import gdb-1999-08-16 snapshot
[deliverable/binutils-gdb.git] / gdb / objfiles.c
CommitLineData
c906108c
SS
1/* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22/* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25#include "defs.h"
26#include "bfd.h" /* Binary File Description */
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdb-stabs.h"
31#include "target.h"
32
33#include <sys/types.h>
34#include "gdb_stat.h"
35#include <fcntl.h>
36#include "obstack.h"
37#include "gdb_string.h"
38
7a292a7a
SS
39#include "breakpoint.h"
40
c906108c
SS
41/* Prototypes for local functions */
42
43#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
45static int
46open_existing_mapped_file PARAMS ((char *, long, int));
47
48static int
49open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
50
51static PTR
c5aa993b 52 map_to_file PARAMS ((int));
c906108c 53
c5aa993b 54#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
55
56static void
57add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
58
59/* Externally visible variables that are owned by this module.
60 See declarations in objfile.h for more info. */
61
c5aa993b 62struct objfile *object_files; /* Linked list of all objfiles */
c906108c
SS
63struct objfile *current_objfile; /* For symbol file being read in */
64struct objfile *symfile_objfile; /* Main symbol table loaded from */
65struct objfile *rt_common_objfile; /* For runtime common symbols */
66
c5aa993b 67int mapped_symbol_files; /* Try to use mapped symbol files */
c906108c
SS
68
69/* Locate all mappable sections of a BFD file.
70 objfile_p_char is a char * to get it through
71 bfd_map_over_sections; we cast it back to its proper type. */
72
73#ifndef TARGET_KEEP_SECTION
74#define TARGET_KEEP_SECTION(ASECT) 0
75#endif
76
96baa820
JM
77/* Called via bfd_map_over_sections to build up the section table that
78 the objfile references. The objfile contains pointers to the start
79 of the table (objfile->sections) and to the first location after
80 the end of the table (objfile->sections_end). */
81
c906108c
SS
82static void
83add_to_objfile_sections (abfd, asect, objfile_p_char)
84 bfd *abfd;
85 sec_ptr asect;
86 PTR objfile_p_char;
87{
88 struct objfile *objfile = (struct objfile *) objfile_p_char;
89 struct obj_section section;
90 flagword aflag;
91
92 aflag = bfd_get_section_flags (abfd, asect);
93
c5aa993b 94 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
c906108c
SS
95 return;
96
97 if (0 == bfd_section_size (abfd, asect))
98 return;
99 section.offset = 0;
100 section.objfile = objfile;
101 section.the_bfd_section = asect;
102 section.ovly_mapped = 0;
103 section.addr = bfd_section_vma (abfd, asect);
104 section.endaddr = section.addr + bfd_section_size (abfd, asect);
c5aa993b 105 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
c906108c
SS
106 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
107}
108
109/* Builds a section table for OBJFILE.
110 Returns 0 if OK, 1 on error (in which case bfd_error contains the
96baa820
JM
111 error).
112
113 Note that while we are building the table, which goes into the
114 psymbol obstack, we hijack the sections_end pointer to instead hold
115 a count of the number of sections. When bfd_map_over_sections
116 returns, this count is used to compute the pointer to the end of
117 the sections table, which then overwrites the count.
118
119 Also note that the OFFSET and OVLY_MAPPED in each table entry
120 are initialized to zero.
121
122 Also note that if anything else writes to the psymbol obstack while
123 we are building the table, we're pretty much hosed. */
c906108c
SS
124
125int
126build_objfile_section_table (objfile)
127 struct objfile *objfile;
128{
129 /* objfile->sections can be already set when reading a mapped symbol
130 file. I believe that we do need to rebuild the section table in
131 this case (we rebuild other things derived from the bfd), but we
132 can't free the old one (it's in the psymbol_obstack). So we just
133 waste some memory. */
134
135 objfile->sections_end = 0;
c5aa993b 136 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
c906108c
SS
137 objfile->sections = (struct obj_section *)
138 obstack_finish (&objfile->psymbol_obstack);
139 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
c5aa993b 140 return (0);
c906108c
SS
141}
142
143/* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
144 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
145 struct, fill it in as best we can, link it into the list of all known
146 objfiles, and return a pointer to the new objfile struct.
