debug)
2820 fprintf_unfiltered (gdb_stdlog,
25ab4790 2821 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2822 argreg, paddr_nz (struct_addr));
9c9acae0 2823 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
2824 }
2825
2826 /* Now load as many as possible of the first arguments into
2827 registers, and push the rest onto the stack. Loop thru args
2828 from first to last. */
2829 for (argnum = 0; argnum < nargs; argnum++)
2830 {
47a35522 2831 const gdb_byte *val;
cb3d25d1 2832 struct value *arg = args[argnum];
4991999e 2833 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2834 int len = TYPE_LENGTH (arg_type);
2835 enum type_code typecode = TYPE_CODE (arg_type);
2836
2837 if (mips_debug)
2838 fprintf_unfiltered (gdb_stdlog,
25ab4790 2839 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2840 argnum + 1, len, (int) typecode);
2841
47a35522 2842 val = value_contents (arg);
cb3d25d1
MS
2843
2844 if (fp_register_arg_p (typecode, arg_type)
2845 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2846 {
2847 /* This is a floating point value that fits entirely
2848 in a single register. */
2849 /* On 32 bit ABI's the float_argreg is further adjusted
2850 above to ensure that it is even register aligned. */
2851 LONGEST regval = extract_unsigned_integer (val, len);
2852 if (mips_debug)
2853 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2854 float_argreg, phex (regval, len));
9c9acae0 2855 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
cb3d25d1
MS
2856
2857 if (mips_debug)
2858 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2859 argreg, phex (regval, len));
9c9acae0 2860 regcache_cooked_write_unsigned (regcache, argreg, regval);
cb3d25d1
MS
2861 argreg += 1;
2862 }
2863 else
2864 {
2865 /* Copy the argument to general registers or the stack in
2866 register-sized pieces. Large arguments are split between
2867 registers and stack. */
1a69e1e4 2868 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
2869 are treated specially: Irix cc passes them in registers
2870 where gcc sometimes puts them on the stack. For maximum
2871 compatibility, we will put them in both places. */
1a69e1e4
DJ
2872 int odd_sized_struct = (len > MIPS64_REGSIZE
2873 && len % MIPS64_REGSIZE != 0);
cb3d25d1 2874 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2875 register are only written to memory. */
cb3d25d1
MS
2876 while (len > 0)
2877 {
ad018eee 2878 /* Remember if the argument was written to the stack. */
cb3d25d1 2879 int stack_used_p = 0;
1a69e1e4 2880 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
2881
2882 if (mips_debug)
2883 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2884 partial_len);
2885
2886 /* Write this portion of the argument to the stack. */
2887 if (argreg > MIPS_LAST_ARG_REGNUM
2888 || odd_sized_struct
2889 || fp_register_arg_p (typecode, arg_type))
2890 {
2891 /* Should shorter than int integer values be
2892 promoted to int before being stored? */
2893 int longword_offset = 0;
2894 CORE_ADDR addr;
2895 stack_used_p = 1;
4c6b5505 2896 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 2897 {
1a69e1e4
DJ
2898 if ((typecode == TYPE_CODE_INT
2899 || typecode == TYPE_CODE_PTR
2900 || typecode == TYPE_CODE_FLT)
2901 && len <= 4)
2902 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
2903 }
2904
2905 if (mips_debug)
2906 {
2907 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2908 paddr_nz (stack_offset));
2909 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2910 paddr_nz (longword_offset));
2911 }
2912
2913 addr = sp + stack_offset + longword_offset;
2914
2915 if (mips_debug)
2916 {
2917 int i;
6d82d43b 2918 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2919 paddr_nz (addr));
2920 for (i = 0; i < partial_len; i++)
2921 {
6d82d43b 2922 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2923 val[i] & 0xff);
2924 }
2925 }
2926 write_memory (addr, val, partial_len);
2927 }
2928
2929 /* Note!!! This is NOT an else clause. Odd sized
2930 structs may go thru BOTH paths. Floating point
2931 arguments will not. */
2932 /* Write this portion of the argument to a general
6d82d43b 2933 purpose register. */
cb3d25d1
MS
2934 if (argreg <= MIPS_LAST_ARG_REGNUM
2935 && !fp_register_arg_p (typecode, arg_type))
2936 {
6d82d43b
AC
2937 LONGEST regval =
2938 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
2939
2940 /* A non-floating-point argument being passed in a
2941 general register. If a struct or union, and if
2942 the remaining length is smaller than the register
2943 size, we have to adjust the register value on
2944 big endian targets.
2945
2946 It does not seem to be necessary to do the
1a69e1e4 2947 same for integral types. */
cb3d25d1 2948
4c6b5505 2949 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 2950 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
2951 && (typecode == TYPE_CODE_STRUCT
2952 || typecode == TYPE_CODE_UNION))
1a69e1e4 2953 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 2954 * TARGET_CHAR_BIT);
cb3d25d1
MS
2955
2956 if (mips_debug)
2957 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2958 argreg,
1a69e1e4 2959 phex (regval, MIPS64_REGSIZE));
9c9acae0 2960 regcache_cooked_write_unsigned (regcache, argreg, regval);
cb3d25d1
MS
2961 argreg++;
2962 }
2963
2964 len -= partial_len;
2965 val += partial_len;
2966
2967 /* Compute the the offset into the stack at which we
6d82d43b 2968 will copy the next parameter.
cb3d25d1
MS
2969
2970 In N32 (N64?), the stack_offset only needs to be
2971 adjusted when it has been used. */
2972
2973 if (stack_used_p)
1a69e1e4 2974 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
2975 }
2976 }
2977 if (mips_debug)
2978 fprintf_unfiltered (gdb_stdlog, "\n");
2979 }
2980
f10683bb 2981 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2982
cb3d25d1
MS
2983 /* Return adjusted stack pointer. */
2984 return sp;
2985}
2986
6d82d43b
AC
2987static enum return_value_convention
2988mips_n32n64_return_value (struct gdbarch *gdbarch,
2989 struct type *type, struct regcache *regcache,
47a35522 2990 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 2991{
6d82d43b
AC
2992 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2993 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2994 || TYPE_CODE (type) == TYPE_CODE_UNION
2995 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1a69e1e4 2996 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 2997 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
2998 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2999 && TYPE_LENGTH (type) == 16
3000 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3001 {
3002 /* A 128-bit floating-point value fills both $f0 and $f2. The
3003 two registers are used in the same as memory order, so the
3004 eight bytes with the lower memory address are in $f0. */
3005 if (mips_debug)
3006 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3007 mips_xfer_register (regcache,
f57d151a
UW
3008 gdbarch_num_regs (current_gdbarch)
3009 + mips_regnum (current_gdbarch)->fp0,
4c6b5505
UW
3010 8, gdbarch_byte_order (current_gdbarch),
3011 readbuf, writebuf, 0);
d05f6826 3012 mips_xfer_register (regcache,
f57d151a
UW
3013 gdbarch_num_regs (current_gdbarch)
3014 + mips_regnum (current_gdbarch)->fp0 + 2,
4c6b5505
UW
3015 8, gdbarch_byte_order (current_gdbarch),
3016 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
3017 writebuf ? writebuf + 8 : writebuf, 0);
3018 return RETURN_VALUE_REGISTER_CONVENTION;
3019 }
6d82d43b
AC
3020 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3021 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3022 {
3023 /* A floating-point value belongs in the least significant part
3024 of FP0. */
3025 if (mips_debug)
3026 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3027 mips_xfer_register (regcache,
f57d151a
UW
3028 gdbarch_num_regs (current_gdbarch)
3029 + mips_regnum (current_gdbarch)->fp0,
6d82d43b 3030 TYPE_LENGTH (type),
4c6b5505
UW
3031 gdbarch_byte_order (current_gdbarch),
3032 readbuf, writebuf, 0);
6d82d43b
AC
3033 return RETURN_VALUE_REGISTER_CONVENTION;
3034 }
3035 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3036 && TYPE_NFIELDS (type) <= 2
3037 && TYPE_NFIELDS (type) >= 1
3038 && ((TYPE_NFIELDS (type) == 1
3039 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3040 == TYPE_CODE_FLT))
3041 || (TYPE_NFIELDS (type) == 2
3042 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3043 == TYPE_CODE_FLT)
3044 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3045 == TYPE_CODE_FLT)))
3046 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3047 {
3048 /* A struct that contains one or two floats. Each value is part
3049 in the least significant part of their floating point
3050 register.. */
6d82d43b
AC
3051 int regnum;
3052 int field;
3053 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3054 field < TYPE_NFIELDS (type); field++, regnum += 2)
3055 {
3056 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3057 / TARGET_CHAR_BIT);
3058 if (mips_debug)
3059 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3060 offset);
f57d151a
UW
3061 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3062 + regnum,
6d82d43b 3063 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4c6b5505
UW
3064 gdbarch_byte_order (current_gdbarch),
3065 readbuf, writebuf, offset);
6d82d43b
AC
3066 }
3067 return RETURN_VALUE_REGISTER_CONVENTION;
3068 }
3069 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3070 || TYPE_CODE (type) == TYPE_CODE_UNION)
3071 {
3072 /* A structure or union. Extract the left justified value,
3073 regardless of the byte order. I.e. DO NOT USE
3074 mips_xfer_lower. */
3075 int offset;
3076 int regnum;
4c7d22cb 3077 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3078 offset < TYPE_LENGTH (type);
3079 offset += register_size (current_gdbarch, regnum), regnum++)
3080 {
3081 int xfer = register_size (current_gdbarch, regnum);
3082 if (offset + xfer > TYPE_LENGTH (type))
3083 xfer = TYPE_LENGTH (type) - offset;
3084 if (mips_debug)
3085 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3086 offset, xfer, regnum);
f57d151a
UW
3087 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3088 + regnum, xfer,
6d82d43b
AC
3089 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3090 }
3091 return RETURN_VALUE_REGISTER_CONVENTION;
3092 }
3093 else
3094 {
3095 /* A scalar extract each part but least-significant-byte
3096 justified. */
3097 int offset;
3098 int regnum;
4c7d22cb 3099 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3100 offset < TYPE_LENGTH (type);
3101 offset += register_size (current_gdbarch, regnum), regnum++)
3102 {
3103 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
3104 if (offset + xfer > TYPE_LENGTH (type))
3105 xfer = TYPE_LENGTH (type) - offset;
3106 if (mips_debug)
3107 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3108 offset, xfer, regnum);
f57d151a
UW
3109 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3110 + regnum, xfer,
4c6b5505
UW
3111 gdbarch_byte_order (current_gdbarch),
3112 readbuf, writebuf, offset);
6d82d43b
AC
3113 }
3114 return RETURN_VALUE_REGISTER_CONVENTION;
3115 }
3116}
3117
3118/* O32 ABI stuff. */
3119
3120static CORE_ADDR
7d9b040b 3121mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3122 struct regcache *regcache, CORE_ADDR bp_addr,
3123 int nargs, struct value **args, CORE_ADDR sp,
3124 int struct_return, CORE_ADDR struct_addr)
3125{
3126 int argreg;
3127 int float_argreg;
3128 int argnum;
3129 int len = 0;
3130 int stack_offset = 0;
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3132 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3133
3134 /* For shared libraries, "t9" needs to point at the function
3135 address. */
4c7d22cb 3136 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3137
3138 /* Set the return address register to point to the entry point of
3139 the program, where a breakpoint lies in wait. */
4c7d22cb 3140 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3141
3142 /* First ensure that the stack and structure return address (if any)
3143 are properly aligned. The stack has to be at least 64-bit
3144 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3145 aligned. For n32 and n64, stack frames need to be 128-bit
3146 aligned, so we round to this widest known alignment. */
3147
5b03f266
AC
3148 sp = align_down (sp, 16);
3149 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3150
3151 /* Now make space on the stack for the args. */
3152 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3153 {
3154 struct type *arg_type = check_typedef (value_type (args[argnum]));
3155 int arglen = TYPE_LENGTH (arg_type);
3156
3157 /* Align to double-word if necessary. */
2afd3f0a 3158 if (mips_type_needs_double_align (arg_type))
1a69e1e4 3159 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 3160 /* Allocate space on the stack. */
1a69e1e4 3161 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 3162 }
5b03f266 3163 sp -= align_up (len, 16);
ebafbe83
MS
3164
3165 if (mips_debug)
6d82d43b 3166 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3167 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3168 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3169
3170 /* Initialize the integer and float register pointers. */
4c7d22cb 3171 argreg = MIPS_A0_REGNUM;
56cea623 3172 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3173
bcb0cc15 3174 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3175 if (struct_return)
3176 {
3177 if (mips_debug)
3178 fprintf_unfiltered (gdb_stdlog,
25ab4790 3179 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83 3180 argreg, paddr_nz (struct_addr));
9c9acae0 3181 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3182 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
3183 }
3184
3185 /* Now load as many as possible of the first arguments into
3186 registers, and push the rest onto the stack. Loop thru args
3187 from first to last. */
3188 for (argnum = 0; argnum < nargs; argnum++)
3189 {
47a35522 3190 const gdb_byte *val;
ebafbe83 3191 struct value *arg = args[argnum];
4991999e 3192 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3193 int len = TYPE_LENGTH (arg_type);
3194 enum type_code typecode = TYPE_CODE (arg_type);
3195
3196 if (mips_debug)
3197 fprintf_unfiltered (gdb_stdlog,
25ab4790 3198 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3199 argnum + 1, len, (int) typecode);
3200
47a35522 3201 val = value_contents (arg);
46cac009
AC
3202
3203 /* 32-bit ABIs always start floating point arguments in an
3204 even-numbered floating point register. Round the FP register
3205 up before the check to see if there are any FP registers
3206 left. O32/O64 targets also pass the FP in the integer
3207 registers so also round up normal registers. */
2afd3f0a 3208 if (fp_register_arg_p (typecode, arg_type))
46cac009
AC
3209 {
3210 if ((float_argreg & 1))
3211 float_argreg++;
3212 }
3213
3214 /* Floating point arguments passed in registers have to be
3215 treated specially. On 32-bit architectures, doubles
3216 are passed in register pairs; the even register gets
3217 the low word, and the odd register gets the high word.
