Introduce gdbarch_num_cooked_regs
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "language.h"
30#include "gdbcore.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbtypes.h"
34#include "target.h"
28d069e6 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
70f80edf 37#include "osabi.h"
d1973055 38#include "mips-tdep.h"
fe898f56 39#include "block.h"
a4b8ebc8 40#include "reggroups.h"
c906108c 41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
a4b8ebc8 45#include "sim-regno.h"
a89aa300 46#include "dis-asm.h"
e47ad6c0 47#include "disasm.h"
edfae063
AC
48#include "frame-unwind.h"
49#include "frame-base.h"
50#include "trad-frame.h"
7d9b040b 51#include "infcall.h"
29709017
DJ
52#include "remote.h"
53#include "target-descriptions.h"
2bd0c3d7 54#include "dwarf2-frame.h"
f8b73d13 55#include "user-regs.h"
79a45b7d 56#include "valprint.h"
175ff332 57#include "ax.h"
f69fdf9b 58#include "target-float.h"
325fac50 59#include <algorithm>
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
ab50adb6
MR
65static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
4cc0665f 77
1bab7383
YQ
78static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
24e05951 81/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
82/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83#define ST0_FR (1 << 26)
84
b0069a17
AC
85/* The sizes of floating point registers. */
86
87enum
88{
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91};
92
1a69e1e4
DJ
93enum
94{
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97};
0dadbba0 98
2e4ebe70
DJ
99static const char *mips_abi_string;
100
40478521 101static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
102 "auto",
103 "n32",
104 "o32",
28d169de 105 "n64",
2e4ebe70
DJ
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110};
111
44f1c4d7
YQ
112/* Enum describing the different kinds of breakpoints. */
113
114enum mips_breakpoint_kind
115{
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127};
128
4cc0665f
MR
129/* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132static const char mips_compression_mips16[] = "mips16";
133static const char mips_compression_micromips[] = "micromips";
134static const char *const mips_compression_strings[] =
135{
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139};
140
141static const char *mips_compression_string = mips_compression_mips16;
142
f8b73d13
DJ
143/* The standard register names, and all the valid aliases for them. */
144struct register_alias
145{
146 const char *name;
147 int regnum;
148};
149
150/* Aliases for o32 and most other ABIs. */
151const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156};
157
158/* Aliases for n32 and n64. */
159const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164};
165
166/* Aliases for ABI-independent registers. */
167const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170#define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175#undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190};
191
865093a3
AR
192const struct register_alias mips_numeric_register_aliases[] = {
193#define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198#undef R
199};
200
c906108c
SS
201#ifndef MIPS_DEFAULT_FPU_TYPE
202#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203#endif
204static int mips_fpu_type_auto = 1;
205static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 206
ccce17b0 207static unsigned int mips_debug = 0;
7a292a7a 208
29709017
DJ
209/* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211#define PROPERTY_GP32 "internal: transfers-32bit-registers"
212#define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
4eb0ad19
DJ
214struct target_desc *mips_tdesc_gp32;
215struct target_desc *mips_tdesc_gp64;
216
471b9d15
MR
217/* The current set of options to be passed to the disassembler. */
218static char *mips_disassembler_options;
219
220/* Implicit disassembler options for individual ABIs. These tell
221 libopcodes to use general-purpose register names corresponding
222 to the ABI we have selected, perhaps via a `set mips abi ...'
223 override, rather than ones inferred from the ABI set in the ELF
224 headers of the binary file selected for debugging. */
225static const char mips_disassembler_options_o32[] = "gpr-names=32";
226static const char mips_disassembler_options_n32[] = "gpr-names=n32";
227static const char mips_disassembler_options_n64[] = "gpr-names=64";
228
56cea623
AC
229const struct mips_regnum *
230mips_regnum (struct gdbarch *gdbarch)
231{
232 return gdbarch_tdep (gdbarch)->regnum;
233}
234
235static int
236mips_fpa0_regnum (struct gdbarch *gdbarch)
237{
238 return mips_regnum (gdbarch)->fp0 + 12;
239}
240
004159a2
MR
241/* Return 1 if REGNUM refers to a floating-point general register, raw
242 or cooked. Otherwise return 0. */
243
244static int
245mips_float_register_p (struct gdbarch *gdbarch, int regnum)
246{
247 int rawnum = regnum % gdbarch_num_regs (gdbarch);
248
249 return (rawnum >= mips_regnum (gdbarch)->fp0
250 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
251}
252
74ed0bb4
MD
253#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
254 == MIPS_ABI_EABI32 \
255 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 256
025bb325
MS
257#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
258 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 259
025bb325
MS
260#define MIPS_LAST_ARG_REGNUM(gdbarch) \
261 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 262
74ed0bb4 263#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 264
d1973055
KB
265/* Return the MIPS ABI associated with GDBARCH. */
266enum mips_abi
267mips_abi (struct gdbarch *gdbarch)
268{
269 return gdbarch_tdep (gdbarch)->mips_abi;
270}
271
4246e332 272int
1b13c4f6 273mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 274{
29709017
DJ
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276
277 /* If we know how big the registers are, use that size. */
278 if (tdep->register_size_valid_p)
279 return tdep->register_size;
280
281 /* Fall back to the previous behavior. */
4246e332
AC
282 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
283 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
284}
285
b3464d03
PA
286/* Max saved register size. */
287#define MAX_MIPS_ABI_REGSIZE 8
288
025bb325 289/* Return the currently configured (or set) saved register size. */
480d3dd2 290
e6bc2e8a 291unsigned int
13326b4e 292mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 293{
1a69e1e4
DJ
294 switch (mips_abi (gdbarch))
295 {
296 case MIPS_ABI_EABI32:
297 case MIPS_ABI_O32:
298 return 4;
299 case MIPS_ABI_N32:
300 case MIPS_ABI_N64:
301 case MIPS_ABI_O64:
302 case MIPS_ABI_EABI64:
303 return 8;
304 case MIPS_ABI_UNKNOWN:
305 case MIPS_ABI_LAST:
306 default:
307 internal_error (__FILE__, __LINE__, _("bad switch"));
308 }
d929b26f
AC
309}
310
4cc0665f
MR
311/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
312 are some functions to handle addresses associated with compressed
313 code including but not limited to testing, setting, or clearing
314 bit 0 of such addresses. */
742c84f6 315
4cc0665f
MR
316/* Return one iff compressed code is the MIPS16 instruction set. */
317
318static int
319is_mips16_isa (struct gdbarch *gdbarch)
320{
321 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
322}
323
324/* Return one iff compressed code is the microMIPS instruction set. */
325
326static int
327is_micromips_isa (struct gdbarch *gdbarch)
328{
329 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
330}
331
332/* Return one iff ADDR denotes compressed code. */
333
334static int
335is_compact_addr (CORE_ADDR addr)
742c84f6
MR
336{
337 return ((addr) & 1);
338}
339
4cc0665f
MR
340/* Return one iff ADDR denotes standard ISA code. */
341
342static int
343is_mips_addr (CORE_ADDR addr)
344{
345 return !is_compact_addr (addr);
346}
347
348/* Return one iff ADDR denotes MIPS16 code. */
349
350static int
351is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
352{
353 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
354}
355
356/* Return one iff ADDR denotes microMIPS code. */
357
358static int
359is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
360{
361 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
362}
363
364/* Strip the ISA (compression) bit off from ADDR. */
365
742c84f6 366static CORE_ADDR
4cc0665f 367unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
368{
369 return ((addr) & ~(CORE_ADDR) 1);
370}
371
4cc0665f
MR
372/* Add the ISA (compression) bit to ADDR. */
373
742c84f6 374static CORE_ADDR
4cc0665f 375make_compact_addr (CORE_ADDR addr)
742c84f6
MR
376{
377 return ((addr) | (CORE_ADDR) 1);
378}
379
3e29f34a
MR
380/* Extern version of unmake_compact_addr; we use a separate function
381 so that unmake_compact_addr can be inlined throughout this file. */
382
383CORE_ADDR
384mips_unmake_compact_addr (CORE_ADDR addr)
385{
386 return unmake_compact_addr (addr);
387}
388
71b8ef93 389/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
390 marks it as MIPS16 or microMIPS function. The MSB of the minimal
391 symbol's "info" field is used for this purpose.
5a89d8aa 392
4cc0665f
MR
393 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
394 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
395 one of the "special" bits in a minimal symbol to mark it accordingly.
396 The test checks an ELF-private flag that is valid for true function
1bbce132
MR
397 symbols only; for synthetic symbols such as for PLT stubs that have
398 no ELF-private part at all the MIPS BFD backend arranges for this
399 information to be carried in the asymbol's udata field instead.
5a89d8aa 400
4cc0665f
MR
401 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
402 in a minimal symbol. */
5a89d8aa 403
5a89d8aa 404static void
6d82d43b
AC
405mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
406{
4cc0665f 407 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
1bbce132 408 unsigned char st_other;
4cc0665f 409
1bbce132
MR
410 if ((sym->flags & BSF_SYNTHETIC) == 0)
411 st_other = elfsym->internal_elf_sym.st_other;
412 else if ((sym->flags & BSF_FUNCTION) != 0)
413 st_other = sym->udata.i;
414 else
4cc0665f
MR
415 return;
416
1bbce132 417 if (ELF_ST_IS_MICROMIPS (st_other))
3e29f34a 418 {
f161c171 419 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
3e29f34a
MR
420 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
421 }
1bbce132 422 else if (ELF_ST_IS_MIPS16 (st_other))
3e29f34a 423 {
f161c171 424 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
3e29f34a
MR
425 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
426 }
4cc0665f
MR
427}
428
429/* Return one iff MSYM refers to standard ISA code. */
430
431static int
432msymbol_is_mips (struct minimal_symbol *msym)
433{
f161c171
MR
434 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
435 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
5a89d8aa
MS
436}
437
4cc0665f
MR
438/* Return one iff MSYM refers to MIPS16 code. */
439
71b8ef93 440static int
4cc0665f 441msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 442{
f161c171 443 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
71b8ef93
MS
444}
445
4cc0665f
MR
446/* Return one iff MSYM refers to microMIPS code. */
447
448static int
449msymbol_is_micromips (struct minimal_symbol *msym)
450{
f161c171 451 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
4cc0665f
MR
452}
453
3e29f34a
MR
454/* Set the ISA bit in the main symbol too, complementing the corresponding
455 minimal symbol setting and reflecting the run-time value of the symbol.
456 The need for comes from the ISA bit having been cleared as code in
457 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
458 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
459 of symbols referring to compressed code different in GDB to the values
460 used by actual code. That in turn makes them evaluate incorrectly in
461 expressions, producing results different to what the same expressions
462 yield when compiled into the program being debugged. */
463
464static void
465mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
466{
467 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
468 {
469 /* We are in symbol reading so it is OK to cast away constness. */
470 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
471 CORE_ADDR compact_block_start;
472 struct bound_minimal_symbol msym;
473
474 compact_block_start = BLOCK_START (block) | 1;
475 msym = lookup_minimal_symbol_by_pc (compact_block_start);
476 if (msym.minsym && !msymbol_is_mips (msym.minsym))
477 {
478 BLOCK_START (block) = compact_block_start;
479 }
480 }
481}
482
88658117
AC
483/* XFER a value from the big/little/left end of the register.
484 Depending on the size of the value it might occupy the entire
485 register or just part of it. Make an allowance for this, aligning
486 things accordingly. */
487
488static void
ba32f989
DJ
489mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
490 int reg_num, int length,
870cd05e
MK
491 enum bfd_endian endian, gdb_byte *in,
492 const gdb_byte *out, int buf_offset)
88658117 493{
88658117 494 int reg_offset = 0;
72a155b4
UW
495
496 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
497 /* Need to transfer the left or right part of the register, based on
498 the targets byte order. */
88658117
AC
499 switch (endian)
500 {
501 case BFD_ENDIAN_BIG:
72a155b4 502 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
503 break;
504 case BFD_ENDIAN_LITTLE:
505 reg_offset = 0;
506 break;
6d82d43b 507 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
508 reg_offset = 0;
509 break;
510 default:
e2e0b3e5 511 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
512 }
513 if (mips_debug)
cb1d2653
AC
514 fprintf_unfiltered (gdb_stderr,
515 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
516 reg_num, reg_offset, buf_offset, length);
88658117
AC
517 if (mips_debug && out != NULL)
518 {
519 int i;
cb1d2653 520 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 521 for (i = 0; i < length; i++)
cb1d2653 522 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
523 }
524 if (in != NULL)
73bb0000 525 regcache->cooked_read_part (reg_num, reg_offset, length, in + buf_offset);
88658117 526 if (out != NULL)
e4c4a59b 527 regcache->cooked_write_part (reg_num, reg_offset, length, out + buf_offset);
88658117
AC
528 if (mips_debug && in != NULL)
529 {
530 int i;
cb1d2653 531 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 532 for (i = 0; i < length; i++)
cb1d2653 533 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
534 }
535 if (mips_debug)
536 fprintf_unfiltered (gdb_stdlog, "\n");
537}
538
dd824b04
DJ
539/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
540 compatiblity mode. A return value of 1 means that we have
541 physical 64-bit registers, but should treat them as 32-bit registers. */
542
543static int
9c9acae0 544mips2_fp_compat (struct frame_info *frame)
dd824b04 545{
72a155b4 546 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
547 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
548 meaningful. */
72a155b4 549 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
550 return 0;
551
552#if 0
553 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
554 in all the places we deal with FP registers. PR gdb/413. */
555 /* Otherwise check the FR bit in the status register - it controls
556 the FP compatiblity mode. If it is clear we are in compatibility
557 mode. */
9c9acae0 558 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
559 return 1;
560#endif
361d1df0 561
dd824b04
DJ
562 return 0;
563}
564
7a292a7a 565#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 566
74ed0bb4 567static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 568
025bb325 569/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
570
571static struct cmd_list_element *setmipscmdlist = NULL;
572static struct cmd_list_element *showmipscmdlist = NULL;
573
5e2e9765
KB
574/* Integer registers 0 thru 31 are handled explicitly by
575 mips_register_name(). Processor specific registers 32 and above
8a9fc081 576 are listed in the following tables. */
691c0433 577
6d82d43b
AC
578enum
579{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
580
581/* Generic MIPS. */
582
583static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
584 "sr", "lo", "hi", "bad", "cause", "pc",
585 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
586 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
587 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
588 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 589 "fsr", "fir",
691c0433
AC
590};
591
691c0433
AC
592/* Names of tx39 registers. */
593
594static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "", "", "", "", "", "", "", "",
597 "", "", "", "", "", "", "", "",
598 "", "", "", "", "", "", "", "",
599 "", "", "", "", "", "", "", "",
600 "", "", "", "",
601 "", "", "", "", "", "", "", "",
1faeff08 602 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
603};
604
44099a67 605/* Names of registers with Linux kernels. */
1faeff08
MR
606static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
607 "sr", "lo", "hi", "bad", "cause", "pc",
608 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
609 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
610 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
611 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
612 "fsr", "fir"
613};
614
cce74817 615
5e2e9765 616/* Return the name of the register corresponding to REGNO. */
5a89d8aa 617static const char *
d93859e2 618mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 619{
d93859e2 620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765 621 /* GPR names for all ABIs other than n32/n64. */
a121b7c1 622 static const char *mips_gpr_names[] = {
6d82d43b
AC
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
627 };
628
629 /* GPR names for n32 and n64 ABIs. */
a121b7c1 630 static const char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
631 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
632 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
633 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
634 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
635 };
636
d93859e2 637 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 638
f57d151a 639 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
640 but then don't make the raw register names visible. This (upper)
641 range of user visible register numbers are the pseudo-registers.
642
643 This approach was adopted accommodate the following scenario:
644 It is possible to debug a 64-bit device using a 32-bit
645 programming model. In such instances, the raw registers are
646 configured to be 64-bits wide, while the pseudo registers are
647 configured to be 32-bits wide. The registers that the user
648 sees - the pseudo registers - match the users expectations
649 given the programming model being used. */
d93859e2
UW
650 int rawnum = regno % gdbarch_num_regs (gdbarch);
651 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
652 return "";
653
5e2e9765
KB
654 /* The MIPS integer registers are always mapped from 0 to 31. The
655 names of the registers (which reflects the conventions regarding
656 register use) vary depending on the ABI. */
a4b8ebc8 657 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
658 {
659 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 660 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 661 else
a4b8ebc8 662 return mips_gpr_names[rawnum];
5e2e9765 663 }
d93859e2
UW
664 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
665 return tdesc_register_name (gdbarch, rawnum);
666 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
667 {
668 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
669 if (tdep->mips_processor_reg_names[rawnum - 32])
670 return tdep->mips_processor_reg_names[rawnum - 32];
671 return "";
691c0433 672 }
5e2e9765
KB
673 else
674 internal_error (__FILE__, __LINE__,
e2e0b3e5 675 _("mips_register_name: bad register number %d"), rawnum);
cce74817 676}
5e2e9765 677
a4b8ebc8 678/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 679
a4b8ebc8
AC
680static int
681mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
682 struct reggroup *reggroup)
683{
684 int vector_p;
685 int float_p;
686 int raw_p;
72a155b4
UW
687 int rawnum = regnum % gdbarch_num_regs (gdbarch);
688 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
689 if (reggroup == all_reggroup)
690 return pseudo;
691 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
692 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
693 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
694 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
695 raw_p = rawnum < gdbarch_num_regs (gdbarch);
696 if (gdbarch_register_name (gdbarch, regnum) == NULL
697 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
698 return 0;
699 if (reggroup == float_reggroup)
700 return float_p && pseudo;
701 if (reggroup == vector_reggroup)
702 return vector_p && pseudo;
703 if (reggroup == general_reggroup)
704 return (!vector_p && !float_p) && pseudo;
705 /* Save the pseudo registers. Need to make certain that any code
706 extracting register values from a saved register cache also uses
707 pseudo registers. */
708 if (reggroup == save_reggroup)
709 return raw_p && pseudo;
710 /* Restore the same pseudo register. */
711 if (reggroup == restore_reggroup)
712 return raw_p && pseudo;
6d82d43b 713 return 0;
a4b8ebc8
AC
714}
715
f8b73d13
DJ
716/* Return the groups that a MIPS register can be categorised into.
717 This version is only used if we have a target description which
718 describes real registers (and their groups). */
719
720static int
721mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
722 struct reggroup *reggroup)
723{
724 int rawnum = regnum % gdbarch_num_regs (gdbarch);
725 int pseudo = regnum / gdbarch_num_regs (gdbarch);
726 int ret;
727
728 /* Only save, restore, and display the pseudo registers. Need to
729 make certain that any code extracting register values from a
730 saved register cache also uses pseudo registers.
731
732 Note: saving and restoring the pseudo registers is slightly
733 strange; if we have 64 bits, we should save and restore all
734 64 bits. But this is hard and has little benefit. */
735 if (!pseudo)
736 return 0;
737
738 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
739 if (ret != -1)
740 return ret;
741
742 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
743}
744
a4b8ebc8 745/* Map the symbol table registers which live in the range [1 *
f57d151a 746 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 747 registers. Take care of alignment and size problems. */
c5aa993b 748
05d1431c 749static enum register_status
849d0ba8 750mips_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
47a35522 751 int cookednum, gdb_byte *buf)
a4b8ebc8 752{
72a155b4
UW
753 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
754 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
755 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 756 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
03f50fc8 757 return regcache->raw_read (rawnum, buf);
6d82d43b
AC
758 else if (register_size (gdbarch, rawnum) >
759 register_size (gdbarch, cookednum))
47ebcfbe 760 {
8bdf35dc 761 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
03f50fc8 762 return regcache->raw_read_part (rawnum, 0, 4, buf);
47ebcfbe 763 else
8bdf35dc
KB
764 {
765 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
766 LONGEST regval;
05d1431c
PA
767 enum register_status status;
768
03f50fc8 769 status = regcache->raw_read (rawnum, &regval);
05d1431c
PA
770 if (status == REG_VALID)
771 store_signed_integer (buf, 4, byte_order, regval);
772 return status;
8bdf35dc 773 }
47ebcfbe
AC
774 }
775 else
e2e0b3e5 776 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
777}
778
779static void
6d82d43b
AC
780mips_pseudo_register_write (struct gdbarch *gdbarch,
781 struct regcache *regcache, int cookednum,
47a35522 782 const gdb_byte *buf)
a4b8ebc8 783{
72a155b4
UW
784 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
785 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
786 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 787 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
10eaee5f 788 regcache->raw_write (rawnum, buf);
6d82d43b
AC
789 else if (register_size (gdbarch, rawnum) >
790 register_size (gdbarch, cookednum))
47ebcfbe 791 {
8bdf35dc 792 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
4f0420fd 793 regcache->raw_write_part (rawnum, 0, 4, buf);
47ebcfbe 794 else
8bdf35dc
KB
795 {
796 /* Sign extend the shortened version of the register prior
797 to placing it in the raw register. This is required for
798 some mips64 parts in order to avoid unpredictable behavior. */
799 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
800 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
801 regcache_raw_write_signed (regcache, rawnum, regval);
802 }
47ebcfbe
AC
803 }
804 else
e2e0b3e5 805 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 806}
c5aa993b 807
175ff332
HZ
808static int
809mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
810 struct agent_expr *ax, int reg)
811{
812 int rawnum = reg % gdbarch_num_regs (gdbarch);
813 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
814 && reg < 2 * gdbarch_num_regs (gdbarch));
815
816 ax_reg_mask (ax, rawnum);
817
818 return 0;
819}
820
821static int
822mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
823 struct agent_expr *ax, int reg)
824{
825 int rawnum = reg % gdbarch_num_regs (gdbarch);
826 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
827 && reg < 2 * gdbarch_num_regs (gdbarch));
828 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
829 {
830 ax_reg (ax, rawnum);
831
832 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
833 {
834 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
835 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
836 {
837 ax_const_l (ax, 32);
838 ax_simple (ax, aop_lsh);
839 }
840 ax_const_l (ax, 32);
841 ax_simple (ax, aop_rsh_signed);
842 }
843 }
844 else
845 internal_error (__FILE__, __LINE__, _("bad register size"));
846
847 return 0;
848}
849
4cc0665f 850/* Table to translate 3-bit register field to actual register number. */
d467df4e 851static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
852
853/* Heuristic_proc_start may hunt through the text section for a long
854 time across a 2400 baud serial line. Allows the user to limit this
855 search. */
856
44096aee 857static int heuristic_fence_post = 0;
c906108c 858
46cd78fb 859/* Number of bytes of storage in the actual machine representation for
719ec221
AC
860 register N. NOTE: This defines the pseudo register type so need to
861 rebuild the architecture vector. */
43e526b9
JM
862
863static int mips64_transfers_32bit_regs_p = 0;
864
719ec221 865static void
eb4c3f4a 866set_mips64_transfers_32bit_regs (const char *args, int from_tty,
719ec221 867 struct cmd_list_element *c)
43e526b9 868{
719ec221
AC
869 struct gdbarch_info info;
870 gdbarch_info_init (&info);
871 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
872 instead of relying on globals. Doing that would let generic code
873 handle the search for this specific architecture. */
874 if (!gdbarch_update_p (info))
a4b8ebc8 875 {
719ec221 876 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 877 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 878 }
a4b8ebc8
AC
879}
880
47ebcfbe 881/* Convert to/from a register and the corresponding memory value. */
43e526b9 882
ee51a8c7
KB
883/* This predicate tests for the case of an 8 byte floating point
884 value that is being transferred to or from a pair of floating point
885 registers each of which are (or are considered to be) only 4 bytes
886 wide. */
ff2e87ac 887static int
ee51a8c7
KB
888mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
889 struct type *type)
ff2e87ac 890{
0abe36f5
MD
891 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
892 && register_size (gdbarch, regnum) == 4
004159a2 893 && mips_float_register_p (gdbarch, regnum)
6d82d43b 894 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
895}
896
ee51a8c7
KB
897/* This predicate tests for the case of a value of less than 8
898 bytes in width that is being transfered to or from an 8 byte
899 general purpose register. */
900static int
901mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
902 struct type *type)
903{
904 int num_regs = gdbarch_num_regs (gdbarch);
905
906 return (register_size (gdbarch, regnum) == 8
907 && regnum % num_regs > 0 && regnum % num_regs < 32
908 && TYPE_LENGTH (type) < 8);
909}
910
911static int
025bb325
MS
912mips_convert_register_p (struct gdbarch *gdbarch,
913 int regnum, struct type *type)
ee51a8c7 914{
eaa05d59
MR
915 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
916 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
917}
918
8dccd430 919static int
ff2e87ac 920mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
921 struct type *type, gdb_byte *to,
922 int *optimizedp, int *unavailablep)
102182a9 923{
ee51a8c7
KB
924 struct gdbarch *gdbarch = get_frame_arch (frame);
925
926 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
927 {
928 get_frame_register (frame, regnum + 0, to + 4);
929 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
930
931 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
932 optimizedp, unavailablep))
933 return 0;
934
935 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
936 optimizedp, unavailablep))
937 return 0;
938 *optimizedp = *unavailablep = 0;
939 return 1;
ee51a8c7
KB
940 }
941 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
942 {
943 int len = TYPE_LENGTH (type);
8dccd430
PA
944 CORE_ADDR offset;
945
946 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
947 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
948 optimizedp, unavailablep))
949 return 0;
950
951 *optimizedp = *unavailablep = 0;
952 return 1;
ee51a8c7
KB
953 }
954 else
955 {
956 internal_error (__FILE__, __LINE__,
957 _("mips_register_to_value: unrecognized case"));
958 }
102182a9
MS
959}
960
42c466d7 961static void
ff2e87ac 962mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 963 struct type *type, const gdb_byte *from)
102182a9 964{
ee51a8c7
KB
965 struct gdbarch *gdbarch = get_frame_arch (frame);
966
967 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
968 {
969 put_frame_register (frame, regnum + 0, from + 4);
970 put_frame_register (frame, regnum + 1, from + 0);
971 }
972 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
973 {
974 gdb_byte fill[8];
975 int len = TYPE_LENGTH (type);
976
977 /* Sign extend values, irrespective of type, that are stored to
978 a 64-bit general purpose register. (32-bit unsigned values
979 are stored as signed quantities within a 64-bit register.
980 When performing an operation, in compiled code, that combines
981 a 32-bit unsigned value with a signed 64-bit value, a type
982 conversion is first performed that zeroes out the high 32 bits.) */
983 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
984 {
985 if (from[0] & 0x80)
986 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
987 else
988 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
989 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
990 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
991 }
992 else
993 {
994 if (from[len-1] & 0x80)
995 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
996 else
997 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
998 put_frame_register_bytes (frame, regnum, 0, len, from);
999 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
1000 }
1001 }
1002 else
1003 {
1004 internal_error (__FILE__, __LINE__,
1005 _("mips_value_to_register: unrecognized case"));
1006 }
102182a9
MS
1007}
1008
a4b8ebc8
AC
1009/* Return the GDB type object for the "standard" data type of data in
1010 register REG. */
78fde5f8
KB
1011
1012static struct type *
a4b8ebc8
AC
1013mips_register_type (struct gdbarch *gdbarch, int regnum)
1014{
72a155b4 1015 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 1016 if (mips_float_register_p (gdbarch, regnum))
a6425924 1017 {
5ef80fb0 1018 /* The floating-point registers raw, or cooked, always match
1b13c4f6 1019 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 1020 if (mips_isa_regsize (gdbarch) == 4)
27067745 1021 return builtin_type (gdbarch)->builtin_float;
8da61cc4 1022 else
27067745 1023 return builtin_type (gdbarch)->builtin_double;
a6425924 1024 }
72a155b4 1025 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
1026 {
1027 /* The raw or ISA registers. These are all sized according to
1028 the ISA regsize. */
1029 if (mips_isa_regsize (gdbarch) == 4)
df4df182 1030 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 1031 else
df4df182 1032 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1033 }
78fde5f8 1034 else
d5ac5a39 1035 {
1faeff08
MR
1036 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1037
d5ac5a39
AC
1038 /* The cooked or ABI registers. These are sized according to
1039 the ABI (with a few complications). */
1faeff08
MR
1040 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1041 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1042 return builtin_type (gdbarch)->builtin_int32;
de4bfa86 1043 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1faeff08
MR
1044 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1045 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
1046 /* The pseudo/cooked view of the embedded registers is always
1047 32-bit. The raw view is handled below. */
df4df182 1048 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1049 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1050 /* The target, while possibly using a 64-bit register buffer,
1051 is only transfering 32-bits of each integer register.
1052 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 1053 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1054 else if (mips_abi_regsize (gdbarch) == 4)
1055 /* The ABI is restricted to 32-bit registers (the ISA could be
1056 32- or 64-bit). */
df4df182 1057 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1058 else
1059 /* 64-bit ABI. */
df4df182 1060 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1061 }
78fde5f8
KB
1062}
1063
f8b73d13
DJ
1064/* Return the GDB type for the pseudo register REGNUM, which is the
1065 ABI-level view. This function is only called if there is a target
1066 description which includes registers, so we know precisely the
1067 types of hardware registers. */
1068
1069static struct type *
1070mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1071{
1072 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1073 int rawnum = regnum % num_regs;
1074 struct type *rawtype;
1075
1076 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1077
1078 /* Absent registers are still absent. */
1079 rawtype = gdbarch_register_type (gdbarch, rawnum);
1080 if (TYPE_LENGTH (rawtype) == 0)
1081 return rawtype;
1082
a6912260
MR
1083 /* Present the floating point registers however the hardware did;
1084 do not try to convert between FPU layouts. */
de13fcf2 1085 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1086 return rawtype;
1087
78b86327
MR
1088 /* Floating-point control registers are always 32-bit even though for
1089 backwards compatibility reasons 64-bit targets will transfer them
1090 as 64-bit quantities even if using XML descriptions. */
1091 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1092 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1093 return builtin_type (gdbarch)->builtin_int32;
1094
f8b73d13
DJ
1095 /* Use pointer types for registers if we can. For n32 we can not,
1096 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1097 if (mips_abi_regsize (gdbarch)
1098 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1099 {
1faeff08
MR
1100 if (rawnum == MIPS_SP_REGNUM
1101 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1102 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1103 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1104 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1105 }
1106
1107 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1108 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1109 || rawnum == mips_regnum (gdbarch)->lo
1110 || rawnum == mips_regnum (gdbarch)->hi
1111 || rawnum == mips_regnum (gdbarch)->badvaddr
1112 || rawnum == mips_regnum (gdbarch)->cause
1113 || rawnum == mips_regnum (gdbarch)->pc
1114 || (mips_regnum (gdbarch)->dspacc != -1
1115 && rawnum >= mips_regnum (gdbarch)->dspacc
1116 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1117 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1118
a6912260
MR
1119 /* The pseudo/cooked view of embedded registers is always
1120 32-bit, even if the target transfers 64-bit values for them.
1121 New targets relying on XML descriptions should only transfer
1122 the necessary 32 bits, but older versions of GDB expected 64,
1123 so allow the target to provide 64 bits without interfering
1124 with the displayed type. */
de4bfa86 1125 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
78b86327 1126 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1faeff08 1127 && rawnum <= MIPS_LAST_EMBED_REGNUM)
a6912260 1128 return builtin_type (gdbarch)->builtin_int32;
1faeff08 1129
f8b73d13
DJ
1130 /* For all other registers, pass through the hardware type. */
1131 return rawtype;
1132}
bcb0cc15 1133
025bb325 1134/* Should the upper word of 64-bit addresses be zeroed? */
ea33cd92 1135static enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1136
1137static int
480d3dd2 1138mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1139{
1140 switch (mask_address_var)
1141 {
7f19b9a2 1142 case AUTO_BOOLEAN_TRUE:
4014092b 1143 return 1;
7f19b9a2 1144 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1145 return 0;
1146 break;
7f19b9a2 1147 case AUTO_BOOLEAN_AUTO:
480d3dd2 1148 return tdep->default_mask_address_p;
4014092b 1149 default:
025bb325
MS
1150 internal_error (__FILE__, __LINE__,
1151 _("mips_mask_address_p: bad switch"));
4014092b 1152 return -1;
361d1df0 1153 }
4014092b
AC
1154}
1155
1156static void
08546159
AC
1157show_mask_address (struct ui_file *file, int from_tty,
1158 struct cmd_list_element *c, const char *value)
4014092b 1159{
f5656ead 1160 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1161
1162 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1163 switch (mask_address_var)
1164 {
7f19b9a2 1165 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1166 printf_filtered ("The 32 bit mips address mask is enabled\n");
1167 break;
7f19b9a2 1168 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1169 printf_filtered ("The 32 bit mips address mask is disabled\n");
1170 break;
7f19b9a2 1171 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1172 printf_filtered
1173 ("The 32 bit address mask is set automatically. Currently %s\n",
1174 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1175 break;
1176 default:
e2e0b3e5 1177 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1178 break;
361d1df0 1179 }
4014092b 1180}
c906108c 1181
4cc0665f
MR
1182/* Tell if the program counter value in MEMADDR is in a standard ISA
1183 function. */
1184
1185int
1186mips_pc_is_mips (CORE_ADDR memaddr)
1187{
7cbd4a93 1188 struct bound_minimal_symbol sym;
4cc0665f
MR
1189
1190 /* Flags indicating that this is a MIPS16 or microMIPS function is
1191 stored by elfread.c in the high bit of the info field. Use this
1192 to decide if the function is standard MIPS. Otherwise if bit 0
1193 of the address is clear, then this is a standard MIPS function. */
3e29f34a 1194 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1195 if (sym.minsym)
1196 return msymbol_is_mips (sym.minsym);
4cc0665f
MR
1197 else
1198 return is_mips_addr (memaddr);
1199}
1200
c906108c
SS
1201/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1202
0fe7e7c8 1203int
4cc0665f 1204mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c 1205{
7cbd4a93 1206 struct bound_minimal_symbol sym;
c906108c 1207
91912e4d
MR
1208 /* A flag indicating that this is a MIPS16 function is stored by
1209 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1210 if the function is MIPS16. Otherwise if bit 0 of the address is
1211 set, then ELF file flags will tell if this is a MIPS16 function. */
3e29f34a 1212 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1213 if (sym.minsym)
1214 return msymbol_is_mips16 (sym.minsym);
4cc0665f
MR
1215 else
1216 return is_mips16_addr (gdbarch, memaddr);
1217}
1218
1219/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1220
1221int
1222mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1223{
7cbd4a93 1224 struct bound_minimal_symbol sym;
4cc0665f
MR
1225
1226 /* A flag indicating that this is a microMIPS function is stored by
1227 elfread.c in the high bit of the info field. Use this to decide
1228 if the function is microMIPS. Otherwise if bit 0 of the address
1229 is set, then ELF file flags will tell if this is a microMIPS
1230 function. */
3e29f34a 1231 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1232 if (sym.minsym)
1233 return msymbol_is_micromips (sym.minsym);
4cc0665f
MR
1234 else
1235 return is_micromips_addr (gdbarch, memaddr);
1236}
1237
1238/* Tell the ISA type of the function the program counter value in MEMADDR
1239 is in. */
1240
1241static enum mips_isa
1242mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1243{
7cbd4a93 1244 struct bound_minimal_symbol sym;
4cc0665f
MR
1245
1246 /* A flag indicating that this is a MIPS16 or a microMIPS function
1247 is stored by elfread.c in the high bit of the info field. Use
1248 this to decide if the function is MIPS16 or microMIPS or normal
1249 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1250 flags will tell if this is a MIPS16 or a microMIPS function. */
3e29f34a 1251 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93 1252 if (sym.minsym)
4cc0665f 1253 {
7cbd4a93 1254 if (msymbol_is_micromips (sym.minsym))
4cc0665f 1255 return ISA_MICROMIPS;
7cbd4a93 1256 else if (msymbol_is_mips16 (sym.minsym))
4cc0665f
MR
1257 return ISA_MIPS16;
1258 else
1259 return ISA_MIPS;
1260 }
c906108c 1261 else
4cc0665f
MR
1262 {
1263 if (is_mips_addr (memaddr))
1264 return ISA_MIPS;
1265 else if (is_micromips_addr (gdbarch, memaddr))
1266 return ISA_MICROMIPS;
1267 else
1268 return ISA_MIPS16;
1269 }
c906108c
SS
1270}
1271
3e29f34a
MR
1272/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1273 The need for comes from the ISA bit having been cleared, making
1274 addresses in FDE, range records, etc. referring to compressed code
1275 different to those in line information, the symbol table and finally
1276 the PC register. That in turn confuses many operations. */
1277
1278static CORE_ADDR
1279mips_adjust_dwarf2_addr (CORE_ADDR pc)
1280{
1281 pc = unmake_compact_addr (pc);
1282 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1283}
1284
1285/* Recalculate the line record requested so that the resulting PC has
1286 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1287 this adjustment comes from some records associated with compressed
1288 code having the ISA bit cleared, most notably at function prologue
1289 ends. The ISA bit is in this context retrieved from the minimal
1290 symbol covering the address requested, which in turn has been
1291 constructed from the binary's symbol table rather than DWARF-2
1292 information. The correct setting of the ISA bit is required for
1293 breakpoint addresses to correctly match against the stop PC.