147
148 USER_LOADED is simply recorded in the objfile. This record offers a way for
149 run_command to remove old objfile entries which are no longer valid (i.e.,
150 are associated with an old inferior), but to preserve ones that the user
151 explicitly loaded via the add-symbol-file command.
152
153 IS_SOLIB is also simply recorded in the objfile. */
154
155struct objfile *
156allocate_objfile (abfd, mapped, user_loaded, is_solib)
157 bfd *abfd;
158 int mapped;
c5aa993b
JM
159 int user_loaded;
160 int is_solib;
c906108c
SS
161{
162 struct objfile *objfile = NULL;
163 struct objfile *last_one = NULL;
164
165 mapped |= mapped_symbol_files;
166
167#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
168 if (abfd != NULL)
c5aa993b 169 {
c906108c 170
c5aa993b
JM
171 /* If we can support mapped symbol files, try to open/reopen the
172 mapped file that corresponds to the file from which we wish to
173 read symbols. If the objfile is to be mapped, we must malloc
174 the structure itself using the mmap version, and arrange that
175 all memory allocation for the objfile uses the mmap routines.
176 If we are reusing an existing mapped file, from which we get
177 our objfile pointer, we have to make sure that we update the
178 pointers to the alloc/free functions in the obstack, in case
179 these functions have moved within the current gdb. */
180
181 int fd;
182
183 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
184 mapped);
185 if (fd >= 0)
186 {
187 PTR md;
c906108c 188
c5aa993b
JM
189 if ((md = map_to_file (fd)) == NULL)
190 {
191 close (fd);
192 }
193 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
194 {
195 /* Update memory corruption handler function addresses. */
196 init_malloc (md);
197 objfile->md = md;
198 objfile->mmfd = fd;
199 /* Update pointers to functions to *our* copies */
200 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
201 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
202 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
203 obstack_freefun (&objfile->psymbol_obstack, mfree);
204 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
205 obstack_freefun (&objfile->symbol_obstack, mfree);
206 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
207 obstack_freefun (&objfile->type_obstack, mfree);
208 /* If already in objfile list, unlink it. */
209 unlink_objfile (objfile);
210 /* Forget things specific to a particular gdb, may have changed. */
211 objfile->sf = NULL;
212 }
213 else
214 {
c906108c 215
c5aa993b
JM
216 /* Set up to detect internal memory corruption. MUST be
217 done before the first malloc. See comments in
218 init_malloc() and mmcheck(). */
219
220 init_malloc (md);
221
222 objfile = (struct objfile *)
223 xmmalloc (md, sizeof (struct objfile));
224 memset (objfile, 0, sizeof (struct objfile));
225 objfile->md = md;
226 objfile->mmfd = fd;
227 objfile->flags |= OBJF_MAPPED;
228 mmalloc_setkey (objfile->md, 0, objfile);
229 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
230 0, 0, xmmalloc, mfree,
231 objfile->md);
232 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
233 0, 0, xmmalloc, mfree,
234 objfile->md);
235 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
236 0, 0, xmmalloc, mfree,
237 objfile->md);
238 obstack_specify_allocation_with_arg (&objfile->type_obstack,
239 0, 0, xmmalloc, mfree,
240 objfile->md);
241 }
242 }
c906108c 243
c5aa993b
JM
244 if (mapped && (objfile == NULL))
245 {
246 warning ("symbol table for '%s' will not be mapped",
247 bfd_get_filename (abfd));
248 }
249 }
250#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
c906108c
SS
251
252 if (mapped)
253 {
254 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
255
256 /* Turn off the global flag so we don't try to do mapped symbol tables
c5aa993b
JM
257 any more, which shuts up gdb unless the user specifically gives the
258 "mapped" keyword again. */