3218 On O32/O64, the first two floating point arguments are
3219 also copied to general registers, because MIPS16 functions
3220 don't use float registers for arguments. This duplication of
3221 arguments in general registers can't hurt non-MIPS16 functions
3222 because those registers are normally skipped. */
3223
3224 if (fp_register_arg_p (typecode, arg_type)
3225 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3226 {
8b07f6d8 3227 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 3228 {
4c6b5505
UW
3229 int low_offset = gdbarch_byte_order (current_gdbarch)
3230 == BFD_ENDIAN_BIG ? 4 : 0;
46cac009
AC
3231 unsigned long regval;
3232
3233 /* Write the low word of the double to the even register(s). */
3234 regval = extract_unsigned_integer (val + low_offset, 4);
3235 if (mips_debug)
3236 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3237 float_argreg, phex (regval, 4));
9c9acae0 3238 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3239 if (mips_debug)
3240 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3241 argreg, phex (regval, 4));
9c9acae0 3242 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3243
3244 /* Write the high word of the double to the odd register(s). */
3245 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3246 if (mips_debug)
3247 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3248 float_argreg, phex (regval, 4));
9c9acae0 3249 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3250
3251 if (mips_debug)
3252 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3253 argreg, phex (regval, 4));
9c9acae0 3254 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3255 }
3256 else
3257 {
3258 /* This is a floating point value that fits entirely
3259 in a single register. */
3260 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3261 above to ensure that it is even register aligned. */
46cac009
AC
3262 LONGEST regval = extract_unsigned_integer (val, len);
3263 if (mips_debug)
3264 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3265 float_argreg, phex (regval, len));
9c9acae0 3266 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009 3267 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3268 registers for each argument. The below is (my
3269 guess) to ensure that the corresponding integer
3270 register has reserved the same space. */
46cac009
AC
3271 if (mips_debug)
3272 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3273 argreg, phex (regval, len));
9c9acae0 3274 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3275 argreg += 2;
46cac009
AC
3276 }
3277 /* Reserve space for the FP register. */
1a69e1e4 3278 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
3279 }
3280 else
3281 {
3282 /* Copy the argument to general registers or the stack in
3283 register-sized pieces. Large arguments are split between
3284 registers and stack. */
1a69e1e4
DJ
3285 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3286 are treated specially: Irix cc passes
d5ac5a39
AC
3287 them in registers where gcc sometimes puts them on the
3288 stack. For maximum compatibility, we will put them in
3289 both places. */
1a69e1e4
DJ
3290 int odd_sized_struct = (len > MIPS32_REGSIZE
3291 && len % MIPS32_REGSIZE != 0);
46cac009
AC
3292 /* Structures should be aligned to eight bytes (even arg registers)
3293 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3294 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3295 {
3296 if ((argreg & 1))
968b5391
MR
3297 {
3298 argreg++;
1a69e1e4 3299 stack_offset += MIPS32_REGSIZE;
968b5391 3300 }
46cac009 3301 }
46cac009
AC
3302 while (len > 0)
3303 {
3304 /* Remember if the argument was written to the stack. */
3305 int stack_used_p = 0;
1a69e1e4 3306 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
3307
3308 if (mips_debug)
3309 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3310 partial_len);
3311
3312 /* Write this portion of the argument to the stack. */
3313 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3314 || odd_sized_struct)
46cac009
AC
3315 {
3316 /* Should shorter than int integer values be
3317 promoted to int before being stored? */
3318 int longword_offset = 0;
3319 CORE_ADDR addr;
3320 stack_used_p = 1;
46cac009
AC
3321
3322 if (mips_debug)
3323 {
3324 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3325 paddr_nz (stack_offset));
3326 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3327 paddr_nz (longword_offset));
3328 }
3329
3330 addr = sp + stack_offset + longword_offset;
3331
3332 if (mips_debug)
3333 {
3334 int i;
6d82d43b 3335 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3336 paddr_nz (addr));
3337 for (i = 0; i < partial_len; i++)
3338 {
6d82d43b 3339 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3340 val[i] & 0xff);
3341 }
3342 }
3343 write_memory (addr, val, partial_len);
3344 }
3345
3346 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3347 structs may go thru BOTH paths. */
46cac009 3348 /* Write this portion of the argument to a general
6d82d43b 3349 purpose register. */
968b5391 3350 if (argreg <= MIPS_LAST_ARG_REGNUM)
46cac009
AC
3351 {
3352 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3353 /* Value may need to be sign extended, because
1b13c4f6 3354 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3355
3356 /* A non-floating-point argument being passed in a
3357 general register. If a struct or union, and if
3358 the remaining length is smaller than the register
3359 size, we have to adjust the register value on
3360 big endian targets.
3361
3362 It does not seem to be necessary to do the
3363 same for integral types.
3364
3365 Also don't do this adjustment on O64 binaries.
3366
3367 cagney/2001-07-23: gdb/179: Also, GCC, when
3368 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3369 mips_abi_regsize(), generates a left shift
3370 as part of storing the argument in a register
3371 (the left shift isn't generated when
1b13c4f6 3372 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3373 it is quite possible that this is GCC
3374 contradicting the LE/O32 ABI, GDB has not been
3375 adjusted to accommodate this. Either someone
3376 needs to demonstrate that the LE/O32 ABI
3377 specifies such a left shift OR this new ABI gets
3378 identified as such and GDB gets tweaked
3379 accordingly. */
3380
4c6b5505 3381 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3382 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
3383 && (typecode == TYPE_CODE_STRUCT
3384 || typecode == TYPE_CODE_UNION))
1a69e1e4 3385 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 3386 * TARGET_CHAR_BIT);
46cac009
AC
3387
3388 if (mips_debug)
3389 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3390 argreg,
1a69e1e4 3391 phex (regval, MIPS32_REGSIZE));
9c9acae0 3392 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
3393 argreg++;
3394
3395 /* Prevent subsequent floating point arguments from
3396 being passed in floating point registers. */
3397 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3398 }
3399
3400 len -= partial_len;
3401 val += partial_len;
3402
3403 /* Compute the the offset into the stack at which we
6d82d43b 3404 will copy the next parameter.
46cac009 3405
6d82d43b
AC
3406 In older ABIs, the caller reserved space for
3407 registers that contained arguments. This was loosely
3408 refered to as their "home". Consequently, space is
3409 always allocated. */
46cac009 3410
1a69e1e4 3411 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
3412 }
3413 }
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, "\n");
3416 }
3417
f10683bb 3418 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3419
46cac009
AC
3420 /* Return adjusted stack pointer. */
3421 return sp;
3422}
3423
6d82d43b
AC
3424static enum return_value_convention
3425mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3426 struct regcache *regcache,
47a35522 3427 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b
AC
3428{
3429 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3430
3431 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3432 || TYPE_CODE (type) == TYPE_CODE_UNION
3433 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3434 return RETURN_VALUE_STRUCT_CONVENTION;
3435 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3436 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3437 {
3438 /* A single-precision floating-point value. It fits in the
3439 least significant part of FP0. */
3440 if (mips_debug)
3441 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3442 mips_xfer_register (regcache,
f57d151a
UW
3443 gdbarch_num_regs (current_gdbarch)
3444 + mips_regnum (current_gdbarch)->fp0,
6d82d43b 3445 TYPE_LENGTH (type),
4c6b5505
UW
3446 gdbarch_byte_order (current_gdbarch),
3447 readbuf, writebuf, 0);
6d82d43b
AC
3448 return RETURN_VALUE_REGISTER_CONVENTION;
3449 }
3450 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3451 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3452 {
3453 /* A double-precision floating-point value. The most
3454 significant part goes in FP1, and the least significant in
3455 FP0. */
3456 if (mips_debug)
3457 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4c6b5505 3458 switch (gdbarch_byte_order (current_gdbarch))
6d82d43b
AC
3459 {
3460 case BFD_ENDIAN_LITTLE:
3461 mips_xfer_register (regcache,
f57d151a
UW
3462 gdbarch_num_regs (current_gdbarch)
3463 + mips_regnum (current_gdbarch)->fp0 +
4c6b5505
UW
3464 0, 4, gdbarch_byte_order (current_gdbarch),
3465 readbuf, writebuf, 0);
6d82d43b 3466 mips_xfer_register (regcache,
f57d151a
UW
3467 gdbarch_num_regs (current_gdbarch)
3468 + mips_regnum (current_gdbarch)->fp0 + 1,
4c6b5505
UW
3469 4, gdbarch_byte_order (current_gdbarch),
3470 readbuf, writebuf, 4);
6d82d43b
AC
3471 break;
3472 case BFD_ENDIAN_BIG:
3473 mips_xfer_register (regcache,
f57d151a
UW
3474 gdbarch_num_regs (current_gdbarch)
3475 + mips_regnum (current_gdbarch)->fp0 + 1,
4c6b5505
UW
3476 4, gdbarch_byte_order (current_gdbarch),
3477 readbuf, writebuf, 0);
6d82d43b 3478 mips_xfer_register (regcache,
f57d151a
UW
3479 gdbarch_num_regs (current_gdbarch)
3480 + mips_regnum (current_gdbarch)->fp0 + 0,
4c6b5505
UW
3481 4, gdbarch_byte_order (current_gdbarch),
3482 readbuf, writebuf, 4);
6d82d43b
AC
3483 break;
3484 default:
e2e0b3e5 3485 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3486 }
3487 return RETURN_VALUE_REGISTER_CONVENTION;
3488 }
3489#if 0
3490 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3491 && TYPE_NFIELDS (type) <= 2
3492 && TYPE_NFIELDS (type) >= 1
3493 && ((TYPE_NFIELDS (type) == 1
3494 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3495 == TYPE_CODE_FLT))
3496 || (TYPE_NFIELDS (type) == 2
3497 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3498 == TYPE_CODE_FLT)
3499 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3500 == TYPE_CODE_FLT)))
3501 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3502 {
3503 /* A struct that contains one or two floats. Each value is part
3504 in the least significant part of their floating point
3505 register.. */
870cd05e 3506 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3507 int regnum;
3508 int field;
3509 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3510 field < TYPE_NFIELDS (type); field++, regnum += 2)
3511 {
3512 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3513 / TARGET_CHAR_BIT);
3514 if (mips_debug)
3515 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3516 offset);
f57d151a
UW
3517 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3518 + regnum,
6d82d43b 3519 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4c6b5505
UW
3520 gdbarch_byte_order (current_gdbarch),
3521 readbuf, writebuf, offset);
6d82d43b
AC
3522 }
3523 return RETURN_VALUE_REGISTER_CONVENTION;
3524 }
3525#endif
3526#if 0
3527 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3528 || TYPE_CODE (type) == TYPE_CODE_UNION)
3529 {
3530 /* A structure or union. Extract the left justified value,
3531 regardless of the byte order. I.e. DO NOT USE
3532 mips_xfer_lower. */
3533 int offset;
3534 int regnum;
4c7d22cb 3535 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3536 offset < TYPE_LENGTH (type);
