Remove most uses of ALL_OBJFILES
[deliverable/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
3956d554 24#include "gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
b5ec771e 30#include <vector>
21708325 31#include "common/next-iterator.h"
3956d554 32
af5f3db6 33struct bcache;
2de7ced7 34struct htab;
4a4b3fed 35struct objfile_data;
af5bf4ad 36struct partial_symbol;
08c0b5bc 37
c906108c
SS
38/* This structure maintains information on a per-objfile basis about the
39 "entry point" of the objfile, and the scope within which the entry point
40 exists. It is possible that gdb will see more than one objfile that is
41 executable, each with its own entry point.
42
43 For example, for dynamically linked executables in SVR4, the dynamic linker
44 code is contained within the shared C library, which is actually executable
45 and is run by the kernel first when an exec is done of a user executable
46 that is dynamically linked. The dynamic linker within the shared C library
47 then maps in the various program segments in the user executable and jumps
48 to the user executable's recorded entry point, as if the call had been made
49 directly by the kernel.
50
73c1e0a1
AC
51 The traditional gdb method of using this info was to use the
52 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
53 the debugging information, where these values are the starting
54 address (inclusive) and ending address (exclusive) of the
55 instruction space in the executable which correspond to the
0df8b418 56 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
57 be a startup file and frames with pc's inside it are treated as
58 nonexistent. Setting these variables is necessary so that
59 backtraces do not fly off the bottom of the stack.
60
61 NOTE: cagney/2003-09-09: It turns out that this "traditional"
62 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 63 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 64 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
65 testcase are broken for some targets. In this test the functions
66 are all implemented as part of one file and the testcase is not
67 necessarily linked with a start file (depending on the target).
68 What happens is, that the first frame is printed normaly and
69 following frames are treated as being inside the enttry file then.
70 This way, only the #0 frame is printed in the backtrace output.''
71 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
72
73 Gdb also supports an alternate method to avoid running off the bottom
74 of the stack.
75
76 There are two frames that are "special", the frame for the function
77 containing the process entry point, since it has no predecessor frame,
78 and the frame for the function containing the user code entry point
79 (the main() function), since all the predecessor frames are for the
80 process startup code. Since we have no guarantee that the linked
81 in startup modules have any debugging information that gdb can use,
82 we need to avoid following frame pointers back into frames that might
95cf5869 83 have been built in the startup code, as we might get hopelessly
c906108c
SS
84 confused. However, we almost always have debugging information
85 available for main().
86
618ce49f
AC
87 These variables are used to save the range of PC values which are
88 valid within the main() function and within the function containing
89 the process entry point. If we always consider the frame for
90 main() as the outermost frame when debugging user code, and the
91 frame for the process entry point function as the outermost frame
92 when debugging startup code, then all we have to do is have
93 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
94 current PC is within the range specified by these variables. In
95 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
96 not proceed when following the frame chain back up the stack.
97
98 A nice side effect is that we can still debug startup code without
99 running off the end of the frame chain, assuming that we have usable
100 debugging information in the startup modules, and if we choose to not
101 use the block at main, or can't find it for some reason, everything
102 still works as before. And if we have no startup code debugging
103 information but we do have usable information for main(), backtraces
