Commit | Line | Data |
---|---|---|
9abe5450 | 1 | /* PPC GNU/Linux native support. |
2555fe1a | 2 | |
42a4f53d | 3 | Copyright (C) 1988-2019 Free Software Foundation, Inc. |
c877c8e6 KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c877c8e6 KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c877c8e6 KB |
19 | |
20 | #include "defs.h" | |
76727919 | 21 | #include "observable.h" |
c877c8e6 KB |
22 | #include "frame.h" |
23 | #include "inferior.h" | |
6ffbb7ab | 24 | #include "gdbthread.h" |
c877c8e6 | 25 | #include "gdbcore.h" |
4e052eda | 26 | #include "regcache.h" |
1d75a658 | 27 | #include "regset.h" |
10d6c8cd DJ |
28 | #include "target.h" |
29 | #include "linux-nat.h" | |
c877c8e6 | 30 | #include <sys/types.h> |
c877c8e6 KB |
31 | #include <signal.h> |
32 | #include <sys/user.h> | |
33 | #include <sys/ioctl.h> | |
7ca18ed6 | 34 | #include <sys/uio.h> |
268a13a5 | 35 | #include "gdbsupport/gdb_wait.h" |
c877c8e6 KB |
36 | #include <fcntl.h> |
37 | #include <sys/procfs.h> | |
5826e159 | 38 | #include "nat/gdb_ptrace.h" |
64f57f3d | 39 | #include "nat/linux-ptrace.h" |
bcc0c096 | 40 | #include "inf-ptrace.h" |
c877c8e6 | 41 | |
0df8b418 | 42 | /* Prototypes for supply_gregset etc. */ |
c60c0f5f | 43 | #include "gregset.h" |
16333c4f | 44 | #include "ppc-tdep.h" |
7284e1be UW |
45 | #include "ppc-linux-tdep.h" |
46 | ||
b7622095 LM |
47 | /* Required when using the AUXV. */ |
48 | #include "elf/common.h" | |
49 | #include "auxv.h" | |
50 | ||
bd64614e PFC |
51 | #include "arch/ppc-linux-common.h" |
52 | #include "arch/ppc-linux-tdesc.h" | |
514c5338 | 53 | #include "nat/ppc-linux.h" |
53c973f2 | 54 | #include "linux-tdep.h" |
01904826 | 55 | |
6ffbb7ab | 56 | /* Similarly for the hardware watchpoint support. These requests are used |
926bf92d | 57 | when the PowerPC HWDEBUG ptrace interface is not available. */ |
e0d24f8d WZ |
58 | #ifndef PTRACE_GET_DEBUGREG |
59 | #define PTRACE_GET_DEBUGREG 25 | |
60 | #endif | |
61 | #ifndef PTRACE_SET_DEBUGREG | |
62 | #define PTRACE_SET_DEBUGREG 26 | |
63 | #endif | |
64 | #ifndef PTRACE_GETSIGINFO | |
65 | #define PTRACE_GETSIGINFO 0x4202 | |
66 | #endif | |
01904826 | 67 | |
926bf92d UW |
68 | /* These requests are used when the PowerPC HWDEBUG ptrace interface is |
69 | available. It exposes the debug facilities of PowerPC processors, as well | |
70 | as additional features of BookE processors, such as ranged breakpoints and | |
71 | watchpoints and hardware-accelerated condition evaluation. */ | |
6ffbb7ab TJB |
72 | #ifndef PPC_PTRACE_GETHWDBGINFO |
73 | ||
926bf92d UW |
74 | /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG |
75 | ptrace interface is not present in ptrace.h, so we'll have to pretty much | |
76 | include it all here so that the code at least compiles on older systems. */ | |
6ffbb7ab TJB |
77 | #define PPC_PTRACE_GETHWDBGINFO 0x89 |
78 | #define PPC_PTRACE_SETHWDEBUG 0x88 | |
79 | #define PPC_PTRACE_DELHWDEBUG 0x87 | |
80 | ||
81 | struct ppc_debug_info | |
82 | { | |
0df8b418 | 83 | uint32_t version; /* Only version 1 exists to date. */ |
6ffbb7ab TJB |
84 | uint32_t num_instruction_bps; |
85 | uint32_t num_data_bps; | |
86 | uint32_t num_condition_regs; | |
87 | uint32_t data_bp_alignment; | |
0df8b418 | 88 | uint32_t sizeof_condition; /* size of the DVC register. */ |
6ffbb7ab TJB |
89 | uint64_t features; |
90 | }; | |
91 | ||
92 | /* Features will have bits indicating whether there is support for: */ | |
93 | #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 | |
94 | #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 | |
95 | #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 | |
96 | #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 | |
97 | ||
98 | struct ppc_hw_breakpoint | |
99 | { | |
100 | uint32_t version; /* currently, version must be 1 */ | |
101 | uint32_t trigger_type; /* only some combinations allowed */ | |
102 | uint32_t addr_mode; /* address match mode */ | |
103 | uint32_t condition_mode; /* break/watchpoint condition flags */ | |
104 | uint64_t addr; /* break/watchpoint address */ | |
105 | uint64_t addr2; /* range end or mask */ | |
106 | uint64_t condition_value; /* contents of the DVC register */ | |
107 | }; | |
108 | ||
109 | /* Trigger type. */ | |
110 | #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 | |
111 | #define PPC_BREAKPOINT_TRIGGER_READ 0x2 | |
112 | #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 | |
113 | #define PPC_BREAKPOINT_TRIGGER_RW 0x6 | |
114 | ||
115 | /* Address mode. */ | |
116 | #define PPC_BREAKPOINT_MODE_EXACT 0x0 | |
117 | #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 | |
118 | #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 | |
119 | #define PPC_BREAKPOINT_MODE_MASK 0x3 | |
120 | ||
121 | /* Condition mode. */ | |
122 | #define PPC_BREAKPOINT_CONDITION_NONE 0x0 | |
123 | #define PPC_BREAKPOINT_CONDITION_AND 0x1 | |
124 | #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 | |
125 | #define PPC_BREAKPOINT_CONDITION_OR 0x2 | |
126 | #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 | |
127 | #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 | |
128 | #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 | |
129 | #define PPC_BREAKPOINT_CONDITION_BE(n) \ | |
130 | (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) | |
131 | #endif /* PPC_PTRACE_GETHWDBGINFO */ | |
132 | ||
e23b9d6e UW |
133 | /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider |
134 | watchpoint (up to 512 bytes). */ | |
135 | #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR | |
136 | #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10 | |
137 | #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */ | |
6ffbb7ab | 138 | |
1dfe79e8 SDJ |
139 | /* Similarly for the general-purpose (gp0 -- gp31) |
140 | and floating-point registers (fp0 -- fp31). */ | |
141 | #ifndef PTRACE_GETREGS | |
142 | #define PTRACE_GETREGS 12 | |
143 | #endif | |
144 | #ifndef PTRACE_SETREGS | |
145 | #define PTRACE_SETREGS 13 | |
146 | #endif | |
147 | #ifndef PTRACE_GETFPREGS | |
148 | #define PTRACE_GETFPREGS 14 | |
149 | #endif | |
150 | #ifndef PTRACE_SETFPREGS | |
151 | #define PTRACE_SETFPREGS 15 | |
152 | #endif | |
153 | ||
9abe5450 EZ |
154 | /* This oddity is because the Linux kernel defines elf_vrregset_t as |
155 | an array of 33 16 bytes long elements. I.e. it leaves out vrsave. | |
156 | However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return | |
157 | the vrsave as an extra 4 bytes at the end. I opted for creating a | |
158 | flat array of chars, so that it is easier to manipulate for gdb. | |
159 | ||
160 | There are 32 vector registers 16 bytes longs, plus a VSCR register | |
161 | which is only 4 bytes long, but is fetched as a 16 bytes | |
0df8b418 | 162 | quantity. Up to here we have the elf_vrregset_t structure. |
9abe5450 EZ |
163 | Appended to this there is space for the VRSAVE register: 4 bytes. |
164 | Even though this vrsave register is not included in the regset | |
165 | typedef, it is handled by the ptrace requests. | |
166 | ||
9abe5450 EZ |
167 | The layout is like this (where x is the actual value of the vscr reg): */ |
168 | ||
169 | /* *INDENT-OFF* */ | |
170 | /* | |
1d75a658 | 171 | Big-Endian: |
9abe5450 EZ |
172 | |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| |
173 | <-------> <-------><-------><-> | |
174 | VR0 VR31 VSCR VRSAVE | |
1d75a658 PFC |
175 | Little-Endian: |
176 | |.|.|.|.|.....|.|.|.|.||X|.|.|.||.| | |
177 | <-------> <-------><-------><-> | |
178 | VR0 VR31 VSCR VRSAVE | |
9abe5450 EZ |
179 | */ |
180 | /* *INDENT-ON* */ | |
181 | ||
d078308a | 182 | typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET]; |
9abe5450 | 183 | |
604c2f83 LM |
184 | /* This is the layout of the POWER7 VSX registers and the way they overlap |
185 | with the existing FPR and VMX registers. | |
186 | ||
187 | VSR doubleword 0 VSR doubleword 1 | |
188 | ---------------------------------------------------------------- | |
189 | VSR[0] | FPR[0] | | | |
190 | ---------------------------------------------------------------- | |
191 | VSR[1] | FPR[1] | | | |
192 | ---------------------------------------------------------------- | |
193 | | ... | | | |
194 | | ... | | | |
195 | ---------------------------------------------------------------- | |
196 | VSR[30] | FPR[30] | | | |
197 | ---------------------------------------------------------------- | |
198 | VSR[31] | FPR[31] | | | |
199 | ---------------------------------------------------------------- | |
200 | VSR[32] | VR[0] | | |
201 | ---------------------------------------------------------------- | |
202 | VSR[33] | VR[1] | | |
203 | ---------------------------------------------------------------- | |
204 | | ... | | |
205 | | ... | | |
206 | ---------------------------------------------------------------- | |
207 | VSR[62] | VR[30] | | |
208 | ---------------------------------------------------------------- | |
209 | VSR[63] | VR[31] | | |
210 | ---------------------------------------------------------------- | |
211 | ||
212 | VSX has 64 128bit registers. The first 32 registers overlap with | |
213 | the FP registers (doubleword 0) and hence extend them with additional | |
214 | 64 bits (doubleword 1). The other 32 regs overlap with the VMX | |
215 | registers. */ | |
d078308a | 216 | typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET]; |
01904826 | 217 | |
b021a221 | 218 | /* On PPC processors that support the Signal Processing Extension |
01904826 | 219 | (SPE) APU, the general-purpose registers are 64 bits long. |
411cb3f9 PG |
220 | However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER |
221 | ptrace calls only access the lower half of each register, to allow | |
222 | them to behave the same way they do on non-SPE systems. There's a | |
223 | separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that | |
224 | read and write the top halves of all the general-purpose registers | |
225 | at once, along with some SPE-specific registers. | |
01904826 JB |
226 | |
227 | GDB itself continues to claim the general-purpose registers are 32 | |
6ced10dd | 228 | bits long. It has unnamed raw registers that hold the upper halves |
b021a221 | 229 | of the gprs, and the full 64-bit SIMD views of the registers, |
6ced10dd JB |
230 | 'ev0' -- 'ev31', are pseudo-registers that splice the top and |
231 | bottom halves together. | |
01904826 JB |
232 | |
233 | This is the structure filled in by PTRACE_GETEVRREGS and written to | |
234 | the inferior's registers by PTRACE_SETEVRREGS. */ | |
235 | struct gdb_evrregset_t | |
236 | { | |
237 | unsigned long evr[32]; | |
238 | unsigned long long acc; | |
239 | unsigned long spefscr; | |
240 | }; | |
241 | ||
604c2f83 LM |
242 | /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and |
243 | PTRACE_SETVSXREGS requests, for reading and writing the VSX | |
244 | POWER7 registers 0 through 31. Zero if we've tried one of them and | |
245 | gotten an error. Note that VSX registers 32 through 63 overlap | |
246 | with VR registers 0 through 31. */ | |
247 | int have_ptrace_getsetvsxregs = 1; | |
01904826 JB |
