2007-11-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
5e2e9765 27#include "gdb_assert.h"
c906108c
SS
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
d1973055 42#include "mips-tdep.h"
fe898f56 43#include "block.h"
a4b8ebc8 44#include "reggroups.h"
c906108c 45#include "opcode/mips.h"
c2d11a7d
JM
46#include "elf/mips.h"
47#include "elf-bfd.h"
2475bac3 48#include "symcat.h"
a4b8ebc8 49#include "sim-regno.h"
a89aa300 50#include "dis-asm.h"
edfae063
AC
51#include "frame-unwind.h"
52#include "frame-base.h"
53#include "trad-frame.h"
7d9b040b 54#include "infcall.h"
fed7ba43 55#include "floatformat.h"
29709017
DJ
56#include "remote.h"
57#include "target-descriptions.h"
2bd0c3d7 58#include "dwarf2-frame.h"
f8b73d13 59#include "user-regs.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
24e05951 65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
b0069a17
AC
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
1a69e1e4
DJ
77enum
78{
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81};
0dadbba0 82
2e4ebe70
DJ
83static const char *mips_abi_string;
84
85static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
28d169de 89 "n64",
2e4ebe70
DJ
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94};
95
f8b73d13
DJ
96/* The standard register names, and all the valid aliases for them. */
97struct register_alias
98{
99 const char *name;
100 int regnum;
101};
102
103/* Aliases for o32 and most other ABIs. */
104const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109};
110
111/* Aliases for n32 and n64. */
112const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117};
118
119/* Aliases for ABI-independent registers. */
120const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123#define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128#undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143};
144
7a292a7a 145/* Some MIPS boards don't support floating point while others only
ceae6e75 146 support single-precision floating-point operations. */
c906108c
SS
147
148enum mips_fpu_type
6d82d43b
AC
149{
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153};
c906108c
SS
154
155#ifndef MIPS_DEFAULT_FPU_TYPE
156#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157#endif
158static int mips_fpu_type_auto = 1;
159static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 160
9ace0497 161static int mips_debug = 0;
7a292a7a 162
29709017
DJ
163/* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165#define PROPERTY_GP32 "internal: transfers-32bit-registers"
166#define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
4eb0ad19
DJ
168struct target_desc *mips_tdesc_gp32;
169struct target_desc *mips_tdesc_gp64;
170
c2d11a7d
JM
171/* MIPS specific per-architecture information */
172struct gdbarch_tdep
6d82d43b
AC
173{
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
6d82d43b
AC
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
29709017
DJ
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
6d82d43b 200};
c2d11a7d 201
fed7ba43
JB
202static int
203n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 204 const void *from)
fed7ba43
JB
205{
206 return 1;
207}
208
209/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220static const struct floatformat floatformat_n32n64_long_double_big =
221{
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
8da61cc4 224 "floatformat_n32n64_long_double_big",
fed7ba43
JB
225 n32n64_floatformat_always_valid
226};
227
8da61cc4
DJ
228static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229{
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232};
233
56cea623
AC
234const struct mips_regnum *
235mips_regnum (struct gdbarch *gdbarch)
236{
237 return gdbarch_tdep (gdbarch)->regnum;
238}
239
240static int
241mips_fpa0_regnum (struct gdbarch *gdbarch)
242{
243 return mips_regnum (gdbarch)->fp0 + 12;
244}
245
0dadbba0 246#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 248
c2d11a7d 249#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 250
c2d11a7d 251#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 252
c2d11a7d 253#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 254
95404a3e
AC
255/* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258static CORE_ADDR
259is_mips16_addr (CORE_ADDR addr)
260{
261 return ((addr) & 1);
262}
263
95404a3e
AC
264static CORE_ADDR
265unmake_mips16_addr (CORE_ADDR addr)
266{
5b652102 267 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
268}
269
d1973055
KB
270/* Return the MIPS ABI associated with GDBARCH. */
271enum mips_abi
272mips_abi (struct gdbarch *gdbarch)
273{
274 return gdbarch_tdep (gdbarch)->mips_abi;
275}
276
4246e332 277int
1b13c4f6 278mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 279{
29709017
DJ
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
4246e332
AC
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289}
290
480d3dd2
AC
291/* Return the currently configured (or set) saved register size. */
292
e6bc2e8a 293unsigned int
13326b4e 294mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 295{
1a69e1e4
DJ
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
d929b26f
AC
311}
312
71b8ef93 313/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 314 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 315 "info" field is used for this purpose.
5a89d8aa 316
95f1da47 317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
5a89d8aa
MS
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
f594e5e9 321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 322
5a89d8aa 323static void
6d82d43b
AC
324mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325{
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
5a89d8aa
MS
332}
333
71b8ef93
MS
334static int
335msymbol_is_special (struct minimal_symbol *msym)
336{
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338}
339
88658117
AC
340/* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345static void
ba32f989
DJ
346mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
347 int reg_num, int length,
870cd05e
MK
348 enum bfd_endian endian, gdb_byte *in,
349 const gdb_byte *out, int buf_offset)
88658117 350{
88658117 351 int reg_offset = 0;
72a155b4
UW
352
353 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
354 /* Need to transfer the left or right part of the register, based on
355 the targets byte order. */
88658117
AC
356 switch (endian)
357 {
358 case BFD_ENDIAN_BIG:
72a155b4 359 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
360 break;
361 case BFD_ENDIAN_LITTLE:
362 reg_offset = 0;
363 break;
6d82d43b 364 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
365 reg_offset = 0;
366 break;
367 default:
e2e0b3e5 368 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
369 }
370 if (mips_debug)
cb1d2653
AC
371 fprintf_unfiltered (gdb_stderr,
372 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
373 reg_num, reg_offset, buf_offset, length);
88658117
AC
374 if (mips_debug && out != NULL)
375 {
376 int i;
cb1d2653 377 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 378 for (i = 0; i < length; i++)
cb1d2653 379 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
380 }
381 if (in != NULL)
6d82d43b
AC
382 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
383 in + buf_offset);
88658117 384 if (out != NULL)
6d82d43b
AC
385 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
386 out + buf_offset);
88658117
AC
387 if (mips_debug && in != NULL)
388 {
389 int i;
cb1d2653 390 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 391 for (i = 0; i < length; i++)
cb1d2653 392 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
393 }
394 if (mips_debug)
395 fprintf_unfiltered (gdb_stdlog, "\n");
396}
397
dd824b04
DJ
398/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
399 compatiblity mode. A return value of 1 means that we have
400 physical 64-bit registers, but should treat them as 32-bit registers. */
401
402static int
9c9acae0 403mips2_fp_compat (struct frame_info *frame)
dd824b04 404{
72a155b4 405 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
406 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
407 meaningful. */
72a155b4 408 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
409 return 0;
410
411#if 0
412 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
413 in all the places we deal with FP registers. PR gdb/413. */
414 /* Otherwise check the FR bit in the status register - it controls
415 the FP compatiblity mode. If it is clear we are in compatibility
416 mode. */
9c9acae0 417 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
418 return 1;
419#endif
361d1df0 420
dd824b04
DJ
421 return 0;
422}
423
7a292a7a 424#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 425
a14ed312 426static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 427
a14ed312 428static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 429
67b2c998
DJ
430static struct type *mips_float_register_type (void);
431static struct type *mips_double_register_type (void);
432
acdb74a0
AC
433/* The list of available "set mips " and "show mips " commands */
434
435static struct cmd_list_element *setmipscmdlist = NULL;
436static struct cmd_list_element *showmipscmdlist = NULL;
437
5e2e9765
KB
438/* Integer registers 0 thru 31 are handled explicitly by
439 mips_register_name(). Processor specific registers 32 and above
8a9fc081 440 are listed in the following tables. */
691c0433 441
6d82d43b
AC
442enum
443{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
444
445/* Generic MIPS. */
446
447static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
448 "sr", "lo", "hi", "bad", "cause", "pc",
449 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
450 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
451 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
452 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
453 "fsr", "fir", "" /*"fp" */ , "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "", "", "", "", "",
691c0433
AC
456};
457
458/* Names of IDT R3041 registers. */
459
460static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
461 "sr", "lo", "hi", "bad", "cause", "pc",
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "fsr", "fir", "", /*"fp" */ "",
467 "", "", "bus", "ccfg", "", "", "", "",
468 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
469};
470
471/* Names of tx39 registers. */
472
473static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
474 "sr", "lo", "hi", "bad", "cause", "pc",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "", "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "", "",
480 "", "", "", "", "", "", "", "",
481 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
482};
483
484/* Names of IRIX registers. */
485static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
490 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
491};
492
cce74817 493
5e2e9765 494/* Return the name of the register corresponding to REGNO. */
5a89d8aa 495static const char *
d93859e2 496mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 497{
d93859e2 498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
499 /* GPR names for all ABIs other than n32/n64. */
500 static char *mips_gpr_names[] = {
6d82d43b
AC
501 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
502 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
503 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
504 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
505 };
506
507 /* GPR names for n32 and n64 ABIs. */
508 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
509 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
510 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
511 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
512 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
513 };
514
d93859e2 515 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 516
f57d151a
UW
517 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
518 but then don't make the raw register names visible. */
d93859e2
UW
519 int rawnum = regno % gdbarch_num_regs (gdbarch);
520 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
521 return "";
522
5e2e9765
KB
523 /* The MIPS integer registers are always mapped from 0 to 31. The
524 names of the registers (which reflects the conventions regarding
525 register use) vary depending on the ABI. */
a4b8ebc8 526 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
527 {
528 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 529 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 530 else
a4b8ebc8 531 return mips_gpr_names[rawnum];
5e2e9765 532 }
d93859e2
UW
533 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
534 return tdesc_register_name (gdbarch, rawnum);
535 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
536 {
537 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
538 return tdep->mips_processor_reg_names[rawnum - 32];
539 }
5e2e9765
KB
540 else
541 internal_error (__FILE__, __LINE__,
e2e0b3e5 542 _("mips_register_name: bad register number %d"), rawnum);
cce74817 543}
5e2e9765 544
a4b8ebc8 545/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 546
a4b8ebc8
AC
547static int
548mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
549 struct reggroup *reggroup)
550{
551 int vector_p;
552 int float_p;
553 int raw_p;
72a155b4
UW
554 int rawnum = regnum % gdbarch_num_regs (gdbarch);
555 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
556 if (reggroup == all_reggroup)
557 return pseudo;
558 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
559 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
560 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
561 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
562 raw_p = rawnum < gdbarch_num_regs (gdbarch);
563 if (gdbarch_register_name (gdbarch, regnum) == NULL
564 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
565 return 0;
566 if (reggroup == float_reggroup)
567 return float_p && pseudo;
568 if (reggroup == vector_reggroup)
569 return vector_p && pseudo;
570 if (reggroup == general_reggroup)
571 return (!vector_p && !float_p) && pseudo;
572 /* Save the pseudo registers. Need to make certain that any code
573 extracting register values from a saved register cache also uses
574 pseudo registers. */
575 if (reggroup == save_reggroup)
576 return raw_p && pseudo;
577 /* Restore the same pseudo register. */
578 if (reggroup == restore_reggroup)
579 return raw_p && pseudo;
6d82d43b 580 return 0;
a4b8ebc8
AC
581}
582
f8b73d13
DJ
583/* Return the groups that a MIPS register can be categorised into.
584 This version is only used if we have a target description which
585 describes real registers (and their groups). */
586
587static int
588mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
589 struct reggroup *reggroup)
590{
591 int rawnum = regnum % gdbarch_num_regs (gdbarch);
592 int pseudo = regnum / gdbarch_num_regs (gdbarch);
593 int ret;
594
595 /* Only save, restore, and display the pseudo registers. Need to
596 make certain that any code extracting register values from a
597 saved register cache also uses pseudo registers.
598
599 Note: saving and restoring the pseudo registers is slightly
600 strange; if we have 64 bits, we should save and restore all
601 64 bits. But this is hard and has little benefit. */
602 if (!pseudo)
603 return 0;
604
605 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
606 if (ret != -1)
607 return ret;
608
609 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
610}
611
a4b8ebc8 612/* Map the symbol table registers which live in the range [1 *
f57d151a 613 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 614 registers. Take care of alignment and size problems. */
c5aa993b 615
a4b8ebc8
AC
616static void
617mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 618 int cookednum, gdb_byte *buf)
a4b8ebc8 619{
72a155b4
UW
620 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
621 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
622 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 623 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 624 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
625 else if (register_size (gdbarch, rawnum) >
626 register_size (gdbarch, cookednum))
47ebcfbe
AC
627 {
628 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 629 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
630 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
631 else
632 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
633 }
634 else
e2e0b3e5 635 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
636}
637
638static void
6d82d43b
AC
639mips_pseudo_register_write (struct gdbarch *gdbarch,
640 struct regcache *regcache, int cookednum,
47a35522 641 const gdb_byte *buf)
a4b8ebc8 642{
72a155b4
UW
643 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
644 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
645 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 646 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 647 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
648 else if (register_size (gdbarch, rawnum) >
649 register_size (gdbarch, cookednum))
47ebcfbe
AC
650 {
651 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 652 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
653 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
654 else
655 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
656 }
657 else
e2e0b3e5 658 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 659}
c5aa993b 660
c906108c 661/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 662static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
663
664/* Heuristic_proc_start may hunt through the text section for a long
665 time across a 2400 baud serial line. Allows the user to limit this
666 search. */
667
668static unsigned int heuristic_fence_post = 0;
669
46cd78fb 670/* Number of bytes of storage in the actual machine representation for
719ec221
AC
671 register N. NOTE: This defines the pseudo register type so need to
672 rebuild the architecture vector. */
43e526b9
JM
673
674static int mips64_transfers_32bit_regs_p = 0;
675
719ec221
AC
676static void
677set_mips64_transfers_32bit_regs (char *args, int from_tty,
678 struct cmd_list_element *c)
43e526b9 679{
719ec221
AC
680 struct gdbarch_info info;
681 gdbarch_info_init (&info);
682 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
683 instead of relying on globals. Doing that would let generic code
684 handle the search for this specific architecture. */
685 if (!gdbarch_update_p (info))
a4b8ebc8 686 {
719ec221 687 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 688 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 689 }
a4b8ebc8
AC
690}
691
47ebcfbe 692/* Convert to/from a register and the corresponding memory value. */
43e526b9 693
ff2e87ac
AC
694static int
695mips_convert_register_p (int regnum, struct type *type)
696{
4c6b5505 697 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
719ec221 698 && register_size (current_gdbarch, regnum) == 4
f57d151a
UW
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 >= mips_regnum (current_gdbarch)->fp0
701 && (regnum % gdbarch_num_regs (current_gdbarch))
702 < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 703 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
704}
705
42c466d7 706static void
ff2e87ac 707mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 708 struct type *type, gdb_byte *to)
102182a9 709{
47a35522
MK
710 get_frame_register (frame, regnum + 0, to + 4);
711 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
712}
713
42c466d7 714static void
ff2e87ac 715mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 716 struct type *type, const gdb_byte *from)
102182a9 717{
47a35522
MK
718 put_frame_register (frame, regnum + 0, from + 4);
719 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
720}
721
a4b8ebc8
AC
722/* Return the GDB type object for the "standard" data type of data in
723 register REG. */
78fde5f8
KB
724
725static struct type *
a4b8ebc8
AC
726mips_register_type (struct gdbarch *gdbarch, int regnum)
727{
72a155b4
UW
728 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
729 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
730 && (regnum % gdbarch_num_regs (gdbarch))
731 < mips_regnum (gdbarch)->fp0 + 32)
a6425924 732 {
5ef80fb0 733 /* The floating-point registers raw, or cooked, always match
1b13c4f6 734 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
735 if (mips_isa_regsize (gdbarch) == 4)
736 return builtin_type_ieee_single;
737 else
738 return builtin_type_ieee_double;
a6425924 739 }
72a155b4 740 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
741 {
742 /* The raw or ISA registers. These are all sized according to
743 the ISA regsize. */
744 if (mips_isa_regsize (gdbarch) == 4)
745 return builtin_type_int32;
746 else
747 return builtin_type_int64;
748 }
78fde5f8 749 else
d5ac5a39
AC
750 {
751 /* The cooked or ABI registers. These are sized according to
752 the ABI (with a few complications). */
72a155b4
UW
753 if (regnum >= (gdbarch_num_regs (gdbarch)
754 + mips_regnum (gdbarch)->fp_control_status)
755 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
78fde5f8
KB
772}
773
f8b73d13
DJ
774/* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779static struct type *
780mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781{
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826}
bcb0cc15 827
c906108c 828/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 829enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
830
831static int
480d3dd2 832mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
833{
834 switch (mask_address_var)
835 {
7f19b9a2 836 case AUTO_BOOLEAN_TRUE:
4014092b 837 return 1;
7f19b9a2 838 case AUTO_BOOLEAN_FALSE:
4014092b
AC
839 return 0;
840 break;
7f19b9a2 841 case AUTO_BOOLEAN_AUTO:
480d3dd2 842 return tdep->default_mask_address_p;
4014092b 843 default:
e2e0b3e5 844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 845 return -1;
361d1df0 846 }
4014092b
AC
847}
848
849static void
08546159
AC
850show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
4014092b 852{
480d3dd2 853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
854
855 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
856 switch (mask_address_var)
857 {
7f19b9a2 858 case AUTO_BOOLEAN_TRUE:
4014092b
AC
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
7f19b9a2 861 case AUTO_BOOLEAN_FALSE:
4014092b
AC
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
7f19b9a2 864 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
868 break;
869 default:
e2e0b3e5 870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 871 break;
361d1df0 872 }
4014092b 873}
c906108c 874
c906108c
SS
875/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
0fe7e7c8
AC
877int
878mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
879{
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 883 if (is_mips16_addr (memaddr))
c906108c
SS
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
71b8ef93 891 return msymbol_is_special (sym);
c906108c
SS
892 else
893 return 0;
894}
895
b2fa5097 896/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
897 all registers should be sign extended for simplicity? */
898
899static CORE_ADDR
61a1198a 900mips_read_pc (struct regcache *regcache)
6c997a34 901{
61a1198a
UW
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
b6cb9035
AC
906}
907
58dfe9ff
AC
908static CORE_ADDR
909mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910{
72a155b4
UW
911 return frame_unwind_register_signed
912 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
edfae063
AC
913}
914
30244cd8
UW
915static CORE_ADDR
916mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
917{
72a155b4
UW
918 return frame_unwind_register_signed
919 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
920}
921
edfae063
AC
922/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
923 dummy frame. The frame ID's base needs to match the TOS value
924 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
925 breakpoint. */
926
927static struct frame_id
928mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
929{
f57d151a
UW
930 return frame_id_build
931 (frame_unwind_register_signed (next_frame,
72a155b4 932 gdbarch_num_regs (gdbarch)
f57d151a
UW
933 + MIPS_SP_REGNUM),
934 frame_pc_unwind (next_frame));
58dfe9ff
AC
935}
936
b6cb9035 937static void
61a1198a 938mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 939{
61a1198a
UW
940 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
941 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 942}
c906108c 943
c906108c
SS
944/* Fetch and return instruction from the specified location. If the PC
945 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
946
d37cca3d 947static ULONGEST
acdb74a0 948mips_fetch_instruction (CORE_ADDR addr)
c906108c 949{
47a35522 950 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
951 int instlen;
952 int status;
953
0fe7e7c8 954 if (mips_pc_is_mips16 (addr))
c906108c 955 {
95ac2dcf 956 instlen = MIPS_INSN16_SIZE;
95404a3e 957 addr = unmake_mips16_addr (addr);
c906108c
SS
958 }
959 else
95ac2dcf 960 instlen = MIPS_INSN32_SIZE;
359a9262 961 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
962 if (status)
963 memory_error (status, addr);
964 return extract_unsigned_integer (buf, instlen);
965}
966
c906108c 967/* These the fields of 32 bit mips instructions */
e135b889
DJ
968#define mips32_op(x) (x >> 26)
969#define itype_op(x) (x >> 26)
970#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 971#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 972#define itype_immediate(x) (x & 0xffff)
c906108c 973
e135b889
DJ
974#define jtype_op(x) (x >> 26)
975#define jtype_target(x) (x & 0x03ffffff)
c906108c 976
e135b889
DJ
977#define rtype_op(x) (x >> 26)
978#define rtype_rs(x) ((x >> 21) & 0x1f)
979#define rtype_rt(x) ((x >> 16) & 0x1f)
980#define rtype_rd(x) ((x >> 11) & 0x1f)
981#define rtype_shamt(x) ((x >> 6) & 0x1f)
982#define rtype_funct(x) (x & 0x3f)
c906108c 983
06987e64
MK
984static LONGEST
985mips32_relative_offset (ULONGEST inst)
c5aa993b 986{
06987e64 987 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
988}
989
f49e4e6d
MS
990/* Determine where to set a single step breakpoint while considering
991 branch prediction. */
5a89d8aa 992static CORE_ADDR
0b1b3e42 993mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b
JM
994{
995 unsigned long inst;
996 int op;
997 inst = mips_fetch_instruction (pc);
e135b889 998 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 999 {
e135b889 1000 if (itype_op (inst) >> 2 == 5)
6d82d43b 1001 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1002 {
e135b889 1003 op = (itype_op (inst) & 0x03);
c906108c
SS
1004 switch (op)
1005 {
e135b889
DJ
1006 case 0: /* BEQL */
1007 goto equal_branch;
1008 case 1: /* BNEL */
1009 goto neq_branch;
1010 case 2: /* BLEZL */
1011 goto less_branch;
313628cc 1012 case 3: /* BGTZL */
e135b889 1013 goto greater_branch;
c5aa993b
JM
1014 default:
1015 pc += 4;
c906108c
SS
1016 }
1017 }
e135b889 1018 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 1019 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
1020 {
1021 int tf = itype_rt (inst) & 0x01;
1022 int cnum = itype_rt (inst) >> 2;
6d82d43b 1023 int fcrcs =
72a155b4
UW
1024 get_frame_register_signed (frame,
1025 mips_regnum (get_frame_arch (frame))->
0b1b3e42 1026 fp_control_status);
e135b889
DJ
1027 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1028
1029 if (((cond >> cnum) & 0x01) == tf)
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 }
c5aa993b
JM
1034 else
1035 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1036 }
1037 else
c5aa993b
JM
1038 { /* This gets way messy */
1039
c906108c 1040 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1041 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1042 {
c5aa993b
JM
1043 case 0: /* SPECIAL */
1044 op = rtype_funct (inst);
1045 switch (op)
1046 {
1047 case 8: /* JR */
1048 case 9: /* JALR */
6c997a34 1049 /* Set PC to that address */
0b1b3e42 1050 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b
JM
1051 break;
1052 default:
1053 pc += 4;
1054 }
1055
6d82d43b 1056 break; /* end SPECIAL */
c5aa993b 1057 case 1: /* REGIMM */
c906108c 1058 {
e135b889
DJ
1059 op = itype_rt (inst); /* branch condition */
1060 switch (op)
c906108c 1061 {
c5aa993b 1062 case 0: /* BLTZ */
e135b889
DJ
1063 case 2: /* BLTZL */
1064 case 16: /* BLTZAL */
c5aa993b 1065 case 18: /* BLTZALL */
c906108c 1066 less_branch:
0b1b3e42 1067 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1068 pc += mips32_relative_offset (inst) + 4;
1069 else
1070 pc += 8; /* after the delay slot */
1071 break;
e135b889 1072 case 1: /* BGEZ */
c5aa993b
JM
1073 case 3: /* BGEZL */
1074 case 17: /* BGEZAL */
1075 case 19: /* BGEZALL */
0b1b3e42 1076 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1077 pc += mips32_relative_offset (inst) + 4;
1078 else
1079 pc += 8; /* after the delay slot */
1080 break;
e135b889 1081 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1082 default:
1083 pc += 4;
c906108c
SS
1084 }
1085 }
6d82d43b 1086 break; /* end REGIMM */
c5aa993b
JM
1087 case 2: /* J */
1088 case 3: /* JAL */
1089 {
1090 unsigned long reg;
1091 reg = jtype_target (inst) << 2;
e135b889 1092 /* Upper four bits get never changed... */
5b652102 1093 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1094 }
c5aa993b
JM
1095 break;
1096 /* FIXME case JALX : */
1097 {
1098 unsigned long reg;
1099 reg = jtype_target (inst) << 2;
5b652102 1100 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1101 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1102 }
c5aa993b 1103 break; /* The new PC will be alternate mode */
e135b889 1104 case 4: /* BEQ, BEQL */
c5aa993b 1105 equal_branch:
0b1b3e42
UW
1106 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1107 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
e135b889 1112 case 5: /* BNE, BNEL */
c5aa993b 1113 neq_branch:
0b1b3e42
UW
1114 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1115 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1116 pc += mips32_relative_offset (inst) + 4;
1117 else
1118 pc += 8;
1119 break;
e135b889 1120 case 6: /* BLEZ, BLEZL */
0b1b3e42 1121 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1122 pc += mips32_relative_offset (inst) + 4;
1123 else
1124 pc += 8;
1125 break;
1126 case 7:
e135b889
DJ
1127 default:
1128 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1129 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1130 pc += mips32_relative_offset (inst) + 4;
1131 else
1132 pc += 8;
1133 break;
c5aa993b
JM
1134 } /* switch */
1135 } /* else */
1136 return pc;
1137} /* mips32_next_pc */
c906108c
SS
1138
1139/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1140 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1141 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1142 We dont want to set a single step instruction on the extend instruction
1143 either.