6e4c6c91 104 from user code don't go wandering off into the startup code. */
c906108c
SS
105
106struct entry_info
95cf5869
DE
107{
108 /* The unrelocated value we should use for this objfile entry point. */
109 CORE_ADDR entry_point;
c906108c 110
95cf5869
DE
111 /* The index of the section in which the entry point appears. */
112 int the_bfd_section_index;
53eddfa6 113
95cf5869
DE
114 /* Set to 1 iff ENTRY_POINT contains a valid value. */
115 unsigned entry_point_p : 1;
6ef55de7 116
95cf5869
DE
117 /* Set to 1 iff this object was initialized. */
118 unsigned initialized : 1;
119};
c906108c 120
f1f6aadf
PA
121/* Sections in an objfile. The section offsets are stored in the
122 OBJFILE. */
c906108c 123
c5aa993b 124struct obj_section
95cf5869
DE
125{
126 /* BFD section pointer */
127 struct bfd_section *the_bfd_section;
c906108c 128
95cf5869
DE
129 /* Objfile this section is part of. */
130 struct objfile *objfile;
c906108c 131
95cf5869
DE
132 /* True if this "overlay section" is mapped into an "overlay region". */
133 int ovly_mapped;
134};
c906108c 135
f1f6aadf
PA
136/* Relocation offset applied to S. */
137#define obj_section_offset(s) \
65cf3563 138 (((s)->objfile->section_offsets)->offsets[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
f1f6aadf
PA
139
140/* The memory address of section S (vma + offset). */
141#define obj_section_addr(s) \
1706c199 142 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
143 + obj_section_offset (s))
144
145/* The one-passed-the-end memory address of section S
146 (vma + size + offset). */
147#define obj_section_endaddr(s) \
1706c199 148 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
149 + bfd_get_section_size ((s)->the_bfd_section) \
150 + obj_section_offset (s))
c906108c 151
c906108c
SS
152/* The "objstats" structure provides a place for gdb to record some
153 interesting information about its internal state at runtime, on a
154 per objfile basis, such as information about the number of symbols
0df8b418 155 read, size of string table (if any), etc. */
c906108c 156
c5aa993b 157struct objstats
95cf5869
DE
158{
159 /* Number of partial symbols read. */
9e86da07 160 int n_psyms = 0;
95cf5869
DE
161
162 /* Number of full symbols read. */
9e86da07 163 int n_syms = 0;
95cf5869
DE
164
165 /* Number of ".stabs" read (if applicable). */
9e86da07 166 int n_stabs = 0;
95cf5869
DE
167
168 /* Number of types. */
9e86da07 169 int n_types = 0;
95cf5869
DE
170
171 /* Size of stringtable, (if applicable). */
9e86da07 172 int sz_strtab = 0;
95cf5869 173};
c906108c
SS
174
175#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
176#define OBJSTATS struct objstats stats
a14ed312
KB
177extern void print_objfile_statistics (void);
178extern void print_symbol_bcache_statistics (void);
c906108c 179
9227b5eb 180/* Number of entries in the minimal symbol hash table. */
375f3d86 181#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 182
706e3705
TT
183/* Some objfile data is hung off the BFD. This enables sharing of the
184 data across all objfiles using the BFD. The data is stored in an
185 instance of this structure, and associated with the BFD using the
186 registry system. */
187
188struct objfile_per_bfd_storage
189{
23732b1e
PA
190 objfile_per_bfd_storage ()
191 : minsyms_read (false)
192 {}
193
706e3705
TT
194 /* The storage has an obstack of its own. */
195
23732b1e 196 auto_obstack storage_obstack;
95cf5869 197
706e3705
TT
198 /* Byte cache for file names. */
199
23732b1e 200 bcache *filename_cache = NULL;
6532ff36
TT
201
202 /* Byte cache for macros. */
95cf5869 203
23732b1e 204 bcache *macro_cache = NULL;
df6d5441
TT
205
206 /* The gdbarch associated with the BFD. Note that this gdbarch is
207 determined solely from BFD information, without looking at target
208 information. The gdbarch determined from a running target may
209 differ from this e.g. with respect to register types and names. */
210
23732b1e 211 struct gdbarch *gdbarch = NULL;
84a1243b
TT
212
213 /* Hash table for mapping symbol names to demangled names. Each
214 entry in the hash table is actually two consecutive strings,
215 both null-terminated; the first one is a mangled or linkage
216 name, and the second is the demangled name or just a zero byte
217 if the name doesn't demangle. */
95cf5869 218