248 | |
249 | /* Non-zero if our kernel may support the PTRACE_GETVRREGS and | |
250 | PTRACE_SETVRREGS requests, for reading and writing the Altivec | |
251 | registers. Zero if we've tried one of them and gotten an | |
252 | error. */ | |
9abe5450 EZ |
253 | int have_ptrace_getvrregs = 1; |
254 | ||
01904826 JB |
255 | /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and |
256 | PTRACE_SETEVRREGS requests, for reading and writing the SPE | |
257 | registers. Zero if we've tried one of them and gotten an | |
258 | error. */ | |
259 | int have_ptrace_getsetevrregs = 1; | |
260 | ||
1dfe79e8 SDJ |
261 | /* Non-zero if our kernel may support the PTRACE_GETREGS and |
262 | PTRACE_SETREGS requests, for reading and writing the | |
263 | general-purpose registers. Zero if we've tried one of | |
264 | them and gotten an error. */ | |
265 | int have_ptrace_getsetregs = 1; | |
266 | ||
267 | /* Non-zero if our kernel may support the PTRACE_GETFPREGS and | |
268 | PTRACE_SETFPREGS requests, for reading and writing the | |
269 | floating-pointers registers. Zero if we've tried one of | |
270 | them and gotten an error. */ | |
271 | int have_ptrace_getsetfpregs = 1; | |
272 | ||
f6ac5f3d PA |
273 | struct ppc_linux_nat_target final : public linux_nat_target |
274 | { | |
275 | /* Add our register access methods. */ | |
276 | void fetch_registers (struct regcache *, int) override; | |
277 | void store_registers (struct regcache *, int) override; | |
278 | ||
279 | /* Add our breakpoint/watchpoint methods. */ | |
280 | int can_use_hw_breakpoint (enum bptype, int, int) override; | |
281 | ||
282 | int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) | |
283 | override; | |
284 | ||
285 | int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) | |
286 | override; | |
287 | ||
288 | int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; | |
289 | ||
290 | int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, | |
291 | struct expression *) override; | |
292 | ||
293 | int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, | |
294 | struct expression *) override; | |
295 | ||
296 | int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) | |
297 | override; | |
298 | ||
299 | int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) | |
300 | override; | |
301 | ||
57810aa7 | 302 | bool stopped_by_watchpoint () override; |
f6ac5f3d | 303 | |
57810aa7 | 304 | bool stopped_data_address (CORE_ADDR *) override; |
f6ac5f3d | 305 | |
57810aa7 | 306 | bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; |
f6ac5f3d | 307 | |
57810aa7 | 308 | bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *) |
f6ac5f3d PA |
309 | override; |
310 | ||
311 | int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override; | |
312 | ||
313 | int ranged_break_num_registers () override; | |
314 | ||
315 | const struct target_desc *read_description () override; | |
316 | ||
317 | int auxv_parse (gdb_byte **readptr, | |
318 | gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) | |
319 | override; | |
135340af PA |
320 | |
321 | /* Override linux_nat_target low methods. */ | |
322 | void low_new_thread (struct lwp_info *lp) override; | |
f6ac5f3d PA |
323 | }; |
324 | ||
325 | static ppc_linux_nat_target the_ppc_linux_nat_target; | |
326 | ||
16333c4f EZ |
327 | /* *INDENT-OFF* */ |
328 | /* registers layout, as presented by the ptrace interface: | |
329 | PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, | |
330 | PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, | |
331 | PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, | |
332 | PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, | |
0df8b418 MS |
333 | PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, |
334 | PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, | |
335 | PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, | |
336 | PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, | |
337 | PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, | |
338 | PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, | |
339 | PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, | |
340 | PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, | |
16333c4f EZ |
341 | PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ |
342 | /* *INDENT_ON * */ | |
c877c8e6 | 343 | |
45229ea4 | 344 | static int |
e101270f | 345 | ppc_register_u_addr (struct gdbarch *gdbarch, int regno) |
c877c8e6 | 346 | { |
16333c4f | 347 | int u_addr = -1; |
e101270f | 348 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
56d0d96a AC |
349 | /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace |
350 | interface, and not the wordsize of the program's ABI. */ | |
411cb3f9 | 351 | int wordsize = sizeof (long); |
16333c4f | 352 | |
0df8b418 | 353 | /* General purpose registers occupy 1 slot each in the buffer. */ |
8bf659e8 JB |
354 | if (regno >= tdep->ppc_gp0_regnum |
355 | && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
26e75e5c | 356 | u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); |
16333c4f | 357 | |
49ff75ad JB |
358 | /* Floating point regs: eight bytes each in both 32- and 64-bit |
359 | ptrace interfaces. Thus, two slots each in 32-bit interface, one | |
360 | slot each in 64-bit interface. */ | |
383f0f5b JB |
361 | if (tdep->ppc_fp0_regnum >= 0 |
362 | && regno >= tdep->ppc_fp0_regnum | |
366f009f JB |
363 | && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
364 | u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); | |
16333c4f | 365 | |
0df8b418 | 366 | /* UISA special purpose registers: 1 slot each. */ |
e101270f | 367 | if (regno == gdbarch_pc_regnum (gdbarch)) |
49ff75ad | 368 | u_addr = PT_NIP * wordsize; |
dc5cfeb6 | 369 | if (regno == tdep->ppc_lr_regnum) |
49ff75ad | 370 | u_addr = PT_LNK * wordsize; |
dc5cfeb6 | 371 | if (regno == tdep->ppc_cr_regnum) |
49ff75ad | 372 | u_addr = PT_CCR * wordsize; |
dc5cfeb6 | 373 | if (regno == tdep->ppc_xer_regnum) |
49ff75ad | 374 | u_addr = PT_XER * wordsize; |
dc5cfeb6 | 375 | if (regno == tdep->ppc_ctr_regnum) |
49ff75ad | 376 | u_addr = PT_CTR * wordsize; |
f8c59253 | 377 | #ifdef PT_MQ |
dc5cfeb6 | 378 | if (regno == tdep->ppc_mq_regnum) |
49ff75ad | 379 | u_addr = PT_MQ * wordsize; |
f8c59253 | 380 | #endif |
dc5cfeb6 | 381 | if (regno == tdep->ppc_ps_regnum) |
49ff75ad | 382 | u_addr = PT_MSR * wordsize; |
7284e1be UW |
383 | if (regno == PPC_ORIG_R3_REGNUM) |
384 | u_addr = PT_ORIG_R3 * wordsize; | |
385 | if (regno == PPC_TRAP_REGNUM) | |
386 | u_addr = PT_TRAP * wordsize; | |
383f0f5b JB |
387 | if (tdep->ppc_fpscr_regnum >= 0 |
388 | && regno == tdep->ppc_fpscr_regnum) | |
8f135812 AC |
389 | { |
390 | /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the | |
391 | kernel headers incorrectly contained the 32-bit definition of | |
392 | PT_FPSCR. For the 32-bit definition, floating-point | |
393 | registers occupy two 32-bit "slots", and the FPSCR lives in | |
69abc51c | 394 | the second half of such a slot-pair (hence +1). For 64-bit, |
8f135812 AC |
395 | the FPSCR instead occupies the full 64-bit 2-word-slot and |
396 | hence no adjustment is necessary. Hack around this. */ | |
397 | if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) | |
398 | u_addr = (48 + 32) * wordsize; | |
69abc51c TJB |
399 | /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit |
400 | slot and not just its second word. The PT_FPSCR supplied when | |
401 | GDB is compiled as a 32-bit app doesn't reflect this. */ | |
402 | else if (wordsize == 4 && register_size (gdbarch, regno) == 8 | |
403 | && PT_FPSCR == (48 + 2*32 + 1)) | |
404 | u_addr = (48 + 2*32) * wordsize; | |
8f135812 AC |
405 | else |
406 | u_addr = PT_FPSCR * wordsize; | |
407 | } | |
16333c4f | 408 | return u_addr; |
c877c8e6 KB |
409 | } |
410 | ||
604c2f83 LM |
411 | /* The Linux kernel ptrace interface for POWER7 VSX registers uses the |
412 | registers set mechanism, as opposed to the interface for all the | |
413 | other registers, that stores/fetches each register individually. */ | |
414 | static void | |
2c3305f6 | 415 | fetch_vsx_registers (struct regcache *regcache, int tid, int regno) |
604c2f83 LM |
416 | { |
417 | int ret; | |
418 | gdb_vsxregset_t regs; | |
2c3305f6 | 419 | const struct regset *vsxregset = ppc_linux_vsxregset (); |
604c2f83 LM |
420 | |
421 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
422 | if (ret < 0) | |
423 | { | |
424 | if (errno == EIO) | |
425 | { | |
426 | have_ptrace_getsetvsxregs = 0; | |
427 | return; | |
428 | } | |
2c3305f6 | 429 | perror_with_name (_("Unable to fetch VSX registers")); |
604c2f83 LM |
430 | } |
431 | ||
2c3305f6 PFC |
432 | vsxregset->supply_regset (vsxregset, regcache, regno, ®s, |
433 | PPC_LINUX_SIZEOF_VSXREGSET); | |
604c2f83 LM |
434 | } |
435 | ||
9abe5450 EZ |
436 | /* The Linux kernel ptrace interface for AltiVec registers uses the |
437 | registers set mechanism, as opposed to the interface for all the | |
438 | other registers, that stores/fetches each register individually. */ | |
439 | static void | |
1d75a658 PFC |
440 | fetch_altivec_registers (struct regcache *regcache, int tid, |
441 | int regno) | |
9abe5450 EZ |
442 | { |
443 | int ret; | |
9abe5450 | 444 | gdb_vrregset_t regs; |
ac7936df | 445 | struct gdbarch *gdbarch = regcache->arch (); |
1d75a658 | 446 | const struct regset *vrregset = ppc_linux_vrregset (gdbarch); |
9abe5450 EZ |
447 | |
448 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
449 | if (ret < 0) | |
450 | { | |
451 | if (errno == EIO) | |
452 | { | |
453 | have_ptrace_getvrregs = 0; | |
454 | return; | |
455 | } | |
1d75a658 | 456 | perror_with_name (_("Unable to fetch AltiVec registers")); |
9abe5450 | 457 | } |
1d75a658 PFC |
458 | |
459 | vrregset->supply_regset (vrregset, regcache, regno, ®s, | |
460 | PPC_LINUX_SIZEOF_VRREGSET); | |
9abe5450 EZ |
461 | } |
462 | ||
01904826 JB |
463 | /* Fetch the top 32 bits of TID's general-purpose registers and the |
464 | SPE-specific registers, and place the results in EVRREGSET. If we | |
465 | don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with | |
466 | zeros. | |
467 | ||
468 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
469 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
470 | set_spe_registers. */ | |
471 | static void | |
472 | get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
473 | { | |
474 | if (have_ptrace_getsetevrregs) | |
475 | { | |
476 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) | |
477 | return; | |
478 | else | |
479 | { | |
480 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported; | |
481 | we just return zeros. */ | |
482 | if (errno == EIO) | |
483 | have_ptrace_getsetevrregs = 0; | |
484 | else | |
485 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 486 | perror_with_name (_("Unable to fetch SPE registers")); |
01904826 JB |
487 | } |
488 | } | |
489 | ||
490 | memset (evrregset, 0, sizeof (*evrregset)); | |
491 | } | |
492 | ||
6ced10dd JB |
493 | /* Supply values from TID for SPE-specific raw registers: the upper |
494 | halves of the GPRs, the accumulator, and the spefscr. REGNO must | |
