Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
3956d554 24#include "gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
b5ec771e 30#include <vector>
3956d554 31
af5f3db6 32struct bcache;
2de7ced7 33struct htab;
4a4b3fed 34struct objfile_data;
af5bf4ad 35struct partial_symbol;
08c0b5bc 36
c906108c
SS
37/* This structure maintains information on a per-objfile basis about the
38 "entry point" of the objfile, and the scope within which the entry point
39 exists. It is possible that gdb will see more than one objfile that is
40 executable, each with its own entry point.
41
42 For example, for dynamically linked executables in SVR4, the dynamic linker
43 code is contained within the shared C library, which is actually executable
44 and is run by the kernel first when an exec is done of a user executable
45 that is dynamically linked. The dynamic linker within the shared C library
46 then maps in the various program segments in the user executable and jumps
47 to the user executable's recorded entry point, as if the call had been made
48 directly by the kernel.
49
73c1e0a1
AC
50 The traditional gdb method of using this info was to use the
51 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
52 the debugging information, where these values are the starting
53 address (inclusive) and ending address (exclusive) of the
54 instruction space in the executable which correspond to the
0df8b418 55 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
56 be a startup file and frames with pc's inside it are treated as
57 nonexistent. Setting these variables is necessary so that
58 backtraces do not fly off the bottom of the stack.
59
60 NOTE: cagney/2003-09-09: It turns out that this "traditional"
61 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 62 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 63 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
64 testcase are broken for some targets. In this test the functions
65 are all implemented as part of one file and the testcase is not
66 necessarily linked with a start file (depending on the target).
67 What happens is, that the first frame is printed normaly and
68 following frames are treated as being inside the enttry file then.
69 This way, only the #0 frame is printed in the backtrace output.''
70 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
71
72 Gdb also supports an alternate method to avoid running off the bottom
73 of the stack.
74
75 There are two frames that are "special", the frame for the function
76 containing the process entry point, since it has no predecessor frame,
77 and the frame for the function containing the user code entry point
78 (the main() function), since all the predecessor frames are for the
79 process startup code. Since we have no guarantee that the linked
80 in startup modules have any debugging information that gdb can use,
81 we need to avoid following frame pointers back into frames that might
95cf5869 82 have been built in the startup code, as we might get hopelessly
c906108c
SS
83 confused. However, we almost always have debugging information
84 available for main().
85
618ce49f
AC
86 These variables are used to save the range of PC values which are
87 valid within the main() function and within the function containing
88 the process entry point. If we always consider the frame for
89 main() as the outermost frame when debugging user code, and the
90 frame for the process entry point function as the outermost frame
91 when debugging startup code, then all we have to do is have
92 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
93 current PC is within the range specified by these variables. In
94 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
95 not proceed when following the frame chain back up the stack.
96
97 A nice side effect is that we can still debug startup code without
98 running off the end of the frame chain, assuming that we have usable
99 debugging information in the startup modules, and if we choose to not
100 use the block at main, or can't find it for some reason, everything
101 still works as before. And if we have no startup code debugging
102 information but we do have usable information for main(), backtraces
6e4c6c91 103 from user code don't go wandering off into the startup code. */
