PR c++/14365
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
0b302171 3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
5e2e9765 25#include "gdb_assert.h"
c906108c
SS
26#include "frame.h"
27#include "inferior.h"
28#include "symtab.h"
29#include "value.h"
30#include "gdbcmd.h"
31#include "language.h"
32#include "gdbcore.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "gdbtypes.h"
36#include "target.h"
28d069e6 37#include "arch-utils.h"
4e052eda 38#include "regcache.h"
70f80edf 39#include "osabi.h"
d1973055 40#include "mips-tdep.h"
fe898f56 41#include "block.h"
a4b8ebc8 42#include "reggroups.h"
c906108c 43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
a4b8ebc8 47#include "sim-regno.h"
a89aa300 48#include "dis-asm.h"
edfae063
AC
49#include "frame-unwind.h"
50#include "frame-base.h"
51#include "trad-frame.h"
7d9b040b 52#include "infcall.h"
fed7ba43 53#include "floatformat.h"
29709017
DJ
54#include "remote.h"
55#include "target-descriptions.h"
2bd0c3d7 56#include "dwarf2-frame.h"
f8b73d13 57#include "user-regs.h"
79a45b7d 58#include "valprint.h"
175ff332 59#include "ax.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
4cc0665f
MR
65static int mips32_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR);
66static int micromips_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
67 int);
68static int mips16_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
69 int);
70
24e05951 71/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
72/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
73#define ST0_FR (1 << 26)
74
b0069a17
AC
75/* The sizes of floating point registers. */
76
77enum
78{
79 MIPS_FPU_SINGLE_REGSIZE = 4,
80 MIPS_FPU_DOUBLE_REGSIZE = 8
81};
82
1a69e1e4
DJ
83enum
84{
85 MIPS32_REGSIZE = 4,
86 MIPS64_REGSIZE = 8
87};
0dadbba0 88
2e4ebe70
DJ
89static const char *mips_abi_string;
90
40478521 91static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
92 "auto",
93 "n32",
94 "o32",
28d169de 95 "n64",
2e4ebe70
DJ
96 "o64",
97 "eabi32",
98 "eabi64",
99 NULL
100};
101
4cc0665f
MR
102/* For backwards compatibility we default to MIPS16. This flag is
103 overridden as soon as unambiguous ELF file flags tell us the
104 compressed ISA encoding used. */
105static const char mips_compression_mips16[] = "mips16";
106static const char mips_compression_micromips[] = "micromips";
107static const char *const mips_compression_strings[] =
108{
109 mips_compression_mips16,
110 mips_compression_micromips,
111 NULL
112};
113
114static const char *mips_compression_string = mips_compression_mips16;
115
f8b73d13
DJ
116/* The standard register names, and all the valid aliases for them. */
117struct register_alias
118{
119 const char *name;
120 int regnum;
121};
122
123/* Aliases for o32 and most other ABIs. */
124const struct register_alias mips_o32_aliases[] = {
125 { "ta0", 12 },
126 { "ta1", 13 },
127 { "ta2", 14 },
128 { "ta3", 15 }
129};
130
131/* Aliases for n32 and n64. */
132const struct register_alias mips_n32_n64_aliases[] = {
133 { "ta0", 8 },
134 { "ta1", 9 },
135 { "ta2", 10 },
136 { "ta3", 11 }
137};
138
139/* Aliases for ABI-independent registers. */
140const struct register_alias mips_register_aliases[] = {
141 /* The architecture manuals specify these ABI-independent names for
142 the GPRs. */
143#define R(n) { "r" #n, n }
144 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
145 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
146 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
147 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
148#undef R
149
150 /* k0 and k1 are sometimes called these instead (for "kernel
151 temp"). */
152 { "kt0", 26 },
153 { "kt1", 27 },
154
155 /* This is the traditional GDB name for the CP0 status register. */
156 { "sr", MIPS_PS_REGNUM },
157
158 /* This is the traditional GDB name for the CP0 BadVAddr register. */
159 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
160
161 /* This is the traditional GDB name for the FCSR. */
162 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
163};
164
865093a3
AR
165const struct register_alias mips_numeric_register_aliases[] = {
166#define R(n) { #n, n }
167 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
168 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
169 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
170 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
171#undef R
172};
173
c906108c
SS
174#ifndef MIPS_DEFAULT_FPU_TYPE
175#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
176#endif
177static int mips_fpu_type_auto = 1;
178static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 179
ccce17b0 180static unsigned int mips_debug = 0;
7a292a7a 181
29709017
DJ
182/* Properties (for struct target_desc) describing the g/G packet
183 layout. */
184#define PROPERTY_GP32 "internal: transfers-32bit-registers"
185#define PROPERTY_GP64 "internal: transfers-64bit-registers"
186
4eb0ad19
DJ
187struct target_desc *mips_tdesc_gp32;
188struct target_desc *mips_tdesc_gp64;
189
56cea623
AC
190const struct mips_regnum *
191mips_regnum (struct gdbarch *gdbarch)
192{
193 return gdbarch_tdep (gdbarch)->regnum;
194}
195
196static int
197mips_fpa0_regnum (struct gdbarch *gdbarch)
198{
199 return mips_regnum (gdbarch)->fp0 + 12;
200}
201
004159a2
MR
202/* Return 1 if REGNUM refers to a floating-point general register, raw
203 or cooked. Otherwise return 0. */
204
205static int
206mips_float_register_p (struct gdbarch *gdbarch, int regnum)
207{
208 int rawnum = regnum % gdbarch_num_regs (gdbarch);
209
210 return (rawnum >= mips_regnum (gdbarch)->fp0
211 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
212}
213
74ed0bb4
MD
214#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
215 == MIPS_ABI_EABI32 \
216 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 217
025bb325
MS
218#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
219 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 220
025bb325
MS
221#define MIPS_LAST_ARG_REGNUM(gdbarch) \
222 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 223
74ed0bb4 224#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 225
d1973055
KB
226/* Return the MIPS ABI associated with GDBARCH. */
227enum mips_abi
228mips_abi (struct gdbarch *gdbarch)
229{
230 return gdbarch_tdep (gdbarch)->mips_abi;
231}
232
4246e332 233int
1b13c4f6 234mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 235{
29709017
DJ
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* If we know how big the registers are, use that size. */
239 if (tdep->register_size_valid_p)
240 return tdep->register_size;
241
242 /* Fall back to the previous behavior. */
4246e332
AC
243 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
244 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
245}
246
025bb325 247/* Return the currently configured (or set) saved register size. */
480d3dd2 248
e6bc2e8a 249unsigned int
13326b4e 250mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 251{
1a69e1e4
DJ
252 switch (mips_abi (gdbarch))
253 {
254 case MIPS_ABI_EABI32:
255 case MIPS_ABI_O32:
256 return 4;
257 case MIPS_ABI_N32:
258 case MIPS_ABI_N64:
259 case MIPS_ABI_O64:
260 case MIPS_ABI_EABI64:
261 return 8;
262 case MIPS_ABI_UNKNOWN:
263 case MIPS_ABI_LAST:
264 default:
265 internal_error (__FILE__, __LINE__, _("bad switch"));
266 }
d929b26f
AC
267}
268
4cc0665f
MR
269/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
270 are some functions to handle addresses associated with compressed
271 code including but not limited to testing, setting, or clearing
272 bit 0 of such addresses. */
742c84f6 273
4cc0665f
MR
274/* Return one iff compressed code is the MIPS16 instruction set. */
275
276static int
277is_mips16_isa (struct gdbarch *gdbarch)
278{
279 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
280}
281
282/* Return one iff compressed code is the microMIPS instruction set. */
283
284static int
285is_micromips_isa (struct gdbarch *gdbarch)
286{
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
288}
289
290/* Return one iff ADDR denotes compressed code. */
291
292static int
293is_compact_addr (CORE_ADDR addr)
742c84f6
MR
294{
295 return ((addr) & 1);
296}
297
4cc0665f
MR
298/* Return one iff ADDR denotes standard ISA code. */
299
300static int
301is_mips_addr (CORE_ADDR addr)
302{
303 return !is_compact_addr (addr);
304}
305
306/* Return one iff ADDR denotes MIPS16 code. */
307
308static int
309is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
310{
311 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
312}
313
314/* Return one iff ADDR denotes microMIPS code. */
315
316static int
317is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318{
319 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
320}
321
322/* Strip the ISA (compression) bit off from ADDR. */
323
742c84f6 324static CORE_ADDR
4cc0665f 325unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
326{
327 return ((addr) & ~(CORE_ADDR) 1);
328}
329
4cc0665f
MR
330/* Add the ISA (compression) bit to ADDR. */
331
742c84f6 332static CORE_ADDR
4cc0665f 333make_compact_addr (CORE_ADDR addr)
742c84f6
MR
334{
335 return ((addr) | (CORE_ADDR) 1);
336}
337
71b8ef93 338/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
339 marks it as MIPS16 or microMIPS function. The MSB of the minimal
340 symbol's "info" field is used for this purpose.
5a89d8aa 341
4cc0665f
MR
342 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
343 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
344 one of the "special" bits in a minimal symbol to mark it accordingly.
345 The test checks an ELF-private flag that is valid for true function
346 symbols only; in particular synthetic symbols such as for PLT stubs
347 have no ELF-private part at all.
5a89d8aa 348
4cc0665f
MR
349 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
350 in a minimal symbol. */
5a89d8aa 351
5a89d8aa 352static void
6d82d43b
AC
353mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
354{
4cc0665f
MR
355 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
356
357 if ((sym->flags & BSF_SYNTHETIC) != 0)
358 return;
359
360 if (ELF_ST_IS_MICROMIPS (elfsym->internal_elf_sym.st_other))
361 MSYMBOL_TARGET_FLAG_2 (msym) = 1;
362 else if (ELF_ST_IS_MIPS16 (elfsym->internal_elf_sym.st_other))
363 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
364}
365
366/* Return one iff MSYM refers to standard ISA code. */
367
368static int
369msymbol_is_mips (struct minimal_symbol *msym)
370{
371 return !(MSYMBOL_TARGET_FLAG_1 (msym) | MSYMBOL_TARGET_FLAG_2 (msym));
5a89d8aa
MS
372}
373
4cc0665f
MR
374/* Return one iff MSYM refers to MIPS16 code. */
375
71b8ef93 376static int
4cc0665f 377msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 378{
b887350f 379 return MSYMBOL_TARGET_FLAG_1 (msym);
71b8ef93
MS
380}
381
4cc0665f
MR
382/* Return one iff MSYM refers to microMIPS code. */
383
384static int
385msymbol_is_micromips (struct minimal_symbol *msym)
386{
387 return MSYMBOL_TARGET_FLAG_2 (msym);
388}
389
88658117
AC
390/* XFER a value from the big/little/left end of the register.
391 Depending on the size of the value it might occupy the entire
392 register or just part of it. Make an allowance for this, aligning
393 things accordingly. */
394
395static void
ba32f989
DJ
396mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
397 int reg_num, int length,
870cd05e
MK
398 enum bfd_endian endian, gdb_byte *in,
399 const gdb_byte *out, int buf_offset)
88658117 400{
88658117 401 int reg_offset = 0;
72a155b4
UW
402
403 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
404 /* Need to transfer the left or right part of the register, based on
405 the targets byte order. */
88658117
AC
406 switch (endian)
407 {
408 case BFD_ENDIAN_BIG:
72a155b4 409 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
410 break;
411 case BFD_ENDIAN_LITTLE:
412 reg_offset = 0;
413 break;
6d82d43b 414 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
415 reg_offset = 0;
416 break;
417 default:
e2e0b3e5 418 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
419 }
420 if (mips_debug)
cb1d2653
AC
421 fprintf_unfiltered (gdb_stderr,
422 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
423 reg_num, reg_offset, buf_offset, length);
88658117
AC
424 if (mips_debug && out != NULL)
425 {
426 int i;
cb1d2653 427 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 428 for (i = 0; i < length; i++)
cb1d2653 429 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
430 }
431 if (in != NULL)
6d82d43b
AC
432 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
433 in + buf_offset);
88658117 434 if (out != NULL)
6d82d43b
AC
435 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
436 out + buf_offset);
88658117
AC
437 if (mips_debug && in != NULL)
438 {
439 int i;
cb1d2653 440 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 441 for (i = 0; i < length; i++)
cb1d2653 442 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
443 }
444 if (mips_debug)
445 fprintf_unfiltered (gdb_stdlog, "\n");
446}
447
dd824b04
DJ
448/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
449 compatiblity mode. A return value of 1 means that we have
450 physical 64-bit registers, but should treat them as 32-bit registers. */
451
452static int
9c9acae0 453mips2_fp_compat (struct frame_info *frame)
dd824b04 454{
72a155b4 455 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
456 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
457 meaningful. */
72a155b4 458 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
459 return 0;
460
461#if 0
462 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
463 in all the places we deal with FP registers. PR gdb/413. */
464 /* Otherwise check the FR bit in the status register - it controls
465 the FP compatiblity mode. If it is clear we are in compatibility
466 mode. */
9c9acae0 467 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
468 return 1;
469#endif
361d1df0 470
dd824b04
DJ
471 return 0;
472}
473
7a292a7a 474#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 475
74ed0bb4 476static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 477
a14ed312 478static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 479
025bb325 480/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
481
482static struct cmd_list_element *setmipscmdlist = NULL;
483static struct cmd_list_element *showmipscmdlist = NULL;
484
5e2e9765
KB
485/* Integer registers 0 thru 31 are handled explicitly by
486 mips_register_name(). Processor specific registers 32 and above
8a9fc081 487 are listed in the following tables. */
691c0433 488
6d82d43b
AC
489enum
490{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
491
492/* Generic MIPS. */
493
494static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
495 "sr", "lo", "hi", "bad", "cause", "pc",
496 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
497 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
498 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
499 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 500 "fsr", "fir",
691c0433
AC
501};
502
503/* Names of IDT R3041 registers. */
504
505static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
506 "sr", "lo", "hi", "bad", "cause", "pc",
507 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
508 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
509 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
510 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
511 "fsr", "fir", "", /*"fp" */ "",
512 "", "", "bus", "ccfg", "", "", "", "",
513 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
514};
515
516/* Names of tx39 registers. */
517
518static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
519 "sr", "lo", "hi", "bad", "cause", "pc",
520 "", "", "", "", "", "", "", "",
521 "", "", "", "", "", "", "", "",
522 "", "", "", "", "", "", "", "",
523 "", "", "", "", "", "", "", "",
524 "", "", "", "",
525 "", "", "", "", "", "", "", "",
1faeff08 526 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
527};
528
529/* Names of IRIX registers. */
530static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
531 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
532 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
533 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
534 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
535 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
536};
537
44099a67 538/* Names of registers with Linux kernels. */
1faeff08
MR
539static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
540 "sr", "lo", "hi", "bad", "cause", "pc",
541 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
542 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
543 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
544 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
545 "fsr", "fir"
546};
547
cce74817 548
5e2e9765 549/* Return the name of the register corresponding to REGNO. */
5a89d8aa 550static const char *
d93859e2 551mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 552{
d93859e2 553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
554 /* GPR names for all ABIs other than n32/n64. */
555 static char *mips_gpr_names[] = {
6d82d43b
AC
556 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
557 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
558 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
559 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
560 };
561
562 /* GPR names for n32 and n64 ABIs. */
563 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
564 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
565 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
566 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
567 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
568 };
569
d93859e2 570 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 571
f57d151a 572 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
573 but then don't make the raw register names visible. This (upper)
574 range of user visible register numbers are the pseudo-registers.
575
576 This approach was adopted accommodate the following scenario:
577 It is possible to debug a 64-bit device using a 32-bit
578 programming model. In such instances, the raw registers are
579 configured to be 64-bits wide, while the pseudo registers are
580 configured to be 32-bits wide. The registers that the user
581 sees - the pseudo registers - match the users expectations
582 given the programming model being used. */
d93859e2
UW
583 int rawnum = regno % gdbarch_num_regs (gdbarch);
584 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
585 return "";
586
5e2e9765
KB
587 /* The MIPS integer registers are always mapped from 0 to 31. The
588 names of the registers (which reflects the conventions regarding
589 register use) vary depending on the ABI. */
a4b8ebc8 590 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
591 {
592 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 593 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 594 else
a4b8ebc8 595 return mips_gpr_names[rawnum];
5e2e9765 596 }
d93859e2
UW
597 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
598 return tdesc_register_name (gdbarch, rawnum);
599 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
600 {
601 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
602 if (tdep->mips_processor_reg_names[rawnum - 32])
603 return tdep->mips_processor_reg_names[rawnum - 32];
604 return "";
691c0433 605 }
5e2e9765
KB
606 else
607 internal_error (__FILE__, __LINE__,
e2e0b3e5 608 _("mips_register_name: bad register number %d"), rawnum);
cce74817 609}
5e2e9765 610
a4b8ebc8 611/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 612
a4b8ebc8
AC
613static int
614mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
615 struct reggroup *reggroup)
616{
617 int vector_p;
618 int float_p;
619 int raw_p;
72a155b4
UW
620 int rawnum = regnum % gdbarch_num_regs (gdbarch);
621 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
622 if (reggroup == all_reggroup)
623 return pseudo;
624 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
625 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
626 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
627 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
628 raw_p = rawnum < gdbarch_num_regs (gdbarch);
629 if (gdbarch_register_name (gdbarch, regnum) == NULL
630 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
631 return 0;
632 if (reggroup == float_reggroup)
633 return float_p && pseudo;
634 if (reggroup == vector_reggroup)
635 return vector_p && pseudo;
636 if (reggroup == general_reggroup)
637 return (!vector_p && !float_p) && pseudo;
638 /* Save the pseudo registers. Need to make certain that any code
639 extracting register values from a saved register cache also uses
640 pseudo registers. */
641 if (reggroup == save_reggroup)
642 return raw_p && pseudo;
643 /* Restore the same pseudo register. */
644 if (reggroup == restore_reggroup)
645 return raw_p && pseudo;
6d82d43b 646 return 0;
a4b8ebc8
AC
647}
648
f8b73d13
DJ
649/* Return the groups that a MIPS register can be categorised into.
650 This version is only used if we have a target description which
651 describes real registers (and their groups). */
652
653static int
654mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
655 struct reggroup *reggroup)
656{
657 int rawnum = regnum % gdbarch_num_regs (gdbarch);
658 int pseudo = regnum / gdbarch_num_regs (gdbarch);
659 int ret;
660
661 /* Only save, restore, and display the pseudo registers. Need to
662 make certain that any code extracting register values from a
663 saved register cache also uses pseudo registers.
664
665 Note: saving and restoring the pseudo registers is slightly
666 strange; if we have 64 bits, we should save and restore all
667 64 bits. But this is hard and has little benefit. */
668 if (!pseudo)
669 return 0;
670
671 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
672 if (ret != -1)
673 return ret;
674
675 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
676}
677
a4b8ebc8 678/* Map the symbol table registers which live in the range [1 *
f57d151a 679 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 680 registers. Take care of alignment and size problems. */
c5aa993b 681
05d1431c 682static enum register_status
a4b8ebc8 683mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 684 int cookednum, gdb_byte *buf)
a4b8ebc8 685{
72a155b4
UW
686 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
687 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
688 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 689 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
05d1431c 690 return regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
691 else if (register_size (gdbarch, rawnum) >
692 register_size (gdbarch, cookednum))
47ebcfbe 693 {
8bdf35dc 694 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
05d1431c 695 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
47ebcfbe 696 else
8bdf35dc
KB
697 {
698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
699 LONGEST regval;
05d1431c
PA
700 enum register_status status;
701
702 status = regcache_raw_read_signed (regcache, rawnum, &regval);
703 if (status == REG_VALID)
704 store_signed_integer (buf, 4, byte_order, regval);
705 return status;
8bdf35dc 706 }
47ebcfbe
AC
707 }
708 else
e2e0b3e5 709 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
710}
711
712static void
6d82d43b
AC
713mips_pseudo_register_write (struct gdbarch *gdbarch,
714 struct regcache *regcache, int cookednum,
47a35522 715 const gdb_byte *buf)
a4b8ebc8 716{
72a155b4
UW
717 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
718 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
719 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 720 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 721 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
722 else if (register_size (gdbarch, rawnum) >
723 register_size (gdbarch, cookednum))
47ebcfbe 724 {
8bdf35dc 725 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
47ebcfbe
AC
726 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
727 else
8bdf35dc
KB
728 {
729 /* Sign extend the shortened version of the register prior
730 to placing it in the raw register. This is required for
731 some mips64 parts in order to avoid unpredictable behavior. */
732 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
733 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
734 regcache_raw_write_signed (regcache, rawnum, regval);
735 }
47ebcfbe
AC
736 }
737 else
e2e0b3e5 738 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 739}
c5aa993b 740
175ff332
HZ
741static int
742mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
743 struct agent_expr *ax, int reg)
744{
745 int rawnum = reg % gdbarch_num_regs (gdbarch);
746 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
747 && reg < 2 * gdbarch_num_regs (gdbarch));
748
749 ax_reg_mask (ax, rawnum);
750
751 return 0;
752}
753
754static int
755mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
756 struct agent_expr *ax, int reg)
757{
758 int rawnum = reg % gdbarch_num_regs (gdbarch);
759 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
760 && reg < 2 * gdbarch_num_regs (gdbarch));
761 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
762 {
763 ax_reg (ax, rawnum);
764
765 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
766 {
767 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
768 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
769 {
770 ax_const_l (ax, 32);
771 ax_simple (ax, aop_lsh);
772 }
773 ax_const_l (ax, 32);
774 ax_simple (ax, aop_rsh_signed);
775 }
776 }
777 else
778 internal_error (__FILE__, __LINE__, _("bad register size"));
779
780 return 0;
781}
782
4cc0665f 783/* Table to translate 3-bit register field to actual register number. */
d467df4e 784static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
785
786/* Heuristic_proc_start may hunt through the text section for a long
787 time across a 2400 baud serial line. Allows the user to limit this
788 search. */
789
790static unsigned int heuristic_fence_post = 0;
791
46cd78fb 792/* Number of bytes of storage in the actual machine representation for
719ec221
AC
793 register N. NOTE: This defines the pseudo register type so need to
794 rebuild the architecture vector. */
43e526b9
JM
795
796static int mips64_transfers_32bit_regs_p = 0;
797
719ec221
AC
798static void
799set_mips64_transfers_32bit_regs (char *args, int from_tty,
800 struct cmd_list_element *c)
43e526b9 801{
719ec221
AC
802 struct gdbarch_info info;
803 gdbarch_info_init (&info);
804 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
805 instead of relying on globals. Doing that would let generic code
806 handle the search for this specific architecture. */
807 if (!gdbarch_update_p (info))
a4b8ebc8 808 {
719ec221 809 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 810 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 811 }
a4b8ebc8
AC
812}
813
47ebcfbe 814/* Convert to/from a register and the corresponding memory value. */
43e526b9 815
ee51a8c7
KB
816/* This predicate tests for the case of an 8 byte floating point
817 value that is being transferred to or from a pair of floating point
818 registers each of which are (or are considered to be) only 4 bytes
819 wide. */
ff2e87ac 820static int
ee51a8c7
KB
821mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
822 struct type *type)
ff2e87ac 823{
0abe36f5
MD
824 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
825 && register_size (gdbarch, regnum) == 4
004159a2 826 && mips_float_register_p (gdbarch, regnum)
6d82d43b 827 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
828}
829
ee51a8c7
KB
830/* This predicate tests for the case of a value of less than 8
831 bytes in width that is being transfered to or from an 8 byte
832 general purpose register. */
833static int
834mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
835 struct type *type)
836{
837 int num_regs = gdbarch_num_regs (gdbarch);
838
839 return (register_size (gdbarch, regnum) == 8
840 && regnum % num_regs > 0 && regnum % num_regs < 32
841 && TYPE_LENGTH (type) < 8);
842}
843
844static int
025bb325
MS
845mips_convert_register_p (struct gdbarch *gdbarch,
846 int regnum, struct type *type)
ee51a8c7 847{
eaa05d59
MR
848 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
849 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
850}
851
8dccd430 852static int
ff2e87ac 853mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
854 struct type *type, gdb_byte *to,
855 int *optimizedp, int *unavailablep)
102182a9 856{
ee51a8c7
KB
857 struct gdbarch *gdbarch = get_frame_arch (frame);
858
859 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
860 {
861 get_frame_register (frame, regnum + 0, to + 4);
862 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
863
864 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
865 optimizedp, unavailablep))
866 return 0;
867
868 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
869 optimizedp, unavailablep))
870 return 0;
871 *optimizedp = *unavailablep = 0;
872 return 1;
ee51a8c7
KB
873 }
874 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
875 {
876 int len = TYPE_LENGTH (type);
8dccd430
PA
877 CORE_ADDR offset;
878
879 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
880 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
881 optimizedp, unavailablep))
882 return 0;
883
884 *optimizedp = *unavailablep = 0;
885 return 1;
ee51a8c7
KB
886 }
887 else
888 {
889 internal_error (__FILE__, __LINE__,
890 _("mips_register_to_value: unrecognized case"));
891 }
102182a9
MS
892}
893
42c466d7 894static void
ff2e87ac 895mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 896 struct type *type, const gdb_byte *from)
102182a9 897{
ee51a8c7
KB
898 struct gdbarch *gdbarch = get_frame_arch (frame);
899
900 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
901 {
902 put_frame_register (frame, regnum + 0, from + 4);
903 put_frame_register (frame, regnum + 1, from + 0);
904 }
905 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
906 {
907 gdb_byte fill[8];
908 int len = TYPE_LENGTH (type);
909
910 /* Sign extend values, irrespective of type, that are stored to
911 a 64-bit general purpose register. (32-bit unsigned values
912 are stored as signed quantities within a 64-bit register.
913 When performing an operation, in compiled code, that combines
914 a 32-bit unsigned value with a signed 64-bit value, a type
915 conversion is first performed that zeroes out the high 32 bits.) */
916 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
917 {
918 if (from[0] & 0x80)
919 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
920 else
921 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
922 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
923 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
924 }
925 else
926 {
927 if (from[len-1] & 0x80)
928 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
929 else
930 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
931 put_frame_register_bytes (frame, regnum, 0, len, from);
932 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
933 }
934 }
935 else
936 {
937 internal_error (__FILE__, __LINE__,
938 _("mips_value_to_register: unrecognized case"));
939 }
102182a9
MS
940}
941
a4b8ebc8
AC
942/* Return the GDB type object for the "standard" data type of data in
943 register REG. */
78fde5f8
KB
944
945static struct type *
a4b8ebc8
AC
946mips_register_type (struct gdbarch *gdbarch, int regnum)
947{
72a155b4 948 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 949 if (mips_float_register_p (gdbarch, regnum))
a6425924 950 {
5ef80fb0 951 /* The floating-point registers raw, or cooked, always match
1b13c4f6 952 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 953 if (mips_isa_regsize (gdbarch) == 4)
27067745 954 return builtin_type (gdbarch)->builtin_float;
8da61cc4 955 else
27067745 956 return builtin_type (gdbarch)->builtin_double;
a6425924 957 }
72a155b4 958 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
959 {
960 /* The raw or ISA registers. These are all sized according to
961 the ISA regsize. */
962 if (mips_isa_regsize (gdbarch) == 4)
df4df182 963 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 964 else
df4df182 965 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 966 }
78fde5f8 967 else
d5ac5a39 968 {
1faeff08
MR
969 int rawnum = regnum - gdbarch_num_regs (gdbarch);
970
d5ac5a39
AC
971 /* The cooked or ABI registers. These are sized according to
972 the ABI (with a few complications). */
1faeff08
MR
973 if (rawnum == mips_regnum (gdbarch)->fp_control_status
974 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
975 return builtin_type (gdbarch)->builtin_int32;
976 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
977 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
978 && rawnum >= MIPS_FIRST_EMBED_REGNUM
979 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
980 /* The pseudo/cooked view of the embedded registers is always
981 32-bit. The raw view is handled below. */
df4df182 982 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
983 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
984 /* The target, while possibly using a 64-bit register buffer,
985 is only transfering 32-bits of each integer register.
986 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 987 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
988 else if (mips_abi_regsize (gdbarch) == 4)
989 /* The ABI is restricted to 32-bit registers (the ISA could be
990 32- or 64-bit). */
df4df182 991 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
992 else
993 /* 64-bit ABI. */
df4df182 994 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 995 }
78fde5f8
KB
996}
997
f8b73d13
DJ
998/* Return the GDB type for the pseudo register REGNUM, which is the
999 ABI-level view. This function is only called if there is a target
1000 description which includes registers, so we know precisely the
1001 types of hardware registers. */
1002
1003static struct type *
1004mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1005{
1006 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1007 int rawnum = regnum % num_regs;
1008 struct type *rawtype;
1009
1010 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1011
1012 /* Absent registers are still absent. */
1013 rawtype = gdbarch_register_type (gdbarch, rawnum);
1014 if (TYPE_LENGTH (rawtype) == 0)
1015 return rawtype;
1016
de13fcf2 1017 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1018 /* Present the floating point registers however the hardware did;
1019 do not try to convert between FPU layouts. */
1020 return rawtype;
1021
f8b73d13
DJ
1022 /* Use pointer types for registers if we can. For n32 we can not,
1023 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1024 if (mips_abi_regsize (gdbarch)
1025 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1026 {
1faeff08
MR
1027 if (rawnum == MIPS_SP_REGNUM
1028 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1029 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1030 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1031 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1032 }
1033
1034 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1035 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1036 || rawnum == mips_regnum (gdbarch)->lo
1037 || rawnum == mips_regnum (gdbarch)->hi
1038 || rawnum == mips_regnum (gdbarch)->badvaddr
1039 || rawnum == mips_regnum (gdbarch)->cause
1040 || rawnum == mips_regnum (gdbarch)->pc
1041 || (mips_regnum (gdbarch)->dspacc != -1
1042 && rawnum >= mips_regnum (gdbarch)->dspacc
1043 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1044 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1045
1faeff08
MR
1046 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1047 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1048 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1049 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1050 {
1051 /* The pseudo/cooked view of embedded registers is always
1052 32-bit, even if the target transfers 64-bit values for them.