3537 offset += register_size (current_gdbarch, regnum), regnum++)
3538 {
3539 int xfer = register_size (current_gdbarch, regnum);
3540 if (offset + xfer > TYPE_LENGTH (type))
3541 xfer = TYPE_LENGTH (type) - offset;
3542 if (mips_debug)
3543 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3544 offset, xfer, regnum);
f57d151a
UW
3545 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3546 + regnum, xfer,
6d82d43b
AC
3547 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3548 }
3549 return RETURN_VALUE_REGISTER_CONVENTION;
3550 }
3551#endif
3552 else
3553 {
3554 /* A scalar extract each part but least-significant-byte
3555 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 3556 the ISA. */
6d82d43b
AC
3557 int offset;
3558 int regnum;
4c7d22cb 3559 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3560 offset < TYPE_LENGTH (type);
1a69e1e4 3561 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 3562 {
1a69e1e4 3563 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
3564 if (offset + xfer > TYPE_LENGTH (type))
3565 xfer = TYPE_LENGTH (type) - offset;
3566 if (mips_debug)
3567 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3568 offset, xfer, regnum);
f57d151a
UW
3569 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3570 + regnum, xfer,
4c6b5505
UW
3571 gdbarch_byte_order (current_gdbarch),
3572 readbuf, writebuf, offset);
6d82d43b
AC
3573 }
3574 return RETURN_VALUE_REGISTER_CONVENTION;
3575 }
3576}
3577
3578/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3579 ABI. */
46cac009
AC
3580
3581static CORE_ADDR
7d9b040b 3582mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3583 struct regcache *regcache, CORE_ADDR bp_addr,
3584 int nargs,
3585 struct value **args, CORE_ADDR sp,
3586 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3587{
3588 int argreg;
3589 int float_argreg;
3590 int argnum;
3591 int len = 0;
3592 int stack_offset = 0;
480d3dd2 3593 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3594 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3595
25ab4790
AC
3596 /* For shared libraries, "t9" needs to point at the function
3597 address. */
4c7d22cb 3598 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3599
3600 /* Set the return address register to point to the entry point of
3601 the program, where a breakpoint lies in wait. */
4c7d22cb 3602 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3603
46cac009
AC
3604 /* First ensure that the stack and structure return address (if any)
3605 are properly aligned. The stack has to be at least 64-bit
3606 aligned even on 32-bit machines, because doubles must be 64-bit
3607 aligned. For n32 and n64, stack frames need to be 128-bit
3608 aligned, so we round to this widest known alignment. */
3609
5b03f266
AC
3610 sp = align_down (sp, 16);
3611 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3612
3613 /* Now make space on the stack for the args. */
3614 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3615 {
3616 struct type *arg_type = check_typedef (value_type (args[argnum]));
3617 int arglen = TYPE_LENGTH (arg_type);
3618
968b5391 3619 /* Allocate space on the stack. */
1a69e1e4 3620 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 3621 }
5b03f266 3622 sp -= align_up (len, 16);
46cac009
AC
3623
3624 if (mips_debug)
6d82d43b 3625 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3626 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3627 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3628
3629 /* Initialize the integer and float register pointers. */
4c7d22cb 3630 argreg = MIPS_A0_REGNUM;
56cea623 3631 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3632
3633 /* The struct_return pointer occupies the first parameter-passing reg. */
3634 if (struct_return)
3635 {
3636 if (mips_debug)
3637 fprintf_unfiltered (gdb_stdlog,
25ab4790 3638 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009 3639 argreg, paddr_nz (struct_addr));
9c9acae0 3640 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3641 stack_offset += MIPS64_REGSIZE;
46cac009
AC
3642 }
3643
3644 /* Now load as many as possible of the first arguments into
3645 registers, and push the rest onto the stack. Loop thru args
3646 from first to last. */
3647 for (argnum = 0; argnum < nargs; argnum++)
3648 {
47a35522 3649 const gdb_byte *val;
46cac009 3650 struct value *arg = args[argnum];
4991999e 3651 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3652 int len = TYPE_LENGTH (arg_type);
3653 enum type_code typecode = TYPE_CODE (arg_type);
3654
3655 if (mips_debug)
3656 fprintf_unfiltered (gdb_stdlog,
25ab4790 3657 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3658 argnum + 1, len, (int) typecode);
3659
47a35522 3660 val = value_contents (arg);
ebafbe83 3661
ebafbe83
MS
3662 /* Floating point arguments passed in registers have to be
3663 treated specially. On 32-bit architectures, doubles
3664 are passed in register pairs; the even register gets
3665 the low word, and the odd register gets the high word.
3666 On O32/O64, the first two floating point arguments are
3667 also copied to general registers, because MIPS16 functions
3668 don't use float registers for arguments. This duplication of
3669 arguments in general registers can't hurt non-MIPS16 functions
3670 because those registers are normally skipped. */
3671
3672 if (fp_register_arg_p (typecode, arg_type)
3673 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3674 {
2afd3f0a
MR
3675 LONGEST regval = extract_unsigned_integer (val, len);
3676 if (mips_debug)
3677 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3678 float_argreg, phex (regval, len));
9c9acae0 3679 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
3680 if (mips_debug)
3681 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3682 argreg, phex (regval, len));
9c9acae0 3683 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3684 argreg++;
ebafbe83 3685 /* Reserve space for the FP register. */
1a69e1e4 3686 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
3687 }
3688 else
3689 {
3690 /* Copy the argument to general registers or the stack in
3691 register-sized pieces. Large arguments are split between
3692 registers and stack. */
1a69e1e4 3693 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
3694 are treated specially: Irix cc passes them in registers
3695 where gcc sometimes puts them on the stack. For maximum
3696 compatibility, we will put them in both places. */
1a69e1e4
DJ
3697 int odd_sized_struct = (len > MIPS64_REGSIZE
3698 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
3699 while (len > 0)
3700 {
3701 /* Remember if the argument was written to the stack. */
3702 int stack_used_p = 0;
1a69e1e4 3703 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
3704
3705 if (mips_debug)
3706 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3707 partial_len);
3708
3709 /* Write this portion of the argument to the stack. */
3710 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3711 || odd_sized_struct)
ebafbe83
MS
3712 {
3713 /* Should shorter than int integer values be
3714 promoted to int before being stored? */
3715 int longword_offset = 0;
3716 CORE_ADDR addr;
3717 stack_used_p = 1;
4c6b5505 3718 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 3719 {
1a69e1e4
DJ
3720 if ((typecode == TYPE_CODE_INT
3721 || typecode == TYPE_CODE_PTR
3722 || typecode == TYPE_CODE_FLT)
3723 && len <= 4)
3724 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
3725 }
3726
3727 if (mips_debug)
3728 {
3729 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3730 paddr_nz (stack_offset));
3731 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3732 paddr_nz (longword_offset));
3733 }
3734
3735 addr = sp + stack_offset + longword_offset;
3736
3737 if (mips_debug)
3738 {
3739 int i;
6d82d43b 3740 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3741 paddr_nz (addr));
3742 for (i = 0; i < partial_len; i++)
3743 {
6d82d43b 3744 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3745 val[i] & 0xff);
3746 }
3747 }
3748 write_memory (addr, val, partial_len);
3749 }
3750
3751 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3752 structs may go thru BOTH paths. */
ebafbe83 3753 /* Write this portion of the argument to a general
6d82d43b 3754 purpose register. */
968b5391 3755 if (argreg <= MIPS_LAST_ARG_REGNUM)
ebafbe83
MS
3756 {
3757 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3758 /* Value may need to be sign extended, because
1b13c4f6 3759 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3760
3761 /* A non-floating-point argument being passed in a
3762 general register. If a struct or union, and if
3763 the remaining length is smaller than the register
3764 size, we have to adjust the register value on
3765 big endian targets.
3766
3767 It does not seem to be necessary to do the
401835eb 3768 same for integral types. */
480d3dd2 3769
4c6b5505 3770 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3771 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3772 && (typecode == TYPE_CODE_STRUCT
3773 || typecode == TYPE_CODE_UNION))
1a69e1e4 3774 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3775 * TARGET_CHAR_BIT);
ebafbe83
MS
3776
3777 if (mips_debug)
3778 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3779 argreg,
1a69e1e4 3780 phex (regval, MIPS64_REGSIZE));
9c9acae0 3781 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
3782 argreg++;
3783
3784 /* Prevent subsequent floating point arguments from
3785 being passed in floating point registers. */
3786 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3787 }
3788
3789 len -= partial_len;
3790 val += partial_len;
3791
3792 /* Compute the the offset into the stack at which we
6d82d43b 3793 will copy the next parameter.
ebafbe83 3794
6d82d43b
AC
3795 In older ABIs, the caller reserved space for
3796 registers that contained arguments. This was loosely
3797 refered to as their "home". Consequently, space is
3798 always allocated. */
ebafbe83 3799
1a69e1e4 3800 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
3801 }
3802 }
3803 if (mips_debug)
3804 fprintf_unfiltered (gdb_stdlog, "\n");
3805 }
3806
f10683bb 3807 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3808
ebafbe83
MS
3809 /* Return adjusted stack pointer. */
3810 return sp;
3811}
3812
9c8fdbfa
AC
3813static enum return_value_convention
3814mips_o64_return_value (struct gdbarch *gdbarch,
3815 struct type *type, struct regcache *regcache,
47a35522 3816 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3817{
7a076fd2
FF
3818 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3819
3820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3821 || TYPE_CODE (type) == TYPE_CODE_UNION
3822 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3823 return RETURN_VALUE_STRUCT_CONVENTION;
3824 else if (fp_register_arg_p (TYPE_CODE (type), type))
3825 {
3826 /* A floating-point value. It fits in the least significant
3827 part of FP0. */
3828 if (mips_debug)
3829 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3830 mips_xfer_register (regcache,
f57d151a
UW
3831 gdbarch_num_regs (current_gdbarch)
3832 + mips_regnum (current_gdbarch)->fp0,
7a076fd2 3833 TYPE_LENGTH (type),
4c6b5505
UW
3834 gdbarch_byte_order (current_gdbarch),
3835 readbuf, writebuf, 0);
7a076fd2
FF
3836 return RETURN_VALUE_REGISTER_CONVENTION;
3837 }
3838 else
3839 {
3840 /* A scalar extract each part but least-significant-byte
3841 justified. */
3842 int offset;
3843 int regnum;
3844 for (offset = 0, regnum = MIPS_V0_REGNUM;
3845 offset < TYPE_LENGTH (type);
1a69e1e4 3846 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 3847 {
1a69e1e4 3848 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
3849 if (offset + xfer > TYPE_LENGTH (type))
3850 xfer = TYPE_LENGTH (type) - offset;
3851 if (mips_debug)
3852 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3853 offset, xfer, regnum);
f57d151a
UW
3854 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3855 + regnum, xfer,
4c6b5505
UW
3856 gdbarch_byte_order (current_gdbarch),
3857 readbuf, writebuf, offset);
7a076fd2
FF
3858 }
3859 return RETURN_VALUE_REGISTER_CONVENTION;
3860 }
6d82d43b
AC
3861}
3862
dd824b04
DJ
3863/* Floating point register management.