c906108c
SS
259
260 mapped_symbol_files = 0;
261 }
262
c5aa993b 263#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
264
265 /* If we don't support mapped symbol files, didn't ask for the file to be
266 mapped, or failed to open the mapped file for some reason, then revert
267 back to an unmapped objfile. */
268
269 if (objfile == NULL)
270 {
271 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
272 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
273 objfile->md = NULL;
274 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 275 xmalloc, free);
c5aa993b 276 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 277 free);
c5aa993b 278 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 279 free);
c5aa993b 280 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c
SS
281 free);
282 }
283
284 /* Update the per-objfile information that comes from the bfd, ensuring
285 that any data that is reference is saved in the per-objfile data
286 region. */
287
c5aa993b
JM
288 objfile->obfd = abfd;
289 if (objfile->name != NULL)
c906108c 290 {
c5aa993b 291 mfree (objfile->md, objfile->name);
c906108c
SS
292 }
293 if (abfd != NULL)
294 {
c5aa993b
JM
295 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
296 objfile->mtime = bfd_get_mtime (abfd);
c906108c
SS
297
298 /* Build section table. */
299
300 if (build_objfile_section_table (objfile))
301 {
c5aa993b
JM
302 error ("Can't find the file sections in `%s': %s",
303 objfile->name, bfd_errmsg (bfd_get_error ()));
c906108c
SS
304 }
305 }
306
307 /* Add this file onto the tail of the linked list of other such files. */
308
c5aa993b 309 objfile->next = NULL;
c906108c
SS
310 if (object_files == NULL)
311 object_files = objfile;
312 else
313 {
314 for (last_one = object_files;
c5aa993b
JM
315 last_one->next;
316 last_one = last_one->next);
317 last_one->next = objfile;
c906108c
SS
318 }
319
320 /* Record whether this objfile was created because the user explicitly
321 caused it (e.g., used the add-symbol-file command).
c5aa993b
JM
322 */
323 objfile->user_loaded = user_loaded;
c906108c
SS
324
325 /* Record whether this objfile definitely represents a solib. */
c5aa993b 326 objfile->is_solib = is_solib;
c906108c
SS
327
328 return (objfile);
329}
330
331/* Put OBJFILE at the front of the list. */
332
333void
334objfile_to_front (objfile)
335 struct objfile *objfile;
336{
337 struct objfile **objp;
338 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
339 {
340 if (*objp == objfile)
341 {
342 /* Unhook it from where it is. */
343 *objp = objfile->next;
344 /* Put it in the front. */
345 objfile->next = object_files;
346 object_files = objfile;
347 break;
348 }
349 }
350}
351
352/* Unlink OBJFILE from the list of known objfiles, if it is found in the
353 list.
354
355 It is not a bug, or error, to call this function if OBJFILE is not known
356 to be in the current list. This is done in the case of mapped objfiles,
357 for example, just to ensure that the mapped objfile doesn't appear twice
358 in the list. Since the list is threaded, linking in a mapped objfile
359 twice would create a circular list.
360
361 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
362 unlinking it, just to ensure that we have completely severed any linkages
363 between the OBJFILE and the list. */
364
365void
366unlink_objfile (objfile)
367 struct objfile *objfile;
368{
c5aa993b 369 struct objfile **objpp;
c906108c 370
c5aa993b 371 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
c906108c 372 {
c5aa993b 373 if (*objpp == objfile)
c906108c 374 {
c5aa993b
JM
375 *objpp = (*objpp)->next;
376 objfile->next = NULL;
c906108c
SS
377 break;
378 }
379 }
380}
381
382
383/* Destroy an objfile and all the symtabs and psymtabs under it. Note
384 that as much as possible is allocated on the symbol_obstack and
385 psymbol_obstack, so that the memory can be efficiently freed.