495 | be the number of an upper half register, acc, spefscr, or -1 to | |
496 | supply the values of all registers. */ | |
01904826 | 497 | static void |
56be3814 | 498 | fetch_spe_register (struct regcache *regcache, int tid, int regno) |
01904826 | 499 | { |
ac7936df | 500 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 501 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
01904826 JB |
502 | struct gdb_evrregset_t evrregs; |
503 | ||
6ced10dd | 504 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 505 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 506 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 507 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 508 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 509 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
6ced10dd | 510 | |
01904826 JB |
511 | get_spe_registers (tid, &evrregs); |
512 | ||
6ced10dd | 513 | if (regno == -1) |
01904826 | 514 | { |
6ced10dd JB |
515 | int i; |
516 | ||
517 | for (i = 0; i < ppc_num_gprs; i++) | |
73e1c03f | 518 | regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]); |
01904826 | 519 | } |
6ced10dd JB |
520 | else if (tdep->ppc_ev0_upper_regnum <= regno |
521 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
73e1c03f SM |
522 | regcache->raw_supply (regno, |
523 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); | |
6ced10dd JB |
524 | |
525 | if (regno == -1 | |
526 | || regno == tdep->ppc_acc_regnum) | |
73e1c03f | 527 | regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc); |
6ced10dd JB |
528 | |
529 | if (regno == -1 | |
530 | || regno == tdep->ppc_spefscr_regnum) | |
73e1c03f | 531 | regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr); |
01904826 JB |
532 | } |
533 | ||
7ca18ed6 EBM |
534 | /* Use ptrace to fetch all registers from the register set with note |
535 | type REGSET_ID, size REGSIZE, and layout described by REGSET, from | |
536 | process/thread TID and supply their values to REGCACHE. If ptrace | |
537 | returns ENODATA to indicate the regset is unavailable, mark the | |
538 | registers as unavailable in REGCACHE. */ | |
539 | ||
540 | static void | |
541 | fetch_regset (struct regcache *regcache, int tid, | |
542 | int regset_id, int regsetsize, const struct regset *regset) | |
543 | { | |
544 | void *buf = alloca (regsetsize); | |
545 | struct iovec iov; | |
546 | ||
547 | iov.iov_base = buf; | |
548 | iov.iov_len = regsetsize; | |
549 | ||
550 | if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) | |
551 | { | |
552 | if (errno == ENODATA) | |
553 | regset->supply_regset (regset, regcache, -1, NULL, regsetsize); | |
554 | else | |
555 | perror_with_name (_("Couldn't get register set")); | |
556 | } | |
557 | else | |
558 | regset->supply_regset (regset, regcache, -1, buf, regsetsize); | |
559 | } | |
560 | ||
561 | /* Use ptrace to store register REGNUM of the regset with note type | |
562 | REGSET_ID, size REGSETSIZE, and layout described by REGSET, from | |
563 | REGCACHE back to process/thread TID. If REGNUM is -1 all registers | |
564 | in the set are collected and stored. */ | |
565 | ||
566 | static void | |
567 | store_regset (const struct regcache *regcache, int tid, int regnum, | |
568 | int regset_id, int regsetsize, const struct regset *regset) | |
569 | { | |
570 | void *buf = alloca (regsetsize); | |
571 | struct iovec iov; | |
572 | ||
573 | iov.iov_base = buf; | |
574 | iov.iov_len = regsetsize; | |
575 | ||
576 | /* Make sure that the buffer that will be stored has up to date values | |
577 | for the registers that won't be collected. */ | |
578 | if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) | |
579 | perror_with_name (_("Couldn't get register set")); | |
580 | ||
581 | regset->collect_regset (regset, regcache, regnum, buf, regsetsize); | |
582 | ||
583 | if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0) | |
584 | perror_with_name (_("Couldn't set register set")); | |
585 | } | |
586 | ||
587 | /* Check whether the kernel provides a register set with number | |
588 | REGSET_ID of size REGSETSIZE for process/thread TID. */ | |
589 | ||
590 | static bool | |
591 | check_regset (int tid, int regset_id, int regsetsize) | |
592 | { | |
593 | void *buf = alloca (regsetsize); | |
594 | struct iovec iov; | |
595 | ||
596 | iov.iov_base = buf; | |
597 | iov.iov_len = regsetsize; | |
598 | ||
599 | if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0 | |
600 | || errno == ENODATA) | |
601 | return true; | |
602 | else | |
603 | return false; | |
604 | } | |
605 | ||
45229ea4 | 606 | static void |
56be3814 | 607 | fetch_register (struct regcache *regcache, int tid, int regno) |
45229ea4 | 608 | { |
ac7936df | 609 | struct gdbarch *gdbarch = regcache->arch (); |
7ca18ed6 | 610 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
45229ea4 | 611 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 612 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
4a19ea35 | 613 | int bytes_transferred; |
0f068fb5 | 614 | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
45229ea4 | 615 | |
be8626e0 | 616 | if (altivec_register_p (gdbarch, regno)) |
9abe5450 EZ |
617 | { |
618 | /* If this is the first time through, or if it is not the first | |
30baf67b | 619 | time through, and we have confirmed that there is kernel |
9abe5450 EZ |
620 | support for such a ptrace request, then go and fetch the |
621 | register. */ | |
622 | if (have_ptrace_getvrregs) | |
623 | { | |
1d75a658 | 624 | fetch_altivec_registers (regcache, tid, regno); |
9abe5450 EZ |
625 | return; |
626 | } | |
627 | /* If we have discovered that there is no ptrace support for | |
628 | AltiVec registers, fall through and return zeroes, because | |
629 | regaddr will be -1 in this case. */ | |
630 | } | |
3d907528 | 631 | else if (vsx_register_p (gdbarch, regno)) |
604c2f83 LM |
632 | { |
633 | if (have_ptrace_getsetvsxregs) | |
634 | { | |
2c3305f6 | 635 | fetch_vsx_registers (regcache, tid, regno); |
604c2f83 LM |
636 | return; |
637 | } | |
638 | } | |
be8626e0 | 639 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 640 | { |
56be3814 | 641 | fetch_spe_register (regcache, tid, regno); |
01904826 JB |
642 | return; |
643 | } | |
7ca18ed6 EBM |
644 | else if (regno == PPC_DSCR_REGNUM) |
645 | { | |
646 | gdb_assert (tdep->ppc_dscr_regnum != -1); | |
647 | ||
648 | fetch_regset (regcache, tid, NT_PPC_DSCR, | |
649 | PPC_LINUX_SIZEOF_DSCRREGSET, | |
650 | &ppc32_linux_dscrregset); | |
651 | return; | |
652 | } | |
653 | else if (regno == PPC_PPR_REGNUM) | |
654 | { | |
655 | gdb_assert (tdep->ppc_ppr_regnum != -1); | |
656 | ||
657 | fetch_regset (regcache, tid, NT_PPC_PPR, | |
658 | PPC_LINUX_SIZEOF_PPRREGSET, | |
659 | &ppc32_linux_pprregset); | |
660 | return; | |
661 | } | |
f2cf6173 EBM |
662 | else if (regno == PPC_TAR_REGNUM) |
663 | { | |
664 | gdb_assert (tdep->ppc_tar_regnum != -1); | |
665 | ||
666 | fetch_regset (regcache, tid, NT_PPC_TAR, | |
667 | PPC_LINUX_SIZEOF_TARREGSET, | |
668 | &ppc32_linux_tarregset); | |
669 | return; | |
670 | } | |
232bfb86 EBM |
671 | else if (PPC_IS_EBB_REGNUM (regno)) |
672 | { | |
673 | gdb_assert (tdep->have_ebb); | |
674 | ||
675 | fetch_regset (regcache, tid, NT_PPC_EBB, | |
676 | PPC_LINUX_SIZEOF_EBBREGSET, | |
677 | &ppc32_linux_ebbregset); | |
678 | return; | |
679 | } | |
680 | else if (PPC_IS_PMU_REGNUM (regno)) | |
681 | { | |
682 | gdb_assert (tdep->ppc_mmcr0_regnum != -1); | |
683 | ||
684 | fetch_regset (regcache, tid, NT_PPC_PMU, | |
685 | PPC_LINUX_SIZEOF_PMUREGSET, | |
686 | &ppc32_linux_pmuregset); | |
687 | return; | |
688 | } | |
8d619c01 EBM |
689 | else if (PPC_IS_TMSPR_REGNUM (regno)) |
690 | { | |
691 | gdb_assert (tdep->have_htm_spr); | |
692 | ||
693 | fetch_regset (regcache, tid, NT_PPC_TM_SPR, | |
694 | PPC_LINUX_SIZEOF_TM_SPRREGSET, | |
695 | &ppc32_linux_tm_sprregset); | |
696 | return; | |
697 | } | |
698 | else if (PPC_IS_CKPTGP_REGNUM (regno)) | |
699 | { | |
700 | gdb_assert (tdep->have_htm_core); | |
701 | ||
702 | const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); | |
703 | fetch_regset (regcache, tid, NT_PPC_TM_CGPR, | |
704 | (tdep->wordsize == 4? | |
705 | PPC32_LINUX_SIZEOF_CGPRREGSET | |
706 | : PPC64_LINUX_SIZEOF_CGPRREGSET), | |
707 | cgprregset); | |
708 | return; | |
709 | } | |
710 | else if (PPC_IS_CKPTFP_REGNUM (regno)) | |
711 | { | |
712 | gdb_assert (tdep->have_htm_fpu); | |
713 | ||
714 | fetch_regset (regcache, tid, NT_PPC_TM_CFPR, | |
715 | PPC_LINUX_SIZEOF_CFPRREGSET, | |
716 | &ppc32_linux_cfprregset); | |
717 | return; | |
718 | } | |
719 | else if (PPC_IS_CKPTVMX_REGNUM (regno)) | |
720 | { | |
721 | gdb_assert (tdep->have_htm_altivec); | |
722 | ||
723 | const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); | |
724 | fetch_regset (regcache, tid, NT_PPC_TM_CVMX, | |
725 | PPC_LINUX_SIZEOF_CVMXREGSET, | |
726 | cvmxregset); | |
727 | return; | |
728 | } | |
729 | else if (PPC_IS_CKPTVSX_REGNUM (regno)) | |
730 | { | |
731 | gdb_assert (tdep->have_htm_vsx); | |
732 | ||
733 | fetch_regset (regcache, tid, NT_PPC_TM_CVSX, | |
734 | PPC_LINUX_SIZEOF_CVSXREGSET, | |
735 | &ppc32_linux_cvsxregset); | |
736 | return; | |
737 | } | |
738 | else if (regno == PPC_CPPR_REGNUM) | |
739 | { | |
740 | gdb_assert (tdep->ppc_cppr_regnum != -1); | |
741 | ||
742 | fetch_regset (regcache, tid, NT_PPC_TM_CPPR, | |
743 | PPC_LINUX_SIZEOF_CPPRREGSET, | |
744 | &ppc32_linux_cpprregset); | |
745 | return; | |
746 | } | |
747 | else if (regno == PPC_CDSCR_REGNUM) | |
748 | { | |
749 | gdb_assert (tdep->ppc_cdscr_regnum != -1); | |
750 | ||
751 | fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, | |
752 | PPC_LINUX_SIZEOF_CDSCRREGSET, | |
753 | &ppc32_linux_cdscrregset); | |
754 | return; | |
755 | } | |
756 | else if (regno == PPC_CTAR_REGNUM) | |
757 | { | |
758 | gdb_assert (tdep->ppc_ctar_regnum != -1); | |
759 | ||
760 | fetch_regset (regcache, tid, NT_PPC_TM_CTAR, | |
761 | PPC_LINUX_SIZEOF_CTARREGSET, | |
762 | &ppc32_linux_ctarregset); | |
763 | return; | |
764 | } | |
9abe5450 | 765 | |
45229ea4 EZ |
766 | if (regaddr == -1) |
767 | { | |
40a6adc1 | 768 | memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ |
73e1c03f | 769 | regcache->raw_supply (regno, buf); |
45229ea4 EZ |
770 | return; |
771 | } | |
772 | ||
411cb3f9 | 773 | /* Read the raw register using sizeof(long) sized chunks. On a |
56d0d96a AC |
774 | 32-bit platform, 64-bit floating-point registers will require two |
775 | transfers. */ | |
4a19ea35 | 776 | for (bytes_transferred = 0; |
40a6adc1 | 777 | bytes_transferred < register_size (gdbarch, regno); |
411cb3f9 | 778 | bytes_transferred += sizeof (long)) |
45229ea4 | 779 | { |
11fde611 JK |
780 | long l; |
781 | ||
45229ea4 | 782 | errno = 0; |
11fde611 | 783 | l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); |
411cb3f9 | 784 | regaddr += sizeof (long); |
45229ea4 EZ |
785 | if (errno != 0) |
786 | { | |
bc97b3ba | 787 | char message[128]; |
8c042590 PM |
788 | xsnprintf (message, sizeof (message), "reading register %s (#%d)", |
789 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 790 | perror_with_name (message); |