1294
1295 As line entries can specify relative address adjustments we need to
1296 keep track of the absolute value of the last line address recorded
1297 in line information, so that we can calculate the actual address to
1298 apply the ISA bit adjustment to. We use PC for this tracking and
1299 keep the original address there.
1300
1301 As such relative address adjustments can be odd within compressed
1302 code we need to keep track of the last line address with the ISA
1303 bit adjustment applied too, as the original address may or may not
1304 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1305 the adjusted address there.
1306
1307 For relative address adjustments we then use these variables to
1308 calculate the address intended by line information, which will be
1309 PC-relative, and return an updated adjustment carrying ISA bit
1310 information, which will be ADJ_PC-relative. For absolute address
1311 adjustments we just return the same address that we store in ADJ_PC
1312 too.
1313
1314 As the first line entry can be relative to an implied address value
1315 of 0 we need to have the initial address set up that we store in PC
1316 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1317 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1318
1319static CORE_ADDR
1320mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1321{
1322 static CORE_ADDR adj_pc;
1323 static CORE_ADDR pc;
1324 CORE_ADDR isa_pc;
1325
1326 pc = rel ? pc + addr : addr;
1327 isa_pc = mips_adjust_dwarf2_addr (pc);
1328 addr = rel ? isa_pc - adj_pc : isa_pc;
1329 adj_pc = isa_pc;
1330 return addr;
1331}
1332
14132e89
MR
1333/* Various MIPS16 thunk (aka stub or trampoline) names. */
1334
1335static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1336static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1337static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1338static const char mips_str_call_stub[] = "__call_stub_";
1339static const char mips_str_fn_stub[] = "__fn_stub_";
1340
1341/* This is used as a PIC thunk prefix. */
1342
1343static const char mips_str_pic[] = ".pic.";
1344
1345/* Return non-zero if the PC is inside a call thunk (aka stub or
1346 trampoline) that should be treated as a temporary frame. */
1347
1348static int
1349mips_in_frame_stub (CORE_ADDR pc)
1350{
1351 CORE_ADDR start_addr;
1352 const char *name;
1353
1354 /* Find the starting address of the function containing the PC. */
1355 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1356 return 0;
1357
1358 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
61012eef 1359 if (startswith (name, mips_str_mips16_call_stub))
14132e89
MR
1360 return 1;
1361 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
61012eef 1362 if (startswith (name, mips_str_call_stub))
14132e89
MR
1363 return 1;
1364 /* If the PC is in __fn_stub_*, this is a call stub. */
61012eef 1365 if (startswith (name, mips_str_fn_stub))
14132e89
MR
1366 return 1;
1367
1368 return 0; /* Not a stub. */
1369}
1370
b2fa5097 1371/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1372 all registers should be sign extended for simplicity? */
6c997a34
AC
1373
1374static CORE_ADDR
c113ed0c 1375mips_read_pc (readable_regcache *regcache)
6c997a34 1376{
ac7936df 1377 int regnum = gdbarch_pc_regnum (regcache->arch ());
70242eb1 1378 LONGEST pc;
8376de04 1379
c113ed0c 1380 regcache->cooked_read (regnum, &pc);
61a1198a 1381 return pc;
b6cb9035
AC
1382}
1383
58dfe9ff
AC
1384static CORE_ADDR
1385mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1386{
14132e89 1387 CORE_ADDR pc;
930bd0e0 1388
8376de04 1389 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
14132e89
MR
1390 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1391 intermediate frames. In this case we can get the caller's address
1392 from $ra, or if $ra contains an address within a thunk as well, then
1393 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1394 and thus the caller's address is in $s2. */
1395 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1396 {
1397 pc = frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
14132e89 1399 if (mips_in_frame_stub (pc))
3e29f34a
MR
1400 pc = frame_unwind_register_signed
1401 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
14132e89 1402 }
930bd0e0 1403 return pc;
edfae063
AC
1404}
1405
30244cd8
UW
1406static CORE_ADDR
1407mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1408{
72a155b4
UW
1409 return frame_unwind_register_signed
1410 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1411}
1412
b8a22b94 1413/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1414 dummy frame. The frame ID's base needs to match the TOS value
1415 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1416 breakpoint. */
1417
1418static struct frame_id
b8a22b94 1419mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1420{
f57d151a 1421 return frame_id_build
b8a22b94
DJ
1422 (get_frame_register_signed (this_frame,
1423 gdbarch_num_regs (gdbarch)
1424 + MIPS_SP_REGNUM),
1425 get_frame_pc (this_frame));
58dfe9ff
AC
1426}
1427
5a439849
MR
1428/* Implement the "write_pc" gdbarch method. */
1429
1430void
61a1198a 1431mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1432{
ac7936df 1433 int regnum = gdbarch_pc_regnum (regcache->arch ());
8376de04 1434
3e29f34a 1435 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 1436}
c906108c 1437
4cc0665f
MR
1438/* Fetch and return instruction from the specified location. Handle
1439 MIPS16/microMIPS as appropriate. */
c906108c 1440
d37cca3d 1441static ULONGEST
4cc0665f 1442mips_fetch_instruction (struct gdbarch *gdbarch,
d09f2c3f 1443 enum mips_isa isa, CORE_ADDR addr, int *errp)
c906108c 1444{
e17a4113 1445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1446 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c 1447 int instlen;
d09f2c3f 1448 int err;
c906108c 1449
4cc0665f 1450 switch (isa)
c906108c 1451 {
4cc0665f
MR
1452 case ISA_MICROMIPS:
1453 case ISA_MIPS16:
95ac2dcf 1454 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1455 addr = unmake_compact_addr (addr);
1456 break;
1457 case ISA_MIPS:
1458 instlen = MIPS_INSN32_SIZE;
1459 break;
1460 default:
1461 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1462 break;
c906108c 1463 }
d09f2c3f
PA
1464 err = target_read_memory (addr, buf, instlen);
1465 if (errp != NULL)
1466 *errp = err;
1467 if (err != 0)
4cc0665f 1468 {
d09f2c3f
PA
1469 if (errp == NULL)
1470 memory_error (TARGET_XFER_E_IO, addr);
4cc0665f
MR
1471 return 0;
1472 }
e17a4113 1473 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1474}
1475
025bb325 1476/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1477#define mips32_op(x) (x >> 26)
1478#define itype_op(x) (x >> 26)
1479#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1480#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1481#define itype_immediate(x) (x & 0xffff)
c906108c 1482
e135b889
DJ
1483#define jtype_op(x) (x >> 26)
1484#define jtype_target(x) (x & 0x03ffffff)
c906108c 1485
e135b889
DJ
1486#define rtype_op(x) (x >> 26)
1487#define rtype_rs(x) ((x >> 21) & 0x1f)
1488#define rtype_rt(x) ((x >> 16) & 0x1f)
1489#define rtype_rd(x) ((x >> 11) & 0x1f)
1490#define rtype_shamt(x) ((x >> 6) & 0x1f)
1491#define rtype_funct(x) (x & 0x3f)
c906108c 1492
4cc0665f
MR
1493/* MicroMIPS instruction fields. */
1494#define micromips_op(x) ((x) >> 10)
1495
1496/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1497 bit and the size respectively of the field extracted. */
1498#define b0s4_imm(x) ((x) & 0xf)
1499#define b0s5_imm(x) ((x) & 0x1f)
1500#define b0s5_reg(x) ((x) & 0x1f)
1501#define b0s7_imm(x) ((x) & 0x7f)
1502#define b0s10_imm(x) ((x) & 0x3ff)
1503#define b1s4_imm(x) (((x) >> 1) & 0xf)
1504#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1505#define b2s3_cc(x) (((x) >> 2) & 0x7)
1506#define b4s2_regl(x) (((x) >> 4) & 0x3)
1507#define b5s5_op(x) (((x) >> 5) & 0x1f)
1508#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1509#define b6s4_op(x) (((x) >> 6) & 0xf)
1510#define b7s3_reg(x) (((x) >> 7) & 0x7)
1511
1512/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1513 respectively of the field extracted. */
1514#define b0s6_op(x) ((x) & 0x3f)
1515#define b0s11_op(x) ((x) & 0x7ff)
1516#define b0s12_imm(x) ((x) & 0xfff)
1517#define b0s16_imm(x) ((x) & 0xffff)
1518#define b0s26_imm(x) ((x) & 0x3ffffff)
1519#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1520#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1521#define b12s4_op(x) (((x) >> 12) & 0xf)
1522
1523/* Return the size in bytes of the instruction INSN encoded in the ISA
1524 instruction set. */
1525
1526static int
1527mips_insn_size (enum mips_isa isa, ULONGEST insn)
1528{
1529 switch (isa)
1530 {
1531 case ISA_MICROMIPS:
100b4f2e
MR
1532 if ((micromips_op (insn) & 0x4) == 0x4
1533 || (micromips_op (insn) & 0x7) == 0x0)
4cc0665f
MR
1534 return 2 * MIPS_INSN16_SIZE;
1535 else
1536 return MIPS_INSN16_SIZE;
1537 case ISA_MIPS16:
1538 if ((insn & 0xf800) == 0xf000)
1539 return 2 * MIPS_INSN16_SIZE;
1540 else
1541 return MIPS_INSN16_SIZE;
1542 case ISA_MIPS:
1543 return MIPS_INSN32_SIZE;
1544 }
1545 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1546}
1547
06987e64
MK
1548static LONGEST
1549mips32_relative_offset (ULONGEST inst)
c5aa993b 1550{
06987e64 1551 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1552}
1553
a385295e
MR
1554/* Determine the address of the next instruction executed after the INST
1555 floating condition branch instruction at PC. COUNT specifies the
1556 number of the floating condition bits tested by the branch. */
1557
1558static CORE_ADDR
7113a196 1559mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
a385295e
MR
1560 ULONGEST inst, CORE_ADDR pc, int count)
1561{
1562 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1563 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1564 int tf = itype_rt (inst) & 1;
1565 int mask = (1 << count) - 1;
1566 ULONGEST fcs;
1567 int cond;
1568
1569 if (fcsr == -1)
1570 /* No way to handle; it'll most likely trap anyway. */
1571 return pc;
1572
7113a196 1573 fcs = regcache_raw_get_unsigned (regcache, fcsr);
a385295e
MR
1574 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1575
1576 if (((cond >> cnum) & mask) != mask * !tf)
1577 pc += mips32_relative_offset (inst);
1578 else
1579 pc += 4;
1580
1581 return pc;
1582}
1583
f94363d7
AP
1584/* Return nonzero if the gdbarch is an Octeon series. */
1585
1586static int
1587is_octeon (struct gdbarch *gdbarch)
1588{
1589 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1590
1591 return (info->mach == bfd_mach_mips_octeon
1592 || info->mach == bfd_mach_mips_octeonp
1593 || info->mach == bfd_mach_mips_octeon2);
1594}
1595
1596/* Return true if the OP represents the Octeon's BBIT instruction. */
1597
1598static int
1599is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1600{
1601 if (!is_octeon (gdbarch))
1602 return 0;
1603 /* BBIT0 is encoded as LWC2: 110 010. */
1604 /* BBIT032 is encoded as LDC2: 110 110. */
1605 /* BBIT1 is encoded as SWC2: 111 010. */
1606 /* BBIT132 is encoded as SDC2: 111 110. */
1607 if (op == 50 || op == 54 || op == 58 || op == 62)
1608 return 1;
1609 return 0;
1610}
1611
1612
f49e4e6d
MS
1613/* Determine where to set a single step breakpoint while considering
1614 branch prediction. */
78a59c2f 1615
5a89d8aa 1616static CORE_ADDR
7113a196 1617mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
c5aa993b 1618{
ac7936df 1619 struct gdbarch *gdbarch = regcache->arch ();
c5aa993b
JM
1620 unsigned long inst;
1621 int op;
4cc0665f 1622 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1623 op = itype_op (inst);
025bb325
MS
1624 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1625 instruction. */
c5aa993b 1626 {
4f5bcb50 1627 if (op >> 2 == 5)
6d82d43b 1628 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1629 {
4f5bcb50 1630 switch (op & 0x03)
c906108c 1631 {
e135b889
DJ
1632 case 0: /* BEQL */
1633 goto equal_branch;
1634 case 1: /* BNEL */
1635 goto neq_branch;
1636 case 2: /* BLEZL */
1637 goto less_branch;
313628cc 1638 case 3: /* BGTZL */
e135b889 1639 goto greater_branch;
c5aa993b
JM
1640 default:
1641 pc += 4;
c906108c
SS
1642 }
1643 }
4f5bcb50 1644 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1645 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7113a196 1646 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
4f5bcb50 1647 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1648 && (itype_rt (inst) & 2) == 0)
1649 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
7113a196 1650 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
4f5bcb50 1651 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1652 && (itype_rt (inst) & 2) == 0)
1653 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
7113a196 1654 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
4f5bcb50 1655 else if (op == 29)
9e8da49c
MR
1656 /* JALX: 011101 */
1657 /* The new PC will be alternate mode. */
1658 {
1659 unsigned long reg;
1660
1661 reg = jtype_target (inst) << 2;
1662 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1663 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1664 }
f94363d7
AP
1665 else if (is_octeon_bbit_op (op, gdbarch))
1666 {
1667 int bit, branch_if;
1668
1669 branch_if = op == 58 || op == 62;
1670 bit = itype_rt (inst);
1671
1672 /* Take into account the *32 instructions. */
1673 if (op == 54 || op == 62)
1674 bit += 32;
1675
7113a196
YQ
1676 if (((regcache_raw_get_signed (regcache,
1677 itype_rs (inst)) >> bit) & 1)
f94363d7
AP
1678 == branch_if)
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8; /* After the delay slot. */
1682 }
1683
c5aa993b 1684 else
025bb325 1685 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1686 }
1687 else
025bb325 1688 { /* This gets way messy. */
c5aa993b 1689
025bb325 1690 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1691 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1692 {
c5aa993b
JM
1693 case 0: /* SPECIAL */
1694 op = rtype_funct (inst);
1695 switch (op)
1696 {
1697 case 8: /* JR */
1698 case 9: /* JALR */
025bb325 1699 /* Set PC to that address. */
7113a196 1700 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
c5aa993b 1701 break;
e38d4e1a
DJ
1702 case 12: /* SYSCALL */
1703 {
1704 struct gdbarch_tdep *tdep;
1705
7113a196 1706 tdep = gdbarch_tdep (gdbarch);
e38d4e1a 1707 if (tdep->syscall_next_pc != NULL)
7113a196 1708 pc = tdep->syscall_next_pc (get_current_frame ());
e38d4e1a
DJ
1709 else
1710 pc += 4;
1711 }
1712 break;
c5aa993b
JM
1713 default:
1714 pc += 4;
1715 }
1716
6d82d43b 1717 break; /* end SPECIAL */
025bb325 1718 case 1: /* REGIMM */
c906108c 1719 {
e135b889
DJ
1720 op = itype_rt (inst); /* branch condition */
1721 switch (op)
c906108c 1722 {
c5aa993b 1723 case 0: /* BLTZ */
e135b889
DJ
1724 case 2: /* BLTZL */
1725 case 16: /* BLTZAL */
c5aa993b 1726 case 18: /* BLTZALL */
c906108c 1727 less_branch:
7113a196 1728 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
c5aa993b
JM
1729 pc += mips32_relative_offset (inst) + 4;
1730 else
1731 pc += 8; /* after the delay slot */
1732 break;
e135b889 1733 case 1: /* BGEZ */
c5aa993b
JM
1734 case 3: /* BGEZL */
1735 case 17: /* BGEZAL */
1736 case 19: /* BGEZALL */
7113a196 1737 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
c5aa993b
JM
1738 pc += mips32_relative_offset (inst) + 4;
1739 else
1740 pc += 8; /* after the delay slot */
1741 break;
a385295e
MR
1742 case 0x1c: /* BPOSGE32 */
1743 case 0x1e: /* BPOSGE64 */
1744 pc += 4;
1745 if (itype_rs (inst) == 0)
1746 {
1747 unsigned int pos = (op & 2) ? 64 : 32;
1748 int dspctl = mips_regnum (gdbarch)->dspctl;
1749
1750 if (dspctl == -1)
1751 /* No way to handle; it'll most likely trap anyway. */
1752 break;
1753
7113a196
YQ
1754 if ((regcache_raw_get_unsigned (regcache,
1755 dspctl) & 0x7f) >= pos)
a385295e
MR
1756 pc += mips32_relative_offset (inst);
1757 else
1758 pc += 4;
1759 }
1760 break;
e135b889 1761 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1762 default:
1763 pc += 4;
c906108c
SS
1764 }
1765 }
6d82d43b 1766 break; /* end REGIMM */
c5aa993b
JM
1767 case 2: /* J */
1768 case 3: /* JAL */
1769 {
1770 unsigned long reg;
1771 reg = jtype_target (inst) << 2;
025bb325 1772 /* Upper four bits get never changed... */
5b652102 1773 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1774 }
c5aa993b 1775 break;
e135b889 1776 case 4: /* BEQ, BEQL */
c5aa993b 1777 equal_branch:
7113a196
YQ
1778 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1779 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1780 pc += mips32_relative_offset (inst) + 4;
1781 else
1782 pc += 8;
1783 break;
e135b889 1784 case 5: /* BNE, BNEL */
c5aa993b 1785 neq_branch:
7113a196
YQ
1786 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1787 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1788 pc += mips32_relative_offset (inst) + 4;
1789 else
1790 pc += 8;
1791 break;
e135b889 1792 case 6: /* BLEZ, BLEZL */
7113a196 1793 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
c5aa993b
JM
1794 pc += mips32_relative_offset (inst) + 4;
1795 else
1796 pc += 8;
1797 break;
1798 case 7:
e135b889
DJ
1799 default:
1800 greater_branch: /* BGTZ, BGTZL */
7113a196 1801 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
c5aa993b
JM
1802 pc += mips32_relative_offset (inst) + 4;
1803 else
1804 pc += 8;
1805 break;
c5aa993b
JM
1806 } /* switch */
1807 } /* else */
1808 return pc;
1809} /* mips32_next_pc */
c906108c 1810
4cc0665f
MR
1811/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1812 INSN. */
1813
1814static LONGEST
1815micromips_relative_offset7 (ULONGEST insn)
1816{
1817 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1818}
1819
1820/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1821 INSN. */
1822
1823static LONGEST
1824micromips_relative_offset10 (ULONGEST insn)
1825{
1826 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1827}
1828
1829/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1830 INSN. */
1831
1832static LONGEST
1833micromips_relative_offset16 (ULONGEST insn)
1834{
1835 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1836}
1837
1838/* Return the size in bytes of the microMIPS instruction at the address PC. */
1839
1840static int
1841micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1842{
1843 ULONGEST insn;
1844
1845 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1846 return mips_insn_size (ISA_MICROMIPS, insn);
1847}
1848
1849/* Calculate the address of the next microMIPS instruction to execute
1850 after the INSN coprocessor 1 conditional branch instruction at the
1851 address PC. COUNT denotes the number of coprocessor condition bits
1852 examined by the branch. */
1853
1854static CORE_ADDR
7113a196 1855micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
4cc0665f
MR
1856 ULONGEST insn, CORE_ADDR pc, int count)
1857{
1858 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1859 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1860 int tf = b5s5_op (insn >> 16) & 1;
1861 int mask = (1 << count) - 1;
1862 ULONGEST fcs;
1863 int cond;
1864
1865 if (fcsr == -1)
1866 /* No way to handle; it'll most likely trap anyway. */
1867 return pc;
1868
7113a196 1869 fcs = regcache_raw_get_unsigned (regcache, fcsr);
4cc0665f
MR
1870 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1871
1872 if (((cond >> cnum) & mask) != mask * !tf)
1873 pc += micromips_relative_offset16 (insn);
1874 else
1875 pc += micromips_pc_insn_size (gdbarch, pc);
1876
1877 return pc;
1878}
1879
1880/* Calculate the address of the next microMIPS instruction to execute
1881 after the instruction at the address PC. */
1882
1883static CORE_ADDR
7113a196 1884micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
4cc0665f 1885{
ac7936df 1886 struct gdbarch *gdbarch = regcache->arch ();
4cc0665f
MR
1887 ULONGEST insn;
1888
1889 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1890 pc += MIPS_INSN16_SIZE;
1891 switch (mips_insn_size (ISA_MICROMIPS, insn))
1892 {
4cc0665f
MR
1893 /* 32-bit instructions. */
1894 case 2 * MIPS_INSN16_SIZE:
1895 insn <<= 16;
1896 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1897 pc += MIPS_INSN16_SIZE;
1898 switch (micromips_op (insn >> 16))
1899 {
1900 case 0x00: /* POOL32A: bits 000000 */
6592ceed
MR
1901 switch (b0s6_op (insn))
1902 {
1903 case 0x3c: /* POOL32Axf: bits 000000 ... 111100 */
1904 switch (b6s10_ext (insn))
1905 {
1906 case 0x3c: /* JALR: 000000 0000111100 111100 */
1907 case 0x7c: /* JALR.HB: 000000 0001111100 111100 */
1908 case 0x13c: /* JALRS: 000000 0100111100 111100 */
1909 case 0x17c: /* JALRS.HB: 000000 0101111100 111100 */
1910 pc = regcache_raw_get_signed (regcache,
1911 b0s5_reg (insn >> 16));
1912 break;
1913 case 0x22d: /* SYSCALL: 000000 1000101101 111100 */
1914 {
1915 struct gdbarch_tdep *tdep;
1916
1917 tdep = gdbarch_tdep (gdbarch);
1918 if (tdep->syscall_next_pc != NULL)
1919 pc = tdep->syscall_next_pc (get_current_frame ());
1920 }
1921 break;
1922 }
1923 break;
1924 }
4cc0665f
MR
1925 break;
1926
1927 case 0x10: /* POOL32I: bits 010000 */
1928 switch (b5s5_op (insn >> 16))
1929 {
1930 case 0x00: /* BLTZ: bits 010000 00000 */
1931 case 0x01: /* BLTZAL: bits 010000 00001 */
1932 case 0x11: /* BLTZALS: bits 010000 10001 */
7113a196
YQ
1933 if (regcache_raw_get_signed (regcache,
1934 b0s5_reg (insn >> 16)) < 0)
4cc0665f
MR
1935 pc += micromips_relative_offset16 (insn);
1936 else
1937 pc += micromips_pc_insn_size (gdbarch, pc);
1938 break;
1939
1940 case 0x02: /* BGEZ: bits 010000 00010 */
1941 case 0x03: /* BGEZAL: bits 010000 00011 */
1942 case 0x13: /* BGEZALS: bits 010000 10011 */
7113a196
YQ
1943 if (regcache_raw_get_signed (regcache,
1944 b0s5_reg (insn >> 16)) >= 0)
4cc0665f
MR
1945 pc += micromips_relative_offset16 (insn);
1946 else
1947 pc += micromips_pc_insn_size (gdbarch, pc);
1948 break;
1949
1950 case 0x04: /* BLEZ: bits 010000 00100 */
7113a196
YQ
1951 if (regcache_raw_get_signed (regcache,
1952 b0s5_reg (insn >> 16)) <= 0)
4cc0665f
MR
1953 pc += micromips_relative_offset16 (insn);
1954 else
1955 pc += micromips_pc_insn_size (gdbarch, pc);
1956 break;
1957
1958 case 0x05: /* BNEZC: bits 010000 00101 */
7113a196
YQ
1959 if (regcache_raw_get_signed (regcache,
1960 b0s5_reg (insn >> 16)) != 0)
4cc0665f
MR
1961 pc += micromips_relative_offset16 (insn);
1962 break;
1963
1964 case 0x06: /* BGTZ: bits 010000 00110 */
7113a196
YQ
1965 if (regcache_raw_get_signed (regcache,
1966 b0s5_reg (insn >> 16)) > 0)
4cc0665f
MR
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 break;
1971
1972 case 0x07: /* BEQZC: bits 010000 00111 */
7113a196
YQ
1973 if (regcache_raw_get_signed (regcache,
1974 b0s5_reg (insn >> 16)) == 0)
4cc0665f
MR
1975 pc += micromips_relative_offset16 (insn);
1976 break;
1977
1978 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1979 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1980 if (((insn >> 16) & 0x3) == 0x0)
1981 /* BC2F, BC2T: don't know how to handle these. */
1982 break;
1983 break;
1984
1985 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1986 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1987 {
1988 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1989 int dspctl = mips_regnum (gdbarch)->dspctl;
1990
1991 if (dspctl == -1)
1992 /* No way to handle; it'll most likely trap anyway. */
1993 break;
1994
7113a196
YQ
1995 if ((regcache_raw_get_unsigned (regcache,
1996 dspctl) & 0x7f) >= pos)
4cc0665f
MR
1997 pc += micromips_relative_offset16 (insn);
1998 else
1999 pc += micromips_pc_insn_size (gdbarch, pc);
2000 }
2001 break;
2002
2003 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
2004 /* BC1ANY2F: bits 010000 11100 xxx01 */
2005 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
2006 /* BC1ANY2T: bits 010000 11101 xxx01 */
2007 if (((insn >> 16) & 0x2) == 0x0)
7113a196 2008 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
4cc0665f
MR
2009 ((insn >> 16) & 0x1) + 1);
2010 break;
2011
2012 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
2013 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
2014 if (((insn >> 16) & 0x3) == 0x1)
7113a196 2015 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
4cc0665f
MR
2016 break;
2017 }
2018 break;
2019
2020 case 0x1d: /* JALS: bits 011101 */
2021 case 0x35: /* J: bits 110101 */
2022 case 0x3d: /* JAL: bits 111101 */
2023 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
2024 break;
2025
2026 case 0x25: /* BEQ: bits 100101 */
7113a196
YQ
2027 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2028 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2029 pc += micromips_relative_offset16 (insn);
2030 else
2031 pc += micromips_pc_insn_size (gdbarch, pc);
2032 break;
2033
2034 case 0x2d: /* BNE: bits 101101 */
7113a196
YQ
2035 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2036 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2037 pc += micromips_relative_offset16 (insn);
2038 else
2039 pc += micromips_pc_insn_size (gdbarch, pc);
2040 break;
2041
2042 case 0x3c: /* JALX: bits 111100 */
2043 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2044 break;
2045 }
2046 break;
2047
2048 /* 16-bit instructions. */
2049 case MIPS_INSN16_SIZE:
2050 switch (micromips_op (insn))
2051 {
2052 case 0x11: /* POOL16C: bits 010001 */
2053 if ((b5s5_op (insn) & 0x1c) == 0xc)
2054 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
7113a196 2055 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
4cc0665f
MR
2056 else if (b5s5_op (insn) == 0x18)
2057 /* JRADDIUSP: bits 010001 11000 */
7113a196 2058 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
4cc0665f
MR
2059 break;
2060
2061 case 0x23: /* BEQZ16: bits 100011 */
2062 {
2063 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2064
7113a196 2065 if (regcache_raw_get_signed (regcache, rs) == 0)
4cc0665f
MR
2066 pc += micromips_relative_offset7 (insn);
2067 else
2068 pc += micromips_pc_insn_size (gdbarch, pc);
2069 }
2070 break;
2071
2072 case 0x2b: /* BNEZ16: bits 101011 */
2073 {
2074 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2075
7113a196 2076 if (regcache_raw_get_signed (regcache, rs) != 0)
4cc0665f
MR
2077 pc += micromips_relative_offset7 (insn);
2078 else
2079 pc += micromips_pc_insn_size (gdbarch, pc);
2080 }
2081 break;
2082
2083 case 0x33: /* B16: bits 110011 */
2084 pc += micromips_relative_offset10 (insn);
2085 break;
2086 }
2087 break;
2088 }
2089
2090 return pc;
2091}
2092
c906108c 2093/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
2094 mips 16 variant, but fortunately, there fewer instructions. We have
2095 to cope ith extensions for 16 bit instructions and a pair of actual
2096 32 bit instructions. We dont want to set a single step instruction
2097 on the extend instruction either. */
c906108c
SS
2098
2099/* Lots of mips16 instruction formats */
2100/* Predicting jumps requires itype,ritype,i8type
025bb325 2101 and their extensions extItype,extritype,extI8type. */
c906108c
SS
2102enum mips16_inst_fmts
2103{
c5aa993b
JM
2104 itype, /* 0 immediate 5,10 */
2105 ritype, /* 1 5,3,8 */
2106 rrtype, /* 2 5,3,3,5 */
2107 rritype, /* 3 5,3,3,5 */
2108 rrrtype, /* 4 5,3,3,3,2 */
2109 rriatype, /* 5 5,3,3,1,4 */
2110 shifttype, /* 6 5,3,3,3,2 */
2111 i8type, /* 7 5,3,8 */
2112 i8movtype, /* 8 5,3,3,5 */
2113 i8mov32rtype, /* 9 5,3,5,3 */
2114 i64type, /* 10 5,3,8 */
2115 ri64type, /* 11 5,3,3,5 */
2116 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2117 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2118 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2119 extRRItype, /* 15 5,5,5,5,3,3,5 */
2120 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2121 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2122 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2123 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2124 extRi64type, /* 20 5,6,5,5,3,3,5 */
2125 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2126};
12f02c2a 2127/* I am heaping all the fields of the formats into one structure and
025bb325 2128 then, only the fields which are involved in instruction extension. */
c906108c 2129struct upk_mips16
6d82d43b
AC
2130{
2131 CORE_ADDR offset;
025bb325 2132 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2133 unsigned int regy;
2134};
c906108c
SS
2135
2136
12f02c2a 2137/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2138 for the bits which make up the immediate extension. */
c906108c 2139
12f02c2a
AC
2140static CORE_ADDR
2141extended_offset (unsigned int extension)
c906108c 2142{
12f02c2a 2143 CORE_ADDR value;
130854df 2144
4c2051c6 2145 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2146 value = value << 6;
4c2051c6 2147 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2148 value = value << 5;
130854df
MR
2149 value |= extension & 0x1f; /* Extract 4:0. */
2150
c5aa993b 2151 return value;
c906108c
SS
2152}
2153
2154/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2155 instruction. It won't malfunction, but why make excess remote memory
2156 references? If the immediate operands get sign extended or something,
2157 do it after the extension is performed. */
c906108c 2158/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2159 when the offset is to be used in relative addressing. */
c906108c 2160
12f02c2a 2161static unsigned int
e17a4113 2162fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2163{
e17a4113 2164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2165 gdb_byte buf[8];
a2fb2cee
MR
2166
2167 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
c5aa993b 2168 target_read_memory (pc, buf, 2);
e17a4113 2169 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2170}
2171
2172static void
e17a4113 2173unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2174 unsigned int extension,
2175 unsigned int inst,
6d82d43b 2176 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2177{
12f02c2a
AC
2178 CORE_ADDR offset;
2179 int regx;
2180 int regy;
2181 switch (insn_format)
c906108c 2182 {
c5aa993b 2183 case itype:
c906108c 2184 {
12f02c2a
AC
2185 CORE_ADDR value;
2186 if (extension)
c5aa993b 2187 {
4c2051c6
MR
2188 value = extended_offset ((extension << 16) | inst);
2189 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2190 }
2191 else
c5aa993b 2192 {
12f02c2a 2193 value = inst & 0x7ff;
4c2051c6 2194 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2195 }
12f02c2a
AC
2196 offset = value;
2197 regx = -1;
2198 regy = -1;
c906108c 2199 }
c5aa993b
JM
2200 break;
2201 case ritype:
2202 case i8type:
025bb325 2203 { /* A register identifier and an offset. */
c906108c 2204 /* Most of the fields are the same as I type but the
025bb325 2205 immediate value is of a different length. */
12f02c2a
AC
2206 CORE_ADDR value;
2207 if (extension)
c906108c 2208 {
4c2051c6
MR
2209 value = extended_offset ((extension << 16) | inst);
2210 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2211 }
c5aa993b
JM
2212 else
2213 {
4c2051c6
MR
2214 value = inst & 0xff; /* 8 bits */
2215 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2216 }
12f02c2a 2217 offset = value;
4c2051c6 2218 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2219 regy = -1;
c5aa993b 2220 break;
c906108c 2221 }
c5aa993b 2222 case jalxtype:
c906108c 2223 {
c5aa993b 2224 unsigned long value;
12f02c2a
AC
2225 unsigned int nexthalf;
2226 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2227 value = value << 16;
4cc0665f
MR
2228 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2229 /* Low bit still set. */
c5aa993b 2230 value |= nexthalf;
12f02c2a
AC
2231 offset = value;
2232 regx = -1;
2233 regy = -1;
c5aa993b 2234 break;
c906108c
SS
2235 }
2236 default:
e2e0b3e5 2237 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2238 }
12f02c2a
AC
2239 upk->offset = offset;
2240 upk->regx = regx;
2241 upk->regy = regy;
c906108c
SS
2242}
2243
2244
484933d1
MR
2245/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2246 and having a signed 16-bit OFFSET. */
2247
c5aa993b
JM
2248static CORE_ADDR
2249add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2250{
484933d1 2251 return pc + (offset << 1) + 2;
c906108c
SS
2252}
2253
12f02c2a 2254static CORE_ADDR
7113a196 2255extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
6d82d43b 2256 unsigned int extension, unsigned int insn)
c906108c 2257{
ac7936df 2258 struct gdbarch *gdbarch = regcache->arch ();
12f02c2a
AC
2259 int op = (insn >> 11);
2260 switch (op)
c906108c 2261 {
6d82d43b 2262 case 2: /* Branch */
12f02c2a 2263 {
12f02c2a 2264 struct upk_mips16 upk;
e17a4113 2265 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
484933d1 2266 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2267 break;
2268 }
025bb325
MS
2269 case 3: /* JAL , JALX - Watch out, these are 32 bit
2270 instructions. */
12f02c2a
AC
2271 {
2272 struct upk_mips16 upk;
e17a4113 2273 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
484933d1 2274 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
12f02c2a 2275 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2276 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2277 else
2278 pc |= 0x01;
2279 break;
2280 }
6d82d43b 2281 case 4: /* beqz */
12f02c2a
AC
2282 {
2283 struct upk_mips16 upk;
2284 int reg;
e17a4113 2285 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2286 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2287 if (reg == 0)
484933d1 2288 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2289 else
2290 pc += 2;
2291 break;
2292 }
6d82d43b 2293 case 5: /* bnez */
12f02c2a
AC
2294 {
2295 struct upk_mips16 upk;
2296 int reg;
e17a4113 2297 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2298 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2299 if (reg != 0)
484933d1 2300 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2301 else
2302 pc += 2;
2303 break;
2304 }
6d82d43b 2305 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2306 {
2307 struct upk_mips16 upk;
2308 int reg;
e17a4113 2309 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2310 /* upk.regx contains the opcode */
7113a196
YQ
2311 /* Test register is 24 */
2312 reg = regcache_raw_get_signed (regcache, 24);
12f02c2a
AC
2313 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2314 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
484933d1 2315 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2316 else
2317 pc += 2;
2318 break;
2319 }
6d82d43b 2320 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2321 {
2322 struct upk_mips16 upk;
2323 /* upk.fmt = rrtype; */
2324 op = insn & 0x1f;
2325 if (op == 0)
c5aa993b 2326 {
12f02c2a
AC
2327 int reg;
2328 upk.regx = (insn >> 8) & 0x07;
2329 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2330 if ((upk.regy & 1) == 0)
4cc0665f 2331 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2332 else
2333 reg = 31; /* Function return instruction. */
7113a196 2334 pc = regcache_raw_get_signed (regcache, reg);
c906108c 2335 }
12f02c2a 2336 else
c5aa993b 2337 pc += 2;
12f02c2a
AC
2338 break;
2339 }
2340 case 30:
2341 /* This is an instruction extension. Fetch the real instruction
2342 (which follows the extension) and decode things based on
025bb325 2343 that. */
12f02c2a
AC
2344 {
2345 pc += 2;
7113a196 2346 pc = extended_mips16_next_pc (regcache, pc, insn,
e17a4113 2347 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2348 break;
2349 }
2350 default:
2351 {
2352 pc += 2;
2353 break;
2354 }
c906108c 2355 }
c5aa993b 2356 return pc;
12f02c2a 2357}
c906108c 2358
5a89d8aa 2359static CORE_ADDR
7113a196 2360mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
12f02c2a 2361{
ac7936df 2362 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 2363 unsigned int insn = fetch_mips_16 (gdbarch, pc);
7113a196 2364 return extended_mips16_next_pc (regcache, pc, 0, insn);
12f02c2a
AC
2365}
2366
2367/* The mips_next_pc function supports single_step when the remote
7e73cedf 2368 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2369 It works by decoding the current instruction and predicting where a
1aee363c 2370 branch will go. This isn't hard because all the data is available.