1053 New targets relying on XML descriptions should only transfer
1054 the necessary 32 bits, but older versions of GDB expected 64,
1055 so allow the target to provide 64 bits without interfering
1056 with the displayed type. */
1057 return builtin_type (gdbarch)->builtin_int32;
1058 }
1059
f8b73d13
DJ
1060 /* For all other registers, pass through the hardware type. */
1061 return rawtype;
1062}
bcb0cc15 1063
025bb325 1064/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 1065enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1066
1067static int
480d3dd2 1068mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1069{
1070 switch (mask_address_var)
1071 {
7f19b9a2 1072 case AUTO_BOOLEAN_TRUE:
4014092b 1073 return 1;
7f19b9a2 1074 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1075 return 0;
1076 break;
7f19b9a2 1077 case AUTO_BOOLEAN_AUTO:
480d3dd2 1078 return tdep->default_mask_address_p;
4014092b 1079 default:
025bb325
MS
1080 internal_error (__FILE__, __LINE__,
1081 _("mips_mask_address_p: bad switch"));
4014092b 1082 return -1;
361d1df0 1083 }
4014092b
AC
1084}
1085
1086static void
08546159
AC
1087show_mask_address (struct ui_file *file, int from_tty,
1088 struct cmd_list_element *c, const char *value)
4014092b 1089{
1cf3db46 1090 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
08546159
AC
1091
1092 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1093 switch (mask_address_var)
1094 {
7f19b9a2 1095 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1096 printf_filtered ("The 32 bit mips address mask is enabled\n");
1097 break;
7f19b9a2 1098 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1099 printf_filtered ("The 32 bit mips address mask is disabled\n");
1100 break;
7f19b9a2 1101 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1102 printf_filtered
1103 ("The 32 bit address mask is set automatically. Currently %s\n",
1104 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1105 break;
1106 default:
e2e0b3e5 1107 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1108 break;
361d1df0 1109 }
4014092b 1110}
c906108c 1111
4cc0665f
MR
1112/* Tell if the program counter value in MEMADDR is in a standard ISA
1113 function. */
1114
1115int
1116mips_pc_is_mips (CORE_ADDR memaddr)
1117{
1118 struct minimal_symbol *sym;
1119
1120 /* Flags indicating that this is a MIPS16 or microMIPS function is
1121 stored by elfread.c in the high bit of the info field. Use this
1122 to decide if the function is standard MIPS. Otherwise if bit 0
1123 of the address is clear, then this is a standard MIPS function. */
1124 sym = lookup_minimal_symbol_by_pc (memaddr);
1125 if (sym)
1126 return msymbol_is_mips (sym);
1127 else
1128 return is_mips_addr (memaddr);
1129}
1130
c906108c
SS
1131/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1132
0fe7e7c8 1133int
4cc0665f 1134mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c
SS
1135{
1136 struct minimal_symbol *sym;
1137
91912e4d
MR
1138 /* A flag indicating that this is a MIPS16 function is stored by
1139 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1140 if the function is MIPS16. Otherwise if bit 0 of the address is
1141 set, then ELF file flags will tell if this is a MIPS16 function. */
1142 sym = lookup_minimal_symbol_by_pc (memaddr);
1143 if (sym)
1144 return msymbol_is_mips16 (sym);
1145 else
1146 return is_mips16_addr (gdbarch, memaddr);
1147}
1148
1149/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1150
1151int
1152mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1153{
1154 struct minimal_symbol *sym;
1155
1156 /* A flag indicating that this is a microMIPS function is stored by
1157 elfread.c in the high bit of the info field. Use this to decide
1158 if the function is microMIPS. Otherwise if bit 0 of the address
1159 is set, then ELF file flags will tell if this is a microMIPS
1160 function. */
1161 sym = lookup_minimal_symbol_by_pc (memaddr);
1162 if (sym)
1163 return msymbol_is_micromips (sym);
1164 else
1165 return is_micromips_addr (gdbarch, memaddr);
1166}
1167
1168/* Tell the ISA type of the function the program counter value in MEMADDR
1169 is in. */
1170
1171static enum mips_isa
1172mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1173{
1174 struct minimal_symbol *sym;
1175
1176 /* A flag indicating that this is a MIPS16 or a microMIPS function
1177 is stored by elfread.c in the high bit of the info field. Use
1178 this to decide if the function is MIPS16 or microMIPS or normal
1179 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1180 flags will tell if this is a MIPS16 or a microMIPS function. */
c906108c
SS
1181 sym = lookup_minimal_symbol_by_pc (memaddr);
1182 if (sym)
4cc0665f
MR
1183 {
1184 if (msymbol_is_micromips (sym))
1185 return ISA_MICROMIPS;
1186 else if (msymbol_is_mips16 (sym))
1187 return ISA_MIPS16;
1188 else
1189 return ISA_MIPS;
1190 }
c906108c 1191 else
4cc0665f
MR
1192 {
1193 if (is_mips_addr (memaddr))
1194 return ISA_MIPS;
1195 else if (is_micromips_addr (gdbarch, memaddr))
1196 return ISA_MICROMIPS;
1197 else
1198 return ISA_MIPS16;
1199 }
c906108c
SS
1200}
1201
14132e89
MR
1202/* Various MIPS16 thunk (aka stub or trampoline) names. */
1203
1204static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1205static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1206static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1207static const char mips_str_call_stub[] = "__call_stub_";
1208static const char mips_str_fn_stub[] = "__fn_stub_";
1209
1210/* This is used as a PIC thunk prefix. */
1211
1212static const char mips_str_pic[] = ".pic.";
1213
1214/* Return non-zero if the PC is inside a call thunk (aka stub or
1215 trampoline) that should be treated as a temporary frame. */
1216
1217static int
1218mips_in_frame_stub (CORE_ADDR pc)
1219{
1220 CORE_ADDR start_addr;
1221 const char *name;
1222
1223 /* Find the starting address of the function containing the PC. */
1224 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1225 return 0;
1226
1227 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1228 if (strncmp (name, mips_str_mips16_call_stub,
1229 strlen (mips_str_mips16_call_stub)) == 0)
1230 return 1;
1231 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1232 if (strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
1233 return 1;
1234 /* If the PC is in __fn_stub_*, this is a call stub. */
1235 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0)
1236 return 1;
1237
1238 return 0; /* Not a stub. */
1239}
1240
b2fa5097 1241/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1242 all registers should be sign extended for simplicity? */
6c997a34
AC
1243
1244static CORE_ADDR
61a1198a 1245mips_read_pc (struct regcache *regcache)
6c997a34 1246{
8376de04 1247 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
61a1198a 1248 ULONGEST pc;
8376de04 1249
61a1198a 1250 regcache_cooked_read_signed (regcache, regnum, &pc);
4cc0665f
MR
1251 if (is_compact_addr (pc))
1252 pc = unmake_compact_addr (pc);
61a1198a 1253 return pc;
b6cb9035
AC
1254}
1255
58dfe9ff
AC
1256static CORE_ADDR
1257mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1258{
14132e89 1259 CORE_ADDR pc;
930bd0e0 1260
8376de04 1261 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
4cc0665f
MR
1262 if (is_compact_addr (pc))
1263 pc = unmake_compact_addr (pc);
14132e89
MR
1264 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1265 intermediate frames. In this case we can get the caller's address
1266 from $ra, or if $ra contains an address within a thunk as well, then
1267 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1268 and thus the caller's address is in $s2. */
1269 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1270 {
1271 pc = frame_unwind_register_signed
1272 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
4cc0665f
MR
1273 if (is_compact_addr (pc))
1274 pc = unmake_compact_addr (pc);
14132e89
MR
1275 if (mips_in_frame_stub (pc))
1276 {
1277 pc = frame_unwind_register_signed
1278 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
4cc0665f
MR
1279 if (is_compact_addr (pc))
1280 pc = unmake_compact_addr (pc);
14132e89
MR
1281 }
1282 }
930bd0e0 1283 return pc;
edfae063
AC
1284}
1285
30244cd8
UW
1286static CORE_ADDR
1287mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1288{
72a155b4
UW
1289 return frame_unwind_register_signed
1290 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1291}
1292
b8a22b94 1293/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1294 dummy frame. The frame ID's base needs to match the TOS value
1295 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1296 breakpoint. */
1297
1298static struct frame_id
b8a22b94 1299mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1300{
f57d151a 1301 return frame_id_build
b8a22b94
DJ
1302 (get_frame_register_signed (this_frame,
1303 gdbarch_num_regs (gdbarch)
1304 + MIPS_SP_REGNUM),
1305 get_frame_pc (this_frame));
58dfe9ff
AC
1306}
1307
5a439849
MR
1308/* Implement the "write_pc" gdbarch method. */
1309
1310void
61a1198a 1311mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1312{
8376de04
MR
1313 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1314
4cc0665f 1315 if (mips_pc_is_mips (pc))
930bd0e0 1316 regcache_cooked_write_unsigned (regcache, regnum, pc);
4cc0665f
MR
1317 else
1318 regcache_cooked_write_unsigned (regcache, regnum, make_compact_addr (pc));
6c997a34 1319}
c906108c 1320
4cc0665f
MR
1321/* Fetch and return instruction from the specified location. Handle
1322 MIPS16/microMIPS as appropriate. */
c906108c 1323
d37cca3d 1324static ULONGEST
4cc0665f
MR
1325mips_fetch_instruction (struct gdbarch *gdbarch,
1326 enum mips_isa isa, CORE_ADDR addr, int *statusp)
c906108c 1327{
e17a4113 1328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1329 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
1330 int instlen;
1331 int status;
1332
4cc0665f 1333 switch (isa)
c906108c 1334 {
4cc0665f
MR
1335 case ISA_MICROMIPS:
1336 case ISA_MIPS16:
95ac2dcf 1337 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1338 addr = unmake_compact_addr (addr);
1339 break;
1340 case ISA_MIPS:
1341 instlen = MIPS_INSN32_SIZE;
1342 break;
1343 default:
1344 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1345 break;
c906108c 1346 }
8defab1a 1347 status = target_read_memory (addr, buf, instlen);
4cc0665f
MR
1348 if (statusp != NULL)
1349 *statusp = status;
c906108c 1350 if (status)
4cc0665f
MR
1351 {
1352 if (statusp == NULL)
1353 memory_error (status, addr);
1354 return 0;
1355 }
e17a4113 1356 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1357}
1358
025bb325 1359/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1360#define mips32_op(x) (x >> 26)
1361#define itype_op(x) (x >> 26)
1362#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1363#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1364#define itype_immediate(x) (x & 0xffff)
c906108c 1365
e135b889
DJ
1366#define jtype_op(x) (x >> 26)
1367#define jtype_target(x) (x & 0x03ffffff)
c906108c 1368
e135b889
DJ
1369#define rtype_op(x) (x >> 26)
1370#define rtype_rs(x) ((x >> 21) & 0x1f)
1371#define rtype_rt(x) ((x >> 16) & 0x1f)
1372#define rtype_rd(x) ((x >> 11) & 0x1f)
1373#define rtype_shamt(x) ((x >> 6) & 0x1f)
1374#define rtype_funct(x) (x & 0x3f)
c906108c 1375
4cc0665f
MR
1376/* MicroMIPS instruction fields. */
1377#define micromips_op(x) ((x) >> 10)
1378
1379/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1380 bit and the size respectively of the field extracted. */
1381#define b0s4_imm(x) ((x) & 0xf)
1382#define b0s5_imm(x) ((x) & 0x1f)
1383#define b0s5_reg(x) ((x) & 0x1f)
1384#define b0s7_imm(x) ((x) & 0x7f)
1385#define b0s10_imm(x) ((x) & 0x3ff)
1386#define b1s4_imm(x) (((x) >> 1) & 0xf)
1387#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1388#define b2s3_cc(x) (((x) >> 2) & 0x7)
1389#define b4s2_regl(x) (((x) >> 4) & 0x3)
1390#define b5s5_op(x) (((x) >> 5) & 0x1f)
1391#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1392#define b6s4_op(x) (((x) >> 6) & 0xf)
1393#define b7s3_reg(x) (((x) >> 7) & 0x7)
1394
1395/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1396 respectively of the field extracted. */
1397#define b0s6_op(x) ((x) & 0x3f)
1398#define b0s11_op(x) ((x) & 0x7ff)
1399#define b0s12_imm(x) ((x) & 0xfff)
1400#define b0s16_imm(x) ((x) & 0xffff)
1401#define b0s26_imm(x) ((x) & 0x3ffffff)
1402#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1403#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1404#define b12s4_op(x) (((x) >> 12) & 0xf)
1405
1406/* Return the size in bytes of the instruction INSN encoded in the ISA
1407 instruction set. */
1408
1409static int
1410mips_insn_size (enum mips_isa isa, ULONGEST insn)
1411{
1412 switch (isa)
1413 {
1414 case ISA_MICROMIPS:
1415 if (micromips_op (insn) == 0x1f)
1416 return 3 * MIPS_INSN16_SIZE;
1417 else if (((micromips_op (insn) & 0x4) == 0x4)
1418 || ((micromips_op (insn) & 0x7) == 0x0))
1419 return 2 * MIPS_INSN16_SIZE;
1420 else
1421 return MIPS_INSN16_SIZE;
1422 case ISA_MIPS16:
1423 if ((insn & 0xf800) == 0xf000)
1424 return 2 * MIPS_INSN16_SIZE;
1425 else
1426 return MIPS_INSN16_SIZE;
1427 case ISA_MIPS:
1428 return MIPS_INSN32_SIZE;
1429 }
1430 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1431}
1432
06987e64
MK
1433static LONGEST
1434mips32_relative_offset (ULONGEST inst)
c5aa993b 1435{
06987e64 1436 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1437}
1438
a385295e
MR
1439/* Determine the address of the next instruction executed after the INST
1440 floating condition branch instruction at PC. COUNT specifies the
1441 number of the floating condition bits tested by the branch. */
1442
1443static CORE_ADDR
1444mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1445 ULONGEST inst, CORE_ADDR pc, int count)
1446{
1447 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1448 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1449 int tf = itype_rt (inst) & 1;
1450 int mask = (1 << count) - 1;
1451 ULONGEST fcs;
1452 int cond;
1453
1454 if (fcsr == -1)
1455 /* No way to handle; it'll most likely trap anyway. */
1456 return pc;
1457
1458 fcs = get_frame_register_unsigned (frame, fcsr);
1459 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1460
1461 if (((cond >> cnum) & mask) != mask * !tf)
1462 pc += mips32_relative_offset (inst);
1463 else
1464 pc += 4;
1465
1466 return pc;
1467}
1468
f49e4e6d
MS
1469/* Determine where to set a single step breakpoint while considering
1470 branch prediction. */
5a89d8aa 1471static CORE_ADDR
0b1b3e42 1472mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b 1473{
e17a4113 1474 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b
JM
1475 unsigned long inst;
1476 int op;
4cc0665f 1477 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
025bb325
MS
1478 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1479 instruction. */
c5aa993b 1480 {
e135b889 1481 if (itype_op (inst) >> 2 == 5)
6d82d43b 1482 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1483 {
e135b889 1484 op = (itype_op (inst) & 0x03);
c906108c
SS
1485 switch (op)
1486 {
e135b889
DJ
1487 case 0: /* BEQL */
1488 goto equal_branch;
1489 case 1: /* BNEL */
1490 goto neq_branch;
1491 case 2: /* BLEZL */
1492 goto less_branch;
313628cc 1493 case 3: /* BGTZL */
e135b889 1494 goto greater_branch;
c5aa993b
JM
1495 default:
1496 pc += 4;
c906108c
SS
1497 }
1498 }
e135b889 1499 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 1500 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
1501 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1502 else if (itype_op (inst) == 17 && itype_rs (inst) == 9
1503 && (itype_rt (inst) & 2) == 0)
1504 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1505 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1506 else if (itype_op (inst) == 17 && itype_rs (inst) == 10
1507 && (itype_rt (inst) & 2) == 0)
1508 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1509 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
9e8da49c
MR
1510 else if (itype_op (inst) == 29)
1511 /* JALX: 011101 */
1512 /* The new PC will be alternate mode. */
1513 {
1514 unsigned long reg;
1515
1516 reg = jtype_target (inst) << 2;
1517 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1518 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1519 }
c5aa993b 1520 else
025bb325 1521 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1522 }
1523 else
025bb325 1524 { /* This gets way messy. */
c5aa993b 1525
025bb325
MS
1526 /* Further subdivide into SPECIAL, REGIMM and other. */
1527 switch (op = itype_op (inst) & 0x07) /* Extract bits 28,27,26. */
c906108c 1528 {
c5aa993b
JM
1529 case 0: /* SPECIAL */
1530 op = rtype_funct (inst);
1531 switch (op)
1532 {
1533 case 8: /* JR */
1534 case 9: /* JALR */
025bb325 1535 /* Set PC to that address. */
0b1b3e42 1536 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b 1537 break;
e38d4e1a
DJ
1538 case 12: /* SYSCALL */
1539 {
1540 struct gdbarch_tdep *tdep;
1541
1542 tdep = gdbarch_tdep (get_frame_arch (frame));
1543 if (tdep->syscall_next_pc != NULL)
1544 pc = tdep->syscall_next_pc (frame);
1545 else
1546 pc += 4;
1547 }
1548 break;
c5aa993b
JM
1549 default:
1550 pc += 4;
1551 }
1552
6d82d43b 1553 break; /* end SPECIAL */
025bb325 1554 case 1: /* REGIMM */
c906108c 1555 {
e135b889
DJ
1556 op = itype_rt (inst); /* branch condition */
1557 switch (op)
c906108c 1558 {
c5aa993b 1559 case 0: /* BLTZ */
e135b889
DJ
1560 case 2: /* BLTZL */
1561 case 16: /* BLTZAL */
c5aa993b 1562 case 18: /* BLTZALL */
c906108c 1563 less_branch:
0b1b3e42 1564 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1565 pc += mips32_relative_offset (inst) + 4;
1566 else
1567 pc += 8; /* after the delay slot */
1568 break;
e135b889 1569 case 1: /* BGEZ */
c5aa993b
JM
1570 case 3: /* BGEZL */
1571 case 17: /* BGEZAL */
1572 case 19: /* BGEZALL */
0b1b3e42 1573 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1574 pc += mips32_relative_offset (inst) + 4;
1575 else
1576 pc += 8; /* after the delay slot */
1577 break;
a385295e
MR
1578 case 0x1c: /* BPOSGE32 */
1579 case 0x1e: /* BPOSGE64 */
1580 pc += 4;
1581 if (itype_rs (inst) == 0)
1582 {
1583 unsigned int pos = (op & 2) ? 64 : 32;
1584 int dspctl = mips_regnum (gdbarch)->dspctl;
1585
1586 if (dspctl == -1)
1587 /* No way to handle; it'll most likely trap anyway. */
1588 break;
1589
1590 if ((get_frame_register_unsigned (frame,
1591 dspctl) & 0x7f) >= pos)
1592 pc += mips32_relative_offset (inst);
1593 else
1594 pc += 4;
1595 }
1596 break;
e135b889 1597 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1598 default:
1599 pc += 4;
c906108c
SS
1600 }
1601 }
6d82d43b 1602 break; /* end REGIMM */
c5aa993b
JM
1603 case 2: /* J */
1604 case 3: /* JAL */
1605 {
1606 unsigned long reg;
1607 reg = jtype_target (inst) << 2;
025bb325 1608 /* Upper four bits get never changed... */
5b652102 1609 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1610 }
c5aa993b 1611 break;
e135b889 1612 case 4: /* BEQ, BEQL */
c5aa993b 1613 equal_branch:
0b1b3e42
UW
1614 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1615 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1616 pc += mips32_relative_offset (inst) + 4;
1617 else
1618 pc += 8;
1619 break;
e135b889 1620 case 5: /* BNE, BNEL */
c5aa993b 1621 neq_branch:
0b1b3e42
UW
1622 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1623 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1624 pc += mips32_relative_offset (inst) + 4;
1625 else
1626 pc += 8;
1627 break;
e135b889 1628 case 6: /* BLEZ, BLEZL */
0b1b3e42 1629 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1630 pc += mips32_relative_offset (inst) + 4;
1631 else
1632 pc += 8;
1633 break;
1634 case 7:
e135b889
DJ
1635 default:
1636 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1637 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1638 pc += mips32_relative_offset (inst) + 4;
1639 else
1640 pc += 8;
1641 break;
c5aa993b
JM
1642 } /* switch */
1643 } /* else */
1644 return pc;
1645} /* mips32_next_pc */
c906108c 1646
4cc0665f
MR
1647/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1648 INSN. */
1649
1650static LONGEST
1651micromips_relative_offset7 (ULONGEST insn)
1652{
1653 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1654}
1655
1656/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1657 INSN. */
1658
1659static LONGEST
1660micromips_relative_offset10 (ULONGEST insn)
1661{
1662 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1663}
1664
1665/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1666 INSN. */
1667
1668static LONGEST
1669micromips_relative_offset16 (ULONGEST insn)
1670{
1671 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1672}
1673
1674/* Return the size in bytes of the microMIPS instruction at the address PC. */
1675
1676static int
1677micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1678{
1679 ULONGEST insn;
1680
1681 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1682 return mips_insn_size (ISA_MICROMIPS, insn);
1683}
1684
1685/* Calculate the address of the next microMIPS instruction to execute
1686 after the INSN coprocessor 1 conditional branch instruction at the
1687 address PC. COUNT denotes the number of coprocessor condition bits
1688 examined by the branch. */
1689
1690static CORE_ADDR
1691micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1692 ULONGEST insn, CORE_ADDR pc, int count)
1693{
1694 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1695 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1696 int tf = b5s5_op (insn >> 16) & 1;
1697 int mask = (1 << count) - 1;
1698 ULONGEST fcs;
1699 int cond;
1700
1701 if (fcsr == -1)
1702 /* No way to handle; it'll most likely trap anyway. */
1703 return pc;
1704
1705 fcs = get_frame_register_unsigned (frame, fcsr);
1706 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1707
1708 if (((cond >> cnum) & mask) != mask * !tf)
1709 pc += micromips_relative_offset16 (insn);
1710 else
1711 pc += micromips_pc_insn_size (gdbarch, pc);
1712
1713 return pc;
1714}
1715
1716/* Calculate the address of the next microMIPS instruction to execute
1717 after the instruction at the address PC. */
1718
1719static CORE_ADDR
1720micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1721{
1722 struct gdbarch *gdbarch = get_frame_arch (frame);
1723 ULONGEST insn;
1724
1725 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1726 pc += MIPS_INSN16_SIZE;
1727 switch (mips_insn_size (ISA_MICROMIPS, insn))
1728 {
1729 /* 48-bit instructions. */
1730 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
1731 /* No branch or jump instructions in this category. */
1732 pc += 2 * MIPS_INSN16_SIZE;
1733 break;
1734
1735 /* 32-bit instructions. */
1736 case 2 * MIPS_INSN16_SIZE:
1737 insn <<= 16;
1738 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1739 pc += MIPS_INSN16_SIZE;
1740 switch (micromips_op (insn >> 16))
1741 {
1742 case 0x00: /* POOL32A: bits 000000 */
1743 if (b0s6_op (insn) == 0x3c
1744 /* POOL32Axf: bits 000000 ... 111100 */
1745 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1746 /* JALR, JALR.HB: 000000 000x111100 111100 */
1747 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1748 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1749 break;
1750
1751 case 0x10: /* POOL32I: bits 010000 */
1752 switch (b5s5_op (insn >> 16))
1753 {
1754 case 0x00: /* BLTZ: bits 010000 00000 */
1755 case 0x01: /* BLTZAL: bits 010000 00001 */
1756 case 0x11: /* BLTZALS: bits 010000 10001 */
1757 if (get_frame_register_signed (frame,
1758 b0s5_reg (insn >> 16)) < 0)
1759 pc += micromips_relative_offset16 (insn);
1760 else
1761 pc += micromips_pc_insn_size (gdbarch, pc);
1762 break;
1763
1764 case 0x02: /* BGEZ: bits 010000 00010 */
1765 case 0x03: /* BGEZAL: bits 010000 00011 */
1766 case 0x13: /* BGEZALS: bits 010000 10011 */
1767 if (get_frame_register_signed (frame,
1768 b0s5_reg (insn >> 16)) >= 0)
1769 pc += micromips_relative_offset16 (insn);
1770 else
1771 pc += micromips_pc_insn_size (gdbarch, pc);
1772 break;
1773
1774 case 0x04: /* BLEZ: bits 010000 00100 */
1775 if (get_frame_register_signed (frame,
1776 b0s5_reg (insn >> 16)) <= 0)
1777 pc += micromips_relative_offset16 (insn);
1778 else
1779 pc += micromips_pc_insn_size (gdbarch, pc);
1780 break;
1781
1782 case 0x05: /* BNEZC: bits 010000 00101 */
1783 if (get_frame_register_signed (frame,
1784 b0s5_reg (insn >> 16)) != 0)
1785 pc += micromips_relative_offset16 (insn);
1786 break;
1787
1788 case 0x06: /* BGTZ: bits 010000 00110 */
1789 if (get_frame_register_signed (frame,
1790 b0s5_reg (insn >> 16)) > 0)
1791 pc += micromips_relative_offset16 (insn);
1792 else
1793 pc += micromips_pc_insn_size (gdbarch, pc);
1794 break;
1795
1796 case 0x07: /* BEQZC: bits 010000 00111 */
1797 if (get_frame_register_signed (frame,
1798 b0s5_reg (insn >> 16)) == 0)
1799 pc += micromips_relative_offset16 (insn);
1800 break;
1801
1802 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1803 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1804 if (((insn >> 16) & 0x3) == 0x0)
1805 /* BC2F, BC2T: don't know how to handle these. */
1806 break;
1807 break;
1808
1809 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1810 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1811 {
1812 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1813 int dspctl = mips_regnum (gdbarch)->dspctl;
1814
1815 if (dspctl == -1)
1816 /* No way to handle; it'll most likely trap anyway. */
1817 break;
1818
1819 if ((get_frame_register_unsigned (frame,
1820 dspctl) & 0x7f) >= pos)
1821 pc += micromips_relative_offset16 (insn);
1822 else
1823 pc += micromips_pc_insn_size (gdbarch, pc);
1824 }
1825 break;
1826
1827 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1828 /* BC1ANY2F: bits 010000 11100 xxx01 */
1829 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1830 /* BC1ANY2T: bits 010000 11101 xxx01 */
1831 if (((insn >> 16) & 0x2) == 0x0)
1832 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1833 ((insn >> 16) & 0x1) + 1);
1834 break;
1835
1836 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1837 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1838 if (((insn >> 16) & 0x3) == 0x1)
1839 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1840 break;
1841 }
1842 break;
1843
1844 case 0x1d: /* JALS: bits 011101 */
1845 case 0x35: /* J: bits 110101 */
1846 case 0x3d: /* JAL: bits 111101 */
1847 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1848 break;
1849
1850 case 0x25: /* BEQ: bits 100101 */
1851 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1852 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1853 pc += micromips_relative_offset16 (insn);
1854 else
1855 pc += micromips_pc_insn_size (gdbarch, pc);
1856 break;
1857
1858 case 0x2d: /* BNE: bits 101101 */
1859 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1860 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1861 pc += micromips_relative_offset16 (insn);
1862 else
1863 pc += micromips_pc_insn_size (gdbarch, pc);
1864 break;
1865
1866 case 0x3c: /* JALX: bits 111100 */
1867 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
1868 break;
1869 }
1870 break;
1871
1872 /* 16-bit instructions. */
1873 case MIPS_INSN16_SIZE:
1874 switch (micromips_op (insn))
1875 {
1876 case 0x11: /* POOL16C: bits 010001 */
1877 if ((b5s5_op (insn) & 0x1c) == 0xc)
1878 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
1879 pc = get_frame_register_signed (frame, b0s5_reg (insn));
1880 else if (b5s5_op (insn) == 0x18)
1881 /* JRADDIUSP: bits 010001 11000 */
1882 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
1883 break;
1884
1885 case 0x23: /* BEQZ16: bits 100011 */
1886 {
1887 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1888
1889 if (get_frame_register_signed (frame, rs) == 0)
1890 pc += micromips_relative_offset7 (insn);
1891 else
1892 pc += micromips_pc_insn_size (gdbarch, pc);
1893 }
1894 break;
1895
1896 case 0x2b: /* BNEZ16: bits 101011 */
1897 {
1898 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1899
1900 if (get_frame_register_signed (frame, rs) != 0)
1901 pc += micromips_relative_offset7 (insn);
1902 else
1903 pc += micromips_pc_insn_size (gdbarch, pc);
1904 }
1905 break;
1906
1907 case 0x33: /* B16: bits 110011 */
1908 pc += micromips_relative_offset10 (insn);
1909 break;
1910 }
1911 break;
1912 }
1913
1914 return pc;
1915}
1916
c906108c 1917/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
1918 mips 16 variant, but fortunately, there fewer instructions. We have
1919 to cope ith extensions for 16 bit instructions and a pair of actual
1920 32 bit instructions. We dont want to set a single step instruction
1921 on the extend instruction either. */
c906108c
SS
1922
1923/* Lots of mips16 instruction formats */
1924/* Predicting jumps requires itype,ritype,i8type
025bb325 1925 and their extensions extItype,extritype,extI8type. */
c906108c
SS
1926enum mips16_inst_fmts
1927{
c5aa993b
JM
1928 itype, /* 0 immediate 5,10 */
1929 ritype, /* 1 5,3,8 */
1930 rrtype, /* 2 5,3,3,5 */
1931 rritype, /* 3 5,3,3,5 */
1932 rrrtype, /* 4 5,3,3,3,2 */
1933 rriatype, /* 5 5,3,3,1,4 */
1934 shifttype, /* 6 5,3,3,3,2 */
1935 i8type, /* 7 5,3,8 */
1936 i8movtype, /* 8 5,3,3,5 */
1937 i8mov32rtype, /* 9 5,3,5,3 */
1938 i64type, /* 10 5,3,8 */
1939 ri64type, /* 11 5,3,3,5 */
1940 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1941 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1942 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1943 extRRItype, /* 15 5,5,5,5,3,3,5 */
1944 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1945 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1946 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1947 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1948 extRi64type, /* 20 5,6,5,5,3,3,5 */
1949 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1950};
12f02c2a 1951/* I am heaping all the fields of the formats into one structure and
025bb325 1952 then, only the fields which are involved in instruction extension. */
c906108c 1953struct upk_mips16
6d82d43b
AC
1954{
1955 CORE_ADDR offset;
025bb325 1956 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
1957 unsigned int regy;
1958};
c906108c
SS
1959
1960
12f02c2a 1961/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 1962 for the bits which make up the immediate extension. */
c906108c 1963
12f02c2a
AC
1964static CORE_ADDR
1965extended_offset (unsigned int extension)
c906108c 1966{
12f02c2a 1967 CORE_ADDR value;
130854df 1968
4c2051c6 1969 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 1970 value = value << 6;
4c2051c6 1971 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 1972 value = value << 5;
130854df
MR
1973 value |= extension & 0x1f; /* Extract 4:0. */
1974
c5aa993b 1975 return value;
c906108c
SS
1976}
1977
1978/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1979 instruction. It won't malfunction, but why make excess remote memory
1980 references? If the immediate operands get sign extended or something,
1981 do it after the extension is performed. */
c906108c 1982/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1983 when the offset is to be used in relative addressing. */
c906108c 1984
12f02c2a 1985static unsigned int
e17a4113 1986fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1987{
e17a4113 1988 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1989 gdb_byte buf[8];
025bb325 1990 pc &= 0xfffffffe; /* Clear the low order bit. */
c5aa993b 1991 target_read_memory (pc, buf, 2);
e17a4113 1992 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
1993}
1994
1995static void
e17a4113 1996unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
1997 unsigned int extension,
1998 unsigned int inst,
6d82d43b 1999 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2000{
12f02c2a
AC
2001 CORE_ADDR offset;
2002 int regx;
2003 int regy;
2004 switch (insn_format)
c906108c 2005 {
c5aa993b 2006 case itype:
c906108c 2007 {
12f02c2a
AC
2008 CORE_ADDR value;
2009 if (extension)
c5aa993b 2010 {
4c2051c6
MR
2011 value = extended_offset ((extension << 16) | inst);
2012 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2013 }
2014 else
c5aa993b 2015 {
12f02c2a 2016 value = inst & 0x7ff;
4c2051c6 2017 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2018 }
12f02c2a
AC
2019 offset = value;
2020 regx = -1;
2021 regy = -1;
c906108c 2022 }
c5aa993b
JM
2023 break;
2024 case ritype:
2025 case i8type:
025bb325 2026 { /* A register identifier and an offset. */
c906108c 2027 /* Most of the fields are the same as I type but the
025bb325 2028 immediate value is of a different length. */
12f02c2a
AC
2029 CORE_ADDR value;
2030 if (extension)
c906108c 2031 {
4c2051c6
MR
2032 value = extended_offset ((extension << 16) | inst);
2033 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2034 }
c5aa993b
JM
2035 else
2036 {
4c2051c6
MR
2037 value = inst & 0xff; /* 8 bits */
2038 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2039 }
12f02c2a 2040 offset = value;
4c2051c6 2041 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2042 regy = -1;
c5aa993b 2043 break;
c906108c 2044 }
c5aa993b 2045 case jalxtype:
c906108c 2046 {
c5aa993b 2047 unsigned long value;
12f02c2a
AC
2048 unsigned int nexthalf;
2049 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2050 value = value << 16;
4cc0665f
MR
2051 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2052 /* Low bit still set. */
c5aa993b 2053 value |= nexthalf;
12f02c2a
AC
2054 offset = value;
2055 regx = -1;
2056 regy = -1;
c5aa993b 2057 break;
c906108c
SS
2058 }
2059 default:
e2e0b3e5 2060 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2061 }
12f02c2a
AC
2062 upk->offset = offset;
2063 upk->regx = regx;
2064 upk->regy = regy;
c906108c
SS
2065}
2066
2067
c5aa993b
JM
2068static CORE_ADDR
2069add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2070{
5b652102 2071 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
2072}
2073
12f02c2a 2074static CORE_ADDR
0b1b3e42 2075extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 2076 unsigned int extension, unsigned int insn)
c906108c 2077{
e17a4113 2078 struct gdbarch *gdbarch = get_frame_arch (frame);
12f02c2a
AC
2079 int op = (insn >> 11);
2080 switch (op)
c906108c 2081 {
6d82d43b 2082 case 2: /* Branch */
12f02c2a 2083 {
12f02c2a 2084 struct upk_mips16 upk;
e17a4113 2085 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
4c2051c6 2086 pc += (upk.offset << 1) + 2;
12f02c2a
AC
2087 break;
2088 }
025bb325
MS
2089 case 3: /* JAL , JALX - Watch out, these are 32 bit
2090 instructions. */
12f02c2a
AC
2091 {
2092 struct upk_mips16 upk;
e17a4113 2093 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
12f02c2a
AC
2094 pc = add_offset_16 (pc, upk.offset);
2095 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2096 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2097 else
2098 pc |= 0x01;
2099 break;
2100 }
6d82d43b 2101 case 4: /* beqz */
12f02c2a
AC
2102 {
2103 struct upk_mips16 upk;
2104 int reg;
e17a4113 2105 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2106 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a
AC
2107 if (reg == 0)
2108 pc += (upk.offset << 1) + 2;
2109 else
2110 pc += 2;
2111 break;
2112 }
6d82d43b 2113 case 5: /* bnez */
12f02c2a
AC
2114 {
2115 struct upk_mips16 upk;
2116 int reg;
e17a4113 2117 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2118 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a
AC
2119 if (reg != 0)
2120 pc += (upk.offset << 1) + 2;
2121 else
2122 pc += 2;
2123 break;
2124 }
6d82d43b 2125 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2126 {
2127 struct upk_mips16 upk;
2128 int reg;
e17a4113 2129 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2130 /* upk.regx contains the opcode */
0b1b3e42 2131 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
2132 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2133 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2134 /* pc = add_offset_16(pc,upk.offset) ; */
2135 pc += (upk.offset << 1) + 2;
2136 else
2137 pc += 2;
2138 break;
2139 }
6d82d43b 2140 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2141 {
2142 struct upk_mips16 upk;
2143 /* upk.fmt = rrtype; */
2144 op = insn & 0x1f;
2145 if (op == 0)
c5aa993b 2146 {
12f02c2a
AC
2147 int reg;
2148 upk.regx = (insn >> 8) & 0x07;
2149 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2150 if ((upk.regy & 1) == 0)
4cc0665f 2151 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2152 else
2153 reg = 31; /* Function return instruction. */
0b1b3e42 2154 pc = get_frame_register_signed (frame, reg);
c906108c 2155 }
12f02c2a 2156 else
c5aa993b 2157 pc += 2;
12f02c2a
AC
2158 break;
2159 }
2160 case 30:
2161 /* This is an instruction extension. Fetch the real instruction
2162 (which follows the extension) and decode things based on
025bb325 2163 that. */
12f02c2a
AC
2164 {
2165 pc += 2;
e17a4113
UW
2166 pc = extended_mips16_next_pc (frame, pc, insn,
2167 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2168 break;
2169 }
2170 default:
2171 {
2172 pc += 2;
2173 break;
2174 }
c906108c 2175 }
c5aa993b 2176 return pc;
12f02c2a 2177}
c906108c 2178
5a89d8aa 2179static CORE_ADDR
0b1b3e42 2180mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a 2181{
e17a4113
UW
2182 struct gdbarch *gdbarch = get_frame_arch (frame);
2183 unsigned int insn = fetch_mips_16 (gdbarch, pc);
0b1b3e42 2184 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
2185}
2186
2187/* The mips_next_pc function supports single_step when the remote
7e73cedf 2188 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2189 It works by decoding the current instruction and predicting where a
025bb325 2190 branch will go. This isnt hard because all the data is available.
4cc0665f 2191 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2192static CORE_ADDR
0b1b3e42 2193mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 2194{
4cc0665f
MR
2195 struct gdbarch *gdbarch = get_frame_arch (frame);
2196
2197 if (mips_pc_is_mips16 (gdbarch, pc))
0b1b3e42 2198 return mips16_next_pc (frame, pc);
4cc0665f
MR
2199 else if (mips_pc_is_micromips (gdbarch, pc))
2200 return micromips_next_pc (frame, pc);
c5aa993b 2201 else
0b1b3e42 2202 return mips32_next_pc (frame, pc);
12f02c2a 2203}
c906108c 2204
edfae063
AC
2205struct mips_frame_cache
2206{
2207 CORE_ADDR base;
2208 struct trad_frame_saved_reg *saved_regs;
2209};
2210
29639122
JB
2211/* Set a register's saved stack address in temp_saved_regs. If an
2212 address has already been set for this register, do nothing; this
2213 way we will only recognize the first save of a given register in a
2214 function prologue.
eec63939 2215
f57d151a
UW
2216 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2217 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2218 Strictly speaking, only the second range is used as it is only second
2219 range (the ABI instead of ISA registers) that comes into play when finding
2220 saved registers in a frame. */
eec63939
AC
2221
2222static void
74ed0bb4
MD
2223set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2224 int regnum, CORE_ADDR offset)
eec63939 2225{
29639122
JB
2226 if (this_cache != NULL
2227 && this_cache->saved_regs[regnum].addr == -1)
2228 {
74ed0bb4
MD
2229 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2230 = offset;
2231 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2232 = offset;
29639122 2233 }
eec63939
AC
2234}
2235
eec63939 2236
29639122
JB
2237/* Fetch the immediate value from a MIPS16 instruction.
2238 If the previous instruction was an EXTEND, use it to extend
2239 the upper bits of the immediate value. This is a helper function
2240 for mips16_scan_prologue. */
eec63939 2241
29639122
JB
2242static int
2243mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2244 unsigned short inst, /* current instruction */
2245 int nbits, /* number of bits in imm field */
2246 int scale, /* scale factor to be applied to imm */
025bb325 2247 int is_signed) /* is the imm field signed? */
eec63939 2248{
29639122 2249 int offset;
eec63939 2250
29639122
JB
2251 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2252 {
2253 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2254 if (offset & 0x8000) /* check for negative extend */
2255 offset = 0 - (0x10000 - (offset & 0xffff));
2256 return offset | (inst & 0x1f);
2257 }
eec63939 2258 else
29639122
JB
2259 {
2260 int max_imm = 1 << nbits;
2261 int mask = max_imm - 1;
2262 int sign_bit = max_imm >> 1;
45c9dd44 2263
29639122
JB
2264 offset = inst & mask;
2265 if (is_signed && (offset & sign_bit))
2266 offset = 0 - (max_imm - offset);
2267 return offset * scale;
2268 }
2269}
eec63939 2270
65596487 2271
29639122
JB
2272/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2273 the associated FRAME_CACHE if not null.