23732b1e 219 htab *demangled_names_hash = NULL;
6ef55de7
TT
220
221 /* The per-objfile information about the entry point, the scope (file/func)
222 containing the entry point, and the scope of the user's main() func. */
223
23732b1e 224 entry_info ei {};
3d548a53
TT
225
226 /* The name and language of any "main" found in this objfile. The
227 name can be NULL, which means that the information was not
228 recorded. */
229
23732b1e
PA
230 const char *name_of_main = NULL;
231 enum language language_of_main = language_unknown;
34643a32
TT
232
233 /* Each file contains a pointer to an array of minimal symbols for all
234 global symbols that are defined within the file. The array is
235 terminated by a "null symbol", one that has a NULL pointer for the
236 name and a zero value for the address. This makes it easy to walk
237 through the array when passed a pointer to somewhere in the middle
238 of it. There is also a count of the number of symbols, which does
239 not include the terminating null symbol. The array itself, as well
240 as all the data that it points to, should be allocated on the
241 objfile_obstack for this file. */
242
23732b1e
PA
243 minimal_symbol *msymbols = NULL;
244 int minimal_symbol_count = 0;
34643a32 245
5f6cac40
TT
246 /* The number of minimal symbols read, before any minimal symbol
247 de-duplication is applied. Note in particular that this has only
248 a passing relationship with the actual size of the table above;
249 use minimal_symbol_count if you need the true size. */
95cf5869 250
23732b1e 251 int n_minsyms = 0;
5f6cac40 252
34643a32
TT
253 /* This is true if minimal symbols have already been read. Symbol
254 readers can use this to bypass minimal symbol reading. Also, the
255 minimal symbol table management code in minsyms.c uses this to
256 suppress new minimal symbols. You might think that MSYMBOLS or
257 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
258 for multiple readers to install minimal symbols into a given
259 per-BFD. */
260
23732b1e 261 bool minsyms_read : 1;
34643a32
TT
262
263 /* This is a hash table used to index the minimal symbols by name. */
264
23732b1e 265 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
266
267 /* This hash table is used to index the minimal symbols by their
268 demangled names. */
269
23732b1e 270 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
b5ec771e
PA
271
272 /* All the different languages of symbols found in the demangled
273 hash table. A flat/vector-based map is more efficient than a map
274 or hash table here, since this will only usually contain zero or
275 one entries. */
276 std::vector<enum language> demangled_hash_languages;
706e3705
TT
277};
278
c906108c
SS
279/* Master structure for keeping track of each file from which
280 gdb reads symbols. There are several ways these get allocated: 1.
281 The main symbol file, symfile_objfile, set by the symbol-file command,
282 2. Additional symbol files added by the add-symbol-file command,
283 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
284 for modules that were loaded when GDB attached to a remote system
285 (see remote-vx.c). */
286
287struct objfile
95cf5869 288{
9e86da07
TT
289 objfile (bfd *, const char *, objfile_flags);
290 ~objfile ();
291
292 DISABLE_COPY_AND_ASSIGN (objfile);
293
95cf5869
DE
294 /* All struct objfile's are chained together by their next pointers.
295 The program space field "objfiles" (frequently referenced via
296 the macro "object_files") points to the first link in this chain. */
c906108c 297
9e86da07 298 struct objfile *next = nullptr;
c906108c 299
95cf5869
DE
300 /* The object file's original name as specified by the user,
301 made absolute, and tilde-expanded. However, it is not canonicalized
302 (i.e., it has not been passed through gdb_realpath).
303 This pointer is never NULL. This does not have to be freed; it is
304 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 305
9e86da07 306 char *original_name = nullptr;
c906108c 307
9e86da07 308 CORE_ADDR addr_low = 0;
c906108c 309
b15cc25c 310 /* Some flag bits for this objfile. */
e4f6d2ec 311
b15cc25c 312 objfile_flags flags;
c906108c 313
95cf5869 314 /* The program space associated with this objfile. */
c906108c 315
95cf5869 316 struct program_space *pspace;
6c95b8df 317
95cf5869
DE
318 /* List of compunits.