45229ea4 | 791 | } |
11fde611 | 792 | memcpy (&buf[bytes_transferred], &l, sizeof (l)); |
45229ea4 | 793 | } |
56d0d96a | 794 | |
4a19ea35 JB |
795 | /* Now supply the register. Keep in mind that the regcache's idea |
796 | of the register's size may not be a multiple of sizeof | |
411cb3f9 | 797 | (long). */ |
40a6adc1 | 798 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
4a19ea35 JB |
799 | { |
800 | /* Little-endian values are always found at the left end of the | |
801 | bytes transferred. */ | |
73e1c03f | 802 | regcache->raw_supply (regno, buf); |
4a19ea35 | 803 | } |
40a6adc1 | 804 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
805 | { |
806 | /* Big-endian values are found at the right end of the bytes | |
807 | transferred. */ | |
40a6adc1 | 808 | size_t padding = (bytes_transferred - register_size (gdbarch, regno)); |
73e1c03f | 809 | regcache->raw_supply (regno, buf + padding); |
4a19ea35 JB |
810 | } |
811 | else | |
a44bddec | 812 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 813 | _("fetch_register: unexpected byte order: %d"), |
40a6adc1 | 814 | gdbarch_byte_order (gdbarch)); |
45229ea4 EZ |
815 | } |
816 | ||
1dfe79e8 SDJ |
817 | /* This function actually issues the request to ptrace, telling |
818 | it to get all general-purpose registers and put them into the | |
819 | specified regset. | |
820 | ||
821 | If the ptrace request does not exist, this function returns 0 | |
822 | and properly sets the have_ptrace_* flag. If the request fails, | |
823 | this function calls perror_with_name. Otherwise, if the request | |
824 | succeeds, then the regcache gets filled and 1 is returned. */ | |
825 | static int | |
826 | fetch_all_gp_regs (struct regcache *regcache, int tid) | |
827 | { | |
1dfe79e8 SDJ |
828 | gdb_gregset_t gregset; |
829 | ||
830 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
831 | { | |
832 | if (errno == EIO) | |
833 | { | |
834 | have_ptrace_getsetregs = 0; | |
835 | return 0; | |
836 | } | |
837 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
838 | } | |
839 | ||
840 | supply_gregset (regcache, (const gdb_gregset_t *) &gregset); | |
841 | ||
842 | return 1; | |
843 | } | |
844 | ||
845 | /* This is a wrapper for the fetch_all_gp_regs function. It is | |
846 | responsible for verifying if this target has the ptrace request | |
847 | that can be used to fetch all general-purpose registers at one | |
848 | shot. If it doesn't, then we should fetch them using the | |
849 | old-fashioned way, which is to iterate over the registers and | |
850 | request them one by one. */ | |
851 | static void | |
852 | fetch_gp_regs (struct regcache *regcache, int tid) | |
853 | { | |
ac7936df | 854 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
855 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
856 | int i; | |
857 | ||
858 | if (have_ptrace_getsetregs) | |
859 | if (fetch_all_gp_regs (regcache, tid)) | |
860 | return; | |
861 | ||
862 | /* If we've hit this point, it doesn't really matter which | |
863 | architecture we are using. We just need to read the | |
864 | registers in the "old-fashioned way". */ | |
865 | for (i = 0; i < ppc_num_gprs; i++) | |
866 | fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); | |
867 | } | |
868 | ||
869 | /* This function actually issues the request to ptrace, telling | |
870 | it to get all floating-point registers and put them into the | |
871 | specified regset. | |
872 | ||
873 | If the ptrace request does not exist, this function returns 0 | |
874 | and properly sets the have_ptrace_* flag. If the request fails, | |
875 | this function calls perror_with_name. Otherwise, if the request | |
876 | succeeds, then the regcache gets filled and 1 is returned. */ | |
877 | static int | |
878 | fetch_all_fp_regs (struct regcache *regcache, int tid) | |
879 | { | |
880 | gdb_fpregset_t fpregs; | |
881 | ||
882 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
883 | { | |
884 | if (errno == EIO) | |
885 | { | |
886 | have_ptrace_getsetfpregs = 0; | |
887 | return 0; | |
888 | } | |
889 | perror_with_name (_("Couldn't get floating-point registers.")); | |
890 | } | |
891 | ||
892 | supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); | |
893 | ||
894 | return 1; | |
895 | } | |
896 | ||
897 | /* This is a wrapper for the fetch_all_fp_regs function. It is | |
898 | responsible for verifying if this target has the ptrace request | |
899 | that can be used to fetch all floating-point registers at one | |
900 | shot. If it doesn't, then we should fetch them using the | |
901 | old-fashioned way, which is to iterate over the registers and | |
902 | request them one by one. */ | |
903 | static void | |
904 | fetch_fp_regs (struct regcache *regcache, int tid) | |
905 | { | |
ac7936df | 906 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
907 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
908 | int i; | |
909 | ||
910 | if (have_ptrace_getsetfpregs) | |
911 | if (fetch_all_fp_regs (regcache, tid)) | |
912 | return; | |
913 | ||
914 | /* If we've hit this point, it doesn't really matter which | |
915 | architecture we are using. We just need to read the | |
916 | registers in the "old-fashioned way". */ | |
917 | for (i = 0; i < ppc_num_fprs; i++) | |
918 | fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
919 | } | |
920 | ||
45229ea4 | 921 | static void |
56be3814 | 922 | fetch_ppc_registers (struct regcache *regcache, int tid) |
45229ea4 | 923 | { |
ac7936df | 924 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 925 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9abe5450 | 926 | |
1dfe79e8 | 927 | fetch_gp_regs (regcache, tid); |
32b99774 | 928 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 929 | fetch_fp_regs (regcache, tid); |
40a6adc1 | 930 | fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 931 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 932 | fetch_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 933 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 934 | fetch_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 935 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 936 | fetch_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 937 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 938 | fetch_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 939 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 940 | fetch_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 941 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 942 | fetch_register (regcache, tid, tdep->ppc_mq_regnum); |
7284e1be UW |
943 | if (ppc_linux_trap_reg_p (gdbarch)) |
944 | { | |
945 | fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
946 | fetch_register (regcache, tid, PPC_TRAP_REGNUM); | |
947 | } | |
32b99774 | 948 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 949 | fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); |
9abe5450 EZ |
950 | if (have_ptrace_getvrregs) |
951 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
1d75a658 | 952 | fetch_altivec_registers (regcache, tid, -1); |
604c2f83 LM |
953 | if (have_ptrace_getsetvsxregs) |
954 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
2c3305f6 | 955 | fetch_vsx_registers (regcache, tid, -1); |
6ced10dd | 956 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 957 | fetch_spe_register (regcache, tid, -1); |
7ca18ed6 EBM |
958 | if (tdep->ppc_ppr_regnum != -1) |
959 | fetch_regset (regcache, tid, NT_PPC_PPR, | |
960 | PPC_LINUX_SIZEOF_PPRREGSET, | |
961 | &ppc32_linux_pprregset); | |
962 | if (tdep->ppc_dscr_regnum != -1) | |
963 | fetch_regset (regcache, tid, NT_PPC_DSCR, | |
964 | PPC_LINUX_SIZEOF_DSCRREGSET, | |
965 | &ppc32_linux_dscrregset); | |
f2cf6173 EBM |
966 | if (tdep->ppc_tar_regnum != -1) |
967 | fetch_regset (regcache, tid, NT_PPC_TAR, | |
968 | PPC_LINUX_SIZEOF_TARREGSET, | |
969 | &ppc32_linux_tarregset); | |
232bfb86 EBM |
970 | if (tdep->have_ebb) |
971 | fetch_regset (regcache, tid, NT_PPC_EBB, | |
972 | PPC_LINUX_SIZEOF_EBBREGSET, | |
973 | &ppc32_linux_ebbregset); | |
974 | if (tdep->ppc_mmcr0_regnum != -1) | |
975 | fetch_regset (regcache, tid, NT_PPC_PMU, | |
976 | PPC_LINUX_SIZEOF_PMUREGSET, | |
977 | &ppc32_linux_pmuregset); | |
8d619c01 EBM |
978 | if (tdep->have_htm_spr) |
979 | fetch_regset (regcache, tid, NT_PPC_TM_SPR, | |
980 | PPC_LINUX_SIZEOF_TM_SPRREGSET, | |
981 | &ppc32_linux_tm_sprregset); | |
982 | if (tdep->have_htm_core) | |
983 | { | |
984 | const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); | |
985 | fetch_regset (regcache, tid, NT_PPC_TM_CGPR, | |
986 | (tdep->wordsize == 4? | |
987 | PPC32_LINUX_SIZEOF_CGPRREGSET | |
988 | : PPC64_LINUX_SIZEOF_CGPRREGSET), | |
989 | cgprregset); | |
990 | } | |
991 | if (tdep->have_htm_fpu) | |
992 | fetch_regset (regcache, tid, NT_PPC_TM_CFPR, | |
993 | PPC_LINUX_SIZEOF_CFPRREGSET, | |
994 | &ppc32_linux_cfprregset); | |
995 | if (tdep->have_htm_altivec) | |
996 | { | |
997 | const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); | |
998 | fetch_regset (regcache, tid, NT_PPC_TM_CVMX, | |
999 | PPC_LINUX_SIZEOF_CVMXREGSET, | |
1000 | cvmxregset); | |
1001 | } | |
1002 | if (tdep->have_htm_vsx) | |
1003 | fetch_regset (regcache, tid, NT_PPC_TM_CVSX, | |
1004 | PPC_LINUX_SIZEOF_CVSXREGSET, | |
1005 | &ppc32_linux_cvsxregset); | |
1006 | if (tdep->ppc_cppr_regnum != -1) | |
1007 | fetch_regset (regcache, tid, NT_PPC_TM_CPPR, | |
1008 | PPC_LINUX_SIZEOF_CPPRREGSET, | |
1009 | &ppc32_linux_cpprregset); | |
1010 | if (tdep->ppc_cdscr_regnum != -1) | |
1011 | fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, | |
1012 | PPC_LINUX_SIZEOF_CDSCRREGSET, | |
1013 | &ppc32_linux_cdscrregset); | |
1014 | if (tdep->ppc_ctar_regnum != -1) | |
1015 | fetch_regset (regcache, tid, NT_PPC_TM_CTAR, | |
1016 | PPC_LINUX_SIZEOF_CTARREGSET, | |
1017 | &ppc32_linux_ctarregset); | |
45229ea4 EZ |
1018 | } |
1019 | ||
1020 | /* Fetch registers from the child process. Fetch all registers if | |
1021 | regno == -1, otherwise fetch all general registers or all floating | |
1022 | point registers depending upon the value of regno. */ | |
f6ac5f3d PA |
1023 | void |
1024 | ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) | |
45229ea4 | 1025 | { |
222312d3 | 1026 | pid_t tid = get_ptrace_pid (regcache->ptid ()); |
05f13b9c | 1027 | |
9abe5450 | 1028 | if (regno == -1) |
56be3814 | 1029 | fetch_ppc_registers (regcache, tid); |
45229ea4 | 1030 | else |
56be3814 | 1031 | fetch_register (regcache, tid, regno); |
45229ea4 EZ |
1032 | } |
1033 | ||
604c2f83 | 1034 | static void |
2c3305f6 | 1035 | store_vsx_registers (const struct regcache *regcache, int tid, int regno) |
604c2f83 LM |
1036 | { |
1037 | int ret; | |
1038 | gdb_vsxregset_t regs; | |
2c3305f6 | 1039 | const struct regset *vsxregset = ppc_linux_vsxregset (); |
604c2f83 | 1040 | |
9fe70b4f | 1041 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); |
604c2f83 LM |
1042 | if (ret < 0) |
1043 | { | |
1044 | if (errno == EIO) | |
1045 | { | |
1046 | have_ptrace_getsetvsxregs = 0; | |
1047 | return; | |
1048 | } | |
2c3305f6 | 1049 | perror_with_name (_("Unable to fetch VSX registers")); |