4cc0665f 2371 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2372static CORE_ADDR
7113a196 2373mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 2374{
ac7936df 2375 struct gdbarch *gdbarch = regcache->arch ();
4cc0665f
MR
2376
2377 if (mips_pc_is_mips16 (gdbarch, pc))
7113a196 2378 return mips16_next_pc (regcache, pc);
4cc0665f 2379 else if (mips_pc_is_micromips (gdbarch, pc))
7113a196 2380 return micromips_next_pc (regcache, pc);
c5aa993b 2381 else
7113a196 2382 return mips32_next_pc (regcache, pc);
12f02c2a 2383}
c906108c 2384
ab50adb6
MR
2385/* Return non-zero if the MIPS16 instruction INSN is a compact branch
2386 or jump. */
2387
2388static int
2389mips16_instruction_is_compact_branch (unsigned short insn)
2390{
2391 switch (insn & 0xf800)
2392 {
2393 case 0xe800:
2394 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2395 case 0x6000:
2396 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2397 case 0x2800: /* BNEZ */
2398 case 0x2000: /* BEQZ */
2399 case 0x1000: /* B */
2400 return 1;
2401 default:
2402 return 0;
2403 }
2404}
2405
2406/* Return non-zero if the microMIPS instruction INSN is a compact branch
2407 or jump. */
2408
2409static int
2410micromips_instruction_is_compact_branch (unsigned short insn)
2411{
2412 switch (micromips_op (insn))
2413 {
2414 case 0x11: /* POOL16C: bits 010001 */
2415 return (b5s5_op (insn) == 0x18
2416 /* JRADDIUSP: bits 010001 11000 */
2417 || b5s5_op (insn) == 0xd);
2418 /* JRC: bits 010011 01101 */
2419 case 0x10: /* POOL32I: bits 010000 */
2420 return (b5s5_op (insn) & 0x1d) == 0x5;
2421 /* BEQZC/BNEZC: bits 010000 001x1 */
2422 default:
2423 return 0;
2424 }
2425}
2426
edfae063
AC
2427struct mips_frame_cache
2428{
2429 CORE_ADDR base;
2430 struct trad_frame_saved_reg *saved_regs;
2431};
2432
29639122
JB
2433/* Set a register's saved stack address in temp_saved_regs. If an
2434 address has already been set for this register, do nothing; this
2435 way we will only recognize the first save of a given register in a
2436 function prologue.
eec63939 2437
f57d151a
UW
2438 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2439 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2440 Strictly speaking, only the second range is used as it is only second
2441 range (the ABI instead of ISA registers) that comes into play when finding
2442 saved registers in a frame. */
eec63939
AC
2443
2444static void
74ed0bb4
MD
2445set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2446 int regnum, CORE_ADDR offset)
eec63939 2447{
29639122
JB
2448 if (this_cache != NULL
2449 && this_cache->saved_regs[regnum].addr == -1)
2450 {
74ed0bb4
MD
2451 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2452 = offset;
2453 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2454 = offset;
29639122 2455 }
eec63939
AC
2456}
2457
eec63939 2458
29639122
JB
2459/* Fetch the immediate value from a MIPS16 instruction.
2460 If the previous instruction was an EXTEND, use it to extend
2461 the upper bits of the immediate value. This is a helper function
2462 for mips16_scan_prologue. */
eec63939 2463
29639122
JB
2464static int
2465mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2466 unsigned short inst, /* current instruction */
2467 int nbits, /* number of bits in imm field */
2468 int scale, /* scale factor to be applied to imm */
025bb325 2469 int is_signed) /* is the imm field signed? */
eec63939 2470{
29639122 2471 int offset;
eec63939 2472
29639122
JB
2473 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2474 {
2475 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2476 if (offset & 0x8000) /* check for negative extend */
2477 offset = 0 - (0x10000 - (offset & 0xffff));
2478 return offset | (inst & 0x1f);
2479 }
eec63939 2480 else
29639122
JB
2481 {
2482 int max_imm = 1 << nbits;
2483 int mask = max_imm - 1;
2484 int sign_bit = max_imm >> 1;
45c9dd44 2485
29639122
JB
2486 offset = inst & mask;
2487 if (is_signed && (offset & sign_bit))
2488 offset = 0 - (max_imm - offset);
2489 return offset * scale;
2490 }
2491}
eec63939 2492
65596487 2493
29639122
JB
2494/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2495 the associated FRAME_CACHE if not null.
2496 Return the address of the first instruction past the prologue. */
eec63939 2497
29639122 2498static CORE_ADDR
e17a4113
UW
2499mips16_scan_prologue (struct gdbarch *gdbarch,
2500 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2501 struct frame_info *this_frame,
29639122
JB
2502 struct mips_frame_cache *this_cache)
2503{
ab50adb6
MR
2504 int prev_non_prologue_insn = 0;
2505 int this_non_prologue_insn;
2506 int non_prologue_insns = 0;
2507 CORE_ADDR prev_pc;
29639122 2508 CORE_ADDR cur_pc;
025bb325 2509 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2510 CORE_ADDR sp;
2511 long frame_offset = 0; /* Size of stack frame. */
2512 long frame_adjust = 0; /* Offset of FP from SP. */
2513 int frame_reg = MIPS_SP_REGNUM;
025bb325 2514 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2515 unsigned inst = 0; /* current instruction */
2516 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2517 unsigned save_inst = 0; /* the save instruction */
ab50adb6
MR
2518 int prev_delay_slot = 0;
2519 int in_delay_slot;
29639122 2520 int reg, offset;
a343eb3c 2521
29639122 2522 int extend_bytes = 0;
ab50adb6
MR
2523 int prev_extend_bytes = 0;
2524 CORE_ADDR end_prologue_addr;
a343eb3c 2525
29639122 2526 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2527 THIS_FRAME. */
2528 if (this_frame != NULL)
2529 sp = get_frame_register_signed (this_frame,
2530 gdbarch_num_regs (gdbarch)
2531 + MIPS_SP_REGNUM);
29639122
JB
2532 else
2533 sp = 0;
eec63939 2534
29639122
JB
2535 if (limit_pc > start_pc + 200)
2536 limit_pc = start_pc + 200;
ab50adb6 2537 prev_pc = start_pc;
eec63939 2538
ab50adb6
MR
2539 /* Permit at most one non-prologue non-control-transfer instruction
2540 in the middle which may have been reordered by the compiler for
2541 optimisation. */
95ac2dcf 2542 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122 2543 {
ab50adb6
MR
2544 this_non_prologue_insn = 0;
2545 in_delay_slot = 0;
2546
29639122
JB
2547 /* Save the previous instruction. If it's an EXTEND, we'll extract
2548 the immediate offset extension from it in mips16_get_imm. */
2549 prev_inst = inst;
eec63939 2550
025bb325 2551 /* Fetch and decode the instruction. */
4cc0665f
MR
2552 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2553 cur_pc, NULL);
eec63939 2554
29639122
JB
2555 /* Normally we ignore extend instructions. However, if it is
2556 not followed by a valid prologue instruction, then this
2557 instruction is not part of the prologue either. We must
2558 remember in this case to adjust the end_prologue_addr back
2559 over the extend. */
2560 if ((inst & 0xf800) == 0xf000) /* extend */
2561 {
95ac2dcf 2562 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2563 continue;
2564 }
eec63939 2565
29639122
JB
2566 prev_extend_bytes = extend_bytes;
2567 extend_bytes = 0;
eec63939 2568
29639122
JB
2569 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2570 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2571 {
2572 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2573 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2574 frame_offset -= offset;
2575 else
2576 /* Exit loop if a positive stack adjustment is found, which
2577 usually means that the stack cleanup code in the function
2578 epilogue is reached. */
2579 break;
2580 }
2581 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2582 {
2583 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2584 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2585 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2586 }
2587 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2590 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2591 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2592 }
2593 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2596 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2597 }
2598 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2599 {
2600 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2601 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2602 }
2603 else if (inst == 0x673d) /* move $s1, $sp */
2604 {
2605 frame_addr = sp;
2606 frame_reg = 17;
2607 }
2608 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2609 {
2610 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2611 frame_addr = sp + offset;
2612 frame_reg = 17;
2613 frame_adjust = offset;
2614 }
2615 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2616 {
2617 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2618 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2619 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2620 }
2621 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2622 {
2623 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2624 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2625 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2626 }
2627 else if ((inst & 0xf81f) == 0xe809
2628 && (inst & 0x700) != 0x700) /* entry */
025bb325 2629 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2630 else if ((inst & 0xff80) == 0x6480) /* save */
2631 {
025bb325 2632 save_inst = inst; /* Save for later processing. */
2207132d
MR
2633 if (prev_extend_bytes) /* extend */
2634 save_inst |= prev_inst << 16;
2635 }
29639122
JB
2636 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2637 {
2638 /* This instruction is part of the prologue, but we don't
2639 need to do anything special to handle it. */
2640 }
ab50adb6
MR
2641 else if (mips16_instruction_has_delay_slot (inst, 0))
2642 /* JAL/JALR/JALX/JR */
2643 {
2644 /* The instruction in the delay slot can be a part
2645 of the prologue, so move forward once more. */
2646 in_delay_slot = 1;
2647 if (mips16_instruction_has_delay_slot (inst, 1))
2648 /* JAL/JALX */
2649 {
2650 prev_extend_bytes = MIPS_INSN16_SIZE;
2651 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2652 }
2653 }
29639122
JB
2654 else
2655 {
ab50adb6 2656 this_non_prologue_insn = 1;
29639122 2657 }
ab50adb6
MR
2658
2659 non_prologue_insns += this_non_prologue_insn;
2660
2661 /* A jump or branch, or enough non-prologue insns seen? If so,
2662 then we must have reached the end of the prologue by now. */
2663 if (prev_delay_slot || non_prologue_insns > 1
2664 || mips16_instruction_is_compact_branch (inst))
2665 break;
2666
2667 prev_non_prologue_insn = this_non_prologue_insn;
2668 prev_delay_slot = in_delay_slot;
2669 prev_pc = cur_pc - prev_extend_bytes;
29639122 2670 }
eec63939 2671
29639122
JB
2672 /* The entry instruction is typically the first instruction in a function,
2673 and it stores registers at offsets relative to the value of the old SP
2674 (before the prologue). But the value of the sp parameter to this
2675 function is the new SP (after the prologue has been executed). So we
2676 can't calculate those offsets until we've seen the entire prologue,
025bb325 2677 and can calculate what the old SP must have been. */
29639122
JB
2678 if (entry_inst != 0)
2679 {
2680 int areg_count = (entry_inst >> 8) & 7;
2681 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2682
29639122
JB
2683 /* The entry instruction always subtracts 32 from the SP. */
2684 frame_offset += 32;
2685
2686 /* Now we can calculate what the SP must have been at the
2687 start of the function prologue. */
2688 sp += frame_offset;
2689
2690 /* Check if a0-a3 were saved in the caller's argument save area. */
2691 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2692 {
74ed0bb4 2693 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2694 offset += mips_abi_regsize (gdbarch);
29639122
JB
2695 }
2696
2697 /* Check if the ra register was pushed on the stack. */
2698 offset = -4;
2699 if (entry_inst & 0x20)
2700 {
74ed0bb4 2701 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2702 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2703 }
2704
2705 /* Check if the s0 and s1 registers were pushed on the stack. */
2706 for (reg = 16; reg < sreg_count + 16; reg++)
2707 {
74ed0bb4 2708 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2709 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2710 }
2711 }
2712
2207132d
MR
2713 /* The SAVE instruction is similar to ENTRY, except that defined by the
2714 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2715 size of the frame is specified as an immediate field of instruction
2716 and an extended variation exists which lets additional registers and
2717 frame space to be specified. The instruction always treats registers
2718 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2719 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2720 {
2721 static int args_table[16] = {
2722 0, 0, 0, 0, 1, 1, 1, 1,
2723 2, 2, 2, 0, 3, 3, 4, -1,
2724 };
2725 static int astatic_table[16] = {
2726 0, 1, 2, 3, 0, 1, 2, 3,
2727 0, 1, 2, 4, 0, 1, 0, -1,
2728 };
2729 int aregs = (save_inst >> 16) & 0xf;
2730 int xsregs = (save_inst >> 24) & 0x7;
2731 int args = args_table[aregs];
2732 int astatic = astatic_table[aregs];
2733 long frame_size;
2734
2735 if (args < 0)
2736 {
2737 warning (_("Invalid number of argument registers encoded in SAVE."));
2738 args = 0;
2739 }
2740 if (astatic < 0)
2741 {
2742 warning (_("Invalid number of static registers encoded in SAVE."));
2743 astatic = 0;
2744 }
2745
2746 /* For standard SAVE the frame size of 0 means 128. */
2747 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2748 if (frame_size == 0 && (save_inst >> 16) == 0)
2749 frame_size = 16;
2750 frame_size *= 8;
2751 frame_offset += frame_size;
2752
2753 /* Now we can calculate what the SP must have been at the
2754 start of the function prologue. */
2755 sp += frame_offset;
2756
2757 /* Check if A0-A3 were saved in the caller's argument save area. */
2758 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2759 {
74ed0bb4 2760 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2761 offset += mips_abi_regsize (gdbarch);
2762 }
2763
2764 offset = -4;
2765
2766 /* Check if the RA register was pushed on the stack. */
2767 if (save_inst & 0x40)
2768 {
74ed0bb4 2769 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2770 offset -= mips_abi_regsize (gdbarch);
2771 }
2772
2773 /* Check if the S8 register was pushed on the stack. */
2774 if (xsregs > 6)
2775 {
74ed0bb4 2776 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2777 offset -= mips_abi_regsize (gdbarch);
2778 xsregs--;
2779 }
2780 /* Check if S2-S7 were pushed on the stack. */
2781 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2782 {
74ed0bb4 2783 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2784 offset -= mips_abi_regsize (gdbarch);
2785 }
2786
2787 /* Check if the S1 register was pushed on the stack. */
2788 if (save_inst & 0x10)
2789 {
74ed0bb4 2790 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2791 offset -= mips_abi_regsize (gdbarch);
2792 }
2793 /* Check if the S0 register was pushed on the stack. */
2794 if (save_inst & 0x20)
2795 {
74ed0bb4 2796 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2797 offset -= mips_abi_regsize (gdbarch);
2798 }
2799
4cc0665f
MR
2800 /* Check if A0-A3 were pushed on the stack. */
2801 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2802 {
2803 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2804 offset -= mips_abi_regsize (gdbarch);
2805 }
2806 }
2807
2808 if (this_cache != NULL)
2809 {
2810 this_cache->base =
2811 (get_frame_register_signed (this_frame,
2812 gdbarch_num_regs (gdbarch) + frame_reg)
2813 + frame_offset - frame_adjust);
2814 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2815 be able to get rid of the assignment below, evetually. But it's
2816 still needed for now. */
2817 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2818 + mips_regnum (gdbarch)->pc]
2819 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2820 }
2821
ab50adb6
MR
2822 /* Set end_prologue_addr to the address of the instruction immediately
2823 after the last one we scanned. Unless the last one looked like a
2824 non-prologue instruction (and we looked ahead), in which case use
2825 its address instead. */
2826 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2827 ? prev_pc : cur_pc - prev_extend_bytes);
4cc0665f
MR
2828
2829 return end_prologue_addr;
2830}
2831
2832/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2833 Procedures that use the 32-bit instruction set are handled by the
2834 mips_insn32 unwinder. */
2835
2836static struct mips_frame_cache *
2837mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2838{
2839 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2840 struct mips_frame_cache *cache;
2841
2842 if ((*this_cache) != NULL)
19ba03f4 2843 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2844 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2845 (*this_cache) = cache;
2846 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2847
2848 /* Analyze the function prologue. */
2849 {
2850 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2851 CORE_ADDR start_addr;
2852
2853 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2854 if (start_addr == 0)
2855 start_addr = heuristic_proc_start (gdbarch, pc);
2856 /* We can't analyze the prologue if we couldn't find the begining
2857 of the function. */
2858 if (start_addr == 0)
2859 return cache;
2860
19ba03f4
SM
2861 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2862 (struct mips_frame_cache *) *this_cache);
4cc0665f
MR
2863 }
2864
2865 /* gdbarch_sp_regnum contains the value and not the address. */
2866 trad_frame_set_value (cache->saved_regs,
2867 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2868 cache->base);
2869
19ba03f4 2870 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2871}
2872
2873static void
2874mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2875 struct frame_id *this_id)
2876{
2877 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2878 this_cache);
2879 /* This marks the outermost frame. */
2880 if (info->base == 0)
2881 return;
2882 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2883}
2884
2885static struct value *
2886mips_insn16_frame_prev_register (struct frame_info *this_frame,
2887 void **this_cache, int regnum)
2888{
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2892}
2893
2894static int
2895mips_insn16_frame_sniffer (const struct frame_unwind *self,
2896 struct frame_info *this_frame, void **this_cache)
2897{
2898 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2899 CORE_ADDR pc = get_frame_pc (this_frame);
2900 if (mips_pc_is_mips16 (gdbarch, pc))
2901 return 1;
2902 return 0;
2903}
2904
2905static const struct frame_unwind mips_insn16_frame_unwind =
2906{
2907 NORMAL_FRAME,
2908 default_frame_unwind_stop_reason,
2909 mips_insn16_frame_this_id,
2910 mips_insn16_frame_prev_register,
2911 NULL,
2912 mips_insn16_frame_sniffer
2913};
2914
2915static CORE_ADDR
2916mips_insn16_frame_base_address (struct frame_info *this_frame,
2917 void **this_cache)
2918{
2919 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2920 this_cache);
2921 return info->base;
2922}
2923
2924static const struct frame_base mips_insn16_frame_base =
2925{
2926 &mips_insn16_frame_unwind,
2927 mips_insn16_frame_base_address,
2928 mips_insn16_frame_base_address,
2929 mips_insn16_frame_base_address
2930};
2931
2932static const struct frame_base *
2933mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2934{
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 CORE_ADDR pc = get_frame_pc (this_frame);
2937 if (mips_pc_is_mips16 (gdbarch, pc))
2938 return &mips_insn16_frame_base;
2939 else
2940 return NULL;
2941}
2942
2943/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2944 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2945 interpreted directly, and then multiplied by 4. */
2946
2947static int
2948micromips_decode_imm9 (int imm)
2949{
2950 imm = (imm ^ 0x100) - 0x100;
2951 if (imm > -3 && imm < 2)
2952 imm ^= 0x100;
2953 return imm << 2;
2954}
2955
2956/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2957 the address of the first instruction past the prologue. */
2958
2959static CORE_ADDR
2960micromips_scan_prologue (struct gdbarch *gdbarch,
2961 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2962 struct frame_info *this_frame,
2963 struct mips_frame_cache *this_cache)
2964{
ab50adb6 2965 CORE_ADDR end_prologue_addr;
4cc0665f
MR
2966 int prev_non_prologue_insn = 0;
2967 int frame_reg = MIPS_SP_REGNUM;
2968 int this_non_prologue_insn;
2969 int non_prologue_insns = 0;
2970 long frame_offset = 0; /* Size of stack frame. */
2971 long frame_adjust = 0; /* Offset of FP from SP. */
ab50adb6
MR
2972 int prev_delay_slot = 0;
2973 int in_delay_slot;
4cc0665f
MR
2974 CORE_ADDR prev_pc;
2975 CORE_ADDR cur_pc;
2976 ULONGEST insn; /* current instruction */
2977 CORE_ADDR sp;
2978 long offset;
2979 long sp_adj;
2980 long v1_off = 0; /* The assumption is LUI will replace it. */
2981 int reglist;
2982 int breg;
2983 int dreg;
2984 int sreg;
2985 int treg;
2986 int loc;
2987 int op;
2988 int s;
2989 int i;
2990
2991 /* Can be called when there's no process, and hence when there's no
2992 THIS_FRAME. */
2993 if (this_frame != NULL)
2994 sp = get_frame_register_signed (this_frame,
2995 gdbarch_num_regs (gdbarch)
2996 + MIPS_SP_REGNUM);
2997 else
2998 sp = 0;
2999
3000 if (limit_pc > start_pc + 200)
3001 limit_pc = start_pc + 200;
3002 prev_pc = start_pc;
3003
3004 /* Permit at most one non-prologue non-control-transfer instruction
3005 in the middle which may have been reordered by the compiler for
3006 optimisation. */
3007 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
3008 {
3009 this_non_prologue_insn = 0;
ab50adb6 3010 in_delay_slot = 0;
4cc0665f
MR
3011 sp_adj = 0;
3012 loc = 0;
3013 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
3014 loc += MIPS_INSN16_SIZE;
3015 switch (mips_insn_size (ISA_MICROMIPS, insn))
3016 {
4cc0665f
MR
3017 /* 32-bit instructions. */
3018 case 2 * MIPS_INSN16_SIZE:
3019 insn <<= 16;
3020 insn |= mips_fetch_instruction (gdbarch,
3021 ISA_MICROMIPS, cur_pc + loc, NULL);
3022 loc += MIPS_INSN16_SIZE;
3023 switch (micromips_op (insn >> 16))
3024 {
3025 /* Record $sp/$fp adjustment. */
3026 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3027 case 0x0: /* POOL32A: bits 000000 */
3028 case 0x16: /* POOL32S: bits 010110 */
3029 op = b0s11_op (insn);
3030 sreg = b0s5_reg (insn >> 16);
3031 treg = b5s5_reg (insn >> 16);
3032 dreg = b11s5_reg (insn);
3033 if (op == 0x1d0
3034 /* SUBU: bits 000000 00111010000 */
3035 /* DSUBU: bits 010110 00111010000 */
3036 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3037 && treg == 3)
3038 /* (D)SUBU $sp, $v1 */
3039 sp_adj = v1_off;
3040 else if (op != 0x150
3041 /* ADDU: bits 000000 00101010000 */
3042 /* DADDU: bits 010110 00101010000 */
3043 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3044 this_non_prologue_insn = 1;
3045 break;
3046
3047 case 0x8: /* POOL32B: bits 001000 */
3048 op = b12s4_op (insn);
3049 breg = b0s5_reg (insn >> 16);
3050 reglist = sreg = b5s5_reg (insn >> 16);
3051 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3052 if ((op == 0x9 || op == 0xc)
3053 /* SWP: bits 001000 1001 */
3054 /* SDP: bits 001000 1100 */
3055 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3056 /* S[DW]P reg,offset($sp) */
3057 {
3058 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3059 set_reg_offset (gdbarch, this_cache,
3060 sreg, sp + offset);
3061 set_reg_offset (gdbarch, this_cache,
3062 sreg + 1, sp + offset + s);
3063 }
3064 else if ((op == 0xd || op == 0xf)
3065 /* SWM: bits 001000 1101 */
3066 /* SDM: bits 001000 1111 */
3067 && breg == MIPS_SP_REGNUM
3068 /* SWM reglist,offset($sp) */
3069 && ((reglist >= 1 && reglist <= 9)
3070 || (reglist >= 16 && reglist <= 25)))
3071 {
325fac50 3072 int sreglist = std::min(reglist & 0xf, 8);
4cc0665f
MR
3073
3074 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3075 for (i = 0; i < sreglist; i++)
3076 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3077 if ((reglist & 0xf) > 8)
3078 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3079 if ((reglist & 0x10) == 0x10)
3080 set_reg_offset (gdbarch, this_cache,
3081 MIPS_RA_REGNUM, sp + s * i++);
3082 }
3083 else
3084 this_non_prologue_insn = 1;
3085 break;
3086
3087 /* Record $sp/$fp adjustment. */
3088 /* Discard (D)ADDIU $gp used for PIC code. */
3089 case 0xc: /* ADDIU: bits 001100 */
3090 case 0x17: /* DADDIU: bits 010111 */
3091 sreg = b0s5_reg (insn >> 16);
3092 dreg = b5s5_reg (insn >> 16);
3093 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3094 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3095 /* (D)ADDIU $sp, imm */
3096 sp_adj = offset;
3097 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3098 /* (D)ADDIU $fp, $sp, imm */
3099 {
4cc0665f
MR
3100 frame_adjust = offset;
3101 frame_reg = 30;
3102 }
3103 else if (sreg != 28 || dreg != 28)
3104 /* (D)ADDIU $gp, imm */
3105 this_non_prologue_insn = 1;
3106 break;
3107
3108 /* LUI $v1 is used for larger $sp adjustments. */
3356937a 3109 /* Discard LUI $gp used for PIC code. */
4cc0665f
MR
3110 case 0x10: /* POOL32I: bits 010000 */
3111 if (b5s5_op (insn >> 16) == 0xd
3112 /* LUI: bits 010000 001101 */
3113 && b0s5_reg (insn >> 16) == 3)
3114 /* LUI $v1, imm */
3115 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3116 else if (b5s5_op (insn >> 16) != 0xd
3117 /* LUI: bits 010000 001101 */
3118 || b0s5_reg (insn >> 16) != 28)
3119 /* LUI $gp, imm */
3120 this_non_prologue_insn = 1;
3121 break;
3122
3123 /* ORI $v1 is used for larger $sp adjustments. */
3124 case 0x14: /* ORI: bits 010100 */
3125 sreg = b0s5_reg (insn >> 16);
3126 dreg = b5s5_reg (insn >> 16);
3127 if (sreg == 3 && dreg == 3)
3128 /* ORI $v1, imm */
3129 v1_off |= b0s16_imm (insn);
3130 else
3131 this_non_prologue_insn = 1;
3132 break;
3133
3134 case 0x26: /* SWC1: bits 100110 */
3135 case 0x2e: /* SDC1: bits 101110 */
3136 breg = b0s5_reg (insn >> 16);
3137 if (breg != MIPS_SP_REGNUM)
3138 /* S[DW]C1 reg,offset($sp) */
3139 this_non_prologue_insn = 1;
3140 break;
3141
3142 case 0x36: /* SD: bits 110110 */
3143 case 0x3e: /* SW: bits 111110 */
3144 breg = b0s5_reg (insn >> 16);
3145 sreg = b5s5_reg (insn >> 16);
3146 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3147 if (breg == MIPS_SP_REGNUM)
3148 /* S[DW] reg,offset($sp) */
3149 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3150 else
3151 this_non_prologue_insn = 1;
3152 break;
3153
3154 default:
ab50adb6
MR
3155 /* The instruction in the delay slot can be a part
3156 of the prologue, so move forward once more. */
3157 if (micromips_instruction_has_delay_slot (insn, 0))
3158 in_delay_slot = 1;
3159 else
3160 this_non_prologue_insn = 1;
4cc0665f
MR
3161 break;
3162 }
ab50adb6 3163 insn >>= 16;
4cc0665f
MR
3164 break;
3165
3166 /* 16-bit instructions. */
3167 case MIPS_INSN16_SIZE:
3168 switch (micromips_op (insn))
3169 {
3170 case 0x3: /* MOVE: bits 000011 */
3171 sreg = b0s5_reg (insn);
3172 dreg = b5s5_reg (insn);
3173 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3174 /* MOVE $fp, $sp */
78cc6c2d 3175 frame_reg = 30;
4cc0665f
MR
3176 else if ((sreg & 0x1c) != 0x4)
3177 /* MOVE reg, $a0-$a3 */
3178 this_non_prologue_insn = 1;
3179 break;
3180
3181 case 0x11: /* POOL16C: bits 010001 */
3182 if (b6s4_op (insn) == 0x5)
3183 /* SWM: bits 010001 0101 */
3184 {
3185 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3186 reglist = b4s2_regl (insn);
3187 for (i = 0; i <= reglist; i++)
3188 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3189 set_reg_offset (gdbarch, this_cache,
3190 MIPS_RA_REGNUM, sp + 4 * i++);
3191 }
3192 else
3193 this_non_prologue_insn = 1;
3194 break;
3195
3196 case 0x13: /* POOL16D: bits 010011 */
3197 if ((insn & 0x1) == 0x1)
3198 /* ADDIUSP: bits 010011 1 */
3199 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3200 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3201 /* ADDIUS5: bits 010011 0 */
3202 /* ADDIUS5 $sp, imm */
3203 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3204 else
3205 this_non_prologue_insn = 1;
3206 break;
3207
3208 case 0x32: /* SWSP: bits 110010 */
3209 offset = b0s5_imm (insn) << 2;
3210 sreg = b5s5_reg (insn);
3211 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3212 break;
3213
3214 default:
ab50adb6
MR
3215 /* The instruction in the delay slot can be a part
3216 of the prologue, so move forward once more. */
3217 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3218 in_delay_slot = 1;
3219 else
3220 this_non_prologue_insn = 1;
4cc0665f
MR
3221 break;
3222 }
3223 break;
3224 }
3225 if (sp_adj < 0)
3226 frame_offset -= sp_adj;
3227
3228 non_prologue_insns += this_non_prologue_insn;
ab50adb6
MR
3229
3230 /* A jump or branch, enough non-prologue insns seen or positive
3231 stack adjustment? If so, then we must have reached the end
3232 of the prologue by now. */
3233 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3234 || micromips_instruction_is_compact_branch (insn))
3235 break;
3236
4cc0665f 3237 prev_non_prologue_insn = this_non_prologue_insn;
ab50adb6 3238 prev_delay_slot = in_delay_slot;
4cc0665f 3239 prev_pc = cur_pc;
2207132d
MR
3240 }
3241
29639122
JB
3242 if (this_cache != NULL)
3243 {
3244 this_cache->base =
4cc0665f 3245 (get_frame_register_signed (this_frame,
b8a22b94 3246 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3247 + frame_offset - frame_adjust);
29639122 3248 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3249 be able to get rid of the assignment below, evetually. But it's
3250 still needed for now. */
72a155b4
UW
3251 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3252 + mips_regnum (gdbarch)->pc]
4cc0665f 3253 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3254 }
3255
ab50adb6
MR
3256 /* Set end_prologue_addr to the address of the instruction immediately
3257 after the last one we scanned. Unless the last one looked like a
3258 non-prologue instruction (and we looked ahead), in which case use
3259 its address instead. */
3260 end_prologue_addr
3261 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3262
3263 return end_prologue_addr;
eec63939
AC
3264}
3265
4cc0665f 3266/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3267 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3268 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3269
3270static struct mips_frame_cache *
4cc0665f 3271mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3272{
e17a4113 3273 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3274 struct mips_frame_cache *cache;
eec63939
AC
3275
3276 if ((*this_cache) != NULL)
19ba03f4 3277 return (struct mips_frame_cache *) (*this_cache);
4cc0665f 3278
29639122
JB
3279 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3280 (*this_cache) = cache;
b8a22b94 3281 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3282
29639122
JB
3283 /* Analyze the function prologue. */
3284 {
b8a22b94 3285 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3286 CORE_ADDR start_addr;
eec63939 3287
29639122
JB
3288 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3289 if (start_addr == 0)
4cc0665f 3290 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3291 /* We can't analyze the prologue if we couldn't find the begining
3292 of the function. */
3293 if (start_addr == 0)
3294 return cache;
eec63939 3295
19ba03f4
SM
3296 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3297 (struct mips_frame_cache *) *this_cache);
29639122 3298 }
4cc0665f 3299
3e8c568d 3300 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3301 trad_frame_set_value (cache->saved_regs,
e17a4113 3302 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3303 cache->base);
eec63939 3304
19ba03f4 3305 return (struct mips_frame_cache *) (*this_cache);
eec63939
AC
3306}
3307
3308static void
4cc0665f
MR
3309mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3310 struct frame_id *this_id)
eec63939 3311{
4cc0665f
MR
3312 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3313 this_cache);
21327321
DJ
3314 /* This marks the outermost frame. */
3315 if (info->base == 0)
3316 return;
b8a22b94 3317 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3318}
3319
b8a22b94 3320static struct value *
4cc0665f
MR
3321mips_micro_frame_prev_register (struct frame_info *this_frame,
3322 void **this_cache, int regnum)
eec63939 3323{
4cc0665f
MR
3324 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3325 this_cache);
b8a22b94
DJ
3326 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3327}
3328
3329static int
4cc0665f
MR
3330mips_micro_frame_sniffer (const struct frame_unwind *self,
3331 struct frame_info *this_frame, void **this_cache)
b8a22b94 3332{
4cc0665f 3333 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3334 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3335
3336 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3337 return 1;
3338 return 0;
eec63939
AC
3339}
3340
4cc0665f 3341static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3342{
3343 NORMAL_FRAME,
8fbca658 3344 default_frame_unwind_stop_reason,
4cc0665f
MR
3345 mips_micro_frame_this_id,
3346 mips_micro_frame_prev_register,
b8a22b94 3347 NULL,
4cc0665f 3348 mips_micro_frame_sniffer
eec63939
AC
3349};
3350
eec63939 3351static CORE_ADDR
4cc0665f
MR
3352mips_micro_frame_base_address (struct frame_info *this_frame,
3353 void **this_cache)
eec63939 3354{
4cc0665f
MR
3355 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3356 this_cache);
29639122 3357 return info->base;
eec63939
AC
3358}
3359
4cc0665f 3360static const struct frame_base mips_micro_frame_base =
eec63939 3361{
4cc0665f
MR
3362 &mips_micro_frame_unwind,
3363 mips_micro_frame_base_address,
3364 mips_micro_frame_base_address,
3365 mips_micro_frame_base_address
eec63939
AC
3366};
3367
3368static const struct frame_base *
4cc0665f 3369mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3370{
4cc0665f 3371 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3372 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3373
3374 if (mips_pc_is_micromips (gdbarch, pc))
3375 return &mips_micro_frame_base;
eec63939
AC
3376 else
3377 return NULL;
edfae063
AC
3378}
3379
29639122
JB
3380/* Mark all the registers as unset in the saved_regs array
3381 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3382
74ed0bb4
MD
3383static void
3384reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3385{
29639122
JB
3386 if (this_cache == NULL || this_cache->saved_regs == NULL)
3387 return;
3388
3389 {
74ed0bb4 3390 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3391 int i;
64159455 3392
29639122
JB
3393 for (i = 0; i < num_regs; i++)
3394 {
3395 this_cache->saved_regs[i].addr = -1;
3396 }
3397 }
c906108c
SS
3398}
3399
025bb325 3400/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3401 the associated FRAME_CACHE if not null.