386
387 Things which we do NOT free because they are not in malloc'd memory
388 or not in memory specific to the objfile include:
389
c5aa993b 390 objfile -> sf
c906108c
SS
391
392 FIXME: If the objfile is using reusable symbol information (via mmalloc),
393 then we need to take into account the fact that more than one process
394 may be using the symbol information at the same time (when mmalloc is
395 extended to support cooperative locking). When more than one process
396 is using the mapped symbol info, we need to be more careful about when
397 we free objects in the reusable area. */
398
399void
400free_objfile (objfile)
401 struct objfile *objfile;
402{
403 /* First do any symbol file specific actions required when we are
404 finished with a particular symbol file. Note that if the objfile
405 is using reusable symbol information (via mmalloc) then each of
406 these routines is responsible for doing the correct thing, either
407 freeing things which are valid only during this particular gdb
408 execution, or leaving them to be reused during the next one. */
409
c5aa993b 410 if (objfile->sf != NULL)
c906108c 411 {
c5aa993b 412 (*objfile->sf->sym_finish) (objfile);
c906108c
SS
413 }
414
415 /* We always close the bfd. */
416
c5aa993b 417 if (objfile->obfd != NULL)
c906108c
SS
418 {
419 char *name = bfd_get_filename (objfile->obfd);
c5aa993b 420 if (!bfd_close (objfile->obfd))
c906108c
SS
421 warning ("cannot close \"%s\": %s",
422 name, bfd_errmsg (bfd_get_error ()));
423 free (name);
424 }
425
426 /* Remove it from the chain of all objfiles. */
427
428 unlink_objfile (objfile);
429
430 /* If we are going to free the runtime common objfile, mark it
431 as unallocated. */
432
433 if (objfile == rt_common_objfile)
434 rt_common_objfile = NULL;
435
436 /* Before the symbol table code was redone to make it easier to
437 selectively load and remove information particular to a specific
438 linkage unit, gdb used to do these things whenever the monolithic
439 symbol table was blown away. How much still needs to be done
440 is unknown, but we play it safe for now and keep each action until
441 it is shown to be no longer needed. */
c5aa993b 442
c906108c
SS
443#if defined (CLEAR_SOLIB)
444 CLEAR_SOLIB ();
445 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
446 the to_sections for a core file might refer to those bfd's. So
447 detach any core file. */
448 {
449 struct target_ops *t = find_core_target ();
450 if (t != NULL)
451 (t->to_detach) (NULL, 0);
452 }
453#endif
454 /* I *think* all our callers call clear_symtab_users. If so, no need
455 to call this here. */
456 clear_pc_function_cache ();
457
458 /* The last thing we do is free the objfile struct itself for the
459 non-reusable case, or detach from the mapped file for the reusable
460 case. Note that the mmalloc_detach or the mfree is the last thing
461 we can do with this objfile. */
462
463#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
464
c5aa993b 465 if (objfile->flags & OBJF_MAPPED)
c906108c
SS
466 {
467 /* Remember the fd so we can close it. We can't close it before
c5aa993b 468 doing the detach, and after the detach the objfile is gone. */
c906108c
SS
469 int mmfd;
470
c5aa993b
JM
471 mmfd = objfile->mmfd;
472 mmalloc_detach (objfile->md);
c906108c
SS
473 objfile = NULL;
474 close (mmfd);
475 }
476
c5aa993b 477#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
478
479 /* If we still have an objfile, then either we don't support reusable
480 objfiles or this one was not reusable. So free it normally. */
481
482 if (objfile != NULL)
483 {
c5aa993b 484 if (objfile->name != NULL)
c906108c 485 {
c5aa993b 486 mfree (objfile->md, objfile->name);
c906108c
SS
487 }
488 if (objfile->global_psymbols.list)
489 mfree (objfile->md, objfile->global_psymbols.list);
490 if (objfile->static_psymbols.list)
491 mfree (objfile->md, objfile->static_psymbols.list);
492 /* Free the obstacks for non-reusable objfiles */
c5aa993b
JM
493 obstack_free (&objfile->psymbol_cache.cache, 0);