3864
3865 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3866 64bit operations, these early MIPS cpus treat fp register pairs
3867 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3868 registers and offer a compatibility mode that emulates the MIPS2 fp
3869 model. When operating in MIPS2 fp compat mode, later cpu's split
3870 double precision floats into two 32-bit chunks and store them in
3871 consecutive fp regs. To display 64-bit floats stored in this
3872 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3873 Throw in user-configurable endianness and you have a real mess.
3874
3875 The way this works is:
3876 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3877 double-precision value will be split across two logical registers.
3878 The lower-numbered logical register will hold the low-order bits,
3879 regardless of the processor's endianness.
3880 - If we are on a 64-bit processor, and we are looking for a
3881 single-precision value, it will be in the low ordered bits
3882 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3883 save slot in memory.
3884 - If we are in 64-bit mode, everything is straightforward.
3885
3886 Note that this code only deals with "live" registers at the top of the
3887 stack. We will attempt to deal with saved registers later, when
3888 the raw/cooked register interface is in place. (We need a general
3889 interface that can deal with dynamic saved register sizes -- fp
3890 regs could be 32 bits wide in one frame and 64 on the frame above
3891 and below). */
3892
67b2c998
DJ
3893static struct type *
3894mips_float_register_type (void)
3895{
8da61cc4 3896 return builtin_type_ieee_single;
67b2c998
DJ
3897}
3898
3899static struct type *
3900mips_double_register_type (void)
3901{
8da61cc4 3902 return builtin_type_ieee_double;
67b2c998
DJ
3903}
3904
dd824b04
DJ
3905/* Copy a 32-bit single-precision value from the current frame
3906 into rare_buffer. */
3907
3908static void
e11c53d2 3909mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 3910 gdb_byte *rare_buffer)
dd824b04 3911{
719ec221 3912 int raw_size = register_size (current_gdbarch, regno);
47a35522 3913 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 3914
e11c53d2 3915 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572
UW
3916 error (_("can't read register %d (%s)"),
3917 regno, gdbarch_register_name (current_gdbarch, regno));
dd824b04
DJ
3918 if (raw_size == 8)
3919 {
3920 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 3921 32 bits. */
dd824b04
DJ
3922 int offset;
3923
4c6b5505 3924 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
3925 offset = 4;
3926 else
3927 offset = 0;
3928
3929 memcpy (rare_buffer, raw_buffer + offset, 4);
3930 }
3931 else
3932 {
3933 memcpy (rare_buffer, raw_buffer, 4);
3934 }
3935}
3936
3937/* Copy a 64-bit double-precision value from the current frame into
3938 rare_buffer. This may include getting half of it from the next
3939 register. */
3940
3941static void
e11c53d2 3942mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 3943 gdb_byte *rare_buffer)
dd824b04 3944{
719ec221 3945 int raw_size = register_size (current_gdbarch, regno);
dd824b04 3946
9c9acae0 3947 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
3948 {
3949 /* We have a 64-bit value for this register, and we should use
6d82d43b 3950 all 64 bits. */
e11c53d2 3951 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572
UW
3952 error (_("can't read register %d (%s)"),
3953 regno, gdbarch_register_name (current_gdbarch, regno));
dd824b04
DJ
3954 }
3955 else
3956 {
56cea623 3957 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04 3958 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3959 _("mips_read_fp_register_double: bad access to "
3960 "odd-numbered FP register"));
dd824b04
DJ
3961
3962 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 3963 each register. */
4c6b5505 3964 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
dd824b04 3965 {
e11c53d2
AC
3966 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3967 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3968 }
361d1df0 3969 else
dd824b04 3970 {
e11c53d2
AC
3971 mips_read_fp_register_single (frame, regno, rare_buffer);
3972 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
3973 }
3974 }
3975}
3976
c906108c 3977static void
e11c53d2
AC
3978mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3979 int regnum)
c5aa993b 3980{ /* do values for FP (float) regs */
47a35522 3981 gdb_byte *raw_buffer;
3903d437
AC
3982 double doub, flt1; /* doubles extracted from raw hex data */
3983 int inv1, inv2;
c5aa993b 3984
47a35522
MK
3985 raw_buffer = alloca (2 * register_size (current_gdbarch,
3986 mips_regnum (current_gdbarch)->fp0));
c906108c 3987
c9f4d572
UW
3988 fprintf_filtered (file, "%s:",
3989 gdbarch_register_name (current_gdbarch, regnum));
3990 fprintf_filtered (file, "%*s",
3991 4 - (int) strlen (gdbarch_register_name
3992 (current_gdbarch, regnum)),
e11c53d2 3993 "");
f0ef6b29 3994
9c9acae0 3995 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 3996 {
f0ef6b29
KB
3997 /* 4-byte registers: Print hex and floating. Also print even
3998 numbered registers as doubles. */
e11c53d2 3999 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4000 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4001
6d82d43b
AC
4002 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4003 file);
dd824b04 4004
e11c53d2 4005 fprintf_filtered (file, " flt: ");
1adad886 4006 if (inv1)
e11c53d2 4007 fprintf_filtered (file, " <invalid float> ");
1adad886 4008 else
e11c53d2 4009 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4010
f0ef6b29
KB
4011 if (regnum % 2 == 0)
4012 {
e11c53d2 4013 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 4014 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 4015 &inv2);
1adad886 4016
e11c53d2 4017 fprintf_filtered (file, " dbl: ");
f0ef6b29 4018 if (inv2)
e11c53d2 4019 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4020 else
e11c53d2 4021 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4022 }
c906108c
SS
4023 }
4024 else
dd824b04 4025 {
f0ef6b29 4026 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4027 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4028 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4029
e11c53d2 4030 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4031 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4032
361d1df0 4033
6d82d43b
AC
4034 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4035 file);
f0ef6b29 4036
e11c53d2 4037 fprintf_filtered (file, " flt: ");
1adad886 4038 if (inv1)
e11c53d2 4039 fprintf_filtered (file, "<invalid float>");
1adad886 4040 else
e11c53d2 4041 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4042
e11c53d2 4043 fprintf_filtered (file, " dbl: ");
f0ef6b29 4044 if (inv2)
e11c53d2 4045 fprintf_filtered (file, "<invalid double>");
1adad886 4046 else
e11c53d2 4047 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4048 }
4049}
4050
4051static void
e11c53d2 4052mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 4053 int regnum)
f0ef6b29 4054{
a4b8ebc8 4055 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4056 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4057 int offset;
1adad886 4058
7b9ee6a8 4059 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4060 {
e11c53d2 4061 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4062 return;
4063 }
4064
4065 /* Get the data in raw format. */
e11c53d2 4066 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4067 {
c9f4d572
UW
4068 fprintf_filtered (file, "%s: [Invalid]",
4069 gdbarch_register_name (current_gdbarch, regnum));
f0ef6b29 4070 return;
c906108c 4071 }
f0ef6b29 4072
c9f4d572 4073 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
f0ef6b29
KB
4074
4075 /* The problem with printing numeric register names (r26, etc.) is that
4076 the user can't use them on input. Probably the best solution is to
4077 fix it so that either the numeric or the funky (a2, etc.) names
4078 are accepted on input. */
4079 if (regnum < MIPS_NUMREGS)
e11c53d2 4080 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4081 else
e11c53d2 4082 fprintf_filtered (file, ": ");
f0ef6b29 4083
4c6b5505 4084 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6d82d43b
AC
4085 offset =
4086 register_size (current_gdbarch,
4087 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4088 else
4089 offset = 0;
4090
6d82d43b 4091 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4092 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4093 file);
c906108c
SS
4094}
4095
f0ef6b29
KB
4096/* Replacement for generic do_registers_info.
4097 Print regs in pretty columns. */
4098
4099static int
e11c53d2
AC
4100print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4101 int regnum)
f0ef6b29 4102{
e11c53d2
AC
4103 fprintf_filtered (file, " ");
4104 mips_print_fp_register (file, frame, regnum);
4105 fprintf_filtered (file, "\n");
f0ef6b29
KB
4106 return regnum + 1;
4107}
4108
4109
c906108c
SS
4110/* Print a row's worth of GP (int) registers, with name labels above */
4111
4112static int
e11c53d2 4113print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4114 int start_regnum)
c906108c 4115{
a4b8ebc8 4116 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4117 /* do values for GP (int) regs */
47a35522 4118 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4119 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4120 int col, byte;
a4b8ebc8 4121 int regnum;
c906108c
SS
4122
4123 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4124 for (col = 0, regnum = start_regnum;
f57d151a
UW
4125 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4126 + gdbarch_num_pseudo_regs (current_gdbarch);
4127 regnum++)
c906108c 4128 {
c9f4d572 4129 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
c5aa993b 4130 continue; /* unused register */
7b9ee6a8 4131 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4132 TYPE_CODE_FLT)
c5aa993b 4133 break; /* end the row: reached FP register */
0cc93a06
DJ
4134 /* Large registers are handled separately. */
4135 if (register_size (current_gdbarch, regnum)
4136 > mips_abi_regsize (current_gdbarch))
4137 {
4138 if (col > 0)
4139 break; /* End the row before this register. */
4140
4141 /* Print this register on a row by itself. */
4142 mips_print_register (file, frame, regnum);
4143 fprintf_filtered (file, "\n");
4144 return regnum + 1;
4145 }
d05f6826
DJ
4146 if (col == 0)
4147 fprintf_filtered (file, " ");
6d82d43b 4148 fprintf_filtered (file,
d5ac5a39 4149 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
c9f4d572 4150 gdbarch_register_name (current_gdbarch, regnum));
c906108c
SS
4151 col++;
4152 }
d05f6826
DJ
4153
4154 if (col == 0)
4155 return regnum;
4156
a4b8ebc8 4157 /* print the R0 to R31 names */
f57d151a
UW
4158 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4159 fprintf_filtered (file, "\n R%-4d",
4160 start_regnum % gdbarch_num_regs (current_gdbarch));
20e6603c
AC
4161 else
4162 fprintf_filtered (file, "\n ");
c906108c 4163
c906108c 4164 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4165 for (col = 0, regnum = start_regnum;
f57d151a
UW
4166 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4167 + gdbarch_num_pseudo_regs (current_gdbarch);
4168 regnum++)
c906108c 4169 {
c9f4d572 4170 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
c5aa993b 4171 continue; /* unused register */
7b9ee6a8 4172 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4173 TYPE_CODE_FLT)
c5aa993b 4174 break; /* end row: reached FP register */
0cc93a06
DJ
4175 if (register_size (current_gdbarch, regnum)
4176 > mips_abi_regsize (current_gdbarch))
4177 break; /* End row: large register. */
4178
c906108c 4179 /* OK: get the data in raw format. */
e11c53d2 4180 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572
UW
4181 error (_("can't read register %d (%s)"),
4182 regnum, gdbarch_register_name (current_gdbarch, regnum));
c906108c 4183 /* pad small registers */
4246e332 4184 for (byte = 0;
d5ac5a39 4185 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4186 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4187 printf_filtered (" ");
4188 /* Now print the register value in hex, endian order. */
4c6b5505 4189 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6d82d43b
AC
4190 for (byte =
4191 register_size (current_gdbarch,
4192 regnum) - register_size (current_gdbarch, regnum);
4193 byte < register_size (current_gdbarch, regnum); byte++)
47a35522 4194 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4195 else
c73e8f27 4196 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4197 byte >= 0; byte--)
47a35522 4198 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4199 fprintf_filtered (file, " ");
c906108c
SS
4200 col++;
4201 }
c5aa993b 4202 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4203 fprintf_filtered (file, "\n");
c906108c
SS
4204
4205 return regnum;
4206}
4207
4208/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4209
bf1f5b4c 4210static void
e11c53d2
AC
4211mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4212 struct frame_info *frame, int regnum, int all)
c906108c 4213{
c5aa993b 4214 if (regnum != -1) /* do one specified register */
c906108c 4215 {
f57d151a 4216 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
c9f4d572 4217 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
8a3fe4f8 4218 error (_("Not a valid register for the current processor type"));
c906108c 4219
0cc93a06 4220 mips_print_register (file, frame, regnum);
e11c53d2 4221 fprintf_filtered (file, "\n");
c906108c 4222 }
c5aa993b
JM
4223 else
4224 /* do all (or most) registers */
c906108c 4225 {
f57d151a
UW
4226 regnum = gdbarch_num_regs (current_gdbarch);
4227 while (regnum < gdbarch_num_regs (current_gdbarch)
4228 + gdbarch_num_pseudo_regs (current_gdbarch))
c906108c 4229 {
7b9ee6a8 4230 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4231 TYPE_CODE_FLT)
e11c53d2
AC
4232 {
4233 if (all) /* true for "INFO ALL-REGISTERS" command */
4234 regnum = print_fp_register_row (file, frame, regnum);
4235 else
4236 regnum += MIPS_NUMREGS; /* skip floating point regs */
4237 }
c906108c 4238 else
e11c53d2 4239 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4240 }
4241 }
4242}
4243
c906108c
SS
4244/* Is this a branch with a delay slot? */
4245
c906108c 4246static int
acdb74a0 4247is_delayed (unsigned long insn)
c906108c
SS
4248{
4249 int i;
4250 for (i = 0; i < NUMOPCODES; ++i)
4251 if (mips_opcodes[i].pinfo != INSN_MACRO
4252 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4253 break;
4254 return (i < NUMOPCODES
4255 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4256 | INSN_COND_BRANCH_DELAY
4257 | INSN_COND_BRANCH_LIKELY)));
4258}
4259
4260int
3352ef37
AC
4261mips_single_step_through_delay (struct gdbarch *gdbarch,
4262 struct frame_info *frame)
c906108c 4263{
3352ef37 4264 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4265 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4266
4267 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4268 if (mips_pc_is_mips16 (pc))
c906108c
SS
4269 return 0;
4270
06648491
MK
4271 if (!breakpoint_here_p (pc + 4))
4272 return 0;
4273
3352ef37
AC
4274 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4275 /* If error reading memory, guess that it is not a delayed
4276 branch. */
c906108c 4277 return 0;
4c7d22cb 4278 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4279}
4280
6d82d43b
AC
4281/* To skip prologues, I use this predicate. Returns either PC itself
4282 if the code at PC does not look like a function prologue; otherwise
4283 returns an address that (if we're lucky) follows the prologue. If
4284 LENIENT, then we must skip everything which is involved in setting
4285 up the frame (it's OK to skip more, just so long as we don't skip
4286 anything which might clobber the registers which are being saved.