604c2f83 LM |
1050 | } |
1051 | ||
2c3305f6 PFC |
1052 | vsxregset->collect_regset (vsxregset, regcache, regno, ®s, |
1053 | PPC_LINUX_SIZEOF_VSXREGSET); | |
604c2f83 LM |
1054 | |
1055 | ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); | |
1056 | if (ret < 0) | |
2c3305f6 | 1057 | perror_with_name (_("Unable to store VSX registers")); |
604c2f83 LM |
1058 | } |
1059 | ||
9abe5450 | 1060 | static void |
1d75a658 PFC |
1061 | store_altivec_registers (const struct regcache *regcache, int tid, |
1062 | int regno) | |
9abe5450 EZ |
1063 | { |
1064 | int ret; | |
9abe5450 | 1065 | gdb_vrregset_t regs; |
ac7936df | 1066 | struct gdbarch *gdbarch = regcache->arch (); |
1d75a658 | 1067 | const struct regset *vrregset = ppc_linux_vrregset (gdbarch); |
9abe5450 EZ |
1068 | |
1069 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
1070 | if (ret < 0) | |
1071 | { | |
1072 | if (errno == EIO) | |
1073 | { | |
1074 | have_ptrace_getvrregs = 0; | |
1075 | return; | |
1076 | } | |
1d75a658 | 1077 | perror_with_name (_("Unable to fetch AltiVec registers")); |
9abe5450 EZ |
1078 | } |
1079 | ||
1d75a658 PFC |
1080 | vrregset->collect_regset (vrregset, regcache, regno, ®s, |
1081 | PPC_LINUX_SIZEOF_VRREGSET); | |
9abe5450 EZ |
1082 | |
1083 | ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); | |
1084 | if (ret < 0) | |
1d75a658 | 1085 | perror_with_name (_("Unable to store AltiVec registers")); |
9abe5450 EZ |
1086 | } |
1087 | ||
85102364 | 1088 | /* Assuming TID refers to an SPE process, set the top halves of TID's |
01904826 JB |
1089 | general-purpose registers and its SPE-specific registers to the |
1090 | values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do | |
1091 | nothing. | |
1092 | ||
1093 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
1094 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
1095 | get_spe_registers. */ | |
1096 | static void | |
1097 | set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
1098 | { | |
1099 | if (have_ptrace_getsetevrregs) | |
1100 | { | |
1101 | if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) | |
1102 | return; | |
1103 | else | |
1104 | { | |
1105 | /* EIO means that the PTRACE_SETEVRREGS request isn't | |
1106 | supported; we fail silently, and don't try the call | |
1107 | again. */ | |
1108 | if (errno == EIO) | |
1109 | have_ptrace_getsetevrregs = 0; | |
1110 | else | |
1111 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 1112 | perror_with_name (_("Unable to set SPE registers")); |
01904826 JB |
1113 | } |
1114 | } | |
1115 | } | |
1116 | ||
6ced10dd JB |
1117 | /* Write GDB's value for the SPE-specific raw register REGNO to TID. |
1118 | If REGNO is -1, write the values of all the SPE-specific | |
1119 | registers. */ | |
01904826 | 1120 | static void |
56be3814 | 1121 | store_spe_register (const struct regcache *regcache, int tid, int regno) |
01904826 | 1122 | { |
ac7936df | 1123 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1124 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
01904826 JB |
1125 | struct gdb_evrregset_t evrregs; |
1126 | ||
6ced10dd | 1127 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 1128 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 1129 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 1130 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 1131 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 1132 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
01904826 | 1133 | |
6ced10dd JB |
1134 | if (regno == -1) |
1135 | /* Since we're going to write out every register, the code below | |
1136 | should store to every field of evrregs; if that doesn't happen, | |
1137 | make it obvious by initializing it with suspicious values. */ | |
1138 | memset (&evrregs, 42, sizeof (evrregs)); | |
1139 | else | |
1140 | /* We can only read and write the entire EVR register set at a | |
1141 | time, so to write just a single register, we do a | |
1142 | read-modify-write maneuver. */ | |
1143 | get_spe_registers (tid, &evrregs); | |
1144 | ||
1145 | if (regno == -1) | |
01904826 | 1146 | { |
6ced10dd JB |
1147 | int i; |
1148 | ||
1149 | for (i = 0; i < ppc_num_gprs; i++) | |
34a79281 SM |
1150 | regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i, |
1151 | &evrregs.evr[i]); | |
01904826 | 1152 | } |
6ced10dd JB |
1153 | else if (tdep->ppc_ev0_upper_regnum <= regno |
1154 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
34a79281 SM |
1155 | regcache->raw_collect (regno, |
1156 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); | |
6ced10dd JB |
1157 | |
1158 | if (regno == -1 | |
1159 | || regno == tdep->ppc_acc_regnum) | |
34a79281 SM |
1160 | regcache->raw_collect (tdep->ppc_acc_regnum, |
1161 | &evrregs.acc); | |
6ced10dd JB |
1162 | |
1163 | if (regno == -1 | |
1164 | || regno == tdep->ppc_spefscr_regnum) | |
34a79281 SM |
1165 | regcache->raw_collect (tdep->ppc_spefscr_regnum, |
1166 | &evrregs.spefscr); | |
01904826 JB |
1167 | |
1168 | /* Write back the modified register set. */ | |
1169 | set_spe_registers (tid, &evrregs); | |
1170 | } | |
1171 | ||
45229ea4 | 1172 | static void |
56be3814 | 1173 | store_register (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1174 | { |
ac7936df | 1175 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1176 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
45229ea4 | 1177 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 1178 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
52f0bd74 | 1179 | int i; |
4a19ea35 | 1180 | size_t bytes_to_transfer; |
0f068fb5 | 1181 | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
45229ea4 | 1182 | |
be8626e0 | 1183 | if (altivec_register_p (gdbarch, regno)) |
45229ea4 | 1184 | { |
1d75a658 | 1185 | store_altivec_registers (regcache, tid, regno); |
45229ea4 EZ |
1186 | return; |
1187 | } | |
3d907528 | 1188 | else if (vsx_register_p (gdbarch, regno)) |
604c2f83 | 1189 | { |
2c3305f6 | 1190 | store_vsx_registers (regcache, tid, regno); |
604c2f83 LM |
1191 | return; |
1192 | } | |
be8626e0 | 1193 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 1194 | { |
56be3814 | 1195 | store_spe_register (regcache, tid, regno); |
01904826 JB |
1196 | return; |
1197 | } | |
7ca18ed6 EBM |
1198 | else if (regno == PPC_DSCR_REGNUM) |
1199 | { | |
1200 | gdb_assert (tdep->ppc_dscr_regnum != -1); | |
1201 | ||
1202 | store_regset (regcache, tid, regno, NT_PPC_DSCR, | |
1203 | PPC_LINUX_SIZEOF_DSCRREGSET, | |
1204 | &ppc32_linux_dscrregset); | |
1205 | return; | |
1206 | } | |
1207 | else if (regno == PPC_PPR_REGNUM) | |
1208 | { | |
1209 | gdb_assert (tdep->ppc_ppr_regnum != -1); | |
1210 | ||
1211 | store_regset (regcache, tid, regno, NT_PPC_PPR, | |
1212 | PPC_LINUX_SIZEOF_PPRREGSET, | |
1213 | &ppc32_linux_pprregset); | |
1214 | return; | |
1215 | } | |
f2cf6173 EBM |
1216 | else if (regno == PPC_TAR_REGNUM) |
1217 | { | |
1218 | gdb_assert (tdep->ppc_tar_regnum != -1); | |
1219 | ||
1220 | store_regset (regcache, tid, regno, NT_PPC_TAR, | |
1221 | PPC_LINUX_SIZEOF_TARREGSET, | |
1222 | &ppc32_linux_tarregset); | |
1223 | return; | |
1224 | } | |
232bfb86 EBM |
1225 | else if (PPC_IS_EBB_REGNUM (regno)) |
1226 | { | |
1227 | gdb_assert (tdep->have_ebb); | |
1228 | ||
1229 | store_regset (regcache, tid, regno, NT_PPC_EBB, | |
1230 | PPC_LINUX_SIZEOF_EBBREGSET, | |
1231 | &ppc32_linux_ebbregset); | |
1232 | return; | |
1233 | } | |
1234 | else if (PPC_IS_PMU_REGNUM (regno)) | |
1235 | { | |
1236 | gdb_assert (tdep->ppc_mmcr0_regnum != -1); | |
1237 | ||
1238 | store_regset (regcache, tid, regno, NT_PPC_PMU, | |
1239 | PPC_LINUX_SIZEOF_PMUREGSET, | |
1240 | &ppc32_linux_pmuregset); | |
1241 | return; | |
1242 | } | |
8d619c01 EBM |
1243 | else if (PPC_IS_TMSPR_REGNUM (regno)) |
1244 | { | |
1245 | gdb_assert (tdep->have_htm_spr); | |
1246 | ||
1247 | store_regset (regcache, tid, regno, NT_PPC_TM_SPR, | |
1248 | PPC_LINUX_SIZEOF_TM_SPRREGSET, | |
1249 | &ppc32_linux_tm_sprregset); | |
1250 | return; | |
1251 | } | |
1252 | else if (PPC_IS_CKPTGP_REGNUM (regno)) | |
1253 | { | |
1254 | gdb_assert (tdep->have_htm_core); | |
1255 | ||
1256 | const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); | |
1257 | store_regset (regcache, tid, regno, NT_PPC_TM_CGPR, | |
1258 | (tdep->wordsize == 4? | |
1259 | PPC32_LINUX_SIZEOF_CGPRREGSET | |
1260 | : PPC64_LINUX_SIZEOF_CGPRREGSET), | |
1261 | cgprregset); | |
1262 | return; | |
1263 | } | |
1264 | else if (PPC_IS_CKPTFP_REGNUM (regno)) | |
1265 | { | |
1266 | gdb_assert (tdep->have_htm_fpu); | |
1267 | ||
1268 | store_regset (regcache, tid, regno, NT_PPC_TM_CFPR, | |
1269 | PPC_LINUX_SIZEOF_CFPRREGSET, | |
1270 | &ppc32_linux_cfprregset); | |
1271 | return; | |
1272 | } | |
1273 | else if (PPC_IS_CKPTVMX_REGNUM (regno)) | |
1274 | { | |
1275 | gdb_assert (tdep->have_htm_altivec); | |
1276 | ||
1277 | const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); | |
1278 | store_regset (regcache, tid, regno, NT_PPC_TM_CVMX, | |
1279 | PPC_LINUX_SIZEOF_CVMXREGSET, | |
1280 | cvmxregset); | |
1281 | return; | |
1282 | } | |
1283 | else if (PPC_IS_CKPTVSX_REGNUM (regno)) | |
1284 | { | |
1285 | gdb_assert (tdep->have_htm_vsx); | |
1286 | ||
1287 | store_regset (regcache, tid, regno, NT_PPC_TM_CVSX, | |
1288 | PPC_LINUX_SIZEOF_CVSXREGSET, | |
1289 | &ppc32_linux_cvsxregset); | |
1290 | return; | |
1291 | } | |
1292 | else if (regno == PPC_CPPR_REGNUM) | |
1293 | { | |
1294 | gdb_assert (tdep->ppc_cppr_regnum != -1); | |
1295 | ||
1296 | store_regset (regcache, tid, regno, NT_PPC_TM_CPPR, | |
1297 | PPC_LINUX_SIZEOF_CPPRREGSET, | |
1298 | &ppc32_linux_cpprregset); | |
1299 | return; | |
1300 | } | |
1301 | else if (regno == PPC_CDSCR_REGNUM) | |
1302 | { | |
1303 | gdb_assert (tdep->ppc_cdscr_regnum != -1); | |
1304 | ||
1305 | store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR, | |
1306 | PPC_LINUX_SIZEOF_CDSCRREGSET, | |
1307 | &ppc32_linux_cdscrregset); | |
1308 | return; | |
1309 | } | |
1310 | else if (regno == PPC_CTAR_REGNUM) | |
1311 | { | |
1312 | gdb_assert (tdep->ppc_ctar_regnum != -1); | |
1313 | ||
1314 | store_regset (regcache, tid, regno, NT_PPC_TM_CTAR, | |
1315 | PPC_LINUX_SIZEOF_CTARREGSET, | |
1316 | &ppc32_linux_ctarregset); | |
1317 | return; | |
1318 | } | |
45229ea4 | 1319 | |
9abe5450 EZ |
1320 | if (regaddr == -1) |
1321 | return; | |
1322 | ||
4a19ea35 JB |
1323 | /* First collect the register. Keep in mind that the regcache's |
1324 | idea of the register's size may not be a multiple of sizeof | |
411cb3f9 | 1325 | (long). */ |
56d0d96a | 1326 | memset (buf, 0, sizeof buf); |
40a6adc1 MD |
1327 | bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); |
1328 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | |
4a19ea35 JB |
1329 | { |
1330 | /* Little-endian values always sit at the left end of the buffer. */ | |
34a79281 | 1331 | regcache->raw_collect (regno, buf); |
4a19ea35 | 1332 | } |
40a6adc1 | 1333 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
1334 | { |
1335 | /* Big-endian values sit at the right end of the buffer. */ | |