2274 Return the address of the first instruction past the prologue. */
eec63939 2275
29639122 2276static CORE_ADDR
e17a4113
UW
2277mips16_scan_prologue (struct gdbarch *gdbarch,
2278 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2279 struct frame_info *this_frame,
29639122
JB
2280 struct mips_frame_cache *this_cache)
2281{
2282 CORE_ADDR cur_pc;
025bb325 2283 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2284 CORE_ADDR sp;
2285 long frame_offset = 0; /* Size of stack frame. */
2286 long frame_adjust = 0; /* Offset of FP from SP. */
2287 int frame_reg = MIPS_SP_REGNUM;
025bb325 2288 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2289 unsigned inst = 0; /* current instruction */
2290 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2291 unsigned save_inst = 0; /* the save instruction */
29639122 2292 int reg, offset;
a343eb3c 2293
29639122
JB
2294 int extend_bytes = 0;
2295 int prev_extend_bytes;
2296 CORE_ADDR end_prologue_addr = 0;
a343eb3c 2297
29639122 2298 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2299 THIS_FRAME. */
2300 if (this_frame != NULL)
2301 sp = get_frame_register_signed (this_frame,
2302 gdbarch_num_regs (gdbarch)
2303 + MIPS_SP_REGNUM);
29639122
JB
2304 else
2305 sp = 0;
eec63939 2306
29639122
JB
2307 if (limit_pc > start_pc + 200)
2308 limit_pc = start_pc + 200;
eec63939 2309
95ac2dcf 2310 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
2311 {
2312 /* Save the previous instruction. If it's an EXTEND, we'll extract
2313 the immediate offset extension from it in mips16_get_imm. */
2314 prev_inst = inst;
eec63939 2315
025bb325 2316 /* Fetch and decode the instruction. */
4cc0665f
MR
2317 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2318 cur_pc, NULL);
eec63939 2319
29639122
JB
2320 /* Normally we ignore extend instructions. However, if it is
2321 not followed by a valid prologue instruction, then this
2322 instruction is not part of the prologue either. We must
2323 remember in this case to adjust the end_prologue_addr back
2324 over the extend. */
2325 if ((inst & 0xf800) == 0xf000) /* extend */
2326 {
95ac2dcf 2327 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2328 continue;
2329 }
eec63939 2330
29639122
JB
2331 prev_extend_bytes = extend_bytes;
2332 extend_bytes = 0;
eec63939 2333
29639122
JB
2334 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2335 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2336 {
2337 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2338 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2339 frame_offset -= offset;
2340 else
2341 /* Exit loop if a positive stack adjustment is found, which
2342 usually means that the stack cleanup code in the function
2343 epilogue is reached. */
2344 break;
2345 }
2346 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2347 {
2348 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2349 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2350 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2351 }
2352 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2353 {
2354 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2355 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2356 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2357 }
2358 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2359 {
2360 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2361 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2362 }
2363 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2364 {
2365 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2366 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2367 }
2368 else if (inst == 0x673d) /* move $s1, $sp */
2369 {
2370 frame_addr = sp;
2371 frame_reg = 17;
2372 }
2373 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2374 {
2375 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2376 frame_addr = sp + offset;
2377 frame_reg = 17;
2378 frame_adjust = offset;
2379 }
2380 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2381 {
2382 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2383 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2384 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2385 }
2386 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2387 {
2388 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2389 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2390 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2391 }
2392 else if ((inst & 0xf81f) == 0xe809
2393 && (inst & 0x700) != 0x700) /* entry */
025bb325 2394 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2395 else if ((inst & 0xff80) == 0x6480) /* save */
2396 {
025bb325 2397 save_inst = inst; /* Save for later processing. */
2207132d
MR
2398 if (prev_extend_bytes) /* extend */
2399 save_inst |= prev_inst << 16;
2400 }
29639122 2401 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 2402 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
2403 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2404 {
2405 /* This instruction is part of the prologue, but we don't
2406 need to do anything special to handle it. */
2407 }
2408 else
2409 {
2410 /* This instruction is not an instruction typically found
2411 in a prologue, so we must have reached the end of the
2412 prologue. */
2413 if (end_prologue_addr == 0)
2414 end_prologue_addr = cur_pc - prev_extend_bytes;
2415 }
2416 }
eec63939 2417
29639122
JB
2418 /* The entry instruction is typically the first instruction in a function,
2419 and it stores registers at offsets relative to the value of the old SP
2420 (before the prologue). But the value of the sp parameter to this
2421 function is the new SP (after the prologue has been executed). So we
2422 can't calculate those offsets until we've seen the entire prologue,
025bb325 2423 and can calculate what the old SP must have been. */
29639122
JB
2424 if (entry_inst != 0)
2425 {
2426 int areg_count = (entry_inst >> 8) & 7;
2427 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2428
29639122
JB
2429 /* The entry instruction always subtracts 32 from the SP. */
2430 frame_offset += 32;
2431
2432 /* Now we can calculate what the SP must have been at the
2433 start of the function prologue. */
2434 sp += frame_offset;
2435
2436 /* Check if a0-a3 were saved in the caller's argument save area. */
2437 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2438 {
74ed0bb4 2439 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2440 offset += mips_abi_regsize (gdbarch);
29639122
JB
2441 }
2442
2443 /* Check if the ra register was pushed on the stack. */
2444 offset = -4;
2445 if (entry_inst & 0x20)
2446 {
74ed0bb4 2447 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2448 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2449 }
2450
2451 /* Check if the s0 and s1 registers were pushed on the stack. */
2452 for (reg = 16; reg < sreg_count + 16; reg++)
2453 {
74ed0bb4 2454 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2455 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2456 }
2457 }
2458
2207132d
MR
2459 /* The SAVE instruction is similar to ENTRY, except that defined by the
2460 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2461 size of the frame is specified as an immediate field of instruction
2462 and an extended variation exists which lets additional registers and
2463 frame space to be specified. The instruction always treats registers
2464 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2465 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2466 {
2467 static int args_table[16] = {
2468 0, 0, 0, 0, 1, 1, 1, 1,
2469 2, 2, 2, 0, 3, 3, 4, -1,
2470 };
2471 static int astatic_table[16] = {
2472 0, 1, 2, 3, 0, 1, 2, 3,
2473 0, 1, 2, 4, 0, 1, 0, -1,
2474 };
2475 int aregs = (save_inst >> 16) & 0xf;
2476 int xsregs = (save_inst >> 24) & 0x7;
2477 int args = args_table[aregs];
2478 int astatic = astatic_table[aregs];
2479 long frame_size;
2480
2481 if (args < 0)
2482 {
2483 warning (_("Invalid number of argument registers encoded in SAVE."));
2484 args = 0;
2485 }
2486 if (astatic < 0)
2487 {
2488 warning (_("Invalid number of static registers encoded in SAVE."));
2489 astatic = 0;
2490 }
2491
2492 /* For standard SAVE the frame size of 0 means 128. */
2493 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2494 if (frame_size == 0 && (save_inst >> 16) == 0)
2495 frame_size = 16;
2496 frame_size *= 8;
2497 frame_offset += frame_size;
2498
2499 /* Now we can calculate what the SP must have been at the
2500 start of the function prologue. */
2501 sp += frame_offset;
2502
2503 /* Check if A0-A3 were saved in the caller's argument save area. */
2504 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2505 {
74ed0bb4 2506 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2507 offset += mips_abi_regsize (gdbarch);
2508 }
2509
2510 offset = -4;
2511
2512 /* Check if the RA register was pushed on the stack. */
2513 if (save_inst & 0x40)
2514 {
74ed0bb4 2515 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2516 offset -= mips_abi_regsize (gdbarch);
2517 }
2518
2519 /* Check if the S8 register was pushed on the stack. */
2520 if (xsregs > 6)
2521 {
74ed0bb4 2522 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2523 offset -= mips_abi_regsize (gdbarch);
2524 xsregs--;
2525 }
2526 /* Check if S2-S7 were pushed on the stack. */
2527 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2528 {
74ed0bb4 2529 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2530 offset -= mips_abi_regsize (gdbarch);
2531 }
2532
2533 /* Check if the S1 register was pushed on the stack. */
2534 if (save_inst & 0x10)
2535 {
74ed0bb4 2536 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2537 offset -= mips_abi_regsize (gdbarch);
2538 }
2539 /* Check if the S0 register was pushed on the stack. */
2540 if (save_inst & 0x20)
2541 {
74ed0bb4 2542 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2543 offset -= mips_abi_regsize (gdbarch);
2544 }
2545
4cc0665f
MR
2546 /* Check if A0-A3 were pushed on the stack. */
2547 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2548 {
2549 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2550 offset -= mips_abi_regsize (gdbarch);
2551 }
2552 }
2553
2554 if (this_cache != NULL)
2555 {
2556 this_cache->base =
2557 (get_frame_register_signed (this_frame,
2558 gdbarch_num_regs (gdbarch) + frame_reg)
2559 + frame_offset - frame_adjust);
2560 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2561 be able to get rid of the assignment below, evetually. But it's
2562 still needed for now. */
2563 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2564 + mips_regnum (gdbarch)->pc]
2565 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2566 }
2567
2568 /* If we didn't reach the end of the prologue when scanning the function
2569 instructions, then set end_prologue_addr to the address of the
2570 instruction immediately after the last one we scanned. */
2571 if (end_prologue_addr == 0)
2572 end_prologue_addr = cur_pc;
2573
2574 return end_prologue_addr;
2575}
2576
2577/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2578 Procedures that use the 32-bit instruction set are handled by the
2579 mips_insn32 unwinder. */
2580
2581static struct mips_frame_cache *
2582mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2583{
2584 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2585 struct mips_frame_cache *cache;
2586
2587 if ((*this_cache) != NULL)
2588 return (*this_cache);
2589 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2590 (*this_cache) = cache;
2591 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2592
2593 /* Analyze the function prologue. */
2594 {
2595 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2596 CORE_ADDR start_addr;
2597
2598 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2599 if (start_addr == 0)
2600 start_addr = heuristic_proc_start (gdbarch, pc);
2601 /* We can't analyze the prologue if we couldn't find the begining
2602 of the function. */
2603 if (start_addr == 0)
2604 return cache;
2605
2606 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2607 }
2608
2609 /* gdbarch_sp_regnum contains the value and not the address. */
2610 trad_frame_set_value (cache->saved_regs,
2611 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2612 cache->base);
2613
2614 return (*this_cache);
2615}
2616
2617static void
2618mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2619 struct frame_id *this_id)
2620{
2621 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2622 this_cache);
2623 /* This marks the outermost frame. */
2624 if (info->base == 0)
2625 return;
2626 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2627}
2628
2629static struct value *
2630mips_insn16_frame_prev_register (struct frame_info *this_frame,
2631 void **this_cache, int regnum)
2632{
2633 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2634 this_cache);
2635 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2636}
2637
2638static int
2639mips_insn16_frame_sniffer (const struct frame_unwind *self,
2640 struct frame_info *this_frame, void **this_cache)
2641{
2642 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2643 CORE_ADDR pc = get_frame_pc (this_frame);
2644 if (mips_pc_is_mips16 (gdbarch, pc))
2645 return 1;
2646 return 0;
2647}
2648
2649static const struct frame_unwind mips_insn16_frame_unwind =
2650{
2651 NORMAL_FRAME,
2652 default_frame_unwind_stop_reason,
2653 mips_insn16_frame_this_id,
2654 mips_insn16_frame_prev_register,
2655 NULL,
2656 mips_insn16_frame_sniffer
2657};
2658
2659static CORE_ADDR
2660mips_insn16_frame_base_address (struct frame_info *this_frame,
2661 void **this_cache)
2662{
2663 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2664 this_cache);
2665 return info->base;
2666}
2667
2668static const struct frame_base mips_insn16_frame_base =
2669{
2670 &mips_insn16_frame_unwind,
2671 mips_insn16_frame_base_address,
2672 mips_insn16_frame_base_address,
2673 mips_insn16_frame_base_address
2674};
2675
2676static const struct frame_base *
2677mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2678{
2679 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2680 CORE_ADDR pc = get_frame_pc (this_frame);
2681 if (mips_pc_is_mips16 (gdbarch, pc))
2682 return &mips_insn16_frame_base;
2683 else
2684 return NULL;
2685}
2686
2687/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2688 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2689 interpreted directly, and then multiplied by 4. */
2690
2691static int
2692micromips_decode_imm9 (int imm)
2693{
2694 imm = (imm ^ 0x100) - 0x100;
2695 if (imm > -3 && imm < 2)
2696 imm ^= 0x100;
2697 return imm << 2;
2698}
2699
2700/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2701 the address of the first instruction past the prologue. */
2702
2703static CORE_ADDR
2704micromips_scan_prologue (struct gdbarch *gdbarch,
2705 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2706 struct frame_info *this_frame,
2707 struct mips_frame_cache *this_cache)
2708{
2709 CORE_ADDR end_prologue_addr = 0;
2710 int prev_non_prologue_insn = 0;
2711 int frame_reg = MIPS_SP_REGNUM;
2712 int this_non_prologue_insn;
2713 int non_prologue_insns = 0;
2714 long frame_offset = 0; /* Size of stack frame. */
2715 long frame_adjust = 0; /* Offset of FP from SP. */
2716 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
2717 CORE_ADDR prev_pc;
2718 CORE_ADDR cur_pc;
2719 ULONGEST insn; /* current instruction */
2720 CORE_ADDR sp;
2721 long offset;
2722 long sp_adj;
2723 long v1_off = 0; /* The assumption is LUI will replace it. */
2724 int reglist;
2725 int breg;
2726 int dreg;
2727 int sreg;
2728 int treg;
2729 int loc;
2730 int op;
2731 int s;
2732 int i;
2733
2734 /* Can be called when there's no process, and hence when there's no
2735 THIS_FRAME. */
2736 if (this_frame != NULL)
2737 sp = get_frame_register_signed (this_frame,
2738 gdbarch_num_regs (gdbarch)
2739 + MIPS_SP_REGNUM);
2740 else
2741 sp = 0;
2742
2743 if (limit_pc > start_pc + 200)
2744 limit_pc = start_pc + 200;
2745 prev_pc = start_pc;
2746
2747 /* Permit at most one non-prologue non-control-transfer instruction
2748 in the middle which may have been reordered by the compiler for
2749 optimisation. */
2750 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2751 {
2752 this_non_prologue_insn = 0;
2753 sp_adj = 0;
2754 loc = 0;
2755 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2756 loc += MIPS_INSN16_SIZE;
2757 switch (mips_insn_size (ISA_MICROMIPS, insn))
2758 {
2759 /* 48-bit instructions. */
2760 case 3 * MIPS_INSN16_SIZE:
2761 /* No prologue instructions in this category. */
2762 this_non_prologue_insn = 1;
2763 loc += 2 * MIPS_INSN16_SIZE;
2764 break;
2765
2766 /* 32-bit instructions. */
2767 case 2 * MIPS_INSN16_SIZE:
2768 insn <<= 16;
2769 insn |= mips_fetch_instruction (gdbarch,
2770 ISA_MICROMIPS, cur_pc + loc, NULL);
2771 loc += MIPS_INSN16_SIZE;
2772 switch (micromips_op (insn >> 16))
2773 {
2774 /* Record $sp/$fp adjustment. */
2775 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2776 case 0x0: /* POOL32A: bits 000000 */
2777 case 0x16: /* POOL32S: bits 010110 */
2778 op = b0s11_op (insn);
2779 sreg = b0s5_reg (insn >> 16);
2780 treg = b5s5_reg (insn >> 16);
2781 dreg = b11s5_reg (insn);
2782 if (op == 0x1d0
2783 /* SUBU: bits 000000 00111010000 */
2784 /* DSUBU: bits 010110 00111010000 */
2785 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
2786 && treg == 3)
2787 /* (D)SUBU $sp, $v1 */
2788 sp_adj = v1_off;
2789 else if (op != 0x150
2790 /* ADDU: bits 000000 00101010000 */
2791 /* DADDU: bits 010110 00101010000 */
2792 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
2793 this_non_prologue_insn = 1;
2794 break;
2795
2796 case 0x8: /* POOL32B: bits 001000 */
2797 op = b12s4_op (insn);
2798 breg = b0s5_reg (insn >> 16);
2799 reglist = sreg = b5s5_reg (insn >> 16);
2800 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
2801 if ((op == 0x9 || op == 0xc)
2802 /* SWP: bits 001000 1001 */
2803 /* SDP: bits 001000 1100 */
2804 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
2805 /* S[DW]P reg,offset($sp) */
2806 {
2807 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
2808 set_reg_offset (gdbarch, this_cache,
2809 sreg, sp + offset);
2810 set_reg_offset (gdbarch, this_cache,
2811 sreg + 1, sp + offset + s);
2812 }
2813 else if ((op == 0xd || op == 0xf)
2814 /* SWM: bits 001000 1101 */
2815 /* SDM: bits 001000 1111 */
2816 && breg == MIPS_SP_REGNUM
2817 /* SWM reglist,offset($sp) */
2818 && ((reglist >= 1 && reglist <= 9)
2819 || (reglist >= 16 && reglist <= 25)))
2820 {
2821 int sreglist = min(reglist & 0xf, 8);
2822
2823 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
2824 for (i = 0; i < sreglist; i++)
2825 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
2826 if ((reglist & 0xf) > 8)
2827 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
2828 if ((reglist & 0x10) == 0x10)
2829 set_reg_offset (gdbarch, this_cache,
2830 MIPS_RA_REGNUM, sp + s * i++);
2831 }
2832 else
2833 this_non_prologue_insn = 1;
2834 break;
2835
2836 /* Record $sp/$fp adjustment. */
2837 /* Discard (D)ADDIU $gp used for PIC code. */
2838 case 0xc: /* ADDIU: bits 001100 */
2839 case 0x17: /* DADDIU: bits 010111 */
2840 sreg = b0s5_reg (insn >> 16);
2841 dreg = b5s5_reg (insn >> 16);
2842 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2843 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
2844 /* (D)ADDIU $sp, imm */
2845 sp_adj = offset;
2846 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
2847 /* (D)ADDIU $fp, $sp, imm */
2848 {
2849 frame_addr = sp + offset;
2850 frame_adjust = offset;
2851 frame_reg = 30;
2852 }
2853 else if (sreg != 28 || dreg != 28)
2854 /* (D)ADDIU $gp, imm */
2855 this_non_prologue_insn = 1;
2856 break;
2857
2858 /* LUI $v1 is used for larger $sp adjustments. */
2859 /* Discard LUI $gp is used for PIC code. */
2860 case 0x10: /* POOL32I: bits 010000 */
2861 if (b5s5_op (insn >> 16) == 0xd
2862 /* LUI: bits 010000 001101 */
2863 && b0s5_reg (insn >> 16) == 3)
2864 /* LUI $v1, imm */
2865 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
2866 else if (b5s5_op (insn >> 16) != 0xd
2867 /* LUI: bits 010000 001101 */
2868 || b0s5_reg (insn >> 16) != 28)
2869 /* LUI $gp, imm */
2870 this_non_prologue_insn = 1;
2871 break;
2872
2873 /* ORI $v1 is used for larger $sp adjustments. */
2874 case 0x14: /* ORI: bits 010100 */
2875 sreg = b0s5_reg (insn >> 16);
2876 dreg = b5s5_reg (insn >> 16);
2877 if (sreg == 3 && dreg == 3)
2878 /* ORI $v1, imm */
2879 v1_off |= b0s16_imm (insn);
2880 else
2881 this_non_prologue_insn = 1;
2882 break;
2883
2884 case 0x26: /* SWC1: bits 100110 */
2885 case 0x2e: /* SDC1: bits 101110 */
2886 breg = b0s5_reg (insn >> 16);
2887 if (breg != MIPS_SP_REGNUM)
2888 /* S[DW]C1 reg,offset($sp) */
2889 this_non_prologue_insn = 1;
2890 break;
2891
2892 case 0x36: /* SD: bits 110110 */
2893 case 0x3e: /* SW: bits 111110 */
2894 breg = b0s5_reg (insn >> 16);
2895 sreg = b5s5_reg (insn >> 16);
2896 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2897 if (breg == MIPS_SP_REGNUM)
2898 /* S[DW] reg,offset($sp) */
2899 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
2900 else
2901 this_non_prologue_insn = 1;
2902 break;
2903
2904 default:
2905 this_non_prologue_insn = 1;
2906 break;
2907 }
2908 break;
2909
2910 /* 16-bit instructions. */
2911 case MIPS_INSN16_SIZE:
2912 switch (micromips_op (insn))
2913 {
2914 case 0x3: /* MOVE: bits 000011 */
2915 sreg = b0s5_reg (insn);
2916 dreg = b5s5_reg (insn);
2917 if (sreg == MIPS_SP_REGNUM && dreg == 30)
2918 /* MOVE $fp, $sp */
2919 {
2920 frame_addr = sp;
2921 frame_reg = 30;
2922 }
2923 else if ((sreg & 0x1c) != 0x4)
2924 /* MOVE reg, $a0-$a3 */
2925 this_non_prologue_insn = 1;
2926 break;
2927
2928 case 0x11: /* POOL16C: bits 010001 */
2929 if (b6s4_op (insn) == 0x5)
2930 /* SWM: bits 010001 0101 */
2931 {
2932 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
2933 reglist = b4s2_regl (insn);
2934 for (i = 0; i <= reglist; i++)
2935 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
2936 set_reg_offset (gdbarch, this_cache,
2937 MIPS_RA_REGNUM, sp + 4 * i++);
2938 }
2939 else
2940 this_non_prologue_insn = 1;
2941 break;
2942
2943 case 0x13: /* POOL16D: bits 010011 */
2944 if ((insn & 0x1) == 0x1)
2945 /* ADDIUSP: bits 010011 1 */
2946 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
2947 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
2948 /* ADDIUS5: bits 010011 0 */
2949 /* ADDIUS5 $sp, imm */
2950 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
2951 else
2952 this_non_prologue_insn = 1;
2953 break;
2954
2955 case 0x32: /* SWSP: bits 110010 */
2956 offset = b0s5_imm (insn) << 2;
2957 sreg = b5s5_reg (insn);
2958 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
2959 break;
2960
2961 default:
2962 this_non_prologue_insn = 1;
2963 break;
2964 }
2965 break;
2966 }
2967 if (sp_adj < 0)
2968 frame_offset -= sp_adj;
2969
2970 non_prologue_insns += this_non_prologue_insn;
2971 /* Enough non-prologue insns seen or positive stack adjustment? */
2972 if (end_prologue_addr == 0 && (non_prologue_insns > 1 || sp_adj > 0))
2207132d 2973 {
4cc0665f
MR
2974 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
2975 break;
2207132d 2976 }
4cc0665f
MR
2977 prev_non_prologue_insn = this_non_prologue_insn;
2978 prev_pc = cur_pc;
2207132d
MR
2979 }
2980
29639122
JB
2981 if (this_cache != NULL)
2982 {
2983 this_cache->base =
4cc0665f 2984 (get_frame_register_signed (this_frame,
b8a22b94 2985 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 2986 + frame_offset - frame_adjust);
29639122 2987 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
2988 be able to get rid of the assignment below, evetually. But it's
2989 still needed for now. */
72a155b4
UW
2990 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2991 + mips_regnum (gdbarch)->pc]
4cc0665f 2992 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
2993 }
2994
2995 /* If we didn't reach the end of the prologue when scanning the function
2996 instructions, then set end_prologue_addr to the address of the
4cc0665f
MR
2997 instruction immediately after the last one we scanned. Unless the
2998 last one looked like a non-prologue instruction (and we looked ahead),
2999 in which case use its address instead. */
29639122 3000 if (end_prologue_addr == 0)
4cc0665f 3001 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
29639122
JB
3002
3003 return end_prologue_addr;
eec63939
AC
3004}
3005
4cc0665f 3006/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3007 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3008 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3009
3010static struct mips_frame_cache *
4cc0665f 3011mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3012{
e17a4113 3013 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3014 struct mips_frame_cache *cache;
eec63939
AC
3015
3016 if ((*this_cache) != NULL)
3017 return (*this_cache);
4cc0665f 3018
29639122
JB
3019 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3020 (*this_cache) = cache;
b8a22b94 3021 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3022
29639122
JB
3023 /* Analyze the function prologue. */
3024 {
b8a22b94 3025 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3026 CORE_ADDR start_addr;
eec63939 3027
29639122
JB
3028 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3029 if (start_addr == 0)
4cc0665f 3030 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3031 /* We can't analyze the prologue if we couldn't find the begining
3032 of the function. */
3033 if (start_addr == 0)
3034 return cache;
eec63939 3035
4cc0665f 3036 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122 3037 }
4cc0665f 3038
3e8c568d 3039 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3040 trad_frame_set_value (cache->saved_regs,
e17a4113 3041 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3042 cache->base);
eec63939 3043
29639122 3044 return (*this_cache);
eec63939
AC
3045}
3046
3047static void
4cc0665f
MR
3048mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3049 struct frame_id *this_id)
eec63939 3050{
4cc0665f
MR
3051 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3052 this_cache);
21327321
DJ
3053 /* This marks the outermost frame. */
3054 if (info->base == 0)
3055 return;
b8a22b94 3056 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3057}
3058
b8a22b94 3059static struct value *
4cc0665f
MR
3060mips_micro_frame_prev_register (struct frame_info *this_frame,
3061 void **this_cache, int regnum)
eec63939 3062{
4cc0665f
MR
3063 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3064 this_cache);
b8a22b94
DJ
3065 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3066}
3067
3068static int
4cc0665f
MR
3069mips_micro_frame_sniffer (const struct frame_unwind *self,
3070 struct frame_info *this_frame, void **this_cache)
b8a22b94 3071{
4cc0665f 3072 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3073 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3074
3075 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3076 return 1;
3077 return 0;
eec63939
AC
3078}
3079
4cc0665f 3080static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3081{
3082 NORMAL_FRAME,
8fbca658 3083 default_frame_unwind_stop_reason,
4cc0665f
MR
3084 mips_micro_frame_this_id,
3085 mips_micro_frame_prev_register,
b8a22b94 3086 NULL,
4cc0665f 3087 mips_micro_frame_sniffer
eec63939
AC
3088};
3089
eec63939 3090static CORE_ADDR
4cc0665f
MR
3091mips_micro_frame_base_address (struct frame_info *this_frame,
3092 void **this_cache)
eec63939 3093{
4cc0665f
MR
3094 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3095 this_cache);
29639122 3096 return info->base;
eec63939
AC
3097}
3098
4cc0665f 3099static const struct frame_base mips_micro_frame_base =
eec63939 3100{
4cc0665f
MR
3101 &mips_micro_frame_unwind,
3102 mips_micro_frame_base_address,
3103 mips_micro_frame_base_address,
3104 mips_micro_frame_base_address
eec63939
AC
3105};
3106
3107static const struct frame_base *
4cc0665f 3108mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3109{
4cc0665f 3110 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3111 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3112
3113 if (mips_pc_is_micromips (gdbarch, pc))
3114 return &mips_micro_frame_base;
eec63939
AC
3115 else
3116 return NULL;
edfae063
AC
3117}
3118
29639122
JB
3119/* Mark all the registers as unset in the saved_regs array
3120 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3121
74ed0bb4
MD
3122static void
3123reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3124{
29639122
JB
3125 if (this_cache == NULL || this_cache->saved_regs == NULL)
3126 return;
3127
3128 {
74ed0bb4 3129 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3130 int i;
64159455 3131
29639122
JB
3132 for (i = 0; i < num_regs; i++)
3133 {
3134 this_cache->saved_regs[i].addr = -1;
3135 }
3136 }
c906108c
SS
3137}
3138
025bb325 3139/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3140 the associated FRAME_CACHE if not null.