4287 We must skip more in the case where part of the prologue is in the
4288 delay slot of a non-prologue instruction). */
4289
4290static CORE_ADDR
4291mips_skip_prologue (CORE_ADDR pc)
4292{
8b622e6a
AC
4293 CORE_ADDR limit_pc;
4294 CORE_ADDR func_addr;
4295
6d82d43b
AC
4296 /* See if we can determine the end of the prologue via the symbol table.
4297 If so, then return either PC, or the PC after the prologue, whichever
4298 is greater. */
8b622e6a
AC
4299 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4300 {
4301 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4302 if (post_prologue_pc != 0)
4303 return max (pc, post_prologue_pc);
4304 }
6d82d43b
AC
4305
4306 /* Can't determine prologue from the symbol table, need to examine
4307 instructions. */
4308
98b4dd94
JB
4309 /* Find an upper limit on the function prologue using the debug
4310 information. If the debug information could not be used to provide
4311 that bound, then use an arbitrary large number as the upper bound. */
4312 limit_pc = skip_prologue_using_sal (pc);
4313 if (limit_pc == 0)
4314 limit_pc = pc + 100; /* Magic. */
4315
0fe7e7c8 4316 if (mips_pc_is_mips16 (pc))
a65bbe44 4317 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4318 else
a65bbe44 4319 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4320}
4321
a5ea2558
AC
4322/* Root of all "set mips "/"show mips " commands. This will eventually be
4323 used for all MIPS-specific commands. */
4324
a5ea2558 4325static void
acdb74a0 4326show_mips_command (char *args, int from_tty)
a5ea2558
AC
4327{
4328 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4329}
4330
a5ea2558 4331static void
acdb74a0 4332set_mips_command (char *args, int from_tty)
a5ea2558 4333{
6d82d43b
AC
4334 printf_unfiltered
4335 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4336 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4337}
4338
c906108c
SS
4339/* Commands to show/set the MIPS FPU type. */
4340
c906108c 4341static void
acdb74a0 4342show_mipsfpu_command (char *args, int from_tty)
c906108c 4343{
c906108c
SS
4344 char *fpu;
4345 switch (MIPS_FPU_TYPE)
4346 {
4347 case MIPS_FPU_SINGLE:
4348 fpu = "single-precision";
4349 break;
4350 case MIPS_FPU_DOUBLE:
4351 fpu = "double-precision";
4352 break;
4353 case MIPS_FPU_NONE:
4354 fpu = "absent (none)";
4355 break;
93d56215 4356 default:
e2e0b3e5 4357 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4358 }
4359 if (mips_fpu_type_auto)
6d82d43b
AC
4360 printf_unfiltered
4361 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4362 fpu);
c906108c 4363 else
6d82d43b
AC
4364 printf_unfiltered
4365 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4366}
4367
4368
c906108c 4369static void
acdb74a0 4370set_mipsfpu_command (char *args, int from_tty)
c906108c 4371{
6d82d43b
AC
4372 printf_unfiltered
4373 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4374 show_mipsfpu_command (args, from_tty);
4375}
4376
c906108c 4377static void
acdb74a0 4378set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4379{
8d5838b5
AC
4380 struct gdbarch_info info;
4381 gdbarch_info_init (&info);
c906108c
SS
4382 mips_fpu_type = MIPS_FPU_SINGLE;
4383 mips_fpu_type_auto = 0;
8d5838b5
AC
4384 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4385 instead of relying on globals. Doing that would let generic code
4386 handle the search for this specific architecture. */
4387 if (!gdbarch_update_p (info))
e2e0b3e5 4388 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4389}
4390
c906108c 4391static void
acdb74a0 4392set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4393{
8d5838b5
AC
4394 struct gdbarch_info info;
4395 gdbarch_info_init (&info);
c906108c
SS
4396 mips_fpu_type = MIPS_FPU_DOUBLE;
4397 mips_fpu_type_auto = 0;
8d5838b5
AC
4398 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4399 instead of relying on globals. Doing that would let generic code
4400 handle the search for this specific architecture. */
4401 if (!gdbarch_update_p (info))
e2e0b3e5 4402 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4403}
4404
c906108c 4405static void
acdb74a0 4406set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4407{
8d5838b5
AC
4408 struct gdbarch_info info;
4409 gdbarch_info_init (&info);
c906108c
SS
4410 mips_fpu_type = MIPS_FPU_NONE;
4411 mips_fpu_type_auto = 0;
8d5838b5
AC
4412 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4413 instead of relying on globals. Doing that would let generic code
4414 handle the search for this specific architecture. */
4415 if (!gdbarch_update_p (info))
e2e0b3e5 4416 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4417}
4418
c906108c 4419static void
acdb74a0 4420set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4421{
4422 mips_fpu_type_auto = 1;
4423}
4424
c906108c 4425/* Attempt to identify the particular processor model by reading the
691c0433
AC
4426 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4427 the relevant processor still exists (it dates back to '94) and
4428 secondly this is not the way to do this. The processor type should
4429 be set by forcing an architecture change. */
c906108c 4430
691c0433
AC
4431void
4432deprecated_mips_set_processor_regs_hack (void)
c906108c 4433{
691c0433 4434 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a9614958 4435 ULONGEST prid;
c906108c 4436
594f7785 4437 regcache_cooked_read_unsigned (get_current_regcache (),
a9614958 4438 MIPS_PRID_REGNUM, &prid);
c906108c 4439 if ((prid & ~0xf) == 0x700)
691c0433 4440 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4441}
4442
4443/* Just like reinit_frame_cache, but with the right arguments to be
4444 callable as an sfunc. */
4445
4446static void
acdb74a0
AC
4447reinit_frame_cache_sfunc (char *args, int from_tty,
4448 struct cmd_list_element *c)
c906108c
SS
4449{
4450 reinit_frame_cache ();
4451}
4452
a89aa300
AC
4453static int
4454gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4455{
e5ab0dce 4456 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4457
d31431ed
AC
4458 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4459 disassembler needs to be able to locally determine the ISA, and
4460 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4461 work. */
ec4045ea
AC
4462 if (mips_pc_is_mips16 (memaddr))
4463 info->mach = bfd_mach_mips16;
c906108c
SS
4464
4465 /* Round down the instruction address to the appropriate boundary. */
65c11066 4466 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4467
e5ab0dce 4468 /* Set the disassembler options. */
6d82d43b 4469 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4470 {
4471 /* Set up the disassembler info, so that we get the right
6d82d43b 4472 register names from libopcodes. */
e5ab0dce
AC
4473 if (tdep->mips_abi == MIPS_ABI_N32)
4474 info->disassembler_options = "gpr-names=n32";
4475 else
4476 info->disassembler_options = "gpr-names=64";
4477 info->flavour = bfd_target_elf_flavour;
4478 }
4479 else
4480 /* This string is not recognized explicitly by the disassembler,
4481 but it tells the disassembler to not try to guess the ABI from
4482 the bfd elf headers, such that, if the user overrides the ABI
4483 of a program linked as NewABI, the disassembly will follow the
4484 register naming conventions specified by the user. */
4485 info->disassembler_options = "gpr-names=32";
4486
c906108c 4487 /* Call the appropriate disassembler based on the target endian-ness. */
4c6b5505 4488 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
4489 return print_insn_big_mips (memaddr, info);
4490 else
4491 return print_insn_little_mips (memaddr, info);
4492}
4493
3b3b875c
UW
4494/* This function implements gdbarch_breakpoint_from_pc. It uses the program
4495 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4496 It returns a pointer to a string of bytes that encode a breakpoint
4497 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4498 necessary) to point to the actual memory location where the breakpoint
4499 should be inserted. */
c906108c 4500
47a35522 4501static const gdb_byte *
6d82d43b 4502mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4503{
4c6b5505 4504 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c 4505 {
0fe7e7c8 4506 if (mips_pc_is_mips16 (*pcptr))
c906108c 4507 {
47a35522 4508 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4509 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4510 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4511 return mips16_big_breakpoint;
4512 }
4513 else
4514 {
aaab4dba
AC
4515 /* The IDT board uses an unusual breakpoint value, and
4516 sometimes gets confused when it sees the usual MIPS
4517 breakpoint instruction. */
47a35522
MK
4518 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4519 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4520 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4521
c5aa993b 4522 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4523
4524 if (strcmp (target_shortname, "mips") == 0)
4525 return idt_big_breakpoint;
4526 else if (strcmp (target_shortname, "ddb") == 0
4527 || strcmp (target_shortname, "pmon") == 0
4528 || strcmp (target_shortname, "lsi") == 0)
4529 return pmon_big_breakpoint;
4530 else
4531 return big_breakpoint;
4532 }
4533 }
4534 else
4535 {
0fe7e7c8 4536 if (mips_pc_is_mips16 (*pcptr))
c906108c 4537 {
47a35522 4538 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4539 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4540 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4541 return mips16_little_breakpoint;
4542 }
4543 else
4544 {
47a35522
MK
4545 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4546 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4547 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4548
c5aa993b 4549 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4550
4551 if (strcmp (target_shortname, "mips") == 0)
4552 return idt_little_breakpoint;
4553 else if (strcmp (target_shortname, "ddb") == 0
4554 || strcmp (target_shortname, "pmon") == 0
4555 || strcmp (target_shortname, "lsi") == 0)
4556 return pmon_little_breakpoint;
4557 else
4558 return little_breakpoint;
4559 }
4560 }
4561}
4562
4563/* If PC is in a mips16 call or return stub, return the address of the target
4564 PC, which is either the callee or the caller. There are several
4565 cases which must be handled:
4566
4567 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4568 target PC is in $31 ($ra).