c5aa993b 1144 */
c906108c
SS
1145
1146/* Lots of mips16 instruction formats */
1147/* Predicting jumps requires itype,ritype,i8type
1148 and their extensions extItype,extritype,extI8type
c5aa993b 1149 */
c906108c
SS
1150enum mips16_inst_fmts
1151{
c5aa993b
JM
1152 itype, /* 0 immediate 5,10 */
1153 ritype, /* 1 5,3,8 */
1154 rrtype, /* 2 5,3,3,5 */
1155 rritype, /* 3 5,3,3,5 */
1156 rrrtype, /* 4 5,3,3,3,2 */
1157 rriatype, /* 5 5,3,3,1,4 */
1158 shifttype, /* 6 5,3,3,3,2 */
1159 i8type, /* 7 5,3,8 */
1160 i8movtype, /* 8 5,3,3,5 */
1161 i8mov32rtype, /* 9 5,3,5,3 */
1162 i64type, /* 10 5,3,8 */
1163 ri64type, /* 11 5,3,3,5 */
1164 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1165 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1166 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1167 extRRItype, /* 15 5,5,5,5,3,3,5 */
1168 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1169 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1170 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1171 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1172 extRi64type, /* 20 5,6,5,5,3,3,5 */
1173 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1174};
12f02c2a
AC
1175/* I am heaping all the fields of the formats into one structure and
1176 then, only the fields which are involved in instruction extension */
c906108c 1177struct upk_mips16
6d82d43b
AC
1178{
1179 CORE_ADDR offset;
1180 unsigned int regx; /* Function in i8 type */
1181 unsigned int regy;
1182};
c906108c
SS
1183
1184
12f02c2a
AC
1185/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1186 for the bits which make up the immediatate extension. */
c906108c 1187
12f02c2a
AC
1188static CORE_ADDR
1189extended_offset (unsigned int extension)
c906108c 1190{
12f02c2a 1191 CORE_ADDR value;
c5aa993b
JM
1192 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1193 value = value << 6;
1194 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1195 value = value << 5;
1196 value |= extension & 0x01f; /* extract 4:0 */
1197 return value;
c906108c
SS
1198}
1199
1200/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1201 instruction. It won't malfunction, but why make excess remote memory
1202 references? If the immediate operands get sign extended or something,
1203 do it after the extension is performed. */
c906108c 1204/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1205 when the offset is to be used in relative addressing. */
c906108c 1206
12f02c2a 1207static unsigned int
c5aa993b 1208fetch_mips_16 (CORE_ADDR pc)
c906108c 1209{
47a35522 1210 gdb_byte buf[8];
c5aa993b
JM
1211 pc &= 0xfffffffe; /* clear the low order bit */
1212 target_read_memory (pc, buf, 2);
1213 return extract_unsigned_integer (buf, 2);
c906108c
SS
1214}
1215
1216static void
c5aa993b 1217unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1218 unsigned int extension,
1219 unsigned int inst,
6d82d43b 1220 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1221{
12f02c2a
AC
1222 CORE_ADDR offset;
1223 int regx;
1224 int regy;
1225 switch (insn_format)
c906108c 1226 {
c5aa993b 1227 case itype:
c906108c 1228 {
12f02c2a
AC
1229 CORE_ADDR value;
1230 if (extension)
c5aa993b
JM
1231 {
1232 value = extended_offset (extension);
1233 value = value << 11; /* rom for the original value */
6d82d43b 1234 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1235 }
1236 else
c5aa993b 1237 {
12f02c2a 1238 value = inst & 0x7ff;
c5aa993b 1239 /* FIXME : Consider sign extension */
c906108c 1240 }
12f02c2a
AC
1241 offset = value;
1242 regx = -1;
1243 regy = -1;
c906108c 1244 }
c5aa993b
JM
1245 break;
1246 case ritype:
1247 case i8type:
1248 { /* A register identifier and an offset */
c906108c
SS
1249 /* Most of the fields are the same as I type but the
1250 immediate value is of a different length */
12f02c2a
AC
1251 CORE_ADDR value;
1252 if (extension)
c906108c 1253 {
c5aa993b
JM
1254 value = extended_offset (extension);
1255 value = value << 8; /* from the original instruction */
12f02c2a
AC
1256 value |= inst & 0xff; /* eleven bits from instruction */
1257 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1258 if (value & 0x4000) /* test the sign bit , bit 26 */
1259 {
1260 value &= ~0x3fff; /* remove the sign bit */
1261 value = -value;
c906108c
SS
1262 }
1263 }
c5aa993b
JM
1264 else
1265 {
12f02c2a
AC
1266 value = inst & 0xff; /* 8 bits */
1267 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1268 /* FIXME: Do sign extension , this format needs it */
1269 if (value & 0x80) /* THIS CONFUSES ME */
1270 {
1271 value &= 0xef; /* remove the sign bit */
1272 value = -value;
1273 }
c5aa993b 1274 }
12f02c2a
AC
1275 offset = value;
1276 regy = -1;
c5aa993b 1277 break;
c906108c 1278 }
c5aa993b 1279 case jalxtype:
c906108c 1280 {
c5aa993b 1281 unsigned long value;
12f02c2a
AC
1282 unsigned int nexthalf;
1283 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1284 value = value << 16;
1285 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1286 value |= nexthalf;
12f02c2a
AC
1287 offset = value;
1288 regx = -1;
1289 regy = -1;
c5aa993b 1290 break;
c906108c
SS
1291 }
1292 default:
e2e0b3e5 1293 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1294 }
12f02c2a
AC
1295 upk->offset = offset;
1296 upk->regx = regx;
1297 upk->regy = regy;
c906108c
SS
1298}
1299
1300
c5aa993b
JM
1301static CORE_ADDR
1302add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1303{
5b652102 1304 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1305}
1306
12f02c2a 1307static CORE_ADDR
0b1b3e42 1308extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 1309 unsigned int extension, unsigned int insn)
c906108c 1310{
12f02c2a
AC
1311 int op = (insn >> 11);
1312 switch (op)
c906108c 1313 {
6d82d43b 1314 case 2: /* Branch */
12f02c2a
AC
1315 {
1316 CORE_ADDR offset;
1317 struct upk_mips16 upk;
1318 unpack_mips16 (pc, extension, insn, itype, &upk);
1319 offset = upk.offset;
1320 if (offset & 0x800)
1321 {
1322 offset &= 0xeff;
1323 offset = -offset;
1324 }
1325 pc += (offset << 1) + 2;
1326 break;
1327 }
6d82d43b 1328 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1329 {
1330 struct upk_mips16 upk;
1331 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1332 pc = add_offset_16 (pc, upk.offset);
1333 if ((insn >> 10) & 0x01) /* Exchange mode */
1334 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1335 else
1336 pc |= 0x01;
1337 break;
1338 }
6d82d43b 1339 case 4: /* beqz */
12f02c2a
AC
1340 {
1341 struct upk_mips16 upk;
1342 int reg;
1343 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1344 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1345 if (reg == 0)
1346 pc += (upk.offset << 1) + 2;
1347 else
1348 pc += 2;
1349 break;
1350 }
6d82d43b 1351 case 5: /* bnez */
12f02c2a
AC
1352 {
1353 struct upk_mips16 upk;
1354 int reg;
1355 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1356 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1357 if (reg != 0)
1358 pc += (upk.offset << 1) + 2;
1359 else
1360 pc += 2;
1361 break;
1362 }
6d82d43b 1363 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1364 {
1365 struct upk_mips16 upk;
1366 int reg;
1367 unpack_mips16 (pc, extension, insn, i8type, &upk);
1368 /* upk.regx contains the opcode */
0b1b3e42 1369 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
1370 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1371 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1372 /* pc = add_offset_16(pc,upk.offset) ; */
1373 pc += (upk.offset << 1) + 2;
1374 else
1375 pc += 2;
1376 break;
1377 }
6d82d43b 1378 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1379 {
1380 struct upk_mips16 upk;
1381 /* upk.fmt = rrtype; */
1382 op = insn & 0x1f;
1383 if (op == 0)
c5aa993b 1384 {
12f02c2a
AC
1385 int reg;
1386 upk.regx = (insn >> 8) & 0x07;
1387 upk.regy = (insn >> 5) & 0x07;
1388 switch (upk.regy)
c5aa993b 1389 {
12f02c2a
AC
1390 case 0:
1391 reg = upk.regx;
1392 break;
1393 case 1:
1394 reg = 31;
6d82d43b 1395 break; /* Function return instruction */
12f02c2a
AC
1396 case 2:
1397 reg = upk.regx;
1398 break;
1399 default:
1400 reg = 31;
6d82d43b 1401 break; /* BOGUS Guess */
c906108c 1402 }
0b1b3e42 1403 pc = get_frame_register_signed (frame, reg);
c906108c 1404 }
12f02c2a 1405 else
c5aa993b 1406 pc += 2;
12f02c2a
AC
1407 break;
1408 }
1409 case 30:
1410 /* This is an instruction extension. Fetch the real instruction
1411 (which follows the extension) and decode things based on
1412 that. */
1413 {
1414 pc += 2;
0b1b3e42 1415 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
12f02c2a
AC
1416 break;
1417 }
1418 default:
1419 {
1420 pc += 2;
1421 break;
1422 }
c906108c 1423 }
c5aa993b 1424 return pc;
12f02c2a 1425}
c906108c 1426
5a89d8aa 1427static CORE_ADDR
0b1b3e42 1428mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a
AC
1429{
1430 unsigned int insn = fetch_mips_16 (pc);
0b1b3e42 1431 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
1432}
1433
1434/* The mips_next_pc function supports single_step when the remote
7e73cedf 1435 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1436 It works by decoding the current instruction and predicting where a
1437 branch will go. This isnt hard because all the data is available.
ce1f96de 1438 The MIPS32 and MIPS16 variants are quite different. */
ad527d2e 1439static CORE_ADDR
0b1b3e42 1440mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1441{
ce1f96de 1442 if (is_mips16_addr (pc))
0b1b3e42 1443 return mips16_next_pc (frame, pc);
c5aa993b 1444 else
0b1b3e42 1445 return mips32_next_pc (frame, pc);
12f02c2a 1446}
c906108c 1447
edfae063
AC
1448struct mips_frame_cache
1449{
1450 CORE_ADDR base;
1451 struct trad_frame_saved_reg *saved_regs;
1452};
1453
29639122
JB
1454/* Set a register's saved stack address in temp_saved_regs. If an
1455 address has already been set for this register, do nothing; this
1456 way we will only recognize the first save of a given register in a
1457 function prologue.
eec63939 1458
f57d151a
UW
1459 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1460 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1461 Strictly speaking, only the second range is used as it is only second
1462 range (the ABI instead of ISA registers) that comes into play when finding
1463 saved registers in a frame. */
eec63939
AC
1464
1465static void
29639122
JB
1466set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1467 CORE_ADDR offset)
eec63939 1468{
29639122
JB
1469 if (this_cache != NULL
1470 && this_cache->saved_regs[regnum].addr == -1)
1471 {
f57d151a
UW
1472 this_cache->saved_regs[regnum
1473 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1474 = offset;
1475 this_cache->saved_regs[regnum
1476 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1477 = offset;
29639122 1478 }
eec63939
AC
1479}
1480
eec63939 1481
29639122
JB
1482/* Fetch the immediate value from a MIPS16 instruction.
1483 If the previous instruction was an EXTEND, use it to extend
1484 the upper bits of the immediate value. This is a helper function
1485 for mips16_scan_prologue. */
eec63939 1486
29639122
JB
1487static int
1488mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1489 unsigned short inst, /* current instruction */
1490 int nbits, /* number of bits in imm field */
1491 int scale, /* scale factor to be applied to imm */
1492 int is_signed) /* is the imm field signed? */
eec63939 1493{
29639122 1494 int offset;
eec63939 1495
29639122
JB
1496 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1497 {
1498 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1499 if (offset & 0x8000) /* check for negative extend */
1500 offset = 0 - (0x10000 - (offset & 0xffff));
1501 return offset | (inst & 0x1f);
1502 }
eec63939 1503 else
29639122
JB
1504 {
1505 int max_imm = 1 << nbits;
1506 int mask = max_imm - 1;
1507 int sign_bit = max_imm >> 1;
45c9dd44 1508
29639122
JB
1509 offset = inst & mask;
1510 if (is_signed && (offset & sign_bit))
1511 offset = 0 - (max_imm - offset);
1512 return offset * scale;
1513 }
1514}
eec63939 1515
65596487 1516
29639122
JB
1517/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1518 the associated FRAME_CACHE if not null.