3141 Return the address of the first instruction past the prologue. */
c906108c 3142
875e1767 3143static CORE_ADDR
e17a4113
UW
3144mips32_scan_prologue (struct gdbarch *gdbarch,
3145 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3146 struct frame_info *this_frame,
29639122 3147 struct mips_frame_cache *this_cache)
c906108c 3148{
29639122 3149 CORE_ADDR cur_pc;
025bb325
MS
3150 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3151 frame-pointer. */
29639122
JB
3152 CORE_ADDR sp;
3153 long frame_offset;
3154 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3155
29639122
JB
3156 CORE_ADDR end_prologue_addr = 0;
3157 int seen_sp_adjust = 0;
3158 int load_immediate_bytes = 0;
db5f024e 3159 int in_delay_slot = 0;
7d1e6fb8 3160 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3161
29639122 3162 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3163 THIS_FRAME. */
3164 if (this_frame != NULL)
3165 sp = get_frame_register_signed (this_frame,
3166 gdbarch_num_regs (gdbarch)
3167 + MIPS_SP_REGNUM);
8fa9cfa1 3168 else
29639122 3169 sp = 0;
9022177c 3170
29639122
JB
3171 if (limit_pc > start_pc + 200)
3172 limit_pc = start_pc + 200;
9022177c 3173
29639122 3174restart:
9022177c 3175
29639122 3176 frame_offset = 0;
95ac2dcf 3177 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3178 {
29639122
JB
3179 unsigned long inst, high_word, low_word;
3180 int reg;
9022177c 3181
025bb325 3182 /* Fetch the instruction. */
4cc0665f
MR
3183 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3184 cur_pc, NULL);
9022177c 3185
29639122
JB
3186 /* Save some code by pre-extracting some useful fields. */
3187 high_word = (inst >> 16) & 0xffff;
3188 low_word = inst & 0xffff;
3189 reg = high_word & 0x1f;
fe29b929 3190
025bb325 3191 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3192 || high_word == 0x23bd /* addi $sp,$sp,-i */
3193 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3194 {
025bb325 3195 if (low_word & 0x8000) /* Negative stack adjustment? */
29639122
JB
3196 frame_offset += 0x10000 - low_word;
3197 else
3198 /* Exit loop if a positive stack adjustment is found, which
3199 usually means that the stack cleanup code in the function
3200 epilogue is reached. */
3201 break;
3202 seen_sp_adjust = 1;
3203 }
7d1e6fb8
KB
3204 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3205 && !regsize_is_64_bits)
29639122 3206 {
74ed0bb4 3207 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122 3208 }
7d1e6fb8
KB
3209 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3210 && regsize_is_64_bits)
29639122
JB
3211 {
3212 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
74ed0bb4 3213 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122
JB
3214 }
3215 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3216 {
3217 /* Old gcc frame, r30 is virtual frame pointer. */
3218 if ((long) low_word != frame_offset)
3219 frame_addr = sp + low_word;
b8a22b94 3220 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3221 {
3222 unsigned alloca_adjust;
a4b8ebc8 3223
29639122 3224 frame_reg = 30;
b8a22b94
DJ
3225 frame_addr = get_frame_register_signed
3226 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3227
29639122
JB
3228 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
3229 if (alloca_adjust > 0)
3230 {
025bb325 3231 /* FP > SP + frame_size. This may be because of
29639122
JB
3232 an alloca or somethings similar. Fix sp to
3233 "pre-alloca" value, and try again. */
3234 sp += alloca_adjust;
3235 /* Need to reset the status of all registers. Otherwise,
3236 we will hit a guard that prevents the new address
3237 for each register to be recomputed during the second
3238 pass. */
74ed0bb4 3239 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3240 goto restart;
3241 }
3242 }
3243 }
3244 /* move $30,$sp. With different versions of gas this will be either
3245 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3246 Accept any one of these. */
3247 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3248 {
3249 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3250 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3251 {
3252 unsigned alloca_adjust;
c906108c 3253
29639122 3254 frame_reg = 30;
b8a22b94
DJ
3255 frame_addr = get_frame_register_signed
3256 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3257
29639122
JB
3258 alloca_adjust = (unsigned) (frame_addr - sp);
3259 if (alloca_adjust > 0)
3260 {
025bb325 3261 /* FP > SP + frame_size. This may be because of
29639122
JB
3262 an alloca or somethings similar. Fix sp to
3263 "pre-alloca" value, and try again. */
3264 sp = frame_addr;
3265 /* Need to reset the status of all registers. Otherwise,
3266 we will hit a guard that prevents the new address
3267 for each register to be recomputed during the second
3268 pass. */
74ed0bb4 3269 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3270 goto restart;
3271 }
3272 }
3273 }
7d1e6fb8
KB
3274 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3275 && !regsize_is_64_bits)
29639122 3276 {
74ed0bb4 3277 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
29639122
JB
3278 }
3279 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3280 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3281 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3282 || high_word == 0x3c1c /* lui $gp,n */
3283 || high_word == 0x279c /* addiu $gp,$gp,n */
3284 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3285 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3286 )
19080931
MR
3287 {
3288 /* These instructions are part of the prologue, but we don't
3289 need to do anything special to handle them. */
3290 }
29639122
JB
3291 /* The instructions below load $at or $t0 with an immediate
3292 value in preparation for a stack adjustment via
025bb325 3293 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3294 initialize a local variable, so we accept them only before
3295 a stack adjustment instruction was seen. */
3296 else if (!seen_sp_adjust
19080931
MR
3297 && (high_word == 0x3c01 /* lui $at,n */
3298 || high_word == 0x3c08 /* lui $t0,n */
3299 || high_word == 0x3421 /* ori $at,$at,n */
3300 || high_word == 0x3508 /* ori $t0,$t0,n */
3301 || high_word == 0x3401 /* ori $at,$zero,n */
3302 || high_word == 0x3408 /* ori $t0,$zero,n */
3303 ))
3304 {
3305 if (end_prologue_addr == 0)
3306 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3307 }
29639122 3308 else
19080931
MR
3309 {
3310 /* This instruction is not an instruction typically found
3311 in a prologue, so we must have reached the end of the
3312 prologue. */
3313 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
3314 loop now? Why would we need to continue scanning the function
3315 instructions? */
3316 if (end_prologue_addr == 0)
3317 end_prologue_addr = cur_pc;
3318
3319 /* Check for branches and jumps. For now, only jump to
3320 register are caught (i.e. returns). */
3321 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
3322 in_delay_slot = 1;
3323 }
db5f024e
DJ
3324
3325 /* If the previous instruction was a jump, we must have reached
3326 the end of the prologue by now. Stop scanning so that we do
3327 not go past the function return. */
3328 if (in_delay_slot)
3329 break;
a4b8ebc8 3330 }
c906108c 3331
29639122
JB
3332 if (this_cache != NULL)
3333 {
3334 this_cache->base =
b8a22b94
DJ
3335 (get_frame_register_signed (this_frame,
3336 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3337 + frame_offset);
3338 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3339 this assignment below, eventually. But it's still needed
3340 for now. */
72a155b4
UW
3341 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3342 + mips_regnum (gdbarch)->pc]
3343 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3344 + MIPS_RA_REGNUM];
29639122 3345 }
c906108c 3346
29639122
JB
3347 /* If we didn't reach the end of the prologue when scanning the function
3348 instructions, then set end_prologue_addr to the address of the
3349 instruction immediately after the last one we scanned. */
3350 /* brobecker/2004-10-10: I don't think this would ever happen, but
3351 we may as well be careful and do our best if we have a null
3352 end_prologue_addr. */
3353 if (end_prologue_addr == 0)
3354 end_prologue_addr = cur_pc;
3355
3356 /* In a frameless function, we might have incorrectly
025bb325 3357 skipped some load immediate instructions. Undo the skipping
29639122
JB
3358 if the load immediate was not followed by a stack adjustment. */
3359 if (load_immediate_bytes && !seen_sp_adjust)
3360 end_prologue_addr -= load_immediate_bytes;
c906108c 3361
29639122 3362 return end_prologue_addr;
c906108c
SS
3363}
3364
29639122
JB
3365/* Heuristic unwinder for procedures using 32-bit instructions (covers
3366 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3367 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3368 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3369
29639122 3370static struct mips_frame_cache *
b8a22b94 3371mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3372{
e17a4113 3373 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3374 struct mips_frame_cache *cache;
c906108c 3375
29639122
JB
3376 if ((*this_cache) != NULL)
3377 return (*this_cache);
c5aa993b 3378
29639122
JB
3379 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3380 (*this_cache) = cache;
b8a22b94 3381 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3382
29639122
JB
3383 /* Analyze the function prologue. */
3384 {
b8a22b94 3385 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3386 CORE_ADDR start_addr;
c906108c 3387
29639122
JB
3388 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3389 if (start_addr == 0)
e17a4113 3390 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3391 /* We can't analyze the prologue if we couldn't find the begining
3392 of the function. */
3393 if (start_addr == 0)
3394 return cache;
c5aa993b 3395
e17a4113 3396 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122
JB
3397 }
3398
3e8c568d 3399 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3400 trad_frame_set_value (cache->saved_regs,
e17a4113 3401 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3402 cache->base);
c5aa993b 3403
29639122 3404 return (*this_cache);
c906108c
SS
3405}
3406
29639122 3407static void
b8a22b94 3408mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3409 struct frame_id *this_id)
c906108c 3410{
b8a22b94 3411 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3412 this_cache);
21327321
DJ
3413 /* This marks the outermost frame. */
3414 if (info->base == 0)
3415 return;
b8a22b94 3416 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3417}
c906108c 3418
b8a22b94
DJ
3419static struct value *
3420mips_insn32_frame_prev_register (struct frame_info *this_frame,
3421 void **this_cache, int regnum)
29639122 3422{
b8a22b94 3423 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3424 this_cache);
b8a22b94
DJ
3425 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3426}
3427
3428static int
3429mips_insn32_frame_sniffer (const struct frame_unwind *self,
3430 struct frame_info *this_frame, void **this_cache)
3431{
3432 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3433 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3434 return 1;
3435 return 0;
c906108c
SS
3436}
3437
29639122
JB
3438static const struct frame_unwind mips_insn32_frame_unwind =
3439{
3440 NORMAL_FRAME,
8fbca658 3441 default_frame_unwind_stop_reason,
29639122 3442 mips_insn32_frame_this_id,
b8a22b94
DJ
3443 mips_insn32_frame_prev_register,
3444 NULL,
3445 mips_insn32_frame_sniffer
29639122 3446};
c906108c 3447
1c645fec 3448static CORE_ADDR
b8a22b94 3449mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3450 void **this_cache)
c906108c 3451{
b8a22b94 3452 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3453 this_cache);
3454 return info->base;
3455}
c906108c 3456
29639122
JB
3457static const struct frame_base mips_insn32_frame_base =
3458{
3459 &mips_insn32_frame_unwind,
3460 mips_insn32_frame_base_address,
3461 mips_insn32_frame_base_address,
3462 mips_insn32_frame_base_address
3463};
1c645fec 3464
29639122 3465static const struct frame_base *
b8a22b94 3466mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3467{
b8a22b94 3468 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3469 if (mips_pc_is_mips (pc))
29639122 3470 return &mips_insn32_frame_base;
a65bbe44 3471 else
29639122
JB
3472 return NULL;
3473}
a65bbe44 3474
29639122 3475static struct trad_frame_cache *
b8a22b94 3476mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3477{
3478 CORE_ADDR pc;
3479 CORE_ADDR start_addr;
3480 CORE_ADDR stack_addr;
3481 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3482 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3483 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3484
29639122
JB
3485 if ((*this_cache) != NULL)
3486 return (*this_cache);
b8a22b94 3487 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3488 (*this_cache) = this_trad_cache;
1c645fec 3489
29639122 3490 /* The return address is in the link register. */
3e8c568d 3491 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3492 gdbarch_pc_regnum (gdbarch),
b8a22b94 3493 num_regs + MIPS_RA_REGNUM);
1c645fec 3494
29639122
JB
3495 /* Frame ID, since it's a frameless / stackless function, no stack
3496 space is allocated and SP on entry is the current SP. */
b8a22b94 3497 pc = get_frame_pc (this_frame);
29639122 3498 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3499 stack_addr = get_frame_register_signed (this_frame,
3500 num_regs + MIPS_SP_REGNUM);
aa6c981f 3501 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3502
29639122
JB
3503 /* Assume that the frame's base is the same as the
3504 stack-pointer. */
3505 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3506
29639122
JB
3507 return this_trad_cache;
3508}
c906108c 3509
29639122 3510static void
b8a22b94 3511mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3512 struct frame_id *this_id)
3513{
3514 struct trad_frame_cache *this_trad_cache
b8a22b94 3515 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3516 trad_frame_get_id (this_trad_cache, this_id);
3517}
c906108c 3518
b8a22b94
DJ
3519static struct value *
3520mips_stub_frame_prev_register (struct frame_info *this_frame,
3521 void **this_cache, int regnum)
29639122
JB
3522{
3523 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3524 = mips_stub_frame_cache (this_frame, this_cache);
3525 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3526}
c906108c 3527
b8a22b94
DJ
3528static int
3529mips_stub_frame_sniffer (const struct frame_unwind *self,
3530 struct frame_info *this_frame, void **this_cache)
29639122 3531{
aa6c981f 3532 gdb_byte dummy[4];
979b38e0 3533 struct obj_section *s;
b8a22b94 3534 CORE_ADDR pc = get_frame_address_in_block (this_frame);
db5f024e 3535 struct minimal_symbol *msym;
979b38e0 3536
aa6c981f 3537 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3538 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3539 return 1;
aa6c981f 3540
29639122 3541 if (in_plt_section (pc, NULL))
b8a22b94 3542 return 1;
979b38e0
DJ
3543
3544 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
3545 s = find_pc_section (pc);
3546
3547 if (s != NULL
3548 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
3549 ".MIPS.stubs") == 0)
b8a22b94 3550 return 1;
979b38e0 3551
db5f024e
DJ
3552 /* Calling a PIC function from a non-PIC function passes through a
3553 stub. The stub for foo is named ".pic.foo". */
3554 msym = lookup_minimal_symbol_by_pc (pc);
3555 if (msym != NULL
3556 && SYMBOL_LINKAGE_NAME (msym) != NULL
3557 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
3558 return 1;
3559
b8a22b94 3560 return 0;
29639122 3561}
c906108c 3562
b8a22b94
DJ
3563static const struct frame_unwind mips_stub_frame_unwind =
3564{
3565 NORMAL_FRAME,
8fbca658 3566 default_frame_unwind_stop_reason,
b8a22b94
DJ
3567 mips_stub_frame_this_id,
3568 mips_stub_frame_prev_register,
3569 NULL,
3570 mips_stub_frame_sniffer
3571};
3572
29639122 3573static CORE_ADDR
b8a22b94 3574mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3575 void **this_cache)
3576{
3577 struct trad_frame_cache *this_trad_cache
b8a22b94 3578 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3579 return trad_frame_get_this_base (this_trad_cache);
3580}
0fce0821 3581
29639122
JB
3582static const struct frame_base mips_stub_frame_base =
3583{
3584 &mips_stub_frame_unwind,
3585 mips_stub_frame_base_address,
3586 mips_stub_frame_base_address,
3587 mips_stub_frame_base_address
3588};
3589
3590static const struct frame_base *
b8a22b94 3591mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3592{
b8a22b94 3593 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3594 return &mips_stub_frame_base;
3595 else
3596 return NULL;
3597}
3598
29639122 3599/* mips_addr_bits_remove - remove useless address bits */
65596487 3600
29639122 3601static CORE_ADDR
24568a2c 3602mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3603{
24568a2c 3604 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3605
4cc0665f
MR
3606 if (is_compact_addr (addr))
3607 addr = unmake_compact_addr (addr);
930bd0e0 3608
29639122
JB
3609 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3610 /* This hack is a work-around for existing boards using PMON, the
3611 simulator, and any other 64-bit targets that doesn't have true
3612 64-bit addressing. On these targets, the upper 32 bits of
3613 addresses are ignored by the hardware. Thus, the PC or SP are
3614 likely to have been sign extended to all 1s by instruction
3615 sequences that load 32-bit addresses. For example, a typical
3616 piece of code that loads an address is this:
65596487 3617
29639122
JB
3618 lui $r2, <upper 16 bits>
3619 ori $r2, <lower 16 bits>
65596487 3620
29639122
JB
3621 But the lui sign-extends the value such that the upper 32 bits
3622 may be all 1s. The workaround is simply to mask off these
3623 bits. In the future, gcc may be changed to support true 64-bit
3624 addressing, and this masking will have to be disabled. */
3625 return addr &= 0xffffffffUL;
3626 else
3627 return addr;
65596487
JB
3628}
3629
3d5f6d12
DJ
3630
3631/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3632 instruction and ending with a SC/SCD instruction. If such a sequence
3633 is found, attempt to step through it. A breakpoint is placed at the end of
3634 the sequence. */
3635
4cc0665f
MR
3636/* Instructions used during single-stepping of atomic sequences, standard
3637 ISA version. */
3638#define LL_OPCODE 0x30
3639#define LLD_OPCODE 0x34
3640#define SC_OPCODE 0x38
3641#define SCD_OPCODE 0x3c
3642
3d5f6d12 3643static int
4cc0665f
MR
3644mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3645 struct address_space *aspace, CORE_ADDR pc)
3d5f6d12
DJ
3646{
3647 CORE_ADDR breaks[2] = {-1, -1};
3648 CORE_ADDR loc = pc;
3649 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3650 ULONGEST insn;
3d5f6d12
DJ
3651 int insn_count;
3652 int index;
3653 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3654 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3655
4cc0665f 3656 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3657 /* Assume all atomic sequences start with a ll/lld instruction. */
3658 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3659 return 0;
3660
3661 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3662 instructions. */
3663 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3664 {
3665 int is_branch = 0;
3666 loc += MIPS_INSN32_SIZE;
4cc0665f 3667 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3668
3669 /* Assume that there is at most one branch in the atomic
3670 sequence. If a branch is found, put a breakpoint in its
3671 destination address. */
3672 switch (itype_op (insn))
3673 {
3674 case 0: /* SPECIAL */
3675 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
025bb325 3676 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3677 break;
3678 case 1: /* REGIMM */
a385295e
MR
3679 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3680 || ((itype_rt (insn) & 0x1e) == 0
3681 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3682 break;
3683 case 2: /* J */
3684 case 3: /* JAL */
025bb325 3685 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3686 case 4: /* BEQ */
3687 case 5: /* BNE */
3688 case 6: /* BLEZ */
3689 case 7: /* BGTZ */
3690 case 20: /* BEQL */
3691 case 21: /* BNEL */
3692 case 22: /* BLEZL */
3693 case 23: /* BGTTL */
3694 is_branch = 1;
3695 break;
3696 case 17: /* COP1 */
a385295e
MR
3697 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3698 && (itype_rt (insn) & 0x2) == 0);
3699 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3700 break;
3701 /* Fall through. */
3d5f6d12
DJ
3702 case 18: /* COP2 */
3703 case 19: /* COP3 */
3704 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3705 break;
3706 }
3707 if (is_branch)
3708 {
3709 branch_bp = loc + mips32_relative_offset (insn) + 4;
3710 if (last_breakpoint >= 1)
3711 return 0; /* More than one branch found, fallback to the
3712 standard single-step code. */
3713 breaks[1] = branch_bp;
3714 last_breakpoint++;
3715 }
3716
3717 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3718 break;
3719 }
3720
3721 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3722 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3723 return 0;
3724
3725 loc += MIPS_INSN32_SIZE;
3726
3727 /* Insert a breakpoint right after the end of the atomic sequence. */
3728 breaks[0] = loc;
3729
3730 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3731 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3732 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3733 last_breakpoint = 0;
3734
3735 /* Effectively inserts the breakpoints. */
3736 for (index = 0; index <= last_breakpoint; index++)
6c95b8df 3737 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3d5f6d12
DJ
3738
3739 return 1;
3740}
3741
4cc0665f
MR
3742static int
3743micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3744 struct address_space *aspace,
3745 CORE_ADDR pc)
3746{
3747 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3748 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3749 CORE_ADDR breaks[2] = {-1, -1};
3750 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3751 CORE_ADDR loc = pc;
3752 int sc_found = 0;
3753 ULONGEST insn;
3754 int insn_count;
3755 int index;
3756
3757 /* Assume all atomic sequences start with a ll/lld instruction. */
3758 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3759 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3760 return 0;
3761 loc += MIPS_INSN16_SIZE;
3762 insn <<= 16;
3763 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3764 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
3765 return 0;
3766 loc += MIPS_INSN16_SIZE;
3767
3768 /* Assume all atomic sequences end with an sc/scd instruction. Assume
3769 that no atomic sequence is longer than "atomic_sequence_length"
3770 instructions. */
3771 for (insn_count = 0;
3772 !sc_found && insn_count < atomic_sequence_length;
3773 ++insn_count)
3774 {
3775 int is_branch = 0;
3776
3777 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3778 loc += MIPS_INSN16_SIZE;
3779
3780 /* Assume that there is at most one conditional branch in the
3781 atomic sequence. If a branch is found, put a breakpoint in
3782 its destination address. */
3783 switch (mips_insn_size (ISA_MICROMIPS, insn))
3784 {
3785 /* 48-bit instructions. */
3786 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
3787 loc += 2 * MIPS_INSN16_SIZE;
3788 break;
3789
3790 /* 32-bit instructions. */
3791 case 2 * MIPS_INSN16_SIZE:
3792 switch (micromips_op (insn))
3793 {
3794 case 0x10: /* POOL32I: bits 010000 */
3795 if ((b5s5_op (insn) & 0x18) != 0x0
3796 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
3797 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
3798 && (b5s5_op (insn) & 0x1d) != 0x11
3799 /* BLTZALS, BGEZALS: bits 010000 100x1 */
3800 && ((b5s5_op (insn) & 0x1e) != 0x14
3801 || (insn & 0x3) != 0x0)
3802 /* BC2F, BC2T: bits 010000 1010x xxx00 */
3803 && (b5s5_op (insn) & 0x1e) != 0x1a
3804 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
3805 && ((b5s5_op (insn) & 0x1e) != 0x1c
3806 || (insn & 0x3) != 0x0)
3807 /* BC1F, BC1T: bits 010000 1110x xxx00 */
3808 && ((b5s5_op (insn) & 0x1c) != 0x1c
3809 || (insn & 0x3) != 0x1))
3810 /* BC1ANY*: bits 010000 111xx xxx01 */
3811 break;
3812 /* Fall through. */
3813
3814 case 0x25: /* BEQ: bits 100101 */
3815 case 0x2d: /* BNE: bits 101101 */
3816 insn <<= 16;
3817 insn |= mips_fetch_instruction (gdbarch,
3818 ISA_MICROMIPS, loc, NULL);
3819 branch_bp = (loc + MIPS_INSN16_SIZE
3820 + micromips_relative_offset16 (insn));
3821 is_branch = 1;
3822 break;
3823
3824 case 0x00: /* POOL32A: bits 000000 */
3825 insn <<= 16;
3826 insn |= mips_fetch_instruction (gdbarch,
3827 ISA_MICROMIPS, loc, NULL);
3828 if (b0s6_op (insn) != 0x3c
3829 /* POOL32Axf: bits 000000 ... 111100 */
3830 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
3831 /* JALR, JALR.HB: 000000 000x111100 111100 */
3832 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
3833 break;
3834 /* Fall through. */
3835
3836 case 0x1d: /* JALS: bits 011101 */
3837 case 0x35: /* J: bits 110101 */
3838 case 0x3d: /* JAL: bits 111101 */
3839 case 0x3c: /* JALX: bits 111100 */
3840 return 0; /* Fall back to the standard single-step code. */
3841
3842 case 0x18: /* POOL32C: bits 011000 */
3843 if ((b12s4_op (insn) & 0xb) == 0xb)
3844 /* SC, SCD: bits 011000 1x11 */
3845 sc_found = 1;
3846 break;
3847 }
3848 loc += MIPS_INSN16_SIZE;
3849 break;
3850
3851 /* 16-bit instructions. */
3852 case MIPS_INSN16_SIZE:
3853 switch (micromips_op (insn))
3854 {
3855 case 0x23: /* BEQZ16: bits 100011 */
3856 case 0x2b: /* BNEZ16: bits 101011 */
3857 branch_bp = loc + micromips_relative_offset7 (insn);
3858 is_branch = 1;
3859 break;
3860
3861 case 0x11: /* POOL16C: bits 010001 */
3862 if ((b5s5_op (insn) & 0x1c) != 0xc
3863 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
3864 && b5s5_op (insn) != 0x18)
3865 /* JRADDIUSP: bits 010001 11000 */
3866 break;
3867 return 0; /* Fall back to the standard single-step code. */
3868
3869 case 0x33: /* B16: bits 110011 */
3870 return 0; /* Fall back to the standard single-step code. */
3871 }
3872 break;
3873 }
3874 if (is_branch)
3875 {
3876 if (last_breakpoint >= 1)
3877 return 0; /* More than one branch found, fallback to the
3878 standard single-step code. */
3879 breaks[1] = branch_bp;
3880 last_breakpoint++;
3881 }
3882 }
3883 if (!sc_found)
3884 return 0;
3885
3886 /* Insert a breakpoint right after the end of the atomic sequence. */
3887 breaks[0] = loc;
3888
3889 /* Check for duplicated breakpoints. Check also for a breakpoint
3890 placed (branch instruction's destination) in the atomic sequence */
3891 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3892 last_breakpoint = 0;
3893
3894 /* Effectively inserts the breakpoints. */
3895 for (index = 0; index <= last_breakpoint; index++)
3896 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3897
3898 return 1;
3899}
3900
3901static int
3902deal_with_atomic_sequence (struct gdbarch *gdbarch,
3903 struct address_space *aspace, CORE_ADDR pc)
3904{
3905 if (mips_pc_is_mips (pc))
3906 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3907 else if (mips_pc_is_micromips (gdbarch, pc))
3908 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3909 else
3910 return 0;
3911}
3912
29639122
JB
3913/* mips_software_single_step() is called just before we want to resume
3914 the inferior, if we want to single-step it but there is no hardware
3915 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 3916 the target of the coming instruction and breakpoint it. */
29639122 3917
e6590a1b 3918int
0b1b3e42 3919mips_software_single_step (struct frame_info *frame)
c906108c 3920{
a6d9a66e 3921 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 3922 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 3923 CORE_ADDR pc, next_pc;
65596487 3924
0b1b3e42 3925 pc = get_frame_pc (frame);
6c95b8df 3926 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
3d5f6d12
DJ
3927 return 1;
3928
0b1b3e42 3929 next_pc = mips_next_pc (frame, pc);
e6590a1b 3930
6c95b8df 3931 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 3932 return 1;
29639122 3933}
a65bbe44 3934
29639122 3935/* Test whether the PC points to the return instruction at the
025bb325 3936 end of a function. */
65596487 3937
29639122 3938static int
e17a4113 3939mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 3940{
6321c22a
MR
3941 ULONGEST insn;
3942 ULONGEST hint;
3943
3944 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
3945 called for MIPS16 functions. And likewise microMIPS ones. */
3946 gdb_assert (mips_pc_is_mips (pc));
6321c22a 3947
4cc0665f 3948 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
3949 hint = 0x7c0;
3950 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 3951}
c906108c 3952
c906108c 3953
29639122
JB
3954/* This fencepost looks highly suspicious to me. Removing it also
3955 seems suspicious as it could affect remote debugging across serial
3956 lines. */
c906108c 3957
29639122 3958static CORE_ADDR
74ed0bb4 3959heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
3960{
3961 CORE_ADDR start_pc;
3962 CORE_ADDR fence;
3963 int instlen;
3964 int seen_adjsp = 0;
d6b48e9c 3965 struct inferior *inf;
65596487 3966
74ed0bb4 3967 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
3968 start_pc = pc;
3969 fence = start_pc - heuristic_fence_post;
3970 if (start_pc == 0)
3971 return 0;
65596487 3972
29639122
JB
3973 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
3974 fence = VM_MIN_ADDRESS;
65596487 3975
4cc0665f 3976 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 3977
d6b48e9c
PA
3978 inf = current_inferior ();
3979
025bb325 3980 /* Search back for previous return. */
29639122
JB
3981 for (start_pc -= instlen;; start_pc -= instlen)
3982 if (start_pc < fence)
3983 {
3984 /* It's not clear to me why we reach this point when
3985 stop_soon, but with this test, at least we
3986 don't print out warnings for every child forked (eg, on
3987 decstation). 22apr93 rich@cygnus.com. */
16c381f0 3988 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
3989 {
3990 static int blurb_printed = 0;
98b4dd94 3991
5af949e3
UW
3992 warning (_("GDB can't find the start of the function at %s."),
3993 paddress (gdbarch, pc));
29639122
JB
3994
3995 if (!blurb_printed)
3996 {
3997 /* This actually happens frequently in embedded
3998 development, when you first connect to a board
3999 and your stack pointer and pc are nowhere in
4000 particular. This message needs to give people
4001 in that situation enough information to
4002 determine that it's no big deal. */
4003 printf_filtered ("\n\
5af949e3 4004 GDB is unable to find the start of the function at %s\n\
29639122
JB
4005and thus can't determine the size of that function's stack frame.\n\
4006This means that GDB may be unable to access that stack frame, or\n\
4007the frames below it.\n\
4008 This problem is most likely caused by an invalid program counter or\n\
4009stack pointer.\n\
4010 However, if you think GDB should simply search farther back\n\
5af949e3 4011from %s for code which looks like the beginning of a\n\
29639122 4012function, you can increase the range of the search using the `set\n\
5af949e3
UW
4013heuristic-fence-post' command.\n",
4014 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4015 blurb_printed = 1;
4016 }
4017 }
4018
4019 return 0;
4020 }
4cc0665f 4021 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4022 {
4023 unsigned short inst;
4024
4025 /* On MIPS16, any one of the following is likely to be the
4026 start of a function:
193774b3
MR
4027 extend save
4028 save
29639122
JB
4029 entry
4030 addiu sp,-n
4031 daddiu sp,-n
025bb325 4032 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4033 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4034 if ((inst & 0xff80) == 0x6480) /* save */
4035 {
4036 if (start_pc - instlen >= fence)
4037 {
4cc0665f
MR
4038 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4039 start_pc - instlen, NULL);
193774b3
MR
4040 if ((inst & 0xf800) == 0xf000) /* extend */
4041 start_pc -= instlen;
4042 }
4043 break;
4044 }
4045 else if (((inst & 0xf81f) == 0xe809
4046 && (inst & 0x700) != 0x700) /* entry */
4047 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4048 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4049 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4050 break;
4051 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4052 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4053 seen_adjsp = 1;
4054 else
4055 seen_adjsp = 0;
4056 }
4cc0665f
MR
4057 else if (mips_pc_is_micromips (gdbarch, start_pc))
4058 {
4059 ULONGEST insn;
4060 int stop = 0;
4061 long offset;
4062 int dreg;
4063 int sreg;
4064
4065 /* On microMIPS, any one of the following is likely to be the
4066 start of a function:
4067 ADDIUSP -imm
4068 (D)ADDIU $sp, -imm
4069 LUI $gp, imm */
4070 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4071 switch (micromips_op (insn))
4072 {
4073 case 0xc: /* ADDIU: bits 001100 */
4074 case 0x17: /* DADDIU: bits 010111 */
4075 sreg = b0s5_reg (insn);
4076 dreg = b5s5_reg (insn);
4077 insn <<= 16;
4078 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4079 pc + MIPS_INSN16_SIZE, NULL);
4080 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4081 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4082 /* (D)ADDIU $sp, imm */
4083 && offset < 0)
4084 stop = 1;
4085 break;
4086
4087 case 0x10: /* POOL32I: bits 010000 */
4088 if (b5s5_op (insn) == 0xd
4089 /* LUI: bits 010000 001101 */
4090 && b0s5_reg (insn >> 16) == 28)
4091 /* LUI $gp, imm */
4092 stop = 1;
4093 break;
4094
4095 case 0x13: /* POOL16D: bits 010011 */
4096 if ((insn & 0x1) == 0x1)
4097 /* ADDIUSP: bits 010011 1 */
4098 {
4099 offset = micromips_decode_imm9 (b1s9_imm (insn));
4100 if (offset < 0)
4101 /* ADDIUSP -imm */
4102 stop = 1;
4103 }
4104 else
4105 /* ADDIUS5: bits 010011 0 */
4106 {
4107 dreg = b5s5_reg (insn);
4108 offset = (b1s4_imm (insn) ^ 8) - 8;
4109 if (dreg == MIPS_SP_REGNUM && offset < 0)
4110 /* ADDIUS5 $sp, -imm */
4111 stop = 1;
4112 }
4113 break;
4114 }
4115 if (stop)
4116 break;
4117 }
e17a4113 4118 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4119 {
4c7d22cb 4120 /* Skip return and its delay slot. */
95ac2dcf 4121 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4122 break;
4123 }
4124
4125 return start_pc;
c906108c
SS
4126}
4127
6c0d6680
DJ
4128struct mips_objfile_private
4129{
4130 bfd_size_type size;
4131 char *contents;
4132};
4133
f09ded24
AC
4134/* According to the current ABI, should the type be passed in a
4135 floating-point register (assuming that there is space)? When there
a1f5b845 4136 is no FPU, FP are not even considered as possible candidates for
f09ded24 4137 FP registers and, consequently this returns false - forces FP
025bb325 4138 arguments into integer registers. */
f09ded24
AC
4139
4140static int
74ed0bb4
MD
4141fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4142 struct type *arg_type)
f09ded24
AC
4143{
4144 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4145 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4146 && (typecode == TYPE_CODE_STRUCT
4147 || typecode == TYPE_CODE_UNION)
f09ded24 4148 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4149 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4150 == TYPE_CODE_FLT))
74ed0bb4 4151 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4152}
4153
49e790b0 4154/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4155 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4156
4157static int
4158mips_type_needs_double_align (struct type *type)
4159{
4160 enum type_code typecode = TYPE_CODE (type);
361d1df0 4161
49e790b0
DJ
4162 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4163 return 1;
4164 else if (typecode == TYPE_CODE_STRUCT)
4165 {
4166 if (TYPE_NFIELDS (type) < 1)
4167 return 0;
4168 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4169 }
4170 else if (typecode == TYPE_CODE_UNION)
4171 {
361d1df0 4172 int i, n;
49e790b0
DJ
4173
4174 n = TYPE_NFIELDS (type);
4175 for (i = 0; i < n; i++)
4176 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4177 return 1;
4178 return 0;
4179 }
4180 return 0;
4181}
4182
dc604539
AC
4183/* Adjust the address downward (direction of stack growth) so that it
4184 is correctly aligned for a new stack frame. */
4185static CORE_ADDR
4186mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4187{
5b03f266 4188 return align_down (addr, 16);
dc604539
AC
4189}
4190
8ae38c14 4191/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4192
4193static CORE_ADDR
4194mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4195 CORE_ADDR funaddr, struct value **args,
4196 int nargs, struct type *value_type,
4197 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4198 struct regcache *regcache)
4199{
2c76a0c7 4200 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4201 CORE_ADDR nop_addr;
4202 CORE_ADDR bp_slot;
2c76a0c7
JB
4203
4204 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4205 bp_slot = sp - sizeof (nop_insn);
4206
4207 /* Return to microMIPS mode if calling microMIPS code to avoid
4208 triggering an address error exception on processors that only
4209 support microMIPS execution. */
4210 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4211 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4212
4213 /* The breakpoint layer automatically adjusts the address of
4214 breakpoints inserted in a branch delay slot. With enough
4215 bad luck, the 4 bytes located just before our breakpoint
4216 instruction could look like a branch instruction, and thus
4217 trigger the adjustement, and break the function call entirely.
4218 So, we reserve those 4 bytes and write a nop instruction
4219 to prevent that from happening. */
2e81047f 4220 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4221 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4222 sp = mips_frame_align (gdbarch, nop_addr);
4223
4224 /* Inferior resumes at the function entry point. */
4225 *real_pc = funaddr;
4226
4227 return sp;
4228}
4229
f7ab6ec6 4230static CORE_ADDR
7d9b040b 4231mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4232 struct regcache *regcache, CORE_ADDR bp_addr,
4233 int nargs, struct value **args, CORE_ADDR sp,
4234 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4235{
4236 int argreg;
4237 int float_argreg;
4238 int argnum;
4239 int len = 0;
4240 int stack_offset = 0;
e17a4113 4241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4242 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 4243 int regsize = mips_abi_regsize (gdbarch);
c906108c 4244
25ab4790
AC
4245 /* For shared libraries, "t9" needs to point at the function
4246 address. */
4c7d22cb 4247 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4248
4249 /* Set the return address register to point to the entry point of
4250 the program, where a breakpoint lies in wait. */
4c7d22cb 4251 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4252
c906108c 4253 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4254 are properly aligned. The stack has to be at least 64-bit
4255 aligned even on 32-bit machines, because doubles must be 64-bit
4256 aligned. For n32 and n64, stack frames need to be 128-bit
4257 aligned, so we round to this widest known alignment. */
4258
5b03f266
AC
4259 sp = align_down (sp, 16);
4260 struct_addr = align_down (struct_addr, 16);
c5aa993b 4261
46e0f506 4262 /* Now make space on the stack for the args. We allocate more
c906108c 4263 than necessary for EABI, because the first few arguments are
46e0f506 4264 passed in registers, but that's OK. */
c906108c 4265 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4266 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 4267 sp -= align_up (len, 16);
c906108c 4268
9ace0497 4269 if (mips_debug)
6d82d43b 4270 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4271 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4272 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4273
c906108c 4274 /* Initialize the integer and float register pointers. */
4c7d22cb 4275 argreg = MIPS_A0_REGNUM;
72a155b4 4276 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4277
46e0f506 4278 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4279 if (struct_return)
9ace0497
AC
4280 {
4281 if (mips_debug)
4282 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4283 "mips_eabi_push_dummy_call: "
4284 "struct_return reg=%d %s\n",
5af949e3 4285 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4286 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4287 }
c906108c
SS
4288
4289 /* Now load as many as possible of the first arguments into
4290 registers, and push the rest onto the stack. Loop thru args
4291 from first to last. */
4292 for (argnum = 0; argnum < nargs; argnum++)
4293 {
47a35522
MK
4294 const gdb_byte *val;
4295 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 4296 struct value *arg = args[argnum];
4991999e 4297 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4298 int len = TYPE_LENGTH (arg_type);
4299 enum type_code typecode = TYPE_CODE (arg_type);
4300
9ace0497
AC
4301 if (mips_debug)
4302 fprintf_unfiltered (gdb_stdlog,
25ab4790 4303 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4304 argnum + 1, len, (int) typecode);
9ace0497 4305
930bd0e0
KB
4306 /* Function pointer arguments to mips16 code need to be made into
4307 mips16 pointers. */
4308 if (typecode == TYPE_CODE_PTR
4309 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
4310 {
4311 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
4312 len, byte_order);
4cc0665f
MR
4313 if (mips_pc_is_mips (addr))
4314 val = value_contents (arg);
4315 else
930bd0e0
KB
4316 {
4317 store_signed_integer (valbuf, len, byte_order,
4cc0665f 4318 make_compact_addr (addr));
930bd0e0
KB
4319 val = valbuf;
4320 }
930bd0e0 4321 }
c906108c 4322 /* The EABI passes structures that do not fit in a register by
46e0f506 4323 reference. */
930bd0e0 4324 else if (len > regsize
9ace0497 4325 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4326 {
e17a4113
UW
4327 store_unsigned_integer (valbuf, regsize, byte_order,
4328 value_address (arg));
c906108c 4329 typecode = TYPE_CODE_PTR;
1a69e1e4 4330 len = regsize;
c906108c 4331 val = valbuf;
9ace0497
AC
4332 if (mips_debug)
4333 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4334 }
4335 else
47a35522 4336 val = value_contents (arg);
c906108c
SS
4337
4338 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4339 even-numbered floating point register. Round the FP register
4340 up before the check to see if there are any FP registers
46e0f506
MS
4341 left. Non MIPS_EABI targets also pass the FP in the integer
4342 registers so also round up normal registers. */
74ed0bb4 4343 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4344 {
4345 if ((float_argreg & 1))
4346 float_argreg++;
4347 }
c906108c
SS
4348
4349 /* Floating point arguments passed in registers have to be
4350 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4351 are passed in register pairs; the even register gets
4352 the low word, and the odd register gets the high word.
4353 On non-EABI processors, the first two floating point arguments are
4354 also copied to general registers, because MIPS16 functions
4355 don't use float registers for arguments. This duplication of
4356 arguments in general registers can't hurt non-MIPS16 functions
4357 because those registers are normally skipped. */
1012bd0e
EZ
4358 /* MIPS_EABI squeezes a struct that contains a single floating
4359 point value into an FP register instead of pushing it onto the
46e0f506 4360 stack. */
74ed0bb4
MD
4361 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4362 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4363 {
6da397e0
KB
4364 /* EABI32 will pass doubles in consecutive registers, even on
4365 64-bit cores. At one time, we used to check the size of
4366 `float_argreg' to determine whether or not to pass doubles
4367 in consecutive registers, but this is not sufficient for
4368 making the ABI determination. */
4369 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4370 {
72a155b4 4371 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4372 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4373 long regval;
c906108c
SS
4374
4375 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4376 regval = extract_signed_integer (val + low_offset,
4377 4, byte_order);
9ace0497 4378 if (mips_debug)
acdb74a0 4379 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4380 float_argreg, phex (regval, 4));
a8852dc5 4381 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4382
4383 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4384 regval = extract_signed_integer (val + 4 - low_offset,
4385 4, byte_order);
9ace0497 4386 if (mips_debug)
acdb74a0 4387 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4388 float_argreg, phex (regval, 4));
a8852dc5 4389 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4390 }
4391 else
4392 {
4393 /* This is a floating point value that fits entirely
4394 in a single register. */
53a5351d 4395 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4396 above to ensure that it is even register aligned. */
a8852dc5 4397 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4398 if (mips_debug)
acdb74a0 4399 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4400 float_argreg, phex (regval, len));
a8852dc5 4401 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4402 }
4403 }
4404 else
4405 {
4406 /* Copy the argument to general registers or the stack in
4407 register-sized pieces. Large arguments are split between
4408 registers and stack. */
1a69e1e4
DJ
4409 /* Note: structs whose size is not a multiple of regsize
4410 are treated specially: Irix cc passes
d5ac5a39
AC
4411 them in registers where gcc sometimes puts them on the
4412 stack. For maximum compatibility, we will put them in
4413 both places. */
1a69e1e4 4414 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 4415
f09ded24 4416 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4417 register are only written to memory. */
c906108c
SS
4418 while (len > 0)
4419 {
ebafbe83 4420 /* Remember if the argument was written to the stack. */
566f0f7a 4421 int stack_used_p = 0;
1a69e1e4 4422 int partial_len = (len < regsize ? len : regsize);
c906108c 4423
acdb74a0
AC
4424 if (mips_debug)
4425 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4426 partial_len);
4427
566f0f7a 4428 /* Write this portion of the argument to the stack. */
74ed0bb4 4429 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4430 || odd_sized_struct
74ed0bb4 4431 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4432 {
c906108c 4433 /* Should shorter than int integer values be
025bb325 4434 promoted to int before being stored? */
c906108c 4435 int longword_offset = 0;
9ace0497 4436 CORE_ADDR addr;
566f0f7a 4437 stack_used_p = 1;
72a155b4 4438 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4439 {
1a69e1e4 4440 if (regsize == 8
480d3dd2
AC
4441 && (typecode == TYPE_CODE_INT
4442 || typecode == TYPE_CODE_PTR
6d82d43b 4443 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 4444 longword_offset = regsize - len;
480d3dd2
AC
4445 else if ((typecode == TYPE_CODE_STRUCT
4446 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
4447 && TYPE_LENGTH (arg_type) < regsize)
4448 longword_offset = regsize - len;
7a292a7a 4449 }
c5aa993b 4450
9ace0497
AC
4451 if (mips_debug)
4452 {
5af949e3
UW
4453 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4454 paddress (gdbarch, stack_offset));
4455 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4456 paddress (gdbarch, longword_offset));
9ace0497 4457 }
361d1df0 4458
9ace0497
AC
4459 addr = sp + stack_offset + longword_offset;
4460
4461 if (mips_debug)
4462 {
4463 int i;
5af949e3
UW
4464 fprintf_unfiltered (gdb_stdlog, " @%s ",
4465 paddress (gdbarch, addr));
9ace0497
AC
4466 for (i = 0; i < partial_len; i++)
4467 {
6d82d43b 4468 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4469 val[i] & 0xff);
9ace0497
AC
4470 }
4471 }
4472 write_memory (addr, val, partial_len);
c906108c
SS
4473 }
4474
f09ded24
AC
4475 /* Note!!! This is NOT an else clause. Odd sized
4476 structs may go thru BOTH paths. Floating point
46e0f506 4477 arguments will not. */
566f0f7a 4478 /* Write this portion of the argument to a general
6d82d43b 4479 purpose register. */
74ed0bb4
MD
4480 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4481 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4482 {
6d82d43b 4483 LONGEST regval =
a8852dc5 4484 extract_signed_integer (val, partial_len, byte_order);
c906108c 4485
9ace0497 4486 if (mips_debug)
acdb74a0 4487 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4488 argreg,
1a69e1e4 4489 phex (regval, regsize));
a8852dc5 4490 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4491 argreg++;
c906108c 4492 }
c5aa993b 4493
c906108c
SS
4494 len -= partial_len;
4495 val += partial_len;
4496
b021a221
MS
4497 /* Compute the offset into the stack at which we will
4498 copy the next parameter.