c906108c 4569 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4570 and the target PC is in $2.
c906108c 4571 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4572 before the jal instruction, this is effectively a call stub
4573 and the the target PC is in $2. Otherwise this is effectively
4574 a return stub and the target PC is in $18.
c906108c
SS
4575
4576 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4577 gory details. */
c906108c 4578
757a7cc6 4579static CORE_ADDR
52f729a7 4580mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
4581{
4582 char *name;
4583 CORE_ADDR start_addr;
4584
4585 /* Find the starting address and name of the function containing the PC. */
4586 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4587 return 0;
4588
4589 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4590 target PC is in $31 ($ra). */
4591 if (strcmp (name, "__mips16_ret_sf") == 0
4592 || strcmp (name, "__mips16_ret_df") == 0)
52f729a7 4593 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
c906108c
SS
4594
4595 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4596 {
4597 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4598 and the target PC is in $2. */
4599 if (name[19] >= '0' && name[19] <= '9')
52f729a7 4600 return get_frame_register_signed (frame, 2);
c906108c
SS
4601
4602 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4603 before the jal instruction, this is effectively a call stub
4604 and the the target PC is in $2. Otherwise this is effectively
4605 a return stub and the target PC is in $18. */
c906108c
SS
4606 else if (name[19] == 's' || name[19] == 'd')
4607 {
4608 if (pc == start_addr)
4609 {
4610 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4611 stub. Such a stub for a function bar might have a name
4612 like __fn_stub_bar, and might look like this:
4613 mfc1 $4,$f13
4614 mfc1 $5,$f12
4615 mfc1 $6,$f15
4616 mfc1 $7,$f14
4617 la $1,bar (becomes a lui/addiu pair)
4618 jr $1
4619 So scan down to the lui/addi and extract the target
4620 address from those two instructions. */
c906108c 4621
52f729a7 4622 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
d37cca3d 4623 ULONGEST inst;
c906108c
SS
4624 int i;
4625
4626 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4627 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4628 0)
c906108c
SS
4629 return target_pc;
4630 if (strncmp (name, "__fn_stub_", 10) != 0
4631 && strcmp (name, "etext") != 0
4632 && strcmp (name, "_etext") != 0)
4633 return target_pc;
4634
4635 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4636 The limit on the search is arbitrarily set to 20
4637 instructions. FIXME. */
95ac2dcf 4638 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4639 {
c5aa993b
JM
4640 inst = mips_fetch_instruction (target_pc);
4641 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4642 pc = (inst << 16) & 0xffff0000; /* high word */
4643 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4644 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4645 }
4646
4647 /* Couldn't find the lui/addui pair, so return stub address. */
4648 return target_pc;
4649 }
4650 else
4651 /* This is the 'return' part of a call stub. The return
4652 address is in $r18. */
52f729a7 4653 return get_frame_register_signed (frame, 18);
c906108c
SS
4654 }
4655 }
c5aa993b 4656 return 0; /* not a stub */
c906108c
SS
4657}
4658
a4b8ebc8 4659/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 4660 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4661
4662static int
4663mips_stab_reg_to_regnum (int num)
4664{
a4b8ebc8 4665 int regnum;
2f38ef89 4666 if (num >= 0 && num < 32)
a4b8ebc8 4667 regnum = num;
2f38ef89 4668 else if (num >= 38 && num < 70)
56cea623 4669 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4670 else if (num == 70)
56cea623 4671 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4672 else if (num == 71)
56cea623 4673 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4674 else
a4b8ebc8
AC
4675 /* This will hopefully (eventually) provoke a warning. Should
4676 we be calling complaint() here? */
f57d151a
UW
4677 return gdbarch_num_regs (current_gdbarch)
4678 + gdbarch_num_pseudo_regs (current_gdbarch);
4679 return gdbarch_num_regs (current_gdbarch) + regnum;
88c72b7d
AC
4680}
4681
2f38ef89 4682
a4b8ebc8 4683/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 4684 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4685
4686static int
2f38ef89 4687mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4688{
a4b8ebc8 4689 int regnum;
2f38ef89 4690 if (num >= 0 && num < 32)
a4b8ebc8 4691 regnum = num;
2f38ef89 4692 else if (num >= 32 && num < 64)
56cea623 4693 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4694 else if (num == 64)
56cea623 4695 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4696 else if (num == 65)
56cea623 4697 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4698 else
a4b8ebc8
AC
4699 /* This will hopefully (eventually) provoke a warning. Should we
4700 be calling complaint() here? */
f57d151a
UW
4701 return gdbarch_num_regs (current_gdbarch)
4702 + gdbarch_num_pseudo_regs (current_gdbarch);
4703 return gdbarch_num_regs (current_gdbarch) + regnum;
a4b8ebc8
AC
4704}
4705
4706static int
4707mips_register_sim_regno (int regnum)
4708{
4709 /* Only makes sense to supply raw registers. */
f57d151a 4710 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
a4b8ebc8
AC
4711 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4712 decide if it is valid. Should instead define a standard sim/gdb
4713 register numbering scheme. */
c9f4d572
UW
4714 if (gdbarch_register_name (current_gdbarch,
4715 gdbarch_num_regs
4716 (current_gdbarch) + regnum) != NULL
4717 && gdbarch_register_name (current_gdbarch,
4718 gdbarch_num_regs
4719 (current_gdbarch) + regnum)[0] != '\0')
a4b8ebc8
AC
4720 return regnum;
4721 else
6d82d43b 4722 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4723}
4724
2f38ef89 4725
4844f454
CV
4726/* Convert an integer into an address. Extracting the value signed
4727 guarantees a correctly sign extended address. */
fc0c74b1
AC
4728
4729static CORE_ADDR
79dd2d24 4730mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4731 struct type *type, const gdb_byte *buf)
fc0c74b1 4732{
4844f454 4733 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
4734}
4735
caaa3122
DJ
4736static void
4737mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4738{
4739 enum mips_abi *abip = (enum mips_abi *) obj;
4740 const char *name = bfd_get_section_name (abfd, sect);
4741
4742 if (*abip != MIPS_ABI_UNKNOWN)
4743 return;
4744
4745 if (strncmp (name, ".mdebug.", 8) != 0)
4746 return;
4747
4748 if (strcmp (name, ".mdebug.abi32") == 0)
4749 *abip = MIPS_ABI_O32;
4750 else if (strcmp (name, ".mdebug.abiN32") == 0)
4751 *abip = MIPS_ABI_N32;
62a49b2c 4752 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4753 *abip = MIPS_ABI_N64;
caaa3122
DJ
4754 else if (strcmp (name, ".mdebug.abiO64") == 0)
4755 *abip = MIPS_ABI_O64;
4756 else if (strcmp (name, ".mdebug.eabi32") == 0)
4757 *abip = MIPS_ABI_EABI32;
4758 else if (strcmp (name, ".mdebug.eabi64") == 0)
4759 *abip = MIPS_ABI_EABI64;
4760 else
8a3fe4f8 4761 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4762}
4763
22e47e37
FF
4764static void
4765mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4766{
4767 int *lbp = (int *) obj;
4768 const char *name = bfd_get_section_name (abfd, sect);
4769
4770 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4771 *lbp = 32;
4772 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4773 *lbp = 64;
4774 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4775 warning (_("unrecognized .gcc_compiled_longXX"));
4776}
4777
2e4ebe70
DJ
4778static enum mips_abi
4779global_mips_abi (void)
4780{
4781 int i;
4782
4783 for (i = 0; mips_abi_strings[i] != NULL; i++)
4784 if (mips_abi_strings[i] == mips_abi_string)
4785 return (enum mips_abi) i;
4786
e2e0b3e5 4787 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4788}
4789
29709017
DJ
4790static void
4791mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4792{
4793 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4794
4795 if (tdesc_gp32 == NULL)
4796 {
4797 /* Create feature sets with the appropriate properties. The values
4798 are not important. */
4799
4800 tdesc_gp32 = allocate_target_description ();
4801 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4802
4803 tdesc_gp64 = allocate_target_description ();
4804 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4805 }
4806
4807 /* If the size matches the set of 32-bit or 64-bit integer registers,
4808 assume that's what we've got. */
4809 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4810 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4811
4812 /* If the size matches the full set of registers GDB traditionally
4813 knows about, including floating point, for either 32-bit or
4814 64-bit, assume that's what we've got. */
4815 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4816 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4817
4818 /* Otherwise we don't have a useful guess. */
4819}
4820
f8b73d13
DJ
4821static struct value *
4822value_of_mips_user_reg (struct frame_info *frame, const void *baton)
4823{
4824 const int *reg_p = baton;
4825 return value_of_register (*reg_p, frame);
4826}
4827
c2d11a7d 4828static struct gdbarch *
6d82d43b 4829mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 4830{
c2d11a7d
JM
4831 struct gdbarch *gdbarch;
4832 struct gdbarch_tdep *tdep;
4833 int elf_flags;
2e4ebe70 4834 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 4835 int i, num_regs;
8d5838b5 4836 enum mips_fpu_type fpu_type;
f8b73d13
DJ
4837 struct tdesc_arch_data *tdesc_data = NULL;
4838
4839 /* Check any target description for validity. */
4840 if (tdesc_has_registers (info.target_desc))
4841 {
4842 static const char *const mips_gprs[] = {
4843 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
4844 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
4845 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
4846 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
4847 };
4848 static const char *const mips_fprs[] = {
4849 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
4850 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
4851 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
4852 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
4853 };
4854
4855 const struct tdesc_feature *feature;
4856 int valid_p;
4857
4858 feature = tdesc_find_feature (info.target_desc,
4859 "org.gnu.gdb.mips.cpu");
4860 if (feature == NULL)
4861 return NULL;
4862
4863 tdesc_data = tdesc_data_alloc ();
4864
4865 valid_p = 1;
4866 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
4867 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
4868 mips_gprs[i]);
4869
4870
4871 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4872 MIPS_EMBED_LO_REGNUM, "lo");
4873 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4874 MIPS_EMBED_HI_REGNUM, "hi");
4875 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4876 MIPS_EMBED_PC_REGNUM, "pc");
4877
4878 if (!valid_p)
4879 {
4880 tdesc_data_cleanup (tdesc_data);
4881 return NULL;
4882 }
4883
4884 feature = tdesc_find_feature (info.target_desc,
4885 "org.gnu.gdb.mips.cp0");
4886 if (feature == NULL)
4887 {
4888 tdesc_data_cleanup (tdesc_data);
4889 return NULL;
4890 }
4891
4892 valid_p = 1;
4893 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4894 MIPS_EMBED_BADVADDR_REGNUM,
4895 "badvaddr");
4896 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4897 MIPS_PS_REGNUM, "status");
4898 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4899 MIPS_EMBED_CAUSE_REGNUM, "cause");
4900
4901 if (!valid_p)
4902 {
4903 tdesc_data_cleanup (tdesc_data);
4904 return NULL;
4905 }
4906
4907 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
4908 backend is not prepared for that, though. */
4909 feature = tdesc_find_feature (info.target_desc,
4910 "org.gnu.gdb.mips.fpu");
4911 if (feature == NULL)
4912 {
4913 tdesc_data_cleanup (tdesc_data);
4914 return NULL;
4915 }
4916
4917 valid_p = 1;
4918 for (i = 0; i < 32; i++)
4919 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4920 i + MIPS_EMBED_FP0_REGNUM,
4921 mips_fprs[i]);
4922
4923 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4924 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
4925 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4926 MIPS_EMBED_FP0_REGNUM + 33, "fir");
4927
4928 if (!valid_p)
4929 {
4930 tdesc_data_cleanup (tdesc_data);
4931 return NULL;
4932 }
4933
4934 /* It would be nice to detect an attempt to use a 64-bit ABI
4935 when only 32-bit registers are provided. */
4936 }
c2d11a7d 4937
ec03c1ac
AC
4938 /* First of all, extract the elf_flags, if available. */
4939 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4940 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
4941 else if (arches != NULL)
4942 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
4943 else
4944 elf_flags = 0;
4945 if (gdbarch_debug)
4946 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4947 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 4948
102182a9 4949 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
4950 switch ((elf_flags & EF_MIPS_ABI))
4951 {
4952 case E_MIPS_ABI_O32:
ec03c1ac 4953 found_abi = MIPS_ABI_O32;