3402 Return the address of the first instruction past the prologue. */
c906108c 3403
875e1767 3404static CORE_ADDR
e17a4113
UW
3405mips32_scan_prologue (struct gdbarch *gdbarch,
3406 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3407 struct frame_info *this_frame,
29639122 3408 struct mips_frame_cache *this_cache)
c906108c 3409{
ab50adb6
MR
3410 int prev_non_prologue_insn;
3411 int this_non_prologue_insn;
3412 int non_prologue_insns;
025bb325
MS
3413 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3414 frame-pointer. */
ab50adb6
MR
3415 int prev_delay_slot;
3416 CORE_ADDR prev_pc;
3417 CORE_ADDR cur_pc;
29639122
JB
3418 CORE_ADDR sp;
3419 long frame_offset;
3420 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3421
ab50adb6 3422 CORE_ADDR end_prologue_addr;
29639122
JB
3423 int seen_sp_adjust = 0;
3424 int load_immediate_bytes = 0;
ab50adb6 3425 int in_delay_slot;
7d1e6fb8 3426 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3427
29639122 3428 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3429 THIS_FRAME. */
3430 if (this_frame != NULL)
3431 sp = get_frame_register_signed (this_frame,
3432 gdbarch_num_regs (gdbarch)
3433 + MIPS_SP_REGNUM);
8fa9cfa1 3434 else
29639122 3435 sp = 0;
9022177c 3436
29639122
JB
3437 if (limit_pc > start_pc + 200)
3438 limit_pc = start_pc + 200;
9022177c 3439
29639122 3440restart:
ab50adb6
MR
3441 prev_non_prologue_insn = 0;
3442 non_prologue_insns = 0;
3443 prev_delay_slot = 0;
3444 prev_pc = start_pc;
9022177c 3445
ab50adb6
MR
3446 /* Permit at most one non-prologue non-control-transfer instruction
3447 in the middle which may have been reordered by the compiler for
3448 optimisation. */
29639122 3449 frame_offset = 0;
95ac2dcf 3450 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3451 {
eaa6a9a4
MR
3452 unsigned long inst, high_word;
3453 long offset;
29639122 3454 int reg;
9022177c 3455
ab50adb6
MR
3456 this_non_prologue_insn = 0;
3457 in_delay_slot = 0;
3458
025bb325 3459 /* Fetch the instruction. */
4cc0665f
MR
3460 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3461 cur_pc, NULL);
9022177c 3462
29639122
JB
3463 /* Save some code by pre-extracting some useful fields. */
3464 high_word = (inst >> 16) & 0xffff;
eaa6a9a4 3465 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
29639122 3466 reg = high_word & 0x1f;
fe29b929 3467
025bb325 3468 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3469 || high_word == 0x23bd /* addi $sp,$sp,-i */
3470 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3471 {
eaa6a9a4
MR
3472 if (offset < 0) /* Negative stack adjustment? */
3473 frame_offset -= offset;
29639122
JB
3474 else
3475 /* Exit loop if a positive stack adjustment is found, which
3476 usually means that the stack cleanup code in the function
3477 epilogue is reached. */
3478 break;
3479 seen_sp_adjust = 1;
3480 }
7d1e6fb8
KB
3481 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3482 && !regsize_is_64_bits)
29639122 3483 {
eaa6a9a4 3484 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122 3485 }
7d1e6fb8
KB
3486 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3487 && regsize_is_64_bits)
29639122
JB
3488 {
3489 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
eaa6a9a4 3490 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
3491 }
3492 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3493 {
3494 /* Old gcc frame, r30 is virtual frame pointer. */
eaa6a9a4
MR
3495 if (offset != frame_offset)
3496 frame_addr = sp + offset;
b8a22b94 3497 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3498 {
3499 unsigned alloca_adjust;
a4b8ebc8 3500
29639122 3501 frame_reg = 30;
b8a22b94
DJ
3502 frame_addr = get_frame_register_signed
3503 (this_frame, gdbarch_num_regs (gdbarch) + 30);
ca9c94ef 3504 frame_offset = 0;
d2ca4222 3505
eaa6a9a4 3506 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
29639122
JB
3507 if (alloca_adjust > 0)
3508 {
025bb325 3509 /* FP > SP + frame_size. This may be because of
29639122
JB
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp += alloca_adjust;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
74ed0bb4 3517 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3518 goto restart;
3519 }
3520 }
3521 }
3522 /* move $30,$sp. With different versions of gas this will be either
3523 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3524 Accept any one of these. */
3525 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3526 {
3527 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3528 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3529 {
3530 unsigned alloca_adjust;
c906108c 3531
29639122 3532 frame_reg = 30;
b8a22b94
DJ
3533 frame_addr = get_frame_register_signed
3534 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3535
29639122
JB
3536 alloca_adjust = (unsigned) (frame_addr - sp);
3537 if (alloca_adjust > 0)
3538 {
025bb325 3539 /* FP > SP + frame_size. This may be because of
29639122
JB
3540 an alloca or somethings similar. Fix sp to
3541 "pre-alloca" value, and try again. */
3542 sp = frame_addr;
3543 /* Need to reset the status of all registers. Otherwise,
3544 we will hit a guard that prevents the new address
3545 for each register to be recomputed during the second
3546 pass. */
74ed0bb4 3547 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3548 goto restart;
3549 }
3550 }
3551 }
7d1e6fb8
KB
3552 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3553 && !regsize_is_64_bits)
29639122 3554 {
eaa6a9a4 3555 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
3556 }
3557 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3558 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3559 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3560 || high_word == 0x3c1c /* lui $gp,n */
3561 || high_word == 0x279c /* addiu $gp,$gp,n */
3562 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3563 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3564 )
19080931
MR
3565 {
3566 /* These instructions are part of the prologue, but we don't
3567 need to do anything special to handle them. */
3568 }
29639122
JB
3569 /* The instructions below load $at or $t0 with an immediate
3570 value in preparation for a stack adjustment via
025bb325 3571 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3572 initialize a local variable, so we accept them only before
3573 a stack adjustment instruction was seen. */
3574 else if (!seen_sp_adjust
ab50adb6 3575 && !prev_delay_slot
19080931
MR
3576 && (high_word == 0x3c01 /* lui $at,n */
3577 || high_word == 0x3c08 /* lui $t0,n */
3578 || high_word == 0x3421 /* ori $at,$at,n */
3579 || high_word == 0x3508 /* ori $t0,$t0,n */
3580 || high_word == 0x3401 /* ori $at,$zero,n */
3581 || high_word == 0x3408 /* ori $t0,$zero,n */
3582 ))
3583 {
ab50adb6 3584 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
19080931 3585 }
ab50adb6
MR
3586 /* Check for branches and jumps. The instruction in the delay
3587 slot can be a part of the prologue, so move forward once more. */
3588 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3589 {
3590 in_delay_slot = 1;
3591 }
3592 /* This instruction is not an instruction typically found
3593 in a prologue, so we must have reached the end of the
3594 prologue. */
29639122 3595 else
19080931 3596 {
ab50adb6 3597 this_non_prologue_insn = 1;
19080931 3598 }
db5f024e 3599
ab50adb6
MR
3600 non_prologue_insns += this_non_prologue_insn;
3601
3602 /* A jump or branch, or enough non-prologue insns seen? If so,
3603 then we must have reached the end of the prologue by now. */
3604 if (prev_delay_slot || non_prologue_insns > 1)
db5f024e 3605 break;
ab50adb6
MR
3606
3607 prev_non_prologue_insn = this_non_prologue_insn;
3608 prev_delay_slot = in_delay_slot;
3609 prev_pc = cur_pc;
a4b8ebc8 3610 }
c906108c 3611
29639122
JB
3612 if (this_cache != NULL)
3613 {
3614 this_cache->base =
b8a22b94
DJ
3615 (get_frame_register_signed (this_frame,
3616 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3617 + frame_offset);
3618 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3619 this assignment below, eventually. But it's still needed
3620 for now. */
72a155b4
UW
3621 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3622 + mips_regnum (gdbarch)->pc]
3623 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3624 + MIPS_RA_REGNUM];
29639122 3625 }
c906108c 3626
ab50adb6
MR
3627 /* Set end_prologue_addr to the address of the instruction immediately
3628 after the last one we scanned. Unless the last one looked like a
3629 non-prologue instruction (and we looked ahead), in which case use
3630 its address instead. */
3631 end_prologue_addr
3632 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3633
3634 /* In a frameless function, we might have incorrectly
025bb325 3635 skipped some load immediate instructions. Undo the skipping
29639122
JB
3636 if the load immediate was not followed by a stack adjustment. */
3637 if (load_immediate_bytes && !seen_sp_adjust)
3638 end_prologue_addr -= load_immediate_bytes;
c906108c 3639
29639122 3640 return end_prologue_addr;
c906108c
SS
3641}
3642
29639122
JB
3643/* Heuristic unwinder for procedures using 32-bit instructions (covers
3644 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3645 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3646 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3647
29639122 3648static struct mips_frame_cache *
b8a22b94 3649mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3650{
e17a4113 3651 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3652 struct mips_frame_cache *cache;
c906108c 3653
29639122 3654 if ((*this_cache) != NULL)
19ba03f4 3655 return (struct mips_frame_cache *) (*this_cache);
c5aa993b 3656
29639122
JB
3657 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3658 (*this_cache) = cache;
b8a22b94 3659 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3660
29639122
JB
3661 /* Analyze the function prologue. */
3662 {
b8a22b94 3663 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3664 CORE_ADDR start_addr;
c906108c 3665
29639122
JB
3666 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3667 if (start_addr == 0)
e17a4113 3668 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3669 /* We can't analyze the prologue if we couldn't find the begining
3670 of the function. */
3671 if (start_addr == 0)
3672 return cache;
c5aa993b 3673
19ba03f4
SM
3674 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3675 (struct mips_frame_cache *) *this_cache);
29639122
JB
3676 }
3677
3e8c568d 3678 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3679 trad_frame_set_value (cache->saved_regs,
e17a4113 3680 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3681 cache->base);
c5aa993b 3682
19ba03f4 3683 return (struct mips_frame_cache *) (*this_cache);
c906108c
SS
3684}
3685
29639122 3686static void
b8a22b94 3687mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3688 struct frame_id *this_id)
c906108c 3689{
b8a22b94 3690 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3691 this_cache);
21327321
DJ
3692 /* This marks the outermost frame. */
3693 if (info->base == 0)
3694 return;
b8a22b94 3695 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3696}
c906108c 3697
b8a22b94
DJ
3698static struct value *
3699mips_insn32_frame_prev_register (struct frame_info *this_frame,
3700 void **this_cache, int regnum)
29639122 3701{
b8a22b94 3702 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3703 this_cache);
b8a22b94
DJ
3704 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3705}
3706
3707static int
3708mips_insn32_frame_sniffer (const struct frame_unwind *self,
3709 struct frame_info *this_frame, void **this_cache)
3710{
3711 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3712 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3713 return 1;
3714 return 0;
c906108c
SS
3715}
3716
29639122
JB
3717static const struct frame_unwind mips_insn32_frame_unwind =
3718{
3719 NORMAL_FRAME,
8fbca658 3720 default_frame_unwind_stop_reason,
29639122 3721 mips_insn32_frame_this_id,
b8a22b94
DJ
3722 mips_insn32_frame_prev_register,
3723 NULL,
3724 mips_insn32_frame_sniffer
29639122 3725};
c906108c 3726
1c645fec 3727static CORE_ADDR
b8a22b94 3728mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3729 void **this_cache)
c906108c 3730{
b8a22b94 3731 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3732 this_cache);
3733 return info->base;
3734}
c906108c 3735
29639122
JB
3736static const struct frame_base mips_insn32_frame_base =
3737{
3738 &mips_insn32_frame_unwind,
3739 mips_insn32_frame_base_address,
3740 mips_insn32_frame_base_address,
3741 mips_insn32_frame_base_address
3742};
1c645fec 3743
29639122 3744static const struct frame_base *
b8a22b94 3745mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3746{
b8a22b94 3747 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3748 if (mips_pc_is_mips (pc))
29639122 3749 return &mips_insn32_frame_base;
a65bbe44 3750 else
29639122
JB
3751 return NULL;
3752}
a65bbe44 3753
29639122 3754static struct trad_frame_cache *
b8a22b94 3755mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3756{
3757 CORE_ADDR pc;
3758 CORE_ADDR start_addr;
3759 CORE_ADDR stack_addr;
3760 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3761 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3762 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3763
29639122 3764 if ((*this_cache) != NULL)
19ba03f4 3765 return (struct trad_frame_cache *) (*this_cache);
b8a22b94 3766 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3767 (*this_cache) = this_trad_cache;
1c645fec 3768
29639122 3769 /* The return address is in the link register. */
3e8c568d 3770 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3771 gdbarch_pc_regnum (gdbarch),
b8a22b94 3772 num_regs + MIPS_RA_REGNUM);
1c645fec 3773
29639122
JB
3774 /* Frame ID, since it's a frameless / stackless function, no stack
3775 space is allocated and SP on entry is the current SP. */
b8a22b94 3776 pc = get_frame_pc (this_frame);
29639122 3777 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3778 stack_addr = get_frame_register_signed (this_frame,
3779 num_regs + MIPS_SP_REGNUM);
aa6c981f 3780 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3781
29639122
JB
3782 /* Assume that the frame's base is the same as the
3783 stack-pointer. */
3784 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3785
29639122
JB
3786 return this_trad_cache;
3787}
c906108c 3788
29639122 3789static void
b8a22b94 3790mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3791 struct frame_id *this_id)
3792{
3793 struct trad_frame_cache *this_trad_cache
b8a22b94 3794 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3795 trad_frame_get_id (this_trad_cache, this_id);
3796}
c906108c 3797
b8a22b94
DJ
3798static struct value *
3799mips_stub_frame_prev_register (struct frame_info *this_frame,
3800 void **this_cache, int regnum)
29639122
JB
3801{
3802 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3803 = mips_stub_frame_cache (this_frame, this_cache);
3804 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3805}
c906108c 3806
b8a22b94
DJ
3807static int
3808mips_stub_frame_sniffer (const struct frame_unwind *self,
3809 struct frame_info *this_frame, void **this_cache)
29639122 3810{
aa6c981f 3811 gdb_byte dummy[4];
b8a22b94 3812 CORE_ADDR pc = get_frame_address_in_block (this_frame);
7cbd4a93 3813 struct bound_minimal_symbol msym;
979b38e0 3814
aa6c981f 3815 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3816 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3817 return 1;
aa6c981f 3818
3e5d3a5a 3819 if (in_plt_section (pc) || in_mips_stubs_section (pc))
b8a22b94 3820 return 1;
979b38e0 3821
db5f024e
DJ
3822 /* Calling a PIC function from a non-PIC function passes through a
3823 stub. The stub for foo is named ".pic.foo". */
3824 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 3825 if (msym.minsym != NULL
efd66ac6 3826 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
61012eef 3827 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
3828 return 1;
3829
b8a22b94 3830 return 0;
29639122 3831}
c906108c 3832
b8a22b94
DJ
3833static const struct frame_unwind mips_stub_frame_unwind =
3834{
3835 NORMAL_FRAME,
8fbca658 3836 default_frame_unwind_stop_reason,
b8a22b94
DJ
3837 mips_stub_frame_this_id,
3838 mips_stub_frame_prev_register,
3839 NULL,
3840 mips_stub_frame_sniffer
3841};
3842
29639122 3843static CORE_ADDR
b8a22b94 3844mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3845 void **this_cache)
3846{
3847 struct trad_frame_cache *this_trad_cache
b8a22b94 3848 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3849 return trad_frame_get_this_base (this_trad_cache);
3850}
0fce0821 3851
29639122
JB
3852static const struct frame_base mips_stub_frame_base =
3853{
3854 &mips_stub_frame_unwind,
3855 mips_stub_frame_base_address,
3856 mips_stub_frame_base_address,
3857 mips_stub_frame_base_address
3858};
3859
3860static const struct frame_base *
b8a22b94 3861mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3862{
b8a22b94 3863 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3864 return &mips_stub_frame_base;
3865 else
3866 return NULL;
3867}
3868
29639122 3869/* mips_addr_bits_remove - remove useless address bits */
65596487 3870
29639122 3871static CORE_ADDR
24568a2c 3872mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3873{
24568a2c 3874 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3875
29639122
JB
3876 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3877 /* This hack is a work-around for existing boards using PMON, the
3878 simulator, and any other 64-bit targets that doesn't have true
3879 64-bit addressing. On these targets, the upper 32 bits of
3880 addresses are ignored by the hardware. Thus, the PC or SP are
3881 likely to have been sign extended to all 1s by instruction
3882 sequences that load 32-bit addresses. For example, a typical
3883 piece of code that loads an address is this:
65596487 3884
29639122
JB
3885 lui $r2, <upper 16 bits>
3886 ori $r2, <lower 16 bits>
65596487 3887
29639122
JB
3888 But the lui sign-extends the value such that the upper 32 bits
3889 may be all 1s. The workaround is simply to mask off these
3890 bits. In the future, gcc may be changed to support true 64-bit
3891 addressing, and this masking will have to be disabled. */
3892 return addr &= 0xffffffffUL;
3893 else
3894 return addr;
65596487
JB
3895}
3896
3d5f6d12
DJ
3897
3898/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3899 instruction and ending with a SC/SCD instruction. If such a sequence
3900 is found, attempt to step through it. A breakpoint is placed at the end of
3901 the sequence. */
3902
4cc0665f
MR
3903/* Instructions used during single-stepping of atomic sequences, standard
3904 ISA version. */
3905#define LL_OPCODE 0x30
3906#define LLD_OPCODE 0x34
3907#define SC_OPCODE 0x38
3908#define SCD_OPCODE 0x3c
3909
a0ff9e1a 3910static std::vector<CORE_ADDR>
93f9a11f 3911mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3d5f6d12 3912{
70ab8ccd 3913 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
3d5f6d12
DJ
3914 CORE_ADDR loc = pc;
3915 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3916 ULONGEST insn;
3d5f6d12
DJ
3917 int insn_count;
3918 int index;
3919 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3920 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3921
4cc0665f 3922 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3923 /* Assume all atomic sequences start with a ll/lld instruction. */
3924 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
a0ff9e1a 3925 return {};
3d5f6d12
DJ
3926
3927 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3928 instructions. */
3929 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3930 {
3931 int is_branch = 0;
3932 loc += MIPS_INSN32_SIZE;
4cc0665f 3933 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3934
3935 /* Assume that there is at most one branch in the atomic
3936 sequence. If a branch is found, put a breakpoint in its
3937 destination address. */
3938 switch (itype_op (insn))
3939 {
3940 case 0: /* SPECIAL */
3941 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
a0ff9e1a 3942 return {}; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3943 break;
3944 case 1: /* REGIMM */
a385295e
MR
3945 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3946 || ((itype_rt (insn) & 0x1e) == 0
3947 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3948 break;
3949 case 2: /* J */
3950 case 3: /* JAL */
a0ff9e1a 3951 return {}; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3952 case 4: /* BEQ */
3953 case 5: /* BNE */
3954 case 6: /* BLEZ */
3955 case 7: /* BGTZ */
3956 case 20: /* BEQL */
3957 case 21: /* BNEL */
3958 case 22: /* BLEZL */
3959 case 23: /* BGTTL */
3960 is_branch = 1;
3961 break;
3962 case 17: /* COP1 */
a385295e
MR
3963 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3964 && (itype_rt (insn) & 0x2) == 0);
3965 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3966 break;
3967 /* Fall through. */
3d5f6d12
DJ
3968 case 18: /* COP2 */
3969 case 19: /* COP3 */
3970 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3971 break;
3972 }
3973 if (is_branch)
3974 {
3975 branch_bp = loc + mips32_relative_offset (insn) + 4;
3976 if (last_breakpoint >= 1)
a0ff9e1a
SM
3977 return {}; /* More than one branch found, fallback to the
3978 standard single-step code. */
3d5f6d12
DJ
3979 breaks[1] = branch_bp;
3980 last_breakpoint++;
3981 }
3982
3983 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3984 break;
3985 }
3986
3987 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3988 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
a0ff9e1a 3989 return {};
3d5f6d12
DJ
3990
3991 loc += MIPS_INSN32_SIZE;
3992
3993 /* Insert a breakpoint right after the end of the atomic sequence. */
3994 breaks[0] = loc;
3995
3996 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3997 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3998 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3999 last_breakpoint = 0;
4000
a0ff9e1a
SM
4001 std::vector<CORE_ADDR> next_pcs;
4002
3d5f6d12
DJ
4003 /* Effectively inserts the breakpoints. */
4004 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 4005 next_pcs.push_back (breaks[index]);
3d5f6d12 4006
93f9a11f 4007 return next_pcs;
3d5f6d12
DJ
4008}
4009
a0ff9e1a 4010static std::vector<CORE_ADDR>
4cc0665f 4011micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4cc0665f
MR
4012 CORE_ADDR pc)
4013{
4014 const int atomic_sequence_length = 16; /* Instruction sequence length. */
4015 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
70ab8ccd 4016 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
4b844a38
AT
4017 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
4018 destination. */
4cc0665f
MR
4019 CORE_ADDR loc = pc;
4020 int sc_found = 0;
4021 ULONGEST insn;
4022 int insn_count;
4023 int index;
4024
4025 /* Assume all atomic sequences start with a ll/lld instruction. */
4026 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4027 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
a0ff9e1a 4028 return {};
4cc0665f
MR
4029 loc += MIPS_INSN16_SIZE;
4030 insn <<= 16;
4031 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4032 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
a0ff9e1a 4033 return {};
4cc0665f
MR
4034 loc += MIPS_INSN16_SIZE;
4035
4036 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4037 that no atomic sequence is longer than "atomic_sequence_length"
4038 instructions. */
4039 for (insn_count = 0;
4040 !sc_found && insn_count < atomic_sequence_length;
4041 ++insn_count)
4042 {
4043 int is_branch = 0;
4044
4045 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4046 loc += MIPS_INSN16_SIZE;
4047
4048 /* Assume that there is at most one conditional branch in the
4049 atomic sequence. If a branch is found, put a breakpoint in
4050 its destination address. */
4051 switch (mips_insn_size (ISA_MICROMIPS, insn))
4052 {
4cc0665f
MR
4053 /* 32-bit instructions. */
4054 case 2 * MIPS_INSN16_SIZE:
4055 switch (micromips_op (insn))
4056 {
4057 case 0x10: /* POOL32I: bits 010000 */
4058 if ((b5s5_op (insn) & 0x18) != 0x0
4059 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4060 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4061 && (b5s5_op (insn) & 0x1d) != 0x11
4062 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4063 && ((b5s5_op (insn) & 0x1e) != 0x14
4064 || (insn & 0x3) != 0x0)
4065 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4066 && (b5s5_op (insn) & 0x1e) != 0x1a
4067 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4068 && ((b5s5_op (insn) & 0x1e) != 0x1c
4069 || (insn & 0x3) != 0x0)
4070 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4071 && ((b5s5_op (insn) & 0x1c) != 0x1c
4072 || (insn & 0x3) != 0x1))
4073 /* BC1ANY*: bits 010000 111xx xxx01 */
4074 break;
4075 /* Fall through. */
4076
4077 case 0x25: /* BEQ: bits 100101 */
4078 case 0x2d: /* BNE: bits 101101 */
4079 insn <<= 16;
4080 insn |= mips_fetch_instruction (gdbarch,
4081 ISA_MICROMIPS, loc, NULL);
4082 branch_bp = (loc + MIPS_INSN16_SIZE
4083 + micromips_relative_offset16 (insn));
4084 is_branch = 1;
4085 break;
4086
4087 case 0x00: /* POOL32A: bits 000000 */
4088 insn <<= 16;
4089 insn |= mips_fetch_instruction (gdbarch,
4090 ISA_MICROMIPS, loc, NULL);
4091 if (b0s6_op (insn) != 0x3c
4092 /* POOL32Axf: bits 000000 ... 111100 */
4093 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4094 /* JALR, JALR.HB: 000000 000x111100 111100 */
4095 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4096 break;
4097 /* Fall through. */
4098
4099 case 0x1d: /* JALS: bits 011101 */
4100 case 0x35: /* J: bits 110101 */
4101 case 0x3d: /* JAL: bits 111101 */
4102 case 0x3c: /* JALX: bits 111100 */
a0ff9e1a 4103 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4104
4105 case 0x18: /* POOL32C: bits 011000 */
4106 if ((b12s4_op (insn) & 0xb) == 0xb)
4107 /* SC, SCD: bits 011000 1x11 */
4108 sc_found = 1;
4109 break;
4110 }
4111 loc += MIPS_INSN16_SIZE;
4112 break;
4113
4114 /* 16-bit instructions. */
4115 case MIPS_INSN16_SIZE:
4116 switch (micromips_op (insn))
4117 {
4118 case 0x23: /* BEQZ16: bits 100011 */
4119 case 0x2b: /* BNEZ16: bits 101011 */
4120 branch_bp = loc + micromips_relative_offset7 (insn);
4121 is_branch = 1;
4122 break;
4123
4124 case 0x11: /* POOL16C: bits 010001 */
4125 if ((b5s5_op (insn) & 0x1c) != 0xc
4126 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4127 && b5s5_op (insn) != 0x18)
4128 /* JRADDIUSP: bits 010001 11000 */
4129 break;
a0ff9e1a 4130 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4131
4132 case 0x33: /* B16: bits 110011 */
a0ff9e1a 4133 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4134 }
4135 break;
4136 }
4137 if (is_branch)
4138 {
4139 if (last_breakpoint >= 1)
a0ff9e1a
SM
4140 return {}; /* More than one branch found, fallback to the
4141 standard single-step code. */
4cc0665f
MR
4142 breaks[1] = branch_bp;
4143 last_breakpoint++;
4144 }
4145 }
4146 if (!sc_found)
a0ff9e1a 4147 return {};
4cc0665f
MR
4148
4149 /* Insert a breakpoint right after the end of the atomic sequence. */
4150 breaks[0] = loc;
4151
4152 /* Check for duplicated breakpoints. Check also for a breakpoint
4153 placed (branch instruction's destination) in the atomic sequence */
4154 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4155 last_breakpoint = 0;
4156
a0ff9e1a
SM
4157 std::vector<CORE_ADDR> next_pcs;
4158
4cc0665f
MR
4159 /* Effectively inserts the breakpoints. */
4160 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 4161 next_pcs.push_back (breaks[index]);
4cc0665f 4162
93f9a11f 4163 return next_pcs;
4cc0665f
MR
4164}
4165
a0ff9e1a 4166static std::vector<CORE_ADDR>
93f9a11f 4167deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
4168{
4169 if (mips_pc_is_mips (pc))
93f9a11f 4170 return mips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4171 else if (mips_pc_is_micromips (gdbarch, pc))
93f9a11f 4172 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4173 else
a0ff9e1a 4174 return {};
4cc0665f
MR
4175}
4176
29639122
JB
4177/* mips_software_single_step() is called just before we want to resume
4178 the inferior, if we want to single-step it but there is no hardware
4179 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 4180 the target of the coming instruction and breakpoint it. */
29639122 4181
a0ff9e1a 4182std::vector<CORE_ADDR>
f5ea389a 4183mips_software_single_step (struct regcache *regcache)
c906108c 4184{
ac7936df 4185 struct gdbarch *gdbarch = regcache->arch ();
8181d85f 4186 CORE_ADDR pc, next_pc;
65596487 4187
7113a196 4188 pc = regcache_read_pc (regcache);
a0ff9e1a
SM
4189 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4190
4191 if (!next_pcs.empty ())
93f9a11f 4192 return next_pcs;
3d5f6d12 4193
7113a196 4194 next_pc = mips_next_pc (regcache, pc);
e6590a1b 4195
a0ff9e1a 4196 return {next_pc};
29639122 4197}
a65bbe44 4198
29639122 4199/* Test whether the PC points to the return instruction at the
025bb325 4200 end of a function. */
65596487 4201
29639122 4202static int
e17a4113 4203mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 4204{
6321c22a
MR
4205 ULONGEST insn;
4206 ULONGEST hint;
4207
4208 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
4209 called for MIPS16 functions. And likewise microMIPS ones. */
4210 gdb_assert (mips_pc_is_mips (pc));
6321c22a 4211
4cc0665f 4212 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
4213 hint = 0x7c0;
4214 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4215}
c906108c 4216
c906108c 4217
29639122
JB
4218/* This fencepost looks highly suspicious to me. Removing it also
4219 seems suspicious as it could affect remote debugging across serial
4220 lines. */
c906108c 4221
29639122 4222static CORE_ADDR
74ed0bb4 4223heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4224{
4225 CORE_ADDR start_pc;
4226 CORE_ADDR fence;
4227 int instlen;
4228 int seen_adjsp = 0;
d6b48e9c 4229 struct inferior *inf;
65596487 4230
74ed0bb4 4231 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4232 start_pc = pc;
4233 fence = start_pc - heuristic_fence_post;
4234 if (start_pc == 0)
4235 return 0;
65596487 4236
44096aee 4237 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
29639122 4238 fence = VM_MIN_ADDRESS;
65596487 4239
4cc0665f 4240 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4241
d6b48e9c
PA
4242 inf = current_inferior ();
4243
025bb325 4244 /* Search back for previous return. */
29639122
JB
4245 for (start_pc -= instlen;; start_pc -= instlen)
4246 if (start_pc < fence)
4247 {
4248 /* It's not clear to me why we reach this point when
4249 stop_soon, but with this test, at least we
4250 don't print out warnings for every child forked (eg, on
4251 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4252 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4253 {
4254 static int blurb_printed = 0;
98b4dd94 4255
5af949e3
UW
4256 warning (_("GDB can't find the start of the function at %s."),
4257 paddress (gdbarch, pc));
29639122
JB
4258
4259 if (!blurb_printed)
4260 {
4261 /* This actually happens frequently in embedded
4262 development, when you first connect to a board
4263 and your stack pointer and pc are nowhere in
4264 particular. This message needs to give people
4265 in that situation enough information to
4266 determine that it's no big deal. */
4267 printf_filtered ("\n\
5af949e3 4268 GDB is unable to find the start of the function at %s\n\
29639122
JB
4269and thus can't determine the size of that function's stack frame.\n\
4270This means that GDB may be unable to access that stack frame, or\n\
4271the frames below it.\n\
4272 This problem is most likely caused by an invalid program counter or\n\
4273stack pointer.\n\
4274 However, if you think GDB should simply search farther back\n\
5af949e3 4275from %s for code which looks like the beginning of a\n\
29639122 4276function, you can increase the range of the search using the `set\n\
5af949e3
UW
4277heuristic-fence-post' command.\n",
4278 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4279 blurb_printed = 1;
4280 }
4281 }
4282
4283 return 0;
4284 }
4cc0665f 4285 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4286 {
4287 unsigned short inst;
4288
4289 /* On MIPS16, any one of the following is likely to be the
4290 start of a function:
193774b3
MR
4291 extend save
4292 save
29639122
JB
4293 entry
4294 addiu sp,-n
4295 daddiu sp,-n
025bb325 4296 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4297 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4298 if ((inst & 0xff80) == 0x6480) /* save */
4299 {
4300 if (start_pc - instlen >= fence)
4301 {
4cc0665f
MR
4302 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4303 start_pc - instlen, NULL);
193774b3
MR
4304 if ((inst & 0xf800) == 0xf000) /* extend */
4305 start_pc -= instlen;
4306 }
4307 break;
4308 }
4309 else if (((inst & 0xf81f) == 0xe809
4310 && (inst & 0x700) != 0x700) /* entry */
4311 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4312 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4313 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4314 break;
4315 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4316 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4317 seen_adjsp = 1;
4318 else
4319 seen_adjsp = 0;
4320 }
4cc0665f
MR
4321 else if (mips_pc_is_micromips (gdbarch, start_pc))
4322 {
4323 ULONGEST insn;
4324 int stop = 0;
4325 long offset;
4326 int dreg;
4327 int sreg;
4328
4329 /* On microMIPS, any one of the following is likely to be the
4330 start of a function:
4331 ADDIUSP -imm
4332 (D)ADDIU $sp, -imm
4333 LUI $gp, imm */
4334 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4335 switch (micromips_op (insn))
4336 {
4337 case 0xc: /* ADDIU: bits 001100 */
4338 case 0x17: /* DADDIU: bits 010111 */
4339 sreg = b0s5_reg (insn);
4340 dreg = b5s5_reg (insn);
4341 insn <<= 16;
4342 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4343 pc + MIPS_INSN16_SIZE, NULL);
4344 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4345 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4346 /* (D)ADDIU $sp, imm */
4347 && offset < 0)
4348 stop = 1;
4349 break;
4350
4351 case 0x10: /* POOL32I: bits 010000 */
4352 if (b5s5_op (insn) == 0xd
4353 /* LUI: bits 010000 001101 */
4354 && b0s5_reg (insn >> 16) == 28)
4355 /* LUI $gp, imm */
4356 stop = 1;
4357 break;
4358
4359 case 0x13: /* POOL16D: bits 010011 */
4360 if ((insn & 0x1) == 0x1)
4361 /* ADDIUSP: bits 010011 1 */
4362 {
4363 offset = micromips_decode_imm9 (b1s9_imm (insn));
4364 if (offset < 0)
4365 /* ADDIUSP -imm */
4366 stop = 1;
4367 }
4368 else
4369 /* ADDIUS5: bits 010011 0 */
4370 {
4371 dreg = b5s5_reg (insn);
4372 offset = (b1s4_imm (insn) ^ 8) - 8;
4373 if (dreg == MIPS_SP_REGNUM && offset < 0)
4374 /* ADDIUS5 $sp, -imm */
4375 stop = 1;
4376 }
4377 break;
4378 }
4379 if (stop)
4380 break;
4381 }
e17a4113 4382 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4383 {
4c7d22cb 4384 /* Skip return and its delay slot. */
95ac2dcf 4385 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4386 break;
4387 }
4388
4389 return start_pc;
c906108c
SS
4390}
4391
6c0d6680
DJ
4392struct mips_objfile_private
4393{
4394 bfd_size_type size;
4395 char *contents;
4396};
4397
f09ded24
AC
4398/* According to the current ABI, should the type be passed in a
4399 floating-point register (assuming that there is space)? When there
a1f5b845 4400 is no FPU, FP are not even considered as possible candidates for
f09ded24 4401 FP registers and, consequently this returns false - forces FP
025bb325 4402 arguments into integer registers. */
f09ded24
AC
4403
4404static int
74ed0bb4
MD
4405fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4406 struct type *arg_type)
f09ded24
AC
4407{
4408 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4409 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4410 && (typecode == TYPE_CODE_STRUCT
4411 || typecode == TYPE_CODE_UNION)
f09ded24 4412 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4413 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4414 == TYPE_CODE_FLT))
74ed0bb4 4415 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4416}
4417
49e790b0 4418/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4419 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4420
4421static int
4422mips_type_needs_double_align (struct type *type)
4423{
4424 enum type_code typecode = TYPE_CODE (type);
361d1df0 4425
49e790b0
DJ
4426 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4427 return 1;
4428 else if (typecode == TYPE_CODE_STRUCT)
4429 {
4430 if (TYPE_NFIELDS (type) < 1)
4431 return 0;
4432 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4433 }
4434 else if (typecode == TYPE_CODE_UNION)
4435 {
361d1df0 4436 int i, n;
49e790b0
DJ
4437
4438 n = TYPE_NFIELDS (type);
4439 for (i = 0; i < n; i++)
4440 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4441 return 1;
4442 return 0;
4443 }
4444 return 0;
4445}
4446
dc604539
AC
4447/* Adjust the address downward (direction of stack growth) so that it
4448 is correctly aligned for a new stack frame. */
4449static CORE_ADDR
4450mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4451{
5b03f266 4452 return align_down (addr, 16);
dc604539
AC
4453}
4454
8ae38c14 4455/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4456
4457static CORE_ADDR
4458mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4459 CORE_ADDR funaddr, struct value **args,
4460 int nargs, struct type *value_type,
4461 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4462 struct regcache *regcache)
4463{
2c76a0c7 4464 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4465 CORE_ADDR nop_addr;
4466 CORE_ADDR bp_slot;
2c76a0c7
JB
4467
4468 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4469 bp_slot = sp - sizeof (nop_insn);
4470
4471 /* Return to microMIPS mode if calling microMIPS code to avoid
4472 triggering an address error exception on processors that only
4473 support microMIPS execution. */
4474 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4475 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4476
4477 /* The breakpoint layer automatically adjusts the address of
4478 breakpoints inserted in a branch delay slot. With enough
4479 bad luck, the 4 bytes located just before our breakpoint
4480 instruction could look like a branch instruction, and thus
4481 trigger the adjustement, and break the function call entirely.
4482 So, we reserve those 4 bytes and write a nop instruction
4483 to prevent that from happening. */
2e81047f 4484 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4485 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4486 sp = mips_frame_align (gdbarch, nop_addr);
4487
4488 /* Inferior resumes at the function entry point. */
4489 *real_pc = funaddr;
4490
4491 return sp;
4492}
4493
f7ab6ec6 4494static CORE_ADDR
7d9b040b 4495mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4496 struct regcache *regcache, CORE_ADDR bp_addr,
4497 int nargs, struct value **args, CORE_ADDR sp,
4498 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4499{
4500 int argreg;
4501 int float_argreg;
4502 int argnum;
b926417a 4503 int arg_space = 0;
c906108c 4504 int stack_offset = 0;
e17a4113 4505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4506 CORE_ADDR func_addr = find_function_addr (function, NULL);
b3464d03 4507 int abi_regsize = mips_abi_regsize (gdbarch);
c906108c 4508
25ab4790
AC
4509 /* For shared libraries, "t9" needs to point at the function
4510 address. */
4c7d22cb 4511 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4512
4513 /* Set the return address register to point to the entry point of
4514 the program, where a breakpoint lies in wait. */
4c7d22cb 4515 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4516
c906108c 4517 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4518 are properly aligned. The stack has to be at least 64-bit
4519 aligned even on 32-bit machines, because doubles must be 64-bit
4520 aligned. For n32 and n64, stack frames need to be 128-bit
4521 aligned, so we round to this widest known alignment. */
4522
5b03f266
AC
4523 sp = align_down (sp, 16);
4524 struct_addr = align_down (struct_addr, 16);
c5aa993b 4525
46e0f506 4526 /* Now make space on the stack for the args. We allocate more
c906108c 4527 than necessary for EABI, because the first few arguments are
46e0f506 4528 passed in registers, but that's OK. */
c906108c 4529 for (argnum = 0; argnum < nargs; argnum++)
b926417a
TT
4530 arg_space += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4531 sp -= align_up (arg_space, 16);
c906108c 4532
9ace0497 4533 if (mips_debug)
6d82d43b 4534 fprintf_unfiltered (gdb_stdlog,
5af949e3 4535 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
b926417a
TT
4536 paddress (gdbarch, sp),
4537 (long) align_up (arg_space, 16));
9ace0497 4538
c906108c 4539 /* Initialize the integer and float register pointers. */
4c7d22cb 4540 argreg = MIPS_A0_REGNUM;
72a155b4 4541 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4542
46e0f506 4543 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4544 if (struct_return)
9ace0497
AC
4545 {
4546 if (mips_debug)
4547 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4548 "mips_eabi_push_dummy_call: "
4549 "struct_return reg=%d %s\n",
5af949e3 4550 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4551 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4552 }
c906108c
SS
4553
4554 /* Now load as many as possible of the first arguments into
4555 registers, and push the rest onto the stack. Loop thru args
4556 from first to last. */
4557 for (argnum = 0; argnum < nargs; argnum++)
4558 {
47a35522 4559 const gdb_byte *val;
b3464d03
PA
4560 /* This holds the address of structures that are passed by
4561 reference. */
4562 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
ea7c478f 4563 struct value *arg = args[argnum];
4991999e 4564 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4565 int len = TYPE_LENGTH (arg_type);
4566 enum type_code typecode = TYPE_CODE (arg_type);
4567
9ace0497
AC
4568 if (mips_debug)
4569 fprintf_unfiltered (gdb_stdlog,
25ab4790 4570 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4571 argnum + 1, len, (int) typecode);
9ace0497 4572
c906108c 4573 /* The EABI passes structures that do not fit in a register by
46e0f506 4574 reference. */
b3464d03 4575 if (len > abi_regsize
9ace0497 4576 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4577 {
b3464d03
PA
4578 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4579 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
e17a4113 4580 value_address (arg));
c906108c 4581 typecode = TYPE_CODE_PTR;
b3464d03
PA
4582 len = abi_regsize;
4583 val = ref_valbuf;
9ace0497
AC
4584 if (mips_debug)
4585 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4586 }
4587 else
47a35522 4588 val = value_contents (arg);
c906108c
SS
4589
4590 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4591 even-numbered floating point register. Round the FP register
4592 up before the check to see if there are any FP registers
46e0f506
MS
4593 left. Non MIPS_EABI targets also pass the FP in the integer
4594 registers so also round up normal registers. */
b3464d03 4595 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4596 {
4597 if ((float_argreg & 1))
4598 float_argreg++;
4599 }
c906108c
SS
4600
4601 /* Floating point arguments passed in registers have to be
4602 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4603 are passed in register pairs; the even register gets
4604 the low word, and the odd register gets the high word.