494 obstack_free (&objfile->psymbol_obstack, 0);
495 obstack_free (&objfile->symbol_obstack, 0);
496 obstack_free (&objfile->type_obstack, 0);
497 mfree (objfile->md, objfile);
c906108c
SS
498 objfile = NULL;
499 }
500}
501
502
503/* Free all the object files at once and clean up their users. */
504
505void
506free_all_objfiles ()
507{
508 struct objfile *objfile, *temp;
509
510 ALL_OBJFILES_SAFE (objfile, temp)
c5aa993b
JM
511 {
512 free_objfile (objfile);
513 }
c906108c
SS
514 clear_symtab_users ();
515}
516\f
517/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
518 entries in new_offsets. */
519void
520objfile_relocate (objfile, new_offsets)
521 struct objfile *objfile;
522 struct section_offsets *new_offsets;
523{
c5aa993b
JM
524 struct section_offsets *delta = (struct section_offsets *)
525 alloca (sizeof (struct section_offsets)
526 + objfile->num_sections * sizeof (delta->offsets));
c906108c
SS
527
528 {
529 int i;
530 int something_changed = 0;
531 for (i = 0; i < objfile->num_sections; ++i)
532 {
533 ANOFFSET (delta, i) =
534 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
535 if (ANOFFSET (delta, i) != 0)
536 something_changed = 1;
537 }
538 if (!something_changed)
539 return;
540 }
541
542 /* OK, get all the symtabs. */
543 {
544 struct symtab *s;
545
546 ALL_OBJFILE_SYMTABS (objfile, s)
c5aa993b
JM
547 {
548 struct linetable *l;
549 struct blockvector *bv;
550 int i;
551
552 /* First the line table. */
553 l = LINETABLE (s);
554 if (l)
555 {
556 for (i = 0; i < l->nitems; ++i)
557 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
558 }
c906108c 559
c5aa993b
JM
560 /* Don't relocate a shared blockvector more than once. */
561 if (!s->primary)
562 continue;
c906108c 563
c5aa993b
JM
564 bv = BLOCKVECTOR (s);
565 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
566 {
567 struct block *b;
568 int j;
569
570 b = BLOCKVECTOR_BLOCK (bv, i);
571 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
572 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
573
574 for (j = 0; j < BLOCK_NSYMS (b); ++j)
575 {
576 struct symbol *sym = BLOCK_SYM (b, j);
577 /* The RS6000 code from which this was taken skipped
578 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
579 But I'm leaving out that test, on the theory that
580 they can't possibly pass the tests below. */
581 if ((SYMBOL_CLASS (sym) == LOC_LABEL
582 || SYMBOL_CLASS (sym) == LOC_STATIC
583 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
584 && SYMBOL_SECTION (sym) >= 0)
585 {
586 SYMBOL_VALUE_ADDRESS (sym) +=
587 ANOFFSET (delta, SYMBOL_SECTION (sym));
588 }
c906108c 589#ifdef MIPS_EFI_SYMBOL_NAME
c5aa993b 590 /* Relocate Extra Function Info for ecoff. */
c906108c 591
c5aa993b
JM
592 else if (SYMBOL_CLASS (sym) == LOC_CONST
593 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
594 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
595 ecoff_relocate_efi (sym, ANOFFSET (delta,
c906108c
SS
596 s->block_line_section));
597#endif
c5aa993b
JM
598 }
599 }
600 }
c906108c
SS
601 }
602
603 {
604 struct partial_symtab *p;
605
606 ALL_OBJFILE_PSYMTABS (objfile, p)
c5aa993b
JM
607 {
608 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
609 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
610 }
c906108c
SS
611 }
612
613 {
614 struct partial_symbol **psym;
615
616 for (psym = objfile->global_psymbols.list;
617 psym < objfile->global_psymbols.next;
618 psym++)
619 if (SYMBOL_SECTION (*psym) >= 0)
c5aa993b 620 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
c906108c
SS
621 SYMBOL_SECTION (*psym));
622 for (psym = objfile->static_psymbols.list;
623 psym < objfile->static_psymbols.next;
624 psym++)
625 if (SYMBOL_SECTION (*psym) >= 0)
c5aa993b 626 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
c906108c
SS
627 SYMBOL_SECTION (*psym));
628 }
629
630 {
631 struct minimal_symbol *msym;
632 ALL_OBJFILE_MSYMBOLS (objfile, msym)
633 if (SYMBOL_SECTION (msym) >= 0)
c5aa993b 634 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
c906108c
SS
635 }