0dadbba0
AC
4954 break;
4955 case E_MIPS_ABI_O64:
ec03c1ac 4956 found_abi = MIPS_ABI_O64;
0dadbba0
AC
4957 break;
4958 case E_MIPS_ABI_EABI32:
ec03c1ac 4959 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
4960 break;
4961 case E_MIPS_ABI_EABI64:
ec03c1ac 4962 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4963 break;
4964 default:
acdb74a0 4965 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 4966 found_abi = MIPS_ABI_N32;
acdb74a0 4967 else
ec03c1ac 4968 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4969 break;
4970 }
acdb74a0 4971
caaa3122 4972 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
4973 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4974 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 4975
dc305454 4976 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
4977 MIPS architecture (if there is one). */
4978 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4979 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 4980
32a6503c 4981 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 4982 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
4983 && info.bfd_arch_info != NULL
4984 && info.bfd_arch_info->arch == bfd_arch_mips)
4985 {
4986 switch (info.bfd_arch_info->mach)
4987 {
4988 case bfd_mach_mips3900:
ec03c1ac 4989 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
4990 break;
4991 case bfd_mach_mips4100:
4992 case bfd_mach_mips5000:
ec03c1ac 4993 found_abi = MIPS_ABI_EABI64;
bf64bfd6 4994 break;
1d06468c
EZ
4995 case bfd_mach_mips8000:
4996 case bfd_mach_mips10000:
32a6503c
KB
4997 /* On Irix, ELF64 executables use the N64 ABI. The
4998 pseudo-sections which describe the ABI aren't present
4999 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5000 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5001 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5002 found_abi = MIPS_ABI_N64;
28d169de 5003 else
ec03c1ac 5004 found_abi = MIPS_ABI_N32;
1d06468c 5005 break;
bf64bfd6
AC
5006 }
5007 }
2e4ebe70 5008
26c53e50
DJ
5009 /* Default 64-bit objects to N64 instead of O32. */
5010 if (found_abi == MIPS_ABI_UNKNOWN
5011 && info.abfd != NULL
5012 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5013 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5014 found_abi = MIPS_ABI_N64;
5015
ec03c1ac
AC
5016 if (gdbarch_debug)
5017 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5018 found_abi);
5019
5020 /* What has the user specified from the command line? */
5021 wanted_abi = global_mips_abi ();
5022 if (gdbarch_debug)
5023 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5024 wanted_abi);
2e4ebe70
DJ
5025
5026 /* Now that we have found what the ABI for this binary would be,
5027 check whether the user is overriding it. */
2e4ebe70
DJ
5028 if (wanted_abi != MIPS_ABI_UNKNOWN)
5029 mips_abi = wanted_abi;
ec03c1ac
AC
5030 else if (found_abi != MIPS_ABI_UNKNOWN)
5031 mips_abi = found_abi;
5032 else
5033 mips_abi = MIPS_ABI_O32;
5034 if (gdbarch_debug)
5035 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5036 mips_abi);
2e4ebe70 5037
ec03c1ac 5038 /* Also used when doing an architecture lookup. */
4b9b3959 5039 if (gdbarch_debug)
ec03c1ac
AC
5040 fprintf_unfiltered (gdb_stdlog,
5041 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5042 mips64_transfers_32bit_regs_p);
0dadbba0 5043
8d5838b5
AC
5044 /* Determine the MIPS FPU type. */
5045 if (!mips_fpu_type_auto)
5046 fpu_type = mips_fpu_type;
5047 else if (info.bfd_arch_info != NULL
5048 && info.bfd_arch_info->arch == bfd_arch_mips)
5049 switch (info.bfd_arch_info->mach)
5050 {
5051 case bfd_mach_mips3900:
5052 case bfd_mach_mips4100:
5053 case bfd_mach_mips4111:
a9d61c86 5054 case bfd_mach_mips4120:
8d5838b5
AC
5055 fpu_type = MIPS_FPU_NONE;
5056 break;
5057 case bfd_mach_mips4650:
5058 fpu_type = MIPS_FPU_SINGLE;
5059 break;
5060 default:
5061 fpu_type = MIPS_FPU_DOUBLE;
5062 break;
5063 }
5064 else if (arches != NULL)
5065 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5066 else
5067 fpu_type = MIPS_FPU_DOUBLE;
5068 if (gdbarch_debug)
5069 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5070 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 5071
29709017
DJ
5072 /* Check for blatant incompatibilities. */
5073
5074 /* If we have only 32-bit registers, then we can't debug a 64-bit
5075 ABI. */
5076 if (info.target_desc
5077 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5078 && mips_abi != MIPS_ABI_EABI32
5079 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
5080 {
5081 if (tdesc_data != NULL)
5082 tdesc_data_cleanup (tdesc_data);
5083 return NULL;
5084 }
29709017 5085
c2d11a7d
JM
5086 /* try to find a pre-existing architecture */
5087 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5088 arches != NULL;
5089 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5090 {
5091 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5092 using. */
9103eae0 5093 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5094 continue;
9103eae0 5095 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5096 continue;
719ec221
AC
5097 /* Need to be pedantic about which register virtual size is
5098 used. */
5099 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5100 != mips64_transfers_32bit_regs_p)
5101 continue;
8d5838b5
AC
5102 /* Be pedantic about which FPU is selected. */
5103 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5104 continue;
f8b73d13
DJ
5105
5106 if (tdesc_data != NULL)
5107 tdesc_data_cleanup (tdesc_data);
4be87837 5108 return arches->gdbarch;
c2d11a7d
JM
5109 }
5110
102182a9 5111 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5112 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5113 gdbarch = gdbarch_alloc (&info, tdep);
5114 tdep->elf_flags = elf_flags;
719ec221 5115 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5116 tdep->found_abi = found_abi;
5117 tdep->mips_abi = mips_abi;
8d5838b5 5118 tdep->mips_fpu_type = fpu_type;
29709017
DJ
5119 tdep->register_size_valid_p = 0;
5120 tdep->register_size = 0;
5121
5122 if (info.target_desc)
5123 {
5124 /* Some useful properties can be inferred from the target. */
5125 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5126 {
5127 tdep->register_size_valid_p = 1;
5128 tdep->register_size = 4;
5129 }
5130 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5131 {
5132 tdep->register_size_valid_p = 1;
5133 tdep->register_size = 8;
5134 }
5135 }
c2d11a7d 5136
102182a9 5137 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5138 set_gdbarch_short_bit (gdbarch, 16);
5139 set_gdbarch_int_bit (gdbarch, 32);
5140 set_gdbarch_float_bit (gdbarch, 32);
5141 set_gdbarch_double_bit (gdbarch, 64);
5142 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5143 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5144 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5145 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5146
6d82d43b 5147 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
5148 mips_elf_make_msymbol_special);
5149
16e109ca 5150 /* Fill in the OS dependant register numbers and names. */
56cea623 5151 {
16e109ca 5152 const char **reg_names;
56cea623
AC
5153 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5154 struct mips_regnum);
f8b73d13
DJ
5155 if (tdesc_has_registers (info.target_desc))
5156 {
5157 regnum->lo = MIPS_EMBED_LO_REGNUM;
5158 regnum->hi = MIPS_EMBED_HI_REGNUM;
5159 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5160 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5161 regnum->pc = MIPS_EMBED_PC_REGNUM;
5162 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5163 regnum->fp_control_status = 70;
5164 regnum->fp_implementation_revision = 71;
5165 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5166 reg_names = NULL;
5167 }
5168 else if (info.osabi == GDB_OSABI_IRIX)
56cea623
AC
5169 {
5170 regnum->fp0 = 32;
5171 regnum->pc = 64;
5172 regnum->cause = 65;
5173 regnum->badvaddr = 66;
5174 regnum->hi = 67;
5175 regnum->lo = 68;
5176 regnum->fp_control_status = 69;
5177 regnum->fp_implementation_revision = 70;
5178 num_regs = 71;
16e109ca 5179 reg_names = mips_irix_reg_names;
56cea623
AC
5180 }
5181 else
5182 {
5183 regnum->lo = MIPS_EMBED_LO_REGNUM;
5184 regnum->hi = MIPS_EMBED_HI_REGNUM;
5185 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5186 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5187 regnum->pc = MIPS_EMBED_PC_REGNUM;
5188 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5189 regnum->fp_control_status = 70;
5190 regnum->fp_implementation_revision = 71;
5191 num_regs = 90;
16e109ca
AC
5192 if (info.bfd_arch_info != NULL
5193 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5194 reg_names = mips_tx39_reg_names;
5195 else
5196 reg_names = mips_generic_reg_names;
56cea623 5197 }
3e8c568d 5198 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
56cea623 5199 replaced by read_pc? */
f10683bb
MH
5200 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5201 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5202 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5203 set_gdbarch_num_regs (gdbarch, num_regs);
5204 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
5205 set_gdbarch_register_name (gdbarch, mips_register_name);
5206 tdep->mips_processor_reg_names = reg_names;
5207 tdep->regnum = regnum;
56cea623 5208 }
fe29b929 5209
0dadbba0 5210 switch (mips_abi)
c2d11a7d 5211 {
0dadbba0 5212 case MIPS_ABI_O32:
25ab4790 5213 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5214 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5215 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5216 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5217 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5218 set_gdbarch_long_bit (gdbarch, 32);
5219 set_gdbarch_ptr_bit (gdbarch, 32);
5220 set_gdbarch_long_long_bit (gdbarch, 64);
5221 break;
0dadbba0 5222 case MIPS_ABI_O64:
25ab4790 5223 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5224 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5225 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5226 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5227 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5228 set_gdbarch_long_bit (gdbarch, 32);
5229 set_gdbarch_ptr_bit (gdbarch, 32);
5230 set_gdbarch_long_long_bit (gdbarch, 64);
5231 break;
0dadbba0 5232 case MIPS_ABI_EABI32:
25ab4790 5233 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5234 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5235 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5236 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5237 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5238 set_gdbarch_long_bit (gdbarch, 32);
5239 set_gdbarch_ptr_bit (gdbarch, 32);
5240 set_gdbarch_long_long_bit (gdbarch, 64);
5241 break;
0dadbba0 5242 case MIPS_ABI_EABI64:
25ab4790 5243 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5244 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5245 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5246 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5247 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5248 set_gdbarch_long_bit (gdbarch, 64);
5249 set_gdbarch_ptr_bit (gdbarch, 64);
5250 set_gdbarch_long_long_bit (gdbarch, 64);
5251 break;
0dadbba0 5252 case MIPS_ABI_N32:
25ab4790 5253 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5254 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5255 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5256 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5257 tdep->default_mask_address_p = 0;
0dadbba0
AC
5258 set_gdbarch_long_bit (gdbarch, 32);
5259 set_gdbarch_ptr_bit (gdbarch, 32);
5260 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5261 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5262 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5263 break;
5264 case MIPS_ABI_N64:
25ab4790 5265 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5266 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5267 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5268 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5269 tdep->default_mask_address_p = 0;
5270 set_gdbarch_long_bit (gdbarch, 64);
5271 set_gdbarch_ptr_bit (gdbarch, 64);
5272 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5273 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5274 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5275 break;
c2d11a7d 5276 default:
e2e0b3e5 5277 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5278 }
5279
22e47e37
FF
5280 /* GCC creates a pseudo-section whose name specifies the size of
5281 longs, since -mlong32 or -mlong64 may be used independent of
5282 other options. How those options affect pointer sizes is ABI and
5283 architecture dependent, so use them to override the default sizes
5284 set by the ABI. This table shows the relationship between ABI,
5285 -mlongXX, and size of pointers:
5286
5287 ABI -mlongXX ptr bits
5288 --- -------- --------
5289 o32 32 32
5290 o32 64 32
5291 n32 32 32
5292 n32 64 64
5293 o64 32 32
5294 o64 64 64
5295 n64 32 32
5296 n64 64 64
5297 eabi32 32 32
5298 eabi32 64 32
5299 eabi64 32 32
5300 eabi64 64 64
5301
5302 Note that for o32 and eabi32, pointers are always 32 bits
5303 regardless of any -mlongXX option. For all others, pointers and
5304 longs are the same, as set by -mlongXX or set by defaults.