319 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 320
9e86da07 321 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 322
95cf5869
DE
323 /* Each objfile points to a linked list of partial symtabs derived from
324 this file, one partial symtab structure for each compilation unit
325 (source file). */
c906108c 326
9e86da07 327 struct partial_symtab *psymtabs = nullptr;
c906108c 328
95cf5869
DE
329 /* Map addresses to the entries of PSYMTABS. It would be more efficient to
330 have a map per the whole process but ADDRMAP cannot selectively remove
331 its items during FREE_OBJFILE. This mapping is already present even for
332 PARTIAL_SYMTABs which still have no corresponding full SYMTABs read. */
c906108c 333
9e86da07 334 struct addrmap *psymtabs_addrmap = nullptr;
ff013f42 335
95cf5869 336 /* List of freed partial symtabs, available for re-use. */
ff013f42 337
9e86da07 338 struct partial_symtab *free_psymtabs = nullptr;
c906108c 339
95cf5869
DE
340 /* The object file's BFD. Can be null if the objfile contains only
341 minimal symbols, e.g. the run time common symbols for SunOS4. */
c906108c 342
95cf5869 343 bfd *obfd;
c906108c 344
95cf5869
DE
345 /* The per-BFD data. Note that this is treated specially if OBFD
346 is NULL. */
c906108c 347
9e86da07 348 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 349
95cf5869
DE
350 /* The modification timestamp of the object file, as of the last time
351 we read its symbols. */
706e3705 352
9e86da07 353 long mtime = 0;
c906108c 354
95cf5869
DE
355 /* Obstack to hold objects that should be freed when we load a new symbol
356 table from this object file. */
c906108c 357
9e86da07 358 struct obstack objfile_obstack {};
b99607ea 359
95cf5869
DE
360 /* A byte cache where we can stash arbitrary "chunks" of bytes that
361 will not change. */
b99607ea 362
9e86da07 363 struct psymbol_bcache *psymbol_cache;
c906108c 364
71a3c369
TT
365 /* Map symbol addresses to the partial symtab that defines the
366 object at that address. */
367
368 std::vector<std::pair<CORE_ADDR, partial_symtab *>> psymbol_map;
369
95cf5869
DE
370 /* Vectors of all partial symbols read in from file. The actual data
371 is stored in the objfile_obstack. */
c906108c 372
af5bf4ad
SM
373 std::vector<partial_symbol *> global_psymbols;
374 std::vector<partial_symbol *> static_psymbols;
c906108c 375
95cf5869
DE
376 /* Structure which keeps track of functions that manipulate objfile's
377 of the same type as this objfile. I.e. the function to read partial
378 symbols for example. Note that this structure is in statically
379 allocated memory, and is shared by all objfiles that use the
380 object module reader of this type. */
c906108c 381
9e86da07 382 const struct sym_fns *sf = nullptr;
c906108c 383
95cf5869 384 /* Per objfile data-pointers required by other GDB modules. */
c906108c 385
9e86da07 386 REGISTRY_FIELDS {};
0d0e1a63 387
95cf5869
DE
388 /* Set of relocation offsets to apply to each section.
389 The table is indexed by the_bfd_section->index, thus it is generally
390 as large as the number of sections in the binary.
391 The table is stored on the objfile_obstack.
0d0e1a63 392
95cf5869
DE
393 These offsets indicate that all symbols (including partial and
394 minimal symbols) which have been read have been relocated by this
395 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 396
9e86da07
TT
397 struct section_offsets *section_offsets = nullptr;
398 int num_sections = 0;
c906108c 399
95cf5869
DE
400 /* Indexes in the section_offsets array. These are initialized by the
401 *_symfile_offsets() family of functions (som_symfile_offsets,
402 xcoff_symfile_offsets, default_symfile_offsets). In theory they
403 should correspond to the section indexes used by bfd for the
404 current objfile. The exception to this for the time being is the
9e86da07
TT
405 SOM version.
406
407 These are initialized to -1 so that we can later detect if they
408 are used w/o being properly assigned to. */
c906108c 409
9e86da07
TT
410 int sect_index_text = -1;
411 int sect_index_data = -1;
412 int sect_index_bss = -1;
413 int sect_index_rodata = -1;
b8fbeb18 414
95cf5869
DE
415 /* These pointers are used to locate the section table, which
416 among other things, is used to map pc addresses into sections.
417 SECTIONS points to the first entry in the table, and
418 SECTIONS_END points to the first location past the last entry
419 in the table. The table is stored on the objfile_obstack. The
420 sections are indexed by the BFD section index; but the
421 structure data is only valid for certain sections
422 (e.g. non-empty, SEC_ALLOC). */
b8fbeb18 423
9e86da07
TT
424 struct obj_section *sections = nullptr;
425 struct obj_section *sections_end = nullptr;
c906108c 426
95cf5869
DE
427 /* GDB allows to have debug symbols in separate object files. This is
428 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
429 Although this is a tree structure, GDB only support one level
430 (ie a separate debug for a separate debug is not supported). Note that
431 separate debug object are in the main chain and therefore will be
432 visited by ALL_OBJFILES & co iterators. Separate debug objfile always
433 has a non-nul separate_debug_objfile_backlink. */
c906108c 434
95cf5869 435 /* Link to the first separate debug object, if any. */
15d123c9 436
9e86da07 437 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 438
95cf5869
DE
439 /* If this is a separate debug object, this is used as a link to the
440 actual executable objfile. */
15d123c9 441
9e86da07 442 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 443
95cf5869
DE
444 /* If this is a separate debug object, this is a link to the next one
445 for the same executable objfile. */
5c4e30ca 446
9e86da07 447 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
448
449 /* Place to stash various statistics about this objfile. */
450
451 OBJSTATS;
452
453 /* A linked list of symbols created when reading template types or
454 function templates. These symbols are not stored in any symbol
455 table, so we have to keep them here to relocate them
456 properly. */
457
9e86da07 458 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
459
460 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
461 block *) that have one.