566f0f7a 4499
566f0f7a 4500 In the new EABI (and the NABI32), the stack_offset
46e0f506 4501 only needs to be adjusted when it has been used. */
c906108c 4502
46e0f506 4503 if (stack_used_p)
1a69e1e4 4504 stack_offset += align_up (partial_len, regsize);
c906108c
SS
4505 }
4506 }
9ace0497
AC
4507 if (mips_debug)
4508 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4509 }
4510
f10683bb 4511 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4512
0f71a2f6
JM
4513 /* Return adjusted stack pointer. */
4514 return sp;
4515}
4516
a1f5b845 4517/* Determine the return value convention being used. */
6d82d43b 4518
9c8fdbfa 4519static enum return_value_convention
6a3a010b 4520mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4521 struct type *type, struct regcache *regcache,
47a35522 4522 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4523{
609ba780
JM
4524 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4525 int fp_return_type = 0;
4526 int offset, regnum, xfer;
4527
9c8fdbfa
AC
4528 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4529 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4530
4531 /* Floating point type? */
4532 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4533 {
4534 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4535 fp_return_type = 1;
4536 /* Structs with a single field of float type
4537 are returned in a floating point register. */
4538 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4539 || TYPE_CODE (type) == TYPE_CODE_UNION)
4540 && TYPE_NFIELDS (type) == 1)
4541 {
4542 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4543
4544 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4545 fp_return_type = 1;
4546 }
4547 }
4548
4549 if (fp_return_type)
4550 {
4551 /* A floating-point value belongs in the least significant part
4552 of FP0/FP1. */
4553 if (mips_debug)
4554 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4555 regnum = mips_regnum (gdbarch)->fp0;
4556 }
4557 else
4558 {
4559 /* An integer value goes in V0/V1. */
4560 if (mips_debug)
4561 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4562 regnum = MIPS_V0_REGNUM;
4563 }
4564 for (offset = 0;
4565 offset < TYPE_LENGTH (type);
4566 offset += mips_abi_regsize (gdbarch), regnum++)
4567 {
4568 xfer = mips_abi_regsize (gdbarch);
4569 if (offset + xfer > TYPE_LENGTH (type))
4570 xfer = TYPE_LENGTH (type) - offset;
4571 mips_xfer_register (gdbarch, regcache,
4572 gdbarch_num_regs (gdbarch) + regnum, xfer,
4573 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4574 offset);
4575 }
4576
9c8fdbfa 4577 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4578}
4579
6d82d43b
AC
4580
4581/* N32/N64 ABI stuff. */
ebafbe83 4582
8d26208a
DJ
4583/* Search for a naturally aligned double at OFFSET inside a struct
4584 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4585 registers. */
4586
4587static int
74ed0bb4
MD
4588mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4589 int offset)
8d26208a
DJ
4590{
4591 int i;
4592
4593 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4594 return 0;
4595
74ed0bb4 4596 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4597 return 0;
4598
4599 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4600 return 0;
4601
4602 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4603 {
4604 int pos;
4605 struct type *field_type;
4606
4607 /* We're only looking at normal fields. */
5bc60cfb 4608 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4609 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4610 continue;
4611
4612 /* If we have gone past the offset, there is no double to pass. */
4613 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4614 if (pos > offset)
4615 return 0;
4616
4617 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4618
4619 /* If this field is entirely before the requested offset, go
4620 on to the next one. */
4621 if (pos + TYPE_LENGTH (field_type) <= offset)
4622 continue;
4623
4624 /* If this is our special aligned double, we can stop. */
4625 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4626 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4627 return 1;
4628
4629 /* This field starts at or before the requested offset, and
4630 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4631 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4632 }
4633
4634 return 0;
4635}
4636
f7ab6ec6 4637static CORE_ADDR
7d9b040b 4638mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4639 struct regcache *regcache, CORE_ADDR bp_addr,
4640 int nargs, struct value **args, CORE_ADDR sp,
4641 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4642{
4643 int argreg;
4644 int float_argreg;
4645 int argnum;
4646 int len = 0;
4647 int stack_offset = 0;
e17a4113 4648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4649 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4650
25ab4790
AC
4651 /* For shared libraries, "t9" needs to point at the function
4652 address. */
4c7d22cb 4653 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4654
4655 /* Set the return address register to point to the entry point of
4656 the program, where a breakpoint lies in wait. */
4c7d22cb 4657 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4658
cb3d25d1
MS
4659 /* First ensure that the stack and structure return address (if any)
4660 are properly aligned. The stack has to be at least 64-bit
4661 aligned even on 32-bit machines, because doubles must be 64-bit
4662 aligned. For n32 and n64, stack frames need to be 128-bit
4663 aligned, so we round to this widest known alignment. */
4664
5b03f266
AC
4665 sp = align_down (sp, 16);
4666 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4667
4668 /* Now make space on the stack for the args. */
4669 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4670 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4671 sp -= align_up (len, 16);
cb3d25d1
MS
4672
4673 if (mips_debug)
6d82d43b 4674 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4675 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4676 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4677
4678 /* Initialize the integer and float register pointers. */
4c7d22cb 4679 argreg = MIPS_A0_REGNUM;
72a155b4 4680 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4681
46e0f506 4682 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4683 if (struct_return)
4684 {
4685 if (mips_debug)
4686 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4687 "mips_n32n64_push_dummy_call: "
4688 "struct_return reg=%d %s\n",
5af949e3 4689 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4690 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4691 }
4692
4693 /* Now load as many as possible of the first arguments into
4694 registers, and push the rest onto the stack. Loop thru args
4695 from first to last. */
4696 for (argnum = 0; argnum < nargs; argnum++)
4697 {
47a35522 4698 const gdb_byte *val;
cb3d25d1 4699 struct value *arg = args[argnum];
4991999e 4700 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4701 int len = TYPE_LENGTH (arg_type);
4702 enum type_code typecode = TYPE_CODE (arg_type);
4703
4704 if (mips_debug)
4705 fprintf_unfiltered (gdb_stdlog,
25ab4790 4706 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4707 argnum + 1, len, (int) typecode);
4708
47a35522 4709 val = value_contents (arg);
cb3d25d1 4710
5b68030f
JM
4711 /* A 128-bit long double value requires an even-odd pair of
4712 floating-point registers. */
4713 if (len == 16
4714 && fp_register_arg_p (gdbarch, typecode, arg_type)
4715 && (float_argreg & 1))
4716 {
4717 float_argreg++;
4718 argreg++;
4719 }
4720
74ed0bb4
MD
4721 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4722 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4723 {
4724 /* This is a floating point value that fits entirely
5b68030f
JM
4725 in a single register or a pair of registers. */
4726 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4727 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4728 if (mips_debug)
4729 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4730 float_argreg, phex (regval, reglen));
8d26208a 4731 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4732
4733 if (mips_debug)
4734 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4735 argreg, phex (regval, reglen));
9c9acae0 4736 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4737 float_argreg++;
4738 argreg++;
5b68030f
JM
4739 if (len == 16)
4740 {
e17a4113
UW
4741 regval = extract_unsigned_integer (val + reglen,
4742 reglen, byte_order);
5b68030f
JM
4743 if (mips_debug)
4744 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4745 float_argreg, phex (regval, reglen));
4746 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4747
4748 if (mips_debug)
4749 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4750 argreg, phex (regval, reglen));
4751 regcache_cooked_write_unsigned (regcache, argreg, regval);
4752 float_argreg++;
4753 argreg++;
4754 }
cb3d25d1
MS
4755 }
4756 else
4757 {
4758 /* Copy the argument to general registers or the stack in
4759 register-sized pieces. Large arguments are split between
4760 registers and stack. */
ab2e1992
MR
4761 /* For N32/N64, structs, unions, or other composite types are
4762 treated as a sequence of doublewords, and are passed in integer
4763 or floating point registers as though they were simple scalar
4764 parameters to the extent that they fit, with any excess on the
4765 stack packed according to the normal memory layout of the
4766 object.
4767 The caller does not reserve space for the register arguments;
4768 the callee is responsible for reserving it if required. */
cb3d25d1 4769 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4770 register are only written to memory. */
cb3d25d1
MS
4771 while (len > 0)
4772 {
ad018eee 4773 /* Remember if the argument was written to the stack. */
cb3d25d1 4774 int stack_used_p = 0;
1a69e1e4 4775 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
4776
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4779 partial_len);
4780
74ed0bb4
MD
4781 if (fp_register_arg_p (gdbarch, typecode, arg_type))
4782 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 4783
cb3d25d1 4784 /* Write this portion of the argument to the stack. */
74ed0bb4 4785 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4786 {
4787 /* Should shorter than int integer values be
025bb325 4788 promoted to int before being stored? */
cb3d25d1
MS
4789 int longword_offset = 0;
4790 CORE_ADDR addr;
4791 stack_used_p = 1;
72a155b4 4792 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 4793 {
1a69e1e4 4794 if ((typecode == TYPE_CODE_INT
5b68030f 4795 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
4796 && len <= 4)
4797 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
4798 }
4799
4800 if (mips_debug)
4801 {
5af949e3
UW
4802 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4803 paddress (gdbarch, stack_offset));
4804 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4805 paddress (gdbarch, longword_offset));
cb3d25d1
MS
4806 }
4807
4808 addr = sp + stack_offset + longword_offset;
4809
4810 if (mips_debug)
4811 {
4812 int i;
5af949e3
UW
4813 fprintf_unfiltered (gdb_stdlog, " @%s ",
4814 paddress (gdbarch, addr));
cb3d25d1
MS
4815 for (i = 0; i < partial_len; i++)
4816 {
6d82d43b 4817 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
4818 val[i] & 0xff);
4819 }
4820 }
4821 write_memory (addr, val, partial_len);
4822 }
4823
4824 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 4825 structs may go thru BOTH paths. */
cb3d25d1 4826 /* Write this portion of the argument to a general
6d82d43b 4827 purpose register. */
74ed0bb4 4828 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 4829 {
5863b5d5
MR
4830 LONGEST regval;
4831
4832 /* Sign extend pointers, 32-bit integers and signed
4833 16-bit and 8-bit integers; everything else is taken
4834 as is. */
4835
4836 if ((partial_len == 4
4837 && (typecode == TYPE_CODE_PTR
4838 || typecode == TYPE_CODE_INT))
4839 || (partial_len < 4
4840 && typecode == TYPE_CODE_INT
4841 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
4842 regval = extract_signed_integer (val, partial_len,
4843 byte_order);
5863b5d5 4844 else
e17a4113
UW
4845 regval = extract_unsigned_integer (val, partial_len,
4846 byte_order);
cb3d25d1
MS
4847
4848 /* A non-floating-point argument being passed in a
4849 general register. If a struct or union, and if
4850 the remaining length is smaller than the register
4851 size, we have to adjust the register value on
4852 big endian targets.
4853
4854 It does not seem to be necessary to do the
1a69e1e4 4855 same for integral types. */
cb3d25d1 4856
72a155b4 4857 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 4858 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
4859 && (typecode == TYPE_CODE_STRUCT
4860 || typecode == TYPE_CODE_UNION))
1a69e1e4 4861 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 4862 * TARGET_CHAR_BIT);
cb3d25d1
MS
4863
4864 if (mips_debug)
4865 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4866 argreg,
1a69e1e4 4867 phex (regval, MIPS64_REGSIZE));
9c9acae0 4868 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 4869
74ed0bb4 4870 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
4871 TYPE_LENGTH (arg_type) - len))
4872 {
4873 if (mips_debug)
4874 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
4875 float_argreg,
4876 phex (regval, MIPS64_REGSIZE));
4877 regcache_cooked_write_unsigned (regcache, float_argreg,
4878 regval);
4879 }
4880
4881 float_argreg++;
cb3d25d1
MS
4882 argreg++;
4883 }
4884
4885 len -= partial_len;
4886 val += partial_len;
4887
b021a221
MS
4888 /* Compute the offset into the stack at which we will
4889 copy the next parameter.
cb3d25d1
MS
4890
4891 In N32 (N64?), the stack_offset only needs to be
4892 adjusted when it has been used. */
4893
4894 if (stack_used_p)
1a69e1e4 4895 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
4896 }
4897 }
4898 if (mips_debug)
4899 fprintf_unfiltered (gdb_stdlog, "\n");
4900 }
4901
f10683bb 4902 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4903
cb3d25d1
MS
4904 /* Return adjusted stack pointer. */
4905 return sp;
4906}
4907
6d82d43b 4908static enum return_value_convention
6a3a010b 4909mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 4910 struct type *type, struct regcache *regcache,
47a35522 4911 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 4912{
72a155b4 4913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
4914
4915 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
4916
4917 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
4918 if needed), as appropriate for the type. Composite results (struct,
4919 union, or array) are returned in $2/$f0 and $3/$f2 according to the
4920 following rules:
4921
4922 * A struct with only one or two floating point fields is returned in $f0
4923 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
4924 case.
4925
f08877ba 4926 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
4927 $2 (first 64 bits) and $3 (remainder, if necessary).
4928
4929 * Larger composite results are handled by converting the function to a
4930 procedure with an implicit first parameter, which is a pointer to an area
4931 reserved by the caller to receive the result. [The o32-bit ABI requires
4932 that all composite results be handled by conversion to implicit first
4933 parameters. The MIPS/SGI Fortran implementation has always made a
4934 specific exception to return COMPLEX results in the floating point
4935 registers.] */
4936
f08877ba 4937 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 4938 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
4939 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4940 && TYPE_LENGTH (type) == 16
4941 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4942 {
4943 /* A 128-bit floating-point value fills both $f0 and $f2. The
4944 two registers are used in the same as memory order, so the
4945 eight bytes with the lower memory address are in $f0. */
4946 if (mips_debug)
4947 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 4948 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
4949 (gdbarch_num_regs (gdbarch)
4950 + mips_regnum (gdbarch)->fp0),
72a155b4 4951 8, gdbarch_byte_order (gdbarch),
4c6b5505 4952 readbuf, writebuf, 0);
ba32f989 4953 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
4954 (gdbarch_num_regs (gdbarch)
4955 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 4956 8, gdbarch_byte_order (gdbarch),
4c6b5505 4957 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
4958 writebuf ? writebuf + 8 : writebuf, 0);
4959 return RETURN_VALUE_REGISTER_CONVENTION;
4960 }
6d82d43b
AC
4961 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4962 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4963 {
59aa1faa 4964 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
4965 if (mips_debug)
4966 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 4967 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
4968 (gdbarch_num_regs (gdbarch)
4969 + mips_regnum (gdbarch)->fp0),
6d82d43b 4970 TYPE_LENGTH (type),
72a155b4 4971 gdbarch_byte_order (gdbarch),
4c6b5505 4972 readbuf, writebuf, 0);
6d82d43b
AC
4973 return RETURN_VALUE_REGISTER_CONVENTION;
4974 }
4975 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4976 && TYPE_NFIELDS (type) <= 2
4977 && TYPE_NFIELDS (type) >= 1
4978 && ((TYPE_NFIELDS (type) == 1
b18bb924 4979 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
4980 == TYPE_CODE_FLT))
4981 || (TYPE_NFIELDS (type) == 2
b18bb924 4982 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 4983 == TYPE_CODE_FLT)
b18bb924 4984 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 4985 == TYPE_CODE_FLT))))
6d82d43b
AC
4986 {
4987 /* A struct that contains one or two floats. Each value is part
4988 in the least significant part of their floating point
5b68030f 4989 register (or GPR, for soft float). */
6d82d43b
AC
4990 int regnum;
4991 int field;
5b68030f
JM
4992 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
4993 ? mips_regnum (gdbarch)->fp0
4994 : MIPS_V0_REGNUM);
6d82d43b
AC
4995 field < TYPE_NFIELDS (type); field++, regnum += 2)
4996 {
4997 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4998 / TARGET_CHAR_BIT);
4999 if (mips_debug)
5000 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5001 offset);
5b68030f
JM
5002 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5003 {
5004 /* A 16-byte long double field goes in two consecutive
5005 registers. */
5006 mips_xfer_register (gdbarch, regcache,
5007 gdbarch_num_regs (gdbarch) + regnum,
5008 8,
5009 gdbarch_byte_order (gdbarch),
5010 readbuf, writebuf, offset);
5011 mips_xfer_register (gdbarch, regcache,
5012 gdbarch_num_regs (gdbarch) + regnum + 1,
5013 8,
5014 gdbarch_byte_order (gdbarch),
5015 readbuf, writebuf, offset + 8);
5016 }
5017 else
5018 mips_xfer_register (gdbarch, regcache,
5019 gdbarch_num_regs (gdbarch) + regnum,
5020 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5021 gdbarch_byte_order (gdbarch),
5022 readbuf, writebuf, offset);
6d82d43b
AC
5023 }
5024 return RETURN_VALUE_REGISTER_CONVENTION;
5025 }
5026 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5027 || TYPE_CODE (type) == TYPE_CODE_UNION
5028 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5029 {
f08877ba 5030 /* A composite type. Extract the left justified value,
6d82d43b
AC
5031 regardless of the byte order. I.e. DO NOT USE
5032 mips_xfer_lower. */
5033 int offset;
5034 int regnum;
4c7d22cb 5035 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5036 offset < TYPE_LENGTH (type);
72a155b4 5037 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5038 {
72a155b4 5039 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5040 if (offset + xfer > TYPE_LENGTH (type))
5041 xfer = TYPE_LENGTH (type) - offset;
5042 if (mips_debug)
5043 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5044 offset, xfer, regnum);
ba32f989
DJ
5045 mips_xfer_register (gdbarch, regcache,
5046 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5047 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5048 offset);
6d82d43b
AC
5049 }
5050 return RETURN_VALUE_REGISTER_CONVENTION;
5051 }
5052 else
5053 {
5054 /* A scalar extract each part but least-significant-byte
5055 justified. */
5056 int offset;
5057 int regnum;
4c7d22cb 5058 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5059 offset < TYPE_LENGTH (type);
72a155b4 5060 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5061 {
72a155b4 5062 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5063 if (offset + xfer > TYPE_LENGTH (type))
5064 xfer = TYPE_LENGTH (type) - offset;
5065 if (mips_debug)
5066 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5067 offset, xfer, regnum);
ba32f989
DJ
5068 mips_xfer_register (gdbarch, regcache,
5069 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5070 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5071 readbuf, writebuf, offset);
6d82d43b
AC
5072 }
5073 return RETURN_VALUE_REGISTER_CONVENTION;
5074 }
5075}
5076
6a3a010b
MR
5077/* Which registers to use for passing floating-point values between
5078 function calls, one of floating-point, general and both kinds of
5079 registers. O32 and O64 use different register kinds for standard
5080 MIPS and MIPS16 code; to make the handling of cases where we may
5081 not know what kind of code is being used (e.g. no debug information)
5082 easier we sometimes use both kinds. */
5083
5084enum mips_fval_reg
5085{
5086 mips_fval_fpr,
5087 mips_fval_gpr,
5088 mips_fval_both
5089};
5090
6d82d43b
AC
5091/* O32 ABI stuff. */
5092
5093static CORE_ADDR
7d9b040b 5094mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5095 struct regcache *regcache, CORE_ADDR bp_addr,
5096 int nargs, struct value **args, CORE_ADDR sp,
5097 int struct_return, CORE_ADDR struct_addr)
5098{
5099 int argreg;
5100 int float_argreg;
5101 int argnum;
5102 int len = 0;
5103 int stack_offset = 0;
e17a4113 5104 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5105 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5106
5107 /* For shared libraries, "t9" needs to point at the function
5108 address. */
4c7d22cb 5109 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5110
5111 /* Set the return address register to point to the entry point of
5112 the program, where a breakpoint lies in wait. */
4c7d22cb 5113 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5114
5115 /* First ensure that the stack and structure return address (if any)
5116 are properly aligned. The stack has to be at least 64-bit
5117 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5118 aligned. For n32 and n64, stack frames need to be 128-bit
5119 aligned, so we round to this widest known alignment. */
5120
5b03f266
AC
5121 sp = align_down (sp, 16);
5122 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5123
5124 /* Now make space on the stack for the args. */
5125 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5126 {
5127 struct type *arg_type = check_typedef (value_type (args[argnum]));
5128 int arglen = TYPE_LENGTH (arg_type);
5129
5130 /* Align to double-word if necessary. */
2afd3f0a 5131 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5132 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5133 /* Allocate space on the stack. */
1a69e1e4 5134 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 5135 }
5b03f266 5136 sp -= align_up (len, 16);
ebafbe83
MS
5137
5138 if (mips_debug)
6d82d43b 5139 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5140 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5141 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5142
5143 /* Initialize the integer and float register pointers. */
4c7d22cb 5144 argreg = MIPS_A0_REGNUM;
72a155b4 5145 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5146
bcb0cc15 5147 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5148 if (struct_return)
5149 {
5150 if (mips_debug)
5151 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5152 "mips_o32_push_dummy_call: "
5153 "struct_return reg=%d %s\n",
5af949e3 5154 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5155 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5156 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5157 }
5158
5159 /* Now load as many as possible of the first arguments into
5160 registers, and push the rest onto the stack. Loop thru args
5161 from first to last. */
5162 for (argnum = 0; argnum < nargs; argnum++)
5163 {
47a35522 5164 const gdb_byte *val;
ebafbe83 5165 struct value *arg = args[argnum];
4991999e 5166 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5167 int len = TYPE_LENGTH (arg_type);
5168 enum type_code typecode = TYPE_CODE (arg_type);
5169
5170 if (mips_debug)
5171 fprintf_unfiltered (gdb_stdlog,
25ab4790 5172 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5173 argnum + 1, len, (int) typecode);
5174
47a35522 5175 val = value_contents (arg);
46cac009
AC
5176
5177 /* 32-bit ABIs always start floating point arguments in an
5178 even-numbered floating point register. Round the FP register
5179 up before the check to see if there are any FP registers
6a3a010b
MR
5180 left. O32 targets also pass the FP in the integer registers
5181 so also round up normal registers. */
74ed0bb4 5182 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5183 {
5184 if ((float_argreg & 1))
5185 float_argreg++;
5186 }
5187
5188 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5189 treated specially. On 32-bit architectures, doubles are
5190 passed in register pairs; the even FP register gets the
5191 low word, and the odd FP register gets the high word.
5192 On O32, the first two floating point arguments are also
5193 copied to general registers, following their memory order,
5194 because MIPS16 functions don't use float registers for
5195 arguments. This duplication of arguments in general
5196 registers can't hurt non-MIPS16 functions, because those
5197 registers are normally skipped. */
46cac009 5198
74ed0bb4
MD
5199 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5200 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5201 {
8b07f6d8 5202 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5203 {
6a3a010b
MR
5204 int freg_offset = gdbarch_byte_order (gdbarch)
5205 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5206 unsigned long regval;
5207
6a3a010b
MR
5208 /* First word. */
5209 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5210 if (mips_debug)
5211 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5212 float_argreg + freg_offset,
5213 phex (regval, 4));
025bb325 5214 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5215 float_argreg++ + freg_offset,
5216 regval);
46cac009
AC
5217 if (mips_debug)
5218 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5219 argreg, phex (regval, 4));
9c9acae0 5220 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5221
6a3a010b
MR
5222 /* Second word. */
5223 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5224 if (mips_debug)
5225 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5226 float_argreg - freg_offset,
5227 phex (regval, 4));
025bb325 5228 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5229 float_argreg++ - freg_offset,
5230 regval);
46cac009
AC
5231 if (mips_debug)
5232 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5233 argreg, phex (regval, 4));
9c9acae0 5234 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5235 }
5236 else
5237 {
5238 /* This is a floating point value that fits entirely
5239 in a single register. */
5240 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5241 above to ensure that it is even register aligned. */
e17a4113 5242 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5243 if (mips_debug)
5244 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5245 float_argreg, phex (regval, len));
025bb325
MS
5246 regcache_cooked_write_unsigned (regcache,
5247 float_argreg++, regval);
5b68030f
JM
5248 /* Although two FP registers are reserved for each
5249 argument, only one corresponding integer register is
5250 reserved. */
46cac009
AC
5251 if (mips_debug)
5252 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5253 argreg, phex (regval, len));
5b68030f 5254 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5255 }
5256 /* Reserve space for the FP register. */
1a69e1e4 5257 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5258 }
5259 else
5260 {
5261 /* Copy the argument to general registers or the stack in
5262 register-sized pieces. Large arguments are split between
5263 registers and stack. */
1a69e1e4
DJ
5264 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5265 are treated specially: Irix cc passes
d5ac5a39
AC
5266 them in registers where gcc sometimes puts them on the
5267 stack. For maximum compatibility, we will put them in
5268 both places. */
1a69e1e4
DJ
5269 int odd_sized_struct = (len > MIPS32_REGSIZE
5270 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5271 /* Structures should be aligned to eight bytes (even arg registers)
5272 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5273 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5274 {
5275 if ((argreg & 1))
968b5391
MR
5276 {
5277 argreg++;
1a69e1e4 5278 stack_offset += MIPS32_REGSIZE;
968b5391 5279 }
46cac009 5280 }
46cac009
AC
5281 while (len > 0)
5282 {
5283 /* Remember if the argument was written to the stack. */
5284 int stack_used_p = 0;
1a69e1e4 5285 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5286
5287 if (mips_debug)
5288 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5289 partial_len);
5290
5291 /* Write this portion of the argument to the stack. */
74ed0bb4 5292 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5293 || odd_sized_struct)
46cac009
AC
5294 {
5295 /* Should shorter than int integer values be
025bb325 5296 promoted to int before being stored? */
46cac009
AC
5297 int longword_offset = 0;
5298 CORE_ADDR addr;
5299 stack_used_p = 1;
46cac009
AC
5300
5301 if (mips_debug)
5302 {
5af949e3
UW
5303 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5304 paddress (gdbarch, stack_offset));
5305 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5306 paddress (gdbarch, longword_offset));
46cac009
AC
5307 }
5308
5309 addr = sp + stack_offset + longword_offset;
5310
5311 if (mips_debug)
5312 {
5313 int i;
5af949e3
UW
5314 fprintf_unfiltered (gdb_stdlog, " @%s ",
5315 paddress (gdbarch, addr));
46cac009
AC
5316 for (i = 0; i < partial_len; i++)
5317 {
6d82d43b 5318 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5319 val[i] & 0xff);
5320 }
5321 }
5322 write_memory (addr, val, partial_len);
5323 }
5324
5325 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5326 structs may go thru BOTH paths. */
46cac009 5327 /* Write this portion of the argument to a general
6d82d43b 5328 purpose register. */
74ed0bb4 5329 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5330 {
e17a4113
UW
5331 LONGEST regval = extract_signed_integer (val, partial_len,
5332 byte_order);
4246e332 5333 /* Value may need to be sign extended, because
1b13c4f6 5334 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5335
5336 /* A non-floating-point argument being passed in a
5337 general register. If a struct or union, and if
5338 the remaining length is smaller than the register
5339 size, we have to adjust the register value on
5340 big endian targets.
5341
5342 It does not seem to be necessary to do the
5343 same for integral types.
5344
5345 Also don't do this adjustment on O64 binaries.
5346
5347 cagney/2001-07-23: gdb/179: Also, GCC, when
5348 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5349 mips_abi_regsize(), generates a left shift
5350 as part of storing the argument in a register
5351 (the left shift isn't generated when
1b13c4f6 5352 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5353 it is quite possible that this is GCC
5354 contradicting the LE/O32 ABI, GDB has not been
5355 adjusted to accommodate this. Either someone
5356 needs to demonstrate that the LE/O32 ABI
5357 specifies such a left shift OR this new ABI gets
5358 identified as such and GDB gets tweaked
5359 accordingly. */
5360
72a155b4 5361 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5362 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5363 && (typecode == TYPE_CODE_STRUCT
5364 || typecode == TYPE_CODE_UNION))
1a69e1e4 5365 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5366 * TARGET_CHAR_BIT);
46cac009
AC
5367
5368 if (mips_debug)
5369 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5370 argreg,
1a69e1e4 5371 phex (regval, MIPS32_REGSIZE));
9c9acae0 5372 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5373 argreg++;
5374
5375 /* Prevent subsequent floating point arguments from
5376 being passed in floating point registers. */
74ed0bb4 5377 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5378 }
5379
5380 len -= partial_len;
5381 val += partial_len;
5382
b021a221
MS
5383 /* Compute the offset into the stack at which we will
5384 copy the next parameter.
46cac009 5385
6d82d43b
AC
5386 In older ABIs, the caller reserved space for
5387 registers that contained arguments. This was loosely
5388 refered to as their "home". Consequently, space is
5389 always allocated. */
46cac009 5390
1a69e1e4 5391 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5392 }
5393 }
5394 if (mips_debug)
5395 fprintf_unfiltered (gdb_stdlog, "\n");
5396 }
5397
f10683bb 5398 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5399
46cac009
AC
5400 /* Return adjusted stack pointer. */
5401 return sp;
5402}
5403
6d82d43b 5404static enum return_value_convention
6a3a010b 5405mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5406 struct type *type, struct regcache *regcache,
47a35522 5407 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5408{
6a3a010b 5409 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5410 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5412 enum mips_fval_reg fval_reg;
6d82d43b 5413
6a3a010b 5414 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5415 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5416 || TYPE_CODE (type) == TYPE_CODE_UNION
5417 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5418 return RETURN_VALUE_STRUCT_CONVENTION;
5419 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5420 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5421 {
6a3a010b
MR
5422 /* A single-precision floating-point value. If reading in or copying,
5423 then we get it from/put it to FP0 for standard MIPS code or GPR2
5424 for MIPS16 code. If writing out only, then we put it to both FP0
5425 and GPR2. We do not support reading in with no function known, if
5426 this safety check ever triggers, then we'll have to try harder. */
5427 gdb_assert (function || !readbuf);
6d82d43b 5428 if (mips_debug)
6a3a010b
MR
5429 switch (fval_reg)
5430 {
5431 case mips_fval_fpr:
5432 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5433 break;
5434 case mips_fval_gpr:
5435 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5436 break;
5437 case mips_fval_both:
5438 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5439 break;
5440 }
5441 if (fval_reg != mips_fval_gpr)
5442 mips_xfer_register (gdbarch, regcache,
5443 (gdbarch_num_regs (gdbarch)
5444 + mips_regnum (gdbarch)->fp0),
5445 TYPE_LENGTH (type),
5446 gdbarch_byte_order (gdbarch),
5447 readbuf, writebuf, 0);
5448 if (fval_reg != mips_fval_fpr)
5449 mips_xfer_register (gdbarch, regcache,
5450 gdbarch_num_regs (gdbarch) + 2,
5451 TYPE_LENGTH (type),
5452 gdbarch_byte_order (gdbarch),
5453 readbuf, writebuf, 0);
6d82d43b
AC
5454 return RETURN_VALUE_REGISTER_CONVENTION;
5455 }
5456 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5457 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5458 {
6a3a010b
MR
5459 /* A double-precision floating-point value. If reading in or copying,
5460 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5461 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5462 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5463 no function known, if this safety check ever triggers, then we'll
5464 have to try harder. */
5465 gdb_assert (function || !readbuf);
6d82d43b 5466 if (mips_debug)
6a3a010b
MR
5467 switch (fval_reg)
5468 {
5469 case mips_fval_fpr:
5470 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5471 break;
5472 case mips_fval_gpr:
5473 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5474 break;
5475 case mips_fval_both:
5476 fprintf_unfiltered (gdb_stderr,
5477 "Return float in $fp1/$fp0 and $2/$3\n");
5478 break;
5479 }
5480 if (fval_reg != mips_fval_gpr)
6d82d43b 5481 {
6a3a010b
MR
5482 /* The most significant part goes in FP1, and the least significant
5483 in FP0. */
5484 switch (gdbarch_byte_order (gdbarch))
5485 {
5486 case BFD_ENDIAN_LITTLE:
5487 mips_xfer_register (gdbarch, regcache,
5488 (gdbarch_num_regs (gdbarch)
5489 + mips_regnum (gdbarch)->fp0 + 0),
5490 4, gdbarch_byte_order (gdbarch),
5491 readbuf, writebuf, 0);
5492 mips_xfer_register (gdbarch, regcache,
5493 (gdbarch_num_regs (gdbarch)
5494 + mips_regnum (gdbarch)->fp0 + 1),
5495 4, gdbarch_byte_order (gdbarch),
5496 readbuf, writebuf, 4);
5497 break;
5498 case BFD_ENDIAN_BIG:
5499 mips_xfer_register (gdbarch, regcache,
5500 (gdbarch_num_regs (gdbarch)
5501 + mips_regnum (gdbarch)->fp0 + 1),
5502 4, gdbarch_byte_order (gdbarch),
5503 readbuf, writebuf, 0);
5504 mips_xfer_register (gdbarch, regcache,
5505 (gdbarch_num_regs (gdbarch)
5506 + mips_regnum (gdbarch)->fp0 + 0),
5507 4, gdbarch_byte_order (gdbarch),
5508 readbuf, writebuf, 4);
5509 break;
5510 default:
5511 internal_error (__FILE__, __LINE__, _("bad switch"));
5512 }
5513 }
5514 if (fval_reg != mips_fval_fpr)
5515 {
5516 /* The two 32-bit parts are always placed in GPR2 and GPR3
5517 following these registers' memory order. */
ba32f989 5518 mips_xfer_register (gdbarch, regcache,
6a3a010b 5519 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5520 4, gdbarch_byte_order (gdbarch),
4c6b5505 5521 readbuf, writebuf, 0);
ba32f989 5522 mips_xfer_register (gdbarch, regcache,
6a3a010b 5523 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5524 4, gdbarch_byte_order (gdbarch),
4c6b5505 5525 readbuf, writebuf, 4);
6d82d43b
AC
5526 }
5527 return RETURN_VALUE_REGISTER_CONVENTION;
5528 }
5529#if 0
5530 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5531 && TYPE_NFIELDS (type) <= 2
5532 && TYPE_NFIELDS (type) >= 1
5533 && ((TYPE_NFIELDS (type) == 1
5534 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5535 == TYPE_CODE_FLT))
5536 || (TYPE_NFIELDS (type) == 2
5537 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5538 == TYPE_CODE_FLT)
5539 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5540 == TYPE_CODE_FLT)))
5541 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5542 {
5543 /* A struct that contains one or two floats. Each value is part
5544 in the least significant part of their floating point
5545 register.. */
870cd05e 5546 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
5547 int regnum;
5548 int field;
72a155b4 5549 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5550 field < TYPE_NFIELDS (type); field++, regnum += 2)
5551 {
5552 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5553 / TARGET_CHAR_BIT);
5554 if (mips_debug)
5555 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5556 offset);
ba32f989
DJ
5557 mips_xfer_register (gdbarch, regcache,
5558 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5559 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5560 gdbarch_byte_order (gdbarch),
4c6b5505 5561 readbuf, writebuf, offset);
6d82d43b
AC
5562 }
5563 return RETURN_VALUE_REGISTER_CONVENTION;
5564 }
5565#endif
5566#if 0
5567 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5568 || TYPE_CODE (type) == TYPE_CODE_UNION)
5569 {
5570 /* A structure or union. Extract the left justified value,
5571 regardless of the byte order. I.e. DO NOT USE
5572 mips_xfer_lower. */
5573 int offset;
5574 int regnum;
4c7d22cb 5575 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5576 offset < TYPE_LENGTH (type);
72a155b4 5577 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5578 {
72a155b4 5579 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5580 if (offset + xfer > TYPE_LENGTH (type))
5581 xfer = TYPE_LENGTH (type) - offset;
5582 if (mips_debug)
5583 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5584 offset, xfer, regnum);
ba32f989
DJ
5585 mips_xfer_register (gdbarch, regcache,
5586 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5587 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5588 }
5589 return RETURN_VALUE_REGISTER_CONVENTION;
5590 }
5591#endif
5592 else
5593 {
5594 /* A scalar extract each part but least-significant-byte
5595 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5596 the ISA. */
6d82d43b
AC
5597 int offset;
5598 int regnum;
4c7d22cb 5599 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5600 offset < TYPE_LENGTH (type);
1a69e1e4 5601 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5602 {
1a69e1e4 5603 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5604 if (offset + xfer > TYPE_LENGTH (type))
5605 xfer = TYPE_LENGTH (type) - offset;
5606 if (mips_debug)
5607 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5608 offset, xfer, regnum);
ba32f989
DJ
5609 mips_xfer_register (gdbarch, regcache,
5610 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5611 gdbarch_byte_order (gdbarch),
4c6b5505 5612 readbuf, writebuf, offset);
6d82d43b
AC
5613 }
5614 return RETURN_VALUE_REGISTER_CONVENTION;
5615 }
5616}
5617
5618/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5619 ABI. */
46cac009
AC
5620
5621static CORE_ADDR
7d9b040b 5622mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5623 struct regcache *regcache, CORE_ADDR bp_addr,
5624 int nargs,
5625 struct value **args, CORE_ADDR sp,
5626 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5627{
5628 int argreg;
5629 int float_argreg;
5630 int argnum;
5631 int len = 0;
5632 int stack_offset = 0;
e17a4113 5633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5634 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5635
25ab4790
AC
5636 /* For shared libraries, "t9" needs to point at the function
5637 address. */
4c7d22cb 5638 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5639
5640 /* Set the return address register to point to the entry point of
5641 the program, where a breakpoint lies in wait. */
4c7d22cb 5642 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5643
46cac009
AC
5644 /* First ensure that the stack and structure return address (if any)
5645 are properly aligned. The stack has to be at least 64-bit
5646 aligned even on 32-bit machines, because doubles must be 64-bit
5647 aligned. For n32 and n64, stack frames need to be 128-bit
5648 aligned, so we round to this widest known alignment. */
5649
5b03f266
AC
5650 sp = align_down (sp, 16);
5651 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5652
5653 /* Now make space on the stack for the args. */
5654 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5655 {
5656 struct type *arg_type = check_typedef (value_type (args[argnum]));
5657 int arglen = TYPE_LENGTH (arg_type);
5658
968b5391 5659 /* Allocate space on the stack. */
1a69e1e4 5660 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 5661 }
5b03f266 5662 sp -= align_up (len, 16);
46cac009
AC
5663
5664 if (mips_debug)
6d82d43b 5665 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5666 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5667 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5668
5669 /* Initialize the integer and float register pointers. */
4c7d22cb 5670 argreg = MIPS_A0_REGNUM;
72a155b4 5671 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5672
5673 /* The struct_return pointer occupies the first parameter-passing reg. */
5674 if (struct_return)
5675 {
5676 if (mips_debug)
5677 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5678 "mips_o64_push_dummy_call: "
5679 "struct_return reg=%d %s\n",
5af949e3 5680 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5681 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5682 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5683 }
5684
5685 /* Now load as many as possible of the first arguments into
5686 registers, and push the rest onto the stack. Loop thru args
5687 from first to last. */
5688 for (argnum = 0; argnum < nargs; argnum++)
5689 {
47a35522 5690 const gdb_byte *val;
930bd0e0 5691 gdb_byte valbuf[MAX_REGISTER_SIZE];
46cac009 5692 struct value *arg = args[argnum];
4991999e 5693 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5694 int len = TYPE_LENGTH (arg_type);
5695 enum type_code typecode = TYPE_CODE (arg_type);
5696
5697 if (mips_debug)
5698 fprintf_unfiltered (gdb_stdlog,
25ab4790 5699 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5700 argnum + 1, len, (int) typecode);
5701
47a35522 5702 val = value_contents (arg);
ebafbe83 5703
930bd0e0
KB
5704 /* Function pointer arguments to mips16 code need to be made into
5705 mips16 pointers. */
5706 if (typecode == TYPE_CODE_PTR
5707 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
5708 {
5709 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
5710 len, byte_order);
4cc0665f 5711 if (!mips_pc_is_mips (addr))
930bd0e0
KB
5712 {
5713 store_signed_integer (valbuf, len, byte_order,
4cc0665f 5714 make_compact_addr (addr));
930bd0e0
KB
5715 val = valbuf;
5716 }
5717 }
5718
ebafbe83 5719 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5720 treated specially. On 32-bit architectures, doubles are
5721 passed in register pairs; the even FP register gets the
5722 low word, and the odd FP register gets the high word.