40a6adc1 | 1336 | size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); |
34a79281 | 1337 | regcache->raw_collect (regno, buf + padding); |
4a19ea35 JB |
1338 | } |
1339 | ||
411cb3f9 | 1340 | for (i = 0; i < bytes_to_transfer; i += sizeof (long)) |
45229ea4 | 1341 | { |
11fde611 JK |
1342 | long l; |
1343 | ||
1344 | memcpy (&l, &buf[i], sizeof (l)); | |
45229ea4 | 1345 | errno = 0; |
11fde611 | 1346 | ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); |
411cb3f9 | 1347 | regaddr += sizeof (long); |
e3f36dbd KB |
1348 | |
1349 | if (errno == EIO | |
7284e1be UW |
1350 | && (regno == tdep->ppc_fpscr_regnum |
1351 | || regno == PPC_ORIG_R3_REGNUM | |
1352 | || regno == PPC_TRAP_REGNUM)) | |
e3f36dbd | 1353 | { |
7284e1be UW |
1354 | /* Some older kernel versions don't allow fpscr, orig_r3 |
1355 | or trap to be written. */ | |
e3f36dbd KB |
1356 | continue; |
1357 | } | |
1358 | ||
45229ea4 EZ |
1359 | if (errno != 0) |
1360 | { | |
bc97b3ba | 1361 | char message[128]; |
8c042590 PM |
1362 | xsnprintf (message, sizeof (message), "writing register %s (#%d)", |
1363 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 1364 | perror_with_name (message); |
45229ea4 EZ |
1365 | } |
1366 | } | |
1367 | } | |
1368 | ||
1dfe79e8 SDJ |
1369 | /* This function actually issues the request to ptrace, telling |
1370 | it to store all general-purpose registers present in the specified | |
1371 | regset. | |
1372 | ||
1373 | If the ptrace request does not exist, this function returns 0 | |
1374 | and properly sets the have_ptrace_* flag. If the request fails, | |
1375 | this function calls perror_with_name. Otherwise, if the request | |
1376 | succeeds, then the regcache is stored and 1 is returned. */ | |
1377 | static int | |
1378 | store_all_gp_regs (const struct regcache *regcache, int tid, int regno) | |
1379 | { | |
1dfe79e8 SDJ |
1380 | gdb_gregset_t gregset; |
1381 | ||
1382 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
1383 | { | |
1384 | if (errno == EIO) | |
1385 | { | |
1386 | have_ptrace_getsetregs = 0; | |
1387 | return 0; | |
1388 | } | |
1389 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
1390 | } | |
1391 | ||
1392 | fill_gregset (regcache, &gregset, regno); | |
1393 | ||
1394 | if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) | |
1395 | { | |
1396 | if (errno == EIO) | |
1397 | { | |
1398 | have_ptrace_getsetregs = 0; | |
1399 | return 0; | |
1400 | } | |
1401 | perror_with_name (_("Couldn't set general-purpose registers.")); | |
1402 | } | |
1403 | ||
1404 | return 1; | |
1405 | } | |
1406 | ||
1407 | /* This is a wrapper for the store_all_gp_regs function. It is | |
1408 | responsible for verifying if this target has the ptrace request | |
1409 | that can be used to store all general-purpose registers at one | |
1410 | shot. If it doesn't, then we should store them using the | |
1411 | old-fashioned way, which is to iterate over the registers and | |
1412 | store them one by one. */ | |
45229ea4 | 1413 | static void |
1dfe79e8 | 1414 | store_gp_regs (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1415 | { |
ac7936df | 1416 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1417 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1dfe79e8 SDJ |
1418 | int i; |
1419 | ||
1420 | if (have_ptrace_getsetregs) | |
1421 | if (store_all_gp_regs (regcache, tid, regno)) | |
1422 | return; | |
1423 | ||
1424 | /* If we hit this point, it doesn't really matter which | |
1425 | architecture we are using. We just need to store the | |
1426 | registers in the "old-fashioned way". */ | |
6ced10dd | 1427 | for (i = 0; i < ppc_num_gprs; i++) |
56be3814 | 1428 | store_register (regcache, tid, tdep->ppc_gp0_regnum + i); |
1dfe79e8 SDJ |
1429 | } |
1430 | ||
1431 | /* This function actually issues the request to ptrace, telling | |
1432 | it to store all floating-point registers present in the specified | |
1433 | regset. | |
1434 | ||
1435 | If the ptrace request does not exist, this function returns 0 | |
1436 | and properly sets the have_ptrace_* flag. If the request fails, | |
1437 | this function calls perror_with_name. Otherwise, if the request | |
1438 | succeeds, then the regcache is stored and 1 is returned. */ | |
1439 | static int | |
1440 | store_all_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1441 | { | |
1442 | gdb_fpregset_t fpregs; | |
1443 | ||
1444 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1445 | { | |
1446 | if (errno == EIO) | |
1447 | { | |
1448 | have_ptrace_getsetfpregs = 0; | |
1449 | return 0; | |
1450 | } | |
1451 | perror_with_name (_("Couldn't get floating-point registers.")); | |
1452 | } | |
1453 | ||
1454 | fill_fpregset (regcache, &fpregs, regno); | |
1455 | ||
1456 | if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1457 | { | |
1458 | if (errno == EIO) | |
1459 | { | |
1460 | have_ptrace_getsetfpregs = 0; | |
1461 | return 0; | |
1462 | } | |
1463 | perror_with_name (_("Couldn't set floating-point registers.")); | |
1464 | } | |
1465 | ||
1466 | return 1; | |
1467 | } | |
1468 | ||
1469 | /* This is a wrapper for the store_all_fp_regs function. It is | |
1470 | responsible for verifying if this target has the ptrace request | |
1471 | that can be used to store all floating-point registers at one | |
1472 | shot. If it doesn't, then we should store them using the | |
1473 | old-fashioned way, which is to iterate over the registers and | |
1474 | store them one by one. */ | |
1475 | static void | |
1476 | store_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1477 | { | |
ac7936df | 1478 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1479 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1480 | int i; | |
1481 | ||
1482 | if (have_ptrace_getsetfpregs) | |
1483 | if (store_all_fp_regs (regcache, tid, regno)) | |
1484 | return; | |
1485 | ||
1486 | /* If we hit this point, it doesn't really matter which | |
1487 | architecture we are using. We just need to store the | |
1488 | registers in the "old-fashioned way". */ | |
1489 | for (i = 0; i < ppc_num_fprs; i++) | |
1490 | store_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
1491 | } | |
1492 | ||
1493 | static void | |
1494 | store_ppc_registers (const struct regcache *regcache, int tid) | |
1495 | { | |
ac7936df | 1496 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1497 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1498 | ||
1499 | store_gp_regs (regcache, tid, -1); | |
32b99774 | 1500 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 1501 | store_fp_regs (regcache, tid, -1); |
40a6adc1 | 1502 | store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 1503 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 1504 | store_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 1505 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 1506 | store_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 1507 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 1508 | store_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 1509 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 1510 | store_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 1511 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 1512 | store_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 1513 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 1514 | store_register (regcache, tid, tdep->ppc_mq_regnum); |
32b99774 | 1515 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 1516 | store_register (regcache, tid, tdep->ppc_fpscr_regnum); |
7284e1be UW |
1517 | if (ppc_linux_trap_reg_p (gdbarch)) |
1518 | { | |
1519 | store_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
1520 | store_register (regcache, tid, PPC_TRAP_REGNUM); | |
1521 | } | |
9abe5450 EZ |
1522 | if (have_ptrace_getvrregs) |
1523 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
1d75a658 | 1524 | store_altivec_registers (regcache, tid, -1); |
604c2f83 LM |
1525 | if (have_ptrace_getsetvsxregs) |
1526 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
2c3305f6 | 1527 | store_vsx_registers (regcache, tid, -1); |
6ced10dd | 1528 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 1529 | store_spe_register (regcache, tid, -1); |
7ca18ed6 EBM |
1530 | if (tdep->ppc_ppr_regnum != -1) |
1531 | store_regset (regcache, tid, -1, NT_PPC_PPR, | |
1532 | PPC_LINUX_SIZEOF_PPRREGSET, | |
1533 | &ppc32_linux_pprregset); | |
1534 | if (tdep->ppc_dscr_regnum != -1) | |
1535 | store_regset (regcache, tid, -1, NT_PPC_DSCR, | |
1536 | PPC_LINUX_SIZEOF_DSCRREGSET, | |
1537 | &ppc32_linux_dscrregset); | |
f2cf6173 EBM |
1538 | if (tdep->ppc_tar_regnum != -1) |
1539 | store_regset (regcache, tid, -1, NT_PPC_TAR, | |
1540 | PPC_LINUX_SIZEOF_TARREGSET, | |
1541 | &ppc32_linux_tarregset); | |
232bfb86 EBM |
1542 | |
1543 | if (tdep->ppc_mmcr0_regnum != -1) | |
1544 | store_regset (regcache, tid, -1, NT_PPC_PMU, | |
1545 | PPC_LINUX_SIZEOF_PMUREGSET, | |
1546 | &ppc32_linux_pmuregset); | |
1547 | ||
8d619c01 EBM |
1548 | if (tdep->have_htm_spr) |
1549 | store_regset (regcache, tid, -1, NT_PPC_TM_SPR, | |
1550 | PPC_LINUX_SIZEOF_TM_SPRREGSET, | |
1551 | &ppc32_linux_tm_sprregset); | |
1552 | ||
1553 | /* Because the EBB and checkpointed HTM registers can be | |
1554 | unavailable, attempts to store them here would cause this | |
1555 | function to fail most of the time, so we ignore them. */ | |
45229ea4 EZ |
1556 | } |
1557 | ||
6ffbb7ab | 1558 | /* The cached DABR value, to install in new threads. |
926bf92d UW |
1559 | This variable is used when the PowerPC HWDEBUG ptrace |
1560 | interface is not available. */ | |
6ffbb7ab TJB |
1561 | static long saved_dabr_value; |
1562 | ||
1563 | /* Global structure that will store information about the available | |
926bf92d UW |
1564 | features provided by the PowerPC HWDEBUG ptrace interface. */ |
1565 | static struct ppc_debug_info hwdebug_info; | |
6ffbb7ab TJB |
1566 | |
1567 | /* Global variable that holds the maximum number of slots that the | |
926bf92d UW |
1568 | kernel will use. This is only used when PowerPC HWDEBUG ptrace interface |
1569 | is available. */ | |
6ffbb7ab TJB |
1570 | static size_t max_slots_number = 0; |
1571 | ||
1572 | struct hw_break_tuple | |
1573 | { | |
1574 | long slot; | |
1575 | struct ppc_hw_breakpoint *hw_break; | |
1576 | }; | |
1577 | ||
791b7405 AB |
1578 | /* This is an internal vector created to store information about *points |
1579 | inserted for each thread. This is used when PowerPC HWDEBUG ptrace | |
1580 | interface is available. */ | |
5da01df5 | 1581 | struct thread_points |
6ffbb7ab TJB |
1582 | { |
1583 | /* The TID to which this *point relates. */ | |
1584 | int tid; | |
1585 | /* Information about the *point, such as its address, type, etc. | |
1586 | ||
1587 | Each element inside this vector corresponds to a hardware | |
1588 | breakpoint or watchpoint in the thread represented by TID. The maximum | |
1589 | size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of | |
1590 | the tuple is NULL, then the position in the vector is free. */ | |
1591 | struct hw_break_tuple *hw_breaks; | |
5da01df5 | 1592 | }; |
6ffbb7ab | 1593 | |