1519 Return the address of the first instruction past the prologue. */
eec63939 1520
29639122
JB
1521static CORE_ADDR
1522mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1523 struct frame_info *next_frame,
1524 struct mips_frame_cache *this_cache)
1525{
1526 CORE_ADDR cur_pc;
1527 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1528 CORE_ADDR sp;
1529 long frame_offset = 0; /* Size of stack frame. */
1530 long frame_adjust = 0; /* Offset of FP from SP. */
1531 int frame_reg = MIPS_SP_REGNUM;
1532 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1533 unsigned inst = 0; /* current instruction */
1534 unsigned entry_inst = 0; /* the entry instruction */
1535 int reg, offset;
a343eb3c 1536
29639122
JB
1537 int extend_bytes = 0;
1538 int prev_extend_bytes;
1539 CORE_ADDR end_prologue_addr = 0;
72a155b4 1540 struct gdbarch *gdbarch = get_frame_arch (next_frame);
a343eb3c 1541
29639122
JB
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
d2ca4222 1545 sp = frame_unwind_register_signed (next_frame,
72a155b4 1546 gdbarch_num_regs (gdbarch)
d2ca4222 1547 + MIPS_SP_REGNUM);
29639122
JB
1548 else
1549 sp = 0;
eec63939 1550
29639122
JB
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
eec63939 1553
95ac2dcf 1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
eec63939 1559
29639122
JB
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1562
29639122
JB
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
95ac2dcf 1570 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1571 continue;
1572 }
eec63939 1573
29639122
JB
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
eec63939 1576
29639122
JB
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
eec63939 1654
29639122
JB
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1665
29639122
JB
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
72a155b4 1677 offset += mips_abi_regsize (gdbarch);
29639122
JB
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
4c7d22cb 1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 1685 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
72a155b4 1692 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
f57d151a 1699 (frame_unwind_register_signed (next_frame,
72a155b4 1700 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
1701 + frame_offset - frame_adjust);
1702 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1703 be able to get rid of the assignment below, evetually. But it's
1704 still needed for now. */
72a155b4
UW
1705 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1706 + mips_regnum (gdbarch)->pc]
1707 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
1708 }
1709
1710 /* If we didn't reach the end of the prologue when scanning the function
1711 instructions, then set end_prologue_addr to the address of the
1712 instruction immediately after the last one we scanned. */
1713 if (end_prologue_addr == 0)
1714 end_prologue_addr = cur_pc;
1715
1716 return end_prologue_addr;
eec63939
AC
1717}
1718
29639122
JB
1719/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1720 Procedures that use the 32-bit instruction set are handled by the
1721 mips_insn32 unwinder. */
1722
1723static struct mips_frame_cache *
1724mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1725{
29639122 1726 struct mips_frame_cache *cache;
eec63939
AC
1727
1728 if ((*this_cache) != NULL)
1729 return (*this_cache);
29639122
JB
1730 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1731 (*this_cache) = cache;
1732 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1733
29639122
JB
1734 /* Analyze the function prologue. */
1735 {
6de5b849
JB
1736 const CORE_ADDR pc =
1737 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1738 CORE_ADDR start_addr;
eec63939 1739
29639122
JB
1740 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1741 if (start_addr == 0)
1742 start_addr = heuristic_proc_start (pc);
1743 /* We can't analyze the prologue if we couldn't find the begining
1744 of the function. */
1745 if (start_addr == 0)
1746 return cache;
eec63939 1747
29639122
JB
1748 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1749 }
1750
3e8c568d 1751 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4
UW
1752 trad_frame_set_value (cache->saved_regs,
1753 gdbarch_num_regs (get_frame_arch (next_frame))
1754 + MIPS_SP_REGNUM,
1755 cache->base);
eec63939 1756
29639122 1757 return (*this_cache);
eec63939
AC
1758}
1759
1760static void
29639122
JB
1761mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
eec63939 1763{
29639122
JB
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
93d42b30
DJ
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1768}
1769
1770static void
29639122 1771mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1775 int *realnump, gdb_byte *valuep)
eec63939 1776{
29639122
JB
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1781}
1782
29639122 1783static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1784{
1785 NORMAL_FRAME,
29639122
JB
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
eec63939
AC
1788};
1789
1790static const struct frame_unwind *
29639122 1791mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1792{
6de5b849 1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1794 if (mips_pc_is_mips16 (pc))
29639122
JB
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
eec63939
AC
1797}
1798
1799static CORE_ADDR
29639122
JB
1800mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
eec63939 1802{
29639122
JB
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
eec63939
AC
1806}
1807
29639122 1808static const struct frame_base mips_insn16_frame_base =
eec63939 1809{
29639122
JB
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
eec63939
AC
1814};
1815
1816static const struct frame_base *
29639122 1817mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1818{
29639122
JB
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
eec63939
AC
1821 else
1822 return NULL;
edfae063
AC
1823}
1824
29639122
JB
1825/* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828void
1829reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1830{
29639122
JB
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
f57d151a 1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
29639122 1836 int i;
64159455 1837
29639122
JB
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
c906108c
SS
1843}
1844
29639122
JB
1845/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
c906108c 1848
875e1767 1849static CORE_ADDR
29639122
JB
1850mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
c906108c 1853{
29639122
JB
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1859
29639122
JB
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
72a155b4 1863 struct gdbarch *gdbarch = get_frame_arch (next_frame);
8fa9cfa1 1864
29639122
JB
1865 /* Can be called when there's no process, and hence when there's no
1866 NEXT_FRAME. */
1867 if (next_frame != NULL)
d2ca4222 1868 sp = frame_unwind_register_signed (next_frame,
72a155b4 1869 gdbarch_num_regs (gdbarch)
d2ca4222 1870 + MIPS_SP_REGNUM);
8fa9cfa1 1871 else
29639122 1872 sp = 0;
9022177c 1873
29639122
JB
1874 if (limit_pc > start_pc + 200)
1875 limit_pc = start_pc + 200;
9022177c 1876
29639122 1877restart:
9022177c 1878
29639122 1879 frame_offset = 0;
95ac2dcf 1880 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1881 {
29639122
JB
1882 unsigned long inst, high_word, low_word;
1883 int reg;
9022177c 1884
29639122
JB
1885 /* Fetch the instruction. */
1886 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1887
29639122
JB
1888 /* Save some code by pre-extracting some useful fields. */
1889 high_word = (inst >> 16) & 0xffff;
1890 low_word = inst & 0xffff;
1891 reg = high_word & 0x1f;
fe29b929 1892
29639122
JB
1893 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1894 || high_word == 0x23bd /* addi $sp,$sp,-i */
1895 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1896 {
1897 if (low_word & 0x8000) /* negative stack adjustment? */
1898 frame_offset += 0x10000 - low_word;
1899 else
1900 /* Exit loop if a positive stack adjustment is found, which
1901 usually means that the stack cleanup code in the function
1902 epilogue is reached. */
1903 break;
1904 seen_sp_adjust = 1;
1905 }
1906 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1907 {
1908 set_reg_offset (this_cache, reg, sp + low_word);
1909 }
1910 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1911 {
1912 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1913 set_reg_offset (this_cache, reg, sp + low_word);
1914 }
1915 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1916 {
1917 /* Old gcc frame, r30 is virtual frame pointer. */
1918 if ((long) low_word != frame_offset)
1919 frame_addr = sp + low_word;
d2ca4222 1920 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1921 {
1922 unsigned alloca_adjust;
a4b8ebc8 1923
29639122 1924 frame_reg = 30;
d2ca4222 1925 frame_addr = frame_unwind_register_signed
72a155b4 1926 (next_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 1927
29639122
JB
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
d2ca4222 1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1951 {
1952 unsigned alloca_adjust;
c906108c 1953
29639122 1954 frame_reg = 30;
d2ca4222 1955 frame_addr = frame_unwind_register_signed
72a155b4 1956 (next_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 1957
29639122
JB
1958 alloca_adjust = (unsigned) (frame_addr - sp);
1959 if (alloca_adjust > 0)
1960 {
1961 /* FP > SP + frame_size. This may be because of
1962 an alloca or somethings similar. Fix sp to
1963 "pre-alloca" value, and try again. */
1964 sp = frame_addr;
1965 /* Need to reset the status of all registers. Otherwise,
1966 we will hit a guard that prevents the new address
1967 for each register to be recomputed during the second
1968 pass. */
1969 reset_saved_regs (this_cache);
1970 goto restart;
1971 }
1972 }
1973 }
1974 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1975 {
1976 set_reg_offset (this_cache, reg, frame_addr + low_word);
1977 }
1978 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1979 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1980 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1981 || high_word == 0x3c1c /* lui $gp,n */
1982 || high_word == 0x279c /* addiu $gp,$gp,n */
1983 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1984 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1985 )
1986 {
1987 /* These instructions are part of the prologue, but we don't
1988 need to do anything special to handle them. */
1989 }
1990 /* The instructions below load $at or $t0 with an immediate
1991 value in preparation for a stack adjustment via
1992 subu $sp,$sp,[$at,$t0]. These instructions could also
1993 initialize a local variable, so we accept them only before
1994 a stack adjustment instruction was seen. */
1995 else if (!seen_sp_adjust
1996 && (high_word == 0x3c01 /* lui $at,n */
1997 || high_word == 0x3c08 /* lui $t0,n */
1998 || high_word == 0x3421 /* ori $at,$at,n */
1999 || high_word == 0x3508 /* ori $t0,$t0,n */
2000 || high_word == 0x3401 /* ori $at,$zero,n */
2001 || high_word == 0x3408 /* ori $t0,$zero,n */
2002 ))
2003 {
95ac2dcf 2004 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
2005 }
2006 else
2007 {
2008 /* This instruction is not an instruction typically found
2009 in a prologue, so we must have reached the end of the
2010 prologue. */
2011 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2012 loop now? Why would we need to continue scanning the function
2013 instructions? */
2014 if (end_prologue_addr == 0)
2015 end_prologue_addr = cur_pc;
2016 }
a4b8ebc8 2017 }
c906108c 2018
29639122
JB
2019 if (this_cache != NULL)
2020 {
2021 this_cache->base =
f57d151a 2022 (frame_unwind_register_signed (next_frame,
72a155b4 2023 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
2024 + frame_offset);
2025 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2026 this assignment below, eventually. But it's still needed
2027 for now. */
72a155b4
UW
2028 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2029 + mips_regnum (gdbarch)->pc]
2030 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 2031 + MIPS_RA_REGNUM];
29639122 2032 }
c906108c 2033
29639122
JB
2034 /* If we didn't reach the end of the prologue when scanning the function
2035 instructions, then set end_prologue_addr to the address of the
2036 instruction immediately after the last one we scanned. */
2037 /* brobecker/2004-10-10: I don't think this would ever happen, but
2038 we may as well be careful and do our best if we have a null
2039 end_prologue_addr. */
2040 if (end_prologue_addr == 0)
2041 end_prologue_addr = cur_pc;
2042
2043 /* In a frameless function, we might have incorrectly
2044 skipped some load immediate instructions. Undo the skipping
2045 if the load immediate was not followed by a stack adjustment. */
2046 if (load_immediate_bytes && !seen_sp_adjust)
2047 end_prologue_addr -= load_immediate_bytes;
c906108c 2048
29639122 2049 return end_prologue_addr;
c906108c
SS
2050}
2051
29639122
JB
2052/* Heuristic unwinder for procedures using 32-bit instructions (covers
2053 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2054 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2055 unwinder. */
c906108c 2056
29639122
JB
2057static struct mips_frame_cache *
2058mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 2059{
29639122 2060 struct mips_frame_cache *cache;
c906108c 2061
29639122
JB
2062 if ((*this_cache) != NULL)
2063 return (*this_cache);
c5aa993b 2064
29639122
JB
2065 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2066 (*this_cache) = cache;
2067 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 2068
29639122
JB
2069 /* Analyze the function prologue. */
2070 {
6de5b849
JB
2071 const CORE_ADDR pc =
2072 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 2073 CORE_ADDR start_addr;
c906108c 2074
29639122
JB
2075 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2076 if (start_addr == 0)
2077 start_addr = heuristic_proc_start (pc);
2078 /* We can't analyze the prologue if we couldn't find the begining
2079 of the function. */
2080 if (start_addr == 0)
2081 return cache;
c5aa993b 2082
29639122
JB
2083 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2084 }
2085
3e8c568d 2086 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 2087 trad_frame_set_value (cache->saved_regs,
72a155b4
UW
2088 gdbarch_num_regs (get_frame_arch (next_frame))
2089 + MIPS_SP_REGNUM,
f57d151a 2090 cache->base);
c5aa993b 2091
29639122 2092 return (*this_cache);
c906108c
SS
2093}
2094
29639122
JB
2095static void
2096mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2097 struct frame_id *this_id)
c906108c 2098{
29639122
JB
2099 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2100 this_cache);
93d42b30
DJ
2101 (*this_id) = frame_id_build (info->base,
2102 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 2103}
c906108c 2104
29639122
JB
2105static void
2106mips_insn32_frame_prev_register (struct frame_info *next_frame,
2107 void **this_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2110 int *realnump, gdb_byte *valuep)
29639122
JB
2111{
2112 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2113 this_cache);
2114 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2115 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2116}
2117
29639122
JB
2118static const struct frame_unwind mips_insn32_frame_unwind =
2119{
2120 NORMAL_FRAME,
2121 mips_insn32_frame_this_id,
2122 mips_insn32_frame_prev_register
2123};
c906108c 2124
29639122
JB
2125static const struct frame_unwind *
2126mips_insn32_frame_sniffer (struct frame_info *next_frame)
2127{
6de5b849 2128 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2129 if (! mips_pc_is_mips16 (pc))
29639122
JB
2130 return &mips_insn32_frame_unwind;
2131 return NULL;
2132}
c906108c 2133
1c645fec 2134static CORE_ADDR
29639122
JB
2135mips_insn32_frame_base_address (struct frame_info *next_frame,
2136 void **this_cache)
c906108c 2137{
29639122
JB
2138 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2139 this_cache);
2140 return info->base;
2141}
c906108c 2142
29639122
JB
2143static const struct frame_base mips_insn32_frame_base =
2144{
2145 &mips_insn32_frame_unwind,
2146 mips_insn32_frame_base_address,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address
2149};
1c645fec 2150
29639122
JB
2151static const struct frame_base *
2152mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2153{
2154 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2155 return &mips_insn32_frame_base;
a65bbe44 2156 else
29639122
JB
2157 return NULL;
2158}
a65bbe44 2159
29639122
JB
2160static struct trad_frame_cache *
2161mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2162{
2163 CORE_ADDR pc;
2164 CORE_ADDR start_addr;
2165 CORE_ADDR stack_addr;
2166 struct trad_frame_cache *this_trad_cache;
72a155b4 2167 struct gdbarch *gdbarch = get_frame_arch (next_frame);
c906108c 2168
29639122
JB
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
1c645fec 2173
29639122 2174 /* The return address is in the link register. */
3e8c568d 2175 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4
UW
2176 gdbarch_pc_regnum (gdbarch),
2177 (gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM));
1c645fec 2178
29639122
JB
2179 /* Frame ID, since it's a frameless / stackless function, no stack
2180 space is allocated and SP on entry is the current SP. */
2181 pc = frame_pc_unwind (next_frame);
2182 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2183 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
aa6c981f 2184 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 2185
29639122
JB
2186 /* Assume that the frame's base is the same as the
2187 stack-pointer. */
2188 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2189
29639122
JB
2190 return this_trad_cache;
2191}
c906108c 2192
29639122
JB
2193static void
2194mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2195 struct frame_id *this_id)
2196{
2197 struct trad_frame_cache *this_trad_cache
2198 = mips_stub_frame_cache (next_frame, this_cache);
2199 trad_frame_get_id (this_trad_cache, this_id);
2200}
c906108c 2201
29639122
JB
2202static void
2203mips_stub_frame_prev_register (struct frame_info *next_frame,
2204 void **this_cache,
2205 int regnum, int *optimizedp,
2206 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2207 int *realnump, gdb_byte *valuep)
29639122
JB
2208{
2209 struct trad_frame_cache *this_trad_cache
2210 = mips_stub_frame_cache (next_frame, this_cache);
2211 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2212 lvalp, addrp, realnump, valuep);
2213}
c906108c 2214
29639122
JB
2215static const struct frame_unwind mips_stub_frame_unwind =
2216{
2217 NORMAL_FRAME,
2218 mips_stub_frame_this_id,
2219 mips_stub_frame_prev_register
2220};
c906108c 2221
29639122
JB
2222static const struct frame_unwind *
2223mips_stub_frame_sniffer (struct frame_info *next_frame)
2224{
aa6c981f 2225 gdb_byte dummy[4];
979b38e0 2226 struct obj_section *s;
93d42b30 2227 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2228
aa6c981f
DJ
2229 /* Use the stub unwinder for unreadable code. */
2230 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2231 return &mips_stub_frame_unwind;
2232
29639122
JB
2233 if (in_plt_section (pc, NULL))
2234 return &mips_stub_frame_unwind;
979b38e0
DJ
2235
2236 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2237 s = find_pc_section (pc);
2238
2239 if (s != NULL
2240 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2241 ".MIPS.stubs") == 0)
2242 return &mips_stub_frame_unwind;
2243
2244 return NULL;
29639122 2245}
c906108c 2246
29639122
JB
2247static CORE_ADDR
2248mips_stub_frame_base_address (struct frame_info *next_frame,
2249 void **this_cache)
2250{
2251 struct trad_frame_cache *this_trad_cache
2252 = mips_stub_frame_cache (next_frame, this_cache);
2253 return trad_frame_get_this_base (this_trad_cache);
2254}
0fce0821 2255
29639122
JB
2256static const struct frame_base mips_stub_frame_base =
2257{
2258 &mips_stub_frame_unwind,
2259 mips_stub_frame_base_address,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address
2262};
2263
2264static const struct frame_base *
2265mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2266{
2267 if (mips_stub_frame_sniffer (next_frame) != NULL)
2268 return &mips_stub_frame_base;
2269 else
2270 return NULL;
2271}
2272
29639122 2273/* mips_addr_bits_remove - remove useless address bits */
65596487 2274
29639122
JB
2275static CORE_ADDR
2276mips_addr_bits_remove (CORE_ADDR addr)
65596487 2277{
29639122
JB
2278 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2279 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2280 /* This hack is a work-around for existing boards using PMON, the
2281 simulator, and any other 64-bit targets that doesn't have true
2282 64-bit addressing. On these targets, the upper 32 bits of
2283 addresses are ignored by the hardware. Thus, the PC or SP are
2284 likely to have been sign extended to all 1s by instruction
2285 sequences that load 32-bit addresses. For example, a typical
2286 piece of code that loads an address is this:
65596487 2287
29639122
JB
2288 lui $r2, <upper 16 bits>
2289 ori $r2, <lower 16 bits>
65596487 2290
29639122
JB
2291 But the lui sign-extends the value such that the upper 32 bits
2292 may be all 1s. The workaround is simply to mask off these
2293 bits. In the future, gcc may be changed to support true 64-bit
2294 addressing, and this masking will have to be disabled. */
2295 return addr &= 0xffffffffUL;
2296 else
2297 return addr;
65596487
JB
2298}
2299
3d5f6d12
DJ
2300/* Instructions used during single-stepping of atomic sequences. */
2301#define LL_OPCODE 0x30
2302#define LLD_OPCODE 0x34
2303#define SC_OPCODE 0x38
2304#define SCD_OPCODE 0x3c
2305
2306/* Checks for an atomic sequence of instructions beginning with a LL/LLD
2307 instruction and ending with a SC/SCD instruction. If such a sequence
2308 is found, attempt to step through it. A breakpoint is placed at the end of
2309 the sequence. */
2310
2311static int
2312deal_with_atomic_sequence (CORE_ADDR pc)
2313{
2314 CORE_ADDR breaks[2] = {-1, -1};
2315 CORE_ADDR loc = pc;
2316 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2317 unsigned long insn;
2318 int insn_count;
2319 int index;
2320 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2321 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2322
2323 if (pc & 0x01)
2324 return 0;
2325
2326 insn = mips_fetch_instruction (loc);
2327 /* Assume all atomic sequences start with a ll/lld instruction. */
2328 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2329 return 0;
2330
2331 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2332 instructions. */
2333 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2334 {
2335 int is_branch = 0;
2336 loc += MIPS_INSN32_SIZE;
2337 insn = mips_fetch_instruction (loc);
2338
2339 /* Assume that there is at most one branch in the atomic
2340 sequence. If a branch is found, put a breakpoint in its
2341 destination address. */
2342 switch (itype_op (insn))
2343 {
2344 case 0: /* SPECIAL */
2345 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2346 return 0; /* fallback to the standard single-step code. */
2347 break;
2348 case 1: /* REGIMM */
2349 is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
2350 break;
2351 case 2: /* J */
2352 case 3: /* JAL */
2353 return 0; /* fallback to the standard single-step code. */
2354 case 4: /* BEQ */
2355 case 5: /* BNE */
2356 case 6: /* BLEZ */
2357 case 7: /* BGTZ */
2358 case 20: /* BEQL */
2359 case 21: /* BNEL */
2360 case 22: /* BLEZL */
2361 case 23: /* BGTTL */
2362 is_branch = 1;
2363 break;
2364 case 17: /* COP1 */
2365 case 18: /* COP2 */
2366 case 19: /* COP3 */
2367 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2368 break;
2369 }
2370 if (is_branch)
2371 {
2372 branch_bp = loc + mips32_relative_offset (insn) + 4;
2373 if (last_breakpoint >= 1)
2374 return 0; /* More than one branch found, fallback to the
2375 standard single-step code. */
2376 breaks[1] = branch_bp;
2377 last_breakpoint++;
2378 }
2379
2380 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2381 break;
2382 }
2383
2384 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2385 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2386 return 0;
2387
2388 loc += MIPS_INSN32_SIZE;
2389
2390 /* Insert a breakpoint right after the end of the atomic sequence. */
2391 breaks[0] = loc;
2392
2393 /* Check for duplicated breakpoints. Check also for a breakpoint
2394 placed (branch instruction's destination) in the atomic sequence */
2395 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2396 last_breakpoint = 0;
2397
2398 /* Effectively inserts the breakpoints. */
2399 for (index = 0; index <= last_breakpoint; index++)
2400 insert_single_step_breakpoint (breaks[index]);
2401
2402 return 1;
2403}
2404
29639122
JB
2405/* mips_software_single_step() is called just before we want to resume
2406 the inferior, if we want to single-step it but there is no hardware
2407 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2408 the target of the coming instruction and breakpoint it. */
29639122 2409
e6590a1b 2410int
0b1b3e42 2411mips_software_single_step (struct frame_info *frame)
c906108c 2412{
8181d85f 2413 CORE_ADDR pc, next_pc;
65596487 2414
0b1b3e42 2415 pc = get_frame_pc (frame);
3d5f6d12
DJ
2416 if (deal_with_atomic_sequence (pc))
2417 return 1;
2418
0b1b3e42 2419 next_pc = mips_next_pc (frame, pc);
e6590a1b 2420
e0cd558a 2421 insert_single_step_breakpoint (next_pc);
e6590a1b 2422 return 1;
29639122 2423}
a65bbe44 2424
29639122
JB
2425/* Test whether the PC points to the return instruction at the
2426 end of a function. */
65596487 2427
29639122
JB
2428static int
2429mips_about_to_return (CORE_ADDR pc)
2430{
0fe7e7c8 2431 if (mips_pc_is_mips16 (pc))
29639122
JB
2432 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2433 generates a "jr $ra"; other times it generates code to load
2434 the return address from the stack to an accessible register (such
2435 as $a3), then a "jr" using that register. This second case
2436 is almost impossible to distinguish from an indirect jump
2437 used for switch statements, so we don't even try. */
2438 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2439 else
2440 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2441}
c906108c 2442
c906108c 2443
29639122
JB
2444/* This fencepost looks highly suspicious to me. Removing it also
2445 seems suspicious as it could affect remote debugging across serial
2446 lines. */
c906108c 2447
29639122
JB
2448static CORE_ADDR
2449heuristic_proc_start (CORE_ADDR pc)
2450{
2451 CORE_ADDR start_pc;
2452 CORE_ADDR fence;
2453 int instlen;
2454 int seen_adjsp = 0;
65596487 2455
bf6ae464 2456 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
29639122
JB
2457 start_pc = pc;
2458 fence = start_pc - heuristic_fence_post;
2459 if (start_pc == 0)
2460 return 0;
65596487 2461
29639122
JB
2462 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2463 fence = VM_MIN_ADDRESS;
65596487 2464
95ac2dcf 2465 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2466
29639122
JB
2467 /* search back for previous return */
2468 for (start_pc -= instlen;; start_pc -= instlen)
2469 if (start_pc < fence)
2470 {
2471 /* It's not clear to me why we reach this point when
2472 stop_soon, but with this test, at least we
2473 don't print out warnings for every child forked (eg, on
2474 decstation). 22apr93 rich@cygnus.com. */
2475 if (stop_soon == NO_STOP_QUIETLY)
2476 {
2477 static int blurb_printed = 0;
98b4dd94 2478
8a3fe4f8 2479 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2480 paddr_nz (pc));
2481
2482 if (!blurb_printed)
2483 {
2484 /* This actually happens frequently in embedded
2485 development, when you first connect to a board
2486 and your stack pointer and pc are nowhere in
2487 particular. This message needs to give people
2488 in that situation enough information to
2489 determine that it's no big deal. */
2490 printf_filtered ("\n\
2491 GDB is unable to find the start of the function at 0x%s\n\
2492and thus can't determine the size of that function's stack frame.\n\
2493This means that GDB may be unable to access that stack frame, or\n\
2494the frames below it.\n\
2495 This problem is most likely caused by an invalid program counter or\n\
2496stack pointer.\n\
2497 However, if you think GDB should simply search farther back\n\
2498from 0x%s for code which looks like the beginning of a\n\
2499function, you can increase the range of the search using the `set\n\
2500heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2501 blurb_printed = 1;
2502 }
2503 }
2504
2505 return 0;
2506 }
0fe7e7c8 2507 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2508 {
2509 unsigned short inst;
2510
2511 /* On MIPS16, any one of the following is likely to be the
2512 start of a function:
193774b3
MR
2513 extend save
2514 save
29639122
JB
2515 entry
2516 addiu sp,-n
2517 daddiu sp,-n
2518 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2519 inst = mips_fetch_instruction (start_pc);
193774b3
MR
2520 if ((inst & 0xff80) == 0x6480) /* save */
2521 {
2522 if (start_pc - instlen >= fence)
2523 {
2524 inst = mips_fetch_instruction (start_pc - instlen);
2525 if ((inst & 0xf800) == 0xf000) /* extend */
2526 start_pc -= instlen;
2527 }
2528 break;
2529 }
2530 else if (((inst & 0xf81f) == 0xe809
2531 && (inst & 0x700) != 0x700) /* entry */
2532 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2533 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2534 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
2535 break;
2536 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2537 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2538 seen_adjsp = 1;
2539 else
2540 seen_adjsp = 0;
2541 }
2542 else if (mips_about_to_return (start_pc))
2543 {
4c7d22cb 2544 /* Skip return and its delay slot. */
95ac2dcf 2545 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2546 break;
2547 }
2548
2549 return start_pc;
c906108c
SS
2550}
2551
6c0d6680
DJ
2552struct mips_objfile_private
2553{
2554 bfd_size_type size;
2555 char *contents;
2556};
2557
f09ded24
AC
2558/* According to the current ABI, should the type be passed in a
2559 floating-point register (assuming that there is space)? When there
a1f5b845 2560 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2561 FP registers and, consequently this returns false - forces FP
2562 arguments into integer registers. */
2563
2564static int
2565fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2566{
2567 return ((typecode == TYPE_CODE_FLT
2568 || (MIPS_EABI
6d82d43b
AC
2569 && (typecode == TYPE_CODE_STRUCT
2570 || typecode == TYPE_CODE_UNION)
f09ded24 2571 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2572 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2573 == TYPE_CODE_FLT))
c86b5b38 2574 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2575}
2576
49e790b0
DJ
2577/* On o32, argument passing in GPRs depends on the alignment of the type being
2578 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2579
2580static int
2581mips_type_needs_double_align (struct type *type)
2582{
2583 enum type_code typecode = TYPE_CODE (type);
361d1df0 2584
49e790b0
DJ
2585 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2586 return 1;
2587 else if (typecode == TYPE_CODE_STRUCT)
2588 {
2589 if (TYPE_NFIELDS (type) < 1)
2590 return 0;
2591 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2592 }
2593 else if (typecode == TYPE_CODE_UNION)
2594 {
361d1df0 2595 int i, n;
49e790b0
DJ
2596
2597 n = TYPE_NFIELDS (type);
2598 for (i = 0; i < n; i++)
2599 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2600 return 1;
2601 return 0;
2602 }
2603 return 0;
2604}
2605
dc604539
AC
2606/* Adjust the address downward (direction of stack growth) so that it
2607 is correctly aligned for a new stack frame. */
2608static CORE_ADDR
2609mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2610{
5b03f266 2611 return align_down (addr, 16);
dc604539
AC
2612}
2613
f7ab6ec6 2614static CORE_ADDR
7d9b040b 2615mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2616 struct regcache *regcache, CORE_ADDR bp_addr,
2617 int nargs, struct value **args, CORE_ADDR sp,
2618 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2619{
2620 int argreg;
2621 int float_argreg;
2622 int argnum;
2623 int len = 0;
2624 int stack_offset = 0;
480d3dd2 2625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2626 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 2627 int regsize = mips_abi_regsize (gdbarch);
c906108c 2628
25ab4790
AC
2629 /* For shared libraries, "t9" needs to point at the function
2630 address. */
4c7d22cb 2631 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2632
2633 /* Set the return address register to point to the entry point of
2634 the program, where a breakpoint lies in wait. */
4c7d22cb 2635 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2636
c906108c 2637 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2638 are properly aligned. The stack has to be at least 64-bit
2639 aligned even on 32-bit machines, because doubles must be 64-bit
2640 aligned. For n32 and n64, stack frames need to be 128-bit
2641 aligned, so we round to this widest known alignment. */
2642
5b03f266
AC
2643 sp = align_down (sp, 16);
2644 struct_addr = align_down (struct_addr, 16);
c5aa993b 2645
46e0f506 2646 /* Now make space on the stack for the args. We allocate more
c906108c 2647 than necessary for EABI, because the first few arguments are
46e0f506 2648 passed in registers, but that's OK. */
c906108c 2649 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2650 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 2651 sp -= align_up (len, 16);
c906108c 2652
9ace0497 2653 if (mips_debug)
6d82d43b 2654 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2655 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2656 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2657
c906108c 2658 /* Initialize the integer and float register pointers. */
4c7d22cb 2659 argreg = MIPS_A0_REGNUM;
72a155b4 2660 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 2661
46e0f506 2662 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2663 if (struct_return)
9ace0497
AC
2664 {
2665 if (mips_debug)
2666 fprintf_unfiltered (gdb_stdlog,
25ab4790 2667 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2668 argreg, paddr_nz (struct_addr));
9c9acae0 2669 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 2670 }
c906108c
SS
2671
2672 /* Now load as many as possible of the first arguments into
2673 registers, and push the rest onto the stack. Loop thru args
2674 from first to last. */
2675 for (argnum = 0; argnum < nargs; argnum++)
2676 {
47a35522
MK
2677 const gdb_byte *val;
2678 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2679 struct value *arg = args[argnum];
4991999e 2680 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2681 int len = TYPE_LENGTH (arg_type);
2682 enum type_code typecode = TYPE_CODE (arg_type);
2683
9ace0497
AC
2684 if (mips_debug)
2685 fprintf_unfiltered (gdb_stdlog,
25ab4790 2686 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2687 argnum + 1, len, (int) typecode);
9ace0497 2688
c906108c 2689 /* The EABI passes structures that do not fit in a register by
46e0f506 2690 reference. */
1a69e1e4 2691 if (len > regsize
9ace0497 2692 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2693 {
1a69e1e4 2694 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
c906108c 2695 typecode = TYPE_CODE_PTR;
1a69e1e4 2696 len = regsize;
c906108c 2697 val = valbuf;
9ace0497
AC
2698 if (mips_debug)
2699 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2700 }
2701 else
47a35522 2702 val = value_contents (arg);
c906108c
SS
2703
2704 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2705 even-numbered floating point register. Round the FP register
2706 up before the check to see if there are any FP registers
46e0f506
MS
2707 left. Non MIPS_EABI targets also pass the FP in the integer
2708 registers so also round up normal registers. */
1a69e1e4 2709 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2710 {
2711 if ((float_argreg & 1))
2712 float_argreg++;
2713 }
c906108c
SS
2714
2715 /* Floating point arguments passed in registers have to be
2716 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2717 are passed in register pairs; the even register gets
2718 the low word, and the odd register gets the high word.