4605 On non-EABI processors, the first two floating point arguments are
4606 also copied to general registers, because MIPS16 functions
4607 don't use float registers for arguments. This duplication of
4608 arguments in general registers can't hurt non-MIPS16 functions
4609 because those registers are normally skipped. */
1012bd0e
EZ
4610 /* MIPS_EABI squeezes a struct that contains a single floating
4611 point value into an FP register instead of pushing it onto the
46e0f506 4612 stack. */
74ed0bb4
MD
4613 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4614 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4615 {
6da397e0
KB
4616 /* EABI32 will pass doubles in consecutive registers, even on
4617 64-bit cores. At one time, we used to check the size of
4618 `float_argreg' to determine whether or not to pass doubles
4619 in consecutive registers, but this is not sufficient for
4620 making the ABI determination. */
4621 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4622 {
72a155b4 4623 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4624 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4625 long regval;
c906108c
SS
4626
4627 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4628 regval = extract_signed_integer (val + low_offset,
4629 4, byte_order);
9ace0497 4630 if (mips_debug)
acdb74a0 4631 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4632 float_argreg, phex (regval, 4));
a8852dc5 4633 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4634
4635 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4636 regval = extract_signed_integer (val + 4 - low_offset,
4637 4, byte_order);
9ace0497 4638 if (mips_debug)
acdb74a0 4639 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4640 float_argreg, phex (regval, 4));
a8852dc5 4641 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4642 }
4643 else
4644 {
4645 /* This is a floating point value that fits entirely
4646 in a single register. */
53a5351d 4647 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4648 above to ensure that it is even register aligned. */
a8852dc5 4649 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4650 if (mips_debug)
acdb74a0 4651 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4652 float_argreg, phex (regval, len));
a8852dc5 4653 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4654 }
4655 }
4656 else
4657 {
4658 /* Copy the argument to general registers or the stack in
4659 register-sized pieces. Large arguments are split between
4660 registers and stack. */
b3464d03 4661 /* Note: structs whose size is not a multiple of abi_regsize
1a69e1e4 4662 are treated specially: Irix cc passes
d5ac5a39
AC
4663 them in registers where gcc sometimes puts them on the
4664 stack. For maximum compatibility, we will put them in
4665 both places. */
b3464d03 4666 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
46e0f506 4667
f09ded24 4668 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4669 register are only written to memory. */
c906108c
SS
4670 while (len > 0)
4671 {
ebafbe83 4672 /* Remember if the argument was written to the stack. */
566f0f7a 4673 int stack_used_p = 0;
b3464d03 4674 int partial_len = (len < abi_regsize ? len : abi_regsize);
c906108c 4675
acdb74a0
AC
4676 if (mips_debug)
4677 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4678 partial_len);
4679
566f0f7a 4680 /* Write this portion of the argument to the stack. */
74ed0bb4 4681 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4682 || odd_sized_struct
74ed0bb4 4683 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4684 {
c906108c 4685 /* Should shorter than int integer values be
025bb325 4686 promoted to int before being stored? */
c906108c 4687 int longword_offset = 0;
9ace0497 4688 CORE_ADDR addr;
566f0f7a 4689 stack_used_p = 1;
72a155b4 4690 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4691 {
b3464d03 4692 if (abi_regsize == 8
480d3dd2
AC
4693 && (typecode == TYPE_CODE_INT
4694 || typecode == TYPE_CODE_PTR
6d82d43b 4695 || typecode == TYPE_CODE_FLT) && len <= 4)
b3464d03 4696 longword_offset = abi_regsize - len;
480d3dd2
AC
4697 else if ((typecode == TYPE_CODE_STRUCT
4698 || typecode == TYPE_CODE_UNION)
b3464d03
PA
4699 && TYPE_LENGTH (arg_type) < abi_regsize)
4700 longword_offset = abi_regsize - len;
7a292a7a 4701 }
c5aa993b 4702
9ace0497
AC
4703 if (mips_debug)
4704 {
5af949e3
UW
4705 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4706 paddress (gdbarch, stack_offset));
4707 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4708 paddress (gdbarch, longword_offset));
9ace0497 4709 }
361d1df0 4710
9ace0497
AC
4711 addr = sp + stack_offset + longword_offset;
4712
4713 if (mips_debug)
4714 {
4715 int i;
5af949e3
UW
4716 fprintf_unfiltered (gdb_stdlog, " @%s ",
4717 paddress (gdbarch, addr));
9ace0497
AC
4718 for (i = 0; i < partial_len; i++)
4719 {
6d82d43b 4720 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4721 val[i] & 0xff);
9ace0497
AC
4722 }
4723 }
4724 write_memory (addr, val, partial_len);
c906108c
SS
4725 }
4726
f09ded24
AC
4727 /* Note!!! This is NOT an else clause. Odd sized
4728 structs may go thru BOTH paths. Floating point
46e0f506 4729 arguments will not. */
566f0f7a 4730 /* Write this portion of the argument to a general
6d82d43b 4731 purpose register. */
74ed0bb4
MD
4732 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4733 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4734 {
6d82d43b 4735 LONGEST regval =
a8852dc5 4736 extract_signed_integer (val, partial_len, byte_order);
c906108c 4737
9ace0497 4738 if (mips_debug)
acdb74a0 4739 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4740 argreg,
b3464d03 4741 phex (regval, abi_regsize));
a8852dc5 4742 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4743 argreg++;
c906108c 4744 }
c5aa993b 4745
c906108c
SS
4746 len -= partial_len;
4747 val += partial_len;
4748
b021a221
MS
4749 /* Compute the offset into the stack at which we will
4750 copy the next parameter.
566f0f7a 4751
566f0f7a 4752 In the new EABI (and the NABI32), the stack_offset
46e0f506 4753 only needs to be adjusted when it has been used. */
c906108c 4754
46e0f506 4755 if (stack_used_p)
b3464d03 4756 stack_offset += align_up (partial_len, abi_regsize);
c906108c
SS
4757 }
4758 }
9ace0497
AC
4759 if (mips_debug)
4760 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4761 }
4762
f10683bb 4763 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4764
0f71a2f6
JM
4765 /* Return adjusted stack pointer. */
4766 return sp;
4767}
4768
a1f5b845 4769/* Determine the return value convention being used. */
6d82d43b 4770
9c8fdbfa 4771static enum return_value_convention
6a3a010b 4772mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4773 struct type *type, struct regcache *regcache,
47a35522 4774 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4775{
609ba780
JM
4776 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4777 int fp_return_type = 0;
4778 int offset, regnum, xfer;
4779
9c8fdbfa
AC
4780 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4781 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4782
4783 /* Floating point type? */
4784 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4785 {
4786 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4787 fp_return_type = 1;
4788 /* Structs with a single field of float type
4789 are returned in a floating point register. */
4790 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4791 || TYPE_CODE (type) == TYPE_CODE_UNION)
4792 && TYPE_NFIELDS (type) == 1)
4793 {
4794 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4795
4796 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4797 fp_return_type = 1;
4798 }
4799 }
4800
4801 if (fp_return_type)
4802 {
4803 /* A floating-point value belongs in the least significant part
4804 of FP0/FP1. */
4805 if (mips_debug)
4806 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4807 regnum = mips_regnum (gdbarch)->fp0;
4808 }
4809 else
4810 {
4811 /* An integer value goes in V0/V1. */
4812 if (mips_debug)
4813 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4814 regnum = MIPS_V0_REGNUM;
4815 }
4816 for (offset = 0;
4817 offset < TYPE_LENGTH (type);
4818 offset += mips_abi_regsize (gdbarch), regnum++)
4819 {
4820 xfer = mips_abi_regsize (gdbarch);
4821 if (offset + xfer > TYPE_LENGTH (type))
4822 xfer = TYPE_LENGTH (type) - offset;
4823 mips_xfer_register (gdbarch, regcache,
4824 gdbarch_num_regs (gdbarch) + regnum, xfer,
4825 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4826 offset);
4827 }
4828
9c8fdbfa 4829 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4830}
4831
6d82d43b
AC
4832
4833/* N32/N64 ABI stuff. */
ebafbe83 4834
8d26208a
DJ
4835/* Search for a naturally aligned double at OFFSET inside a struct
4836 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4837 registers. */
4838
4839static int
74ed0bb4
MD
4840mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4841 int offset)
8d26208a
DJ
4842{
4843 int i;
4844
4845 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4846 return 0;
4847
74ed0bb4 4848 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4849 return 0;
4850
4851 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4852 return 0;
4853
4854 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4855 {
4856 int pos;
4857 struct type *field_type;
4858
4859 /* We're only looking at normal fields. */
5bc60cfb 4860 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4861 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4862 continue;
4863
4864 /* If we have gone past the offset, there is no double to pass. */
4865 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4866 if (pos > offset)
4867 return 0;
4868
4869 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4870
4871 /* If this field is entirely before the requested offset, go
4872 on to the next one. */
4873 if (pos + TYPE_LENGTH (field_type) <= offset)
4874 continue;
4875
4876 /* If this is our special aligned double, we can stop. */
4877 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4878 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4879 return 1;
4880
4881 /* This field starts at or before the requested offset, and
4882 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4883 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4884 }
4885
4886 return 0;
4887}
4888
f7ab6ec6 4889static CORE_ADDR
7d9b040b 4890mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4891 struct regcache *regcache, CORE_ADDR bp_addr,
4892 int nargs, struct value **args, CORE_ADDR sp,
4893 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4894{
4895 int argreg;
4896 int float_argreg;
4897 int argnum;
b926417a 4898 int arg_space = 0;
cb3d25d1 4899 int stack_offset = 0;
e17a4113 4900 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4901 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4902
25ab4790
AC
4903 /* For shared libraries, "t9" needs to point at the function
4904 address. */
4c7d22cb 4905 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4906
4907 /* Set the return address register to point to the entry point of
4908 the program, where a breakpoint lies in wait. */
4c7d22cb 4909 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4910
cb3d25d1
MS
4911 /* First ensure that the stack and structure return address (if any)
4912 are properly aligned. The stack has to be at least 64-bit
4913 aligned even on 32-bit machines, because doubles must be 64-bit
4914 aligned. For n32 and n64, stack frames need to be 128-bit
4915 aligned, so we round to this widest known alignment. */
4916
5b03f266
AC
4917 sp = align_down (sp, 16);
4918 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4919
4920 /* Now make space on the stack for the args. */
4921 for (argnum = 0; argnum < nargs; argnum++)
b926417a
TT
4922 arg_space += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4923 sp -= align_up (arg_space, 16);
cb3d25d1
MS
4924
4925 if (mips_debug)
6d82d43b 4926 fprintf_unfiltered (gdb_stdlog,
5af949e3 4927 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
b926417a
TT
4928 paddress (gdbarch, sp),
4929 (long) align_up (arg_space, 16));
cb3d25d1
MS
4930
4931 /* Initialize the integer and float register pointers. */
4c7d22cb 4932 argreg = MIPS_A0_REGNUM;
72a155b4 4933 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4934
46e0f506 4935 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4936 if (struct_return)
4937 {
4938 if (mips_debug)
4939 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4940 "mips_n32n64_push_dummy_call: "
4941 "struct_return reg=%d %s\n",
5af949e3 4942 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4943 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4944 }
4945
4946 /* Now load as many as possible of the first arguments into
4947 registers, and push the rest onto the stack. Loop thru args
4948 from first to last. */
4949 for (argnum = 0; argnum < nargs; argnum++)
4950 {
47a35522 4951 const gdb_byte *val;
cb3d25d1 4952 struct value *arg = args[argnum];
4991999e 4953 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4954 int len = TYPE_LENGTH (arg_type);
4955 enum type_code typecode = TYPE_CODE (arg_type);
4956
4957 if (mips_debug)
4958 fprintf_unfiltered (gdb_stdlog,
25ab4790 4959 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4960 argnum + 1, len, (int) typecode);
4961
47a35522 4962 val = value_contents (arg);
cb3d25d1 4963
5b68030f
JM
4964 /* A 128-bit long double value requires an even-odd pair of
4965 floating-point registers. */
4966 if (len == 16
4967 && fp_register_arg_p (gdbarch, typecode, arg_type)
4968 && (float_argreg & 1))
4969 {
4970 float_argreg++;
4971 argreg++;
4972 }
4973
74ed0bb4
MD
4974 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4975 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4976 {
4977 /* This is a floating point value that fits entirely
5b68030f
JM
4978 in a single register or a pair of registers. */
4979 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4980 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4981 if (mips_debug)
4982 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4983 float_argreg, phex (regval, reglen));
8d26208a 4984 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4985
4986 if (mips_debug)
4987 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4988 argreg, phex (regval, reglen));
9c9acae0 4989 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4990 float_argreg++;
4991 argreg++;
5b68030f
JM
4992 if (len == 16)
4993 {
e17a4113
UW
4994 regval = extract_unsigned_integer (val + reglen,
4995 reglen, byte_order);
5b68030f
JM
4996 if (mips_debug)
4997 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4998 float_argreg, phex (regval, reglen));
4999 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
5000
5001 if (mips_debug)
5002 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5003 argreg, phex (regval, reglen));
5004 regcache_cooked_write_unsigned (regcache, argreg, regval);
5005 float_argreg++;
5006 argreg++;
5007 }
cb3d25d1
MS
5008 }
5009 else
5010 {
5011 /* Copy the argument to general registers or the stack in
5012 register-sized pieces. Large arguments are split between
5013 registers and stack. */
ab2e1992
MR
5014 /* For N32/N64, structs, unions, or other composite types are
5015 treated as a sequence of doublewords, and are passed in integer
5016 or floating point registers as though they were simple scalar
5017 parameters to the extent that they fit, with any excess on the
5018 stack packed according to the normal memory layout of the
5019 object.
5020 The caller does not reserve space for the register arguments;
5021 the callee is responsible for reserving it if required. */
cb3d25d1 5022 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 5023 register are only written to memory. */
cb3d25d1
MS
5024 while (len > 0)
5025 {
ad018eee 5026 /* Remember if the argument was written to the stack. */
cb3d25d1 5027 int stack_used_p = 0;
1a69e1e4 5028 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
5029
5030 if (mips_debug)
5031 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5032 partial_len);
5033
74ed0bb4
MD
5034 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5035 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 5036
cb3d25d1 5037 /* Write this portion of the argument to the stack. */
74ed0bb4 5038 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
5039 {
5040 /* Should shorter than int integer values be
025bb325 5041 promoted to int before being stored? */
cb3d25d1
MS
5042 int longword_offset = 0;
5043 CORE_ADDR addr;
5044 stack_used_p = 1;
72a155b4 5045 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 5046 {
1a69e1e4 5047 if ((typecode == TYPE_CODE_INT
5b68030f 5048 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
5049 && len <= 4)
5050 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
5051 }
5052
5053 if (mips_debug)
5054 {
5af949e3
UW
5055 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5056 paddress (gdbarch, stack_offset));
5057 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5058 paddress (gdbarch, longword_offset));
cb3d25d1
MS
5059 }
5060
5061 addr = sp + stack_offset + longword_offset;
5062
5063 if (mips_debug)
5064 {
5065 int i;
5af949e3
UW
5066 fprintf_unfiltered (gdb_stdlog, " @%s ",
5067 paddress (gdbarch, addr));
cb3d25d1
MS
5068 for (i = 0; i < partial_len; i++)
5069 {
6d82d43b 5070 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
5071 val[i] & 0xff);
5072 }
5073 }
5074 write_memory (addr, val, partial_len);
5075 }
5076
5077 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 5078 structs may go thru BOTH paths. */
cb3d25d1 5079 /* Write this portion of the argument to a general
6d82d43b 5080 purpose register. */
74ed0bb4 5081 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 5082 {
5863b5d5
MR
5083 LONGEST regval;
5084
5085 /* Sign extend pointers, 32-bit integers and signed
5086 16-bit and 8-bit integers; everything else is taken
5087 as is. */
5088
5089 if ((partial_len == 4
5090 && (typecode == TYPE_CODE_PTR
5091 || typecode == TYPE_CODE_INT))
5092 || (partial_len < 4
5093 && typecode == TYPE_CODE_INT
5094 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
5095 regval = extract_signed_integer (val, partial_len,
5096 byte_order);
5863b5d5 5097 else
e17a4113
UW
5098 regval = extract_unsigned_integer (val, partial_len,
5099 byte_order);
cb3d25d1
MS
5100
5101 /* A non-floating-point argument being passed in a
5102 general register. If a struct or union, and if
5103 the remaining length is smaller than the register
5104 size, we have to adjust the register value on
5105 big endian targets.
5106
5107 It does not seem to be necessary to do the
1a69e1e4 5108 same for integral types. */
cb3d25d1 5109
72a155b4 5110 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5111 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5112 && (typecode == TYPE_CODE_STRUCT
5113 || typecode == TYPE_CODE_UNION))
1a69e1e4 5114 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5115 * TARGET_CHAR_BIT);
cb3d25d1
MS
5116
5117 if (mips_debug)
5118 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5119 argreg,
1a69e1e4 5120 phex (regval, MIPS64_REGSIZE));
9c9acae0 5121 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 5122
74ed0bb4 5123 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
5124 TYPE_LENGTH (arg_type) - len))
5125 {
5126 if (mips_debug)
5127 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5128 float_argreg,
5129 phex (regval, MIPS64_REGSIZE));
5130 regcache_cooked_write_unsigned (regcache, float_argreg,
5131 regval);
5132 }
5133
5134 float_argreg++;
cb3d25d1
MS
5135 argreg++;
5136 }
5137
5138 len -= partial_len;
5139 val += partial_len;
5140
b021a221
MS
5141 /* Compute the offset into the stack at which we will
5142 copy the next parameter.
cb3d25d1
MS
5143
5144 In N32 (N64?), the stack_offset only needs to be
5145 adjusted when it has been used. */
5146
5147 if (stack_used_p)
1a69e1e4 5148 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
5149 }
5150 }
5151 if (mips_debug)
5152 fprintf_unfiltered (gdb_stdlog, "\n");
5153 }
5154
f10683bb 5155 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5156
cb3d25d1
MS
5157 /* Return adjusted stack pointer. */
5158 return sp;
5159}
5160
6d82d43b 5161static enum return_value_convention
6a3a010b 5162mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 5163 struct type *type, struct regcache *regcache,
47a35522 5164 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 5165{
72a155b4 5166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
5167
5168 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5169
5170 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5171 if needed), as appropriate for the type. Composite results (struct,
5172 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5173 following rules:
5174
5175 * A struct with only one or two floating point fields is returned in $f0
5176 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5177 case.
5178
f08877ba 5179 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
5180 $2 (first 64 bits) and $3 (remainder, if necessary).
5181
5182 * Larger composite results are handled by converting the function to a
5183 procedure with an implicit first parameter, which is a pointer to an area
5184 reserved by the caller to receive the result. [The o32-bit ABI requires
5185 that all composite results be handled by conversion to implicit first
5186 parameters. The MIPS/SGI Fortran implementation has always made a
5187 specific exception to return COMPLEX results in the floating point
5188 registers.] */
5189
f08877ba 5190 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 5191 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
5192 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5193 && TYPE_LENGTH (type) == 16
5194 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5195 {
5196 /* A 128-bit floating-point value fills both $f0 and $f2. The
5197 two registers are used in the same as memory order, so the
5198 eight bytes with the lower memory address are in $f0. */
5199 if (mips_debug)
5200 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 5201 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5202 (gdbarch_num_regs (gdbarch)
5203 + mips_regnum (gdbarch)->fp0),
72a155b4 5204 8, gdbarch_byte_order (gdbarch),
4c6b5505 5205 readbuf, writebuf, 0);
ba32f989 5206 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5207 (gdbarch_num_regs (gdbarch)
5208 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5209 8, gdbarch_byte_order (gdbarch),
4c6b5505 5210 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5211 writebuf ? writebuf + 8 : writebuf, 0);
5212 return RETURN_VALUE_REGISTER_CONVENTION;
5213 }
6d82d43b
AC
5214 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5215 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5216 {
59aa1faa 5217 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5218 if (mips_debug)
5219 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5220 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5221 (gdbarch_num_regs (gdbarch)
5222 + mips_regnum (gdbarch)->fp0),
6d82d43b 5223 TYPE_LENGTH (type),
72a155b4 5224 gdbarch_byte_order (gdbarch),
4c6b5505 5225 readbuf, writebuf, 0);
6d82d43b
AC
5226 return RETURN_VALUE_REGISTER_CONVENTION;
5227 }
5228 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5229 && TYPE_NFIELDS (type) <= 2
5230 && TYPE_NFIELDS (type) >= 1
5231 && ((TYPE_NFIELDS (type) == 1
b18bb924 5232 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5233 == TYPE_CODE_FLT))
5234 || (TYPE_NFIELDS (type) == 2
b18bb924 5235 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5236 == TYPE_CODE_FLT)
b18bb924 5237 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5238 == TYPE_CODE_FLT))))
6d82d43b
AC
5239 {
5240 /* A struct that contains one or two floats. Each value is part
5241 in the least significant part of their floating point
5b68030f 5242 register (or GPR, for soft float). */
6d82d43b
AC
5243 int regnum;
5244 int field;
5b68030f
JM
5245 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5246 ? mips_regnum (gdbarch)->fp0
5247 : MIPS_V0_REGNUM);
6d82d43b
AC
5248 field < TYPE_NFIELDS (type); field++, regnum += 2)
5249 {
5250 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5251 / TARGET_CHAR_BIT);
5252 if (mips_debug)
5253 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5254 offset);
5b68030f
JM
5255 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5256 {
5257 /* A 16-byte long double field goes in two consecutive
5258 registers. */
5259 mips_xfer_register (gdbarch, regcache,
5260 gdbarch_num_regs (gdbarch) + regnum,
5261 8,
5262 gdbarch_byte_order (gdbarch),
5263 readbuf, writebuf, offset);
5264 mips_xfer_register (gdbarch, regcache,
5265 gdbarch_num_regs (gdbarch) + regnum + 1,
5266 8,
5267 gdbarch_byte_order (gdbarch),
5268 readbuf, writebuf, offset + 8);
5269 }
5270 else
5271 mips_xfer_register (gdbarch, regcache,
5272 gdbarch_num_regs (gdbarch) + regnum,
5273 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5274 gdbarch_byte_order (gdbarch),
5275 readbuf, writebuf, offset);
6d82d43b
AC
5276 }
5277 return RETURN_VALUE_REGISTER_CONVENTION;
5278 }
5279 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5280 || TYPE_CODE (type) == TYPE_CODE_UNION
5281 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5282 {
f08877ba 5283 /* A composite type. Extract the left justified value,
6d82d43b
AC
5284 regardless of the byte order. I.e. DO NOT USE
5285 mips_xfer_lower. */
5286 int offset;
5287 int regnum;
4c7d22cb 5288 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5289 offset < TYPE_LENGTH (type);
72a155b4 5290 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5291 {
72a155b4 5292 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5293 if (offset + xfer > TYPE_LENGTH (type))
5294 xfer = TYPE_LENGTH (type) - offset;
5295 if (mips_debug)
5296 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5297 offset, xfer, regnum);
ba32f989
DJ
5298 mips_xfer_register (gdbarch, regcache,
5299 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5300 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5301 offset);
6d82d43b
AC
5302 }
5303 return RETURN_VALUE_REGISTER_CONVENTION;
5304 }
5305 else
5306 {
5307 /* A scalar extract each part but least-significant-byte
5308 justified. */
5309 int offset;
5310 int regnum;
4c7d22cb 5311 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5312 offset < TYPE_LENGTH (type);
72a155b4 5313 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5314 {
72a155b4 5315 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5316 if (offset + xfer > TYPE_LENGTH (type))
5317 xfer = TYPE_LENGTH (type) - offset;
5318 if (mips_debug)
5319 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5320 offset, xfer, regnum);
ba32f989
DJ
5321 mips_xfer_register (gdbarch, regcache,
5322 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5323 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5324 readbuf, writebuf, offset);
6d82d43b
AC
5325 }
5326 return RETURN_VALUE_REGISTER_CONVENTION;
5327 }
5328}
5329
6a3a010b
MR
5330/* Which registers to use for passing floating-point values between
5331 function calls, one of floating-point, general and both kinds of
5332 registers. O32 and O64 use different register kinds for standard
5333 MIPS and MIPS16 code; to make the handling of cases where we may
5334 not know what kind of code is being used (e.g. no debug information)
5335 easier we sometimes use both kinds. */
5336
5337enum mips_fval_reg
5338{
5339 mips_fval_fpr,
5340 mips_fval_gpr,
5341 mips_fval_both
5342};
5343
6d82d43b
AC
5344/* O32 ABI stuff. */
5345
5346static CORE_ADDR
7d9b040b 5347mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5348 struct regcache *regcache, CORE_ADDR bp_addr,
5349 int nargs, struct value **args, CORE_ADDR sp,
5350 int struct_return, CORE_ADDR struct_addr)
5351{
5352 int argreg;
5353 int float_argreg;
5354 int argnum;
b926417a 5355 int arg_space = 0;
6d82d43b 5356 int stack_offset = 0;
e17a4113 5357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5358 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5359
5360 /* For shared libraries, "t9" needs to point at the function
5361 address. */
4c7d22cb 5362 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5363
5364 /* Set the return address register to point to the entry point of
5365 the program, where a breakpoint lies in wait. */
4c7d22cb 5366 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5367
5368 /* First ensure that the stack and structure return address (if any)
5369 are properly aligned. The stack has to be at least 64-bit
5370 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5371 aligned. For n32 and n64, stack frames need to be 128-bit
5372 aligned, so we round to this widest known alignment. */
5373
5b03f266
AC
5374 sp = align_down (sp, 16);
5375 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5376
5377 /* Now make space on the stack for the args. */
5378 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5379 {
5380 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5381
5382 /* Align to double-word if necessary. */
2afd3f0a 5383 if (mips_type_needs_double_align (arg_type))
b926417a 5384 arg_space = align_up (arg_space, MIPS32_REGSIZE * 2);
968b5391 5385 /* Allocate space on the stack. */
b926417a 5386 arg_space += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5387 }
b926417a 5388 sp -= align_up (arg_space, 16);
ebafbe83
MS
5389
5390 if (mips_debug)
6d82d43b 5391 fprintf_unfiltered (gdb_stdlog,
5af949e3 5392 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
b926417a
TT
5393 paddress (gdbarch, sp),
5394 (long) align_up (arg_space, 16));
ebafbe83
MS
5395
5396 /* Initialize the integer and float register pointers. */
4c7d22cb 5397 argreg = MIPS_A0_REGNUM;
72a155b4 5398 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5399
bcb0cc15 5400 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5401 if (struct_return)
5402 {
5403 if (mips_debug)
5404 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5405 "mips_o32_push_dummy_call: "
5406 "struct_return reg=%d %s\n",
5af949e3 5407 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5408 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5409 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5410 }
5411
5412 /* Now load as many as possible of the first arguments into
5413 registers, and push the rest onto the stack. Loop thru args
5414 from first to last. */
5415 for (argnum = 0; argnum < nargs; argnum++)
5416 {
47a35522 5417 const gdb_byte *val;
ebafbe83 5418 struct value *arg = args[argnum];
4991999e 5419 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5420 int len = TYPE_LENGTH (arg_type);
5421 enum type_code typecode = TYPE_CODE (arg_type);
5422
5423 if (mips_debug)
5424 fprintf_unfiltered (gdb_stdlog,
25ab4790 5425 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5426 argnum + 1, len, (int) typecode);
5427
47a35522 5428 val = value_contents (arg);
46cac009
AC
5429
5430 /* 32-bit ABIs always start floating point arguments in an
5431 even-numbered floating point register. Round the FP register
5432 up before the check to see if there are any FP registers
6a3a010b
MR
5433 left. O32 targets also pass the FP in the integer registers
5434 so also round up normal registers. */
74ed0bb4 5435 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5436 {
5437 if ((float_argreg & 1))
5438 float_argreg++;
5439 }
5440
5441 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5442 treated specially. On 32-bit architectures, doubles are
5443 passed in register pairs; the even FP register gets the
5444 low word, and the odd FP register gets the high word.
5445 On O32, the first two floating point arguments are also
5446 copied to general registers, following their memory order,
5447 because MIPS16 functions don't use float registers for
5448 arguments. This duplication of arguments in general
5449 registers can't hurt non-MIPS16 functions, because those
5450 registers are normally skipped. */
46cac009 5451
74ed0bb4
MD
5452 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5453 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5454 {
8b07f6d8 5455 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5456 {
6a3a010b
MR
5457 int freg_offset = gdbarch_byte_order (gdbarch)
5458 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5459 unsigned long regval;
5460
6a3a010b
MR
5461 /* First word. */
5462 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5463 if (mips_debug)
5464 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5465 float_argreg + freg_offset,
5466 phex (regval, 4));
025bb325 5467 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5468 float_argreg++ + freg_offset,
5469 regval);
46cac009
AC
5470 if (mips_debug)
5471 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5472 argreg, phex (regval, 4));
9c9acae0 5473 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5474
6a3a010b
MR
5475 /* Second word. */
5476 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5477 if (mips_debug)
5478 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5479 float_argreg - freg_offset,
5480 phex (regval, 4));
025bb325 5481 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5482 float_argreg++ - freg_offset,
5483 regval);
46cac009
AC
5484 if (mips_debug)
5485 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5486 argreg, phex (regval, 4));
9c9acae0 5487 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5488 }
5489 else
5490 {
5491 /* This is a floating point value that fits entirely
5492 in a single register. */
5493 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5494 above to ensure that it is even register aligned. */
e17a4113 5495 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5496 if (mips_debug)
5497 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5498 float_argreg, phex (regval, len));
025bb325
MS
5499 regcache_cooked_write_unsigned (regcache,
5500 float_argreg++, regval);
5b68030f
JM
5501 /* Although two FP registers are reserved for each
5502 argument, only one corresponding integer register is
5503 reserved. */
46cac009
AC
5504 if (mips_debug)
5505 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5506 argreg, phex (regval, len));
5b68030f 5507 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5508 }
5509 /* Reserve space for the FP register. */
1a69e1e4 5510 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5511 }
5512 else
5513 {
5514 /* Copy the argument to general registers or the stack in
5515 register-sized pieces. Large arguments are split between
5516 registers and stack. */
1a69e1e4
DJ
5517 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5518 are treated specially: Irix cc passes
d5ac5a39
AC
5519 them in registers where gcc sometimes puts them on the
5520 stack. For maximum compatibility, we will put them in
5521 both places. */
1a69e1e4
DJ
5522 int odd_sized_struct = (len > MIPS32_REGSIZE
5523 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5524 /* Structures should be aligned to eight bytes (even arg registers)
5525 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5526 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5527 {
5528 if ((argreg & 1))
968b5391
MR
5529 {
5530 argreg++;
1a69e1e4 5531 stack_offset += MIPS32_REGSIZE;
968b5391 5532 }
46cac009 5533 }
46cac009
AC
5534 while (len > 0)
5535 {
1a69e1e4 5536 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5537
5538 if (mips_debug)
5539 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5540 partial_len);
5541
5542 /* Write this portion of the argument to the stack. */
74ed0bb4 5543 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5544 || odd_sized_struct)
46cac009
AC
5545 {
5546 /* Should shorter than int integer values be
025bb325 5547 promoted to int before being stored? */
46cac009
AC
5548 int longword_offset = 0;
5549 CORE_ADDR addr;
46cac009
AC
5550
5551 if (mips_debug)
5552 {
5af949e3
UW
5553 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5554 paddress (gdbarch, stack_offset));
5555 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5556 paddress (gdbarch, longword_offset));
46cac009
AC
5557 }
5558
5559 addr = sp + stack_offset + longword_offset;
5560
5561 if (mips_debug)
5562 {
5563 int i;
5af949e3
UW
5564 fprintf_unfiltered (gdb_stdlog, " @%s ",
5565 paddress (gdbarch, addr));
46cac009
AC
5566 for (i = 0; i < partial_len; i++)
5567 {
6d82d43b 5568 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5569 val[i] & 0xff);
5570 }
5571 }
5572 write_memory (addr, val, partial_len);
5573 }
5574
5575 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5576 structs may go thru BOTH paths. */
46cac009 5577 /* Write this portion of the argument to a general
6d82d43b 5578 purpose register. */
74ed0bb4 5579 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5580 {
e17a4113
UW
5581 LONGEST regval = extract_signed_integer (val, partial_len,
5582 byte_order);
4246e332 5583 /* Value may need to be sign extended, because
1b13c4f6 5584 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5585
5586 /* A non-floating-point argument being passed in a
5587 general register. If a struct or union, and if
5588 the remaining length is smaller than the register
5589 size, we have to adjust the register value on
5590 big endian targets.
5591
5592 It does not seem to be necessary to do the
5593 same for integral types.
5594
5595 Also don't do this adjustment on O64 binaries.
5596
5597 cagney/2001-07-23: gdb/179: Also, GCC, when
5598 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5599 mips_abi_regsize(), generates a left shift
5600 as part of storing the argument in a register
5601 (the left shift isn't generated when
1b13c4f6 5602 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5603 it is quite possible that this is GCC
5604 contradicting the LE/O32 ABI, GDB has not been
5605 adjusted to accommodate this. Either someone
5606 needs to demonstrate that the LE/O32 ABI
5607 specifies such a left shift OR this new ABI gets
5608 identified as such and GDB gets tweaked
5609 accordingly. */
5610
72a155b4 5611 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5612 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5613 && (typecode == TYPE_CODE_STRUCT
5614 || typecode == TYPE_CODE_UNION))
1a69e1e4 5615 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5616 * TARGET_CHAR_BIT);
46cac009
AC
5617
5618 if (mips_debug)
5619 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5620 argreg,
1a69e1e4 5621 phex (regval, MIPS32_REGSIZE));
9c9acae0 5622 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5623 argreg++;
5624
5625 /* Prevent subsequent floating point arguments from
5626 being passed in floating point registers. */
74ed0bb4 5627 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5628 }
5629
5630 len -= partial_len;
5631 val += partial_len;
5632
b021a221
MS
5633 /* Compute the offset into the stack at which we will
5634 copy the next parameter.