c906108c
SS
104
105struct entry_info
95cf5869
DE
106{
107 /* The unrelocated value we should use for this objfile entry point. */
108 CORE_ADDR entry_point;
c906108c 109
95cf5869
DE
110 /* The index of the section in which the entry point appears. */
111 int the_bfd_section_index;
53eddfa6 112
95cf5869
DE
113 /* Set to 1 iff ENTRY_POINT contains a valid value. */
114 unsigned entry_point_p : 1;
6ef55de7 115
95cf5869
DE
116 /* Set to 1 iff this object was initialized. */
117 unsigned initialized : 1;
118};
c906108c 119
f1f6aadf
PA
120/* Sections in an objfile. The section offsets are stored in the
121 OBJFILE. */
c906108c 122
c5aa993b 123struct obj_section
95cf5869
DE
124{
125 /* BFD section pointer */
126 struct bfd_section *the_bfd_section;
c906108c 127
95cf5869
DE
128 /* Objfile this section is part of. */
129 struct objfile *objfile;
c906108c 130
95cf5869
DE
131 /* True if this "overlay section" is mapped into an "overlay region". */
132 int ovly_mapped;
133};
c906108c 134
f1f6aadf
PA
135/* Relocation offset applied to S. */
136#define obj_section_offset(s) \
65cf3563 137 (((s)->objfile->section_offsets)->offsets[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
f1f6aadf
PA
138
139/* The memory address of section S (vma + offset). */
140#define obj_section_addr(s) \
1706c199 141 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
142 + obj_section_offset (s))
143
144/* The one-passed-the-end memory address of section S
145 (vma + size + offset). */
146#define obj_section_endaddr(s) \
1706c199 147 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
148 + bfd_get_section_size ((s)->the_bfd_section) \
149 + obj_section_offset (s))
c906108c 150
c906108c
SS
151/* The "objstats" structure provides a place for gdb to record some
152 interesting information about its internal state at runtime, on a
153 per objfile basis, such as information about the number of symbols
0df8b418 154 read, size of string table (if any), etc. */
c906108c 155
c5aa993b 156struct objstats
95cf5869
DE
157{
158 /* Number of partial symbols read. */
9e86da07 159 int n_psyms = 0;
95cf5869
DE
160
161 /* Number of full symbols read. */
9e86da07 162 int n_syms = 0;
95cf5869
DE
163
164 /* Number of ".stabs" read (if applicable). */
9e86da07 165 int n_stabs = 0;
95cf5869
DE
166
167 /* Number of types. */
9e86da07 168 int n_types = 0;
95cf5869
DE
169
170 /* Size of stringtable, (if applicable). */
9e86da07 171 int sz_strtab = 0;
95cf5869 172};
c906108c
SS
173
174#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
175#define OBJSTATS struct objstats stats
a14ed312
KB
176extern void print_objfile_statistics (void);
177extern void print_symbol_bcache_statistics (void);
c906108c 178
9227b5eb 179/* Number of entries in the minimal symbol hash table. */
375f3d86 180#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 181
706e3705
TT
182/* Some objfile data is hung off the BFD. This enables sharing of the
183 data across all objfiles using the BFD. The data is stored in an
184 instance of this structure, and associated with the BFD using the
185 registry system. */
186
187struct objfile_per_bfd_storage
188{
23732b1e
PA
189 objfile_per_bfd_storage ()
190 : minsyms_read (false)
191 {}
192
706e3705
TT
193 /* The storage has an obstack of its own. */
194
23732b1e 195 auto_obstack storage_obstack;
95cf5869 196
706e3705
TT
197 /* Byte cache for file names. */
198
23732b1e 199 bcache *filename_cache = NULL;
6532ff36
TT
200
201 /* Byte cache for macros. */
95cf5869 202
23732b1e 203 bcache *macro_cache = NULL;
df6d5441
TT
204
205 /* The gdbarch associated with the BFD. Note that this gdbarch is
206 determined solely from BFD information, without looking at target
207 information. The gdbarch determined from a running target may
208 differ from this e.g. with respect to register types and names. */
209
23732b1e 210 struct gdbarch *gdbarch = NULL;
84a1243b
TT
211
212 /* Hash table for mapping symbol names to demangled names. Each
213 entry in the hash table is actually two consecutive strings,
214 both null-terminated; the first one is a mangled or linkage
215 name, and the second is the demangled name or just a zero byte
216 if the name doesn't demangle. */
95cf5869 217
23732b1e 218 htab *demangled_names_hash = NULL;