5da01df5 | 1594 | static std::vector<thread_points *> ppc_threads; |
6ffbb7ab | 1595 | |
926bf92d UW |
1596 | /* The version of the PowerPC HWDEBUG kernel interface that we will use, if |
1597 | available. */ | |
6ffbb7ab TJB |
1598 | #define PPC_DEBUG_CURRENT_VERSION 1 |
1599 | ||
926bf92d | 1600 | /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */ |
e0d24f8d | 1601 | static int |
926bf92d | 1602 | have_ptrace_hwdebug_interface (void) |
e0d24f8d | 1603 | { |
926bf92d | 1604 | static int have_ptrace_hwdebug_interface = -1; |
e0d24f8d | 1605 | |
926bf92d | 1606 | if (have_ptrace_hwdebug_interface == -1) |
6ffbb7ab TJB |
1607 | { |
1608 | int tid; | |
e0d24f8d | 1609 | |
e38504b3 | 1610 | tid = inferior_ptid.lwp (); |
6ffbb7ab | 1611 | if (tid == 0) |
e99b03dc | 1612 | tid = inferior_ptid.pid (); |
e0d24f8d | 1613 | |
926bf92d UW |
1614 | /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */ |
1615 | if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0) | |
6ffbb7ab | 1616 | { |
926bf92d | 1617 | /* Check whether PowerPC HWDEBUG ptrace interface is functional and |
0c56f59b | 1618 | provides any supported feature. */ |
926bf92d | 1619 | if (hwdebug_info.features != 0) |
0c56f59b | 1620 | { |
926bf92d UW |
1621 | have_ptrace_hwdebug_interface = 1; |
1622 | max_slots_number = hwdebug_info.num_instruction_bps | |
1623 | + hwdebug_info.num_data_bps | |
1624 | + hwdebug_info.num_condition_regs; | |
1625 | return have_ptrace_hwdebug_interface; | |
0c56f59b | 1626 | } |
6ffbb7ab | 1627 | } |
926bf92d UW |
1628 | /* Old school interface and no PowerPC HWDEBUG ptrace support. */ |
1629 | have_ptrace_hwdebug_interface = 0; | |
1630 | memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info)); | |
6ffbb7ab TJB |
1631 | } |
1632 | ||
926bf92d | 1633 | return have_ptrace_hwdebug_interface; |
e0d24f8d WZ |
1634 | } |
1635 | ||
f6ac5f3d PA |
1636 | int |
1637 | ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot) | |
b7622095 | 1638 | { |
6ffbb7ab | 1639 | int total_hw_wp, total_hw_bp; |
b7622095 | 1640 | |
926bf92d | 1641 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab | 1642 | { |
926bf92d UW |
1643 | /* When PowerPC HWDEBUG ptrace interface is available, the number of |
1644 | available hardware watchpoints and breakpoints is stored at the | |
1645 | hwdebug_info struct. */ | |
1646 | total_hw_bp = hwdebug_info.num_instruction_bps; | |
1647 | total_hw_wp = hwdebug_info.num_data_bps; | |
6ffbb7ab TJB |
1648 | } |
1649 | else | |
1650 | { | |
926bf92d UW |
1651 | /* When we do not have PowerPC HWDEBUG ptrace interface, we should |
1652 | consider having 1 hardware watchpoint and no hardware breakpoints. */ | |
6ffbb7ab TJB |
1653 | total_hw_bp = 0; |
1654 | total_hw_wp = 1; | |
1655 | } | |
b7622095 | 1656 | |
6ffbb7ab TJB |
1657 | if (type == bp_hardware_watchpoint || type == bp_read_watchpoint |
1658 | || type == bp_access_watchpoint || type == bp_watchpoint) | |
1659 | { | |
bb08bdbd | 1660 | if (cnt + ot > total_hw_wp) |
6ffbb7ab TJB |
1661 | return -1; |
1662 | } | |
1663 | else if (type == bp_hardware_breakpoint) | |
1664 | { | |
572f6555 EBM |
1665 | if (total_hw_bp == 0) |
1666 | { | |
1667 | /* No hardware breakpoint support. */ | |
1668 | return 0; | |
1669 | } | |
6ffbb7ab TJB |
1670 | if (cnt > total_hw_bp) |
1671 | return -1; | |
1672 | } | |
1673 | ||
926bf92d | 1674 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1675 | { |
1676 | int tid; | |
1677 | ptid_t ptid = inferior_ptid; | |
1678 | ||
0df8b418 MS |
1679 | /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG |
1680 | and whether the target has DABR. If either answer is no, the | |
1681 | ptrace call will return -1. Fail in that case. */ | |
e38504b3 | 1682 | tid = ptid.lwp (); |
6ffbb7ab | 1683 | if (tid == 0) |
e99b03dc | 1684 | tid = ptid.pid (); |
6ffbb7ab TJB |
1685 | |
1686 | if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1) | |
1687 | return 0; | |
1688 | } | |
1689 | ||
1690 | return 1; | |
b7622095 LM |
1691 | } |
1692 | ||
f6ac5f3d PA |
1693 | int |
1694 | ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) | |
e0d24f8d WZ |
1695 | { |
1696 | /* Handle sub-8-byte quantities. */ | |
1697 | if (len <= 0) | |
1698 | return 0; | |
1699 | ||
926bf92d UW |
1700 | /* The PowerPC HWDEBUG ptrace interface tells if there are alignment |
1701 | restrictions for watchpoints in the processors. In that case, we use that | |
1702 | information to determine the hardcoded watchable region for | |
1703 | watchpoints. */ | |
1704 | if (have_ptrace_hwdebug_interface ()) | |
6ffbb7ab | 1705 | { |
e23b9d6e | 1706 | int region_size; |
4feebbdd EBM |
1707 | /* Embedded DAC-based processors, like the PowerPC 440 have ranged |
1708 | watchpoints and can watch any access within an arbitrary memory | |
1709 | region. This is useful to watch arrays and structs, for instance. It | |
1710 | takes two hardware watchpoints though. */ | |
e09342b5 | 1711 | if (len > 1 |
926bf92d | 1712 | && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE |
0f83012e | 1713 | && linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE) |
e09342b5 | 1714 | return 2; |
e23b9d6e UW |
1715 | /* Check if the processor provides DAWR interface. */ |
1716 | if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR) | |
1717 | /* DAWR interface allows to watch up to 512 byte wide ranges which | |
1718 | can't cross a 512 byte boundary. */ | |
1719 | region_size = 512; | |
1720 | else | |
1721 | region_size = hwdebug_info.data_bp_alignment; | |
4feebbdd EBM |
1722 | /* Server processors provide one hardware watchpoint and addr+len should |
1723 | fall in the watchable region provided by the ptrace interface. */ | |
e23b9d6e UW |
1724 | if (region_size |
1725 | && (addr + len > (addr & ~(region_size - 1)) + region_size)) | |
0cf6dd15 | 1726 | return 0; |
6ffbb7ab | 1727 | } |
b7622095 | 1728 | /* addr+len must fall in the 8 byte watchable region for DABR-based |
926bf92d UW |
1729 | processors (i.e., server processors). Without the new PowerPC HWDEBUG |
1730 | ptrace interface, DAC-based processors (i.e., embedded processors) will | |
1731 | use addresses aligned to 4-bytes due to the way the read/write flags are | |
6ffbb7ab | 1732 | passed in the old ptrace interface. */ |
0f83012e | 1733 | else if (((linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE) |
6ffbb7ab TJB |
1734 | && (addr + len) > (addr & ~3) + 4) |
1735 | || (addr + len) > (addr & ~7) + 8) | |
e0d24f8d WZ |
1736 | return 0; |
1737 | ||
1738 | return 1; | |
1739 | } | |
1740 | ||
6ffbb7ab | 1741 | /* This function compares two ppc_hw_breakpoint structs field-by-field. */ |
e4166a49 | 1742 | static int |
926bf92d | 1743 | hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b) |
6ffbb7ab | 1744 | { |
ad422571 TJB |
1745 | return (a->trigger_type == b->trigger_type |
1746 | && a->addr_mode == b->addr_mode | |
1747 | && a->condition_mode == b->condition_mode | |
1748 | && a->addr == b->addr | |
1749 | && a->addr2 == b->addr2 | |
6ffbb7ab TJB |
1750 | && a->condition_value == b->condition_value); |
1751 | } | |
1752 | ||
1753 | /* This function can be used to retrieve a thread_points by the TID of the | |
1754 | related process/thread. If nothing has been found, and ALLOC_NEW is 0, | |
1755 | it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the | |
1756 | provided TID will be created and returned. */ | |
1757 | static struct thread_points * | |
926bf92d | 1758 | hwdebug_find_thread_points_by_tid (int tid, int alloc_new) |
6ffbb7ab | 1759 | { |
5da01df5 TT |
1760 | for (thread_points *t : ppc_threads) |
1761 | { | |
1762 | if (t->tid == tid) | |
1763 | return t; | |
1764 | } | |
6ffbb7ab | 1765 | |
5da01df5 | 1766 | struct thread_points *t = NULL; |
6ffbb7ab TJB |
1767 | |
1768 | /* Do we need to allocate a new point_item | |
1769 | if the wanted one does not exist? */ | |
1770 | if (alloc_new) | |
1771 | { | |
8d749320 SM |
1772 | t = XNEW (struct thread_points); |
1773 | t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number); | |
6ffbb7ab | 1774 | t->tid = tid; |
5da01df5 | 1775 | ppc_threads.push_back (t); |
6ffbb7ab TJB |
1776 | } |
1777 | ||
1778 | return t; | |
1779 | } | |
1780 | ||
1781 | /* This function is a generic wrapper that is responsible for inserting a | |
1782 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1783 | kernel) and registering it internally in GDB. */ | |
1784 | static void | |
926bf92d | 1785 | hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1786 | { |
1787 | int i; | |
1788 | long slot; | |
a90ecff8 | 1789 | gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b)); |
6ffbb7ab | 1790 | struct hw_break_tuple *hw_breaks; |
6ffbb7ab | 1791 | struct thread_points *t; |
6ffbb7ab | 1792 | |
6ffbb7ab | 1793 | errno = 0; |
a90ecff8 | 1794 | slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ()); |
6ffbb7ab TJB |
1795 | if (slot < 0) |
1796 | perror_with_name (_("Unexpected error setting breakpoint or watchpoint")); | |
1797 | ||
1798 | /* Everything went fine, so we have to register this *point. */ | |
926bf92d | 1799 | t = hwdebug_find_thread_points_by_tid (tid, 1); |
6ffbb7ab TJB |
1800 | gdb_assert (t != NULL); |
1801 | hw_breaks = t->hw_breaks; | |
1802 | ||
1803 | /* Find a free element in the hw_breaks vector. */ | |
1804 | for (i = 0; i < max_slots_number; i++) | |
5da01df5 TT |
1805 | { |
1806 | if (hw_breaks[i].hw_break == NULL) | |
1807 | { | |
1808 | hw_breaks[i].slot = slot; | |
1809 | hw_breaks[i].hw_break = p.release (); | |
1810 | break; | |
1811 | } | |
1812 | } | |
6ffbb7ab TJB |
1813 | |
1814 | gdb_assert (i != max_slots_number); | |
6ffbb7ab TJB |
1815 | } |
1816 | ||
1817 | /* This function is a generic wrapper that is responsible for removing a | |
1818 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1819 | kernel), and unregistering it internally at GDB. */ | |
1820 | static void | |
926bf92d | 1821 | hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1822 | { |
1823 | int i; | |
1824 | struct hw_break_tuple *hw_breaks; | |
1825 | struct thread_points *t; | |
1826 | ||
926bf92d | 1827 | t = hwdebug_find_thread_points_by_tid (tid, 0); |
6ffbb7ab TJB |
1828 | gdb_assert (t != NULL); |
1829 | hw_breaks = t->hw_breaks; | |
1830 | ||
1831 | for (i = 0; i < max_slots_number; i++) | |
926bf92d | 1832 | if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b)) |
6ffbb7ab TJB |
1833 | break; |
1834 | ||
1835 | gdb_assert (i != max_slots_number); | |
1836 | ||
1837 | /* We have to ignore ENOENT errors because the kernel implements hardware | |
1838 | breakpoints/watchpoints as "one-shot", that is, they are automatically | |
1839 | deleted when hit. */ | |
1840 | errno = 0; | |
1841 | if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0) | |
1842 | if (errno != ENOENT) | |
0df8b418 MS |
1843 | perror_with_name (_("Unexpected error deleting " |
1844 | "breakpoint or watchpoint")); | |
6ffbb7ab TJB |
1845 | |
1846 | xfree (hw_breaks[i].hw_break); | |
1847 | hw_breaks[i].hw_break = NULL; | |
1848 | } | |
9f0bdab8 | 1849 | |
f1310107 TJB |
1850 | /* Return the number of registers needed for a ranged breakpoint. */ |
1851 | ||
f6ac5f3d PA |