636 /* Relocating different sections by different amounts may cause the symbols
637 to be out of order. */
638 msymbols_sort (objfile);
639
640 {
641 int i;
642 for (i = 0; i < objfile->num_sections; ++i)
643 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
644 }
645
646 {
647 struct obj_section *s;
648 bfd *abfd;
649
650 abfd = objfile->obfd;
651
96baa820 652 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c
SS
653 {
654 flagword flags;
655
656 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
657
658 if (flags & SEC_CODE)
659 {
c5aa993b 660 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
c906108c
SS
661 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
662 }
663 else if (flags & (SEC_DATA | SEC_LOAD))
664 {
c5aa993b 665 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
c906108c
SS
666 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
667 }
668 else if (flags & SEC_ALLOC)
669 {
c5aa993b 670 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
c906108c
SS
671 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
672 }
673 }
674 }
675
c5aa993b 676 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
c906108c
SS
677 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
678
679 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
680 {
c5aa993b 681 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
c906108c
SS
682 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
683 }
684
685 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
686 {
c5aa993b 687 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
c906108c
SS
688 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
689 }
690
691 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
692 {
c5aa993b 693 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
c906108c
SS
694 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
695 }
696
697 /* Relocate breakpoints as necessary, after things are relocated. */
698 breakpoint_re_set ();
699}
700\f
701/* Many places in gdb want to test just to see if we have any partial
702 symbols available. This function returns zero if none are currently
703 available, nonzero otherwise. */
704
705int
706have_partial_symbols ()
707{
708 struct objfile *ofp;
709
710 ALL_OBJFILES (ofp)
c5aa993b
JM
711 {
712 if (ofp->psymtabs != NULL)
713 {
714 return 1;
715 }
716 }
c906108c
SS
717 return 0;
718}
719
720/* Many places in gdb want to test just to see if we have any full
721 symbols available. This function returns zero if none are currently
722 available, nonzero otherwise. */
723
724int
725have_full_symbols ()
726{
727 struct objfile *ofp;
728
729 ALL_OBJFILES (ofp)
c5aa993b
JM
730 {
731 if (ofp->symtabs != NULL)
732 {
733 return 1;
734 }
735 }
c906108c
SS
736 return 0;
737}
738
739
740/* This operations deletes all objfile entries that represent solibs that
741 weren't explicitly loaded by the user, via e.g., the add-symbol-file
742 command.
c5aa993b 743 */
c906108c
SS
744void
745objfile_purge_solibs ()
746{
c5aa993b
JM
747 struct objfile *objf;
748 struct objfile *temp;
c906108c
SS
749
750 ALL_OBJFILES_SAFE (objf, temp)
751 {
752 /* We assume that the solib package has been purged already, or will
753 be soon.
c5aa993b
JM
754 */
755 if (!objf->user_loaded && objf->is_solib)
c906108c
SS
756 free_objfile (objf);
757 }
758}
759
760
761/* Many places in gdb want to test just to see if we have any minimal
762 symbols available. This function returns zero if none are currently
763 available, nonzero otherwise. */
764
765int
766have_minimal_symbols ()
767{
768 struct objfile *ofp;
769
770 ALL_OBJFILES (ofp)
c5aa993b
JM
771 {
772 if (ofp->msymbols != NULL)
773 {
774 return 1;
775 }
776 }
c906108c
SS
777 return 0;
778}
779
780#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
781
782/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
783 of the corresponding symbol file in MTIME, try to open an existing file
784 with the name SYMSFILENAME and verify it is more recent than the base
785 file by checking it's timestamp against MTIME.