462
463 In the context of nested functions (available in Pascal, Ada and GNU C,
464 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
465 for a function is a way to get the frame corresponding to the enclosing
466 function.
467
468 Very few blocks have a static link, so it's more memory efficient to
469 store these here rather than in struct block. Static links must be
470 allocated on the objfile's obstack. */
9e86da07 471 htab_t static_links {};
95cf5869 472};
c906108c 473
c906108c
SS
474/* Declarations for functions defined in objfiles.c */
475
9c1877ea 476extern struct gdbarch *get_objfile_arch (const struct objfile *);
5e2b427d 477
abd0a5fa
JK
478extern int entry_point_address_query (CORE_ADDR *entry_p);
479
9ab9195f
EZ
480extern CORE_ADDR entry_point_address (void);
481
d82ea6a8 482extern void build_objfile_section_table (struct objfile *);
c906108c 483
15d123c9
TG
484extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
485 const struct objfile *);
486
5b5d99cf
JB
487extern void put_objfile_before (struct objfile *, struct objfile *);
488
15d123c9
TG
489extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
490
a14ed312 491extern void unlink_objfile (struct objfile *);
c906108c 492
15d123c9
TG
493extern void free_objfile_separate_debug (struct objfile *);
494
a14ed312 495extern void free_all_objfiles (void);
c906108c 496
3189cb12 497extern void objfile_relocate (struct objfile *, const struct section_offsets *);
4141a416 498extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 499
55333a84
DE
500extern int objfile_has_partial_symbols (struct objfile *objfile);
501
502extern int objfile_has_full_symbols (struct objfile *objfile);
503
e361b228
TG
504extern int objfile_has_symbols (struct objfile *objfile);
505
a14ed312 506extern int have_partial_symbols (void);
c906108c 507
a14ed312 508extern int have_full_symbols (void);
c906108c 509
8fb8eb5c
DE
510extern void objfile_set_sym_fns (struct objfile *objfile,
511 const struct sym_fns *sf);
512
bb272892 513extern void objfiles_changed (void);
63644780
NB
514
515extern int is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 516
d03de421
PA
517/* Return true if ADDRESS maps into one of the sections of a
518 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 519
d03de421
PA
520extern int shared_objfile_contains_address_p (struct program_space *pspace,
521 CORE_ADDR address);
08351840 522
c906108c
SS
523/* This operation deletes all objfile entries that represent solibs that
524 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
525 command. */
526
a14ed312 527extern void objfile_purge_solibs (void);
c906108c
SS
528
529/* Functions for dealing with the minimal symbol table, really a misc
530 address<->symbol mapping for things we don't have debug symbols for. */
531
a14ed312 532extern int have_minimal_symbols (void);
c906108c 533
a14ed312 534extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 535
3e5d3a5a 536/* Return non-zero if PC is in a section called NAME. */
a121b7c1 537extern int pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
538
539/* Return non-zero if PC is in a SVR4-style procedure linkage table
540 section. */
541
542static inline int
543in_plt_section (CORE_ADDR pc)
544{
545 return pc_in_section (pc, ".plt");
546}
c906108c 547
0d0e1a63
MK
548/* Keep a registry of per-objfile data-pointers required by other GDB
549 modules. */
8e260fc0 550DECLARE_REGISTRY(objfile);
e3c69974 551
607ece04
GB
552/* In normal use, the section map will be rebuilt by find_pc_section
553 if objfiles have been added, removed or relocated since it was last
554 called. Calling inhibit_section_map_updates will inhibit this
06424eac
TT
555 behavior until the returned scoped_restore object is destroyed. If
556 you call inhibit_section_map_updates you must ensure that every
557 call to find_pc_section in the inhibited region relates to a
558 section that is already in the section map and has not since been
559 removed or relocated. */
560extern scoped_restore_tmpl<int> inhibit_section_map_updates
561 (struct program_space *pspace);
607ece04 562
19630284
JB
563extern void default_iterate_over_objfiles_in_search_order
564 (struct gdbarch *gdbarch,
565 iterate_over_objfiles_in_search_order_cb_ftype *cb,
566 void *cb_data, struct objfile *current_objfile);
0d0e1a63
MK
567\f
568
21708325
TT
569/* An iterarable object that can be used to iterate over all
570 objfiles. The basic use is in a foreach, like:
571
572 for (objfile *objf : all_objfiles (pspace)) { ... } */
573
574class all_objfiles : public next_adapter<struct objfile>
575{
576public:
577
578 explicit all_objfiles (struct program_space *pspace)
579 : next_adapter<struct objfile> (pspace->objfiles)
580 {
581 }
582};
583
584
6c95b8df
PA
585/* Traverse all object files in the current program space.