2719 On non-EABI processors, the first two floating point arguments are
2720 also copied to general registers, because MIPS16 functions
2721 don't use float registers for arguments. This duplication of
2722 arguments in general registers can't hurt non-MIPS16 functions
2723 because those registers are normally skipped. */
1012bd0e
EZ
2724 /* MIPS_EABI squeezes a struct that contains a single floating
2725 point value into an FP register instead of pushing it onto the
46e0f506 2726 stack. */
f09ded24
AC
2727 if (fp_register_arg_p (typecode, arg_type)
2728 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2729 {
6da397e0
KB
2730 /* EABI32 will pass doubles in consecutive registers, even on
2731 64-bit cores. At one time, we used to check the size of
2732 `float_argreg' to determine whether or not to pass doubles
2733 in consecutive registers, but this is not sufficient for
2734 making the ABI determination. */
2735 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2736 {
72a155b4 2737 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 2738 == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2739 unsigned long regval;
2740
2741 /* Write the low word of the double to the even register(s). */
c5aa993b 2742 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2743 if (mips_debug)
acdb74a0 2744 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2745 float_argreg, phex (regval, 4));
9c9acae0 2746 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2747
2748 /* Write the high word of the double to the odd register(s). */
c5aa993b 2749 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2750 if (mips_debug)
acdb74a0 2751 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2752 float_argreg, phex (regval, 4));
9c9acae0 2753 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2754 }
2755 else
2756 {
2757 /* This is a floating point value that fits entirely
2758 in a single register. */
53a5351d 2759 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2760 above to ensure that it is even register aligned. */
9ace0497
AC
2761 LONGEST regval = extract_unsigned_integer (val, len);
2762 if (mips_debug)
acdb74a0 2763 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2764 float_argreg, phex (regval, len));
9c9acae0 2765 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2766 }
2767 }
2768 else
2769 {
2770 /* Copy the argument to general registers or the stack in
2771 register-sized pieces. Large arguments are split between
2772 registers and stack. */
1a69e1e4
DJ
2773 /* Note: structs whose size is not a multiple of regsize
2774 are treated specially: Irix cc passes
d5ac5a39
AC
2775 them in registers where gcc sometimes puts them on the
2776 stack. For maximum compatibility, we will put them in
2777 both places. */
1a69e1e4 2778 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 2779
f09ded24 2780 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2781 register are only written to memory. */
c906108c
SS
2782 while (len > 0)
2783 {
ebafbe83 2784 /* Remember if the argument was written to the stack. */
566f0f7a 2785 int stack_used_p = 0;
1a69e1e4 2786 int partial_len = (len < regsize ? len : regsize);
c906108c 2787
acdb74a0
AC
2788 if (mips_debug)
2789 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2790 partial_len);
2791
566f0f7a 2792 /* Write this portion of the argument to the stack. */
f09ded24
AC
2793 if (argreg > MIPS_LAST_ARG_REGNUM
2794 || odd_sized_struct
2795 || fp_register_arg_p (typecode, arg_type))
c906108c 2796 {
c906108c
SS
2797 /* Should shorter than int integer values be
2798 promoted to int before being stored? */
c906108c 2799 int longword_offset = 0;
9ace0497 2800 CORE_ADDR addr;
566f0f7a 2801 stack_used_p = 1;
72a155b4 2802 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 2803 {
1a69e1e4 2804 if (regsize == 8
480d3dd2
AC
2805 && (typecode == TYPE_CODE_INT
2806 || typecode == TYPE_CODE_PTR
6d82d43b 2807 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 2808 longword_offset = regsize - len;
480d3dd2
AC
2809 else if ((typecode == TYPE_CODE_STRUCT
2810 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
2811 && TYPE_LENGTH (arg_type) < regsize)
2812 longword_offset = regsize - len;
7a292a7a 2813 }
c5aa993b 2814
9ace0497
AC
2815 if (mips_debug)
2816 {
cb3d25d1
MS
2817 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2818 paddr_nz (stack_offset));
2819 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2820 paddr_nz (longword_offset));
9ace0497 2821 }
361d1df0 2822
9ace0497
AC
2823 addr = sp + stack_offset + longword_offset;
2824
2825 if (mips_debug)
2826 {
2827 int i;
6d82d43b 2828 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2829 paddr_nz (addr));
9ace0497
AC
2830 for (i = 0; i < partial_len; i++)
2831 {
6d82d43b 2832 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2833 val[i] & 0xff);
9ace0497
AC
2834 }
2835 }
2836 write_memory (addr, val, partial_len);
c906108c
SS
2837 }
2838
f09ded24
AC
2839 /* Note!!! This is NOT an else clause. Odd sized
2840 structs may go thru BOTH paths. Floating point
46e0f506 2841 arguments will not. */
566f0f7a 2842 /* Write this portion of the argument to a general
6d82d43b 2843 purpose register. */
f09ded24
AC
2844 if (argreg <= MIPS_LAST_ARG_REGNUM
2845 && !fp_register_arg_p (typecode, arg_type))
c906108c 2846 {
6d82d43b
AC
2847 LONGEST regval =
2848 extract_unsigned_integer (val, partial_len);
c906108c 2849
9ace0497 2850 if (mips_debug)
acdb74a0 2851 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2852 argreg,
1a69e1e4 2853 phex (regval, regsize));
9c9acae0 2854 regcache_cooked_write_unsigned (regcache, argreg, regval);
c906108c 2855 argreg++;
c906108c 2856 }
c5aa993b 2857
c906108c
SS
2858 len -= partial_len;
2859 val += partial_len;
2860
566f0f7a 2861 /* Compute the the offset into the stack at which we
6d82d43b 2862 will copy the next parameter.
566f0f7a 2863
566f0f7a 2864 In the new EABI (and the NABI32), the stack_offset
46e0f506 2865 only needs to be adjusted when it has been used. */
c906108c 2866
46e0f506 2867 if (stack_used_p)
1a69e1e4 2868 stack_offset += align_up (partial_len, regsize);
c906108c
SS
2869 }
2870 }
9ace0497
AC
2871 if (mips_debug)
2872 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2873 }
2874
f10683bb 2875 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2876
0f71a2f6
JM
2877 /* Return adjusted stack pointer. */
2878 return sp;
2879}
2880
a1f5b845 2881/* Determine the return value convention being used. */
6d82d43b 2882
9c8fdbfa
AC
2883static enum return_value_convention
2884mips_eabi_return_value (struct gdbarch *gdbarch,
2885 struct type *type, struct regcache *regcache,
47a35522 2886 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2887{
9c8fdbfa
AC
2888 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2889 return RETURN_VALUE_STRUCT_CONVENTION;
2890 if (readbuf)
2891 memset (readbuf, 0, TYPE_LENGTH (type));
2892 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2893}
2894
6d82d43b
AC
2895
2896/* N32/N64 ABI stuff. */
ebafbe83 2897
8d26208a
DJ
2898/* Search for a naturally aligned double at OFFSET inside a struct
2899 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2900 registers. */
2901
2902static int
2903mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2904{
2905 int i;
2906
2907 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2908 return 0;
2909
2910 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2911 return 0;
2912
2913 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2914 return 0;
2915
2916 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2917 {
2918 int pos;
2919 struct type *field_type;
2920
2921 /* We're only looking at normal fields. */
2922 if (TYPE_FIELD_STATIC (arg_type, i)
2923 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2924 continue;
2925
2926 /* If we have gone past the offset, there is no double to pass. */
2927 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2928 if (pos > offset)
2929 return 0;
2930
2931 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2932
2933 /* If this field is entirely before the requested offset, go
2934 on to the next one. */
2935 if (pos + TYPE_LENGTH (field_type) <= offset)
2936 continue;
2937
2938 /* If this is our special aligned double, we can stop. */
2939 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2940 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2941 return 1;
2942
2943 /* This field starts at or before the requested offset, and
2944 overlaps it. If it is a structure, recurse inwards. */
2945 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2946 }
2947
2948 return 0;
2949}
2950
f7ab6ec6 2951static CORE_ADDR
7d9b040b 2952mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2953 struct regcache *regcache, CORE_ADDR bp_addr,
2954 int nargs, struct value **args, CORE_ADDR sp,
2955 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2956{
2957 int argreg;
2958 int float_argreg;
2959 int argnum;
2960 int len = 0;
2961 int stack_offset = 0;
480d3dd2 2962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2963 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2964
25ab4790
AC
2965 /* For shared libraries, "t9" needs to point at the function
2966 address. */
4c7d22cb 2967 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2968
2969 /* Set the return address register to point to the entry point of
2970 the program, where a breakpoint lies in wait. */
4c7d22cb 2971 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2972
cb3d25d1
MS
2973 /* First ensure that the stack and structure return address (if any)
2974 are properly aligned. The stack has to be at least 64-bit
2975 aligned even on 32-bit machines, because doubles must be 64-bit
2976 aligned. For n32 and n64, stack frames need to be 128-bit
2977 aligned, so we round to this widest known alignment. */
2978
5b03f266
AC
2979 sp = align_down (sp, 16);
2980 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2981
2982 /* Now make space on the stack for the args. */
2983 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2984 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 2985 sp -= align_up (len, 16);
cb3d25d1
MS
2986
2987 if (mips_debug)
6d82d43b 2988 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2989 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2990 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2991
2992 /* Initialize the integer and float register pointers. */
4c7d22cb 2993 argreg = MIPS_A0_REGNUM;
72a155b4 2994 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 2995
46e0f506 2996 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2997 if (struct_return)
2998 {
2999 if (mips_debug)
3000 fprintf_unfiltered (gdb_stdlog,
25ab4790 3001 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 3002 argreg, paddr_nz (struct_addr));
9c9acae0 3003 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
3004 }
3005
3006 /* Now load as many as possible of the first arguments into
3007 registers, and push the rest onto the stack. Loop thru args
3008 from first to last. */
3009 for (argnum = 0; argnum < nargs; argnum++)
3010 {
47a35522 3011 const gdb_byte *val;
cb3d25d1 3012 struct value *arg = args[argnum];
4991999e 3013 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
3014 int len = TYPE_LENGTH (arg_type);
3015 enum type_code typecode = TYPE_CODE (arg_type);
3016
3017 if (mips_debug)
3018 fprintf_unfiltered (gdb_stdlog,
25ab4790 3019 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3020 argnum + 1, len, (int) typecode);
3021
47a35522 3022 val = value_contents (arg);
cb3d25d1
MS
3023
3024 if (fp_register_arg_p (typecode, arg_type)
8d26208a 3025 && argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
3026 {
3027 /* This is a floating point value that fits entirely
3028 in a single register. */
cb3d25d1
MS
3029 LONGEST regval = extract_unsigned_integer (val, len);
3030 if (mips_debug)
3031 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3032 float_argreg, phex (regval, len));
8d26208a 3033 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
3034
3035 if (mips_debug)
3036 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3037 argreg, phex (regval, len));
9c9acae0 3038 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
3039 float_argreg++;
3040 argreg++;
cb3d25d1
MS
3041 }
3042 else
3043 {
3044 /* Copy the argument to general registers or the stack in
3045 register-sized pieces. Large arguments are split between
3046 registers and stack. */
ab2e1992
MR
3047 /* For N32/N64, structs, unions, or other composite types are
3048 treated as a sequence of doublewords, and are passed in integer
3049 or floating point registers as though they were simple scalar
3050 parameters to the extent that they fit, with any excess on the
3051 stack packed according to the normal memory layout of the
3052 object.
3053 The caller does not reserve space for the register arguments;
3054 the callee is responsible for reserving it if required. */
cb3d25d1 3055 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3056 register are only written to memory. */
cb3d25d1
MS
3057 while (len > 0)
3058 {
ad018eee 3059 /* Remember if the argument was written to the stack. */
cb3d25d1 3060 int stack_used_p = 0;
1a69e1e4 3061 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
3062
3063 if (mips_debug)
3064 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3065 partial_len);
3066
8d26208a
DJ
3067 if (fp_register_arg_p (typecode, arg_type))
3068 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
3069
cb3d25d1 3070 /* Write this portion of the argument to the stack. */
ab2e1992 3071 if (argreg > MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
3072 {
3073 /* Should shorter than int integer values be
3074 promoted to int before being stored? */
3075 int longword_offset = 0;
3076 CORE_ADDR addr;
3077 stack_used_p = 1;
72a155b4 3078 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 3079 {
1a69e1e4
DJ
3080 if ((typecode == TYPE_CODE_INT
3081 || typecode == TYPE_CODE_PTR
3082 || typecode == TYPE_CODE_FLT)
3083 && len <= 4)
3084 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
3085 }
3086
3087 if (mips_debug)
3088 {
3089 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3090 paddr_nz (stack_offset));
3091 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3092 paddr_nz (longword_offset));
3093 }
3094
3095 addr = sp + stack_offset + longword_offset;
3096
3097 if (mips_debug)
3098 {
3099 int i;
6d82d43b 3100 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
3101 paddr_nz (addr));
3102 for (i = 0; i < partial_len; i++)
3103 {
6d82d43b 3104 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
3105 val[i] & 0xff);
3106 }
3107 }
3108 write_memory (addr, val, partial_len);
3109 }
3110
3111 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 3112 structs may go thru BOTH paths. */
cb3d25d1 3113 /* Write this portion of the argument to a general
6d82d43b 3114 purpose register. */
8d26208a 3115 if (argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1 3116 {
6d82d43b
AC
3117 LONGEST regval =
3118 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
3119
3120 /* A non-floating-point argument being passed in a
3121 general register. If a struct or union, and if
3122 the remaining length is smaller than the register
3123 size, we have to adjust the register value on
3124 big endian targets.
3125
3126 It does not seem to be necessary to do the
1a69e1e4 3127 same for integral types. */
cb3d25d1 3128
72a155b4 3129 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3130 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3131 && (typecode == TYPE_CODE_STRUCT
3132 || typecode == TYPE_CODE_UNION))
1a69e1e4 3133 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3134 * TARGET_CHAR_BIT);
cb3d25d1
MS
3135
3136 if (mips_debug)
3137 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3138 argreg,
1a69e1e4 3139 phex (regval, MIPS64_REGSIZE));
9c9acae0 3140 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
3141
3142 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3143 TYPE_LENGTH (arg_type) - len))
3144 {
3145 if (mips_debug)
3146 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3147 float_argreg,
3148 phex (regval, MIPS64_REGSIZE));
3149 regcache_cooked_write_unsigned (regcache, float_argreg,
3150 regval);
3151 }
3152
3153 float_argreg++;
cb3d25d1
MS
3154 argreg++;
3155 }
3156
3157 len -= partial_len;
3158 val += partial_len;
3159
3160 /* Compute the the offset into the stack at which we
6d82d43b 3161 will copy the next parameter.
cb3d25d1
MS
3162
3163 In N32 (N64?), the stack_offset only needs to be
3164 adjusted when it has been used. */
3165
3166 if (stack_used_p)
1a69e1e4 3167 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
3168 }
3169 }
3170 if (mips_debug)
3171 fprintf_unfiltered (gdb_stdlog, "\n");
3172 }
3173
f10683bb 3174 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3175
cb3d25d1
MS
3176 /* Return adjusted stack pointer. */
3177 return sp;
3178}
3179
6d82d43b
AC
3180static enum return_value_convention
3181mips_n32n64_return_value (struct gdbarch *gdbarch,
3182 struct type *type, struct regcache *regcache,
47a35522 3183 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 3184{
72a155b4 3185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
3186
3187 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3188
3189 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3190 if needed), as appropriate for the type. Composite results (struct,
3191 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3192 following rules:
3193
3194 * A struct with only one or two floating point fields is returned in $f0
3195 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3196 case.
3197
3198 * Any other struct or union results of at most 128 bits are returned in
3199 $2 (first 64 bits) and $3 (remainder, if necessary).