5723 On O64, the first two floating point arguments are also
5724 copied to general registers, because MIPS16 functions
5725 don't use float registers for arguments. This duplication
5726 of arguments in general registers can't hurt non-MIPS16
5727 functions because those registers are normally skipped. */
ebafbe83 5728
74ed0bb4
MD
5729 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5730 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5731 {
e17a4113 5732 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5733 if (mips_debug)
5734 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5735 float_argreg, phex (regval, len));
9c9acae0 5736 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5737 if (mips_debug)
5738 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5739 argreg, phex (regval, len));
9c9acae0 5740 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5741 argreg++;
ebafbe83 5742 /* Reserve space for the FP register. */
1a69e1e4 5743 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5744 }
5745 else
5746 {
5747 /* Copy the argument to general registers or the stack in
5748 register-sized pieces. Large arguments are split between
5749 registers and stack. */
1a69e1e4 5750 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5751 are treated specially: Irix cc passes them in registers
5752 where gcc sometimes puts them on the stack. For maximum
5753 compatibility, we will put them in both places. */
1a69e1e4
DJ
5754 int odd_sized_struct = (len > MIPS64_REGSIZE
5755 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5756 while (len > 0)
5757 {
5758 /* Remember if the argument was written to the stack. */
5759 int stack_used_p = 0;
1a69e1e4 5760 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5761
5762 if (mips_debug)
5763 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5764 partial_len);
5765
5766 /* Write this portion of the argument to the stack. */
74ed0bb4 5767 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5768 || odd_sized_struct)
ebafbe83
MS
5769 {
5770 /* Should shorter than int integer values be
025bb325 5771 promoted to int before being stored? */
ebafbe83
MS
5772 int longword_offset = 0;
5773 CORE_ADDR addr;
5774 stack_used_p = 1;
72a155b4 5775 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 5776 {
1a69e1e4
DJ
5777 if ((typecode == TYPE_CODE_INT
5778 || typecode == TYPE_CODE_PTR
5779 || typecode == TYPE_CODE_FLT)
5780 && len <= 4)
5781 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
5782 }
5783
5784 if (mips_debug)
5785 {
5af949e3
UW
5786 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5787 paddress (gdbarch, stack_offset));
5788 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5789 paddress (gdbarch, longword_offset));
ebafbe83
MS
5790 }
5791
5792 addr = sp + stack_offset + longword_offset;
5793
5794 if (mips_debug)
5795 {
5796 int i;
5af949e3
UW
5797 fprintf_unfiltered (gdb_stdlog, " @%s ",
5798 paddress (gdbarch, addr));
ebafbe83
MS
5799 for (i = 0; i < partial_len; i++)
5800 {
6d82d43b 5801 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
5802 val[i] & 0xff);
5803 }
5804 }
5805 write_memory (addr, val, partial_len);
5806 }
5807
5808 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5809 structs may go thru BOTH paths. */
ebafbe83 5810 /* Write this portion of the argument to a general
6d82d43b 5811 purpose register. */
74ed0bb4 5812 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 5813 {
e17a4113
UW
5814 LONGEST regval = extract_signed_integer (val, partial_len,
5815 byte_order);
4246e332 5816 /* Value may need to be sign extended, because
1b13c4f6 5817 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
5818
5819 /* A non-floating-point argument being passed in a
5820 general register. If a struct or union, and if
5821 the remaining length is smaller than the register
5822 size, we have to adjust the register value on
5823 big endian targets.
5824
5825 It does not seem to be necessary to do the
025bb325 5826 same for integral types. */
480d3dd2 5827
72a155b4 5828 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5829 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5830 && (typecode == TYPE_CODE_STRUCT
5831 || typecode == TYPE_CODE_UNION))
1a69e1e4 5832 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5833 * TARGET_CHAR_BIT);
ebafbe83
MS
5834
5835 if (mips_debug)
5836 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5837 argreg,
1a69e1e4 5838 phex (regval, MIPS64_REGSIZE));
9c9acae0 5839 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
5840 argreg++;
5841
5842 /* Prevent subsequent floating point arguments from
5843 being passed in floating point registers. */
74ed0bb4 5844 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
5845 }
5846
5847 len -= partial_len;
5848 val += partial_len;
5849
b021a221
MS
5850 /* Compute the offset into the stack at which we will
5851 copy the next parameter.
ebafbe83 5852
6d82d43b
AC
5853 In older ABIs, the caller reserved space for
5854 registers that contained arguments. This was loosely
5855 refered to as their "home". Consequently, space is
5856 always allocated. */
ebafbe83 5857
1a69e1e4 5858 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
5859 }
5860 }
5861 if (mips_debug)
5862 fprintf_unfiltered (gdb_stdlog, "\n");
5863 }
5864
f10683bb 5865 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5866
ebafbe83
MS
5867 /* Return adjusted stack pointer. */
5868 return sp;
5869}
5870
9c8fdbfa 5871static enum return_value_convention
6a3a010b 5872mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 5873 struct type *type, struct regcache *regcache,
47a35522 5874 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5875{
6a3a010b 5876 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5877 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5879 enum mips_fval_reg fval_reg;
7a076fd2 5880
6a3a010b 5881 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
5882 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5883 || TYPE_CODE (type) == TYPE_CODE_UNION
5884 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5885 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 5886 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 5887 {
6a3a010b
MR
5888 /* A floating-point value. If reading in or copying, then we get it
5889 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
5890 If writing out only, then we put it to both FP0 and GPR2. We do
5891 not support reading in with no function known, if this safety
5892 check ever triggers, then we'll have to try harder. */
5893 gdb_assert (function || !readbuf);
7a076fd2 5894 if (mips_debug)
6a3a010b
MR
5895 switch (fval_reg)
5896 {
5897 case mips_fval_fpr:
5898 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5899 break;
5900 case mips_fval_gpr:
5901 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5902 break;
5903 case mips_fval_both:
5904 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5905 break;
5906 }
5907 if (fval_reg != mips_fval_gpr)
5908 mips_xfer_register (gdbarch, regcache,
5909 (gdbarch_num_regs (gdbarch)
5910 + mips_regnum (gdbarch)->fp0),
5911 TYPE_LENGTH (type),
5912 gdbarch_byte_order (gdbarch),
5913 readbuf, writebuf, 0);
5914 if (fval_reg != mips_fval_fpr)
5915 mips_xfer_register (gdbarch, regcache,
5916 gdbarch_num_regs (gdbarch) + 2,
5917 TYPE_LENGTH (type),
5918 gdbarch_byte_order (gdbarch),
5919 readbuf, writebuf, 0);
7a076fd2
FF
5920 return RETURN_VALUE_REGISTER_CONVENTION;
5921 }
5922 else
5923 {
5924 /* A scalar extract each part but least-significant-byte
025bb325 5925 justified. */
7a076fd2
FF
5926 int offset;
5927 int regnum;
5928 for (offset = 0, regnum = MIPS_V0_REGNUM;
5929 offset < TYPE_LENGTH (type);
1a69e1e4 5930 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 5931 {
1a69e1e4 5932 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
5933 if (offset + xfer > TYPE_LENGTH (type))
5934 xfer = TYPE_LENGTH (type) - offset;
5935 if (mips_debug)
5936 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5937 offset, xfer, regnum);
ba32f989
DJ
5938 mips_xfer_register (gdbarch, regcache,
5939 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5940 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5941 readbuf, writebuf, offset);
7a076fd2
FF
5942 }
5943 return RETURN_VALUE_REGISTER_CONVENTION;
5944 }
6d82d43b
AC
5945}
5946
dd824b04
DJ
5947/* Floating point register management.
5948
5949 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
5950 64bit operations, these early MIPS cpus treat fp register pairs
5951 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
5952 registers and offer a compatibility mode that emulates the MIPS2 fp
5953 model. When operating in MIPS2 fp compat mode, later cpu's split
5954 double precision floats into two 32-bit chunks and store them in
5955 consecutive fp regs. To display 64-bit floats stored in this
5956 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
5957 Throw in user-configurable endianness and you have a real mess.
5958
5959 The way this works is:
5960 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
5961 double-precision value will be split across two logical registers.
5962 The lower-numbered logical register will hold the low-order bits,
5963 regardless of the processor's endianness.
5964 - If we are on a 64-bit processor, and we are looking for a
5965 single-precision value, it will be in the low ordered bits
5966 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
5967 save slot in memory.
5968 - If we are in 64-bit mode, everything is straightforward.
5969
5970 Note that this code only deals with "live" registers at the top of the
5971 stack. We will attempt to deal with saved registers later, when
025bb325 5972 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
5973 interface that can deal with dynamic saved register sizes -- fp
5974 regs could be 32 bits wide in one frame and 64 on the frame above
5975 and below). */
5976
5977/* Copy a 32-bit single-precision value from the current frame
5978 into rare_buffer. */
5979
5980static void
e11c53d2 5981mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 5982 gdb_byte *rare_buffer)
dd824b04 5983{
72a155b4
UW
5984 struct gdbarch *gdbarch = get_frame_arch (frame);
5985 int raw_size = register_size (gdbarch, regno);
47a35522 5986 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 5987
e11c53d2 5988 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572 5989 error (_("can't read register %d (%s)"),
72a155b4 5990 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
5991 if (raw_size == 8)
5992 {
5993 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 5994 32 bits. */
dd824b04
DJ
5995 int offset;
5996
72a155b4 5997 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
5998 offset = 4;
5999 else
6000 offset = 0;
6001
6002 memcpy (rare_buffer, raw_buffer + offset, 4);
6003 }
6004 else
6005 {
6006 memcpy (rare_buffer, raw_buffer, 4);
6007 }
6008}
6009
6010/* Copy a 64-bit double-precision value from the current frame into
6011 rare_buffer. This may include getting half of it from the next
6012 register. */
6013
6014static void
e11c53d2 6015mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6016 gdb_byte *rare_buffer)
dd824b04 6017{
72a155b4
UW
6018 struct gdbarch *gdbarch = get_frame_arch (frame);
6019 int raw_size = register_size (gdbarch, regno);
dd824b04 6020
9c9acae0 6021 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6022 {
6023 /* We have a 64-bit value for this register, and we should use
6d82d43b 6024 all 64 bits. */
e11c53d2 6025 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572 6026 error (_("can't read register %d (%s)"),
72a155b4 6027 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6028 }
6029 else
6030 {
72a155b4 6031 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6032
72a155b4 6033 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6034 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6035 _("mips_read_fp_register_double: bad access to "
6036 "odd-numbered FP register"));
dd824b04
DJ
6037
6038 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6039 each register. */
72a155b4 6040 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6041 {
e11c53d2
AC
6042 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6043 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6044 }
361d1df0 6045 else
dd824b04 6046 {
e11c53d2
AC
6047 mips_read_fp_register_single (frame, regno, rare_buffer);
6048 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6049 }
6050 }
6051}
6052
c906108c 6053static void
e11c53d2
AC
6054mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6055 int regnum)
025bb325 6056{ /* Do values for FP (float) regs. */
72a155b4 6057 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6058 gdb_byte *raw_buffer;
025bb325 6059 double doub, flt1; /* Doubles extracted from raw hex data. */
3903d437 6060 int inv1, inv2;
c5aa993b 6061
025bb325
MS
6062 raw_buffer = alloca (2 * register_size (gdbarch,
6063 mips_regnum (gdbarch)->fp0));
c906108c 6064
72a155b4 6065 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6066 fprintf_filtered (file, "%*s",
72a155b4 6067 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6068 "");
f0ef6b29 6069
72a155b4 6070 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6071 {
79a45b7d
TT
6072 struct value_print_options opts;
6073
f0ef6b29
KB
6074 /* 4-byte registers: Print hex and floating. Also print even
6075 numbered registers as doubles. */
e11c53d2 6076 mips_read_fp_register_single (frame, regnum, raw_buffer);
025bb325
MS
6077 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6078 raw_buffer, &inv1);
c5aa993b 6079
79a45b7d 6080 get_formatted_print_options (&opts, 'x');
df4df182
UW
6081 print_scalar_formatted (raw_buffer,
6082 builtin_type (gdbarch)->builtin_uint32,
6083 &opts, 'w', file);
dd824b04 6084
e11c53d2 6085 fprintf_filtered (file, " flt: ");
1adad886 6086 if (inv1)
e11c53d2 6087 fprintf_filtered (file, " <invalid float> ");
1adad886 6088 else
e11c53d2 6089 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6090
72a155b4 6091 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6092 {
e11c53d2 6093 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6094 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6095 raw_buffer, &inv2);
1adad886 6096
e11c53d2 6097 fprintf_filtered (file, " dbl: ");
f0ef6b29 6098 if (inv2)
e11c53d2 6099 fprintf_filtered (file, "<invalid double>");
f0ef6b29 6100 else
e11c53d2 6101 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 6102 }
c906108c
SS
6103 }
6104 else
dd824b04 6105 {
79a45b7d
TT
6106 struct value_print_options opts;
6107
f0ef6b29 6108 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6109 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745
UW
6110 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6111 raw_buffer, &inv1);
c906108c 6112
e11c53d2 6113 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6114 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6115 raw_buffer, &inv2);
f0ef6b29 6116
79a45b7d 6117 get_formatted_print_options (&opts, 'x');
df4df182
UW
6118 print_scalar_formatted (raw_buffer,
6119 builtin_type (gdbarch)->builtin_uint64,
6120 &opts, 'g', file);
f0ef6b29 6121
e11c53d2 6122 fprintf_filtered (file, " flt: ");
1adad886 6123 if (inv1)
e11c53d2 6124 fprintf_filtered (file, "<invalid float>");
1adad886 6125 else
e11c53d2 6126 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6127
e11c53d2 6128 fprintf_filtered (file, " dbl: ");
f0ef6b29 6129 if (inv2)
e11c53d2 6130 fprintf_filtered (file, "<invalid double>");
1adad886 6131 else
e11c53d2 6132 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
6133 }
6134}
6135
6136static void
e11c53d2 6137mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6138 int regnum)
f0ef6b29 6139{
a4b8ebc8 6140 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6141 struct value_print_options opts;
de15c4ab 6142 struct value *val;
1adad886 6143
004159a2 6144 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6145 {
e11c53d2 6146 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6147 return;
6148 }
6149
de15c4ab
PA
6150 val = get_frame_register_value (frame, regnum);
6151 if (value_optimized_out (val))
f0ef6b29 6152 {
c9f4d572 6153 fprintf_filtered (file, "%s: [Invalid]",
72a155b4 6154 gdbarch_register_name (gdbarch, regnum));
f0ef6b29 6155 return;
c906108c 6156 }
f0ef6b29 6157
72a155b4 6158 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6159
6160 /* The problem with printing numeric register names (r26, etc.) is that
6161 the user can't use them on input. Probably the best solution is to
6162 fix it so that either the numeric or the funky (a2, etc.) names
6163 are accepted on input. */
6164 if (regnum < MIPS_NUMREGS)
e11c53d2 6165 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6166 else
e11c53d2 6167 fprintf_filtered (file, ": ");
f0ef6b29 6168
79a45b7d 6169 get_formatted_print_options (&opts, 'x');
de15c4ab
PA
6170 val_print_scalar_formatted (value_type (val),
6171 value_contents_for_printing (val),
6172 value_embedded_offset (val),
6173 val,
6174 &opts, 0, file);
c906108c
SS
6175}
6176
f0ef6b29
KB
6177/* Replacement for generic do_registers_info.
6178 Print regs in pretty columns. */
6179
6180static int
e11c53d2
AC
6181print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6182 int regnum)
f0ef6b29 6183{
e11c53d2
AC
6184 fprintf_filtered (file, " ");
6185 mips_print_fp_register (file, frame, regnum);
6186 fprintf_filtered (file, "\n");
f0ef6b29
KB
6187 return regnum + 1;
6188}
6189
6190
025bb325 6191/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6192
6193static int
e11c53d2 6194print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6195 int start_regnum)
c906108c 6196{
a4b8ebc8 6197 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6198 /* Do values for GP (int) regs. */
47a35522 6199 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
025bb325
MS
6200 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6201 per row. */
c906108c 6202 int col, byte;
a4b8ebc8 6203 int regnum;
c906108c 6204
025bb325 6205 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6206 for (col = 0, regnum = start_regnum;
72a155b4
UW
6207 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6208 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6209 regnum++)
c906108c 6210 {
72a155b4 6211 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6212 continue; /* unused register */
004159a2 6213 if (mips_float_register_p (gdbarch, regnum))
025bb325 6214 break; /* End the row: reached FP register. */
0cc93a06 6215 /* Large registers are handled separately. */
72a155b4 6216 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6217 {
6218 if (col > 0)
6219 break; /* End the row before this register. */
6220
6221 /* Print this register on a row by itself. */
6222 mips_print_register (file, frame, regnum);
6223 fprintf_filtered (file, "\n");
6224 return regnum + 1;
6225 }
d05f6826
DJ
6226 if (col == 0)
6227 fprintf_filtered (file, " ");
6d82d43b 6228 fprintf_filtered (file,
72a155b4
UW
6229 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6230 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6231 col++;
6232 }
d05f6826
DJ
6233
6234 if (col == 0)
6235 return regnum;
6236
025bb325 6237 /* Print the R0 to R31 names. */
72a155b4 6238 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6239 fprintf_filtered (file, "\n R%-4d",
72a155b4 6240 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6241 else
6242 fprintf_filtered (file, "\n ");
c906108c 6243
025bb325 6244 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6245 for (col = 0, regnum = start_regnum;
72a155b4
UW
6246 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6247 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6248 regnum++)
c906108c 6249 {
72a155b4 6250 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6251 continue; /* unused register */
004159a2 6252 if (mips_float_register_p (gdbarch, regnum))
025bb325 6253 break; /* End row: reached FP register. */
72a155b4 6254 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6255 break; /* End row: large register. */
6256
c906108c 6257 /* OK: get the data in raw format. */
e11c53d2 6258 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572 6259 error (_("can't read register %d (%s)"),
72a155b4 6260 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 6261 /* pad small registers */
4246e332 6262 for (byte = 0;
72a155b4
UW
6263 byte < (mips_abi_regsize (gdbarch)
6264 - register_size (gdbarch, regnum)); byte++)
c906108c 6265 printf_filtered (" ");
025bb325 6266 /* Now print the register value in hex, endian order. */
72a155b4 6267 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6268 for (byte =
72a155b4
UW
6269 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6270 byte < register_size (gdbarch, regnum); byte++)
47a35522 6271 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6272 else
72a155b4 6273 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6274 byte >= 0; byte--)
47a35522 6275 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6276 fprintf_filtered (file, " ");
c906108c
SS
6277 col++;
6278 }
025bb325 6279 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6280 fprintf_filtered (file, "\n");
c906108c
SS
6281
6282 return regnum;
6283}
6284
025bb325 6285/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6286
bf1f5b4c 6287static void
e11c53d2
AC
6288mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6289 struct frame_info *frame, int regnum, int all)
c906108c 6290{
025bb325 6291 if (regnum != -1) /* Do one specified register. */
c906108c 6292 {
72a155b4
UW
6293 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6294 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6295 error (_("Not a valid register for the current processor type"));
c906108c 6296
0cc93a06 6297 mips_print_register (file, frame, regnum);
e11c53d2 6298 fprintf_filtered (file, "\n");
c906108c 6299 }
c5aa993b 6300 else
025bb325 6301 /* Do all (or most) registers. */
c906108c 6302 {
72a155b4
UW
6303 regnum = gdbarch_num_regs (gdbarch);
6304 while (regnum < gdbarch_num_regs (gdbarch)
6305 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6306 {
004159a2 6307 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6308 {
025bb325 6309 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6310 regnum = print_fp_register_row (file, frame, regnum);
6311 else
025bb325 6312 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6313 }
c906108c 6314 else
e11c53d2 6315 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6316 }
6317 }
6318}
6319
63807e1d 6320static int
3352ef37
AC
6321mips_single_step_through_delay (struct gdbarch *gdbarch,
6322 struct frame_info *frame)
c906108c 6323{
e17a4113 6324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3352ef37 6325 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6326 struct address_space *aspace;
6327 enum mips_isa isa;
6328 ULONGEST insn;
6329 int status;
6330 int size;
6331
6332 if ((mips_pc_is_mips (pc)
6333 && !mips32_instruction_has_delay_slot (gdbarch, pc))
6334 || (mips_pc_is_micromips (gdbarch, pc)
6335 && !micromips_instruction_has_delay_slot (gdbarch, pc, 0))
6336 || (mips_pc_is_mips16 (gdbarch, pc)
6337 && !mips16_instruction_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6338 return 0;
6339
4cc0665f
MR
6340 isa = mips_pc_isa (gdbarch, pc);
6341 /* _has_delay_slot above will have validated the read. */
6342 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6343 size = mips_insn_size (isa, insn);
6344 aspace = get_frame_address_space (frame);
6345 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6346}
6347
6d82d43b
AC
6348/* To skip prologues, I use this predicate. Returns either PC itself
6349 if the code at PC does not look like a function prologue; otherwise
6350 returns an address that (if we're lucky) follows the prologue. If
6351 LENIENT, then we must skip everything which is involved in setting
6352 up the frame (it's OK to skip more, just so long as we don't skip
6353 anything which might clobber the registers which are being saved.
6354 We must skip more in the case where part of the prologue is in the
6355 delay slot of a non-prologue instruction). */
6356
6357static CORE_ADDR
6093d2eb 6358mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6359{
8b622e6a
AC
6360 CORE_ADDR limit_pc;
6361 CORE_ADDR func_addr;
6362
6d82d43b
AC
6363 /* See if we can determine the end of the prologue via the symbol table.
6364 If so, then return either PC, or the PC after the prologue, whichever
6365 is greater. */
8b622e6a
AC
6366 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6367 {
d80b854b
UW
6368 CORE_ADDR post_prologue_pc
6369 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a
AC
6370 if (post_prologue_pc != 0)
6371 return max (pc, post_prologue_pc);
6372 }
6d82d43b
AC
6373
6374 /* Can't determine prologue from the symbol table, need to examine
6375 instructions. */
6376
98b4dd94
JB
6377 /* Find an upper limit on the function prologue using the debug
6378 information. If the debug information could not be used to provide
6379 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6380 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6381 if (limit_pc == 0)
6382 limit_pc = pc + 100; /* Magic. */
6383
4cc0665f 6384 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6385 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6386 else if (mips_pc_is_micromips (gdbarch, pc))
6387 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6388 else
e17a4113 6389 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6390}
6391
97ab0fdd
MR
6392/* Check whether the PC is in a function epilogue (32-bit version).
6393 This is a helper function for mips_in_function_epilogue_p. */
6394static int
e17a4113 6395mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6396{
6397 CORE_ADDR func_addr = 0, func_end = 0;
6398
6399 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6400 {
6401 /* The MIPS epilogue is max. 12 bytes long. */
6402 CORE_ADDR addr = func_end - 12;
6403
6404 if (addr < func_addr + 4)
6405 addr = func_addr + 4;
6406 if (pc < addr)
6407 return 0;
6408
6409 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6410 {
6411 unsigned long high_word;
6412 unsigned long inst;
6413
4cc0665f 6414 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6415 high_word = (inst >> 16) & 0xffff;
6416
6417 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6418 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6419 && inst != 0x03e00008 /* jr $ra */
6420 && inst != 0x00000000) /* nop */
6421 return 0;
6422 }
6423
6424 return 1;
6425 }
6426
6427 return 0;
6428}
6429
4cc0665f
MR
6430/* Check whether the PC is in a function epilogue (microMIPS version).
6431 This is a helper function for mips_in_function_epilogue_p. */
6432
6433static int
6434micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6435{
6436 CORE_ADDR func_addr = 0;
6437 CORE_ADDR func_end = 0;
6438 CORE_ADDR addr;
6439 ULONGEST insn;
6440 long offset;
6441 int dreg;
6442 int sreg;
6443 int loc;
6444
6445 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6446 return 0;
6447
6448 /* The microMIPS epilogue is max. 12 bytes long. */
6449 addr = func_end - 12;
6450
6451 if (addr < func_addr + 2)
6452 addr = func_addr + 2;
6453 if (pc < addr)
6454 return 0;
6455
6456 for (; pc < func_end; pc += loc)
6457 {
6458 loc = 0;
6459 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6460 loc += MIPS_INSN16_SIZE;
6461 switch (mips_insn_size (ISA_MICROMIPS, insn))
6462 {
6463 /* 48-bit instructions. */
6464 case 3 * MIPS_INSN16_SIZE:
6465 /* No epilogue instructions in this category. */
6466 return 0;
6467
6468 /* 32-bit instructions. */
6469 case 2 * MIPS_INSN16_SIZE:
6470 insn <<= 16;
6471 insn |= mips_fetch_instruction (gdbarch,
6472 ISA_MICROMIPS, pc + loc, NULL);
6473 loc += MIPS_INSN16_SIZE;
6474 switch (micromips_op (insn >> 16))
6475 {
6476 case 0xc: /* ADDIU: bits 001100 */
6477 case 0x17: /* DADDIU: bits 010111 */
6478 sreg = b0s5_reg (insn >> 16);
6479 dreg = b5s5_reg (insn >> 16);
6480 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6481 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6482 /* (D)ADDIU $sp, imm */
6483 && offset >= 0)
6484 break;
6485 return 0;
6486
6487 default:
6488 return 0;
6489 }
6490 break;
6491
6492 /* 16-bit instructions. */
6493 case MIPS_INSN16_SIZE:
6494 switch (micromips_op (insn))
6495 {
6496 case 0x3: /* MOVE: bits 000011 */
6497 sreg = b0s5_reg (insn);
6498 dreg = b5s5_reg (insn);
6499 if (sreg == 0 && dreg == 0)
6500 /* MOVE $zero, $zero aka NOP */
6501 break;
6502 return 0;
6503
6504 case 0x11: /* POOL16C: bits 010001 */
6505 if (b5s5_op (insn) == 0x18
6506 /* JRADDIUSP: bits 010011 11000 */
6507 || (b5s5_op (insn) == 0xd
6508 /* JRC: bits 010011 01101 */
6509 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6510 /* JRC $ra */
6511 break;
6512 return 0;
6513
6514 case 0x13: /* POOL16D: bits 010011 */
6515 offset = micromips_decode_imm9 (b1s9_imm (insn));
6516 if ((insn & 0x1) == 0x1
6517 /* ADDIUSP: bits 010011 1 */
6518 && offset > 0)
6519 break;
6520 return 0;
6521
6522 default:
6523 return 0;
6524 }
6525 }
6526 }
6527
6528 return 1;
6529}
6530
97ab0fdd
MR
6531/* Check whether the PC is in a function epilogue (16-bit version).