586 ALL_OBJFILES_SAFE works even if you delete the objfile during the
587 traversal. */
588
6c95b8df
PA
589#define ALL_OBJFILES(obj) \
590 for ((obj) = current_program_space->objfiles; \
591 (obj) != NULL; \
592 (obj) = (obj)->next)
593
594#define ALL_OBJFILES_SAFE(obj,nxt) \
595 for ((obj) = current_program_space->objfiles; \
c906108c
SS
596 (obj) != NULL? ((nxt)=(obj)->next,1) :0; \
597 (obj) = (nxt))
598
599/* Traverse all symtabs in one objfile. */
600
43f3e411
DE
601#define ALL_OBJFILE_FILETABS(objfile, cu, s) \
602 ALL_OBJFILE_COMPUNITS (objfile, cu) \
603 ALL_COMPUNIT_FILETABS (cu, s)
c906108c 604
43f3e411 605/* Traverse all compunits in one objfile. */
d790cf0a 606
43f3e411
DE
607#define ALL_OBJFILE_COMPUNITS(objfile, cu) \
608 for ((cu) = (objfile) -> compunit_symtabs; (cu) != NULL; (cu) = (cu) -> next)
d790cf0a 609
c906108c
SS
610/* Traverse all minimal symbols in one objfile. */
611
34643a32
TT
612#define ALL_OBJFILE_MSYMBOLS(objfile, m) \
613 for ((m) = (objfile)->per_bfd->msymbols; \
614 MSYMBOL_LINKAGE_NAME (m) != NULL; \
615 (m)++)
c906108c 616
6c95b8df
PA
617/* Traverse all symtabs in all objfiles in the current symbol
618 space. */
c906108c 619
43f3e411
DE
620#define ALL_FILETABS(objfile, ps, s) \
621 ALL_OBJFILES (objfile) \
622 ALL_OBJFILE_FILETABS (objfile, ps, s)
c906108c 623
43f3e411 624/* Traverse all compunits in all objfiles in the current program space. */
11309657 625
43f3e411 626#define ALL_COMPUNITS(objfile, cu) \
11309657 627 ALL_OBJFILES (objfile) \
43f3e411 628 ALL_OBJFILE_COMPUNITS (objfile, cu)
11309657 629
6c95b8df
PA
630/* Traverse all minimal symbols in all objfiles in the current symbol
631 space. */
c906108c
SS
632
633#define ALL_MSYMBOLS(objfile, m) \
634 ALL_OBJFILES (objfile) \
15831452 635 ALL_OBJFILE_MSYMBOLS (objfile, m)
c906108c
SS
636
637#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
65cf3563
TT
638 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
639 if (osect->the_bfd_section == NULL) \
640 { \
641 /* Nothing. */ \
642 } \
643 else
c906108c 644
96a8853a
PA
645/* Traverse all obj_sections in all objfiles in the current program
646 space.
647
648 Note that this detects a "break" in the inner loop, and exits
649 immediately from the outer loop as well, thus, client code doesn't
650 need to know that this is implemented with a double for. The extra
651 hair is to make sure that a "break;" stops the outer loop iterating
652 as well, and both OBJFILE and OSECT are left unmodified:
653
654 - The outer loop learns about the inner loop's end condition, and
655 stops iterating if it detects the inner loop didn't reach its
656 end. In other words, the outer loop keeps going only if the
657 inner loop reached its end cleanly [(osect) ==
658 (objfile)->sections_end].