3200
3201 * Larger composite results are handled by converting the function to a
3202 procedure with an implicit first parameter, which is a pointer to an area
3203 reserved by the caller to receive the result. [The o32-bit ABI requires
3204 that all composite results be handled by conversion to implicit first
3205 parameters. The MIPS/SGI Fortran implementation has always made a
3206 specific exception to return COMPLEX results in the floating point
3207 registers.] */
3208
3209 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1a69e1e4 3210 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 3211 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
3212 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3213 && TYPE_LENGTH (type) == 16
3214 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3215 {
3216 /* A 128-bit floating-point value fills both $f0 and $f2. The
3217 two registers are used in the same as memory order, so the
3218 eight bytes with the lower memory address are in $f0. */
3219 if (mips_debug)
3220 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 3221 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3222 gdbarch_num_regs (gdbarch)
3223 + mips_regnum (gdbarch)->fp0,
3224 8, gdbarch_byte_order (gdbarch),
4c6b5505 3225 readbuf, writebuf, 0);
ba32f989 3226 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3227 gdbarch_num_regs (gdbarch)
3228 + mips_regnum (gdbarch)->fp0 + 2,
3229 8, gdbarch_byte_order (gdbarch),
4c6b5505 3230 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
3231 writebuf ? writebuf + 8 : writebuf, 0);
3232 return RETURN_VALUE_REGISTER_CONVENTION;
3233 }
6d82d43b
AC
3234 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3235 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3236 {
59aa1faa 3237 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
3238 if (mips_debug)
3239 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 3240 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3241 gdbarch_num_regs (gdbarch)
3242 + mips_regnum (gdbarch)->fp0,
6d82d43b 3243 TYPE_LENGTH (type),
72a155b4 3244 gdbarch_byte_order (gdbarch),
4c6b5505 3245 readbuf, writebuf, 0);
6d82d43b
AC
3246 return RETURN_VALUE_REGISTER_CONVENTION;
3247 }
3248 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3249 && TYPE_NFIELDS (type) <= 2
3250 && TYPE_NFIELDS (type) >= 1
3251 && ((TYPE_NFIELDS (type) == 1
b18bb924 3252 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
3253 == TYPE_CODE_FLT))
3254 || (TYPE_NFIELDS (type) == 2
b18bb924 3255 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 3256 == TYPE_CODE_FLT)
b18bb924 3257 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
6d82d43b
AC
3258 == TYPE_CODE_FLT)))
3259 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3260 {
3261 /* A struct that contains one or two floats. Each value is part
3262 in the least significant part of their floating point
3263 register.. */
6d82d43b
AC
3264 int regnum;
3265 int field;
72a155b4 3266 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
3267 field < TYPE_NFIELDS (type); field++, regnum += 2)
3268 {
3269 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3270 / TARGET_CHAR_BIT);
3271 if (mips_debug)
3272 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3273 offset);
ba32f989
DJ
3274 mips_xfer_register (gdbarch, regcache,
3275 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 3276 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 3277 gdbarch_byte_order (gdbarch),
4c6b5505 3278 readbuf, writebuf, offset);
6d82d43b
AC
3279 }
3280 return RETURN_VALUE_REGISTER_CONVENTION;
3281 }
3282 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3283 || TYPE_CODE (type) == TYPE_CODE_UNION)
3284 {
3285 /* A structure or union. Extract the left justified value,
3286 regardless of the byte order. I.e. DO NOT USE
3287 mips_xfer_lower. */
3288 int offset;
3289 int regnum;
4c7d22cb 3290 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3291 offset < TYPE_LENGTH (type);
72a155b4 3292 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3293 {
72a155b4 3294 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3295 if (offset + xfer > TYPE_LENGTH (type))
3296 xfer = TYPE_LENGTH (type) - offset;
3297 if (mips_debug)
3298 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3299 offset, xfer, regnum);
ba32f989
DJ
3300 mips_xfer_register (gdbarch, regcache,
3301 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
3302 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3303 offset);
6d82d43b
AC
3304 }
3305 return RETURN_VALUE_REGISTER_CONVENTION;
3306 }
3307 else
3308 {
3309 /* A scalar extract each part but least-significant-byte
3310 justified. */
3311 int offset;
3312 int regnum;
4c7d22cb 3313 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3314 offset < TYPE_LENGTH (type);
72a155b4 3315 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3316 {
72a155b4 3317 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3318 if (offset + xfer > TYPE_LENGTH (type))
3319 xfer = TYPE_LENGTH (type) - offset;
3320 if (mips_debug)
3321 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3322 offset, xfer, regnum);
ba32f989
DJ
3323 mips_xfer_register (gdbarch, regcache,
3324 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 3325 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 3326 readbuf, writebuf, offset);
6d82d43b
AC
3327 }
3328 return RETURN_VALUE_REGISTER_CONVENTION;
3329 }
3330}
3331
3332/* O32 ABI stuff. */
3333
3334static CORE_ADDR
7d9b040b 3335mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3336 struct regcache *regcache, CORE_ADDR bp_addr,
3337 int nargs, struct value **args, CORE_ADDR sp,
3338 int struct_return, CORE_ADDR struct_addr)
3339{
3340 int argreg;
3341 int float_argreg;
3342 int argnum;
3343 int len = 0;
3344 int stack_offset = 0;
3345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3346 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3347
3348 /* For shared libraries, "t9" needs to point at the function
3349 address. */
4c7d22cb 3350 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3351
3352 /* Set the return address register to point to the entry point of
3353 the program, where a breakpoint lies in wait. */
4c7d22cb 3354 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3355
3356 /* First ensure that the stack and structure return address (if any)
3357 are properly aligned. The stack has to be at least 64-bit
3358 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3359 aligned. For n32 and n64, stack frames need to be 128-bit
3360 aligned, so we round to this widest known alignment. */
3361
5b03f266
AC
3362 sp = align_down (sp, 16);
3363 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3364
3365 /* Now make space on the stack for the args. */
3366 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3367 {
3368 struct type *arg_type = check_typedef (value_type (args[argnum]));
3369 int arglen = TYPE_LENGTH (arg_type);
3370
3371 /* Align to double-word if necessary. */
2afd3f0a 3372 if (mips_type_needs_double_align (arg_type))
1a69e1e4 3373 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 3374 /* Allocate space on the stack. */
1a69e1e4 3375 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 3376 }
5b03f266 3377 sp -= align_up (len, 16);
ebafbe83
MS
3378
3379 if (mips_debug)
6d82d43b 3380 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3381 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3382 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3383
3384 /* Initialize the integer and float register pointers. */
4c7d22cb 3385 argreg = MIPS_A0_REGNUM;
72a155b4 3386 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 3387
bcb0cc15 3388 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3389 if (struct_return)
3390 {
3391 if (mips_debug)
3392 fprintf_unfiltered (gdb_stdlog,
25ab4790 3393 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83 3394 argreg, paddr_nz (struct_addr));
9c9acae0 3395 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3396 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
3397 }
3398
3399 /* Now load as many as possible of the first arguments into
3400 registers, and push the rest onto the stack. Loop thru args
3401 from first to last. */
3402 for (argnum = 0; argnum < nargs; argnum++)
3403 {
47a35522 3404 const gdb_byte *val;
ebafbe83 3405 struct value *arg = args[argnum];
4991999e 3406 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3407 int len = TYPE_LENGTH (arg_type);
3408 enum type_code typecode = TYPE_CODE (arg_type);
3409
3410 if (mips_debug)
3411 fprintf_unfiltered (gdb_stdlog,
25ab4790 3412 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3413 argnum + 1, len, (int) typecode);
3414
47a35522 3415 val = value_contents (arg);
46cac009
AC
3416
3417 /* 32-bit ABIs always start floating point arguments in an
3418 even-numbered floating point register. Round the FP register
3419 up before the check to see if there are any FP registers
3420 left. O32/O64 targets also pass the FP in the integer
3421 registers so also round up normal registers. */
2afd3f0a 3422 if (fp_register_arg_p (typecode, arg_type))
46cac009
AC
3423 {
3424 if ((float_argreg & 1))
3425 float_argreg++;
3426 }
3427
3428 /* Floating point arguments passed in registers have to be
3429 treated specially. On 32-bit architectures, doubles
3430 are passed in register pairs; the even register gets
3431 the low word, and the odd register gets the high word.
3432 On O32/O64, the first two floating point arguments are
3433 also copied to general registers, because MIPS16 functions
3434 don't use float registers for arguments. This duplication of
3435 arguments in general registers can't hurt non-MIPS16 functions
3436 because those registers are normally skipped. */
3437
3438 if (fp_register_arg_p (typecode, arg_type)
3439 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3440 {
8b07f6d8 3441 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 3442 {
72a155b4 3443 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 3444 == BFD_ENDIAN_BIG ? 4 : 0;
46cac009
AC
3445 unsigned long regval;
3446
3447 /* Write the low word of the double to the even register(s). */
3448 regval = extract_unsigned_integer (val + low_offset, 4);
3449 if (mips_debug)
3450 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3451 float_argreg, phex (regval, 4));
9c9acae0 3452 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3453 if (mips_debug)
3454 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3455 argreg, phex (regval, 4));
9c9acae0 3456 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3457
3458 /* Write the high word of the double to the odd register(s). */
3459 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3460 if (mips_debug)
3461 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3462 float_argreg, phex (regval, 4));
9c9acae0 3463 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3464
3465 if (mips_debug)
3466 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3467 argreg, phex (regval, 4));
9c9acae0 3468 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3469 }
3470 else
3471 {
3472 /* This is a floating point value that fits entirely
3473 in a single register. */
3474 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3475 above to ensure that it is even register aligned. */
46cac009
AC
3476 LONGEST regval = extract_unsigned_integer (val, len);
3477 if (mips_debug)
3478 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3479 float_argreg, phex (regval, len));
9c9acae0 3480 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009 3481 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3482 registers for each argument. The below is (my
3483 guess) to ensure that the corresponding integer
3484 register has reserved the same space. */
46cac009
AC
3485 if (mips_debug)
3486 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3487 argreg, phex (regval, len));
9c9acae0 3488 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3489 argreg += 2;
46cac009
AC
3490 }
3491 /* Reserve space for the FP register. */
1a69e1e4 3492 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
3493 }
3494 else
3495 {
3496 /* Copy the argument to general registers or the stack in
3497 register-sized pieces. Large arguments are split between
3498 registers and stack. */
1a69e1e4
DJ
3499 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3500 are treated specially: Irix cc passes
d5ac5a39
AC
3501 them in registers where gcc sometimes puts them on the
3502 stack. For maximum compatibility, we will put them in
3503 both places. */
1a69e1e4
DJ
3504 int odd_sized_struct = (len > MIPS32_REGSIZE
3505 && len % MIPS32_REGSIZE != 0);
46cac009
AC
3506 /* Structures should be aligned to eight bytes (even arg registers)
3507 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3508 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3509 {
3510 if ((argreg & 1))
968b5391
MR
3511 {
3512 argreg++;
1a69e1e4 3513 stack_offset += MIPS32_REGSIZE;
968b5391 3514 }
46cac009 3515 }
46cac009
AC
3516 while (len > 0)
3517 {
3518 /* Remember if the argument was written to the stack. */
3519 int stack_used_p = 0;
1a69e1e4 3520 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
3521
3522 if (mips_debug)
3523 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3524 partial_len);
3525
3526 /* Write this portion of the argument to the stack. */
3527 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3528 || odd_sized_struct)
46cac009
AC
3529 {
3530 /* Should shorter than int integer values be
3531 promoted to int before being stored? */
3532 int longword_offset = 0;
3533 CORE_ADDR addr;
3534 stack_used_p = 1;
46cac009
AC
3535
3536 if (mips_debug)
3537 {
3538 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3539 paddr_nz (stack_offset));
3540 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3541 paddr_nz (longword_offset));
3542 }
3543
3544 addr = sp + stack_offset + longword_offset;
3545
3546 if (mips_debug)
3547 {
3548 int i;
6d82d43b 3549 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3550 paddr_nz (addr));
3551 for (i = 0; i < partial_len; i++)
3552 {
6d82d43b 3553 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3554 val[i] & 0xff);
3555 }
3556 }
3557 write_memory (addr, val, partial_len);
3558 }
3559
3560 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3561 structs may go thru BOTH paths. */
46cac009 3562 /* Write this portion of the argument to a general
6d82d43b 3563 purpose register. */
968b5391 3564 if (argreg <= MIPS_LAST_ARG_REGNUM)
46cac009
AC
3565 {
3566 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3567 /* Value may need to be sign extended, because
1b13c4f6 3568 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3569
3570 /* A non-floating-point argument being passed in a
3571 general register. If a struct or union, and if
3572 the remaining length is smaller than the register
3573 size, we have to adjust the register value on
3574 big endian targets.
3575
3576 It does not seem to be necessary to do the
3577 same for integral types.
3578
3579 Also don't do this adjustment on O64 binaries.
3580
3581 cagney/2001-07-23: gdb/179: Also, GCC, when
3582 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3583 mips_abi_regsize(), generates a left shift
3584 as part of storing the argument in a register
3585 (the left shift isn't generated when
1b13c4f6 3586 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3587 it is quite possible that this is GCC
3588 contradicting the LE/O32 ABI, GDB has not been
3589 adjusted to accommodate this. Either someone
3590 needs to demonstrate that the LE/O32 ABI
3591 specifies such a left shift OR this new ABI gets
3592 identified as such and GDB gets tweaked
3593 accordingly. */
3594
72a155b4 3595 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3596 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
3597 && (typecode == TYPE_CODE_STRUCT
3598 || typecode == TYPE_CODE_UNION))
1a69e1e4 3599 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 3600 * TARGET_CHAR_BIT);
46cac009
AC
3601
3602 if (mips_debug)
3603 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3604 argreg,
1a69e1e4 3605 phex (regval, MIPS32_REGSIZE));
9c9acae0 3606 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
3607 argreg++;
3608
3609 /* Prevent subsequent floating point arguments from
3610 being passed in floating point registers. */
3611 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3612 }
3613
3614 len -= partial_len;
3615 val += partial_len;
3616
3617 /* Compute the the offset into the stack at which we
6d82d43b 3618 will copy the next parameter.
46cac009 3619
6d82d43b
AC
3620 In older ABIs, the caller reserved space for
3621 registers that contained arguments. This was loosely
3622 refered to as their "home". Consequently, space is
3623 always allocated. */
46cac009 3624
1a69e1e4 3625 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
3626 }
3627 }
3628 if (mips_debug)
3629 fprintf_unfiltered (gdb_stdlog, "\n");
3630 }
3631
f10683bb 3632 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3633
46cac009
AC
3634 /* Return adjusted stack pointer. */
3635 return sp;
3636}
3637
6d82d43b
AC
3638static enum return_value_convention
3639mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3640 struct regcache *regcache,
47a35522 3641 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3642{
72a155b4 3643 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6d82d43b
AC
3644
3645 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3646 || TYPE_CODE (type) == TYPE_CODE_UNION
3647 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3648 return RETURN_VALUE_STRUCT_CONVENTION;
3649 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3650 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3651 {
3652 /* A single-precision floating-point value. It fits in the
3653 least significant part of FP0. */
3654 if (mips_debug)
3655 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 3656 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3657 gdbarch_num_regs (gdbarch)
3658 + mips_regnum (gdbarch)->fp0,
6d82d43b 3659 TYPE_LENGTH (type),
72a155b4 3660 gdbarch_byte_order (gdbarch),
4c6b5505 3661 readbuf, writebuf, 0);
6d82d43b
AC
3662 return RETURN_VALUE_REGISTER_CONVENTION;
3663 }
3664 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3665 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3666 {
3667 /* A double-precision floating-point value. The most
3668 significant part goes in FP1, and the least significant in
3669 FP0. */
3670 if (mips_debug)
3671 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
72a155b4 3672 switch (gdbarch_byte_order (gdbarch))
6d82d43b
AC
3673 {
3674 case BFD_ENDIAN_LITTLE:
ba32f989 3675 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3676 gdbarch_num_regs (gdbarch)
3677 + mips_regnum (gdbarch)->fp0 +
3678 0, 4, gdbarch_byte_order (gdbarch),
4c6b5505 3679 readbuf, writebuf, 0);
ba32f989 3680 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3681 gdbarch_num_regs (gdbarch)
3682 + mips_regnum (gdbarch)->fp0 + 1,
3683 4, gdbarch_byte_order (gdbarch),
4c6b5505 3684 readbuf, writebuf, 4);
6d82d43b
AC
3685 break;
3686 case BFD_ENDIAN_BIG:
ba32f989 3687 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3688 gdbarch_num_regs (gdbarch)
3689 + mips_regnum (gdbarch)->fp0 + 1,
3690 4, gdbarch_byte_order (gdbarch),
4c6b5505 3691 readbuf, writebuf, 0);
ba32f989 3692 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3693 gdbarch_num_regs (gdbarch)
3694 + mips_regnum (gdbarch)->fp0 + 0,
3695 4, gdbarch_byte_order (gdbarch),
4c6b5505 3696 readbuf, writebuf, 4);
6d82d43b
AC
3697 break;
3698 default:
e2e0b3e5 3699 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3700 }
3701 return RETURN_VALUE_REGISTER_CONVENTION;
3702 }
3703#if 0
3704 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3705 && TYPE_NFIELDS (type) <= 2
3706 && TYPE_NFIELDS (type) >= 1
3707 && ((TYPE_NFIELDS (type) == 1
3708 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3709 == TYPE_CODE_FLT))
3710 || (TYPE_NFIELDS (type) == 2
3711 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3712 == TYPE_CODE_FLT)
3713 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3714 == TYPE_CODE_FLT)))
3715 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3716 {
3717 /* A struct that contains one or two floats. Each value is part
3718 in the least significant part of their floating point
3719 register.. */
870cd05e 3720 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3721 int regnum;
3722 int field;
72a155b4 3723 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
3724 field < TYPE_NFIELDS (type); field++, regnum += 2)
3725 {
3726 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3727 / TARGET_CHAR_BIT);
3728 if (mips_debug)
3729 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3730 offset);
ba32f989
DJ
3731 mips_xfer_register (gdbarch, regcache,
3732 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 3733 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 3734 gdbarch_byte_order (gdbarch),
4c6b5505 3735 readbuf, writebuf, offset);
6d82d43b
AC
3736 }
3737 return RETURN_VALUE_REGISTER_CONVENTION;
3738 }
3739#endif
3740#if 0
3741 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3742 || TYPE_CODE (type) == TYPE_CODE_UNION)
3743 {
3744 /* A structure or union. Extract the left justified value,
3745 regardless of the byte order. I.e. DO NOT USE
3746 mips_xfer_lower. */
3747 int offset;
3748 int regnum;
4c7d22cb 3749 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3750 offset < TYPE_LENGTH (type);
72a155b4 3751 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3752 {
72a155b4 3753 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3754 if (offset + xfer > TYPE_LENGTH (type))
3755 xfer = TYPE_LENGTH (type) - offset;
3756 if (mips_debug)
3757 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3758 offset, xfer, regnum);
ba32f989
DJ
3759 mips_xfer_register (gdbarch, regcache,
3760 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
3761 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3762 }
3763 return RETURN_VALUE_REGISTER_CONVENTION;
3764 }
3765#endif
3766 else
3767 {
3768 /* A scalar extract each part but least-significant-byte
3769 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 3770 the ISA. */
6d82d43b
AC
3771 int offset;
3772 int regnum;
4c7d22cb 3773 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3774 offset < TYPE_LENGTH (type);
1a69e1e4 3775 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 3776 {
1a69e1e4 3777 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
3778 if (offset + xfer > TYPE_LENGTH (type))
3779 xfer = TYPE_LENGTH (type) - offset;
3780 if (mips_debug)
3781 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3782 offset, xfer, regnum);
ba32f989
DJ
3783 mips_xfer_register (gdbarch, regcache,
3784 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 3785 gdbarch_byte_order (gdbarch),
4c6b5505 3786 readbuf, writebuf, offset);
6d82d43b
AC
3787 }
3788 return RETURN_VALUE_REGISTER_CONVENTION;
3789 }
3790}
3791
3792/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3793 ABI. */
46cac009
AC
3794
3795static CORE_ADDR
7d9b040b 3796mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3797 struct regcache *regcache, CORE_ADDR bp_addr,
3798 int nargs,
3799 struct value **args, CORE_ADDR sp,
3800 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3801{
3802 int argreg;
3803 int float_argreg;
3804 int argnum;
3805 int len = 0;
3806 int stack_offset = 0;
480d3dd2 3807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3808 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3809
25ab4790
AC
3810 /* For shared libraries, "t9" needs to point at the function
3811 address. */
4c7d22cb 3812 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3813
3814 /* Set the return address register to point to the entry point of
3815 the program, where a breakpoint lies in wait. */
4c7d22cb 3816 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3817
46cac009
AC
3818 /* First ensure that the stack and structure return address (if any)
3819 are properly aligned. The stack has to be at least 64-bit
3820 aligned even on 32-bit machines, because doubles must be 64-bit
3821 aligned. For n32 and n64, stack frames need to be 128-bit
3822 aligned, so we round to this widest known alignment. */
3823
5b03f266
AC
3824 sp = align_down (sp, 16);
3825 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3826
3827 /* Now make space on the stack for the args. */
3828 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3829 {
3830 struct type *arg_type = check_typedef (value_type (args[argnum]));
3831 int arglen = TYPE_LENGTH (arg_type);
3832
968b5391 3833 /* Allocate space on the stack. */
1a69e1e4 3834 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 3835 }
5b03f266 3836 sp -= align_up (len, 16);
46cac009
AC
3837
3838 if (mips_debug)
6d82d43b 3839 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3840 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3841 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3842
3843 /* Initialize the integer and float register pointers. */
4c7d22cb 3844 argreg = MIPS_A0_REGNUM;
72a155b4 3845 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
3846
3847 /* The struct_return pointer occupies the first parameter-passing reg. */
3848 if (struct_return)
3849 {
3850 if (mips_debug)
3851 fprintf_unfiltered (gdb_stdlog,
25ab4790 3852 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009 3853 argreg, paddr_nz (struct_addr));
9c9acae0 3854 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3855 stack_offset += MIPS64_REGSIZE;
46cac009
AC
3856 }
3857
3858 /* Now load as many as possible of the first arguments into
3859 registers, and push the rest onto the stack. Loop thru args
3860 from first to last. */
3861 for (argnum = 0; argnum < nargs; argnum++)
3862 {
47a35522 3863 const gdb_byte *val;
46cac009 3864 struct value *arg = args[argnum];
4991999e 3865 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3866 int len = TYPE_LENGTH (arg_type);
3867 enum type_code typecode = TYPE_CODE (arg_type);
3868
3869 if (mips_debug)
3870 fprintf_unfiltered (gdb_stdlog,
25ab4790 3871 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3872 argnum + 1, len, (int) typecode);
3873
47a35522 3874 val = value_contents (arg);
ebafbe83 3875
ebafbe83
MS
3876 /* Floating point arguments passed in registers have to be
3877 treated specially. On 32-bit architectures, doubles
3878 are passed in register pairs; the even register gets
3879 the low word, and the odd register gets the high word.