46cac009 5635
6d82d43b
AC
5636 In older ABIs, the caller reserved space for
5637 registers that contained arguments. This was loosely
5638 refered to as their "home". Consequently, space is
5639 always allocated. */
46cac009 5640
1a69e1e4 5641 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5642 }
5643 }
5644 if (mips_debug)
5645 fprintf_unfiltered (gdb_stdlog, "\n");
5646 }
5647
f10683bb 5648 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5649
46cac009
AC
5650 /* Return adjusted stack pointer. */
5651 return sp;
5652}
5653
6d82d43b 5654static enum return_value_convention
6a3a010b 5655mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5656 struct type *type, struct regcache *regcache,
47a35522 5657 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5658{
6a3a010b 5659 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5660 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5661 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5662 enum mips_fval_reg fval_reg;
6d82d43b 5663
6a3a010b 5664 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5665 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5666 || TYPE_CODE (type) == TYPE_CODE_UNION
5667 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5668 return RETURN_VALUE_STRUCT_CONVENTION;
5669 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5670 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5671 {
6a3a010b
MR
5672 /* A single-precision floating-point value. If reading in or copying,
5673 then we get it from/put it to FP0 for standard MIPS code or GPR2
5674 for MIPS16 code. If writing out only, then we put it to both FP0
5675 and GPR2. We do not support reading in with no function known, if
5676 this safety check ever triggers, then we'll have to try harder. */
5677 gdb_assert (function || !readbuf);
6d82d43b 5678 if (mips_debug)
6a3a010b
MR
5679 switch (fval_reg)
5680 {
5681 case mips_fval_fpr:
5682 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5683 break;
5684 case mips_fval_gpr:
5685 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5686 break;
5687 case mips_fval_both:
5688 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5689 break;
5690 }
5691 if (fval_reg != mips_fval_gpr)
5692 mips_xfer_register (gdbarch, regcache,
5693 (gdbarch_num_regs (gdbarch)
5694 + mips_regnum (gdbarch)->fp0),
5695 TYPE_LENGTH (type),
5696 gdbarch_byte_order (gdbarch),
5697 readbuf, writebuf, 0);
5698 if (fval_reg != mips_fval_fpr)
5699 mips_xfer_register (gdbarch, regcache,
5700 gdbarch_num_regs (gdbarch) + 2,
5701 TYPE_LENGTH (type),
5702 gdbarch_byte_order (gdbarch),
5703 readbuf, writebuf, 0);
6d82d43b
AC
5704 return RETURN_VALUE_REGISTER_CONVENTION;
5705 }
5706 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5707 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5708 {
6a3a010b
MR
5709 /* A double-precision floating-point value. If reading in or copying,
5710 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5711 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5712 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5713 no function known, if this safety check ever triggers, then we'll
5714 have to try harder. */
5715 gdb_assert (function || !readbuf);
6d82d43b 5716 if (mips_debug)
6a3a010b
MR
5717 switch (fval_reg)
5718 {
5719 case mips_fval_fpr:
5720 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5721 break;
5722 case mips_fval_gpr:
5723 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5724 break;
5725 case mips_fval_both:
5726 fprintf_unfiltered (gdb_stderr,
5727 "Return float in $fp1/$fp0 and $2/$3\n");
5728 break;
5729 }
5730 if (fval_reg != mips_fval_gpr)
6d82d43b 5731 {
6a3a010b
MR
5732 /* The most significant part goes in FP1, and the least significant
5733 in FP0. */
5734 switch (gdbarch_byte_order (gdbarch))
5735 {
5736 case BFD_ENDIAN_LITTLE:
5737 mips_xfer_register (gdbarch, regcache,
5738 (gdbarch_num_regs (gdbarch)
5739 + mips_regnum (gdbarch)->fp0 + 0),
5740 4, gdbarch_byte_order (gdbarch),
5741 readbuf, writebuf, 0);
5742 mips_xfer_register (gdbarch, regcache,
5743 (gdbarch_num_regs (gdbarch)
5744 + mips_regnum (gdbarch)->fp0 + 1),
5745 4, gdbarch_byte_order (gdbarch),
5746 readbuf, writebuf, 4);
5747 break;
5748 case BFD_ENDIAN_BIG:
5749 mips_xfer_register (gdbarch, regcache,
5750 (gdbarch_num_regs (gdbarch)
5751 + mips_regnum (gdbarch)->fp0 + 1),
5752 4, gdbarch_byte_order (gdbarch),
5753 readbuf, writebuf, 0);
5754 mips_xfer_register (gdbarch, regcache,
5755 (gdbarch_num_regs (gdbarch)
5756 + mips_regnum (gdbarch)->fp0 + 0),
5757 4, gdbarch_byte_order (gdbarch),
5758 readbuf, writebuf, 4);
5759 break;
5760 default:
5761 internal_error (__FILE__, __LINE__, _("bad switch"));
5762 }
5763 }
5764 if (fval_reg != mips_fval_fpr)
5765 {
5766 /* The two 32-bit parts are always placed in GPR2 and GPR3
5767 following these registers' memory order. */
ba32f989 5768 mips_xfer_register (gdbarch, regcache,
6a3a010b 5769 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5770 4, gdbarch_byte_order (gdbarch),
4c6b5505 5771 readbuf, writebuf, 0);
ba32f989 5772 mips_xfer_register (gdbarch, regcache,
6a3a010b 5773 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5774 4, gdbarch_byte_order (gdbarch),
4c6b5505 5775 readbuf, writebuf, 4);
6d82d43b
AC
5776 }
5777 return RETURN_VALUE_REGISTER_CONVENTION;
5778 }
5779#if 0
5780 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5781 && TYPE_NFIELDS (type) <= 2
5782 && TYPE_NFIELDS (type) >= 1
5783 && ((TYPE_NFIELDS (type) == 1
5784 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5785 == TYPE_CODE_FLT))
5786 || (TYPE_NFIELDS (type) == 2
5787 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5788 == TYPE_CODE_FLT)
5789 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5790 == TYPE_CODE_FLT)))
5791 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5792 {
5793 /* A struct that contains one or two floats. Each value is part
5794 in the least significant part of their floating point
5795 register.. */
6d82d43b
AC
5796 int regnum;
5797 int field;
72a155b4 5798 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5799 field < TYPE_NFIELDS (type); field++, regnum += 2)
5800 {
5801 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5802 / TARGET_CHAR_BIT);
5803 if (mips_debug)
5804 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5805 offset);
ba32f989
DJ
5806 mips_xfer_register (gdbarch, regcache,
5807 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5808 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5809 gdbarch_byte_order (gdbarch),
4c6b5505 5810 readbuf, writebuf, offset);
6d82d43b
AC
5811 }
5812 return RETURN_VALUE_REGISTER_CONVENTION;
5813 }
5814#endif
5815#if 0
5816 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5817 || TYPE_CODE (type) == TYPE_CODE_UNION)
5818 {
5819 /* A structure or union. Extract the left justified value,
5820 regardless of the byte order. I.e. DO NOT USE
5821 mips_xfer_lower. */
5822 int offset;
5823 int regnum;
4c7d22cb 5824 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5825 offset < TYPE_LENGTH (type);
72a155b4 5826 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5827 {
72a155b4 5828 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5829 if (offset + xfer > TYPE_LENGTH (type))
5830 xfer = TYPE_LENGTH (type) - offset;
5831 if (mips_debug)
5832 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5833 offset, xfer, regnum);
ba32f989
DJ
5834 mips_xfer_register (gdbarch, regcache,
5835 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5836 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5837 }
5838 return RETURN_VALUE_REGISTER_CONVENTION;
5839 }
5840#endif
5841 else
5842 {
5843 /* A scalar extract each part but least-significant-byte
5844 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5845 the ISA. */
6d82d43b
AC
5846 int offset;
5847 int regnum;
4c7d22cb 5848 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5849 offset < TYPE_LENGTH (type);
1a69e1e4 5850 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5851 {
1a69e1e4 5852 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5853 if (offset + xfer > TYPE_LENGTH (type))
5854 xfer = TYPE_LENGTH (type) - offset;
5855 if (mips_debug)
5856 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5857 offset, xfer, regnum);
ba32f989
DJ
5858 mips_xfer_register (gdbarch, regcache,
5859 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5860 gdbarch_byte_order (gdbarch),
4c6b5505 5861 readbuf, writebuf, offset);
6d82d43b
AC
5862 }
5863 return RETURN_VALUE_REGISTER_CONVENTION;
5864 }
5865}
5866
5867/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5868 ABI. */
46cac009
AC
5869
5870static CORE_ADDR
7d9b040b 5871mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5872 struct regcache *regcache, CORE_ADDR bp_addr,
5873 int nargs,
5874 struct value **args, CORE_ADDR sp,
5875 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5876{
5877 int argreg;
5878 int float_argreg;
5879 int argnum;
b926417a 5880 int arg_space = 0;
46cac009 5881 int stack_offset = 0;
e17a4113 5882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5883 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5884
25ab4790
AC
5885 /* For shared libraries, "t9" needs to point at the function
5886 address. */
4c7d22cb 5887 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5888
5889 /* Set the return address register to point to the entry point of
5890 the program, where a breakpoint lies in wait. */
4c7d22cb 5891 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5892
46cac009
AC
5893 /* First ensure that the stack and structure return address (if any)
5894 are properly aligned. The stack has to be at least 64-bit
5895 aligned even on 32-bit machines, because doubles must be 64-bit
5896 aligned. For n32 and n64, stack frames need to be 128-bit
5897 aligned, so we round to this widest known alignment. */
5898
5b03f266
AC
5899 sp = align_down (sp, 16);
5900 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5901
5902 /* Now make space on the stack for the args. */
5903 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5904 {
5905 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5906
968b5391 5907 /* Allocate space on the stack. */
b926417a 5908 arg_space += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5909 }
b926417a 5910 sp -= align_up (arg_space, 16);
46cac009
AC
5911
5912 if (mips_debug)
6d82d43b 5913 fprintf_unfiltered (gdb_stdlog,
5af949e3 5914 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
b926417a
TT
5915 paddress (gdbarch, sp),
5916 (long) align_up (arg_space, 16));
46cac009
AC
5917
5918 /* Initialize the integer and float register pointers. */
4c7d22cb 5919 argreg = MIPS_A0_REGNUM;
72a155b4 5920 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5921
5922 /* The struct_return pointer occupies the first parameter-passing reg. */
5923 if (struct_return)
5924 {
5925 if (mips_debug)
5926 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5927 "mips_o64_push_dummy_call: "
5928 "struct_return reg=%d %s\n",
5af949e3 5929 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5930 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5931 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5932 }
5933
5934 /* Now load as many as possible of the first arguments into
5935 registers, and push the rest onto the stack. Loop thru args
5936 from first to last. */
5937 for (argnum = 0; argnum < nargs; argnum++)
5938 {
47a35522 5939 const gdb_byte *val;
46cac009 5940 struct value *arg = args[argnum];
4991999e 5941 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5942 int len = TYPE_LENGTH (arg_type);
5943 enum type_code typecode = TYPE_CODE (arg_type);
5944
5945 if (mips_debug)
5946 fprintf_unfiltered (gdb_stdlog,
25ab4790 5947 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5948 argnum + 1, len, (int) typecode);
5949
47a35522 5950 val = value_contents (arg);
ebafbe83 5951
ebafbe83 5952 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5953 treated specially. On 32-bit architectures, doubles are
5954 passed in register pairs; the even FP register gets the
5955 low word, and the odd FP register gets the high word.
5956 On O64, the first two floating point arguments are also
5957 copied to general registers, because MIPS16 functions
5958 don't use float registers for arguments. This duplication
5959 of arguments in general registers can't hurt non-MIPS16
5960 functions because those registers are normally skipped. */
ebafbe83 5961
74ed0bb4
MD
5962 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5963 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5964 {
e17a4113 5965 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5966 if (mips_debug)
5967 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5968 float_argreg, phex (regval, len));
9c9acae0 5969 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5970 if (mips_debug)
5971 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5972 argreg, phex (regval, len));
9c9acae0 5973 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5974 argreg++;
ebafbe83 5975 /* Reserve space for the FP register. */
1a69e1e4 5976 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5977 }
5978 else
5979 {
5980 /* Copy the argument to general registers or the stack in
5981 register-sized pieces. Large arguments are split between
5982 registers and stack. */
1a69e1e4 5983 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5984 are treated specially: Irix cc passes them in registers
5985 where gcc sometimes puts them on the stack. For maximum
5986 compatibility, we will put them in both places. */
1a69e1e4
DJ
5987 int odd_sized_struct = (len > MIPS64_REGSIZE
5988 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5989 while (len > 0)
5990 {
1a69e1e4 5991 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5992
5993 if (mips_debug)
5994 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5995 partial_len);
5996
5997 /* Write this portion of the argument to the stack. */
74ed0bb4 5998 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5999 || odd_sized_struct)
ebafbe83
MS
6000 {
6001 /* Should shorter than int integer values be
025bb325 6002 promoted to int before being stored? */
ebafbe83
MS
6003 int longword_offset = 0;
6004 CORE_ADDR addr;
72a155b4 6005 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 6006 {
1a69e1e4
DJ
6007 if ((typecode == TYPE_CODE_INT
6008 || typecode == TYPE_CODE_PTR
6009 || typecode == TYPE_CODE_FLT)
6010 && len <= 4)
6011 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
6012 }
6013
6014 if (mips_debug)
6015 {
5af949e3
UW
6016 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
6017 paddress (gdbarch, stack_offset));
6018 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
6019 paddress (gdbarch, longword_offset));
ebafbe83
MS
6020 }
6021
6022 addr = sp + stack_offset + longword_offset;
6023
6024 if (mips_debug)
6025 {
6026 int i;
5af949e3
UW
6027 fprintf_unfiltered (gdb_stdlog, " @%s ",
6028 paddress (gdbarch, addr));
ebafbe83
MS
6029 for (i = 0; i < partial_len; i++)
6030 {
6d82d43b 6031 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
6032 val[i] & 0xff);
6033 }
6034 }
6035 write_memory (addr, val, partial_len);
6036 }
6037
6038 /* Note!!! This is NOT an else clause. Odd sized
968b5391 6039 structs may go thru BOTH paths. */
ebafbe83 6040 /* Write this portion of the argument to a general
6d82d43b 6041 purpose register. */
74ed0bb4 6042 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 6043 {
e17a4113
UW
6044 LONGEST regval = extract_signed_integer (val, partial_len,
6045 byte_order);
4246e332 6046 /* Value may need to be sign extended, because
1b13c4f6 6047 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
6048
6049 /* A non-floating-point argument being passed in a
6050 general register. If a struct or union, and if
6051 the remaining length is smaller than the register
6052 size, we have to adjust the register value on
6053 big endian targets.
6054
6055 It does not seem to be necessary to do the
025bb325 6056 same for integral types. */
480d3dd2 6057
72a155b4 6058 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 6059 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
6060 && (typecode == TYPE_CODE_STRUCT
6061 || typecode == TYPE_CODE_UNION))
1a69e1e4 6062 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 6063 * TARGET_CHAR_BIT);
ebafbe83
MS
6064
6065 if (mips_debug)
6066 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6067 argreg,
1a69e1e4 6068 phex (regval, MIPS64_REGSIZE));
9c9acae0 6069 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
6070 argreg++;
6071
6072 /* Prevent subsequent floating point arguments from
6073 being passed in floating point registers. */
74ed0bb4 6074 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
6075 }
6076
6077 len -= partial_len;
6078 val += partial_len;
6079
b021a221
MS
6080 /* Compute the offset into the stack at which we will
6081 copy the next parameter.
ebafbe83 6082
6d82d43b
AC
6083 In older ABIs, the caller reserved space for
6084 registers that contained arguments. This was loosely
6085 refered to as their "home". Consequently, space is
6086 always allocated. */
ebafbe83 6087
1a69e1e4 6088 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
6089 }
6090 }
6091 if (mips_debug)
6092 fprintf_unfiltered (gdb_stdlog, "\n");
6093 }
6094
f10683bb 6095 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 6096
ebafbe83
MS
6097 /* Return adjusted stack pointer. */
6098 return sp;
6099}
6100
9c8fdbfa 6101static enum return_value_convention
6a3a010b 6102mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 6103 struct type *type, struct regcache *regcache,
47a35522 6104 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 6105{
6a3a010b 6106 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 6107 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6a3a010b 6108 enum mips_fval_reg fval_reg;
7a076fd2 6109
6a3a010b 6110 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
6111 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6112 || TYPE_CODE (type) == TYPE_CODE_UNION
6113 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6114 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 6115 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 6116 {
6a3a010b
MR
6117 /* A floating-point value. If reading in or copying, then we get it
6118 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6119 If writing out only, then we put it to both FP0 and GPR2. We do
6120 not support reading in with no function known, if this safety
6121 check ever triggers, then we'll have to try harder. */
6122 gdb_assert (function || !readbuf);
7a076fd2 6123 if (mips_debug)
6a3a010b
MR
6124 switch (fval_reg)
6125 {
6126 case mips_fval_fpr:
6127 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6128 break;
6129 case mips_fval_gpr:
6130 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6131 break;
6132 case mips_fval_both:
6133 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6134 break;
6135 }
6136 if (fval_reg != mips_fval_gpr)
6137 mips_xfer_register (gdbarch, regcache,
6138 (gdbarch_num_regs (gdbarch)
6139 + mips_regnum (gdbarch)->fp0),
6140 TYPE_LENGTH (type),
6141 gdbarch_byte_order (gdbarch),
6142 readbuf, writebuf, 0);
6143 if (fval_reg != mips_fval_fpr)
6144 mips_xfer_register (gdbarch, regcache,
6145 gdbarch_num_regs (gdbarch) + 2,
6146 TYPE_LENGTH (type),
6147 gdbarch_byte_order (gdbarch),
6148 readbuf, writebuf, 0);
7a076fd2
FF
6149 return RETURN_VALUE_REGISTER_CONVENTION;
6150 }
6151 else
6152 {
6153 /* A scalar extract each part but least-significant-byte
025bb325 6154 justified. */
7a076fd2
FF
6155 int offset;
6156 int regnum;
6157 for (offset = 0, regnum = MIPS_V0_REGNUM;
6158 offset < TYPE_LENGTH (type);
1a69e1e4 6159 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 6160 {
1a69e1e4 6161 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
6162 if (offset + xfer > TYPE_LENGTH (type))
6163 xfer = TYPE_LENGTH (type) - offset;
6164 if (mips_debug)
6165 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6166 offset, xfer, regnum);
ba32f989
DJ
6167 mips_xfer_register (gdbarch, regcache,
6168 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 6169 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 6170 readbuf, writebuf, offset);
7a076fd2
FF
6171 }
6172 return RETURN_VALUE_REGISTER_CONVENTION;
6173 }
6d82d43b
AC
6174}
6175
dd824b04
DJ
6176/* Floating point register management.
6177
6178 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6179 64bit operations, these early MIPS cpus treat fp register pairs
6180 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6181 registers and offer a compatibility mode that emulates the MIPS2 fp
6182 model. When operating in MIPS2 fp compat mode, later cpu's split
6183 double precision floats into two 32-bit chunks and store them in
6184 consecutive fp regs. To display 64-bit floats stored in this
6185 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6186 Throw in user-configurable endianness and you have a real mess.
6187
6188 The way this works is:
6189 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6190 double-precision value will be split across two logical registers.
6191 The lower-numbered logical register will hold the low-order bits,
6192 regardless of the processor's endianness.
6193 - If we are on a 64-bit processor, and we are looking for a
6194 single-precision value, it will be in the low ordered bits
6195 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6196 save slot in memory.
6197 - If we are in 64-bit mode, everything is straightforward.
6198
6199 Note that this code only deals with "live" registers at the top of the
6200 stack. We will attempt to deal with saved registers later, when
025bb325 6201 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6202 interface that can deal with dynamic saved register sizes -- fp
6203 regs could be 32 bits wide in one frame and 64 on the frame above
6204 and below). */
6205
6206/* Copy a 32-bit single-precision value from the current frame
6207 into rare_buffer. */
6208
6209static void
e11c53d2 6210mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6211 gdb_byte *rare_buffer)
dd824b04 6212{
72a155b4
UW
6213 struct gdbarch *gdbarch = get_frame_arch (frame);
6214 int raw_size = register_size (gdbarch, regno);
224c3ddb 6215 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
dd824b04 6216
ca9d61b9 6217 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6218 error (_("can't read register %d (%s)"),
72a155b4 6219 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6220 if (raw_size == 8)
6221 {
6222 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6223 32 bits. */
dd824b04
DJ
6224 int offset;
6225
72a155b4 6226 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6227 offset = 4;
6228 else
6229 offset = 0;
6230
6231 memcpy (rare_buffer, raw_buffer + offset, 4);
6232 }
6233 else
6234 {
6235 memcpy (rare_buffer, raw_buffer, 4);
6236 }
6237}
6238
6239/* Copy a 64-bit double-precision value from the current frame into
6240 rare_buffer. This may include getting half of it from the next
6241 register. */
6242
6243static void
e11c53d2 6244mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6245 gdb_byte *rare_buffer)
dd824b04 6246{
72a155b4
UW
6247 struct gdbarch *gdbarch = get_frame_arch (frame);
6248 int raw_size = register_size (gdbarch, regno);
dd824b04 6249
9c9acae0 6250 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6251 {
6252 /* We have a 64-bit value for this register, and we should use
6d82d43b 6253 all 64 bits. */
ca9d61b9 6254 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6255 error (_("can't read register %d (%s)"),
72a155b4 6256 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6257 }
6258 else
6259 {
72a155b4 6260 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6261
72a155b4 6262 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6263 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6264 _("mips_read_fp_register_double: bad access to "
6265 "odd-numbered FP register"));
dd824b04
DJ
6266
6267 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6268 each register. */
72a155b4 6269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6270 {
e11c53d2
AC
6271 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6272 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6273 }
361d1df0 6274 else
dd824b04 6275 {
e11c53d2
AC
6276 mips_read_fp_register_single (frame, regno, rare_buffer);
6277 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6278 }
6279 }
6280}
6281
c906108c 6282static void
e11c53d2
AC
6283mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6284 int regnum)
025bb325 6285{ /* Do values for FP (float) regs. */
72a155b4 6286 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6287 gdb_byte *raw_buffer;
8ba0dd51
UW
6288 std::string flt_str, dbl_str;
6289
f69fdf9b
UW
6290 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6291 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
c5aa993b 6292
224c3ddb
SM
6293 raw_buffer
6294 = ((gdb_byte *)
6295 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
c906108c 6296
72a155b4 6297 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6298 fprintf_filtered (file, "%*s",
72a155b4 6299 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6300 "");
f0ef6b29 6301
72a155b4 6302 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6303 {
79a45b7d
TT
6304 struct value_print_options opts;
6305
f0ef6b29
KB
6306 /* 4-byte registers: Print hex and floating. Also print even
6307 numbered registers as doubles. */
e11c53d2 6308 mips_read_fp_register_single (frame, regnum, raw_buffer);
f69fdf9b 6309 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
c5aa993b 6310
79a45b7d 6311 get_formatted_print_options (&opts, 'x');
df4df182
UW
6312 print_scalar_formatted (raw_buffer,
6313 builtin_type (gdbarch)->builtin_uint32,
6314 &opts, 'w', file);
dd824b04 6315
8ba0dd51 6316 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
1adad886 6317
72a155b4 6318 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6319 {
e11c53d2 6320 mips_read_fp_register_double (frame, regnum, raw_buffer);
f69fdf9b 6321 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
1adad886 6322
8ba0dd51 6323 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
f0ef6b29 6324 }
c906108c
SS
6325 }
6326 else
dd824b04 6327 {
79a45b7d
TT
6328 struct value_print_options opts;
6329
f0ef6b29 6330 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6331 mips_read_fp_register_single (frame, regnum, raw_buffer);
f69fdf9b 6332 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
c906108c 6333
e11c53d2 6334 mips_read_fp_register_double (frame, regnum, raw_buffer);
f69fdf9b 6335 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
f0ef6b29 6336
79a45b7d 6337 get_formatted_print_options (&opts, 'x');
df4df182
UW
6338 print_scalar_formatted (raw_buffer,
6339 builtin_type (gdbarch)->builtin_uint64,
6340 &opts, 'g', file);
f0ef6b29 6341
8ba0dd51
UW
6342 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6343 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
f0ef6b29
KB
6344 }
6345}
6346
6347static void
e11c53d2 6348mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6349 int regnum)
f0ef6b29 6350{
a4b8ebc8 6351 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6352 struct value_print_options opts;
de15c4ab 6353 struct value *val;
1adad886 6354
004159a2 6355 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6356 {
e11c53d2 6357 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6358 return;
6359 }
6360
de15c4ab 6361 val = get_frame_register_value (frame, regnum);
f0ef6b29 6362
72a155b4 6363 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6364
6365 /* The problem with printing numeric register names (r26, etc.) is that
6366 the user can't use them on input. Probably the best solution is to
6367 fix it so that either the numeric or the funky (a2, etc.) names
6368 are accepted on input. */
6369 if (regnum < MIPS_NUMREGS)
e11c53d2 6370 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6371 else
e11c53d2 6372 fprintf_filtered (file, ": ");
f0ef6b29 6373
79a45b7d 6374 get_formatted_print_options (&opts, 'x');
de15c4ab 6375 val_print_scalar_formatted (value_type (val),
de15c4ab
PA
6376 value_embedded_offset (val),
6377 val,
6378 &opts, 0, file);
c906108c
SS
6379}
6380
1bab7383
YQ
6381/* Print IEEE exception condition bits in FLAGS. */
6382
6383static void
6384print_fpu_flags (struct ui_file *file, int flags)
6385{
6386 if (flags & (1 << 0))
6387 fputs_filtered (" inexact", file);
6388 if (flags & (1 << 1))
6389 fputs_filtered (" uflow", file);
6390 if (flags & (1 << 2))
6391 fputs_filtered (" oflow", file);
6392 if (flags & (1 << 3))
6393 fputs_filtered (" div0", file);
6394 if (flags & (1 << 4))
6395 fputs_filtered (" inval", file);
6396 if (flags & (1 << 5))
6397 fputs_filtered (" unimp", file);
6398 fputc_filtered ('\n', file);
6399}
6400
6401/* Print interesting information about the floating point processor
6402 (if present) or emulator. */
6403
6404static void
6405mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6406 struct frame_info *frame, const char *args)
6407{
6408 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6409 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6410 ULONGEST fcs = 0;
6411 int i;
6412
6413 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6414 type = MIPS_FPU_NONE;
6415
6416 fprintf_filtered (file, "fpu type: %s\n",
6417 type == MIPS_FPU_DOUBLE ? "double-precision"
6418 : type == MIPS_FPU_SINGLE ? "single-precision"
6419 : "none / unused");
6420
6421 if (type == MIPS_FPU_NONE)
6422 return;
6423
6424 fprintf_filtered (file, "reg size: %d bits\n",
6425 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6426
6427 fputs_filtered ("cond :", file);
6428 if (fcs & (1 << 23))
6429 fputs_filtered (" 0", file);
6430 for (i = 1; i <= 7; i++)
6431 if (fcs & (1 << (24 + i)))
6432 fprintf_filtered (file, " %d", i);
6433 fputc_filtered ('\n', file);
6434
6435 fputs_filtered ("cause :", file);
6436 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6437 fputs ("mask :", stdout);
6438 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6439 fputs ("flags :", stdout);
6440 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6441
6442 fputs_filtered ("rounding: ", file);
6443 switch (fcs & 3)
6444 {
6445 case 0: fputs_filtered ("nearest\n", file); break;
6446 case 1: fputs_filtered ("zero\n", file); break;
6447 case 2: fputs_filtered ("+inf\n", file); break;
6448 case 3: fputs_filtered ("-inf\n", file); break;
6449 }
6450
6451 fputs_filtered ("flush :", file);
6452 if (fcs & (1 << 21))
6453 fputs_filtered (" nearest", file);
6454 if (fcs & (1 << 22))
6455 fputs_filtered (" override", file);
6456 if (fcs & (1 << 24))
6457 fputs_filtered (" zero", file);
6458 if ((fcs & (0xb << 21)) == 0)
6459 fputs_filtered (" no", file);
6460 fputc_filtered ('\n', file);
6461
6462 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6463 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6464 fputc_filtered ('\n', file);
6465
6466 default_print_float_info (gdbarch, file, frame, args);
6467}
6468
f0ef6b29
KB
6469/* Replacement for generic do_registers_info.
6470 Print regs in pretty columns. */
6471
6472static int
e11c53d2
AC
6473print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6474 int regnum)
f0ef6b29 6475{
e11c53d2
AC
6476 fprintf_filtered (file, " ");
6477 mips_print_fp_register (file, frame, regnum);
6478 fprintf_filtered (file, "\n");
f0ef6b29
KB
6479 return regnum + 1;
6480}
6481
6482
025bb325 6483/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6484
6485static int
e11c53d2 6486print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6487 int start_regnum)
c906108c 6488{
a4b8ebc8 6489 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6490 /* Do values for GP (int) regs. */
313c5961
AH
6491 const gdb_byte *raw_buffer;
6492 struct value *value;
025bb325
MS
6493 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6494 per row. */
c906108c 6495 int col, byte;
a4b8ebc8 6496 int regnum;
c906108c 6497
025bb325 6498 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6499 for (col = 0, regnum = start_regnum;
f6efe3f8 6500 col < ncols && regnum < gdbarch_num_cooked_regs (gdbarch);
f57d151a 6501 regnum++)
c906108c 6502 {
72a155b4 6503 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6504 continue; /* unused register */
004159a2 6505 if (mips_float_register_p (gdbarch, regnum))
025bb325 6506 break; /* End the row: reached FP register. */
0cc93a06 6507 /* Large registers are handled separately. */
72a155b4 6508 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6509 {
6510 if (col > 0)
6511 break; /* End the row before this register. */
6512
6513 /* Print this register on a row by itself. */
6514 mips_print_register (file, frame, regnum);
6515 fprintf_filtered (file, "\n");
6516 return regnum + 1;
6517 }
d05f6826
DJ
6518 if (col == 0)
6519 fprintf_filtered (file, " ");
6d82d43b 6520 fprintf_filtered (file,
72a155b4
UW
6521 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6522 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6523 col++;
6524 }
d05f6826
DJ
6525
6526 if (col == 0)
6527 return regnum;
6528
025bb325 6529 /* Print the R0 to R31 names. */
72a155b4 6530 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6531 fprintf_filtered (file, "\n R%-4d",
72a155b4 6532 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6533 else
6534 fprintf_filtered (file, "\n ");
c906108c 6535
025bb325 6536 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6537 for (col = 0, regnum = start_regnum;
f6efe3f8 6538 col < ncols && regnum < gdbarch_num_cooked_regs (gdbarch);
f57d151a 6539 regnum++)
c906108c 6540 {
72a155b4 6541 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6542 continue; /* unused register */
004159a2 6543 if (mips_float_register_p (gdbarch, regnum))
025bb325 6544 break; /* End row: reached FP register. */
72a155b4 6545 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6546 break; /* End row: large register. */
6547
c906108c 6548 /* OK: get the data in raw format. */
313c5961
AH
6549 value = get_frame_register_value (frame, regnum);
6550 if (value_optimized_out (value)
6551 || !value_entirely_available (value))
325c9fd4
JB
6552 {
6553 fprintf_filtered (file, "%*s ",
6554 (int) mips_abi_regsize (gdbarch) * 2,
6555 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6556 : "<unavailable>"));
6557 col++;
6558 continue;
6559 }
313c5961 6560 raw_buffer = value_contents_all (value);
c906108c 6561 /* pad small registers */
4246e332 6562 for (byte = 0;
72a155b4
UW
6563 byte < (mips_abi_regsize (gdbarch)
6564 - register_size (gdbarch, regnum)); byte++)
428544e8 6565 fprintf_filtered (file, " ");
025bb325 6566 /* Now print the register value in hex, endian order. */
72a155b4 6567 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6568 for (byte =
72a155b4
UW
6569 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6570 byte < register_size (gdbarch, regnum); byte++)
47a35522 6571 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6572 else
72a155b4 6573 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6574 byte >= 0; byte--)
47a35522 6575 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6576 fprintf_filtered (file, " ");
c906108c
SS
6577 col++;
6578 }
025bb325 6579 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6580 fprintf_filtered (file, "\n");
c906108c
SS
6581
6582 return regnum;
6583}
6584
025bb325 6585/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6586
bf1f5b4c 6587static void
e11c53d2
AC
6588mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6589 struct frame_info *frame, int regnum, int all)
c906108c 6590{
025bb325 6591 if (regnum != -1) /* Do one specified register. */
c906108c 6592 {
72a155b4
UW
6593 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6594 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6595 error (_("Not a valid register for the current processor type"));
c906108c 6596
0cc93a06 6597 mips_print_register (file, frame, regnum);
e11c53d2 6598 fprintf_filtered (file, "\n");
c906108c 6599 }
c5aa993b 6600 else
025bb325 6601 /* Do all (or most) registers. */
c906108c 6602 {
72a155b4 6603 regnum = gdbarch_num_regs (gdbarch);
f6efe3f8 6604 while (regnum < gdbarch_num_cooked_regs (gdbarch))
c906108c 6605 {
004159a2 6606 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6607 {
025bb325 6608 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6609 regnum = print_fp_register_row (file, frame, regnum);
6610 else
025bb325 6611 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6612 }
c906108c 6613 else
e11c53d2 6614 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6615 }
6616 }
6617}
6618
63807e1d 6619static int
3352ef37
AC
6620mips_single_step_through_delay (struct gdbarch *gdbarch,
6621 struct frame_info *frame)
c906108c 6622{
3352ef37 6623 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6624 enum mips_isa isa;
6625 ULONGEST insn;
4cc0665f
MR
6626 int size;
6627
6628 if ((mips_pc_is_mips (pc)
ab50adb6 6629 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
4cc0665f 6630 || (mips_pc_is_micromips (gdbarch, pc)
ab50adb6 6631 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
4cc0665f 6632 || (mips_pc_is_mips16 (gdbarch, pc)
ab50adb6 6633 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6634 return 0;
6635
4cc0665f
MR
6636 isa = mips_pc_isa (gdbarch, pc);
6637 /* _has_delay_slot above will have validated the read. */
6638 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6639 size = mips_insn_size (isa, insn);
8b86c959
YQ
6640
6641 const address_space *aspace = get_frame_address_space (frame);
6642
4cc0665f 6643 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6644}
6645
6d82d43b
AC
6646/* To skip prologues, I use this predicate. Returns either PC itself
6647 if the code at PC does not look like a function prologue; otherwise
6648 returns an address that (if we're lucky) follows the prologue. If
6649 LENIENT, then we must skip everything which is involved in setting
6650 up the frame (it's OK to skip more, just so long as we don't skip
6651 anything which might clobber the registers which are being saved.
6652 We must skip more in the case where part of the prologue is in the
6653 delay slot of a non-prologue instruction). */
6654
6655static CORE_ADDR
6093d2eb 6656mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6657{
8b622e6a
AC
6658 CORE_ADDR limit_pc;
6659 CORE_ADDR func_addr;
6660
6d82d43b
AC
6661 /* See if we can determine the end of the prologue via the symbol table.
6662 If so, then return either PC, or the PC after the prologue, whichever
6663 is greater. */
8b622e6a
AC
6664 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6665 {
d80b854b
UW
6666 CORE_ADDR post_prologue_pc
6667 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a 6668 if (post_prologue_pc != 0)
325fac50 6669 return std::max (pc, post_prologue_pc);
8b622e6a 6670 }
6d82d43b
AC
6671
6672 /* Can't determine prologue from the symbol table, need to examine
6673 instructions. */
6674
98b4dd94
JB
6675 /* Find an upper limit on the function prologue using the debug
6676 information. If the debug information could not be used to provide
6677 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6678 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6679 if (limit_pc == 0)
6680 limit_pc = pc + 100; /* Magic. */
6681
4cc0665f 6682 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6683 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6684 else if (mips_pc_is_micromips (gdbarch, pc))
6685 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6686 else
e17a4113 6687 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6688}
6689
c9cf6e20
MG
6690/* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6691 This is a helper function for mips_stack_frame_destroyed_p. */
6692
97ab0fdd 6693static int
c9cf6e20 6694mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6695{
6696 CORE_ADDR func_addr = 0, func_end = 0;
6697
6698 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6699 {
6700 /* The MIPS epilogue is max. 12 bytes long. */
6701 CORE_ADDR addr = func_end - 12;
6702
6703 if (addr < func_addr + 4)
6704 addr = func_addr + 4;
6705 if (pc < addr)
6706 return 0;
6707
6708 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6709 {
6710 unsigned long high_word;
6711 unsigned long inst;
6712
4cc0665f 6713 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6714 high_word = (inst >> 16) & 0xffff;
6715
6716 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6717 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6718 && inst != 0x03e00008 /* jr $ra */
6719 && inst != 0x00000000) /* nop */
6720 return 0;
6721 }
6722
6723 return 1;
6724 }
6725
6726 return 0;
6727}
6728
c9cf6e20
MG
6729/* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6730 This is a helper function for mips_stack_frame_destroyed_p. */
4cc0665f
MR
6731
6732static int
c9cf6e20 6733micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
6734{
6735 CORE_ADDR func_addr = 0;
6736 CORE_ADDR func_end = 0;
6737 CORE_ADDR addr;
6738 ULONGEST insn;
6739 long offset;
6740 int dreg;
6741 int sreg;
6742 int loc;
6743
6744 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6745 return 0;
6746
6747 /* The microMIPS epilogue is max. 12 bytes long. */
6748 addr = func_end - 12;
6749
6750 if (addr < func_addr + 2)
6751 addr = func_addr + 2;
6752 if (pc < addr)
6753 return 0;
6754
6755 for (; pc < func_end; pc += loc)
6756 {
6757 loc = 0;
6758 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6759 loc += MIPS_INSN16_SIZE;
6760 switch (mips_insn_size (ISA_MICROMIPS, insn))
6761 {
4cc0665f
MR
6762 /* 32-bit instructions. */
6763 case 2 * MIPS_INSN16_SIZE:
6764 insn <<= 16;
6765 insn |= mips_fetch_instruction (gdbarch,
6766 ISA_MICROMIPS, pc + loc, NULL);
6767 loc += MIPS_INSN16_SIZE;
6768 switch (micromips_op (insn >> 16))
6769 {
6770 case 0xc: /* ADDIU: bits 001100 */
6771 case 0x17: /* DADDIU: bits 010111 */
6772 sreg = b0s5_reg (insn >> 16);
6773 dreg = b5s5_reg (insn >> 16);
6774 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6775 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6776 /* (D)ADDIU $sp, imm */
6777 && offset >= 0)
6778 break;
6779 return 0;
6780
6781 default:
6782 return 0;
6783 }
6784 break;
6785
6786 /* 16-bit instructions. */
6787 case MIPS_INSN16_SIZE:
6788 switch (micromips_op (insn))
6789 {
6790 case 0x3: /* MOVE: bits 000011 */
6791 sreg = b0s5_reg (insn);
6792 dreg = b5s5_reg (insn);
6793 if (sreg == 0 && dreg == 0)
6794 /* MOVE $zero, $zero aka NOP */
6795 break;
6796 return 0;
6797
6798 case 0x11: /* POOL16C: bits 010001 */
6799 if (b5s5_op (insn) == 0x18
6800 /* JRADDIUSP: bits 010011 11000 */
6801 || (b5s5_op (insn) == 0xd
6802 /* JRC: bits 010011 01101 */
6803 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6804 /* JRC $ra */
6805 break;
6806 return 0;
6807
6808 case 0x13: /* POOL16D: bits 010011 */
6809 offset = micromips_decode_imm9 (b1s9_imm (insn));
6810 if ((insn & 0x1) == 0x1
6811 /* ADDIUSP: bits 010011 1 */
6812 && offset > 0)
6813 break;
6814 return 0;
6815
6816 default:
6817 return 0;
6818 }
6819 }
6820 }
6821
6822 return 1;
6823}
6824
c9cf6e20
MG
6825/* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6826 This is a helper function for mips_stack_frame_destroyed_p. */
6827
97ab0fdd 6828static int
c9cf6e20 6829mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6830{
6831 CORE_ADDR func_addr = 0, func_end = 0;
6832
6833 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6834 {
6835 /* The MIPS epilogue is max. 12 bytes long. */
6836 CORE_ADDR addr = func_end - 12;
6837
6838 if (addr < func_addr + 4)
6839 addr = func_addr + 4;
6840 if (pc < addr)
6841 return 0;
6842
6843 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6844 {
6845 unsigned short inst;
6846
4cc0665f 6847 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6848
6849 if ((inst & 0xf800) == 0xf000) /* extend */
6850 continue;
6851
6852 if (inst != 0x6300 /* addiu $sp,offset */
6853 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6854 && inst != 0xe820 /* jr $ra */
6855 && inst != 0xe8a0 /* jrc $ra */
6856 && inst != 0x6500) /* nop */
6857 return 0;
6858 }
6859
6860 return 1;
6861 }
6862
6863 return 0;
6864}
6865
c9cf6e20
MG
6866/* Implement the stack_frame_destroyed_p gdbarch method.