6ef55de7
TT
219
220 /* The per-objfile information about the entry point, the scope (file/func)
221 containing the entry point, and the scope of the user's main() func. */
222
23732b1e 223 entry_info ei {};
3d548a53
TT
224
225 /* The name and language of any "main" found in this objfile. The
226 name can be NULL, which means that the information was not
227 recorded. */
228
23732b1e
PA
229 const char *name_of_main = NULL;
230 enum language language_of_main = language_unknown;
34643a32
TT
231
232 /* Each file contains a pointer to an array of minimal symbols for all
233 global symbols that are defined within the file. The array is
234 terminated by a "null symbol", one that has a NULL pointer for the
235 name and a zero value for the address. This makes it easy to walk
236 through the array when passed a pointer to somewhere in the middle
237 of it. There is also a count of the number of symbols, which does
238 not include the terminating null symbol. The array itself, as well
239 as all the data that it points to, should be allocated on the
240 objfile_obstack for this file. */
241
23732b1e
PA
242 minimal_symbol *msymbols = NULL;
243 int minimal_symbol_count = 0;
34643a32 244
5f6cac40
TT
245 /* The number of minimal symbols read, before any minimal symbol
246 de-duplication is applied. Note in particular that this has only
247 a passing relationship with the actual size of the table above;
248 use minimal_symbol_count if you need the true size. */
95cf5869 249
23732b1e 250 int n_minsyms = 0;
5f6cac40 251
34643a32
TT
252 /* This is true if minimal symbols have already been read. Symbol
253 readers can use this to bypass minimal symbol reading. Also, the
254 minimal symbol table management code in minsyms.c uses this to
255 suppress new minimal symbols. You might think that MSYMBOLS or
256 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
257 for multiple readers to install minimal symbols into a given
258 per-BFD. */
259
23732b1e 260 bool minsyms_read : 1;
34643a32
TT
261
262 /* This is a hash table used to index the minimal symbols by name. */
263
23732b1e 264 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
265
266 /* This hash table is used to index the minimal symbols by their
267 demangled names. */
268
23732b1e 269 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
b5ec771e
PA
270
271 /* All the different languages of symbols found in the demangled
272 hash table. A flat/vector-based map is more efficient than a map
273 or hash table here, since this will only usually contain zero or
274 one entries. */
275 std::vector<enum language> demangled_hash_languages;
706e3705
TT
276};
277
c906108c
SS
278/* Master structure for keeping track of each file from which
279 gdb reads symbols. There are several ways these get allocated: 1.
280 The main symbol file, symfile_objfile, set by the symbol-file command,
281 2. Additional symbol files added by the add-symbol-file command,
282 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
283 for modules that were loaded when GDB attached to a remote system
284 (see remote-vx.c). */
285
286struct objfile
95cf5869 287{
9e86da07
TT
288 objfile (bfd *, const char *, objfile_flags);
289 ~objfile ();
290
291 DISABLE_COPY_AND_ASSIGN (objfile);
292
95cf5869
DE
293 /* All struct objfile's are chained together by their next pointers.
294 The program space field "objfiles" (frequently referenced via
295 the macro "object_files") points to the first link in this chain. */
c906108c 296
9e86da07 297 struct objfile *next = nullptr;
c906108c 298
95cf5869
DE
299 /* The object file's original name as specified by the user,
300 made absolute, and tilde-expanded. However, it is not canonicalized
301 (i.e., it has not been passed through gdb_realpath).
302 This pointer is never NULL. This does not have to be freed; it is
303 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 304
9e86da07 305 char *original_name = nullptr;
c906108c 306
9e86da07 307 CORE_ADDR addr_low = 0;
c906108c 308
b15cc25c 309 /* Some flag bits for this objfile. */
e4f6d2ec 310
b15cc25c 311 objfile_flags flags;
c906108c 312
95cf5869 313 /* The program space associated with this objfile. */
c906108c 314
95cf5869 315 struct program_space *pspace;
6c95b8df 316
95cf5869
DE
317 /* List of compunits.