3880 On O32/O64, the first two floating point arguments are
3881 also copied to general registers, because MIPS16 functions
3882 don't use float registers for arguments. This duplication of
3883 arguments in general registers can't hurt non-MIPS16 functions
3884 because those registers are normally skipped. */
3885
3886 if (fp_register_arg_p (typecode, arg_type)
3887 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3888 {
2afd3f0a
MR
3889 LONGEST regval = extract_unsigned_integer (val, len);
3890 if (mips_debug)
3891 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3892 float_argreg, phex (regval, len));
9c9acae0 3893 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
3894 if (mips_debug)
3895 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3896 argreg, phex (regval, len));
9c9acae0 3897 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3898 argreg++;
ebafbe83 3899 /* Reserve space for the FP register. */
1a69e1e4 3900 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
3901 }
3902 else
3903 {
3904 /* Copy the argument to general registers or the stack in
3905 register-sized pieces. Large arguments are split between
3906 registers and stack. */
1a69e1e4 3907 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
3908 are treated specially: Irix cc passes them in registers
3909 where gcc sometimes puts them on the stack. For maximum
3910 compatibility, we will put them in both places. */
1a69e1e4
DJ
3911 int odd_sized_struct = (len > MIPS64_REGSIZE
3912 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
3913 while (len > 0)
3914 {
3915 /* Remember if the argument was written to the stack. */
3916 int stack_used_p = 0;
1a69e1e4 3917 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
3918
3919 if (mips_debug)
3920 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3921 partial_len);
3922
3923 /* Write this portion of the argument to the stack. */
3924 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3925 || odd_sized_struct)
ebafbe83
MS
3926 {
3927 /* Should shorter than int integer values be
3928 promoted to int before being stored? */
3929 int longword_offset = 0;
3930 CORE_ADDR addr;
3931 stack_used_p = 1;
72a155b4 3932 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 3933 {
1a69e1e4
DJ
3934 if ((typecode == TYPE_CODE_INT
3935 || typecode == TYPE_CODE_PTR
3936 || typecode == TYPE_CODE_FLT)
3937 && len <= 4)
3938 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
3939 }
3940
3941 if (mips_debug)
3942 {
3943 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3944 paddr_nz (stack_offset));
3945 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3946 paddr_nz (longword_offset));
3947 }
3948
3949 addr = sp + stack_offset + longword_offset;
3950
3951 if (mips_debug)
3952 {
3953 int i;
6d82d43b 3954 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3955 paddr_nz (addr));
3956 for (i = 0; i < partial_len; i++)
3957 {
6d82d43b 3958 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3959 val[i] & 0xff);
3960 }
3961 }
3962 write_memory (addr, val, partial_len);
3963 }
3964
3965 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3966 structs may go thru BOTH paths. */
ebafbe83 3967 /* Write this portion of the argument to a general
6d82d43b 3968 purpose register. */
968b5391 3969 if (argreg <= MIPS_LAST_ARG_REGNUM)
ebafbe83
MS
3970 {
3971 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3972 /* Value may need to be sign extended, because
1b13c4f6 3973 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3974
3975 /* A non-floating-point argument being passed in a
3976 general register. If a struct or union, and if
3977 the remaining length is smaller than the register
3978 size, we have to adjust the register value on
3979 big endian targets.
3980
3981 It does not seem to be necessary to do the
401835eb 3982 same for integral types. */
480d3dd2 3983
72a155b4 3984 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3985 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3986 && (typecode == TYPE_CODE_STRUCT
3987 || typecode == TYPE_CODE_UNION))
1a69e1e4 3988 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3989 * TARGET_CHAR_BIT);
ebafbe83
MS
3990
3991 if (mips_debug)
3992 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3993 argreg,
1a69e1e4 3994 phex (regval, MIPS64_REGSIZE));
9c9acae0 3995 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
3996 argreg++;
3997
3998 /* Prevent subsequent floating point arguments from
3999 being passed in floating point registers. */
4000 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
4001 }
4002
4003 len -= partial_len;
4004 val += partial_len;
4005
4006 /* Compute the the offset into the stack at which we
6d82d43b 4007 will copy the next parameter.
ebafbe83 4008
6d82d43b
AC
4009 In older ABIs, the caller reserved space for
4010 registers that contained arguments. This was loosely
4011 refered to as their "home". Consequently, space is
4012 always allocated. */
ebafbe83 4013
1a69e1e4 4014 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
4015 }
4016 }
4017 if (mips_debug)
4018 fprintf_unfiltered (gdb_stdlog, "\n");
4019 }
4020
f10683bb 4021 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4022
ebafbe83
MS
4023 /* Return adjusted stack pointer. */
4024 return sp;
4025}
4026
9c8fdbfa
AC
4027static enum return_value_convention
4028mips_o64_return_value (struct gdbarch *gdbarch,
4029 struct type *type, struct regcache *regcache,
47a35522 4030 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4031{
72a155b4 4032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a076fd2
FF
4033
4034 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4035 || TYPE_CODE (type) == TYPE_CODE_UNION
4036 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4037 return RETURN_VALUE_STRUCT_CONVENTION;
4038 else if (fp_register_arg_p (TYPE_CODE (type), type))
4039 {
4040 /* A floating-point value. It fits in the least significant
4041 part of FP0. */
4042 if (mips_debug)
4043 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 4044 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
4045 gdbarch_num_regs (gdbarch)
4046 + mips_regnum (gdbarch)->fp0,
7a076fd2 4047 TYPE_LENGTH (type),
72a155b4 4048 gdbarch_byte_order (gdbarch),
4c6b5505 4049 readbuf, writebuf, 0);
7a076fd2
FF
4050 return RETURN_VALUE_REGISTER_CONVENTION;
4051 }
4052 else
4053 {
4054 /* A scalar extract each part but least-significant-byte
4055 justified. */
4056 int offset;
4057 int regnum;
4058 for (offset = 0, regnum = MIPS_V0_REGNUM;
4059 offset < TYPE_LENGTH (type);
1a69e1e4 4060 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 4061 {
1a69e1e4 4062 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
4063 if (offset + xfer > TYPE_LENGTH (type))
4064 xfer = TYPE_LENGTH (type) - offset;
4065 if (mips_debug)
4066 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4067 offset, xfer, regnum);
ba32f989
DJ
4068 mips_xfer_register (gdbarch, regcache,
4069 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 4070 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 4071 readbuf, writebuf, offset);
7a076fd2
FF
4072 }
4073 return RETURN_VALUE_REGISTER_CONVENTION;
4074 }
6d82d43b
AC
4075}
4076
dd824b04
DJ
4077/* Floating point register management.
4078
4079 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4080 64bit operations, these early MIPS cpus treat fp register pairs
4081 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4082 registers and offer a compatibility mode that emulates the MIPS2 fp
4083 model. When operating in MIPS2 fp compat mode, later cpu's split
4084 double precision floats into two 32-bit chunks and store them in
4085 consecutive fp regs. To display 64-bit floats stored in this
4086 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4087 Throw in user-configurable endianness and you have a real mess.
4088
4089 The way this works is:
4090 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4091 double-precision value will be split across two logical registers.
4092 The lower-numbered logical register will hold the low-order bits,
4093 regardless of the processor's endianness.
4094 - If we are on a 64-bit processor, and we are looking for a
4095 single-precision value, it will be in the low ordered bits
4096 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4097 save slot in memory.
4098 - If we are in 64-bit mode, everything is straightforward.
4099
4100 Note that this code only deals with "live" registers at the top of the
4101 stack. We will attempt to deal with saved registers later, when
4102 the raw/cooked register interface is in place. (We need a general
4103 interface that can deal with dynamic saved register sizes -- fp
4104 regs could be 32 bits wide in one frame and 64 on the frame above
4105 and below). */
4106
67b2c998
DJ
4107static struct type *
4108mips_float_register_type (void)
4109{
8da61cc4 4110 return builtin_type_ieee_single;
67b2c998
DJ
4111}
4112
4113static struct type *
4114mips_double_register_type (void)
4115{
8da61cc4 4116 return builtin_type_ieee_double;
67b2c998
DJ
4117}
4118
dd824b04
DJ
4119/* Copy a 32-bit single-precision value from the current frame
4120 into rare_buffer. */
4121
4122static void
e11c53d2 4123mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 4124 gdb_byte *rare_buffer)
dd824b04 4125{
72a155b4
UW
4126 struct gdbarch *gdbarch = get_frame_arch (frame);
4127 int raw_size = register_size (gdbarch, regno);
47a35522 4128 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 4129
e11c53d2 4130 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572 4131 error (_("can't read register %d (%s)"),
72a155b4 4132 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4133 if (raw_size == 8)
4134 {
4135 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 4136 32 bits. */
dd824b04
DJ
4137 int offset;
4138
72a155b4 4139 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
4140 offset = 4;
4141 else
4142 offset = 0;
4143
4144 memcpy (rare_buffer, raw_buffer + offset, 4);
4145 }
4146 else
4147 {
4148 memcpy (rare_buffer, raw_buffer, 4);
4149 }
4150}
4151
4152/* Copy a 64-bit double-precision value from the current frame into
4153 rare_buffer. This may include getting half of it from the next
4154 register. */
4155
4156static void
e11c53d2 4157mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 4158 gdb_byte *rare_buffer)
dd824b04 4159{
72a155b4
UW
4160 struct gdbarch *gdbarch = get_frame_arch (frame);
4161 int raw_size = register_size (gdbarch, regno);
dd824b04 4162
9c9acae0 4163 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
4164 {
4165 /* We have a 64-bit value for this register, and we should use
6d82d43b 4166 all 64 bits. */
e11c53d2 4167 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572 4168 error (_("can't read register %d (%s)"),
72a155b4 4169 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4170 }
4171 else
4172 {
72a155b4 4173 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 4174
72a155b4 4175 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 4176 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
4177 _("mips_read_fp_register_double: bad access to "
4178 "odd-numbered FP register"));
dd824b04
DJ
4179
4180 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 4181 each register. */
72a155b4 4182 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 4183 {
e11c53d2
AC
4184 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4185 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4186 }
361d1df0 4187 else
dd824b04 4188 {
e11c53d2
AC
4189 mips_read_fp_register_single (frame, regno, rare_buffer);
4190 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4191 }
4192 }
4193}
4194
c906108c 4195static void
e11c53d2
AC
4196mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4197 int regnum)
c5aa993b 4198{ /* do values for FP (float) regs */
72a155b4 4199 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4200 gdb_byte *raw_buffer;
3903d437
AC
4201 double doub, flt1; /* doubles extracted from raw hex data */
4202 int inv1, inv2;
c5aa993b 4203
72a155b4 4204 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
c906108c 4205
72a155b4 4206 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 4207 fprintf_filtered (file, "%*s",
72a155b4 4208 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 4209 "");
f0ef6b29 4210
72a155b4 4211 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 4212 {
f0ef6b29
KB
4213 /* 4-byte registers: Print hex and floating. Also print even
4214 numbered registers as doubles. */
e11c53d2 4215 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4216 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4217
6d82d43b
AC
4218 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4219 file);
dd824b04 4220
e11c53d2 4221 fprintf_filtered (file, " flt: ");
1adad886 4222 if (inv1)
e11c53d2 4223 fprintf_filtered (file, " <invalid float> ");
1adad886 4224 else
e11c53d2 4225 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4226
72a155b4 4227 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 4228 {
e11c53d2 4229 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 4230 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 4231 &inv2);
1adad886 4232
e11c53d2 4233 fprintf_filtered (file, " dbl: ");
f0ef6b29 4234 if (inv2)
e11c53d2 4235 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4236 else
e11c53d2 4237 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4238 }
c906108c
SS
4239 }
4240 else
dd824b04 4241 {
f0ef6b29 4242 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4243 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4244 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4245
e11c53d2 4246 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4247 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4248
361d1df0 4249
6d82d43b
AC
4250 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4251 file);
f0ef6b29 4252
e11c53d2 4253 fprintf_filtered (file, " flt: ");
1adad886 4254 if (inv1)
e11c53d2 4255 fprintf_filtered (file, "<invalid float>");
1adad886 4256 else
e11c53d2 4257 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4258
e11c53d2 4259 fprintf_filtered (file, " dbl: ");
f0ef6b29 4260 if (inv2)
e11c53d2 4261 fprintf_filtered (file, "<invalid double>");
1adad886 4262 else
e11c53d2 4263 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4264 }
4265}
4266
4267static void
e11c53d2 4268mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 4269 int regnum)
f0ef6b29 4270{
a4b8ebc8 4271 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4272 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4273 int offset;
1adad886 4274
7b9ee6a8 4275 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4276 {
e11c53d2 4277 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4278 return;
4279 }
4280
4281 /* Get the data in raw format. */
e11c53d2 4282 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4283 {
c9f4d572 4284 fprintf_filtered (file, "%s: [Invalid]",
72a155b4 4285 gdbarch_register_name (gdbarch, regnum));
f0ef6b29 4286 return;
c906108c 4287 }
f0ef6b29 4288
72a155b4 4289 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
4290
4291 /* The problem with printing numeric register names (r26, etc.) is that
4292 the user can't use them on input. Probably the best solution is to
4293 fix it so that either the numeric or the funky (a2, etc.) names
4294 are accepted on input. */
4295 if (regnum < MIPS_NUMREGS)
e11c53d2 4296 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4297 else
e11c53d2 4298 fprintf_filtered (file, ": ");
f0ef6b29 4299
72a155b4 4300 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4301 offset =
72a155b4 4302 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
f0ef6b29
KB
4303 else
4304 offset = 0;
4305
6d82d43b 4306 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4307 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4308 file);
c906108c
SS
4309}
4310
f0ef6b29
KB
4311/* Replacement for generic do_registers_info.
4312 Print regs in pretty columns. */
4313
4314static int
e11c53d2
AC
4315print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4316 int regnum)
f0ef6b29 4317{
e11c53d2
AC
4318 fprintf_filtered (file, " ");
4319 mips_print_fp_register (file, frame, regnum);
4320 fprintf_filtered (file, "\n");
f0ef6b29
KB
4321 return regnum + 1;
4322}
4323
4324
c906108c
SS
4325/* Print a row's worth of GP (int) registers, with name labels above */
4326
4327static int
e11c53d2 4328print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4329 int start_regnum)
c906108c 4330{
a4b8ebc8 4331 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4332 /* do values for GP (int) regs */
47a35522 4333 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4334 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4335 int col, byte;
a4b8ebc8 4336 int regnum;
c906108c
SS
4337
4338 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4339 for (col = 0, regnum = start_regnum;
72a155b4
UW
4340 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4341 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4342 regnum++)
c906108c 4343 {
72a155b4 4344 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4345 continue; /* unused register */
7b9ee6a8 4346 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4347 TYPE_CODE_FLT)
c5aa993b 4348 break; /* end the row: reached FP register */
0cc93a06 4349 /* Large registers are handled separately. */
72a155b4 4350 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4351 {
4352 if (col > 0)
4353 break; /* End the row before this register. */
4354
4355 /* Print this register on a row by itself. */
4356 mips_print_register (file, frame, regnum);
4357 fprintf_filtered (file, "\n");
4358 return regnum + 1;
4359 }
d05f6826
DJ
4360 if (col == 0)
4361 fprintf_filtered (file, " ");
6d82d43b 4362 fprintf_filtered (file,
72a155b4
UW
4363 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4364 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
4365 col++;
4366 }
d05f6826
DJ
4367
4368 if (col == 0)
4369 return regnum;
4370
a4b8ebc8 4371 /* print the R0 to R31 names */
72a155b4 4372 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 4373 fprintf_filtered (file, "\n R%-4d",
72a155b4 4374 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
4375 else
4376 fprintf_filtered (file, "\n ");
c906108c 4377
c906108c 4378 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4379 for (col = 0, regnum = start_regnum;
72a155b4
UW
4380 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4381 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4382 regnum++)
c906108c 4383 {
72a155b4 4384 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4385 continue; /* unused register */
7b9ee6a8 4386 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4387 TYPE_CODE_FLT)
c5aa993b 4388 break; /* end row: reached FP register */
72a155b4 4389 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4390 break; /* End row: large register. */
4391
c906108c 4392 /* OK: get the data in raw format. */
e11c53d2 4393 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572 4394 error (_("can't read register %d (%s)"),
72a155b4 4395 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 4396 /* pad small registers */
4246e332 4397 for (byte = 0;
72a155b4
UW
4398 byte < (mips_abi_regsize (gdbarch)
4399 - register_size (gdbarch, regnum)); byte++)
c906108c
SS
4400 printf_filtered (" ");
4401 /* Now print the register value in hex, endian order. */
72a155b4 4402 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4403 for (byte =
72a155b4
UW
4404 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4405 byte < register_size (gdbarch, regnum); byte++)
47a35522 4406 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4407 else
72a155b4 4408 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 4409 byte >= 0; byte--)
47a35522 4410 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4411 fprintf_filtered (file, " ");
c906108c
SS
4412 col++;
4413 }
c5aa993b 4414 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4415 fprintf_filtered (file, "\n");
c906108c
SS
4416
4417 return regnum;
4418}
4419
4420/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4421
bf1f5b4c 4422static void
e11c53d2
AC
4423mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4424 struct frame_info *frame, int regnum, int all)
c906108c 4425{
c5aa993b 4426 if (regnum != -1) /* do one specified register */
c906108c 4427 {
72a155b4
UW
4428 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4429 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 4430 error (_("Not a valid register for the current processor type"));
c906108c 4431
0cc93a06 4432 mips_print_register (file, frame, regnum);
e11c53d2 4433 fprintf_filtered (file, "\n");
c906108c 4434 }
c5aa993b
JM
4435 else
4436 /* do all (or most) registers */
c906108c 4437 {
72a155b4
UW
4438 regnum = gdbarch_num_regs (gdbarch);
4439 while (regnum < gdbarch_num_regs (gdbarch)
4440 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 4441 {
7b9ee6a8 4442 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4443 TYPE_CODE_FLT)
e11c53d2
AC
4444 {
4445 if (all) /* true for "INFO ALL-REGISTERS" command */
4446 regnum = print_fp_register_row (file, frame, regnum);
4447 else
4448 regnum += MIPS_NUMREGS; /* skip floating point regs */
4449 }
c906108c 4450 else
e11c53d2 4451 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4452 }
4453 }
4454}
4455
c906108c
SS
4456/* Is this a branch with a delay slot? */
4457
c906108c 4458static int
acdb74a0 4459is_delayed (unsigned long insn)
c906108c
SS
4460{
4461 int i;
4462 for (i = 0; i < NUMOPCODES; ++i)
4463 if (mips_opcodes[i].pinfo != INSN_MACRO
4464 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4465 break;
4466 return (i < NUMOPCODES
4467 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4468 | INSN_COND_BRANCH_DELAY
4469 | INSN_COND_BRANCH_LIKELY)));
4470}
4471
4472int
3352ef37
AC
4473mips_single_step_through_delay (struct gdbarch *gdbarch,
4474 struct frame_info *frame)
c906108c 4475{
3352ef37 4476 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4477 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4478
4479 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4480 if (mips_pc_is_mips16 (pc))
c906108c
SS
4481 return 0;
4482
06648491
MK
4483 if (!breakpoint_here_p (pc + 4))
4484 return 0;
4485
3352ef37
AC
4486 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4487 /* If error reading memory, guess that it is not a delayed
4488 branch. */
c906108c 4489 return 0;
4c7d22cb 4490 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4491}
4492
6d82d43b
AC
4493/* To skip prologues, I use this predicate. Returns either PC itself
4494 if the code at PC does not look like a function prologue; otherwise
4495 returns an address that (if we're lucky) follows the prologue. If
4496 LENIENT, then we must skip everything which is involved in setting
4497 up the frame (it's OK to skip more, just so long as we don't skip
4498 anything which might clobber the registers which are being saved.
4499 We must skip more in the case where part of the prologue is in the
4500 delay slot of a non-prologue instruction). */
4501
4502static CORE_ADDR
4503mips_skip_prologue (CORE_ADDR pc)
4504{
8b622e6a
AC
4505 CORE_ADDR limit_pc;
4506 CORE_ADDR func_addr;
4507
6d82d43b
AC
4508 /* See if we can determine the end of the prologue via the symbol table.
4509 If so, then return either PC, or the PC after the prologue, whichever
4510 is greater. */
8b622e6a
AC
4511 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4512 {
4513 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4514 if (post_prologue_pc != 0)
4515 return max (pc, post_prologue_pc);
4516 }
6d82d43b
AC
4517
4518 /* Can't determine prologue from the symbol table, need to examine
4519 instructions. */
4520
98b4dd94
JB
4521 /* Find an upper limit on the function prologue using the debug
4522 information. If the debug information could not be used to provide
4523 that bound, then use an arbitrary large number as the upper bound. */
4524 limit_pc = skip_prologue_using_sal (pc);
4525 if (limit_pc == 0)
4526 limit_pc = pc + 100; /* Magic. */
4527
0fe7e7c8 4528 if (mips_pc_is_mips16 (pc))
a65bbe44 4529 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4530 else
a65bbe44 4531 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4532}
4533
97ab0fdd
MR
4534/* Check whether the PC is in a function epilogue (32-bit version).
4535 This is a helper function for mips_in_function_epilogue_p. */
4536static int
4537mips32_in_function_epilogue_p (CORE_ADDR pc)
4538{
4539 CORE_ADDR func_addr = 0, func_end = 0;
4540
4541 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4542 {
4543 /* The MIPS epilogue is max. 12 bytes long. */
4544 CORE_ADDR addr = func_end - 12;
4545
4546 if (addr < func_addr + 4)
4547 addr = func_addr + 4;
4548 if (pc < addr)
4549 return 0;
4550
4551 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4552 {
4553 unsigned long high_word;
4554 unsigned long inst;
4555
4556 inst = mips_fetch_instruction (pc);
4557 high_word = (inst >> 16) & 0xffff;
4558
4559 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4560 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4561 && inst != 0x03e00008 /* jr $ra */
4562 && inst != 0x00000000) /* nop */
4563 return 0;
4564 }
4565
4566 return 1;
4567 }
4568
4569 return 0;
4570}
4571
4572/* Check whether the PC is in a function epilogue (16-bit version).