6867
6868 The epilogue is defined here as the area at the end of a function,
97ab0fdd 6869 after an instruction which destroys the function's stack frame. */
c9cf6e20 6870
97ab0fdd 6871static int
c9cf6e20 6872mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd 6873{
4cc0665f 6874 if (mips_pc_is_mips16 (gdbarch, pc))
c9cf6e20 6875 return mips16_stack_frame_destroyed_p (gdbarch, pc);
4cc0665f 6876 else if (mips_pc_is_micromips (gdbarch, pc))
c9cf6e20 6877 return micromips_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd 6878 else
c9cf6e20 6879 return mips32_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd
MR
6880}
6881
025bb325 6882/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6883 used for all MIPS-specific commands. */
6884
a5ea2558 6885static void
981a3fb3 6886show_mips_command (const char *args, int from_tty)
a5ea2558
AC
6887{
6888 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6889}
6890
a5ea2558 6891static void
981a3fb3 6892set_mips_command (const char *args, int from_tty)
a5ea2558 6893{
6d82d43b
AC
6894 printf_unfiltered
6895 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6896 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6897}
6898
c906108c
SS
6899/* Commands to show/set the MIPS FPU type. */
6900
c906108c 6901static void
bd4c9dfe 6902show_mipsfpu_command (const char *args, int from_tty)
c906108c 6903{
a121b7c1 6904 const char *fpu;
6ca0852e 6905
f5656ead 6906 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6907 {
6908 printf_unfiltered
6909 ("The MIPS floating-point coprocessor is unknown "
6910 "because the current architecture is not MIPS.\n");
6911 return;
6912 }
6913
f5656ead 6914 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6915 {
6916 case MIPS_FPU_SINGLE:
6917 fpu = "single-precision";
6918 break;
6919 case MIPS_FPU_DOUBLE:
6920 fpu = "double-precision";
6921 break;
6922 case MIPS_FPU_NONE:
6923 fpu = "absent (none)";
6924 break;
93d56215 6925 default:
e2e0b3e5 6926 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6927 }
6928 if (mips_fpu_type_auto)
025bb325
MS
6929 printf_unfiltered ("The MIPS floating-point coprocessor "
6930 "is set automatically (currently %s)\n",
6931 fpu);
c906108c 6932 else
6d82d43b
AC
6933 printf_unfiltered
6934 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6935}
6936
6937
c906108c 6938static void
981a3fb3 6939set_mipsfpu_command (const char *args, int from_tty)
c906108c 6940{
025bb325
MS
6941 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6942 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6943 show_mipsfpu_command (args, from_tty);
6944}
6945
c906108c 6946static void
bd4c9dfe 6947set_mipsfpu_single_command (const char *args, int from_tty)
c906108c 6948{
8d5838b5
AC
6949 struct gdbarch_info info;
6950 gdbarch_info_init (&info);
c906108c
SS
6951 mips_fpu_type = MIPS_FPU_SINGLE;
6952 mips_fpu_type_auto = 0;
8d5838b5
AC
6953 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6954 instead of relying on globals. Doing that would let generic code
6955 handle the search for this specific architecture. */
6956 if (!gdbarch_update_p (info))
e2e0b3e5 6957 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6958}
6959
c906108c 6960static void
bd4c9dfe 6961set_mipsfpu_double_command (const char *args, int from_tty)
c906108c 6962{
8d5838b5
AC
6963 struct gdbarch_info info;
6964 gdbarch_info_init (&info);
c906108c
SS
6965 mips_fpu_type = MIPS_FPU_DOUBLE;
6966 mips_fpu_type_auto = 0;
8d5838b5
AC
6967 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6968 instead of relying on globals. Doing that would let generic code
6969 handle the search for this specific architecture. */
6970 if (!gdbarch_update_p (info))
e2e0b3e5 6971 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6972}
6973
c906108c 6974static void
bd4c9dfe 6975set_mipsfpu_none_command (const char *args, int from_tty)
c906108c 6976{
8d5838b5
AC
6977 struct gdbarch_info info;
6978 gdbarch_info_init (&info);
c906108c
SS
6979 mips_fpu_type = MIPS_FPU_NONE;
6980 mips_fpu_type_auto = 0;
8d5838b5
AC
6981 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6982 instead of relying on globals. Doing that would let generic code
6983 handle the search for this specific architecture. */
6984 if (!gdbarch_update_p (info))
e2e0b3e5 6985 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6986}
6987
c906108c 6988static void
bd4c9dfe 6989set_mipsfpu_auto_command (const char *args, int from_tty)
c906108c
SS
6990{
6991 mips_fpu_type_auto = 1;
6992}
6993
c906108c
SS
6994/* Just like reinit_frame_cache, but with the right arguments to be
6995 callable as an sfunc. */
6996
6997static void
eb4c3f4a 6998reinit_frame_cache_sfunc (const char *args, int from_tty,
acdb74a0 6999 struct cmd_list_element *c)
c906108c
SS
7000{
7001 reinit_frame_cache ();
7002}
7003
a89aa300
AC
7004static int
7005gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 7006{
e47ad6c0
YQ
7007 gdb_disassembler *di
7008 = static_cast<gdb_disassembler *>(info->application_data);
7009 struct gdbarch *gdbarch = di->arch ();
4cc0665f 7010
d31431ed
AC
7011 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7012 disassembler needs to be able to locally determine the ISA, and
7013 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7014 work. */
4cc0665f 7015 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 7016 info->mach = bfd_mach_mips16;
4cc0665f
MR
7017 else if (mips_pc_is_micromips (gdbarch, memaddr))
7018 info->mach = bfd_mach_mips_micromips;
c906108c
SS
7019
7020 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
7021 memaddr &= (info->mach == bfd_mach_mips16
7022 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 7023
6394c606 7024 return default_print_insn (memaddr, info);
c906108c
SS
7025}
7026
cd6c3b4f
YQ
7027/* Implement the breakpoint_kind_from_pc gdbarch method. */
7028
d19280ad
YQ
7029static int
7030mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
c906108c 7031{
4cc0665f
MR
7032 CORE_ADDR pc = *pcptr;
7033
d19280ad 7034 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7035 {
d19280ad
YQ
7036 *pcptr = unmake_compact_addr (pc);
7037 return MIPS_BP_KIND_MIPS16;
7038 }
7039 else if (mips_pc_is_micromips (gdbarch, pc))
7040 {
7041 ULONGEST insn;
7042 int status;
c906108c 7043
d19280ad
YQ
7044 *pcptr = unmake_compact_addr (pc);
7045 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7046 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7047 return MIPS_BP_KIND_MICROMIPS16;
7048 else
7049 return MIPS_BP_KIND_MICROMIPS32;
c906108c
SS
7050 }
7051 else
d19280ad
YQ
7052 return MIPS_BP_KIND_MIPS32;
7053}
7054
cd6c3b4f
YQ
7055/* Implement the sw_breakpoint_from_kind gdbarch method. */
7056
d19280ad
YQ
7057static const gdb_byte *
7058mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7059{
7060 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7061
7062 switch (kind)
c906108c 7063 {
d19280ad
YQ
7064 case MIPS_BP_KIND_MIPS16:
7065 {
7066 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7067 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7068
7069 *size = 2;
7070 if (byte_order_for_code == BFD_ENDIAN_BIG)
7071 return mips16_big_breakpoint;
7072 else
c906108c 7073 return mips16_little_breakpoint;
d19280ad
YQ
7074 }
7075 case MIPS_BP_KIND_MICROMIPS16:
7076 {
7077 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7078 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7079
7080 *size = 2;
7081
7082 if (byte_order_for_code == BFD_ENDIAN_BIG)
7083 return micromips16_big_breakpoint;
7084 else
7085 return micromips16_little_breakpoint;
7086 }
7087 case MIPS_BP_KIND_MICROMIPS32:
7088 {
7089 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7090 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7091
7092 *size = 4;
7093 if (byte_order_for_code == BFD_ENDIAN_BIG)
7094 return micromips32_big_breakpoint;
7095 else
7096 return micromips32_little_breakpoint;
7097 }
7098 case MIPS_BP_KIND_MIPS32:
7099 {
7100 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7101 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
c906108c 7102
d19280ad
YQ
7103 *size = 4;
7104 if (byte_order_for_code == BFD_ENDIAN_BIG)
7105 return big_breakpoint;
7106 else
7e3d947d 7107 return little_breakpoint;
d19280ad
YQ
7108 }
7109 default:
7110 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7111 };
c906108c
SS
7112}
7113
ab50adb6
MR
7114/* Return non-zero if the standard MIPS instruction INST has a branch
7115 delay slot (i.e. it is a jump or branch instruction). This function
7116 is based on mips32_next_pc. */
c8cef75f
MR
7117
7118static int
ab50adb6 7119mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
c8cef75f 7120{
c8cef75f 7121 int op;
a385295e
MR
7122 int rs;
7123 int rt;
c8cef75f 7124
c8cef75f
MR
7125 op = itype_op (inst);
7126 if ((inst & 0xe0000000) != 0)
a385295e
MR
7127 {
7128 rs = itype_rs (inst);
7129 rt = itype_rt (inst);
f94363d7
AP
7130 return (is_octeon_bbit_op (op, gdbarch)
7131 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
7132 || op == 29 /* JALX: bits 011101 */
7133 || (op == 17
7134 && (rs == 8
c8cef75f 7135 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7136 || (rs == 9 && (rt & 0x2) == 0)
7137 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7138 || (rs == 10 && (rt & 0x2) == 0))));
7139 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7140 }
c8cef75f
MR
7141 else
7142 switch (op & 0x07) /* extract bits 28,27,26 */
7143 {
7144 case 0: /* SPECIAL */
7145 op = rtype_funct (inst);
7146 return (op == 8 /* JR */
7147 || op == 9); /* JALR */
7148 break; /* end SPECIAL */
7149 case 1: /* REGIMM */
a385295e
MR
7150 rs = itype_rs (inst);
7151 rt = itype_rt (inst); /* branch condition */
7152 return ((rt & 0xc) == 0
c8cef75f
MR
7153 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7154 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7155 || ((rt & 0x1e) == 0x1c && rs == 0));
7156 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7157 break; /* end REGIMM */
7158 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7159 return 1;
7160 break;
7161 }
7162}
7163
ab50adb6
MR
7164/* Return non-zero if a standard MIPS instruction at ADDR has a branch
7165 delay slot (i.e. it is a jump or branch instruction). */
c8cef75f 7166
4cc0665f 7167static int
ab50adb6 7168mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
4cc0665f
MR
7169{
7170 ULONGEST insn;
7171 int status;
7172
ab50adb6 7173 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
4cc0665f
MR
7174 if (status)
7175 return 0;
7176
ab50adb6
MR
7177 return mips32_instruction_has_delay_slot (gdbarch, insn);
7178}
4cc0665f 7179
ab50adb6
MR
7180/* Return non-zero if the microMIPS instruction INSN, comprising the
7181 16-bit major opcode word in the high 16 bits and any second word
7182 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7183 jump or branch instruction). The instruction must be 32-bit if
7184 MUSTBE32 is set or can be any instruction otherwise. */
7185
7186static int
7187micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7188{
7189 ULONGEST major = insn >> 16;
4cc0665f 7190
ab50adb6
MR
7191 switch (micromips_op (major))
7192 {
7193 /* 16-bit instructions. */
7194 case 0x33: /* B16: bits 110011 */
7195 case 0x2b: /* BNEZ16: bits 101011 */
7196 case 0x23: /* BEQZ16: bits 100011 */
7197 return !mustbe32;
7198 case 0x11: /* POOL16C: bits 010001 */
7199 return (!mustbe32
7200 && ((b5s5_op (major) == 0xc
7201 /* JR16: bits 010001 01100 */
7202 || (b5s5_op (major) & 0x1e) == 0xe)));
7203 /* JALR16, JALRS16: bits 010001 0111x */
7204 /* 32-bit instructions. */
7205 case 0x3d: /* JAL: bits 111101 */
7206 case 0x3c: /* JALX: bits 111100 */
7207 case 0x35: /* J: bits 110101 */
7208 case 0x2d: /* BNE: bits 101101 */
7209 case 0x25: /* BEQ: bits 100101 */
7210 case 0x1d: /* JALS: bits 011101 */
7211 return 1;
7212 case 0x10: /* POOL32I: bits 010000 */
7213 return ((b5s5_op (major) & 0x1c) == 0x0
4cc0665f 7214 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
ab50adb6 7215 || (b5s5_op (major) & 0x1d) == 0x4
4cc0665f 7216 /* BLEZ, BGTZ: bits 010000 001x0 */
ab50adb6 7217 || (b5s5_op (major) & 0x1d) == 0x11
4cc0665f 7218 /* BLTZALS, BGEZALS: bits 010000 100x1 */
ab50adb6
MR
7219 || ((b5s5_op (major) & 0x1e) == 0x14
7220 && (major & 0x3) == 0x0)
4cc0665f 7221 /* BC2F, BC2T: bits 010000 1010x xxx00 */
ab50adb6 7222 || (b5s5_op (major) & 0x1e) == 0x1a
4cc0665f 7223 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
ab50adb6
MR
7224 || ((b5s5_op (major) & 0x1e) == 0x1c
7225 && (major & 0x3) == 0x0)
4cc0665f 7226 /* BC1F, BC1T: bits 010000 1110x xxx00 */
ab50adb6
MR
7227 || ((b5s5_op (major) & 0x1c) == 0x1c
7228 && (major & 0x3) == 0x1));
4cc0665f 7229 /* BC1ANY*: bits 010000 111xx xxx01 */
ab50adb6
MR
7230 case 0x0: /* POOL32A: bits 000000 */
7231 return (b0s6_op (insn) == 0x3c
7232 /* POOL32Axf: bits 000000 ... 111100 */
7233 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7234 /* JALR, JALR.HB: 000000 000x111100 111100 */
7235 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7236 default:
7237 return 0;
7238 }
4cc0665f
MR
7239}
7240
ab50adb6 7241/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
ae790652
MR
7242 slot (i.e. it is a non-compact jump instruction). The instruction
7243 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7244
c8cef75f 7245static int
ab50adb6
MR
7246micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7247 CORE_ADDR addr, int mustbe32)
c8cef75f 7248{
ab50adb6 7249 ULONGEST insn;
c8cef75f 7250 int status;
3f7f3650 7251 int size;
c8cef75f 7252
ab50adb6 7253 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
c8cef75f
MR
7254 if (status)
7255 return 0;
3f7f3650 7256 size = mips_insn_size (ISA_MICROMIPS, insn);
ab50adb6 7257 insn <<= 16;
3f7f3650 7258 if (size == 2 * MIPS_INSN16_SIZE)
ab50adb6
MR
7259 {
7260 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7261 if (status)
7262 return 0;
7263 }
7264
7265 return micromips_instruction_has_delay_slot (insn, mustbe32);
7266}
c8cef75f 7267
ab50adb6
MR
7268/* Return non-zero if the MIPS16 instruction INST, which must be
7269 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7270 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7271 instruction). This function is based on mips16_next_pc. */
7272
7273static int
7274mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7275{
ae790652
MR
7276 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7277 return !mustbe32;
c8cef75f
MR
7278 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7279}
7280
ab50adb6
MR
7281/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7282 slot (i.e. it is a non-compact jump instruction). The instruction
7283 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7284
7285static int
7286mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7287 CORE_ADDR addr, int mustbe32)
7288{
7289 unsigned short insn;
7290 int status;
7291
7292 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7293 if (status)
7294 return 0;
7295
7296 return mips16_instruction_has_delay_slot (insn, mustbe32);
7297}
7298
c8cef75f
MR
7299/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7300 This assumes KSSEG exists. */
7301
7302static CORE_ADDR
7303mips_segment_boundary (CORE_ADDR bpaddr)
7304{
7305 CORE_ADDR mask = CORE_ADDR_MAX;
7306 int segsize;
7307
7308 if (sizeof (CORE_ADDR) == 8)
7309 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7310 a compiler warning produced where CORE_ADDR is a 32-bit type even
7311 though in that case this is dead code). */
7312 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7313 {
7314 case 3:
7315 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7316 segsize = 29; /* 32-bit compatibility segment */
7317 else
7318 segsize = 62; /* xkseg */
7319 break;
7320 case 2: /* xkphys */
7321 segsize = 59;
7322 break;
7323 default: /* xksseg (1), xkuseg/kuseg (0) */
7324 segsize = 62;
7325 break;
7326 }
7327 else if (bpaddr & 0x80000000) /* kernel segment */
7328 segsize = 29;
7329 else
7330 segsize = 31; /* user segment */
7331 mask <<= segsize;
7332 return bpaddr & mask;
7333}
7334
7335/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7336 it backwards if necessary. Return the address of the new location. */
7337
7338static CORE_ADDR
7339mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7340{
22e048c9 7341 CORE_ADDR prev_addr;
c8cef75f
MR
7342 CORE_ADDR boundary;
7343 CORE_ADDR func_addr;
7344
7345 /* If a breakpoint is set on the instruction in a branch delay slot,
7346 GDB gets confused. When the breakpoint is hit, the PC isn't on
7347 the instruction in the branch delay slot, the PC will point to
7348 the branch instruction. Since the PC doesn't match any known
7349 breakpoints, GDB reports a trap exception.
7350
7351 There are two possible fixes for this problem.
7352
7353 1) When the breakpoint gets hit, see if the BD bit is set in the
7354 Cause register (which indicates the last exception occurred in a
7355 branch delay slot). If the BD bit is set, fix the PC to point to
7356 the instruction in the branch delay slot.
7357
7358 2) When the user sets the breakpoint, don't allow him to set the
7359 breakpoint on the instruction in the branch delay slot. Instead
7360 move the breakpoint to the branch instruction (which will have
7361 the same result).
7362
7363 The problem with the first solution is that if the user then
7364 single-steps the processor, the branch instruction will get
7365 skipped (since GDB thinks the PC is on the instruction in the
7366 branch delay slot).
7367
7368 So, we'll use the second solution. To do this we need to know if
7369 the instruction we're trying to set the breakpoint on is in the
7370 branch delay slot. */
7371
7372 boundary = mips_segment_boundary (bpaddr);
7373
7374 /* Make sure we don't scan back before the beginning of the current
7375 function, since we may fetch constant data or insns that look like
7376 a jump. Of course we might do that anyway if the compiler has
7377 moved constants inline. :-( */
7378 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7379 && func_addr > boundary && func_addr <= bpaddr)
7380 boundary = func_addr;
7381
4cc0665f 7382 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7383 {
7384 if (bpaddr == boundary)
7385 return bpaddr;
7386
7387 /* If the previous instruction has a branch delay slot, we have
7388 to move the breakpoint to the branch instruction. */
7389 prev_addr = bpaddr - 4;
ab50adb6 7390 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
c8cef75f
MR
7391 bpaddr = prev_addr;
7392 }
7393 else
7394 {
ab50adb6 7395 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7396 CORE_ADDR addr, jmpaddr;
7397 int i;
7398
4cc0665f 7399 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7400
7401 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7402 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7403 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7404 The microMIPS ASE has a whole range of jumps and branches
7405 with delay slots, some of which take 4 bytes and some take
7406 2 bytes, so the idea is the same.
c8cef75f
MR
7407 FIXME: We have to assume that bpaddr is not the second half
7408 of an extended instruction. */
ab50adb6
MR
7409 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7410 ? micromips_insn_at_pc_has_delay_slot
7411 : mips16_insn_at_pc_has_delay_slot);
c8cef75f
MR
7412
7413 jmpaddr = 0;
7414 addr = bpaddr;
7415 for (i = 1; i < 4; i++)
7416 {
4cc0665f 7417 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7418 break;
4cc0665f 7419 addr -= MIPS_INSN16_SIZE;
ab50adb6 7420 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7421 /* Looks like a JR/JALR at [target-1], but it could be
7422 the second word of a previous JAL/JALX, so record it
7423 and check back one more. */
7424 jmpaddr = addr;
ab50adb6 7425 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7426 {
7427 if (i == 2)
7428 /* Looks like a JAL/JALX at [target-2], but it could also
7429 be the second word of a previous JAL/JALX, record it,
7430 and check back one more. */
7431 jmpaddr = addr;
7432 else
7433 /* Looks like a JAL/JALX at [target-3], so any previously
7434 recorded JAL/JALX or JR/JALR must be wrong, because:
7435
7436 >-3: JAL
7437 -2: JAL-ext (can't be JAL/JALX)
7438 -1: bdslot (can't be JR/JALR)
7439 0: target insn
7440
7441 Of course it could be another JAL-ext which looks
7442 like a JAL, but in that case we'd have broken out
7443 of this loop at [target-2]:
7444
7445 -4: JAL
7446 >-3: JAL-ext
7447 -2: bdslot (can't be jmp)
7448 -1: JR/JALR
7449 0: target insn */
7450 jmpaddr = 0;
7451 }
7452 else
7453 {
7454 /* Not a jump instruction: if we're at [target-1] this
7455 could be the second word of a JAL/JALX, so continue;
7456 otherwise we're done. */
7457 if (i > 1)
7458 break;
7459 }
7460 }
7461
7462 if (jmpaddr)
7463 bpaddr = jmpaddr;
7464 }
7465
7466 return bpaddr;
7467}
7468
14132e89
MR
7469/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7470 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7471
7472static int
7473mips_is_stub_suffix (const char *suffix, int zero)
7474{
7475 switch (suffix[0])
7476 {
7477 case '0':
7478 return zero && suffix[1] == '\0';
7479 case '1':
7480 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7481 case '2':
7482 case '5':
7483 case '6':
7484 case '9':
7485 return suffix[1] == '\0';
7486 default:
7487 return 0;
7488 }
7489}
7490
7491/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7492 call stubs, one of sf, df, sc, or dc. */
7493
7494static int
7495mips_is_stub_mode (const char *mode)
7496{
7497 return ((mode[0] == 's' || mode[0] == 'd')
7498 && (mode[1] == 'f' || mode[1] == 'c'));
7499}
7500
7501/* Code at PC is a compiler-generated stub. Such a stub for a function
7502 bar might have a name like __fn_stub_bar, and might look like this:
7503
7504 mfc1 $4, $f13
7505 mfc1 $5, $f12
7506 mfc1 $6, $f15
7507 mfc1 $7, $f14
7508
7509 followed by (or interspersed with):
7510
7511 j bar
7512
7513 or:
7514
7515 lui $25, %hi(bar)
7516 addiu $25, $25, %lo(bar)
7517 jr $25
7518
7519 ($1 may be used in old code; for robustness we accept any register)
7520 or, in PIC code:
7521
7522 lui $28, %hi(_gp_disp)
7523 addiu $28, $28, %lo(_gp_disp)
7524 addu $28, $28, $25
7525 lw $25, %got(bar)
7526 addiu $25, $25, %lo(bar)
7527 jr $25
7528
7529 In the case of a __call_stub_bar stub, the sequence to set up
7530 arguments might look like this:
7531
7532 mtc1 $4, $f13
7533 mtc1 $5, $f12
7534 mtc1 $6, $f15
7535 mtc1 $7, $f14
7536
7537 followed by (or interspersed with) one of the jump sequences above.
7538
7539 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7540 of J or JR, respectively, followed by:
7541
7542 mfc1 $2, $f0
7543 mfc1 $3, $f1
7544 jr $18
7545
7546 We are at the beginning of the stub here, and scan down and extract
7547 the target address from the jump immediate instruction or, if a jump
7548 register instruction is used, from the register referred. Return
7549 the value of PC calculated or 0 if inconclusive.
7550
7551 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7552
7553static CORE_ADDR
7554mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7555{
7556 struct gdbarch *gdbarch = get_frame_arch (frame);
7557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7558 int addrreg = MIPS_ZERO_REGNUM;
7559 CORE_ADDR start_pc = pc;
7560 CORE_ADDR target_pc = 0;
7561 CORE_ADDR addr = 0;
7562 CORE_ADDR gp = 0;
7563 int status = 0;
7564 int i;
7565
7566 for (i = 0;
7567 status == 0 && target_pc == 0 && i < 20;
7568 i++, pc += MIPS_INSN32_SIZE)
7569 {
4cc0665f 7570 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7571 CORE_ADDR imm;
7572 int rt;
7573 int rs;
7574 int rd;
7575
7576 switch (itype_op (inst))
7577 {
7578 case 0: /* SPECIAL */
7579 switch (rtype_funct (inst))
7580 {
7581 case 8: /* JR */
7582 case 9: /* JALR */
7583 rs = rtype_rs (inst);
7584 if (rs == MIPS_GP_REGNUM)
7585 target_pc = gp; /* Hmm... */
7586 else if (rs == addrreg)
7587 target_pc = addr;
7588 break;
7589
7590 case 0x21: /* ADDU */
7591 rt = rtype_rt (inst);
7592 rs = rtype_rs (inst);
7593 rd = rtype_rd (inst);
7594 if (rd == MIPS_GP_REGNUM
7595 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7596 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7597 gp += start_pc;
7598 break;
7599 }
7600 break;
7601
7602 case 2: /* J */
7603 case 3: /* JAL */
7604 target_pc = jtype_target (inst) << 2;
7605 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7606 break;
7607
7608 case 9: /* ADDIU */
7609 rt = itype_rt (inst);
7610 rs = itype_rs (inst);
7611 if (rt == rs)
7612 {
7613 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7614 if (rt == MIPS_GP_REGNUM)
7615 gp += imm;
7616 else if (rt == addrreg)
7617 addr += imm;
7618 }
7619 break;
7620
7621 case 0xf: /* LUI */
7622 rt = itype_rt (inst);
7623 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7624 if (rt == MIPS_GP_REGNUM)
7625 gp = imm;
7626 else if (rt != MIPS_ZERO_REGNUM)
7627 {
7628 addrreg = rt;
7629 addr = imm;
7630 }
7631 break;
7632
7633 case 0x23: /* LW */
7634 rt = itype_rt (inst);
7635 rs = itype_rs (inst);
7636 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7637 if (gp != 0 && rs == MIPS_GP_REGNUM)
7638 {
7639 gdb_byte buf[4];
7640
7641 memset (buf, 0, sizeof (buf));
7642 status = target_read_memory (gp + imm, buf, sizeof (buf));
7643 addrreg = rt;
7644 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7645 }
7646 break;
7647 }
7648 }
7649
7650 return target_pc;
7651}
7652
7653/* If PC is in a MIPS16 call or return stub, return the address of the
7654 target PC, which is either the callee or the caller. There are several
c906108c
SS
7655 cases which must be handled:
7656
14132e89
MR
7657 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7658 and the target PC is in $31 ($ra).
c906108c 7659 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7660 and the target PC is in $2.
7661 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7662 i.e. before the JALR instruction, this is effectively a call stub
7663 and the target PC is in $2. Otherwise this is effectively
7664 a return stub and the target PC is in $18.
7665 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7666 JAL or JALR instruction, this is effectively a call stub and the
7667 target PC is buried in the instruction stream. Otherwise this
7668 is effectively a return stub and the target PC is in $18.
7669 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7670 stub and the target PC is buried in the instruction stream.
7671
7672 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7673 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7674 gory details. */
c906108c 7675
757a7cc6 7676static CORE_ADDR
db5f024e 7677mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7678{
e17a4113 7679 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7680 CORE_ADDR start_addr;
14132e89
MR
7681 const char *name;
7682 size_t prefixlen;
c906108c
SS
7683
7684 /* Find the starting address and name of the function containing the PC. */
7685 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7686 return 0;
7687
14132e89
MR
7688 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7689 and the target PC is in $31 ($ra). */
7690 prefixlen = strlen (mips_str_mips16_ret_stub);
7691 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7692 && mips_is_stub_mode (name + prefixlen)
7693 && name[prefixlen + 2] == '\0')
7694 return get_frame_register_signed
7695 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7696
7697 /* If the PC is in __mips16_call_stub_*, this is one of the call
7698 call/return stubs. */
7699 prefixlen = strlen (mips_str_mips16_call_stub);
7700 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7701 {
7702 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7703 and the target PC is in $2. */
14132e89
MR
7704 if (mips_is_stub_suffix (name + prefixlen, 0))
7705 return get_frame_register_signed
7706 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7707
14132e89
MR
7708 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7709 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7710 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7711 a return stub and the target PC is in $18. */
14132e89
MR
7712 else if (mips_is_stub_mode (name + prefixlen)
7713 && name[prefixlen + 2] == '_'
7714 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7715 {
7716 if (pc == start_addr)
14132e89
MR
7717 /* This is the 'call' part of a call stub. The return
7718 address is in $2. */
7719 return get_frame_register_signed
7720 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7721 else
7722 /* This is the 'return' part of a call stub. The return
14132e89
MR
7723 address is in $18. */
7724 return get_frame_register_signed
7725 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7726 }
14132e89
MR
7727 else
7728 return 0; /* Not a stub. */
7729 }
7730
7731 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7732 compiler-generated call or call/return stubs. */
61012eef
GB
7733 if (startswith (name, mips_str_fn_stub)
7734 || startswith (name, mips_str_call_stub))
14132e89
MR
7735 {
7736 if (pc == start_addr)
7737 /* This is the 'call' part of a call stub. Call this helper
7738 to scan through this code for interesting instructions
7739 and determine the final PC. */
7740 return mips_get_mips16_fn_stub_pc (frame, pc);
7741 else
7742 /* This is the 'return' part of a call stub. The return address
7743 is in $18. */
7744 return get_frame_register_signed
7745 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7746 }
14132e89
MR
7747
7748 return 0; /* Not a stub. */
7749}
7750
7751/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7752 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7753
7754static int
7755mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7756{
7757 CORE_ADDR start_addr;
7758 size_t prefixlen;
7759
7760 /* Find the starting address of the function containing the PC. */
7761 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7762 return 0;
7763
7764 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7765 the start, i.e. after the JALR instruction, this is effectively
7766 a return stub. */
7767 prefixlen = strlen (mips_str_mips16_call_stub);
7768 if (pc != start_addr
7769 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7770 && mips_is_stub_mode (name + prefixlen)
7771 && name[prefixlen + 2] == '_'
7772 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7773 return 1;
7774
7775 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7776 the JAL or JALR instruction, this is effectively a return stub. */
7777 prefixlen = strlen (mips_str_call_fp_stub);
7778 if (pc != start_addr
7779 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7780 return 1;
7781
7782 /* Consume the .pic. prefix of any PIC stub, this function must return
7783 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7784 or the call stub path will trigger in handle_inferior_event causing
7785 it to go astray. */
7786 prefixlen = strlen (mips_str_pic);
7787 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7788 name += prefixlen;
7789
7790 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7791 prefixlen = strlen (mips_str_mips16_ret_stub);
7792 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7793 && mips_is_stub_mode (name + prefixlen)
7794 && name[prefixlen + 2] == '\0')
7795 return 1;
7796
7797 return 0; /* Not a stub. */
c906108c
SS
7798}
7799
db5f024e
DJ
7800/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7801 PC of the stub target. The stub just loads $t9 and jumps to it,
7802 so that $t9 has the correct value at function entry. */
7803
7804static CORE_ADDR
7805mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7806{
e17a4113
UW
7807 struct gdbarch *gdbarch = get_frame_arch (frame);
7808 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7cbd4a93 7809 struct bound_minimal_symbol msym;
db5f024e
DJ
7810 int i;
7811 gdb_byte stub_code[16];
7812 int32_t stub_words[4];
7813
7814 /* The stub for foo is named ".pic.foo", and is either two
7815 instructions inserted before foo or a three instruction sequence
7816 which jumps to foo. */
7817 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 7818 if (msym.minsym == NULL
77e371c0 7819 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
efd66ac6 7820 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
61012eef 7821 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
7822 return 0;
7823
7824 /* A two-instruction header. */
7cbd4a93 7825 if (MSYMBOL_SIZE (msym.minsym) == 8)
db5f024e
DJ
7826 return pc + 8;
7827
7828 /* A three-instruction (plus delay slot) trampoline. */
7cbd4a93 7829 if (MSYMBOL_SIZE (msym.minsym) == 16)
db5f024e
DJ
7830 {
7831 if (target_read_memory (pc, stub_code, 16) != 0)
7832 return 0;
7833 for (i = 0; i < 4; i++)
e17a4113
UW
7834 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7835 4, byte_order);
db5f024e
DJ
7836
7837 /* A stub contains these instructions:
7838 lui t9, %hi(target)
7839 j target
7840 addiu t9, t9, %lo(target)
7841 nop
7842
7843 This works even for N64, since stubs are only generated with
7844 -msym32. */
7845 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7846 && (stub_words[1] & 0xfc000000U) == 0x08000000
7847 && (stub_words[2] & 0xffff0000U) == 0x27390000
7848 && stub_words[3] == 0x00000000)
34b192ce
MR
7849 return ((((stub_words[0] & 0x0000ffff) << 16)
7850 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7851 }
7852
7853 /* Not a recognized stub. */
7854 return 0;
7855}
7856
7857static CORE_ADDR
7858mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7859{
14132e89 7860 CORE_ADDR requested_pc = pc;
db5f024e 7861 CORE_ADDR target_pc;
14132e89
MR
7862 CORE_ADDR new_pc;
7863
7864 do
7865 {
7866 target_pc = pc;
db5f024e 7867
14132e89
MR
7868 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7869 if (new_pc)
3e29f34a 7870 pc = new_pc;
db5f024e 7871
14132e89
MR
7872 new_pc = find_solib_trampoline_target (frame, pc);
7873 if (new_pc)
3e29f34a 7874 pc = new_pc;
db5f024e 7875
14132e89
MR
7876 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7877 if (new_pc)
3e29f34a 7878 pc = new_pc;
14132e89
MR
7879 }
7880 while (pc != target_pc);
db5f024e 7881
14132e89 7882 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7883}
7884
a4b8ebc8 7885/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7886 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7887
7888static int
d3f73121 7889mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7890{
a4b8ebc8 7891 int regnum;
2f38ef89 7892 if (num >= 0 && num < 32)
a4b8ebc8 7893 regnum = num;
2f38ef89 7894 else if (num >= 38 && num < 70)
d3f73121 7895 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7896 else if (num == 70)
d3f73121 7897 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7898 else if (num == 71)
d3f73121 7899 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7900 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7901 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7902 else
0fde2c53 7903 return -1;
d3f73121 7904 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7905}
7906
2f38ef89 7907
a4b8ebc8 7908/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7909 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7910
7911static int
d3f73121 7912mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7913{
a4b8ebc8 7914 int regnum;
2f38ef89 7915 if (num >= 0 && num < 32)
a4b8ebc8 7916 regnum = num;
2f38ef89 7917 else if (num >= 32 && num < 64)
d3f73121 7918 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7919 else if (num == 64)
d3f73121 7920 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7921 else if (num == 65)
d3f73121 7922 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7923 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7924 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7925 else
0fde2c53 7926 return -1;
d3f73121 7927 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7928}
7929
7930static int
e7faf938 7931mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7932{
7933 /* Only makes sense to supply raw registers. */
e7faf938 7934 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7935 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7936 decide if it is valid. Should instead define a standard sim/gdb
7937 register numbering scheme. */
e7faf938
MD
7938 if (gdbarch_register_name (gdbarch,
7939 gdbarch_num_regs (gdbarch) + regnum) != NULL
7940 && gdbarch_register_name (gdbarch,
025bb325
MS
7941 gdbarch_num_regs (gdbarch)
7942 + regnum)[0] != '\0')
a4b8ebc8
AC
7943 return regnum;
7944 else
6d82d43b 7945 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7946}
7947
2f38ef89 7948
4844f454
CV
7949/* Convert an integer into an address. Extracting the value signed
7950 guarantees a correctly sign extended address. */
fc0c74b1
AC
7951
7952static CORE_ADDR
79dd2d24 7953mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7954 struct type *type, const gdb_byte *buf)
fc0c74b1 7955{
e17a4113
UW
7956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7957 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7958}
7959
82e91389
DJ
7960/* Dummy virtual frame pointer method. This is no more or less accurate
7961 than most other architectures; we just need to be explicit about it,
7962 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7963 an assertion failure. */
7964
7965static void
a54fba4c
MD
7966mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7967 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7968{
7969 *reg = MIPS_SP_REGNUM;
7970 *offset = 0;
7971}
7972
caaa3122
DJ
7973static void
7974mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7975{
7976 enum mips_abi *abip = (enum mips_abi *) obj;
7977 const char *name = bfd_get_section_name (abfd, sect);
7978
7979 if (*abip != MIPS_ABI_UNKNOWN)
7980 return;
7981
61012eef 7982 if (!startswith (name, ".mdebug."))