786
787 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
788
789 If SYMSFILENAME does exist, but is out of date, we check to see if the
790 user has specified creation of a mapped file. If so, we don't issue
791 any warning message because we will be creating a new mapped file anyway,
792 overwriting the old one. If not, then we issue a warning message so that
793 the user will know why we aren't using this existing mapped symbol file.
794 In either case, we return -1.
795
796 If SYMSFILENAME does exist and is not out of date, but can't be opened for
797 some reason, then prints an appropriate system error message and returns -1.
798
799 Otherwise, returns the open file descriptor. */
800
801static int
802open_existing_mapped_file (symsfilename, mtime, mapped)
803 char *symsfilename;
804 long mtime;
805 int mapped;
806{
807 int fd = -1;
808 struct stat sbuf;
809
810 if (stat (symsfilename, &sbuf) == 0)
811 {
812 if (sbuf.st_mtime < mtime)
813 {
814 if (!mapped)
815 {
816 warning ("mapped symbol file `%s' is out of date, ignored it",
817 symsfilename);
818 }
819 }
820 else if ((fd = open (symsfilename, O_RDWR)) < 0)
821 {
822 if (error_pre_print)
823 {
824 printf_unfiltered (error_pre_print);
825 }
826 print_sys_errmsg (symsfilename, errno);
827 }
828 }
829 return (fd);
830}
831
832/* Look for a mapped symbol file that corresponds to FILENAME and is more
833 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
834 use a mapped symbol file for this file, so create a new one if one does
835 not currently exist.
836
837 If found, then return an open file descriptor for the file, otherwise
838 return -1.
839
840 This routine is responsible for implementing the policy that generates
841 the name of the mapped symbol file from the name of a file containing
842 symbols that gdb would like to read. Currently this policy is to append
843 ".syms" to the name of the file.
844
845 This routine is also responsible for implementing the policy that
846 determines where the mapped symbol file is found (the search path).
847 This policy is that when reading an existing mapped file, a file of
848 the correct name in the current directory takes precedence over a
849 file of the correct name in the same directory as the symbol file.
850 When creating a new mapped file, it is always created in the current
851 directory. This helps to minimize the chances of a user unknowingly
852 creating big mapped files in places like /bin and /usr/local/bin, and
853 allows a local copy to override a manually installed global copy (in
854 /bin for example). */
855
856static int
857open_mapped_file (filename, mtime, mapped)
858 char *filename;
859 long mtime;
860 int mapped;
861{
862 int fd;
863 char *symsfilename;
864
865 /* First try to open an existing file in the current directory, and
866 then try the directory where the symbol file is located. */
867
868 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
869 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
870 {
871 free (symsfilename);
872 symsfilename = concat (filename, ".syms", (char *) NULL);
873 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
874 }
875
876 /* If we don't have an open file by now, then either the file does not
877 already exist, or the base file has changed since it was created. In
878 either case, if the user has specified use of a mapped file, then
879 create a new mapped file, truncating any existing one. If we can't
880 create one, print a system error message saying why we can't.