4573 This is a helper function for mips_in_function_epilogue_p. */
4574static int
4575mips16_in_function_epilogue_p (CORE_ADDR pc)
4576{
4577 CORE_ADDR func_addr = 0, func_end = 0;
4578
4579 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4580 {
4581 /* The MIPS epilogue is max. 12 bytes long. */
4582 CORE_ADDR addr = func_end - 12;
4583
4584 if (addr < func_addr + 4)
4585 addr = func_addr + 4;
4586 if (pc < addr)
4587 return 0;
4588
4589 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4590 {
4591 unsigned short inst;
4592
4593 inst = mips_fetch_instruction (pc);
4594
4595 if ((inst & 0xf800) == 0xf000) /* extend */
4596 continue;
4597
4598 if (inst != 0x6300 /* addiu $sp,offset */
4599 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4600 && inst != 0xe820 /* jr $ra */
4601 && inst != 0xe8a0 /* jrc $ra */
4602 && inst != 0x6500) /* nop */
4603 return 0;
4604 }
4605
4606 return 1;
4607 }
4608
4609 return 0;
4610}
4611
4612/* The epilogue is defined here as the area at the end of a function,
4613 after an instruction which destroys the function's stack frame. */
4614static int
4615mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4616{
4617 if (mips_pc_is_mips16 (pc))
4618 return mips16_in_function_epilogue_p (pc);
4619 else
4620 return mips32_in_function_epilogue_p (pc);
4621}
4622
a5ea2558
AC
4623/* Root of all "set mips "/"show mips " commands. This will eventually be
4624 used for all MIPS-specific commands. */
4625
a5ea2558 4626static void
acdb74a0 4627show_mips_command (char *args, int from_tty)
a5ea2558
AC
4628{
4629 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4630}
4631
a5ea2558 4632static void
acdb74a0 4633set_mips_command (char *args, int from_tty)
a5ea2558 4634{
6d82d43b
AC
4635 printf_unfiltered
4636 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4637 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4638}
4639
c906108c
SS
4640/* Commands to show/set the MIPS FPU type. */
4641
c906108c 4642static void
acdb74a0 4643show_mipsfpu_command (char *args, int from_tty)
c906108c 4644{
c906108c
SS
4645 char *fpu;
4646 switch (MIPS_FPU_TYPE)
4647 {
4648 case MIPS_FPU_SINGLE:
4649 fpu = "single-precision";
4650 break;
4651 case MIPS_FPU_DOUBLE:
4652 fpu = "double-precision";
4653 break;
4654 case MIPS_FPU_NONE:
4655 fpu = "absent (none)";
4656 break;
93d56215 4657 default:
e2e0b3e5 4658 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4659 }
4660 if (mips_fpu_type_auto)
6d82d43b
AC
4661 printf_unfiltered
4662 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4663 fpu);
c906108c 4664 else
6d82d43b
AC
4665 printf_unfiltered
4666 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4667}
4668
4669
c906108c 4670static void
acdb74a0 4671set_mipsfpu_command (char *args, int from_tty)
c906108c 4672{
6d82d43b
AC
4673 printf_unfiltered
4674 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4675 show_mipsfpu_command (args, from_tty);
4676}
4677
c906108c 4678static void
acdb74a0 4679set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4680{
8d5838b5
AC
4681 struct gdbarch_info info;
4682 gdbarch_info_init (&info);
c906108c
SS
4683 mips_fpu_type = MIPS_FPU_SINGLE;
4684 mips_fpu_type_auto = 0;
8d5838b5
AC
4685 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4686 instead of relying on globals. Doing that would let generic code
4687 handle the search for this specific architecture. */
4688 if (!gdbarch_update_p (info))
e2e0b3e5 4689 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4690}
4691
c906108c 4692static void
acdb74a0 4693set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4694{
8d5838b5
AC
4695 struct gdbarch_info info;
4696 gdbarch_info_init (&info);
c906108c
SS
4697 mips_fpu_type = MIPS_FPU_DOUBLE;
4698 mips_fpu_type_auto = 0;
8d5838b5
AC
4699 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4700 instead of relying on globals. Doing that would let generic code
4701 handle the search for this specific architecture. */
4702 if (!gdbarch_update_p (info))
e2e0b3e5 4703 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4704}
4705
c906108c 4706static void
acdb74a0 4707set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4708{
8d5838b5
AC
4709 struct gdbarch_info info;
4710 gdbarch_info_init (&info);
c906108c
SS
4711 mips_fpu_type = MIPS_FPU_NONE;
4712 mips_fpu_type_auto = 0;
8d5838b5
AC
4713 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4714 instead of relying on globals. Doing that would let generic code
4715 handle the search for this specific architecture. */
4716 if (!gdbarch_update_p (info))
e2e0b3e5 4717 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4718}
4719
c906108c 4720static void
acdb74a0 4721set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4722{
4723 mips_fpu_type_auto = 1;
4724}
4725
c906108c 4726/* Attempt to identify the particular processor model by reading the
691c0433
AC
4727 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4728 the relevant processor still exists (it dates back to '94) and
4729 secondly this is not the way to do this. The processor type should
4730 be set by forcing an architecture change. */
c906108c 4731
691c0433
AC
4732void
4733deprecated_mips_set_processor_regs_hack (void)
c906108c 4734{
691c0433 4735 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a9614958 4736 ULONGEST prid;
c906108c 4737
594f7785 4738 regcache_cooked_read_unsigned (get_current_regcache (),
a9614958 4739 MIPS_PRID_REGNUM, &prid);
c906108c 4740 if ((prid & ~0xf) == 0x700)
691c0433 4741 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4742}
4743
4744/* Just like reinit_frame_cache, but with the right arguments to be
4745 callable as an sfunc. */
4746
4747static void
acdb74a0
AC
4748reinit_frame_cache_sfunc (char *args, int from_tty,
4749 struct cmd_list_element *c)
c906108c
SS
4750{
4751 reinit_frame_cache ();
4752}
4753
a89aa300
AC
4754static int
4755gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4756{
e5ab0dce 4757 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4758
d31431ed
AC
4759 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4760 disassembler needs to be able to locally determine the ISA, and
4761 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4762 work. */
ec4045ea
AC
4763 if (mips_pc_is_mips16 (memaddr))
4764 info->mach = bfd_mach_mips16;
c906108c
SS
4765
4766 /* Round down the instruction address to the appropriate boundary. */
65c11066 4767 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4768
e5ab0dce 4769 /* Set the disassembler options. */
6d82d43b 4770 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4771 {
4772 /* Set up the disassembler info, so that we get the right
6d82d43b 4773 register names from libopcodes. */
e5ab0dce
AC
4774 if (tdep->mips_abi == MIPS_ABI_N32)
4775 info->disassembler_options = "gpr-names=n32";
4776 else
4777 info->disassembler_options = "gpr-names=64";
4778 info->flavour = bfd_target_elf_flavour;
4779 }
4780 else
4781 /* This string is not recognized explicitly by the disassembler,
4782 but it tells the disassembler to not try to guess the ABI from
4783 the bfd elf headers, such that, if the user overrides the ABI
4784 of a program linked as NewABI, the disassembly will follow the
4785 register naming conventions specified by the user. */
4786 info->disassembler_options = "gpr-names=32";
4787
c906108c 4788 /* Call the appropriate disassembler based on the target endian-ness. */
4c6b5505 4789 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
4790 return print_insn_big_mips (memaddr, info);
4791 else
4792 return print_insn_little_mips (memaddr, info);
4793}
4794
3b3b875c
UW
4795/* This function implements gdbarch_breakpoint_from_pc. It uses the program
4796 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4797 It returns a pointer to a string of bytes that encode a breakpoint
4798 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4799 necessary) to point to the actual memory location where the breakpoint
4800 should be inserted. */
c906108c 4801
47a35522 4802static const gdb_byte *
6d82d43b 4803mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4804{
4c6b5505 4805 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c 4806 {
0fe7e7c8 4807 if (mips_pc_is_mips16 (*pcptr))
c906108c 4808 {
47a35522 4809 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4810 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4811 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4812 return mips16_big_breakpoint;
4813 }
4814 else
4815 {
aaab4dba
AC
4816 /* The IDT board uses an unusual breakpoint value, and
4817 sometimes gets confused when it sees the usual MIPS
4818 breakpoint instruction. */
47a35522
MK
4819 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4820 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4821 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4822
c5aa993b 4823 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4824
4825 if (strcmp (target_shortname, "mips") == 0)
4826 return idt_big_breakpoint;
4827 else if (strcmp (target_shortname, "ddb") == 0
4828 || strcmp (target_shortname, "pmon") == 0
4829 || strcmp (target_shortname, "lsi") == 0)
4830 return pmon_big_breakpoint;
4831 else
4832 return big_breakpoint;
4833 }
4834 }
4835 else
4836 {
0fe7e7c8 4837 if (mips_pc_is_mips16 (*pcptr))
c906108c 4838 {
47a35522 4839 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4840 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4841 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4842 return mips16_little_breakpoint;
4843 }
4844 else
4845 {
47a35522
MK
4846 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4847 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4848 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4849
c5aa993b 4850 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4851
4852 if (strcmp (target_shortname, "mips") == 0)
4853 return idt_little_breakpoint;
4854 else if (strcmp (target_shortname, "ddb") == 0
4855 || strcmp (target_shortname, "pmon") == 0
4856 || strcmp (target_shortname, "lsi") == 0)
4857 return pmon_little_breakpoint;
4858 else
4859 return little_breakpoint;
4860 }
4861 }
4862}
4863
4864/* If PC is in a mips16 call or return stub, return the address of the target
4865 PC, which is either the callee or the caller. There are several
4866 cases which must be handled:
4867
4868 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4869 target PC is in $31 ($ra).
c906108c 4870 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4871 and the target PC is in $2.
c906108c 4872 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4873 before the jal instruction, this is effectively a call stub
4874 and the the target PC is in $2. Otherwise this is effectively
4875 a return stub and the target PC is in $18.
c906108c
SS
4876
4877 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4878 gory details. */
c906108c 4879
757a7cc6 4880static CORE_ADDR
52f729a7 4881mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
4882{
4883 char *name;
4884 CORE_ADDR start_addr;
4885
4886 /* Find the starting address and name of the function containing the PC. */
4887 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4888 return 0;
4889
4890 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4891 target PC is in $31 ($ra). */
4892 if (strcmp (name, "__mips16_ret_sf") == 0
4893 || strcmp (name, "__mips16_ret_df") == 0)
52f729a7 4894 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
c906108c
SS
4895
4896 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4897 {
4898 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4899 and the target PC is in $2. */
4900 if (name[19] >= '0' && name[19] <= '9')
52f729a7 4901 return get_frame_register_signed (frame, 2);
c906108c
SS
4902
4903 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4904 before the jal instruction, this is effectively a call stub
4905 and the the target PC is in $2. Otherwise this is effectively
4906 a return stub and the target PC is in $18. */
c906108c
SS
4907 else if (name[19] == 's' || name[19] == 'd')
4908 {
4909 if (pc == start_addr)
4910 {
4911 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4912 stub. Such a stub for a function bar might have a name
4913 like __fn_stub_bar, and might look like this:
4914 mfc1 $4,$f13
4915 mfc1 $5,$f12
4916 mfc1 $6,$f15
4917 mfc1 $7,$f14
4918 la $1,bar (becomes a lui/addiu pair)
4919 jr $1
4920 So scan down to the lui/addi and extract the target
4921 address from those two instructions. */
c906108c 4922
52f729a7 4923 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
d37cca3d 4924 ULONGEST inst;
c906108c
SS
4925 int i;
4926
4927 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4928 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4929 0)
c906108c
SS
4930 return target_pc;
4931 if (strncmp (name, "__fn_stub_", 10) != 0
4932 && strcmp (name, "etext") != 0
4933 && strcmp (name, "_etext") != 0)
4934 return target_pc;
4935
4936 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4937 The limit on the search is arbitrarily set to 20
4938 instructions. FIXME. */
95ac2dcf 4939 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4940 {
c5aa993b
JM
4941 inst = mips_fetch_instruction (target_pc);
4942 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4943 pc = (inst << 16) & 0xffff0000; /* high word */
4944 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4945 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4946 }
4947
4948 /* Couldn't find the lui/addui pair, so return stub address. */
4949 return target_pc;
4950 }
4951 else
4952 /* This is the 'return' part of a call stub. The return
4953 address is in $r18. */
52f729a7 4954 return get_frame_register_signed (frame, 18);
c906108c
SS
4955 }
4956 }
c5aa993b 4957 return 0; /* not a stub */
c906108c
SS
4958}
4959
a4b8ebc8 4960/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 4961 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4962
4963static int
4964mips_stab_reg_to_regnum (int num)
4965{
a4b8ebc8 4966 int regnum;
2f38ef89 4967 if (num >= 0 && num < 32)
a4b8ebc8 4968 regnum = num;
2f38ef89 4969 else if (num >= 38 && num < 70)
56cea623 4970 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4971 else if (num == 70)
56cea623 4972 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4973 else if (num == 71)
56cea623 4974 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4975 else
a4b8ebc8
AC
4976 /* This will hopefully (eventually) provoke a warning. Should
4977 we be calling complaint() here? */
f57d151a
UW
4978 return gdbarch_num_regs (current_gdbarch)
4979 + gdbarch_num_pseudo_regs (current_gdbarch);
4980 return gdbarch_num_regs (current_gdbarch) + regnum;
88c72b7d
AC
4981}
4982
2f38ef89 4983
a4b8ebc8 4984/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 4985 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4986
4987static int
2f38ef89 4988mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4989{
a4b8ebc8 4990 int regnum;
2f38ef89 4991 if (num >= 0 && num < 32)
a4b8ebc8 4992 regnum = num;
2f38ef89 4993 else if (num >= 32 && num < 64)
56cea623 4994 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4995 else if (num == 64)
56cea623 4996 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4997 else if (num == 65)
56cea623 4998 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4999 else
a4b8ebc8
AC
5000 /* This will hopefully (eventually) provoke a warning. Should we
5001 be calling complaint() here? */
f57d151a
UW
5002 return gdbarch_num_regs (current_gdbarch)
5003 + gdbarch_num_pseudo_regs (current_gdbarch);
5004 return gdbarch_num_regs (current_gdbarch) + regnum;
a4b8ebc8
AC
5005}
5006
5007static int
5008mips_register_sim_regno (int regnum)
5009{
5010 /* Only makes sense to supply raw registers. */
f57d151a 5011 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
a4b8ebc8
AC
5012 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5013 decide if it is valid. Should instead define a standard sim/gdb
5014 register numbering scheme. */
c9f4d572
UW
5015 if (gdbarch_register_name (current_gdbarch,
5016 gdbarch_num_regs
5017 (current_gdbarch) + regnum) != NULL
5018 && gdbarch_register_name (current_gdbarch,
5019 gdbarch_num_regs
5020 (current_gdbarch) + regnum)[0] != '\0')
a4b8ebc8
AC
5021 return regnum;
5022 else
6d82d43b 5023 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5024}
5025
2f38ef89 5026
4844f454
CV
5027/* Convert an integer into an address. Extracting the value signed
5028 guarantees a correctly sign extended address. */
fc0c74b1
AC
5029
5030static CORE_ADDR
79dd2d24 5031mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 5032 struct type *type, const gdb_byte *buf)
fc0c74b1 5033{
4844f454 5034 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
5035}
5036
82e91389
DJ
5037/* Dummy virtual frame pointer method. This is no more or less accurate
5038 than most other architectures; we just need to be explicit about it,
5039 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5040 an assertion failure. */
5041
5042static void
5043mips_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
5044{
5045 *reg = MIPS_SP_REGNUM;
5046 *offset = 0;
5047}
5048
caaa3122
DJ
5049static void
5050mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5051{
5052 enum mips_abi *abip = (enum mips_abi *) obj;
5053 const char *name = bfd_get_section_name (abfd, sect);
5054
5055 if (*abip != MIPS_ABI_UNKNOWN)
5056 return;
5057
5058 if (strncmp (name, ".mdebug.", 8) != 0)
5059 return;
5060
5061 if (strcmp (name, ".mdebug.abi32") == 0)
5062 *abip = MIPS_ABI_O32;
5063 else if (strcmp (name, ".mdebug.abiN32") == 0)
5064 *abip = MIPS_ABI_N32;
62a49b2c 5065 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5066 *abip = MIPS_ABI_N64;
caaa3122
DJ
5067 else if (strcmp (name, ".mdebug.abiO64") == 0)
5068 *abip = MIPS_ABI_O64;
5069 else if (strcmp (name, ".mdebug.eabi32") == 0)
5070 *abip = MIPS_ABI_EABI32;
5071 else if (strcmp (name, ".mdebug.eabi64") == 0)
5072 *abip = MIPS_ABI_EABI64;
5073 else
8a3fe4f8 5074 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
5075}
5076
22e47e37
FF
5077static void
5078mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5079{
5080 int *lbp = (int *) obj;
5081 const char *name = bfd_get_section_name (abfd, sect);
5082
5083 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5084 *lbp = 32;
5085 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5086 *lbp = 64;
5087 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5088 warning (_("unrecognized .gcc_compiled_longXX"));
5089}
5090
2e4ebe70
DJ
5091static enum mips_abi
5092global_mips_abi (void)
5093{
5094 int i;
5095
5096 for (i = 0; mips_abi_strings[i] != NULL; i++)
5097 if (mips_abi_strings[i] == mips_abi_string)
5098 return (enum mips_abi) i;
5099
e2e0b3e5 5100 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
5101}
5102
29709017
DJ
5103static void
5104mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5105{
29709017
DJ
5106 /* If the size matches the set of 32-bit or 64-bit integer registers,
5107 assume that's what we've got. */
4eb0ad19
DJ
5108 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5109 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
5110
5111 /* If the size matches the full set of registers GDB traditionally
5112 knows about, including floating point, for either 32-bit or
5113 64-bit, assume that's what we've got. */
4eb0ad19
DJ
5114 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5115 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
5116
5117 /* Otherwise we don't have a useful guess. */
5118}
5119
f8b73d13
DJ
5120static struct value *
5121value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5122{
5123 const int *reg_p = baton;
5124 return value_of_register (*reg_p, frame);
5125}
5126
c2d11a7d 5127static struct gdbarch *
6d82d43b 5128mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 5129{
c2d11a7d
JM
5130 struct gdbarch *gdbarch;
5131 struct gdbarch_tdep *tdep;
5132 int elf_flags;
2e4ebe70 5133 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 5134 int i, num_regs;
8d5838b5 5135 enum mips_fpu_type fpu_type;
f8b73d13 5136 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 5137 int elf_fpu_type = 0;
f8b73d13
DJ
5138
5139 /* Check any target description for validity. */
5140 if (tdesc_has_registers (info.target_desc))
5141 {
5142 static const char *const mips_gprs[] = {
5143 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5144 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5145 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5146 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5147 };
5148 static const char *const mips_fprs[] = {
5149 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5150 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5151 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5152 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5153 };
5154
5155 const struct tdesc_feature *feature;
5156 int valid_p;
5157
5158 feature = tdesc_find_feature (info.target_desc,
5159 "org.gnu.gdb.mips.cpu");
5160 if (feature == NULL)
5161 return NULL;
5162
5163 tdesc_data = tdesc_data_alloc ();
5164
5165 valid_p = 1;
5166 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5167 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5168 mips_gprs[i]);
5169
5170
5171 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5172 MIPS_EMBED_LO_REGNUM, "lo");
5173 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5174 MIPS_EMBED_HI_REGNUM, "hi");
5175 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5176 MIPS_EMBED_PC_REGNUM, "pc");
5177
5178 if (!valid_p)
5179 {
5180 tdesc_data_cleanup (tdesc_data);
5181 return NULL;
5182 }
5183
5184 feature = tdesc_find_feature (info.target_desc,
5185 "org.gnu.gdb.mips.cp0");
5186 if (feature == NULL)
5187 {
5188 tdesc_data_cleanup (tdesc_data);
5189 return NULL;
5190 }
5191
5192 valid_p = 1;
5193 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5194 MIPS_EMBED_BADVADDR_REGNUM,
5195 "badvaddr");
5196 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5197 MIPS_PS_REGNUM, "status");
5198 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5199 MIPS_EMBED_CAUSE_REGNUM, "cause");
5200
5201 if (!valid_p)
5202 {
5203 tdesc_data_cleanup (tdesc_data);
5204 return NULL;
5205 }
5206
5207 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5208 backend is not prepared for that, though. */
5209 feature = tdesc_find_feature (info.target_desc,
5210 "org.gnu.gdb.mips.fpu");
5211 if (feature == NULL)
5212 {
5213 tdesc_data_cleanup (tdesc_data);
5214 return NULL;
5215 }
5216
5217 valid_p = 1;
5218 for (i = 0; i < 32; i++)
5219 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5220 i + MIPS_EMBED_FP0_REGNUM,
5221 mips_fprs[i]);
5222
5223 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5224 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5225 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5226 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5227
5228 if (!valid_p)
5229 {
5230 tdesc_data_cleanup (tdesc_data);
5231 return NULL;
5232 }
5233
5234 /* It would be nice to detect an attempt to use a 64-bit ABI
5235 when only 32-bit registers are provided. */
5236 }
c2d11a7d 5237
ec03c1ac
AC
5238 /* First of all, extract the elf_flags, if available. */
5239 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5240 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5241 else if (arches != NULL)
5242 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5243 else
5244 elf_flags = 0;
5245 if (gdbarch_debug)
5246 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5247 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 5248
102182a9 5249 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5250 switch ((elf_flags & EF_MIPS_ABI))
5251 {
5252 case E_MIPS_ABI_O32:
ec03c1ac 5253 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5254 break;
5255 case E_MIPS_ABI_O64:
ec03c1ac 5256 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5257 break;
5258 case E_MIPS_ABI_EABI32:
ec03c1ac 5259 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5260 break;
5261 case E_MIPS_ABI_EABI64:
ec03c1ac 5262 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5263 break;
5264 default:
acdb74a0 5265 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5266 found_abi = MIPS_ABI_N32;
acdb74a0 5267 else
ec03c1ac 5268 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5269 break;
5270 }
acdb74a0 5271
caaa3122 5272 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5273 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5274 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5275
dc305454 5276 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
5277 MIPS architecture (if there is one). */
5278 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5279 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5280
32a6503c 5281 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5282 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5283 && info.bfd_arch_info != NULL
5284 && info.bfd_arch_info->arch == bfd_arch_mips)
5285 {
5286 switch (info.bfd_arch_info->mach)
5287 {
5288 case bfd_mach_mips3900:
ec03c1ac 5289 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5290 break;
5291 case bfd_mach_mips4100:
5292 case bfd_mach_mips5000:
ec03c1ac 5293 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5294 break;
1d06468c
EZ
5295 case bfd_mach_mips8000:
5296 case bfd_mach_mips10000:
32a6503c
KB
5297 /* On Irix, ELF64 executables use the N64 ABI. The
5298 pseudo-sections which describe the ABI aren't present
5299 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5300 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5301 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5302 found_abi = MIPS_ABI_N64;
28d169de 5303 else
ec03c1ac 5304 found_abi = MIPS_ABI_N32;
1d06468c 5305 break;
bf64bfd6
AC
5306 }
5307 }
2e4ebe70 5308
26c53e50
DJ
5309 /* Default 64-bit objects to N64 instead of O32. */
5310 if (found_abi == MIPS_ABI_UNKNOWN
5311 && info.abfd != NULL
5312 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5313 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5314 found_abi = MIPS_ABI_N64;
5315
ec03c1ac
AC
5316 if (gdbarch_debug)
5317 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5318 found_abi);
5319
5320 /* What has the user specified from the command line? */
5321 wanted_abi = global_mips_abi ();
5322 if (gdbarch_debug)
5323 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5324 wanted_abi);
2e4ebe70
DJ
5325
5326 /* Now that we have found what the ABI for this binary would be,
5327 check whether the user is overriding it. */
2e4ebe70
DJ
5328 if (wanted_abi != MIPS_ABI_UNKNOWN)
5329 mips_abi = wanted_abi;
ec03c1ac
AC
5330 else if (found_abi != MIPS_ABI_UNKNOWN)
5331 mips_abi = found_abi;
5332 else
5333 mips_abi = MIPS_ABI_O32;
5334 if (gdbarch_debug)
5335 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5336 mips_abi);
2e4ebe70 5337
ec03c1ac 5338 /* Also used when doing an architecture lookup. */
4b9b3959 5339 if (gdbarch_debug)
ec03c1ac
AC
5340 fprintf_unfiltered (gdb_stdlog,