6532 This is a helper function for mips_in_function_epilogue_p. */
6533static int
e17a4113 6534mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6535{
6536 CORE_ADDR func_addr = 0, func_end = 0;
6537
6538 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6539 {
6540 /* The MIPS epilogue is max. 12 bytes long. */
6541 CORE_ADDR addr = func_end - 12;
6542
6543 if (addr < func_addr + 4)
6544 addr = func_addr + 4;
6545 if (pc < addr)
6546 return 0;
6547
6548 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6549 {
6550 unsigned short inst;
6551
4cc0665f 6552 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6553
6554 if ((inst & 0xf800) == 0xf000) /* extend */
6555 continue;
6556
6557 if (inst != 0x6300 /* addiu $sp,offset */
6558 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6559 && inst != 0xe820 /* jr $ra */
6560 && inst != 0xe8a0 /* jrc $ra */
6561 && inst != 0x6500) /* nop */
6562 return 0;
6563 }
6564
6565 return 1;
6566 }
6567
6568 return 0;
6569}
6570
6571/* The epilogue is defined here as the area at the end of a function,
6572 after an instruction which destroys the function's stack frame. */
6573static int
6574mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6575{
4cc0665f 6576 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6577 return mips16_in_function_epilogue_p (gdbarch, pc);
4cc0665f
MR
6578 else if (mips_pc_is_micromips (gdbarch, pc))
6579 return micromips_in_function_epilogue_p (gdbarch, pc);
97ab0fdd 6580 else
e17a4113 6581 return mips32_in_function_epilogue_p (gdbarch, pc);
97ab0fdd
MR
6582}
6583
025bb325 6584/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6585 used for all MIPS-specific commands. */
6586
a5ea2558 6587static void
acdb74a0 6588show_mips_command (char *args, int from_tty)
a5ea2558
AC
6589{
6590 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6591}
6592
a5ea2558 6593static void
acdb74a0 6594set_mips_command (char *args, int from_tty)
a5ea2558 6595{
6d82d43b
AC
6596 printf_unfiltered
6597 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6598 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6599}
6600
c906108c
SS
6601/* Commands to show/set the MIPS FPU type. */
6602
c906108c 6603static void
acdb74a0 6604show_mipsfpu_command (char *args, int from_tty)
c906108c 6605{
c906108c 6606 char *fpu;
6ca0852e 6607
1cf3db46 6608 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
6ca0852e
UW
6609 {
6610 printf_unfiltered
6611 ("The MIPS floating-point coprocessor is unknown "
6612 "because the current architecture is not MIPS.\n");
6613 return;
6614 }
6615
1cf3db46 6616 switch (MIPS_FPU_TYPE (target_gdbarch))
c906108c
SS
6617 {
6618 case MIPS_FPU_SINGLE:
6619 fpu = "single-precision";
6620 break;
6621 case MIPS_FPU_DOUBLE:
6622 fpu = "double-precision";
6623 break;
6624 case MIPS_FPU_NONE:
6625 fpu = "absent (none)";
6626 break;
93d56215 6627 default:
e2e0b3e5 6628 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6629 }
6630 if (mips_fpu_type_auto)
025bb325
MS
6631 printf_unfiltered ("The MIPS floating-point coprocessor "
6632 "is set automatically (currently %s)\n",
6633 fpu);
c906108c 6634 else
6d82d43b
AC
6635 printf_unfiltered
6636 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6637}
6638
6639
c906108c 6640static void
acdb74a0 6641set_mipsfpu_command (char *args, int from_tty)
c906108c 6642{
025bb325
MS
6643 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6644 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6645 show_mipsfpu_command (args, from_tty);
6646}
6647
c906108c 6648static void
acdb74a0 6649set_mipsfpu_single_command (char *args, int from_tty)
c906108c 6650{
8d5838b5
AC
6651 struct gdbarch_info info;
6652 gdbarch_info_init (&info);
c906108c
SS
6653 mips_fpu_type = MIPS_FPU_SINGLE;
6654 mips_fpu_type_auto = 0;
8d5838b5
AC
6655 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6656 instead of relying on globals. Doing that would let generic code
6657 handle the search for this specific architecture. */
6658 if (!gdbarch_update_p (info))
e2e0b3e5 6659 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6660}
6661
c906108c 6662static void
acdb74a0 6663set_mipsfpu_double_command (char *args, int from_tty)
c906108c 6664{
8d5838b5
AC
6665 struct gdbarch_info info;
6666 gdbarch_info_init (&info);
c906108c
SS
6667 mips_fpu_type = MIPS_FPU_DOUBLE;
6668 mips_fpu_type_auto = 0;
8d5838b5
AC
6669 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6670 instead of relying on globals. Doing that would let generic code
6671 handle the search for this specific architecture. */
6672 if (!gdbarch_update_p (info))
e2e0b3e5 6673 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6674}
6675
c906108c 6676static void
acdb74a0 6677set_mipsfpu_none_command (char *args, int from_tty)
c906108c 6678{
8d5838b5
AC
6679 struct gdbarch_info info;
6680 gdbarch_info_init (&info);
c906108c
SS
6681 mips_fpu_type = MIPS_FPU_NONE;
6682 mips_fpu_type_auto = 0;
8d5838b5
AC
6683 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6684 instead of relying on globals. Doing that would let generic code
6685 handle the search for this specific architecture. */
6686 if (!gdbarch_update_p (info))
e2e0b3e5 6687 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6688}
6689
c906108c 6690static void
acdb74a0 6691set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
6692{
6693 mips_fpu_type_auto = 1;
6694}
6695
c906108c 6696/* Attempt to identify the particular processor model by reading the
691c0433
AC
6697 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
6698 the relevant processor still exists (it dates back to '94) and
6699 secondly this is not the way to do this. The processor type should
6700 be set by forcing an architecture change. */
c906108c 6701
691c0433
AC
6702void
6703deprecated_mips_set_processor_regs_hack (void)
c906108c 6704{
bb486190
UW
6705 struct regcache *regcache = get_current_regcache ();
6706 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6707 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a9614958 6708 ULONGEST prid;
c906108c 6709
bb486190 6710 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
c906108c 6711 if ((prid & ~0xf) == 0x700)
691c0433 6712 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
6713}
6714
6715/* Just like reinit_frame_cache, but with the right arguments to be
6716 callable as an sfunc. */
6717
6718static void
acdb74a0
AC
6719reinit_frame_cache_sfunc (char *args, int from_tty,
6720 struct cmd_list_element *c)
c906108c
SS
6721{
6722 reinit_frame_cache ();
6723}
6724
a89aa300
AC
6725static int
6726gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 6727{
4cc0665f
MR
6728 struct gdbarch *gdbarch = info->application_data;
6729
d31431ed
AC
6730 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6731 disassembler needs to be able to locally determine the ISA, and
6732 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6733 work. */
4cc0665f 6734 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 6735 info->mach = bfd_mach_mips16;
4cc0665f
MR
6736 else if (mips_pc_is_micromips (gdbarch, memaddr))
6737 info->mach = bfd_mach_mips_micromips;
c906108c
SS
6738
6739 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
6740 memaddr &= (info->mach == bfd_mach_mips16
6741 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 6742
e5ab0dce 6743 /* Set the disassembler options. */
9dae60cc 6744 if (!info->disassembler_options)
e5ab0dce
AC
6745 /* This string is not recognized explicitly by the disassembler,
6746 but it tells the disassembler to not try to guess the ABI from
6747 the bfd elf headers, such that, if the user overrides the ABI
6748 of a program linked as NewABI, the disassembly will follow the
6749 register naming conventions specified by the user. */
6750 info->disassembler_options = "gpr-names=32";
6751
c906108c 6752 /* Call the appropriate disassembler based on the target endian-ness. */
40887e1a 6753 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
6754 return print_insn_big_mips (memaddr, info);
6755 else
6756 return print_insn_little_mips (memaddr, info);
6757}
6758
9dae60cc
UW
6759static int
6760gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
6761{
6762 /* Set up the disassembler info, so that we get the right
6763 register names from libopcodes. */
6764 info->disassembler_options = "gpr-names=n32";
6765 info->flavour = bfd_target_elf_flavour;
6766
6767 return gdb_print_insn_mips (memaddr, info);
6768}
6769
6770static int
6771gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
6772{
6773 /* Set up the disassembler info, so that we get the right
6774 register names from libopcodes. */
6775 info->disassembler_options = "gpr-names=64";
6776 info->flavour = bfd_target_elf_flavour;
6777
6778 return gdb_print_insn_mips (memaddr, info);
6779}
6780
025bb325
MS
6781/* This function implements gdbarch_breakpoint_from_pc. It uses the
6782 program counter value to determine whether a 16- or 32-bit breakpoint
6783 should be used. It returns a pointer to a string of bytes that encode a
6784 breakpoint instruction, stores the length of the string to *lenptr, and
6785 adjusts pc (if necessary) to point to the actual memory location where
6786 the breakpoint should be inserted. */
c906108c 6787
47a35522 6788static const gdb_byte *
025bb325
MS
6789mips_breakpoint_from_pc (struct gdbarch *gdbarch,
6790 CORE_ADDR *pcptr, int *lenptr)
c906108c 6791{
4cc0665f
MR
6792 CORE_ADDR pc = *pcptr;
6793
67d57894 6794 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c 6795 {
4cc0665f 6796 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 6797 {
47a35522 6798 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4cc0665f 6799 *pcptr = unmake_compact_addr (pc);
c5aa993b 6800 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
6801 return mips16_big_breakpoint;
6802 }
4cc0665f
MR
6803 else if (mips_pc_is_micromips (gdbarch, pc))
6804 {
6805 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
6806 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
6807 ULONGEST insn;
6808 int status;
6809 int size;
6810
6811 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6812 size = status ? 2
6813 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6814 *pcptr = unmake_compact_addr (pc);
6815 *lenptr = size;
6816 return (size == 2) ? micromips16_big_breakpoint
6817 : micromips32_big_breakpoint;
6818 }
c906108c
SS
6819 else
6820 {
aaab4dba
AC
6821 /* The IDT board uses an unusual breakpoint value, and
6822 sometimes gets confused when it sees the usual MIPS
6823 breakpoint instruction. */
47a35522
MK
6824 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
6825 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
6826 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
f2ec0ecf 6827 /* Likewise, IRIX appears to expect a different breakpoint,
025bb325 6828 although this is not apparent until you try to use pthreads. */
f2ec0ecf 6829 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
c906108c 6830
c5aa993b 6831 *lenptr = sizeof (big_breakpoint);
c906108c
SS
6832
6833 if (strcmp (target_shortname, "mips") == 0)
6834 return idt_big_breakpoint;
6835 else if (strcmp (target_shortname, "ddb") == 0
6836 || strcmp (target_shortname, "pmon") == 0
6837 || strcmp (target_shortname, "lsi") == 0)
6838 return pmon_big_breakpoint;
f2ec0ecf
JB
6839 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
6840 return irix_big_breakpoint;
c906108c
SS
6841 else
6842 return big_breakpoint;
6843 }
6844 }
6845 else
6846 {
4cc0665f 6847 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 6848 {
47a35522 6849 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4cc0665f 6850 *pcptr = unmake_compact_addr (pc);
c5aa993b 6851 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
6852 return mips16_little_breakpoint;
6853 }
4cc0665f
MR
6854 else if (mips_pc_is_micromips (gdbarch, pc))
6855 {
6856 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
6857 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
6858 ULONGEST insn;
6859 int status;
6860 int size;
6861
6862 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6863 size = status ? 2
6864 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6865 *pcptr = unmake_compact_addr (pc);
6866 *lenptr = size;
6867 return (size == 2) ? micromips16_little_breakpoint
6868 : micromips32_little_breakpoint;
6869 }
c906108c
SS
6870 else
6871 {
47a35522
MK
6872 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
6873 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
6874 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 6875
c5aa993b 6876 *lenptr = sizeof (little_breakpoint);
c906108c
SS
6877
6878 if (strcmp (target_shortname, "mips") == 0)
6879 return idt_little_breakpoint;
6880 else if (strcmp (target_shortname, "ddb") == 0
6881 || strcmp (target_shortname, "pmon") == 0
6882 || strcmp (target_shortname, "lsi") == 0)
6883 return pmon_little_breakpoint;
6884 else
6885 return little_breakpoint;
6886 }
6887 }
6888}
6889
4cc0665f
MR
6890/* Determine the remote breakpoint kind suitable for the PC. The following
6891 kinds are used:
6892
6893 * 2 -- 16-bit MIPS16 mode breakpoint,
6894
6895 * 3 -- 16-bit microMIPS mode breakpoint,
6896
6897 * 4 -- 32-bit standard MIPS mode breakpoint,
6898
6899 * 5 -- 32-bit microMIPS mode breakpoint. */
6900
6901static void
6902mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
6903 int *kindptr)
6904{
6905 CORE_ADDR pc = *pcptr;
6906
6907 if (mips_pc_is_mips16 (gdbarch, pc))
6908 {
6909 *pcptr = unmake_compact_addr (pc);
6910 *kindptr = 2;
6911 }
6912 else if (mips_pc_is_micromips (gdbarch, pc))
6913 {
6914 ULONGEST insn;
6915 int status;
6916 int size;
6917
6918 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6919 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6920 *pcptr = unmake_compact_addr (pc);
6921 *kindptr = size | 1;
6922 }
6923 else
6924 *kindptr = 4;
6925}
6926
c8cef75f
MR
6927/* Return non-zero if the ADDR instruction has a branch delay slot
6928 (i.e. it is a jump or branch instruction). This function is based
6929 on mips32_next_pc. */
6930
6931static int
6932mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
6933{
c8cef75f
MR
6934 unsigned long inst;
6935 int status;
6936 int op;
a385295e
MR
6937 int rs;
6938 int rt;
c8cef75f 6939
4cc0665f 6940 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
c8cef75f
MR
6941 if (status)
6942 return 0;
6943
c8cef75f
MR
6944 op = itype_op (inst);
6945 if ((inst & 0xe0000000) != 0)
a385295e
MR
6946 {
6947 rs = itype_rs (inst);
6948 rt = itype_rt (inst);
6949 return (op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
6950 || op == 29 /* JALX: bits 011101 */
6951 || (op == 17
6952 && (rs == 8
c8cef75f 6953 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
6954 || (rs == 9 && (rt & 0x2) == 0)
6955 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
6956 || (rs == 10 && (rt & 0x2) == 0))));
6957 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
6958 }
c8cef75f
MR
6959 else
6960 switch (op & 0x07) /* extract bits 28,27,26 */
6961 {
6962 case 0: /* SPECIAL */
6963 op = rtype_funct (inst);
6964 return (op == 8 /* JR */
6965 || op == 9); /* JALR */
6966 break; /* end SPECIAL */
6967 case 1: /* REGIMM */
a385295e
MR
6968 rs = itype_rs (inst);
6969 rt = itype_rt (inst); /* branch condition */
6970 return ((rt & 0xc) == 0
c8cef75f
MR
6971 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
6972 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
6973 || ((rt & 0x1e) == 0x1c && rs == 0));
6974 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
6975 break; /* end REGIMM */
6976 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
6977 return 1;
6978 break;
6979 }
6980}
6981
6982/* Return non-zero if the ADDR instruction, which must be a 32-bit
6983 instruction if MUSTBE32 is set or can be any instruction otherwise,
6984 has a branch delay slot (i.e. it is a non-compact jump instruction). */
6985
4cc0665f
MR
6986static int
6987micromips_instruction_has_delay_slot (struct gdbarch *gdbarch,
6988 CORE_ADDR addr, int mustbe32)
6989{
6990 ULONGEST insn;
6991 int status;
6992
6993 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
6994 if (status)
6995 return 0;
6996
6997 if (!mustbe32) /* 16-bit instructions. */
6998 return (micromips_op (insn) == 0x11
6999 /* POOL16C: bits 010001 */
7000 && (b5s5_op (insn) == 0xc
7001 /* JR16: bits 010001 01100 */
7002 || (b5s5_op (insn) & 0x1e) == 0xe))
7003 /* JALR16, JALRS16: bits 010001 0111x */
7004 || (micromips_op (insn) & 0x37) == 0x23
7005 /* BEQZ16, BNEZ16: bits 10x011 */
7006 || micromips_op (insn) == 0x33;
7007 /* B16: bits 110011 */
7008
7009 /* 32-bit instructions. */
7010 if (micromips_op (insn) == 0x0)
7011 /* POOL32A: bits 000000 */
7012 {
7013 insn <<= 16;
7014 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7015 if (status)
7016 return 0;
7017 return b0s6_op (insn) == 0x3c
7018 /* POOL32Axf: bits 000000 ... 111100 */
7019 && (b6s10_ext (insn) & 0x2bf) == 0x3c;
7020 /* JALR, JALR.HB: 000000 000x111100 111100 */
7021 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7022 }
7023
7024 return (micromips_op (insn) == 0x10
7025 /* POOL32I: bits 010000 */
7026 && ((b5s5_op (insn) & 0x1c) == 0x0
7027 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7028 || (b5s5_op (insn) & 0x1d) == 0x4
7029 /* BLEZ, BGTZ: bits 010000 001x0 */
7030 || (b5s5_op (insn) & 0x1d) == 0x11
7031 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7032 || ((b5s5_op (insn) & 0x1e) == 0x14
7033 && (insn & 0x3) == 0x0)
7034 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7035 || (b5s5_op (insn) & 0x1e) == 0x1a
7036 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7037 || ((b5s5_op (insn) & 0x1e) == 0x1c
7038 && (insn & 0x3) == 0x0)
7039 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7040 || ((b5s5_op (insn) & 0x1c) == 0x1c
7041 && (insn & 0x3) == 0x1)))
7042 /* BC1ANY*: bits 010000 111xx xxx01 */
7043 || (micromips_op (insn) & 0x1f) == 0x1d
7044 /* JALS, JAL: bits x11101 */
7045 || (micromips_op (insn) & 0x37) == 0x25
7046 /* BEQ, BNE: bits 10x101 */
7047 || micromips_op (insn) == 0x35
7048 /* J: bits 110101 */
7049 || micromips_op (insn) == 0x3c;
7050 /* JALX: bits 111100 */
7051}
7052
c8cef75f
MR
7053static int
7054mips16_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr,
7055 int mustbe32)
7056{
c8cef75f
MR
7057 unsigned short inst;
7058 int status;
7059
4cc0665f 7060 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
c8cef75f
MR
7061 if (status)
7062 return 0;
7063
c8cef75f
MR
7064 if (!mustbe32)
7065 return (inst & 0xf89f) == 0xe800; /* JR/JALR (16-bit instruction) */
7066 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7067}
7068
7069/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7070 This assumes KSSEG exists. */
7071
7072static CORE_ADDR
7073mips_segment_boundary (CORE_ADDR bpaddr)
7074{
7075 CORE_ADDR mask = CORE_ADDR_MAX;
7076 int segsize;
7077
7078 if (sizeof (CORE_ADDR) == 8)
7079 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7080 a compiler warning produced where CORE_ADDR is a 32-bit type even
7081 though in that case this is dead code). */
7082 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7083 {
7084 case 3:
7085 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7086 segsize = 29; /* 32-bit compatibility segment */
7087 else
7088 segsize = 62; /* xkseg */
7089 break;
7090 case 2: /* xkphys */
7091 segsize = 59;
7092 break;
7093 default: /* xksseg (1), xkuseg/kuseg (0) */
7094 segsize = 62;
7095 break;
7096 }
7097 else if (bpaddr & 0x80000000) /* kernel segment */
7098 segsize = 29;
7099 else
7100 segsize = 31; /* user segment */
7101 mask <<= segsize;
7102 return bpaddr & mask;
7103}
7104
7105/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7106 it backwards if necessary. Return the address of the new location. */
7107
7108static CORE_ADDR
7109mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7110{
22e048c9 7111 CORE_ADDR prev_addr;
c8cef75f
MR
7112 CORE_ADDR boundary;
7113 CORE_ADDR func_addr;
7114
7115 /* If a breakpoint is set on the instruction in a branch delay slot,
7116 GDB gets confused. When the breakpoint is hit, the PC isn't on
7117 the instruction in the branch delay slot, the PC will point to
7118 the branch instruction. Since the PC doesn't match any known
7119 breakpoints, GDB reports a trap exception.
7120
7121 There are two possible fixes for this problem.
7122
7123 1) When the breakpoint gets hit, see if the BD bit is set in the
7124 Cause register (which indicates the last exception occurred in a
7125 branch delay slot). If the BD bit is set, fix the PC to point to
7126 the instruction in the branch delay slot.
7127
7128 2) When the user sets the breakpoint, don't allow him to set the
7129 breakpoint on the instruction in the branch delay slot. Instead
7130 move the breakpoint to the branch instruction (which will have
7131 the same result).
7132
7133 The problem with the first solution is that if the user then
7134 single-steps the processor, the branch instruction will get
7135 skipped (since GDB thinks the PC is on the instruction in the
7136 branch delay slot).
7137
7138 So, we'll use the second solution. To do this we need to know if
7139 the instruction we're trying to set the breakpoint on is in the
7140 branch delay slot. */
7141
7142 boundary = mips_segment_boundary (bpaddr);
7143
7144 /* Make sure we don't scan back before the beginning of the current
7145 function, since we may fetch constant data or insns that look like
7146 a jump. Of course we might do that anyway if the compiler has
7147 moved constants inline. :-( */
7148 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7149 && func_addr > boundary && func_addr <= bpaddr)
7150 boundary = func_addr;
7151
4cc0665f 7152 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7153 {
7154 if (bpaddr == boundary)
7155 return bpaddr;
7156
7157 /* If the previous instruction has a branch delay slot, we have
7158 to move the breakpoint to the branch instruction. */
7159 prev_addr = bpaddr - 4;
7160 if (mips32_instruction_has_delay_slot (gdbarch, prev_addr))
7161 bpaddr = prev_addr;
7162 }
7163 else
7164 {
4cc0665f 7165 int (*instruction_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7166 CORE_ADDR addr, jmpaddr;
7167 int i;
7168
4cc0665f 7169 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7170
7171 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7172 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7173 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7174 The microMIPS ASE has a whole range of jumps and branches
7175 with delay slots, some of which take 4 bytes and some take
7176 2 bytes, so the idea is the same.
c8cef75f
MR
7177 FIXME: We have to assume that bpaddr is not the second half
7178 of an extended instruction. */
4cc0665f
MR
7179 instruction_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7180 ? micromips_instruction_has_delay_slot
7181 : mips16_instruction_has_delay_slot);
c8cef75f
MR
7182
7183 jmpaddr = 0;
7184 addr = bpaddr;
7185 for (i = 1; i < 4; i++)
7186 {
4cc0665f 7187 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7188 break;
4cc0665f
MR
7189 addr -= MIPS_INSN16_SIZE;
7190 if (i == 1 && instruction_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7191 /* Looks like a JR/JALR at [target-1], but it could be
7192 the second word of a previous JAL/JALX, so record it
7193 and check back one more. */
7194 jmpaddr = addr;
4cc0665f 7195 else if (i > 1 && instruction_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7196 {
7197 if (i == 2)
7198 /* Looks like a JAL/JALX at [target-2], but it could also
7199 be the second word of a previous JAL/JALX, record it,
7200 and check back one more. */
7201 jmpaddr = addr;
7202 else
7203 /* Looks like a JAL/JALX at [target-3], so any previously
7204 recorded JAL/JALX or JR/JALR must be wrong, because:
7205
7206 >-3: JAL
7207 -2: JAL-ext (can't be JAL/JALX)
7208 -1: bdslot (can't be JR/JALR)
7209 0: target insn
7210
7211 Of course it could be another JAL-ext which looks
7212 like a JAL, but in that case we'd have broken out
7213 of this loop at [target-2]:
7214
7215 -4: JAL
7216 >-3: JAL-ext
7217 -2: bdslot (can't be jmp)
7218 -1: JR/JALR
7219 0: target insn */
7220 jmpaddr = 0;
7221 }
7222 else
7223 {
7224 /* Not a jump instruction: if we're at [target-1] this
7225 could be the second word of a JAL/JALX, so continue;
7226 otherwise we're done. */
7227 if (i > 1)
7228 break;
7229 }
7230 }
7231
7232 if (jmpaddr)
7233 bpaddr = jmpaddr;
7234 }
7235
7236 return bpaddr;
7237}
7238
14132e89
MR
7239/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7240 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7241
7242static int
7243mips_is_stub_suffix (const char *suffix, int zero)
7244{
7245 switch (suffix[0])
7246 {
7247 case '0':
7248 return zero && suffix[1] == '\0';
7249 case '1':
7250 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7251 case '2':
7252 case '5':
7253 case '6':
7254 case '9':
7255 return suffix[1] == '\0';
7256 default:
7257 return 0;
7258 }
7259}
7260
7261/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7262 call stubs, one of sf, df, sc, or dc. */
7263
7264static int
7265mips_is_stub_mode (const char *mode)
7266{
7267 return ((mode[0] == 's' || mode[0] == 'd')
7268 && (mode[1] == 'f' || mode[1] == 'c'));
7269}
7270
7271/* Code at PC is a compiler-generated stub. Such a stub for a function
7272 bar might have a name like __fn_stub_bar, and might look like this:
7273
7274 mfc1 $4, $f13
7275 mfc1 $5, $f12
7276 mfc1 $6, $f15
7277 mfc1 $7, $f14
7278
7279 followed by (or interspersed with):
7280
7281 j bar
7282
7283 or:
7284
7285 lui $25, %hi(bar)
7286 addiu $25, $25, %lo(bar)
7287 jr $25
7288
7289 ($1 may be used in old code; for robustness we accept any register)
7290 or, in PIC code:
7291
7292 lui $28, %hi(_gp_disp)
7293 addiu $28, $28, %lo(_gp_disp)
7294 addu $28, $28, $25
7295 lw $25, %got(bar)
7296 addiu $25, $25, %lo(bar)
7297 jr $25
7298
7299 In the case of a __call_stub_bar stub, the sequence to set up
7300 arguments might look like this:
7301
7302 mtc1 $4, $f13
7303 mtc1 $5, $f12
7304 mtc1 $6, $f15
7305 mtc1 $7, $f14
7306
7307 followed by (or interspersed with) one of the jump sequences above.
7308
7309 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7310 of J or JR, respectively, followed by:
7311
7312 mfc1 $2, $f0
7313 mfc1 $3, $f1
7314 jr $18
7315
7316 We are at the beginning of the stub here, and scan down and extract
7317 the target address from the jump immediate instruction or, if a jump
7318 register instruction is used, from the register referred. Return
7319 the value of PC calculated or 0 if inconclusive.
7320
7321 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7322
7323static CORE_ADDR
7324mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7325{
7326 struct gdbarch *gdbarch = get_frame_arch (frame);
7327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7328 int addrreg = MIPS_ZERO_REGNUM;
7329 CORE_ADDR start_pc = pc;
7330 CORE_ADDR target_pc = 0;
7331 CORE_ADDR addr = 0;
7332 CORE_ADDR gp = 0;
7333 int status = 0;
7334 int i;
7335
7336 for (i = 0;
7337 status == 0 && target_pc == 0 && i < 20;
7338 i++, pc += MIPS_INSN32_SIZE)
7339 {
4cc0665f 7340 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7341 CORE_ADDR imm;
7342 int rt;
7343 int rs;
7344 int rd;
7345
7346 switch (itype_op (inst))
7347 {
7348 case 0: /* SPECIAL */
7349 switch (rtype_funct (inst))
7350 {
7351 case 8: /* JR */
7352 case 9: /* JALR */
7353 rs = rtype_rs (inst);
7354 if (rs == MIPS_GP_REGNUM)
7355 target_pc = gp; /* Hmm... */
7356 else if (rs == addrreg)
7357 target_pc = addr;
7358 break;
7359
7360 case 0x21: /* ADDU */
7361 rt = rtype_rt (inst);
7362 rs = rtype_rs (inst);
7363 rd = rtype_rd (inst);
7364 if (rd == MIPS_GP_REGNUM
7365 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7366 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7367 gp += start_pc;
7368 break;
7369 }
7370 break;
7371
7372 case 2: /* J */
7373 case 3: /* JAL */
7374 target_pc = jtype_target (inst) << 2;
7375 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7376 break;
7377
7378 case 9: /* ADDIU */
7379 rt = itype_rt (inst);
7380 rs = itype_rs (inst);
7381 if (rt == rs)
7382 {
7383 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7384 if (rt == MIPS_GP_REGNUM)
7385 gp += imm;
7386 else if (rt == addrreg)
7387 addr += imm;
7388 }
7389 break;
7390
7391 case 0xf: /* LUI */
7392 rt = itype_rt (inst);
7393 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7394 if (rt == MIPS_GP_REGNUM)
7395 gp = imm;
7396 else if (rt != MIPS_ZERO_REGNUM)
7397 {
7398 addrreg = rt;
7399 addr = imm;
7400 }
7401 break;
7402
7403 case 0x23: /* LW */
7404 rt = itype_rt (inst);
7405 rs = itype_rs (inst);
7406 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7407 if (gp != 0 && rs == MIPS_GP_REGNUM)
7408 {
7409 gdb_byte buf[4];
7410
7411 memset (buf, 0, sizeof (buf));
7412 status = target_read_memory (gp + imm, buf, sizeof (buf));
7413 addrreg = rt;
7414 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7415 }
7416 break;
7417 }
7418 }
7419
7420 return target_pc;
7421}
7422
7423/* If PC is in a MIPS16 call or return stub, return the address of the
7424 target PC, which is either the callee or the caller. There are several
c906108c
SS
7425 cases which must be handled:
7426
14132e89
MR
7427 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7428 and the target PC is in $31 ($ra).
c906108c 7429 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7430 and the target PC is in $2.
7431 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7432 i.e. before the JALR instruction, this is effectively a call stub
7433 and the target PC is in $2. Otherwise this is effectively
7434 a return stub and the target PC is in $18.
7435 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7436 JAL or JALR instruction, this is effectively a call stub and the
7437 target PC is buried in the instruction stream. Otherwise this
7438 is effectively a return stub and the target PC is in $18.
7439 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7440 stub and the target PC is buried in the instruction stream.