881
882 By default the file is rw for everyone, with the user's umask taking
883 care of turning off the permissions the user wants off. */
884
885 if ((fd < 0) && mapped)
886 {
887 free (symsfilename);
888 symsfilename = concat ("./", basename (filename), ".syms",
889 (char *) NULL);
890 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
891 {
892 if (error_pre_print)
893 {
894 printf_unfiltered (error_pre_print);
895 }
896 print_sys_errmsg (symsfilename, errno);
897 }
898 }
899
900 free (symsfilename);
901 return (fd);
902}
903
904static PTR
905map_to_file (fd)
906 int fd;
907{
908 PTR md;
909 CORE_ADDR mapto;
910
911 md = mmalloc_attach (fd, (PTR) 0);
912 if (md != NULL)
913 {
914 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
915 md = mmalloc_detach (md);
916 if (md != NULL)
917 {
918 /* FIXME: should figure out why detach failed */
919 md = NULL;
920 }
921 else if (mapto != (CORE_ADDR) NULL)
922 {
923 /* This mapping file needs to be remapped at "mapto" */
924 md = mmalloc_attach (fd, (PTR) mapto);
925 }
926 else
927 {
928 /* This is a freshly created mapping file. */
929 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
930 if (mapto != 0)
931 {
932 /* To avoid reusing the freshly created mapping file, at the
c5aa993b
JM
933 address selected by mmap, we must truncate it before trying
934 to do an attach at the address we want. */
c906108c
SS
935 ftruncate (fd, 0);
936 md = mmalloc_attach (fd, (PTR) mapto);
937 if (md != NULL)
938 {
939 mmalloc_setkey (md, 1, (PTR) mapto);
940 }
941 }
942 }
943 }
944 return (md);
945}
946
c5aa993b 947#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
948
949/* Returns a section whose range includes PC and SECTION,
950 or NULL if none found. Note the distinction between the return type,
951 struct obj_section (which is defined in gdb), and the input type
952 struct sec (which is a bfd-defined data type). The obj_section
953 contains a pointer to the bfd struct sec section. */
954
955struct obj_section *
956find_pc_sect_section (pc, section)
957 CORE_ADDR pc;
958 struct sec *section;
959{
960 struct obj_section *s;
961 struct objfile *objfile;
c5aa993b 962
96baa820 963 ALL_OBJSECTIONS (objfile, s)
c906108c 964#if defined(HPUXHPPA)
c5aa993b
JM
965 if ((section == 0 || section == s->the_bfd_section) &&
966 s->addr <= pc && pc <= s->endaddr)
c906108c 967#else
c5aa993b
JM
968 if ((section == 0 || section == s->the_bfd_section) &&
969 s->addr <= pc && pc < s->endaddr)
c906108c 970#endif
c5aa993b 971 return (s);
c906108c 972
c5aa993b 973 return (NULL);
c906108c
SS
974}
975
976/* Returns a section whose range includes PC or NULL if none found.
977 Backward compatibility, no section. */
978
979struct obj_section *
c5aa993b 980find_pc_section (pc)
c906108c
SS
981 CORE_ADDR pc;
982{
983 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
984}
c5aa993b 985
c906108c
SS
986
987/* In SVR4, we recognize a trampoline by it's section name.
988 That is, if the pc is in a section named ".plt" then we are in
989 a trampoline. */
990
991int
c5aa993b 992in_plt_section (pc, name)
c906108c
SS
993 CORE_ADDR pc;
994 char *name;
995{
996 struct obj_section *s;
997 int retval = 0;
c5aa993b
JM
998
999 s = find_pc_section (pc);
1000
c906108c
SS
1001 retval = (s != NULL
1002 && s->the_bfd_section->name != NULL
1003 && STREQ (s->the_bfd_section->name, ".plt"));
c5aa993b 1004 return (retval);
c906108c 1005}
7be570e7
JM
1006
1007/* Return nonzero if NAME is in the import list of OBJFILE. Else
1008 return zero. */
1009
1010int
1011is_in_import_list (name, objfile)
1012 char *name;
1013 struct objfile *objfile;
1014{
1015 register int i;
1016
1017 if (!objfile || !name || !*name)
1018 return 0;
1019
1020 for (i = 0; i < objfile->import_list_size; i++)
1021 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1022 return 1;
1023 return 0;
1024}
1025
This page took 0.095741 seconds and 4 git commands to generate.