5341 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5342 mips64_transfers_32bit_regs_p);
0dadbba0 5343
8d5838b5 5344 /* Determine the MIPS FPU type. */
609ca2b9
DJ
5345#ifdef HAVE_ELF
5346 if (info.abfd
5347 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5348 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5349 Tag_GNU_MIPS_ABI_FP);
5350#endif /* HAVE_ELF */
5351
8d5838b5
AC
5352 if (!mips_fpu_type_auto)
5353 fpu_type = mips_fpu_type;
609ca2b9
DJ
5354 else if (elf_fpu_type != 0)
5355 {
5356 switch (elf_fpu_type)
5357 {
5358 case 1:
5359 fpu_type = MIPS_FPU_DOUBLE;
5360 break;
5361 case 2:
5362 fpu_type = MIPS_FPU_SINGLE;
5363 break;
5364 case 3:
5365 default:
5366 /* Soft float or unknown. */
5367 fpu_type = MIPS_FPU_NONE;
5368 break;
5369 }
5370 }
8d5838b5
AC
5371 else if (info.bfd_arch_info != NULL
5372 && info.bfd_arch_info->arch == bfd_arch_mips)
5373 switch (info.bfd_arch_info->mach)
5374 {
5375 case bfd_mach_mips3900:
5376 case bfd_mach_mips4100:
5377 case bfd_mach_mips4111:
a9d61c86 5378 case bfd_mach_mips4120:
8d5838b5
AC
5379 fpu_type = MIPS_FPU_NONE;
5380 break;
5381 case bfd_mach_mips4650:
5382 fpu_type = MIPS_FPU_SINGLE;
5383 break;
5384 default:
5385 fpu_type = MIPS_FPU_DOUBLE;
5386 break;
5387 }
5388 else if (arches != NULL)
5389 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5390 else
5391 fpu_type = MIPS_FPU_DOUBLE;
5392 if (gdbarch_debug)
5393 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5394 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 5395
29709017
DJ
5396 /* Check for blatant incompatibilities. */
5397
5398 /* If we have only 32-bit registers, then we can't debug a 64-bit
5399 ABI. */
5400 if (info.target_desc
5401 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5402 && mips_abi != MIPS_ABI_EABI32
5403 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
5404 {
5405 if (tdesc_data != NULL)
5406 tdesc_data_cleanup (tdesc_data);
5407 return NULL;
5408 }
29709017 5409
c2d11a7d
JM
5410 /* try to find a pre-existing architecture */
5411 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5412 arches != NULL;
5413 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5414 {
5415 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5416 using. */
9103eae0 5417 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5418 continue;
9103eae0 5419 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5420 continue;
719ec221
AC
5421 /* Need to be pedantic about which register virtual size is
5422 used. */
5423 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5424 != mips64_transfers_32bit_regs_p)
5425 continue;
8d5838b5
AC
5426 /* Be pedantic about which FPU is selected. */
5427 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5428 continue;
f8b73d13
DJ
5429
5430 if (tdesc_data != NULL)
5431 tdesc_data_cleanup (tdesc_data);
4be87837 5432 return arches->gdbarch;
c2d11a7d
JM
5433 }
5434
102182a9 5435 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5436 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5437 gdbarch = gdbarch_alloc (&info, tdep);
5438 tdep->elf_flags = elf_flags;
719ec221 5439 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5440 tdep->found_abi = found_abi;
5441 tdep->mips_abi = mips_abi;
8d5838b5 5442 tdep->mips_fpu_type = fpu_type;
29709017
DJ
5443 tdep->register_size_valid_p = 0;
5444 tdep->register_size = 0;
5445
5446 if (info.target_desc)
5447 {
5448 /* Some useful properties can be inferred from the target. */
5449 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5450 {
5451 tdep->register_size_valid_p = 1;
5452 tdep->register_size = 4;
5453 }
5454 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5455 {
5456 tdep->register_size_valid_p = 1;
5457 tdep->register_size = 8;
5458 }
5459 }
c2d11a7d 5460
102182a9 5461 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5462 set_gdbarch_short_bit (gdbarch, 16);
5463 set_gdbarch_int_bit (gdbarch, 32);
5464 set_gdbarch_float_bit (gdbarch, 32);
5465 set_gdbarch_double_bit (gdbarch, 64);
5466 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5467 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5468 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5469 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5470
6d82d43b 5471 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
5472 mips_elf_make_msymbol_special);
5473
16e109ca 5474 /* Fill in the OS dependant register numbers and names. */
56cea623 5475 {
16e109ca 5476 const char **reg_names;
56cea623
AC
5477 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5478 struct mips_regnum);
f8b73d13
DJ
5479 if (tdesc_has_registers (info.target_desc))
5480 {
5481 regnum->lo = MIPS_EMBED_LO_REGNUM;
5482 regnum->hi = MIPS_EMBED_HI_REGNUM;
5483 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5484 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5485 regnum->pc = MIPS_EMBED_PC_REGNUM;
5486 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5487 regnum->fp_control_status = 70;
5488 regnum->fp_implementation_revision = 71;
5489 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5490 reg_names = NULL;
5491 }
5492 else if (info.osabi == GDB_OSABI_IRIX)
56cea623
AC
5493 {
5494 regnum->fp0 = 32;
5495 regnum->pc = 64;
5496 regnum->cause = 65;
5497 regnum->badvaddr = 66;
5498 regnum->hi = 67;
5499 regnum->lo = 68;
5500 regnum->fp_control_status = 69;
5501 regnum->fp_implementation_revision = 70;
5502 num_regs = 71;
16e109ca 5503 reg_names = mips_irix_reg_names;
56cea623
AC
5504 }
5505 else
5506 {
5507 regnum->lo = MIPS_EMBED_LO_REGNUM;
5508 regnum->hi = MIPS_EMBED_HI_REGNUM;
5509 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5510 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5511 regnum->pc = MIPS_EMBED_PC_REGNUM;
5512 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5513 regnum->fp_control_status = 70;
5514 regnum->fp_implementation_revision = 71;
5515 num_regs = 90;
16e109ca
AC
5516 if (info.bfd_arch_info != NULL
5517 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5518 reg_names = mips_tx39_reg_names;
5519 else
5520 reg_names = mips_generic_reg_names;
56cea623 5521 }
3e8c568d 5522 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
56cea623 5523 replaced by read_pc? */
f10683bb
MH
5524 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5525 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5526 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5527 set_gdbarch_num_regs (gdbarch, num_regs);
5528 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca 5529 set_gdbarch_register_name (gdbarch, mips_register_name);
82e91389 5530 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
16e109ca
AC
5531 tdep->mips_processor_reg_names = reg_names;
5532 tdep->regnum = regnum;
56cea623 5533 }
fe29b929 5534
0dadbba0 5535 switch (mips_abi)
c2d11a7d 5536 {
0dadbba0 5537 case MIPS_ABI_O32:
25ab4790 5538 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5539 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5540 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5541 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5542 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5543 set_gdbarch_long_bit (gdbarch, 32);
5544 set_gdbarch_ptr_bit (gdbarch, 32);
5545 set_gdbarch_long_long_bit (gdbarch, 64);
5546 break;
0dadbba0 5547 case MIPS_ABI_O64:
25ab4790 5548 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5549 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5550 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5551 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5552 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5553 set_gdbarch_long_bit (gdbarch, 32);
5554 set_gdbarch_ptr_bit (gdbarch, 32);
5555 set_gdbarch_long_long_bit (gdbarch, 64);
5556 break;
0dadbba0 5557 case MIPS_ABI_EABI32:
25ab4790 5558 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5559 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5560 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5561 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5562 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5563 set_gdbarch_long_bit (gdbarch, 32);
5564 set_gdbarch_ptr_bit (gdbarch, 32);
5565 set_gdbarch_long_long_bit (gdbarch, 64);
5566 break;
0dadbba0 5567 case MIPS_ABI_EABI64:
25ab4790 5568 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5569 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5570 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5571 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5572 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5573 set_gdbarch_long_bit (gdbarch, 64);
5574 set_gdbarch_ptr_bit (gdbarch, 64);
5575 set_gdbarch_long_long_bit (gdbarch, 64);
5576 break;
0dadbba0 5577 case MIPS_ABI_N32:
25ab4790 5578 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5579 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5580 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5581 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5582 tdep->default_mask_address_p = 0;
0dadbba0
AC
5583 set_gdbarch_long_bit (gdbarch, 32);
5584 set_gdbarch_ptr_bit (gdbarch, 32);
5585 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5586 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5587 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5588 break;
5589 case MIPS_ABI_N64:
25ab4790 5590 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5591 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5592 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5593 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5594 tdep->default_mask_address_p = 0;
5595 set_gdbarch_long_bit (gdbarch, 64);
5596 set_gdbarch_ptr_bit (gdbarch, 64);
5597 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5598 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5599 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5600 break;
c2d11a7d 5601 default:
e2e0b3e5 5602 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5603 }
5604
22e47e37
FF
5605 /* GCC creates a pseudo-section whose name specifies the size of
5606 longs, since -mlong32 or -mlong64 may be used independent of
5607 other options. How those options affect pointer sizes is ABI and
5608 architecture dependent, so use them to override the default sizes
5609 set by the ABI. This table shows the relationship between ABI,
5610 -mlongXX, and size of pointers:
5611
5612 ABI -mlongXX ptr bits
5613 --- -------- --------
5614 o32 32 32
5615 o32 64 32
5616 n32 32 32
5617 n32 64 64
5618 o64 32 32
5619 o64 64 64
5620 n64 32 32
5621 n64 64 64
5622 eabi32 32 32
5623 eabi32 64 32
5624 eabi64 32 32
5625 eabi64 64 64
5626
5627 Note that for o32 and eabi32, pointers are always 32 bits
5628 regardless of any -mlongXX option. For all others, pointers and
5629 longs are the same, as set by -mlongXX or set by defaults.
5630 */
5631
5632 if (info.abfd != NULL)
5633 {
5634 int long_bit = 0;
5635
5636 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5637 if (long_bit)
5638 {
5639 set_gdbarch_long_bit (gdbarch, long_bit);
5640 switch (mips_abi)
5641 {
5642 case MIPS_ABI_O32:
5643 case MIPS_ABI_EABI32:
5644 break;
5645 case MIPS_ABI_N32:
5646 case MIPS_ABI_O64:
5647 case MIPS_ABI_N64:
5648 case MIPS_ABI_EABI64:
5649 set_gdbarch_ptr_bit (gdbarch, long_bit);
5650 break;
5651 default:
5652 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5653 }
5654 }
5655 }
5656
a5ea2558
AC
5657 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5658 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5659 comment:
5660
5661 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5662 flag in object files because to do so would make it impossible to
102182a9 5663 link with libraries compiled without "-gp32". This is
a5ea2558 5664 unnecessarily restrictive.
361d1df0 5665
a5ea2558
AC
5666 We could solve this problem by adding "-gp32" multilibs to gcc,
5667 but to set this flag before gcc is built with such multilibs will
5668 break too many systems.''
5669
5670 But even more unhelpfully, the default linker output target for
5671 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5672 for 64-bit programs - you need to change the ABI to change this,
102182a9 5673 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5674 this flag to detect 32-bit mode would do the wrong thing given
5675 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5676 as 32-bit programs by default. */
a5ea2558 5677
6c997a34 5678 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5679 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 5680
102182a9
MS
5681 /* Add/remove bits from an address. The MIPS needs be careful to
5682 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5683 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5684
58dfe9ff
AC
5685 /* Unwind the frame. */
5686 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 5687 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
edfae063 5688 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5689
102182a9 5690 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5691 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5692 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5693 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5694 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5695 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5696 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5697 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5698 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5699
c2d11a7d
JM
5700 /* MIPS version of CALL_DUMMY */
5701
9710e734
AC
5702 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5703 replaced by a command, and all targets will default to on stack
5704 (regardless of the stack's execute status). */
5705 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5706 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5707
87783b8b
AC
5708 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5709 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5710 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5711
f7b9e9fc
AC
5712 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5713 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5714
5715 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5716
97ab0fdd
MR
5717 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5718
fc0c74b1
AC
5719 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5720 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5721 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5722
a4b8ebc8 5723 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5724
e11c53d2 5725 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5726
e5ab0dce
AC
5727 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5728
3a3bc038
AC
5729 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5730 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5731 need to all be folded into the target vector. Since they are
5732 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5733 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5734 is sitting on? */
5735 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5736
e7d6a6d2 5737 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5738
3352ef37
AC
5739 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5740
0d5de010
DJ
5741 /* Virtual tables. */
5742 set_gdbarch_vbit_in_delta (gdbarch, 1);
5743
29709017
DJ
5744 mips_register_g_packet_guesses (gdbarch);
5745
6de918a6 5746 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 5747 info.tdep_info = (void *) tdesc_data;
6de918a6 5748 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5749
5792a79b 5750 /* Unwind the frame. */
2bd0c3d7 5751 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eec63939 5752 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5753 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5754 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
2bd0c3d7 5755 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 5756 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5757 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5758 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5759
f8b73d13
DJ
5760 if (tdesc_data)
5761 {
5762 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 5763 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
5764
5765 /* Override the normal target description methods to handle our
5766 dual real and pseudo registers. */
5767 set_gdbarch_register_name (gdbarch, mips_register_name);
5768 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5769
5770 num_regs = gdbarch_num_regs (gdbarch);
5771 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5772 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5773 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5774 }
5775
5776 /* Add ABI-specific aliases for the registers. */
5777 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5778 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5779 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5780 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5781 else
5782 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5783 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5784 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5785
5786 /* Add some other standard aliases. */
5787 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5788 user_reg_add (gdbarch, mips_register_aliases[i].name,
5789 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5790
4b9b3959
AC
5791 return gdbarch;
5792}
5793
2e4ebe70 5794static void
6d82d43b 5795mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5796{
5797 struct gdbarch_info info;
5798
5799 /* Force the architecture to update, and (if it's a MIPS architecture)
5800 mips_gdbarch_init will take care of the rest. */
5801 gdbarch_info_init (&info);
5802 gdbarch_update_p (info);
5803}
5804
ad188201
KB
5805/* Print out which MIPS ABI is in use. */
5806
5807static void
1f8ca57c
JB
5808show_mips_abi (struct ui_file *file,
5809 int from_tty,
5810 struct cmd_list_element *ignored_cmd,
5811 const char *ignored_value)
ad188201
KB
5812{
5813 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5814 fprintf_filtered
5815 (file,
5816 "The MIPS ABI is unknown because the current architecture "
5817 "is not MIPS.\n");
ad188201
KB
5818 else
5819 {
5820 enum mips_abi global_abi = global_mips_abi ();
5821 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5822 const char *actual_abi_str = mips_abi_strings[actual_abi];
5823
5824 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5825 fprintf_filtered
5826 (file,
5827 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5828 actual_abi_str);
ad188201 5829 else if (global_abi == actual_abi)
1f8ca57c
JB
5830 fprintf_filtered
5831 (file,
5832 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5833 actual_abi_str);
ad188201
KB
5834 else
5835 {
5836 /* Probably shouldn't happen... */
1f8ca57c
JB
5837 fprintf_filtered
5838 (file,
5839 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5840 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5841 }
5842 }
5843}
5844
4b9b3959 5845static void
72a155b4 5846mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 5847{
72a155b4 5848 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 5849 if (tdep != NULL)
c2d11a7d 5850 {
acdb74a0
AC
5851 int ef_mips_arch;
5852 int ef_mips_32bitmode;
f49e4e6d 5853 /* Determine the ISA. */
acdb74a0
AC
5854 switch (tdep->elf_flags & EF_MIPS_ARCH)
5855 {
5856 case E_MIPS_ARCH_1:
5857 ef_mips_arch = 1;
5858 break;
5859 case E_MIPS_ARCH_2:
5860 ef_mips_arch = 2;
5861 break;
5862 case E_MIPS_ARCH_3:
5863 ef_mips_arch = 3;
5864 break;
5865 case E_MIPS_ARCH_4:
93d56215 5866 ef_mips_arch = 4;
acdb74a0
AC
5867 break;
5868 default:
93d56215 5869 ef_mips_arch = 0;
acdb74a0
AC
5870 break;
5871 }
f49e4e6d 5872 /* Determine the size of a pointer. */
acdb74a0 5873 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5874 fprintf_unfiltered (file,
5875 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5876 tdep->elf_flags);
4b9b3959 5877 fprintf_unfiltered (file,
acdb74a0
AC
5878 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5879 ef_mips_32bitmode);
5880 fprintf_unfiltered (file,
5881 "mips_dump_tdep: ef_mips_arch = %d\n",
5882 ef_mips_arch);
5883 fprintf_unfiltered (file,
5884 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5885 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5886 fprintf_unfiltered (file,
5887 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5888 mips_mask_address_p (tdep),
4014092b 5889 tdep->default_mask_address_p);
c2d11a7d 5890 }
4b9b3959
AC
5891 fprintf_unfiltered (file,
5892 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5893 MIPS_DEFAULT_FPU_TYPE,
5894 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5895 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5896 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5897 : "???"));
6d82d43b 5898 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5899 fprintf_unfiltered (file,
5900 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5901 MIPS_FPU_TYPE,
5902 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5903 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5904 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5905 : "???"));
c2d11a7d
JM
5906}
5907
6d82d43b 5908extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5909
c906108c 5910void
acdb74a0 5911_initialize_mips_tdep (void)
c906108c
SS
5912{
5913 static struct cmd_list_element *mipsfpulist = NULL;
5914 struct cmd_list_element *c;
5915
6d82d43b 5916 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5917 if (MIPS_ABI_LAST + 1
5918 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5919 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5920
4b9b3959 5921 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5922
8d5f9dcb
DJ
5923 mips_pdr_data = register_objfile_data ();
5924
4eb0ad19
DJ
5925 /* Create feature sets with the appropriate properties. The values
5926 are not important. */
5927 mips_tdesc_gp32 = allocate_target_description ();
5928 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5929
5930 mips_tdesc_gp64 = allocate_target_description ();
5931 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5932
a5ea2558
AC
5933 /* Add root prefix command for all "set mips"/"show mips" commands */
5934 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5935 _("Various MIPS specific commands."),
a5ea2558
AC
5936 &setmipscmdlist, "set mips ", 0, &setlist);
5937
5938 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5939 _("Various MIPS specific commands."),
a5ea2558
AC
5940 &showmipscmdlist, "show mips ", 0, &showlist);
5941
2e4ebe70 5942 /* Allow the user to override the ABI. */
7ab04401
AC
5943 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5944 &mips_abi_string, _("\
5945Set the MIPS ABI used by this program."), _("\
5946Show the MIPS ABI used by this program."), _("\
5947This option can be set to one of:\n\
5948 auto - the default ABI associated with the current binary\n\
5949 o32\n\
5950 o64\n\
5951 n32\n\
5952 n64\n\
5953 eabi32\n\
5954 eabi64"),
5955 mips_abi_update,
5956 show_mips_abi,
5957 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5958
c906108c
SS
5959 /* Let the user turn off floating point and set the fence post for
5960 heuristic_proc_start. */
5961
5962 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5963 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5964 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5965 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5966 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5967 &mipsfpulist);
5968 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5969 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5970 &mipsfpulist);
5971 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5972 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5973 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5974 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5975 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5976 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5977 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5978 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5979 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5980 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5981 &mipsfpulist);
5982 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5983 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5984 &showlist);
5985
c906108c
SS
5986 /* We really would like to have both "0" and "unlimited" work, but
5987 command.c doesn't deal with that. So make it a var_zinteger
5988 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5989 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5990 &heuristic_fence_post, _("\
5991Set the distance searched for the start of a function."), _("\
5992Show the distance searched for the start of a function."), _("\
c906108c
SS
5993If you are debugging a stripped executable, GDB needs to search through the\n\
5994program for the start of a function. This command sets the distance of the\n\
7915a72c 5995search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5996 reinit_frame_cache_sfunc,
7915a72c 5997 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5998 &setlist, &showlist);
c906108c
SS
5999
6000 /* Allow the user to control whether the upper bits of 64-bit
6001 addresses should be zeroed. */
7915a72c
AC
6002 add_setshow_auto_boolean_cmd ("mask-address", no_class,
6003 &mask_address_var, _("\
6004Set zeroing of upper 32 bits of 64-bit addresses."), _("\
6005Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 6006Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 6007allow GDB to determine the correct value."),
08546159
AC
6008 NULL, show_mask_address,
6009 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6010
6011 /* Allow the user to control the size of 32 bit registers within the
6012 raw remote packet. */
b3f42336 6013 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
6014 &mips64_transfers_32bit_regs_p, _("\
6015Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6016 _("\
6017Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6018 _("\
719ec221
AC
6019Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6020that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 602164 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 6022 set_mips64_transfers_32bit_regs,
7915a72c 6023 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 6024 &setlist, &showlist);
9ace0497
AC
6025
6026 /* Debug this files internals. */
6bcadd06 6027 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
6028 &mips_debug, _("\
6029Set mips debugging."), _("\
6030Show mips debugging."), _("\
6031When non-zero, mips specific debugging is enabled."),
2c5b56ce 6032 NULL,
7915a72c 6033 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 6034 &setdebuglist, &showdebuglist);
c906108c 6035}
This page took 1.457175 seconds and 4 git commands to generate.