7441
7442 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7443 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7444 gory details. */
c906108c 7445
757a7cc6 7446static CORE_ADDR
db5f024e 7447mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7448{
e17a4113 7449 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7450 CORE_ADDR start_addr;
14132e89
MR
7451 const char *name;
7452 size_t prefixlen;
c906108c
SS
7453
7454 /* Find the starting address and name of the function containing the PC. */
7455 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7456 return 0;
7457
14132e89
MR
7458 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7459 and the target PC is in $31 ($ra). */
7460 prefixlen = strlen (mips_str_mips16_ret_stub);
7461 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7462 && mips_is_stub_mode (name + prefixlen)
7463 && name[prefixlen + 2] == '\0')
7464 return get_frame_register_signed
7465 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7466
7467 /* If the PC is in __mips16_call_stub_*, this is one of the call
7468 call/return stubs. */
7469 prefixlen = strlen (mips_str_mips16_call_stub);
7470 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7471 {
7472 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7473 and the target PC is in $2. */
14132e89
MR
7474 if (mips_is_stub_suffix (name + prefixlen, 0))
7475 return get_frame_register_signed
7476 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7477
14132e89
MR
7478 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7479 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7480 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7481 a return stub and the target PC is in $18. */
14132e89
MR
7482 else if (mips_is_stub_mode (name + prefixlen)
7483 && name[prefixlen + 2] == '_'
7484 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7485 {
7486 if (pc == start_addr)
14132e89
MR
7487 /* This is the 'call' part of a call stub. The return
7488 address is in $2. */
7489 return get_frame_register_signed
7490 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7491 else
7492 /* This is the 'return' part of a call stub. The return
14132e89
MR
7493 address is in $18. */
7494 return get_frame_register_signed
7495 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7496 }
14132e89
MR
7497 else
7498 return 0; /* Not a stub. */
7499 }
7500
7501 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7502 compiler-generated call or call/return stubs. */
7503 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0
7504 || strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
7505 {
7506 if (pc == start_addr)
7507 /* This is the 'call' part of a call stub. Call this helper
7508 to scan through this code for interesting instructions
7509 and determine the final PC. */
7510 return mips_get_mips16_fn_stub_pc (frame, pc);
7511 else
7512 /* This is the 'return' part of a call stub. The return address
7513 is in $18. */
7514 return get_frame_register_signed
7515 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7516 }
14132e89
MR
7517
7518 return 0; /* Not a stub. */
7519}
7520
7521/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7522 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7523
7524static int
7525mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7526{
7527 CORE_ADDR start_addr;
7528 size_t prefixlen;
7529
7530 /* Find the starting address of the function containing the PC. */
7531 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7532 return 0;
7533
7534 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7535 the start, i.e. after the JALR instruction, this is effectively
7536 a return stub. */
7537 prefixlen = strlen (mips_str_mips16_call_stub);
7538 if (pc != start_addr
7539 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7540 && mips_is_stub_mode (name + prefixlen)
7541 && name[prefixlen + 2] == '_'
7542 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7543 return 1;
7544
7545 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7546 the JAL or JALR instruction, this is effectively a return stub. */
7547 prefixlen = strlen (mips_str_call_fp_stub);
7548 if (pc != start_addr
7549 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7550 return 1;
7551
7552 /* Consume the .pic. prefix of any PIC stub, this function must return
7553 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7554 or the call stub path will trigger in handle_inferior_event causing
7555 it to go astray. */
7556 prefixlen = strlen (mips_str_pic);
7557 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7558 name += prefixlen;
7559
7560 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7561 prefixlen = strlen (mips_str_mips16_ret_stub);
7562 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7563 && mips_is_stub_mode (name + prefixlen)
7564 && name[prefixlen + 2] == '\0')
7565 return 1;
7566
7567 return 0; /* Not a stub. */
c906108c
SS
7568}
7569
db5f024e
DJ
7570/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7571 PC of the stub target. The stub just loads $t9 and jumps to it,
7572 so that $t9 has the correct value at function entry. */
7573
7574static CORE_ADDR
7575mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7576{
e17a4113
UW
7577 struct gdbarch *gdbarch = get_frame_arch (frame);
7578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
db5f024e
DJ
7579 struct minimal_symbol *msym;
7580 int i;
7581 gdb_byte stub_code[16];
7582 int32_t stub_words[4];
7583
7584 /* The stub for foo is named ".pic.foo", and is either two
7585 instructions inserted before foo or a three instruction sequence
7586 which jumps to foo. */
7587 msym = lookup_minimal_symbol_by_pc (pc);
7588 if (msym == NULL
7589 || SYMBOL_VALUE_ADDRESS (msym) != pc
7590 || SYMBOL_LINKAGE_NAME (msym) == NULL
7591 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
7592 return 0;
7593
7594 /* A two-instruction header. */
7595 if (MSYMBOL_SIZE (msym) == 8)
7596 return pc + 8;
7597
7598 /* A three-instruction (plus delay slot) trampoline. */
7599 if (MSYMBOL_SIZE (msym) == 16)
7600 {
7601 if (target_read_memory (pc, stub_code, 16) != 0)
7602 return 0;
7603 for (i = 0; i < 4; i++)
e17a4113
UW
7604 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7605 4, byte_order);
db5f024e
DJ
7606
7607 /* A stub contains these instructions:
7608 lui t9, %hi(target)
7609 j target
7610 addiu t9, t9, %lo(target)
7611 nop
7612
7613 This works even for N64, since stubs are only generated with
7614 -msym32. */
7615 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7616 && (stub_words[1] & 0xfc000000U) == 0x08000000
7617 && (stub_words[2] & 0xffff0000U) == 0x27390000
7618 && stub_words[3] == 0x00000000)
34b192ce
MR
7619 return ((((stub_words[0] & 0x0000ffff) << 16)
7620 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7621 }
7622
7623 /* Not a recognized stub. */
7624 return 0;
7625}
7626
7627static CORE_ADDR
7628mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7629{
14132e89 7630 CORE_ADDR requested_pc = pc;
db5f024e 7631 CORE_ADDR target_pc;
14132e89
MR
7632 CORE_ADDR new_pc;
7633
7634 do
7635 {
7636 target_pc = pc;
db5f024e 7637
14132e89
MR
7638 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7639 if (new_pc)
7640 {
7641 pc = new_pc;
4cc0665f
MR
7642 if (is_compact_addr (pc))
7643 pc = unmake_compact_addr (pc);
14132e89 7644 }
db5f024e 7645
14132e89
MR
7646 new_pc = find_solib_trampoline_target (frame, pc);
7647 if (new_pc)
7648 {
7649 pc = new_pc;
4cc0665f
MR
7650 if (is_compact_addr (pc))
7651 pc = unmake_compact_addr (pc);
14132e89 7652 }
db5f024e 7653
14132e89
MR
7654 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7655 if (new_pc)
7656 {
7657 pc = new_pc;
4cc0665f
MR
7658 if (is_compact_addr (pc))
7659 pc = unmake_compact_addr (pc);
14132e89
MR
7660 }
7661 }
7662 while (pc != target_pc);
db5f024e 7663
14132e89 7664 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7665}
7666
a4b8ebc8 7667/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7668 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7669
7670static int
d3f73121 7671mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7672{
a4b8ebc8 7673 int regnum;
2f38ef89 7674 if (num >= 0 && num < 32)
a4b8ebc8 7675 regnum = num;
2f38ef89 7676 else if (num >= 38 && num < 70)
d3f73121 7677 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7678 else if (num == 70)
d3f73121 7679 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7680 else if (num == 71)
d3f73121 7681 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7682 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7683 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7684 else
a4b8ebc8
AC
7685 /* This will hopefully (eventually) provoke a warning. Should
7686 we be calling complaint() here? */
d3f73121
MD
7687 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7688 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7689}
7690
2f38ef89 7691
a4b8ebc8 7692/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7693 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7694
7695static int
d3f73121 7696mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7697{
a4b8ebc8 7698 int regnum;
2f38ef89 7699 if (num >= 0 && num < 32)
a4b8ebc8 7700 regnum = num;
2f38ef89 7701 else if (num >= 32 && num < 64)
d3f73121 7702 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7703 else if (num == 64)
d3f73121 7704 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7705 else if (num == 65)
d3f73121 7706 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7707 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7708 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7709 else
a4b8ebc8
AC
7710 /* This will hopefully (eventually) provoke a warning. Should we
7711 be calling complaint() here? */
d3f73121
MD
7712 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7713 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7714}
7715
7716static int
e7faf938 7717mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7718{
7719 /* Only makes sense to supply raw registers. */
e7faf938 7720 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7721 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7722 decide if it is valid. Should instead define a standard sim/gdb
7723 register numbering scheme. */
e7faf938
MD
7724 if (gdbarch_register_name (gdbarch,
7725 gdbarch_num_regs (gdbarch) + regnum) != NULL
7726 && gdbarch_register_name (gdbarch,
025bb325
MS
7727 gdbarch_num_regs (gdbarch)
7728 + regnum)[0] != '\0')
a4b8ebc8
AC
7729 return regnum;
7730 else
6d82d43b 7731 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7732}
7733
2f38ef89 7734
4844f454
CV
7735/* Convert an integer into an address. Extracting the value signed
7736 guarantees a correctly sign extended address. */
fc0c74b1
AC
7737
7738static CORE_ADDR
79dd2d24 7739mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7740 struct type *type, const gdb_byte *buf)
fc0c74b1 7741{
e17a4113
UW
7742 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7743 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7744}
7745
82e91389
DJ
7746/* Dummy virtual frame pointer method. This is no more or less accurate
7747 than most other architectures; we just need to be explicit about it,
7748 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7749 an assertion failure. */
7750
7751static void
a54fba4c
MD
7752mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7753 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7754{
7755 *reg = MIPS_SP_REGNUM;
7756 *offset = 0;
7757}
7758
caaa3122
DJ
7759static void
7760mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7761{
7762 enum mips_abi *abip = (enum mips_abi *) obj;
7763 const char *name = bfd_get_section_name (abfd, sect);
7764
7765 if (*abip != MIPS_ABI_UNKNOWN)
7766 return;
7767
7768 if (strncmp (name, ".mdebug.", 8) != 0)
7769 return;
7770
7771 if (strcmp (name, ".mdebug.abi32") == 0)
7772 *abip = MIPS_ABI_O32;
7773 else if (strcmp (name, ".mdebug.abiN32") == 0)
7774 *abip = MIPS_ABI_N32;
62a49b2c 7775 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 7776 *abip = MIPS_ABI_N64;
caaa3122
DJ
7777 else if (strcmp (name, ".mdebug.abiO64") == 0)
7778 *abip = MIPS_ABI_O64;
7779 else if (strcmp (name, ".mdebug.eabi32") == 0)
7780 *abip = MIPS_ABI_EABI32;
7781 else if (strcmp (name, ".mdebug.eabi64") == 0)
7782 *abip = MIPS_ABI_EABI64;
7783 else
8a3fe4f8 7784 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
7785}
7786
22e47e37
FF
7787static void
7788mips_find_long_section (bfd *abfd, asection *sect, void *obj)
7789{
7790 int *lbp = (int *) obj;
7791 const char *name = bfd_get_section_name (abfd, sect);
7792
7793 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
7794 *lbp = 32;
7795 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
7796 *lbp = 64;
7797 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
7798 warning (_("unrecognized .gcc_compiled_longXX"));
7799}
7800
2e4ebe70
DJ
7801static enum mips_abi
7802global_mips_abi (void)
7803{
7804 int i;
7805
7806 for (i = 0; mips_abi_strings[i] != NULL; i++)
7807 if (mips_abi_strings[i] == mips_abi_string)
7808 return (enum mips_abi) i;
7809
e2e0b3e5 7810 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
7811}
7812
4cc0665f
MR
7813/* Return the default compressed instruction set, either of MIPS16
7814 or microMIPS, selected when none could have been determined from
7815 the ELF header of the binary being executed (or no binary has been
7816 selected. */
7817
7818static enum mips_isa
7819global_mips_compression (void)
7820{
7821 int i;
7822
7823 for (i = 0; mips_compression_strings[i] != NULL; i++)
7824 if (mips_compression_strings[i] == mips_compression_string)
7825 return (enum mips_isa) i;
7826
7827 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
7828}
7829
29709017
DJ
7830static void
7831mips_register_g_packet_guesses (struct gdbarch *gdbarch)
7832{
29709017
DJ
7833 /* If the size matches the set of 32-bit or 64-bit integer registers,
7834 assume that's what we've got. */
4eb0ad19
DJ
7835 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
7836 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
7837
7838 /* If the size matches the full set of registers GDB traditionally
7839 knows about, including floating point, for either 32-bit or
7840 64-bit, assume that's what we've got. */
4eb0ad19
DJ
7841 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
7842 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
7843
7844 /* Otherwise we don't have a useful guess. */
7845}
7846
f8b73d13
DJ
7847static struct value *
7848value_of_mips_user_reg (struct frame_info *frame, const void *baton)
7849{
7850 const int *reg_p = baton;
7851 return value_of_register (*reg_p, frame);
7852}
7853
c2d11a7d 7854static struct gdbarch *
6d82d43b 7855mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 7856{
c2d11a7d
JM
7857 struct gdbarch *gdbarch;
7858 struct gdbarch_tdep *tdep;
7859 int elf_flags;
2e4ebe70 7860 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 7861 int i, num_regs;
8d5838b5 7862 enum mips_fpu_type fpu_type;
f8b73d13 7863 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 7864 int elf_fpu_type = 0;
1faeff08
MR
7865 const char **reg_names;
7866 struct mips_regnum mips_regnum, *regnum;
4cc0665f 7867 enum mips_isa mips_isa;
1faeff08
MR
7868 int dspacc;
7869 int dspctl;
7870
7871 /* Fill in the OS dependent register numbers and names. */
7872 if (info.osabi == GDB_OSABI_IRIX)
7873 {
7874 mips_regnum.fp0 = 32;
7875 mips_regnum.pc = 64;
7876 mips_regnum.cause = 65;
7877 mips_regnum.badvaddr = 66;
7878 mips_regnum.hi = 67;
7879 mips_regnum.lo = 68;
7880 mips_regnum.fp_control_status = 69;
7881 mips_regnum.fp_implementation_revision = 70;
7882 mips_regnum.dspacc = dspacc = -1;
7883 mips_regnum.dspctl = dspctl = -1;
7884 num_regs = 71;
7885 reg_names = mips_irix_reg_names;
7886 }
7887 else if (info.osabi == GDB_OSABI_LINUX)
7888 {
7889 mips_regnum.fp0 = 38;
7890 mips_regnum.pc = 37;
7891 mips_regnum.cause = 36;
7892 mips_regnum.badvaddr = 35;
7893 mips_regnum.hi = 34;
7894 mips_regnum.lo = 33;
7895 mips_regnum.fp_control_status = 70;
7896 mips_regnum.fp_implementation_revision = 71;
7897 mips_regnum.dspacc = -1;
7898 mips_regnum.dspctl = -1;
7899 dspacc = 72;
7900 dspctl = 78;
7901 num_regs = 79;
7902 reg_names = mips_linux_reg_names;
7903 }
7904 else
7905 {
7906 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
7907 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
7908 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
7909 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
7910 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
7911 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
7912 mips_regnum.fp_control_status = 70;
7913 mips_regnum.fp_implementation_revision = 71;
7914 mips_regnum.dspacc = dspacc = -1;
7915 mips_regnum.dspctl = dspctl = -1;
7916 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
7917 if (info.bfd_arch_info != NULL
7918 && info.bfd_arch_info->mach == bfd_mach_mips3900)
7919 reg_names = mips_tx39_reg_names;
7920 else
7921 reg_names = mips_generic_reg_names;
7922 }
f8b73d13
DJ
7923
7924 /* Check any target description for validity. */
7925 if (tdesc_has_registers (info.target_desc))
7926 {
7927 static const char *const mips_gprs[] = {
7928 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7929 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
7930 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
7931 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
7932 };
7933 static const char *const mips_fprs[] = {
7934 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
7935 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
7936 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
7937 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
7938 };
7939
7940 const struct tdesc_feature *feature;
7941 int valid_p;
7942
7943 feature = tdesc_find_feature (info.target_desc,
7944 "org.gnu.gdb.mips.cpu");
7945 if (feature == NULL)
7946 return NULL;
7947
7948 tdesc_data = tdesc_data_alloc ();
7949
7950 valid_p = 1;
7951 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
7952 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
7953 mips_gprs[i]);
7954
7955
7956 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 7957 mips_regnum.lo, "lo");
f8b73d13 7958 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 7959 mips_regnum.hi, "hi");
f8b73d13 7960 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 7961 mips_regnum.pc, "pc");
f8b73d13
DJ
7962
7963 if (!valid_p)
7964 {
7965 tdesc_data_cleanup (tdesc_data);
7966 return NULL;
7967 }
7968
7969 feature = tdesc_find_feature (info.target_desc,
7970 "org.gnu.gdb.mips.cp0");
7971 if (feature == NULL)
7972 {
7973 tdesc_data_cleanup (tdesc_data);
7974 return NULL;
7975 }
7976
7977 valid_p = 1;
7978 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 7979 mips_regnum.badvaddr, "badvaddr");
f8b73d13
DJ
7980 valid_p &= tdesc_numbered_register (feature, tdesc_data,
7981 MIPS_PS_REGNUM, "status");
7982 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 7983 mips_regnum.cause, "cause");
f8b73d13
DJ
7984
7985 if (!valid_p)
7986 {
7987 tdesc_data_cleanup (tdesc_data);
7988 return NULL;
7989 }
7990
7991 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
7992 backend is not prepared for that, though. */
7993 feature = tdesc_find_feature (info.target_desc,
7994 "org.gnu.gdb.mips.fpu");
7995 if (feature == NULL)
7996 {
7997 tdesc_data_cleanup (tdesc_data);
7998 return NULL;
7999 }
8000
8001 valid_p = 1;
8002 for (i = 0; i < 32; i++)
8003 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8004 i + mips_regnum.fp0, mips_fprs[i]);
f8b73d13
DJ
8005
8006 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08
MR
8007 mips_regnum.fp_control_status,
8008 "fcsr");
8009 valid_p
8010 &= tdesc_numbered_register (feature, tdesc_data,
8011 mips_regnum.fp_implementation_revision,
8012 "fir");
f8b73d13
DJ
8013
8014 if (!valid_p)
8015 {
8016 tdesc_data_cleanup (tdesc_data);
8017 return NULL;
8018 }
8019
1faeff08
MR
8020 if (dspacc >= 0)
8021 {
8022 feature = tdesc_find_feature (info.target_desc,
8023 "org.gnu.gdb.mips.dsp");
8024 /* The DSP registers are optional; it's OK if they are absent. */
8025 if (feature != NULL)
8026 {
8027 i = 0;
8028 valid_p = 1;
8029 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8030 dspacc + i++, "hi1");
8031 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8032 dspacc + i++, "lo1");
8033 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8034 dspacc + i++, "hi2");
8035 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8036 dspacc + i++, "lo2");
8037 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8038 dspacc + i++, "hi3");
8039 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8040 dspacc + i++, "lo3");
8041
8042 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8043 dspctl, "dspctl");
8044
8045 if (!valid_p)
8046 {
8047 tdesc_data_cleanup (tdesc_data);
8048 return NULL;
8049 }
8050
8051 mips_regnum.dspacc = dspacc;
8052 mips_regnum.dspctl = dspctl;
8053 }
8054 }
8055
f8b73d13
DJ
8056 /* It would be nice to detect an attempt to use a 64-bit ABI
8057 when only 32-bit registers are provided. */
1faeff08 8058 reg_names = NULL;
f8b73d13 8059 }
c2d11a7d 8060
ec03c1ac
AC
8061 /* First of all, extract the elf_flags, if available. */
8062 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8063 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8064 else if (arches != NULL)
8065 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8066 else
8067 elf_flags = 0;
8068 if (gdbarch_debug)
8069 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8070 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8071
102182a9 8072 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8073 switch ((elf_flags & EF_MIPS_ABI))
8074 {
8075 case E_MIPS_ABI_O32:
ec03c1ac 8076 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8077 break;
8078 case E_MIPS_ABI_O64:
ec03c1ac 8079 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8080 break;
8081 case E_MIPS_ABI_EABI32:
ec03c1ac 8082 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8083 break;
8084 case E_MIPS_ABI_EABI64:
ec03c1ac 8085 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8086 break;
8087 default:
acdb74a0 8088 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8089 found_abi = MIPS_ABI_N32;
acdb74a0 8090 else
ec03c1ac 8091 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8092 break;
8093 }
acdb74a0 8094
caaa3122 8095 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8096 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8097 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8098
dc305454 8099 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8100 MIPS architecture (if there is one). */
8101 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8102 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8103
32a6503c 8104 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8105 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8106 && info.bfd_arch_info != NULL
8107 && info.bfd_arch_info->arch == bfd_arch_mips)
8108 {
8109 switch (info.bfd_arch_info->mach)
8110 {
8111 case bfd_mach_mips3900:
ec03c1ac 8112 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8113 break;
8114 case bfd_mach_mips4100:
8115 case bfd_mach_mips5000:
ec03c1ac 8116 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8117 break;
1d06468c
EZ
8118 case bfd_mach_mips8000:
8119 case bfd_mach_mips10000:
32a6503c
KB
8120 /* On Irix, ELF64 executables use the N64 ABI. The
8121 pseudo-sections which describe the ABI aren't present
8122 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
8123 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8124 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8125 found_abi = MIPS_ABI_N64;
28d169de 8126 else
ec03c1ac 8127 found_abi = MIPS_ABI_N32;
1d06468c 8128 break;
bf64bfd6
AC
8129 }
8130 }
2e4ebe70 8131
26c53e50
DJ
8132 /* Default 64-bit objects to N64 instead of O32. */
8133 if (found_abi == MIPS_ABI_UNKNOWN
8134 && info.abfd != NULL
8135 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8136 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8137 found_abi = MIPS_ABI_N64;
8138
ec03c1ac
AC
8139 if (gdbarch_debug)
8140 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8141 found_abi);
8142
8143 /* What has the user specified from the command line? */
8144 wanted_abi = global_mips_abi ();
8145 if (gdbarch_debug)
8146 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8147 wanted_abi);
2e4ebe70
DJ
8148
8149 /* Now that we have found what the ABI for this binary would be,
8150 check whether the user is overriding it. */
2e4ebe70
DJ
8151 if (wanted_abi != MIPS_ABI_UNKNOWN)
8152 mips_abi = wanted_abi;
ec03c1ac
AC
8153 else if (found_abi != MIPS_ABI_UNKNOWN)
8154 mips_abi = found_abi;
8155 else
8156 mips_abi = MIPS_ABI_O32;
8157 if (gdbarch_debug)
8158 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8159 mips_abi);
2e4ebe70 8160
4cc0665f
MR
8161 /* Determine the default compressed ISA. */
8162 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8163 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8164 mips_isa = ISA_MICROMIPS;
8165 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8166 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8167 mips_isa = ISA_MIPS16;
8168 else
8169 mips_isa = global_mips_compression ();
8170 mips_compression_string = mips_compression_strings[mips_isa];
8171
ec03c1ac 8172 /* Also used when doing an architecture lookup. */
4b9b3959 8173 if (gdbarch_debug)
ec03c1ac 8174 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8175 "mips_gdbarch_init: "
8176 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8177 mips64_transfers_32bit_regs_p);
0dadbba0 8178
8d5838b5 8179 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8180#ifdef HAVE_ELF
8181 if (info.abfd
8182 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8183 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8184 Tag_GNU_MIPS_ABI_FP);
8185#endif /* HAVE_ELF */
8186
8d5838b5
AC
8187 if (!mips_fpu_type_auto)
8188 fpu_type = mips_fpu_type;
609ca2b9
DJ
8189 else if (elf_fpu_type != 0)
8190 {
8191 switch (elf_fpu_type)
8192 {
8193 case 1:
8194 fpu_type = MIPS_FPU_DOUBLE;
8195 break;
8196 case 2:
8197 fpu_type = MIPS_FPU_SINGLE;
8198 break;
8199 case 3:
8200 default:
8201 /* Soft float or unknown. */
8202 fpu_type = MIPS_FPU_NONE;
8203 break;
8204 }
8205 }
8d5838b5
AC
8206 else if (info.bfd_arch_info != NULL
8207 && info.bfd_arch_info->arch == bfd_arch_mips)
8208 switch (info.bfd_arch_info->mach)
8209 {
8210 case bfd_mach_mips3900:
8211 case bfd_mach_mips4100:
8212 case bfd_mach_mips4111:
a9d61c86 8213 case bfd_mach_mips4120:
8d5838b5
AC
8214 fpu_type = MIPS_FPU_NONE;
8215 break;
8216 case bfd_mach_mips4650:
8217 fpu_type = MIPS_FPU_SINGLE;
8218 break;
8219 default:
8220 fpu_type = MIPS_FPU_DOUBLE;
8221 break;
8222 }
8223 else if (arches != NULL)
8224 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8225 else
8226 fpu_type = MIPS_FPU_DOUBLE;
8227 if (gdbarch_debug)
8228 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8229 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8230
29709017
DJ
8231 /* Check for blatant incompatibilities. */
8232
8233 /* If we have only 32-bit registers, then we can't debug a 64-bit
8234 ABI. */
8235 if (info.target_desc
8236 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8237 && mips_abi != MIPS_ABI_EABI32
8238 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
8239 {
8240 if (tdesc_data != NULL)
8241 tdesc_data_cleanup (tdesc_data);
8242 return NULL;
8243 }
29709017 8244
025bb325 8245 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8246 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8247 arches != NULL;
8248 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8249 {
8250 /* MIPS needs to be pedantic about which ABI the object is
102182a9 8251 using. */
9103eae0 8252 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8253 continue;
9103eae0 8254 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8255 continue;
719ec221
AC
8256 /* Need to be pedantic about which register virtual size is
8257 used. */
8258 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8259 != mips64_transfers_32bit_regs_p)
8260 continue;
8d5838b5
AC
8261 /* Be pedantic about which FPU is selected. */
8262 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8263 continue;
f8b73d13
DJ
8264
8265 if (tdesc_data != NULL)
8266 tdesc_data_cleanup (tdesc_data);
4be87837 8267 return arches->gdbarch;
c2d11a7d
JM
8268 }
8269
102182a9 8270 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
8271 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
8272 gdbarch = gdbarch_alloc (&info, tdep);
8273 tdep->elf_flags = elf_flags;
719ec221 8274 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8275 tdep->found_abi = found_abi;
8276 tdep->mips_abi = mips_abi;
4cc0665f 8277 tdep->mips_isa = mips_isa;
8d5838b5 8278 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8279 tdep->register_size_valid_p = 0;
8280 tdep->register_size = 0;
50e8a0d5
HZ
8281 tdep->gregset = NULL;
8282 tdep->gregset64 = NULL;
8283 tdep->fpregset = NULL;
8284 tdep->fpregset64 = NULL;
29709017
DJ
8285
8286 if (info.target_desc)
8287 {
8288 /* Some useful properties can be inferred from the target. */
8289 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8290 {
8291 tdep->register_size_valid_p = 1;
8292 tdep->register_size = 4;
8293 }
8294 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8295 {
8296 tdep->register_size_valid_p = 1;
8297 tdep->register_size = 8;
8298 }
8299 }
c2d11a7d 8300
102182a9 8301 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8302 set_gdbarch_short_bit (gdbarch, 16);
8303 set_gdbarch_int_bit (gdbarch, 32);
8304 set_gdbarch_float_bit (gdbarch, 32);
8305 set_gdbarch_double_bit (gdbarch, 64);
8306 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8307 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8308 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8309 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8310
175ff332
HZ
8311 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8312 mips_ax_pseudo_register_collect);
8313 set_gdbarch_ax_pseudo_register_push_stack
8314 (gdbarch, mips_ax_pseudo_register_push_stack);
8315
6d82d43b 8316 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
8317 mips_elf_make_msymbol_special);
8318
1faeff08
MR
8319 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8320 *regnum = mips_regnum;
1faeff08
MR
8321 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8322 set_gdbarch_num_regs (gdbarch, num_regs);
8323 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8324 set_gdbarch_register_name (gdbarch, mips_register_name);
8325 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8326 tdep->mips_processor_reg_names = reg_names;
8327 tdep->regnum = regnum;
fe29b929 8328
0dadbba0 8329 switch (mips_abi)
c2d11a7d 8330 {
0dadbba0 8331 case MIPS_ABI_O32:
25ab4790 8332 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8333 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8334 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8335 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8336 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8337 set_gdbarch_long_bit (gdbarch, 32);
8338 set_gdbarch_ptr_bit (gdbarch, 32);
8339 set_gdbarch_long_long_bit (gdbarch, 64);
8340 break;
0dadbba0 8341 case MIPS_ABI_O64:
25ab4790 8342 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8343 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8344 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8345 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8346 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8347 set_gdbarch_long_bit (gdbarch, 32);
8348 set_gdbarch_ptr_bit (gdbarch, 32);
8349 set_gdbarch_long_long_bit (gdbarch, 64);
8350 break;
0dadbba0 8351 case MIPS_ABI_EABI32:
25ab4790 8352 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8353 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8354 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8355 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8356 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8357 set_gdbarch_long_bit (gdbarch, 32);
8358 set_gdbarch_ptr_bit (gdbarch, 32);
8359 set_gdbarch_long_long_bit (gdbarch, 64);
8360 break;
0dadbba0 8361 case MIPS_ABI_EABI64:
25ab4790 8362 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8363 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8364 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8365 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8366 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8367 set_gdbarch_long_bit (gdbarch, 64);
8368 set_gdbarch_ptr_bit (gdbarch, 64);
8369 set_gdbarch_long_long_bit (gdbarch, 64);
8370 break;
0dadbba0 8371 case MIPS_ABI_N32:
25ab4790 8372 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8373 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8374 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8375 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8376 tdep->default_mask_address_p = 0;
0dadbba0
AC
8377 set_gdbarch_long_bit (gdbarch, 32);
8378 set_gdbarch_ptr_bit (gdbarch, 32);
8379 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8380 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8381 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8382 break;
8383 case MIPS_ABI_N64:
25ab4790 8384 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8385 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8386 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8387 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8388 tdep->default_mask_address_p = 0;
8389 set_gdbarch_long_bit (gdbarch, 64);
8390 set_gdbarch_ptr_bit (gdbarch, 64);
8391 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8392 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8393 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8394 break;
c2d11a7d 8395 default:
e2e0b3e5 8396 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8397 }
8398
22e47e37
FF
8399 /* GCC creates a pseudo-section whose name specifies the size of
8400 longs, since -mlong32 or -mlong64 may be used independent of
8401 other options. How those options affect pointer sizes is ABI and
8402 architecture dependent, so use them to override the default sizes
8403 set by the ABI. This table shows the relationship between ABI,
8404 -mlongXX, and size of pointers:
8405
8406 ABI -mlongXX ptr bits
8407 --- -------- --------
8408 o32 32 32
8409 o32 64 32
8410 n32 32 32
8411 n32 64 64
8412 o64 32 32
8413 o64 64 64
8414 n64 32 32
8415 n64 64 64
8416 eabi32 32 32
8417 eabi32 64 32
8418 eabi64 32 32
8419 eabi64 64 64
8420
8421 Note that for o32 and eabi32, pointers are always 32 bits
8422 regardless of any -mlongXX option. For all others, pointers and
025bb325 8423 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8424
8425 if (info.abfd != NULL)
8426 {
8427 int long_bit = 0;
8428
8429 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8430 if (long_bit)
8431 {
8432 set_gdbarch_long_bit (gdbarch, long_bit);
8433 switch (mips_abi)
8434 {
8435 case MIPS_ABI_O32:
8436 case MIPS_ABI_EABI32:
8437 break;
8438 case MIPS_ABI_N32:
8439 case MIPS_ABI_O64:
8440 case MIPS_ABI_N64:
8441 case MIPS_ABI_EABI64:
8442 set_gdbarch_ptr_bit (gdbarch, long_bit);
8443 break;
8444 default:
8445 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8446 }
8447 }
8448 }
8449
a5ea2558
AC
8450 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8451 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8452 comment:
8453
8454 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8455 flag in object files because to do so would make it impossible to
102182a9 8456 link with libraries compiled without "-gp32". This is
a5ea2558 8457 unnecessarily restrictive.
361d1df0 8458
a5ea2558
AC
8459 We could solve this problem by adding "-gp32" multilibs to gcc,
8460 but to set this flag before gcc is built with such multilibs will
8461 break too many systems.''
8462
8463 But even more unhelpfully, the default linker output target for
8464 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8465 for 64-bit programs - you need to change the ABI to change this,
102182a9 8466 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8467 this flag to detect 32-bit mode would do the wrong thing given
8468 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8469 as 32-bit programs by default. */
a5ea2558 8470
6c997a34 8471 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8472 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8473
102182a9
MS
8474 /* Add/remove bits from an address. The MIPS needs be careful to
8475 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8476 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8477
58dfe9ff
AC
8478 /* Unwind the frame. */
8479 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8480 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8481 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8482
102182a9 8483 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8484 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8485 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8486 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8487 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8488 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8489 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8490
025bb325 8491 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8492
2c76a0c7
JB
8493 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8494 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8495 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8496
87783b8b
AC
8497 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8498 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8499 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8500
f7b9e9fc
AC
8501 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8502 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4cc0665f
MR
8503 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8504 mips_remote_breakpoint_from_pc);
c8cef75f
MR
8505 set_gdbarch_adjust_breakpoint_address (gdbarch,
8506 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8507
8508 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8509
97ab0fdd
MR
8510 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
8511
fc0c74b1
AC
8512 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8513 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8514 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8515
a4b8ebc8 8516 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8517
e11c53d2 8518 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8519
9dae60cc
UW
8520 if (mips_abi == MIPS_ABI_N32)
8521 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8522 else if (mips_abi == MIPS_ABI_N64)
8523 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8524 else
8525 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 8526
d92524f1
PM
8527 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8528 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8529 need to all be folded into the target vector. Since they are
d92524f1
PM
8530 being used as guards for target_stopped_by_watchpoint, why not have
8531 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8532 is sitting on? */
8533 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8534
e7d6a6d2 8535 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8536
14132e89
MR
8537 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8538 to support MIPS16. This is a bad thing. Make sure not to do it
8539 if we have an OS ABI that actually supports shared libraries, since
8540 shared library support is more important. If we have an OS someday
8541 that supports both shared libraries and MIPS16, we'll have to find
8542 a better place for these.
8543 macro/2012-04-25: But that applies to return trampolines only and
8544 currently no MIPS OS ABI uses shared libraries that have them. */
8545 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8546
025bb325
MS
8547 set_gdbarch_single_step_through_delay (gdbarch,
8548 mips_single_step_through_delay);
3352ef37 8549
0d5de010
DJ
8550 /* Virtual tables. */
8551 set_gdbarch_vbit_in_delta (gdbarch, 1);
8552
29709017
DJ
8553 mips_register_g_packet_guesses (gdbarch);
8554
6de918a6 8555 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 8556 info.tdep_info = (void *) tdesc_data;
6de918a6 8557 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8558
9aac7884
MR
8559 /* The hook may have adjusted num_regs, fetch the final value and
8560 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8561 num_regs = gdbarch_num_regs (gdbarch);
8562 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8563 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8564
5792a79b 8565 /* Unwind the frame. */
b8a22b94
DJ
8566 dwarf2_append_unwinders (gdbarch);
8567 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8568 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8569 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8570 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8571 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8572 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8573 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8574 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8575 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8576
f8b73d13
DJ
8577 if (tdesc_data)
8578 {
8579 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8580 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8581
8582 /* Override the normal target description methods to handle our
8583 dual real and pseudo registers. */
8584 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8585 set_gdbarch_register_reggroup_p (gdbarch,
8586 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8587
8588 num_regs = gdbarch_num_regs (gdbarch);
8589 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8590 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8591 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8592 }
8593
8594 /* Add ABI-specific aliases for the registers. */
8595 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8596 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8597 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8598 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8599 else
8600 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8601 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8602 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8603
8604 /* Add some other standard aliases. */
8605 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8606 user_reg_add (gdbarch, mips_register_aliases[i].name,
8607 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8608
865093a3
AR
8609 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8610 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8611 value_of_mips_user_reg,
8612 &mips_numeric_register_aliases[i].regnum);
8613
4b9b3959
AC
8614 return gdbarch;
8615}
8616
2e4ebe70 8617static void
6d82d43b 8618mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8619{
8620 struct gdbarch_info info;
8621
8622 /* Force the architecture to update, and (if it's a MIPS architecture)
8623 mips_gdbarch_init will take care of the rest. */
8624 gdbarch_info_init (&info);
8625 gdbarch_update_p (info);
8626}
8627
ad188201
KB
8628/* Print out which MIPS ABI is in use. */
8629
8630static void
1f8ca57c
JB
8631show_mips_abi (struct ui_file *file,
8632 int from_tty,
8633 struct cmd_list_element *ignored_cmd,
8634 const char *ignored_value)
ad188201 8635{
1cf3db46 8636 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
8637 fprintf_filtered
8638 (file,
8639 "The MIPS ABI is unknown because the current architecture "
8640 "is not MIPS.\n");
ad188201
KB
8641 else
8642 {
8643 enum mips_abi global_abi = global_mips_abi ();
1cf3db46 8644 enum mips_abi actual_abi = mips_abi (target_gdbarch);
ad188201
KB
8645 const char *actual_abi_str = mips_abi_strings[actual_abi];
8646
8647 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8648 fprintf_filtered
8649 (file,
8650 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8651 actual_abi_str);
ad188201 8652 else if (global_abi == actual_abi)
1f8ca57c
JB
8653 fprintf_filtered
8654 (file,
8655 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8656 actual_abi_str);
ad188201
KB
8657 else
8658 {
8659 /* Probably shouldn't happen... */
025bb325
MS
8660 fprintf_filtered (file,
8661 "The (auto detected) MIPS ABI \"%s\" is in use "
8662 "even though the user setting was \"%s\".\n",
6d82d43b 8663 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8664 }
8665 }
8666}
8667
4cc0665f
MR
8668/* Print out which MIPS compressed ISA encoding is used. */
8669
8670static void
8671show_mips_compression (struct ui_file *file, int from_tty,
8672 struct cmd_list_element *c, const char *value)
8673{
8674 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8675 value);
8676}
8677
4b9b3959 8678static void
72a155b4 8679mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8680{
72a155b4 8681 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8682 if (tdep != NULL)
c2d11a7d 8683 {
acdb74a0
AC
8684 int ef_mips_arch;
8685 int ef_mips_32bitmode;
f49e4e6d 8686 /* Determine the ISA. */
acdb74a0
AC
8687 switch (tdep->elf_flags & EF_MIPS_ARCH)
8688 {
8689 case E_MIPS_ARCH_1:
8690 ef_mips_arch = 1;
8691 break;
8692 case E_MIPS_ARCH_2:
8693 ef_mips_arch = 2;
8694 break;
8695 case E_MIPS_ARCH_3:
8696 ef_mips_arch = 3;
8697 break;
8698 case E_MIPS_ARCH_4:
93d56215 8699 ef_mips_arch = 4;
acdb74a0
AC
8700 break;
8701 default:
93d56215 8702 ef_mips_arch = 0;
acdb74a0
AC
8703 break;
8704 }
f49e4e6d 8705 /* Determine the size of a pointer. */
acdb74a0 8706 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8707 fprintf_unfiltered (file,
8708 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8709 tdep->elf_flags);
4b9b3959 8710 fprintf_unfiltered (file,
acdb74a0
AC
8711 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8712 ef_mips_32bitmode);
8713 fprintf_unfiltered (file,
8714 "mips_dump_tdep: ef_mips_arch = %d\n",
8715 ef_mips_arch);
8716 fprintf_unfiltered (file,
8717 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8718 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8719 fprintf_unfiltered (file,
025bb325
MS
8720 "mips_dump_tdep: "
8721 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8722 mips_mask_address_p (tdep),
4014092b 8723 tdep->default_mask_address_p);
c2d11a7d 8724 }
4b9b3959
AC
8725 fprintf_unfiltered (file,
8726 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8727 MIPS_DEFAULT_FPU_TYPE,
8728 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8729 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8730 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8731 : "???"));
74ed0bb4
MD
8732 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8733 MIPS_EABI (gdbarch));
4b9b3959
AC
8734 fprintf_unfiltered (file,
8735 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4
MD
8736 MIPS_FPU_TYPE (gdbarch),
8737 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8738 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8739 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
4b9b3959 8740 : "???"));
c2d11a7d
JM
8741}
8742
025bb325 8743extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 8744
c906108c 8745void
acdb74a0 8746_initialize_mips_tdep (void)
c906108c
SS
8747{
8748 static struct cmd_list_element *mipsfpulist = NULL;
8749 struct cmd_list_element *c;
8750
6d82d43b 8751 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8752 if (MIPS_ABI_LAST + 1
8753 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8754 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8755
4b9b3959 8756 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8757
8d5f9dcb
DJ
8758 mips_pdr_data = register_objfile_data ();
8759
4eb0ad19
DJ
8760 /* Create feature sets with the appropriate properties. The values
8761 are not important. */
8762 mips_tdesc_gp32 = allocate_target_description ();
8763 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8764
8765 mips_tdesc_gp64 = allocate_target_description ();
8766 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8767
025bb325 8768 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8769 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8770 _("Various MIPS specific commands."),
a5ea2558
AC
8771 &setmipscmdlist, "set mips ", 0, &setlist);
8772
8773 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 8774 _("Various MIPS specific commands."),
a5ea2558
AC
8775 &showmipscmdlist, "show mips ", 0, &showlist);
8776
025bb325 8777 /* Allow the user to override the ABI. */
7ab04401
AC
8778 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8779 &mips_abi_string, _("\
8780Set the MIPS ABI used by this program."), _("\
8781Show the MIPS ABI used by this program."), _("\
8782This option can be set to one of:\n\
8783 auto - the default ABI associated with the current binary\n\
8784 o32\n\
8785 o64\n\
8786 n32\n\
8787 n64\n\
8788 eabi32\n\
8789 eabi64"),
8790 mips_abi_update,
8791 show_mips_abi,
8792 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 8793
4cc0665f
MR
8794 /* Allow the user to set the ISA to assume for compressed code if ELF
8795 file flags don't tell or there is no program file selected. This
8796 setting is updated whenever unambiguous ELF file flags are interpreted,
8797 and carried over to subsequent sessions. */
8798 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
8799 &mips_compression_string, _("\
8800Set the compressed ISA encoding used by MIPS code."), _("\
8801Show the compressed ISA encoding used by MIPS code."), _("\
8802Select the compressed ISA encoding used in functions that have no symbol\n\
8803information available. The encoding can be set to either of:\n\
8804 mips16\n\
8805 micromips\n\
8806and is updated automatically from ELF file flags if available."),
8807 mips_abi_update,
8808 show_mips_compression,
8809 &setmipscmdlist, &showmipscmdlist);
8810
c906108c
SS
8811 /* Let the user turn off floating point and set the fence post for
8812 heuristic_proc_start. */
8813
8814 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 8815 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
8816 &mipsfpulist, "set mipsfpu ", 0, &setlist);
8817 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 8818 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
8819 &mipsfpulist);
8820 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 8821 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
8822 &mipsfpulist);
8823 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
8824 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
8825 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
8826 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 8827 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
8828 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
8829 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
8830 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
8831 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 8832 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
8833 &mipsfpulist);
8834 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 8835 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
8836 &showlist);
8837
c906108c
SS
8838 /* We really would like to have both "0" and "unlimited" work, but
8839 command.c doesn't deal with that. So make it a var_zinteger
8840 because the user can always use "999999" or some such for unlimited. */
6bcadd06 8841 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
8842 &heuristic_fence_post, _("\
8843Set the distance searched for the start of a function."), _("\
8844Show the distance searched for the start of a function."), _("\
c906108c
SS
8845If you are debugging a stripped executable, GDB needs to search through the\n\
8846program for the start of a function. This command sets the distance of the\n\
7915a72c 8847search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 8848 reinit_frame_cache_sfunc,
025bb325
MS
8849 NULL, /* FIXME: i18n: The distance searched for
8850 the start of a function is %s. */
6bcadd06 8851 &setlist, &showlist);
c906108c
SS
8852
8853 /* Allow the user to control whether the upper bits of 64-bit
8854 addresses should be zeroed. */
7915a72c
AC
8855 add_setshow_auto_boolean_cmd ("mask-address", no_class,
8856 &mask_address_var, _("\
8857Set zeroing of upper 32 bits of 64-bit addresses."), _("\
8858Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 8859Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 8860allow GDB to determine the correct value."),
08546159
AC
8861 NULL, show_mask_address,
8862 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
8863
8864 /* Allow the user to control the size of 32 bit registers within the
8865 raw remote packet. */
b3f42336 8866 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
8867 &mips64_transfers_32bit_regs_p, _("\
8868Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8869 _("\
8870Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8871 _("\
719ec221
AC
8872Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
8873that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 887464 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 8875 set_mips64_transfers_32bit_regs,
025bb325
MS
8876 NULL, /* FIXME: i18n: Compatibility with 64-bit
8877 MIPS target that transfers 32-bit
8878 quantities is %s. */
7915a72c 8879 &setlist, &showlist);
9ace0497 8880
025bb325 8881 /* Debug this files internals. */
ccce17b0
YQ
8882 add_setshow_zuinteger_cmd ("mips", class_maintenance,
8883 &mips_debug, _("\
7915a72c
AC
8884Set mips debugging."), _("\
8885Show mips debugging."), _("\
8886When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
8887 NULL,
8888 NULL, /* FIXME: i18n: Mips debugging is
8889 currently %s. */
8890 &setdebuglist, &showdebuglist);
c906108c 8891}
This page took 1.827132 seconds and 4 git commands to generate.