318 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 319
9e86da07 320 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 321
95cf5869
DE
322 /* Each objfile points to a linked list of partial symtabs derived from
323 this file, one partial symtab structure for each compilation unit
324 (source file). */
c906108c 325
9e86da07 326 struct partial_symtab *psymtabs = nullptr;
c906108c 327
95cf5869
DE
328 /* Map addresses to the entries of PSYMTABS. It would be more efficient to
329 have a map per the whole process but ADDRMAP cannot selectively remove
330 its items during FREE_OBJFILE. This mapping is already present even for
331 PARTIAL_SYMTABs which still have no corresponding full SYMTABs read. */
c906108c 332
9e86da07 333 struct addrmap *psymtabs_addrmap = nullptr;
ff013f42 334
95cf5869 335 /* List of freed partial symtabs, available for re-use. */
ff013f42 336
9e86da07 337 struct partial_symtab *free_psymtabs = nullptr;
c906108c 338
95cf5869
DE
339 /* The object file's BFD. Can be null if the objfile contains only
340 minimal symbols, e.g. the run time common symbols for SunOS4. */
c906108c 341
95cf5869 342 bfd *obfd;
c906108c 343
95cf5869
DE
344 /* The per-BFD data. Note that this is treated specially if OBFD
345 is NULL. */
c906108c 346
9e86da07 347 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 348
95cf5869
DE
349 /* The modification timestamp of the object file, as of the last time
350 we read its symbols. */
706e3705 351
9e86da07 352 long mtime = 0;
c906108c 353
95cf5869
DE
354 /* Obstack to hold objects that should be freed when we load a new symbol
355 table from this object file. */
c906108c 356
9e86da07 357 struct obstack objfile_obstack {};
b99607ea 358
95cf5869
DE
359 /* A byte cache where we can stash arbitrary "chunks" of bytes that
360 will not change. */
b99607ea 361
9e86da07 362 struct psymbol_bcache *psymbol_cache;
c906108c 363
71a3c369
TT
364 /* Map symbol addresses to the partial symtab that defines the
365 object at that address. */
366
367 std::vector<std::pair<CORE_ADDR, partial_symtab *>> psymbol_map;
368
95cf5869
DE
369 /* Vectors of all partial symbols read in from file. The actual data
370 is stored in the objfile_obstack. */
c906108c 371
af5bf4ad
SM
372 std::vector<partial_symbol *> global_psymbols;
373 std::vector<partial_symbol *> static_psymbols;
c906108c 374
95cf5869
DE
375 /* Structure which keeps track of functions that manipulate objfile's
376 of the same type as this objfile. I.e. the function to read partial
377 symbols for example. Note that this structure is in statically
378 allocated memory, and is shared by all objfiles that use the
379 object module reader of this type. */
c906108c 380
9e86da07 381 const struct sym_fns *sf = nullptr;
c906108c 382
95cf5869 383 /* Per objfile data-pointers required by other GDB modules. */
c906108c 384
9e86da07 385 REGISTRY_FIELDS {};
0d0e1a63 386
95cf5869
DE
387 /* Set of relocation offsets to apply to each section.
388 The table is indexed by the_bfd_section->index, thus it is generally
389 as large as the number of sections in the binary.
390 The table is stored on the objfile_obstack.
0d0e1a63 391
95cf5869
DE
392 These offsets indicate that all symbols (including partial and
393 minimal symbols) which have been read have been relocated by this
394 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 395
9e86da07
TT
396 struct section_offsets *section_offsets = nullptr;
397 int num_sections = 0;
c906108c 398
95cf5869
DE
399 /* Indexes in the section_offsets array. These are initialized by the
400 *_symfile_offsets() family of functions (som_symfile_offsets,
401 xcoff_symfile_offsets, default_symfile_offsets). In theory they
402 should correspond to the section indexes used by bfd for the
403 current objfile. The exception to this for the time being is the
9e86da07
TT
404 SOM version.
405
406 These are initialized to -1 so that we can later detect if they
407 are used w/o being properly assigned to. */
c906108c 408
9e86da07
TT
409 int sect_index_text = -1;
410 int sect_index_data = -1;
411 int sect_index_bss = -1;
412 int sect_index_rodata = -1;
b8fbeb18 413
95cf5869
DE
414 /* These pointers are used to locate the section table, which
415 among other things, is used to map pc addresses into sections.
416 SECTIONS points to the first entry in the table, and
417 SECTIONS_END points to the first location past the last entry
418 in the table. The table is stored on the objfile_obstack. The
419 sections are indexed by the BFD section index; but the
420 structure data is only valid for certain sections
421 (e.g. non-empty, SEC_ALLOC). */
b8fbeb18 422
9e86da07
TT
423 struct obj_section *sections = nullptr;
424 struct obj_section *sections_end = nullptr;
c906108c 425
95cf5869
DE
426 /* GDB allows to have debug symbols in separate object files. This is
427 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
428 Although this is a tree structure, GDB only support one level
429 (ie a separate debug for a separate debug is not supported). Note that
430 separate debug object are in the main chain and therefore will be
431 visited by ALL_OBJFILES & co iterators. Separate debug objfile always
432 has a non-nul separate_debug_objfile_backlink. */
c906108c 433
95cf5869 434 /* Link to the first separate debug object, if any. */
15d123c9 435
9e86da07 436 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 437
95cf5869
DE
438 /* If this is a separate debug object, this is used as a link to the
439 actual executable objfile. */
15d123c9 440
9e86da07 441 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 442
95cf5869
DE
443 /* If this is a separate debug object, this is a link to the next one
444 for the same executable objfile. */
5c4e30ca 445
9e86da07 446 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
447
448 /* Place to stash various statistics about this objfile. */
449
450 OBJSTATS;
451
452 /* A linked list of symbols created when reading template types or
453 function templates. These symbols are not stored in any symbol
454 table, so we have to keep them here to relocate them
455 properly. */
456
9e86da07 457 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
458
459 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
460 block *) that have one.