659
660 - OSECT is initialized in the outer loop initialization
661 expressions, such as if the inner loop has reached its end, so
662 the check mentioned above succeeds the first time.
663
664 - The trick to not clearing OBJFILE on a "break;" is, in the outer
665 loop's loop expression, advance OBJFILE, but iff the inner loop
666 reached its end. If not, there was a "break;", so leave OBJFILE
667 as is; the outer loop's conditional will break immediately as
0df8b418 668 well (as OSECT will be different from OBJFILE->sections_end). */
96a8853a
PA
669
670#define ALL_OBJSECTIONS(objfile, osect) \
671 for ((objfile) = current_program_space->objfiles, \
672 (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0; \
673 (objfile) != NULL \
674 && (osect) == (objfile)->sections_end; \
675 ((osect) == (objfile)->sections_end \
676 ? ((objfile) = (objfile)->next, \
677 (objfile) != NULL ? (osect) = (objfile)->sections_end : 0) \
678 : 0)) \
65cf3563 679 ALL_OBJFILE_OSECTIONS (objfile, osect)
c906108c 680
b8fbeb18 681#define SECT_OFF_DATA(objfile) \
8e65ff28 682 ((objfile->sect_index_data == -1) \
3e43a32a
MS
683 ? (internal_error (__FILE__, __LINE__, \
684 _("sect_index_data not initialized")), -1) \
8e65ff28 685 : objfile->sect_index_data)
b8fbeb18
EZ
686
687#define SECT_OFF_RODATA(objfile) \
8e65ff28 688 ((objfile->sect_index_rodata == -1) \
3e43a32a
MS
689 ? (internal_error (__FILE__, __LINE__, \
690 _("sect_index_rodata not initialized")), -1) \
8e65ff28 691 : objfile->sect_index_rodata)
b8fbeb18
EZ
692
693#define SECT_OFF_TEXT(objfile) \
8e65ff28 694 ((objfile->sect_index_text == -1) \
3e43a32a
MS
695 ? (internal_error (__FILE__, __LINE__, \
696 _("sect_index_text not initialized")), -1) \
8e65ff28 697 : objfile->sect_index_text)
b8fbeb18 698
a4c8257b 699/* Sometimes the .bss section is missing from the objfile, so we don't
0df8b418
MS
700 want to die here. Let the users of SECT_OFF_BSS deal with an
701 uninitialized section index. */
a4c8257b 702#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
b8fbeb18 703
c14c28ba
PP
704/* Answer whether there is more than one object file loaded. */
705
706#define MULTI_OBJFILE_P() (object_files && object_files->next)
707
706e3705
TT
708/* Reset the per-BFD storage area on OBJ. */
709
710void set_objfile_per_bfd (struct objfile *obj);
711
e02c96a7
DE
712/* Return canonical name for OBJFILE.
713 This is the real file name if the file has been opened.
714 Otherwise it is the original name supplied by the user. */
715
4262abfb
JK
716const char *objfile_name (const struct objfile *objfile);
717
e02c96a7
DE
718/* Return the (real) file name of OBJFILE if the file has been opened,
719 otherwise return NULL. */
720
721const char *objfile_filename (const struct objfile *objfile);
722
cc485e62
DE
723/* Return the name to print for OBJFILE in debugging messages. */
724
725extern const char *objfile_debug_name (const struct objfile *objfile);
726
015d2e7e
DE
727/* Return the name of the file format of OBJFILE if the file has been opened,
728 otherwise return NULL. */
729
730const char *objfile_flavour_name (struct objfile *objfile);
731
3d548a53
TT
732/* Set the objfile's notion of the "main" name and language. */
733
734extern void set_objfile_main_name (struct objfile *objfile,
735 const char *name, enum language lang);
736
63e43d3a
PMR
737extern void objfile_register_static_link
738 (struct objfile *objfile,
739 const struct block *block,
740 const struct dynamic_prop *static_link);
741
742extern const struct dynamic_prop *objfile_lookup_static_link
743 (struct objfile *objfile, const struct block *block);
744
c5aa993b 745#endif /* !defined (OBJFILES_H) */
This page took 3.014103 seconds and 4 git commands to generate.