5305 */
5306
5307 if (info.abfd != NULL)
5308 {
5309 int long_bit = 0;
5310
5311 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5312 if (long_bit)
5313 {
5314 set_gdbarch_long_bit (gdbarch, long_bit);
5315 switch (mips_abi)
5316 {
5317 case MIPS_ABI_O32:
5318 case MIPS_ABI_EABI32:
5319 break;
5320 case MIPS_ABI_N32:
5321 case MIPS_ABI_O64:
5322 case MIPS_ABI_N64:
5323 case MIPS_ABI_EABI64:
5324 set_gdbarch_ptr_bit (gdbarch, long_bit);
5325 break;
5326 default:
5327 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5328 }
5329 }
5330 }
5331
a5ea2558
AC
5332 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5333 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5334 comment:
5335
5336 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5337 flag in object files because to do so would make it impossible to
102182a9 5338 link with libraries compiled without "-gp32". This is
a5ea2558 5339 unnecessarily restrictive.
361d1df0 5340
a5ea2558
AC
5341 We could solve this problem by adding "-gp32" multilibs to gcc,
5342 but to set this flag before gcc is built with such multilibs will
5343 break too many systems.''
5344
5345 But even more unhelpfully, the default linker output target for
5346 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5347 for 64-bit programs - you need to change the ABI to change this,
102182a9 5348 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5349 this flag to detect 32-bit mode would do the wrong thing given
5350 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5351 as 32-bit programs by default. */
a5ea2558 5352
6c997a34 5353 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5354 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 5355
102182a9
MS
5356 /* Add/remove bits from an address. The MIPS needs be careful to
5357 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5358 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5359
58dfe9ff
AC
5360 /* Unwind the frame. */
5361 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 5362 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
edfae063 5363 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5364
102182a9 5365 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5366 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5367 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5368 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5369 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5370 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5371 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5372 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5373 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5374
c2d11a7d
JM
5375 /* MIPS version of CALL_DUMMY */
5376
9710e734
AC
5377 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5378 replaced by a command, and all targets will default to on stack
5379 (regardless of the stack's execute status). */
5380 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5381 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5382
87783b8b
AC
5383 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5384 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5385 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5386
f7b9e9fc
AC
5387 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5388 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5389
5390 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5391
fc0c74b1
AC
5392 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5393 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5394 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5395
a4b8ebc8 5396 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5397
e11c53d2 5398 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5399
e5ab0dce
AC
5400 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5401
3a3bc038
AC
5402 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5403 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5404 need to all be folded into the target vector. Since they are
5405 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5406 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5407 is sitting on? */
5408 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5409
e7d6a6d2 5410 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5411
3352ef37
AC
5412 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5413
0d5de010
DJ
5414 /* Virtual tables. */
5415 set_gdbarch_vbit_in_delta (gdbarch, 1);
5416
29709017
DJ
5417 mips_register_g_packet_guesses (gdbarch);
5418
6de918a6 5419 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 5420 info.tdep_info = (void *) tdesc_data;
6de918a6 5421 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5422
5792a79b 5423 /* Unwind the frame. */
2bd0c3d7 5424 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eec63939 5425 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5426 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5427 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
2bd0c3d7 5428 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 5429 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5430 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5431 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5432
f8b73d13
DJ
5433 if (tdesc_data)
5434 {
5435 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5436 tdesc_use_registers (gdbarch, tdesc_data);
5437
5438 /* Override the normal target description methods to handle our
5439 dual real and pseudo registers. */
5440 set_gdbarch_register_name (gdbarch, mips_register_name);
5441 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5442
5443 num_regs = gdbarch_num_regs (gdbarch);
5444 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5445 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5446 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5447 }
5448
5449 /* Add ABI-specific aliases for the registers. */
5450 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5451 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5452 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5453 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5454 else
5455 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5456 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5457 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5458
5459 /* Add some other standard aliases. */
5460 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5461 user_reg_add (gdbarch, mips_register_aliases[i].name,
5462 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5463
4b9b3959
AC
5464 return gdbarch;
5465}
5466
2e4ebe70 5467static void
6d82d43b 5468mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5469{
5470 struct gdbarch_info info;
5471
5472 /* Force the architecture to update, and (if it's a MIPS architecture)
5473 mips_gdbarch_init will take care of the rest. */
5474 gdbarch_info_init (&info);
5475 gdbarch_update_p (info);
5476}
5477
ad188201
KB
5478/* Print out which MIPS ABI is in use. */
5479
5480static void
1f8ca57c
JB
5481show_mips_abi (struct ui_file *file,
5482 int from_tty,
5483 struct cmd_list_element *ignored_cmd,
5484 const char *ignored_value)
ad188201
KB
5485{
5486 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5487 fprintf_filtered
5488 (file,
5489 "The MIPS ABI is unknown because the current architecture "
5490 "is not MIPS.\n");
ad188201
KB
5491 else
5492 {
5493 enum mips_abi global_abi = global_mips_abi ();
5494 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5495 const char *actual_abi_str = mips_abi_strings[actual_abi];
5496
5497 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5498 fprintf_filtered
5499 (file,
5500 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5501 actual_abi_str);
ad188201 5502 else if (global_abi == actual_abi)
1f8ca57c
JB
5503 fprintf_filtered
5504 (file,
5505 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5506 actual_abi_str);
ad188201
KB
5507 else
5508 {
5509 /* Probably shouldn't happen... */
1f8ca57c
JB
5510 fprintf_filtered
5511 (file,
5512 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5513 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5514 }
5515 }
5516}
5517
4b9b3959
AC
5518static void
5519mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5520{
5521 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5522 if (tdep != NULL)
c2d11a7d 5523 {
acdb74a0
AC
5524 int ef_mips_arch;
5525 int ef_mips_32bitmode;
f49e4e6d 5526 /* Determine the ISA. */
acdb74a0
AC
5527 switch (tdep->elf_flags & EF_MIPS_ARCH)
5528 {
5529 case E_MIPS_ARCH_1:
5530 ef_mips_arch = 1;
5531 break;
5532 case E_MIPS_ARCH_2:
5533 ef_mips_arch = 2;
5534 break;
5535 case E_MIPS_ARCH_3:
5536 ef_mips_arch = 3;
5537 break;
5538 case E_MIPS_ARCH_4:
93d56215 5539 ef_mips_arch = 4;
acdb74a0
AC
5540 break;
5541 default:
93d56215 5542 ef_mips_arch = 0;
acdb74a0
AC
5543 break;
5544 }
f49e4e6d 5545 /* Determine the size of a pointer. */
acdb74a0 5546 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5547 fprintf_unfiltered (file,
5548 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5549 tdep->elf_flags);
4b9b3959 5550 fprintf_unfiltered (file,
acdb74a0
AC
5551 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5552 ef_mips_32bitmode);
5553 fprintf_unfiltered (file,
5554 "mips_dump_tdep: ef_mips_arch = %d\n",
5555 ef_mips_arch);
5556 fprintf_unfiltered (file,
5557 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5558 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5559 fprintf_unfiltered (file,
5560 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5561 mips_mask_address_p (tdep),
4014092b 5562 tdep->default_mask_address_p);
c2d11a7d 5563 }
4b9b3959
AC
5564 fprintf_unfiltered (file,
5565 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5566 MIPS_DEFAULT_FPU_TYPE,
5567 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5568 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5569 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5570 : "???"));
6d82d43b 5571 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5572 fprintf_unfiltered (file,
5573 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5574 MIPS_FPU_TYPE,
5575 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5576 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5577 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5578 : "???"));
c2d11a7d
JM
5579}
5580
6d82d43b 5581extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5582
c906108c 5583void
acdb74a0 5584_initialize_mips_tdep (void)
c906108c
SS
5585{
5586 static struct cmd_list_element *mipsfpulist = NULL;
5587 struct cmd_list_element *c;
5588
6d82d43b 5589 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5590 if (MIPS_ABI_LAST + 1
5591 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5592 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5593
4b9b3959 5594 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5595
8d5f9dcb
DJ
5596 mips_pdr_data = register_objfile_data ();
5597
a5ea2558
AC
5598 /* Add root prefix command for all "set mips"/"show mips" commands */
5599 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5600 _("Various MIPS specific commands."),
a5ea2558
AC
5601 &setmipscmdlist, "set mips ", 0, &setlist);
5602
5603 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5604 _("Various MIPS specific commands."),
a5ea2558
AC
5605 &showmipscmdlist, "show mips ", 0, &showlist);
5606
2e4ebe70 5607 /* Allow the user to override the ABI. */
7ab04401
AC
5608 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5609 &mips_abi_string, _("\
5610Set the MIPS ABI used by this program."), _("\
5611Show the MIPS ABI used by this program."), _("\
5612This option can be set to one of:\n\
5613 auto - the default ABI associated with the current binary\n\
5614 o32\n\
5615 o64\n\
5616 n32\n\
5617 n64\n\
5618 eabi32\n\
5619 eabi64"),
5620 mips_abi_update,
5621 show_mips_abi,
5622 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5623
c906108c
SS
5624 /* Let the user turn off floating point and set the fence post for
5625 heuristic_proc_start. */
5626
5627 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5628 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5629 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5630 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5631 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5632 &mipsfpulist);
5633 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5634 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5635 &mipsfpulist);
5636 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5637 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5638 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5639 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5640 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5641 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5642 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5643 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5644 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5645 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5646 &mipsfpulist);
5647 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5648 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5649 &showlist);
5650
c906108c
SS
5651 /* We really would like to have both "0" and "unlimited" work, but
5652 command.c doesn't deal with that. So make it a var_zinteger
5653 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5654 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5655 &heuristic_fence_post, _("\
5656Set the distance searched for the start of a function."), _("\
5657Show the distance searched for the start of a function."), _("\
c906108c
SS
5658If you are debugging a stripped executable, GDB needs to search through the\n\
5659program for the start of a function. This command sets the distance of the\n\
7915a72c 5660search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5661 reinit_frame_cache_sfunc,
7915a72c 5662 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5663 &setlist, &showlist);
c906108c
SS
5664
5665 /* Allow the user to control whether the upper bits of 64-bit
5666 addresses should be zeroed. */
7915a72c
AC
5667 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5668 &mask_address_var, _("\
5669Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5670Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5671Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5672allow GDB to determine the correct value."),
08546159
AC
5673 NULL, show_mask_address,
5674 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5675
5676 /* Allow the user to control the size of 32 bit registers within the
5677 raw remote packet. */
b3f42336 5678 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5679 &mips64_transfers_32bit_regs_p, _("\
5680Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5681 _("\
5682Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5683 _("\
719ec221
AC
5684Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5685that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 568664 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5687 set_mips64_transfers_32bit_regs,
7915a72c 5688 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5689 &setlist, &showlist);
9ace0497
AC
5690
5691 /* Debug this files internals. */
6bcadd06 5692 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5693 &mips_debug, _("\
5694Set mips debugging."), _("\
5695Show mips debugging."), _("\
5696When non-zero, mips specific debugging is enabled."),
2c5b56ce 5697 NULL,
7915a72c 5698 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5699 &setdebuglist, &showdebuglist);
c906108c 5700}
This page took 1.136485 seconds and 4 git commands to generate.