461
462 In the context of nested functions (available in Pascal, Ada and GNU C,
463 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
464 for a function is a way to get the frame corresponding to the enclosing
465 function.
466
467 Very few blocks have a static link, so it's more memory efficient to
468 store these here rather than in struct block. Static links must be
469 allocated on the objfile's obstack. */
9e86da07 470 htab_t static_links {};
95cf5869 471};
c906108c 472
c906108c
SS
473/* Declarations for functions defined in objfiles.c */
474
9c1877ea 475extern struct gdbarch *get_objfile_arch (const struct objfile *);
5e2b427d 476
abd0a5fa
JK
477extern int entry_point_address_query (CORE_ADDR *entry_p);
478
9ab9195f
EZ
479extern CORE_ADDR entry_point_address (void);
480
d82ea6a8 481extern void build_objfile_section_table (struct objfile *);
c906108c 482
15d123c9
TG
483extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
484 const struct objfile *);
485
5b5d99cf
JB
486extern void put_objfile_before (struct objfile *, struct objfile *);
487
15d123c9
TG
488extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
489
a14ed312 490extern void unlink_objfile (struct objfile *);
c906108c 491
15d123c9
TG
492extern void free_objfile_separate_debug (struct objfile *);
493
a14ed312 494extern void free_all_objfiles (void);
c906108c 495
3189cb12 496extern void objfile_relocate (struct objfile *, const struct section_offsets *);
4141a416 497extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 498
55333a84
DE
499extern int objfile_has_partial_symbols (struct objfile *objfile);
500
501extern int objfile_has_full_symbols (struct objfile *objfile);
502
e361b228
TG
503extern int objfile_has_symbols (struct objfile *objfile);
504
a14ed312 505extern int have_partial_symbols (void);
c906108c 506
a14ed312 507extern int have_full_symbols (void);
c906108c 508
8fb8eb5c
DE
509extern void objfile_set_sym_fns (struct objfile *objfile,
510 const struct sym_fns *sf);
511
bb272892 512extern void objfiles_changed (void);
63644780
NB
513
514extern int is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 515
d03de421
PA
516/* Return true if ADDRESS maps into one of the sections of a
517 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 518
d03de421
PA
519extern int shared_objfile_contains_address_p (struct program_space *pspace,
520 CORE_ADDR address);
08351840 521
c906108c
SS
522/* This operation deletes all objfile entries that represent solibs that
523 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
524 command. */
525
a14ed312 526extern void objfile_purge_solibs (void);
c906108c
SS
527
528/* Functions for dealing with the minimal symbol table, really a misc
529 address<->symbol mapping for things we don't have debug symbols for. */
530
a14ed312 531extern int have_minimal_symbols (void);
c906108c 532
a14ed312 533extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 534
3e5d3a5a 535/* Return non-zero if PC is in a section called NAME. */
a121b7c1 536extern int pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
537
538/* Return non-zero if PC is in a SVR4-style procedure linkage table
539 section. */
540
541static inline int
542in_plt_section (CORE_ADDR pc)
543{
544 return pc_in_section (pc, ".plt");
545}
c906108c 546
0d0e1a63
MK
547/* Keep a registry of per-objfile data-pointers required by other GDB
548 modules. */
8e260fc0 549DECLARE_REGISTRY(objfile);
e3c69974 550
607ece04
GB
551/* In normal use, the section map will be rebuilt by find_pc_section
552 if objfiles have been added, removed or relocated since it was last
553 called. Calling inhibit_section_map_updates will inhibit this
06424eac
TT
554 behavior until the returned scoped_restore object is destroyed. If
555 you call inhibit_section_map_updates you must ensure that every
556 call to find_pc_section in the inhibited region relates to a
557 section that is already in the section map and has not since been
558 removed or relocated. */
559extern scoped_restore_tmpl<int> inhibit_section_map_updates
560 (struct program_space *pspace);
607ece04 561
19630284
JB
562extern void default_iterate_over_objfiles_in_search_order
563 (struct gdbarch *gdbarch,
564 iterate_over_objfiles_in_search_order_cb_ftype *cb,
565 void *cb_data, struct objfile *current_objfile);
0d0e1a63
MK
566\f
567
6c95b8df
PA
568/* Traverse all object files in the current program space.