caaa3122
DJ
7983 return;
7984
7985 if (strcmp (name, ".mdebug.abi32") == 0)
7986 *abip = MIPS_ABI_O32;
7987 else if (strcmp (name, ".mdebug.abiN32") == 0)
7988 *abip = MIPS_ABI_N32;
62a49b2c 7989 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 7990 *abip = MIPS_ABI_N64;
caaa3122
DJ
7991 else if (strcmp (name, ".mdebug.abiO64") == 0)
7992 *abip = MIPS_ABI_O64;
7993 else if (strcmp (name, ".mdebug.eabi32") == 0)
7994 *abip = MIPS_ABI_EABI32;
7995 else if (strcmp (name, ".mdebug.eabi64") == 0)
7996 *abip = MIPS_ABI_EABI64;
7997 else
8a3fe4f8 7998 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
7999}
8000
22e47e37
FF
8001static void
8002mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8003{
8004 int *lbp = (int *) obj;
8005 const char *name = bfd_get_section_name (abfd, sect);
8006
61012eef 8007 if (startswith (name, ".gcc_compiled_long32"))
22e47e37 8008 *lbp = 32;
61012eef 8009 else if (startswith (name, ".gcc_compiled_long64"))
22e47e37 8010 *lbp = 64;
61012eef 8011 else if (startswith (name, ".gcc_compiled_long"))
22e47e37
FF
8012 warning (_("unrecognized .gcc_compiled_longXX"));
8013}
8014
2e4ebe70
DJ
8015static enum mips_abi
8016global_mips_abi (void)
8017{
8018 int i;
8019
8020 for (i = 0; mips_abi_strings[i] != NULL; i++)
8021 if (mips_abi_strings[i] == mips_abi_string)
8022 return (enum mips_abi) i;
8023
e2e0b3e5 8024 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
8025}
8026
4cc0665f
MR
8027/* Return the default compressed instruction set, either of MIPS16
8028 or microMIPS, selected when none could have been determined from
8029 the ELF header of the binary being executed (or no binary has been
8030 selected. */
8031
8032static enum mips_isa
8033global_mips_compression (void)
8034{
8035 int i;
8036
8037 for (i = 0; mips_compression_strings[i] != NULL; i++)
8038 if (mips_compression_strings[i] == mips_compression_string)
8039 return (enum mips_isa) i;
8040
8041 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8042}
8043
29709017
DJ
8044static void
8045mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8046{
29709017
DJ
8047 /* If the size matches the set of 32-bit or 64-bit integer registers,
8048 assume that's what we've got. */
4eb0ad19
DJ
8049 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8050 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
8051
8052 /* If the size matches the full set of registers GDB traditionally
8053 knows about, including floating point, for either 32-bit or
8054 64-bit, assume that's what we've got. */
4eb0ad19
DJ
8055 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8056 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
8057
8058 /* Otherwise we don't have a useful guess. */
8059}
8060
f8b73d13
DJ
8061static struct value *
8062value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8063{
19ba03f4 8064 const int *reg_p = (const int *) baton;
f8b73d13
DJ
8065 return value_of_register (*reg_p, frame);
8066}
8067
c2d11a7d 8068static struct gdbarch *
6d82d43b 8069mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 8070{
c2d11a7d
JM
8071 struct gdbarch *gdbarch;
8072 struct gdbarch_tdep *tdep;
8073 int elf_flags;
2e4ebe70 8074 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 8075 int i, num_regs;
8d5838b5 8076 enum mips_fpu_type fpu_type;
f8b73d13 8077 struct tdesc_arch_data *tdesc_data = NULL;
d929bc19 8078 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
1faeff08
MR
8079 const char **reg_names;
8080 struct mips_regnum mips_regnum, *regnum;
4cc0665f 8081 enum mips_isa mips_isa;
1faeff08
MR
8082 int dspacc;
8083 int dspctl;
8084
ec03c1ac
AC
8085 /* First of all, extract the elf_flags, if available. */
8086 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8087 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8088 else if (arches != NULL)
8089 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8090 else
8091 elf_flags = 0;
8092 if (gdbarch_debug)
8093 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8094 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8095
102182a9 8096 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8097 switch ((elf_flags & EF_MIPS_ABI))
8098 {
8099 case E_MIPS_ABI_O32:
ec03c1ac 8100 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8101 break;
8102 case E_MIPS_ABI_O64:
ec03c1ac 8103 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8104 break;
8105 case E_MIPS_ABI_EABI32:
ec03c1ac 8106 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8107 break;
8108 case E_MIPS_ABI_EABI64:
ec03c1ac 8109 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8110 break;
8111 default:
acdb74a0 8112 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8113 found_abi = MIPS_ABI_N32;
acdb74a0 8114 else
ec03c1ac 8115 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8116 break;
8117 }
acdb74a0 8118
caaa3122 8119 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8120 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8121 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8122
dc305454 8123 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8124 MIPS architecture (if there is one). */
8125 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8126 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8127
32a6503c 8128 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8129 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8130 && info.bfd_arch_info != NULL
8131 && info.bfd_arch_info->arch == bfd_arch_mips)
8132 {
8133 switch (info.bfd_arch_info->mach)
8134 {
8135 case bfd_mach_mips3900:
ec03c1ac 8136 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8137 break;
8138 case bfd_mach_mips4100:
8139 case bfd_mach_mips5000:
ec03c1ac 8140 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8141 break;
1d06468c
EZ
8142 case bfd_mach_mips8000:
8143 case bfd_mach_mips10000:
32a6503c
KB
8144 /* On Irix, ELF64 executables use the N64 ABI. The
8145 pseudo-sections which describe the ABI aren't present
8146 on IRIX. (Even for executables created by gcc.) */
e6c2f47b
PA
8147 if (info.abfd != NULL
8148 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
28d169de 8149 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8150 found_abi = MIPS_ABI_N64;
28d169de 8151 else
ec03c1ac 8152 found_abi = MIPS_ABI_N32;
1d06468c 8153 break;
bf64bfd6
AC
8154 }
8155 }
2e4ebe70 8156
26c53e50
DJ
8157 /* Default 64-bit objects to N64 instead of O32. */
8158 if (found_abi == MIPS_ABI_UNKNOWN
8159 && info.abfd != NULL
8160 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8161 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8162 found_abi = MIPS_ABI_N64;
8163
ec03c1ac
AC
8164 if (gdbarch_debug)
8165 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8166 found_abi);
8167
8168 /* What has the user specified from the command line? */
8169 wanted_abi = global_mips_abi ();
8170 if (gdbarch_debug)
8171 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8172 wanted_abi);
2e4ebe70
DJ
8173
8174 /* Now that we have found what the ABI for this binary would be,
8175 check whether the user is overriding it. */
2e4ebe70
DJ
8176 if (wanted_abi != MIPS_ABI_UNKNOWN)
8177 mips_abi = wanted_abi;
ec03c1ac
AC
8178 else if (found_abi != MIPS_ABI_UNKNOWN)
8179 mips_abi = found_abi;
8180 else
8181 mips_abi = MIPS_ABI_O32;
8182 if (gdbarch_debug)
8183 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8184 mips_abi);
2e4ebe70 8185
c5196c92
MR
8186 /* Make sure we don't use a 32-bit architecture with a 64-bit ABI. */
8187 if (mips_abi != MIPS_ABI_EABI32
8188 && mips_abi != MIPS_ABI_O32
8189 && info.bfd_arch_info != NULL
8190 && info.bfd_arch_info->arch == bfd_arch_mips
8191 && info.bfd_arch_info->bits_per_word < 64)
8192 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_mips, bfd_mach_mips4000);
8193
4cc0665f
MR
8194 /* Determine the default compressed ISA. */
8195 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8196 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8197 mips_isa = ISA_MICROMIPS;
8198 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8199 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8200 mips_isa = ISA_MIPS16;
8201 else
8202 mips_isa = global_mips_compression ();
8203 mips_compression_string = mips_compression_strings[mips_isa];
8204
ec03c1ac 8205 /* Also used when doing an architecture lookup. */
4b9b3959 8206 if (gdbarch_debug)
ec03c1ac 8207 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8208 "mips_gdbarch_init: "
8209 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8210 mips64_transfers_32bit_regs_p);
0dadbba0 8211
8d5838b5 8212 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8213#ifdef HAVE_ELF
8214 if (info.abfd
8215 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8216 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8217 Tag_GNU_MIPS_ABI_FP);
8218#endif /* HAVE_ELF */
8219
8d5838b5
AC
8220 if (!mips_fpu_type_auto)
8221 fpu_type = mips_fpu_type;
d929bc19 8222 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
609ca2b9
DJ
8223 {
8224 switch (elf_fpu_type)
8225 {
d929bc19 8226 case Val_GNU_MIPS_ABI_FP_DOUBLE:
609ca2b9
DJ
8227 fpu_type = MIPS_FPU_DOUBLE;
8228 break;
d929bc19 8229 case Val_GNU_MIPS_ABI_FP_SINGLE:
609ca2b9
DJ
8230 fpu_type = MIPS_FPU_SINGLE;
8231 break;
d929bc19 8232 case Val_GNU_MIPS_ABI_FP_SOFT:
609ca2b9
DJ
8233 default:
8234 /* Soft float or unknown. */
8235 fpu_type = MIPS_FPU_NONE;
8236 break;
8237 }
8238 }
8d5838b5
AC
8239 else if (info.bfd_arch_info != NULL
8240 && info.bfd_arch_info->arch == bfd_arch_mips)
8241 switch (info.bfd_arch_info->mach)
8242 {
8243 case bfd_mach_mips3900:
8244 case bfd_mach_mips4100:
8245 case bfd_mach_mips4111:
a9d61c86 8246 case bfd_mach_mips4120:
8d5838b5
AC
8247 fpu_type = MIPS_FPU_NONE;
8248 break;
8249 case bfd_mach_mips4650:
8250 fpu_type = MIPS_FPU_SINGLE;
8251 break;
8252 default:
8253 fpu_type = MIPS_FPU_DOUBLE;
8254 break;
8255 }
8256 else if (arches != NULL)
a2f1f308 8257 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8d5838b5
AC
8258 else
8259 fpu_type = MIPS_FPU_DOUBLE;
8260 if (gdbarch_debug)
8261 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8262 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8263
29709017
DJ
8264 /* Check for blatant incompatibilities. */
8265
8266 /* If we have only 32-bit registers, then we can't debug a 64-bit
8267 ABI. */
8268 if (info.target_desc
8269 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8270 && mips_abi != MIPS_ABI_EABI32
8271 && mips_abi != MIPS_ABI_O32)
37c33887
MR
8272 return NULL;
8273
8274 /* Fill in the OS dependent register numbers and names. */
8275 if (info.osabi == GDB_OSABI_LINUX)
f8b73d13 8276 {
37c33887
MR
8277 mips_regnum.fp0 = 38;
8278 mips_regnum.pc = 37;
8279 mips_regnum.cause = 36;
8280 mips_regnum.badvaddr = 35;
8281 mips_regnum.hi = 34;
8282 mips_regnum.lo = 33;
8283 mips_regnum.fp_control_status = 70;
8284 mips_regnum.fp_implementation_revision = 71;
8285 mips_regnum.dspacc = -1;
8286 mips_regnum.dspctl = -1;
8287 dspacc = 72;
8288 dspctl = 78;
8289 num_regs = 90;
8290 reg_names = mips_linux_reg_names;
8291 }
8292 else
8293 {
8294 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8295 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8296 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8297 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8298 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8299 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8300 mips_regnum.fp_control_status = 70;
8301 mips_regnum.fp_implementation_revision = 71;
8302 mips_regnum.dspacc = dspacc = -1;
8303 mips_regnum.dspctl = dspctl = -1;
8304 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8305 if (info.bfd_arch_info != NULL
8306 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8307 reg_names = mips_tx39_reg_names;
8308 else
8309 reg_names = mips_generic_reg_names;
8310 }
8311
8312 /* Check any target description for validity. */
8313 if (tdesc_has_registers (info.target_desc))
8314 {
8315 static const char *const mips_gprs[] = {
8316 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8317 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8318 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8319 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8320 };
8321 static const char *const mips_fprs[] = {
8322 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8323 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8324 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8325 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8326 };
8327
8328 const struct tdesc_feature *feature;
8329 int valid_p;
8330
8331 feature = tdesc_find_feature (info.target_desc,
8332 "org.gnu.gdb.mips.cpu");
8333 if (feature == NULL)
8334 return NULL;
8335
8336 tdesc_data = tdesc_data_alloc ();
8337
8338 valid_p = 1;
8339 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8340 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8341 mips_gprs[i]);
8342
8343
8344 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8345 mips_regnum.lo, "lo");
8346 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8347 mips_regnum.hi, "hi");
8348 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8349 mips_regnum.pc, "pc");
8350
8351 if (!valid_p)
8352 {
8353 tdesc_data_cleanup (tdesc_data);
8354 return NULL;
8355 }
8356
8357 feature = tdesc_find_feature (info.target_desc,
8358 "org.gnu.gdb.mips.cp0");
8359 if (feature == NULL)
8360 {
8361 tdesc_data_cleanup (tdesc_data);
8362 return NULL;
8363 }
8364
8365 valid_p = 1;
8366 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8367 mips_regnum.badvaddr, "badvaddr");
8368 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8369 MIPS_PS_REGNUM, "status");
8370 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8371 mips_regnum.cause, "cause");
8372
8373 if (!valid_p)
8374 {
8375 tdesc_data_cleanup (tdesc_data);
8376 return NULL;
8377 }
8378
8379 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8380 backend is not prepared for that, though. */
8381 feature = tdesc_find_feature (info.target_desc,
8382 "org.gnu.gdb.mips.fpu");
8383 if (feature == NULL)
8384 {
8385 tdesc_data_cleanup (tdesc_data);
8386 return NULL;
8387 }
8388
8389 valid_p = 1;
8390 for (i = 0; i < 32; i++)
8391 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8392 i + mips_regnum.fp0, mips_fprs[i]);
8393
8394 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8395 mips_regnum.fp_control_status,
8396 "fcsr");
8397 valid_p
8398 &= tdesc_numbered_register (feature, tdesc_data,
8399 mips_regnum.fp_implementation_revision,
8400 "fir");
8401
8402 if (!valid_p)
8403 {
8404 tdesc_data_cleanup (tdesc_data);
8405 return NULL;
8406 }
8407
8408 num_regs = mips_regnum.fp_implementation_revision + 1;
8409
8410 if (dspacc >= 0)
8411 {
8412 feature = tdesc_find_feature (info.target_desc,
8413 "org.gnu.gdb.mips.dsp");
8414 /* The DSP registers are optional; it's OK if they are absent. */
8415 if (feature != NULL)
8416 {
8417 i = 0;
8418 valid_p = 1;
8419 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8420 dspacc + i++, "hi1");
8421 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8422 dspacc + i++, "lo1");
8423 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8424 dspacc + i++, "hi2");
8425 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8426 dspacc + i++, "lo2");
8427 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8428 dspacc + i++, "hi3");
8429 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8430 dspacc + i++, "lo3");
8431
8432 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8433 dspctl, "dspctl");
8434
8435 if (!valid_p)
8436 {
8437 tdesc_data_cleanup (tdesc_data);
8438 return NULL;
8439 }
8440
8441 mips_regnum.dspacc = dspacc;
8442 mips_regnum.dspctl = dspctl;
8443
8444 num_regs = mips_regnum.dspctl + 1;
8445 }
8446 }
8447
8448 /* It would be nice to detect an attempt to use a 64-bit ABI
8449 when only 32-bit registers are provided. */
8450 reg_names = NULL;
f8b73d13 8451 }
29709017 8452
025bb325 8453 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8454 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8455 arches != NULL;
8456 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8457 {
d54398a7
MR
8458 /* MIPS needs to be pedantic about which ABI and the compressed
8459 ISA variation the object is using. */
9103eae0 8460 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8461 continue;
9103eae0 8462 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8463 continue;
d54398a7
MR
8464 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8465 continue;
719ec221
AC
8466 /* Need to be pedantic about which register virtual size is
8467 used. */
8468 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8469 != mips64_transfers_32bit_regs_p)
8470 continue;
8d5838b5 8471 /* Be pedantic about which FPU is selected. */
a2f1f308 8472 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8d5838b5 8473 continue;
f8b73d13
DJ
8474
8475 if (tdesc_data != NULL)
8476 tdesc_data_cleanup (tdesc_data);
4be87837 8477 return arches->gdbarch;
c2d11a7d
JM
8478 }
8479
102182a9 8480 /* Need a new architecture. Fill in a target specific vector. */
cdd238da 8481 tdep = XCNEW (struct gdbarch_tdep);
c2d11a7d
JM
8482 gdbarch = gdbarch_alloc (&info, tdep);
8483 tdep->elf_flags = elf_flags;
719ec221 8484 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8485 tdep->found_abi = found_abi;
8486 tdep->mips_abi = mips_abi;
4cc0665f 8487 tdep->mips_isa = mips_isa;
8d5838b5 8488 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8489 tdep->register_size_valid_p = 0;
8490 tdep->register_size = 0;
8491
8492 if (info.target_desc)
8493 {
8494 /* Some useful properties can be inferred from the target. */
8495 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8496 {
8497 tdep->register_size_valid_p = 1;
8498 tdep->register_size = 4;
8499 }
8500 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8501 {
8502 tdep->register_size_valid_p = 1;
8503 tdep->register_size = 8;
8504 }
8505 }
c2d11a7d 8506
102182a9 8507 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8508 set_gdbarch_short_bit (gdbarch, 16);
8509 set_gdbarch_int_bit (gdbarch, 32);
8510 set_gdbarch_float_bit (gdbarch, 32);
8511 set_gdbarch_double_bit (gdbarch, 64);
8512 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8513 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8514 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8515 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8516
175ff332
HZ
8517 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8518 mips_ax_pseudo_register_collect);
8519 set_gdbarch_ax_pseudo_register_push_stack
8520 (gdbarch, mips_ax_pseudo_register_push_stack);
8521
6d82d43b 8522 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6 8523 mips_elf_make_msymbol_special);
3e29f34a
MR
8524 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8525 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8526 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
f7ab6ec6 8527
1faeff08
MR
8528 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8529 *regnum = mips_regnum;
1faeff08
MR
8530 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8531 set_gdbarch_num_regs (gdbarch, num_regs);
8532 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8533 set_gdbarch_register_name (gdbarch, mips_register_name);
8534 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8535 tdep->mips_processor_reg_names = reg_names;
8536 tdep->regnum = regnum;
fe29b929 8537
0dadbba0 8538 switch (mips_abi)
c2d11a7d 8539 {
0dadbba0 8540 case MIPS_ABI_O32:
25ab4790 8541 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8542 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8543 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8544 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8545 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8546 set_gdbarch_long_bit (gdbarch, 32);
8547 set_gdbarch_ptr_bit (gdbarch, 32);
8548 set_gdbarch_long_long_bit (gdbarch, 64);
8549 break;
0dadbba0 8550 case MIPS_ABI_O64:
25ab4790 8551 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8552 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8553 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8554 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8555 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8556 set_gdbarch_long_bit (gdbarch, 32);
8557 set_gdbarch_ptr_bit (gdbarch, 32);
8558 set_gdbarch_long_long_bit (gdbarch, 64);
8559 break;
0dadbba0 8560 case MIPS_ABI_EABI32:
25ab4790 8561 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8562 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8563 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8564 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8565 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8566 set_gdbarch_long_bit (gdbarch, 32);
8567 set_gdbarch_ptr_bit (gdbarch, 32);
8568 set_gdbarch_long_long_bit (gdbarch, 64);
8569 break;
0dadbba0 8570 case MIPS_ABI_EABI64:
25ab4790 8571 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8572 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8573 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8574 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8575 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8576 set_gdbarch_long_bit (gdbarch, 64);
8577 set_gdbarch_ptr_bit (gdbarch, 64);
8578 set_gdbarch_long_long_bit (gdbarch, 64);
8579 break;
0dadbba0 8580 case MIPS_ABI_N32:
25ab4790 8581 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8582 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8583 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8584 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8585 tdep->default_mask_address_p = 0;
0dadbba0
AC
8586 set_gdbarch_long_bit (gdbarch, 32);
8587 set_gdbarch_ptr_bit (gdbarch, 32);
8588 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8589 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8590 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8591 break;
8592 case MIPS_ABI_N64:
25ab4790 8593 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8594 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8595 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8596 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8597 tdep->default_mask_address_p = 0;
8598 set_gdbarch_long_bit (gdbarch, 64);
8599 set_gdbarch_ptr_bit (gdbarch, 64);
8600 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8601 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8602 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8603 break;
c2d11a7d 8604 default:
e2e0b3e5 8605 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8606 }
8607
22e47e37
FF
8608 /* GCC creates a pseudo-section whose name specifies the size of
8609 longs, since -mlong32 or -mlong64 may be used independent of
8610 other options. How those options affect pointer sizes is ABI and
8611 architecture dependent, so use them to override the default sizes
8612 set by the ABI. This table shows the relationship between ABI,
8613 -mlongXX, and size of pointers:
8614
8615 ABI -mlongXX ptr bits
8616 --- -------- --------
8617 o32 32 32
8618 o32 64 32
8619 n32 32 32
8620 n32 64 64
8621 o64 32 32
8622 o64 64 64
8623 n64 32 32
8624 n64 64 64
8625 eabi32 32 32
8626 eabi32 64 32
8627 eabi64 32 32
8628 eabi64 64 64
8629
8630 Note that for o32 and eabi32, pointers are always 32 bits
8631 regardless of any -mlongXX option. For all others, pointers and
025bb325 8632 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8633
8634 if (info.abfd != NULL)
8635 {
8636 int long_bit = 0;
8637
8638 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8639 if (long_bit)
8640 {
8641 set_gdbarch_long_bit (gdbarch, long_bit);
8642 switch (mips_abi)
8643 {
8644 case MIPS_ABI_O32:
8645 case MIPS_ABI_EABI32:
8646 break;
8647 case MIPS_ABI_N32:
8648 case MIPS_ABI_O64:
8649 case MIPS_ABI_N64:
8650 case MIPS_ABI_EABI64:
8651 set_gdbarch_ptr_bit (gdbarch, long_bit);
8652 break;
8653 default:
8654 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8655 }
8656 }
8657 }
8658
a5ea2558
AC
8659 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8660 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8661 comment:
8662
8663 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8664 flag in object files because to do so would make it impossible to
102182a9 8665 link with libraries compiled without "-gp32". This is
a5ea2558 8666 unnecessarily restrictive.
361d1df0 8667
a5ea2558
AC
8668 We could solve this problem by adding "-gp32" multilibs to gcc,
8669 but to set this flag before gcc is built with such multilibs will
8670 break too many systems.''
8671
8672 But even more unhelpfully, the default linker output target for
8673 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8674 for 64-bit programs - you need to change the ABI to change this,
102182a9 8675 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8676 this flag to detect 32-bit mode would do the wrong thing given
8677 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8678 as 32-bit programs by default. */
a5ea2558 8679
6c997a34 8680 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8681 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8682
102182a9
MS
8683 /* Add/remove bits from an address. The MIPS needs be careful to
8684 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8685 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8686
58dfe9ff
AC
8687 /* Unwind the frame. */
8688 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8689 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8690 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8691
102182a9 8692 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8693 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8694 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8695 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8696 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8697 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8698 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8699
025bb325 8700 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8701
2c76a0c7
JB
8702 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8703 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8704 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8705
1bab7383
YQ
8706 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8707
87783b8b
AC
8708 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8709 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8710 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8711
f7b9e9fc 8712 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
8713 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8714 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
c8cef75f
MR
8715 set_gdbarch_adjust_breakpoint_address (gdbarch,
8716 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8717
8718 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8719
c9cf6e20 8720 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
97ab0fdd 8721
fc0c74b1
AC
8722 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8723 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8724 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8725
a4b8ebc8 8726 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8727
e11c53d2 8728 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8729
471b9d15
MR
8730 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8731 if (mips_abi == MIPS_ABI_N64)
8732 set_gdbarch_disassembler_options_implicit
8733 (gdbarch, (const char *) mips_disassembler_options_n64);
8734 else if (mips_abi == MIPS_ABI_N32)
8735 set_gdbarch_disassembler_options_implicit
8736 (gdbarch, (const char *) mips_disassembler_options_n32);
9dae60cc 8737 else
471b9d15
MR
8738 set_gdbarch_disassembler_options_implicit
8739 (gdbarch, (const char *) mips_disassembler_options_o32);
8740 set_gdbarch_disassembler_options (gdbarch, &mips_disassembler_options);
8741 set_gdbarch_valid_disassembler_options (gdbarch,
8742 disassembler_options_mips ());
e5ab0dce 8743
d92524f1
PM
8744 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8745 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8746 need to all be folded into the target vector. Since they are
d92524f1
PM
8747 being used as guards for target_stopped_by_watchpoint, why not have
8748 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8749 is sitting on? */
8750 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8751
e7d6a6d2 8752 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8753
14132e89
MR
8754 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8755 to support MIPS16. This is a bad thing. Make sure not to do it
8756 if we have an OS ABI that actually supports shared libraries, since
8757 shared library support is more important. If we have an OS someday
8758 that supports both shared libraries and MIPS16, we'll have to find
8759 a better place for these.
8760 macro/2012-04-25: But that applies to return trampolines only and
8761 currently no MIPS OS ABI uses shared libraries that have them. */
8762 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8763
025bb325
MS
8764 set_gdbarch_single_step_through_delay (gdbarch,
8765 mips_single_step_through_delay);
3352ef37 8766
0d5de010
DJ
8767 /* Virtual tables. */
8768 set_gdbarch_vbit_in_delta (gdbarch, 1);
8769
29709017
DJ
8770 mips_register_g_packet_guesses (gdbarch);
8771
6de918a6 8772 /* Hook in OS ABI-specific overrides, if they have been registered. */
0dba2a6c 8773 info.tdesc_data = tdesc_data;
6de918a6 8774 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8775
9aac7884
MR
8776 /* The hook may have adjusted num_regs, fetch the final value and
8777 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8778 num_regs = gdbarch_num_regs (gdbarch);
8779 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8780 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8781
5792a79b 8782 /* Unwind the frame. */
b8a22b94
DJ
8783 dwarf2_append_unwinders (gdbarch);
8784 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8785 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8786 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8787 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8788 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8789 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8790 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8791 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8792 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8793
f8b73d13
DJ
8794 if (tdesc_data)
8795 {
8796 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8797 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8798
8799 /* Override the normal target description methods to handle our
8800 dual real and pseudo registers. */
8801 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8802 set_gdbarch_register_reggroup_p (gdbarch,
8803 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8804
8805 num_regs = gdbarch_num_regs (gdbarch);
8806 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8807 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8808 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8809 }
8810
8811 /* Add ABI-specific aliases for the registers. */
8812 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8813 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8814 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8815 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8816 else
8817 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8818 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8819 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8820
8821 /* Add some other standard aliases. */
8822 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8823 user_reg_add (gdbarch, mips_register_aliases[i].name,
8824 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8825
865093a3
AR
8826 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8827 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8828 value_of_mips_user_reg,
8829 &mips_numeric_register_aliases[i].regnum);
8830
4b9b3959
AC
8831 return gdbarch;
8832}
8833
2e4ebe70 8834static void
eb4c3f4a
TT
8835mips_abi_update (const char *ignore_args,
8836 int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8837{
8838 struct gdbarch_info info;
8839
8840 /* Force the architecture to update, and (if it's a MIPS architecture)
8841 mips_gdbarch_init will take care of the rest. */
8842 gdbarch_info_init (&info);
8843 gdbarch_update_p (info);
8844}
8845
ad188201
KB
8846/* Print out which MIPS ABI is in use. */
8847
8848static void
1f8ca57c
JB
8849show_mips_abi (struct ui_file *file,
8850 int from_tty,
8851 struct cmd_list_element *ignored_cmd,
8852 const char *ignored_value)
ad188201 8853{
f5656ead 8854 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8855 fprintf_filtered
8856 (file,
8857 "The MIPS ABI is unknown because the current architecture "
8858 "is not MIPS.\n");
ad188201
KB
8859 else
8860 {
8861 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8862 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8863 const char *actual_abi_str = mips_abi_strings[actual_abi];
8864
8865 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8866 fprintf_filtered
8867 (file,
8868 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8869 actual_abi_str);
ad188201 8870 else if (global_abi == actual_abi)
1f8ca57c
JB
8871 fprintf_filtered
8872 (file,
8873 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8874 actual_abi_str);
ad188201
KB
8875 else
8876 {
8877 /* Probably shouldn't happen... */
025bb325
MS
8878 fprintf_filtered (file,
8879 "The (auto detected) MIPS ABI \"%s\" is in use "
8880 "even though the user setting was \"%s\".\n",
6d82d43b 8881 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8882 }
8883 }
8884}
8885
4cc0665f
MR
8886/* Print out which MIPS compressed ISA encoding is used. */
8887
8888static void
8889show_mips_compression (struct ui_file *file, int from_tty,
8890 struct cmd_list_element *c, const char *value)
8891{
8892 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8893 value);
8894}
8895
a4f320fd
MR
8896/* Return a textual name for MIPS FPU type FPU_TYPE. */
8897
8898static const char *
8899mips_fpu_type_str (enum mips_fpu_type fpu_type)
8900{
8901 switch (fpu_type)
8902 {
8903 case MIPS_FPU_NONE:
8904 return "none";
8905 case MIPS_FPU_SINGLE:
8906 return "single";
8907 case MIPS_FPU_DOUBLE:
8908 return "double";
8909 default:
8910 return "???";
8911 }
8912}
8913
4b9b3959 8914static void
72a155b4 8915mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8916{
72a155b4 8917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8918 if (tdep != NULL)
c2d11a7d 8919 {
acdb74a0
AC
8920 int ef_mips_arch;
8921 int ef_mips_32bitmode;
f49e4e6d 8922 /* Determine the ISA. */
acdb74a0
AC
8923 switch (tdep->elf_flags & EF_MIPS_ARCH)
8924 {
8925 case E_MIPS_ARCH_1:
8926 ef_mips_arch = 1;
8927 break;
8928 case E_MIPS_ARCH_2:
8929 ef_mips_arch = 2;
8930 break;
8931 case E_MIPS_ARCH_3:
8932 ef_mips_arch = 3;
8933 break;
8934 case E_MIPS_ARCH_4:
93d56215 8935 ef_mips_arch = 4;
acdb74a0
AC
8936 break;
8937 default:
93d56215 8938 ef_mips_arch = 0;
acdb74a0
AC
8939 break;
8940 }
f49e4e6d 8941 /* Determine the size of a pointer. */
acdb74a0 8942 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8943 fprintf_unfiltered (file,
8944 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8945 tdep->elf_flags);
4b9b3959 8946 fprintf_unfiltered (file,
acdb74a0
AC
8947 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8948 ef_mips_32bitmode);
8949 fprintf_unfiltered (file,
8950 "mips_dump_tdep: ef_mips_arch = %d\n",
8951 ef_mips_arch);
8952 fprintf_unfiltered (file,
8953 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8954 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8955 fprintf_unfiltered (file,
025bb325
MS
8956 "mips_dump_tdep: "
8957 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8958 mips_mask_address_p (tdep),
4014092b 8959 tdep->default_mask_address_p);
c2d11a7d 8960 }
4b9b3959
AC
8961 fprintf_unfiltered (file,
8962 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8963 MIPS_DEFAULT_FPU_TYPE,
a4f320fd 8964 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
74ed0bb4
MD
8965 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8966 MIPS_EABI (gdbarch));
4b9b3959
AC
8967 fprintf_unfiltered (file,
8968 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4 8969 MIPS_FPU_TYPE (gdbarch),
a4f320fd 8970 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
c2d11a7d
JM
8971}
8972
c906108c 8973void
acdb74a0 8974_initialize_mips_tdep (void)
c906108c
SS
8975{
8976 static struct cmd_list_element *mipsfpulist = NULL;
c906108c 8977
6d82d43b 8978 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8979 if (MIPS_ABI_LAST + 1
8980 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8981 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8982
4b9b3959 8983 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8984
8d5f9dcb
DJ
8985 mips_pdr_data = register_objfile_data ();
8986
4eb0ad19
DJ
8987 /* Create feature sets with the appropriate properties. The values
8988 are not important. */
8989 mips_tdesc_gp32 = allocate_target_description ();
8990 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8991
8992 mips_tdesc_gp64 = allocate_target_description ();
8993 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8994
025bb325 8995 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8996 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8997 _("Various MIPS specific commands."),
a5ea2558
AC
8998 &setmipscmdlist, "set mips ", 0, &setlist);
8999
9000 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 9001 _("Various MIPS specific commands."),
a5ea2558
AC
9002 &showmipscmdlist, "show mips ", 0, &showlist);
9003
025bb325 9004 /* Allow the user to override the ABI. */
7ab04401
AC
9005 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9006 &mips_abi_string, _("\
9007Set the MIPS ABI used by this program."), _("\
9008Show the MIPS ABI used by this program."), _("\
9009This option can be set to one of:\n\
9010 auto - the default ABI associated with the current binary\n\
9011 o32\n\
9012 o64\n\
9013 n32\n\
9014 n64\n\
9015 eabi32\n\
9016 eabi64"),
9017 mips_abi_update,
9018 show_mips_abi,
9019 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 9020
4cc0665f
MR
9021 /* Allow the user to set the ISA to assume for compressed code if ELF
9022 file flags don't tell or there is no program file selected. This
9023 setting is updated whenever unambiguous ELF file flags are interpreted,
9024 and carried over to subsequent sessions. */
9025 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9026 &mips_compression_string, _("\
9027Set the compressed ISA encoding used by MIPS code."), _("\
9028Show the compressed ISA encoding used by MIPS code."), _("\
9029Select the compressed ISA encoding used in functions that have no symbol\n\
9030information available. The encoding can be set to either of:\n\
9031 mips16\n\
9032 micromips\n\
9033and is updated automatically from ELF file flags if available."),
9034 mips_abi_update,
9035 show_mips_compression,
9036 &setmipscmdlist, &showmipscmdlist);
9037
c906108c
SS
9038 /* Let the user turn off floating point and set the fence post for
9039 heuristic_proc_start. */
9040
9041 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 9042 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
9043 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9044 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 9045 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
9046 &mipsfpulist);
9047 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 9048 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
9049 &mipsfpulist);
9050 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9051 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9052 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9053 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 9054 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
9055 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9056 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9057 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9058 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 9059 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
9060 &mipsfpulist);
9061 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 9062 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
9063 &showlist);
9064
c906108c
SS
9065 /* We really would like to have both "0" and "unlimited" work, but
9066 command.c doesn't deal with that. So make it a var_zinteger
9067 because the user can always use "999999" or some such for unlimited. */
6bcadd06 9068 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
9069 &heuristic_fence_post, _("\
9070Set the distance searched for the start of a function."), _("\
9071Show the distance searched for the start of a function."), _("\
c906108c
SS
9072If you are debugging a stripped executable, GDB needs to search through the\n\
9073program for the start of a function. This command sets the distance of the\n\
7915a72c 9074search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 9075 reinit_frame_cache_sfunc,
025bb325
MS
9076 NULL, /* FIXME: i18n: The distance searched for
9077 the start of a function is %s. */
6bcadd06 9078 &setlist, &showlist);
c906108c
SS
9079
9080 /* Allow the user to control whether the upper bits of 64-bit
9081 addresses should be zeroed. */
7915a72c
AC
9082 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9083 &mask_address_var, _("\
9084Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9085Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 9086Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 9087allow GDB to determine the correct value."),
08546159
AC
9088 NULL, show_mask_address,
9089 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
9090
9091 /* Allow the user to control the size of 32 bit registers within the
9092 raw remote packet. */
b3f42336 9093 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
9094 &mips64_transfers_32bit_regs_p, _("\
9095Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9096 _("\
9097Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9098 _("\
719ec221
AC
9099Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9100that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 910164 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 9102 set_mips64_transfers_32bit_regs,
025bb325
MS
9103 NULL, /* FIXME: i18n: Compatibility with 64-bit
9104 MIPS target that transfers 32-bit
9105 quantities is %s. */
7915a72c 9106 &setlist, &showlist);
9ace0497 9107
025bb325 9108 /* Debug this files internals. */
ccce17b0
YQ
9109 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9110 &mips_debug, _("\
7915a72c
AC
9111Set mips debugging."), _("\
9112Show mips debugging."), _("\
9113When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
9114 NULL,
9115 NULL, /* FIXME: i18n: Mips debugging is
9116 currently %s. */
9117 &setdebuglist, &showdebuglist);
c906108c 9118}
This page took 2.553269 seconds and 4 git commands to generate.