569 ALL_OBJFILES_SAFE works even if you delete the objfile during the
570 traversal. */
571
572/* Traverse all object files in program space SS. */
c906108c 573
6c95b8df 574#define ALL_PSPACE_OBJFILES(ss, obj) \
81b52a3a 575 for ((obj) = ss->objfiles; (obj) != NULL; (obj) = (obj)->next)
c906108c 576
6c95b8df
PA
577#define ALL_OBJFILES(obj) \
578 for ((obj) = current_program_space->objfiles; \
579 (obj) != NULL; \
580 (obj) = (obj)->next)
581
582#define ALL_OBJFILES_SAFE(obj,nxt) \
583 for ((obj) = current_program_space->objfiles; \
c906108c
SS
584 (obj) != NULL? ((nxt)=(obj)->next,1) :0; \
585 (obj) = (nxt))
586
587/* Traverse all symtabs in one objfile. */
588
43f3e411
DE
589#define ALL_OBJFILE_FILETABS(objfile, cu, s) \
590 ALL_OBJFILE_COMPUNITS (objfile, cu) \
591 ALL_COMPUNIT_FILETABS (cu, s)
c906108c 592
43f3e411 593/* Traverse all compunits in one objfile. */
d790cf0a 594
43f3e411
DE
595#define ALL_OBJFILE_COMPUNITS(objfile, cu) \
596 for ((cu) = (objfile) -> compunit_symtabs; (cu) != NULL; (cu) = (cu) -> next)
d790cf0a 597
c906108c
SS
598/* Traverse all minimal symbols in one objfile. */
599
34643a32
TT
600#define ALL_OBJFILE_MSYMBOLS(objfile, m) \
601 for ((m) = (objfile)->per_bfd->msymbols; \
602 MSYMBOL_LINKAGE_NAME (m) != NULL; \
603 (m)++)
c906108c 604
6c95b8df
PA
605/* Traverse all symtabs in all objfiles in the current symbol
606 space. */
c906108c 607
43f3e411
DE
608#define ALL_FILETABS(objfile, ps, s) \
609 ALL_OBJFILES (objfile) \
610 ALL_OBJFILE_FILETABS (objfile, ps, s)
c906108c 611
43f3e411 612/* Traverse all compunits in all objfiles in the current program space. */
11309657 613
43f3e411 614#define ALL_COMPUNITS(objfile, cu) \
11309657 615 ALL_OBJFILES (objfile) \
43f3e411 616 ALL_OBJFILE_COMPUNITS (objfile, cu)
11309657 617
6c95b8df
PA
618/* Traverse all minimal symbols in all objfiles in the current symbol
619 space. */
c906108c
SS
620
621#define ALL_MSYMBOLS(objfile, m) \
622 ALL_OBJFILES (objfile) \
15831452 623 ALL_OBJFILE_MSYMBOLS (objfile, m)
c906108c
SS
624
625#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
65cf3563
TT
626 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
627 if (osect->the_bfd_section == NULL) \
628 { \
629 /* Nothing. */ \
630 } \
631 else
c906108c 632
96a8853a
PA
633/* Traverse all obj_sections in all objfiles in the current program
634 space.
635
636 Note that this detects a "break" in the inner loop, and exits
637 immediately from the outer loop as well, thus, client code doesn't
638 need to know that this is implemented with a double for. The extra
639 hair is to make sure that a "break;" stops the outer loop iterating
640 as well, and both OBJFILE and OSECT are left unmodified:
641
642 - The outer loop learns about the inner loop's end condition, and
643 stops iterating if it detects the inner loop didn't reach its
644 end. In other words, the outer loop keeps going only if the
645 inner loop reached its end cleanly [(osect) ==
646 (objfile)->sections_end].
647
648 - OSECT is initialized in the outer loop initialization
649 expressions, such as if the inner loop has reached its end, so
650 the check mentioned above succeeds the first time.
651
652 - The trick to not clearing OBJFILE on a "break;" is, in the outer
653 loop's loop expression, advance OBJFILE, but iff the inner loop
654 reached its end. If not, there was a "break;", so leave OBJFILE
655 as is; the outer loop's conditional will break immediately as
0df8b418 656 well (as OSECT will be different from OBJFILE->sections_end). */
96a8853a
PA
657
658#define ALL_OBJSECTIONS(objfile, osect) \
659 for ((objfile) = current_program_space->objfiles, \
660 (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0; \
661 (objfile) != NULL \
662 && (osect) == (objfile)->sections_end; \
663 ((osect) == (objfile)->sections_end \
664 ? ((objfile) = (objfile)->next, \
665 (objfile) != NULL ? (osect) = (objfile)->sections_end : 0) \
666 : 0)) \
65cf3563 667 ALL_OBJFILE_OSECTIONS (objfile, osect)
c906108c 668
b8fbeb18 669#define SECT_OFF_DATA(objfile) \
8e65ff28 670 ((objfile->sect_index_data == -1) \
3e43a32a
MS
671 ? (internal_error (__FILE__, __LINE__, \
672 _("sect_index_data not initialized")), -1) \
8e65ff28 673 : objfile->sect_index_data)
b8fbeb18
EZ
674
675#define SECT_OFF_RODATA(objfile) \
8e65ff28 676 ((objfile->sect_index_rodata == -1) \
3e43a32a
MS
677 ? (internal_error (__FILE__, __LINE__, \
678 _("sect_index_rodata not initialized")), -1) \
8e65ff28 679 : objfile->sect_index_rodata)
b8fbeb18
EZ
680
681#define SECT_OFF_TEXT(objfile) \
8e65ff28 682 ((objfile->sect_index_text == -1) \
3e43a32a
MS
683 ? (internal_error (__FILE__, __LINE__, \
684 _("sect_index_text not initialized")), -1) \
8e65ff28 685 : objfile->sect_index_text)
b8fbeb18 686
a4c8257b 687/* Sometimes the .bss section is missing from the objfile, so we don't
0df8b418
MS
688 want to die here. Let the users of SECT_OFF_BSS deal with an
689 uninitialized section index. */
a4c8257b 690#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
b8fbeb18 691
c14c28ba
PP
692/* Answer whether there is more than one object file loaded. */
693
694#define MULTI_OBJFILE_P() (object_files && object_files->next)
695
706e3705
TT
696/* Reset the per-BFD storage area on OBJ. */
697
698void set_objfile_per_bfd (struct objfile *obj);
699
e02c96a7
DE
700/* Return canonical name for OBJFILE.
701 This is the real file name if the file has been opened.
702 Otherwise it is the original name supplied by the user. */
703
4262abfb
JK
704const char *objfile_name (const struct objfile *objfile);
705
e02c96a7
DE
706/* Return the (real) file name of OBJFILE if the file has been opened,
707 otherwise return NULL. */
708
709const char *objfile_filename (const struct objfile *objfile);
710
cc485e62
DE
711/* Return the name to print for OBJFILE in debugging messages. */
712
713extern const char *objfile_debug_name (const struct objfile *objfile);
714
015d2e7e
DE
715/* Return the name of the file format of OBJFILE if the file has been opened,
716 otherwise return NULL. */
717
718const char *objfile_flavour_name (struct objfile *objfile);
719
3d548a53
TT
720/* Set the objfile's notion of the "main" name and language. */
721
722extern void set_objfile_main_name (struct objfile *objfile,
723 const char *name, enum language lang);
724
63e43d3a
PMR
725extern void objfile_register_static_link
726 (struct objfile *objfile,
727 const struct block *block,
728 const struct dynamic_prop *static_link);
729
730extern const struct dynamic_prop *objfile_lookup_static_link
731 (struct objfile *objfile, const struct block *block);
732
c5aa993b 733#endif /* !defined (OBJFILES_H) */
This page took 2.248861 seconds and 4 git commands to generate.