1852 | int |
1853 | ppc_linux_nat_target::ranged_break_num_registers () | |
f1310107 | 1854 | { |
926bf92d UW |
1855 | return ((have_ptrace_hwdebug_interface () |
1856 | && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)? | |
f1310107 TJB |
1857 | 2 : -1); |
1858 | } | |
1859 | ||
1860 | /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for | |
1861 | success, 1 if hardware breakpoints are not supported or -1 for failure. */ | |
1862 | ||
f6ac5f3d PA |
1863 | int |
1864 | ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, | |
1865 | struct bp_target_info *bp_tgt) | |
e0d24f8d | 1866 | { |
9f0bdab8 | 1867 | struct lwp_info *lp; |
6ffbb7ab TJB |
1868 | struct ppc_hw_breakpoint p; |
1869 | ||
926bf92d | 1870 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1871 | return -1; |
1872 | ||
ad422571 TJB |
1873 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1874 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 | 1875 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
0d5ed153 | 1876 | p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address); |
6ffbb7ab TJB |
1877 | p.condition_value = 0; |
1878 | ||
f1310107 TJB |
1879 | if (bp_tgt->length) |
1880 | { | |
1881 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1882 | ||
1883 | /* The breakpoint will trigger if the address of the instruction is | |
1884 | within the defined range, as follows: p.addr <= address < p.addr2. */ | |
1885 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1886 | } | |
1887 | else | |
1888 | { | |
1889 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1890 | p.addr2 = 0; | |
1891 | } | |
1892 | ||
4c38200f | 1893 | ALL_LWPS (lp) |
e38504b3 | 1894 | hwdebug_insert_point (&p, lp->ptid.lwp ()); |
6ffbb7ab TJB |
1895 | |
1896 | return 0; | |
1897 | } | |
1898 | ||
f6ac5f3d PA |
1899 | int |
1900 | ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, | |
1901 | struct bp_target_info *bp_tgt) | |
6ffbb7ab | 1902 | { |
6ffbb7ab TJB |
1903 | struct lwp_info *lp; |
1904 | struct ppc_hw_breakpoint p; | |
b7622095 | 1905 | |
926bf92d | 1906 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1907 | return -1; |
1908 | ||
ad422571 TJB |
1909 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1910 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 TJB |
1911 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
1912 | p.addr = (uint64_t) bp_tgt->placed_address; | |
6ffbb7ab TJB |
1913 | p.condition_value = 0; |
1914 | ||
f1310107 TJB |
1915 | if (bp_tgt->length) |
1916 | { | |
1917 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1918 | ||
1919 | /* The breakpoint will trigger if the address of the instruction is within | |
1920 | the defined range, as follows: p.addr <= address < p.addr2. */ | |
1921 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1922 | } | |
1923 | else | |
1924 | { | |
1925 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1926 | p.addr2 = 0; | |
1927 | } | |
1928 | ||
4c38200f | 1929 | ALL_LWPS (lp) |
e38504b3 | 1930 | hwdebug_remove_point (&p, lp->ptid.lwp ()); |
6ffbb7ab TJB |
1931 | |
1932 | return 0; | |
1933 | } | |
1934 | ||
1935 | static int | |
e76460db | 1936 | get_trigger_type (enum target_hw_bp_type type) |
6ffbb7ab TJB |
1937 | { |
1938 | int t; | |
1939 | ||
e76460db | 1940 | if (type == hw_read) |
6ffbb7ab | 1941 | t = PPC_BREAKPOINT_TRIGGER_READ; |
e76460db | 1942 | else if (type == hw_write) |
6ffbb7ab | 1943 | t = PPC_BREAKPOINT_TRIGGER_WRITE; |
b7622095 | 1944 | else |
6ffbb7ab TJB |
1945 | t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; |
1946 | ||
1947 | return t; | |
1948 | } | |
1949 | ||
9c06b0b4 TJB |
1950 | /* Insert a new masked watchpoint at ADDR using the mask MASK. |
1951 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1952 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1953 | an error on failure. */ | |
1954 | ||
f6ac5f3d PA |
1955 | int |
1956 | ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, | |
1957 | target_hw_bp_type rw) | |
9c06b0b4 | 1958 | { |
9c06b0b4 TJB |
1959 | struct lwp_info *lp; |
1960 | struct ppc_hw_breakpoint p; | |
1961 | ||
926bf92d | 1962 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1963 | |
1964 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1965 | p.trigger_type = get_trigger_type (rw); | |
1966 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1967 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1968 | p.addr = addr; | |
1969 | p.addr2 = mask; | |
1970 | p.condition_value = 0; | |
1971 | ||
4c38200f | 1972 | ALL_LWPS (lp) |
e38504b3 | 1973 | hwdebug_insert_point (&p, lp->ptid.lwp ()); |
9c06b0b4 TJB |
1974 | |
1975 | return 0; | |
1976 | } | |
1977 | ||
1978 | /* Remove a masked watchpoint at ADDR with the mask MASK. | |
1979 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1980 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1981 | an error on failure. */ | |
1982 | ||
f6ac5f3d PA |
1983 | int |
1984 | ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, | |
1985 | target_hw_bp_type rw) | |
9c06b0b4 | 1986 | { |
9c06b0b4 TJB |
1987 | struct lwp_info *lp; |
1988 | struct ppc_hw_breakpoint p; | |
1989 | ||
926bf92d | 1990 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1991 | |
1992 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1993 | p.trigger_type = get_trigger_type (rw); | |
1994 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1995 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1996 | p.addr = addr; | |
1997 | p.addr2 = mask; | |
1998 | p.condition_value = 0; | |
1999 | ||
4c38200f | 2000 | ALL_LWPS (lp) |
e38504b3 | 2001 | hwdebug_remove_point (&p, lp->ptid.lwp ()); |
9c06b0b4 TJB |
2002 | |
2003 | return 0; | |
2004 | } | |
2005 | ||
0cf6dd15 TJB |
2006 | /* Check whether we have at least one free DVC register. */ |
2007 | static int | |
2008 | can_use_watchpoint_cond_accel (void) | |
2009 | { | |
2010 | struct thread_points *p; | |
e38504b3 | 2011 | int tid = inferior_ptid.lwp (); |
926bf92d | 2012 | int cnt = hwdebug_info.num_condition_regs, i; |
0cf6dd15 | 2013 | |
926bf92d | 2014 | if (!have_ptrace_hwdebug_interface () || cnt == 0) |
0cf6dd15 TJB |
2015 | return 0; |
2016 | ||
926bf92d | 2017 | p = hwdebug_find_thread_points_by_tid (tid, 0); |
0cf6dd15 TJB |
2018 | |
2019 | if (p) | |
2020 | { | |
2021 | for (i = 0; i < max_slots_number; i++) | |
2022 | if (p->hw_breaks[i].hw_break != NULL | |
2023 | && (p->hw_breaks[i].hw_break->condition_mode | |
2024 | != PPC_BREAKPOINT_CONDITION_NONE)) | |
2025 | cnt--; | |
2026 | ||
2027 | /* There are no available slots now. */ | |
2028 | if (cnt <= 0) | |
2029 | return 0; | |
2030 | } | |
2031 | ||
2032 | return 1; | |
2033 | } | |
2034 | ||
2035 | /* Calculate the enable bits and the contents of the Data Value Compare | |
2036 | debug register present in BookE processors. | |
2037 | ||
2038 | ADDR is the address to be watched, LEN is the length of watched data | |
2039 | and DATA_VALUE is the value which will trigger the watchpoint. | |
2040 | On exit, CONDITION_MODE will hold the enable bits for the DVC, and | |
2041 | CONDITION_VALUE will hold the value which should be put in the | |
2042 | DVC register. */ | |
2043 | static void | |
2044 | calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value, | |
2045 | uint32_t *condition_mode, uint64_t *condition_value) | |
2046 | { | |
2047 | int i, num_byte_enable, align_offset, num_bytes_off_dvc, | |
2048 | rightmost_enabled_byte; | |
2049 | CORE_ADDR addr_end_data, addr_end_dvc; | |
2050 | ||
2051 | /* The DVC register compares bytes within fixed-length windows which | |
2052 | are word-aligned, with length equal to that of the DVC register. | |
2053 | We need to calculate where our watch region is relative to that | |
2054 | window and enable comparison of the bytes which fall within it. */ | |
2055 | ||
926bf92d | 2056 | align_offset = addr % hwdebug_info.sizeof_condition; |
0cf6dd15 TJB |
2057 | addr_end_data = addr + len; |
2058 | addr_end_dvc = (addr - align_offset | |
926bf92d | 2059 | + hwdebug_info.sizeof_condition); |
0cf6dd15 TJB |
2060 | num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? |
2061 | addr_end_data - addr_end_dvc : 0; | |
2062 | num_byte_enable = len - num_bytes_off_dvc; | |
2063 | /* Here, bytes are numbered from right to left. */ | |
2064 | rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? | |
2065 | addr_end_dvc - addr_end_data : 0; | |
2066 | ||
2067 | *condition_mode = PPC_BREAKPOINT_CONDITION_AND; | |
2068 | for (i = 0; i < num_byte_enable; i++) | |
0df8b418 MS |
2069 | *condition_mode |
2070 | |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); | |
0cf6dd15 TJB |
2071 | |
2072 | /* Now we need to match the position within the DVC of the comparison | |
2073 | value with where the watch region is relative to the window | |
2074 | (i.e., the ALIGN_OFFSET). */ | |
2075 | ||
2076 | *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 | |
2077 | << rightmost_enabled_byte * 8); | |
2078 | } | |
2079 | ||
2080 | /* Return the number of memory locations that need to be accessed to | |
2081 | evaluate the expression which generated the given value chain. | |
2082 | Returns -1 if there's any register access involved, or if there are | |
2083 | other kinds of values which are not acceptable in a condition | |
2084 | expression (e.g., lval_computed or lval_internalvar). */ | |
2085 | static int | |
a6535de1 | 2086 | num_memory_accesses (const std::vector<value_ref_ptr> &chain) |
0cf6dd15 TJB |
2087 | { |
2088 | int found_memory_cnt = 0; | |
0cf6dd15 TJB |
2089 | |
2090 | /* The idea here is that evaluating an expression generates a series | |
2091 | of values, one holding the value of every subexpression. (The | |
2092 | expression a*b+c has five subexpressions: a, b, a*b, c, and | |
2093 | a*b+c.) GDB's values hold almost enough information to establish | |
2094 | the criteria given above --- they identify memory lvalues, | |
2095 | register lvalues, computed values, etcetera. So we can evaluate | |
2096 | the expression, and then scan the chain of values that leaves | |
2097 | behind to determine the memory locations involved in the evaluation | |
2098 | of an expression. | |
2099 | ||
2100 | However, I don't think that the values returned by inferior | |
2101 | function calls are special in any way. So this function may not | |
2102 | notice that an expression contains an inferior function call. | |
2103 | FIXME. */ | |
2104 | ||
a6535de1 | 2105 | for (const value_ref_ptr &iter : chain) |
0cf6dd15 | 2106 | { |
a6535de1 TT |
2107 | struct value *v = iter.get (); |
2108 | ||
0cf6dd15 TJB |
2109 | /* Constants and values from the history are fine. */ |
2110 | if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) | |
2111 | continue; | |
2112 | else if (VALUE_LVAL (v) == lval_memory) | |
2113 | { | |
2114 | /* A lazy memory lvalue is one that GDB never needed to fetch; | |
2115 | we either just used its address (e.g., `a' in `a.b') or | |
2116 | we never needed it at all (e.g., `a' in `a,b'). */ | |
2117 | if (!value_lazy (v)) | |
2118 | found_memory_cnt++; | |
2119 | } | |
0df8b418 | 2120 | /* Other kinds of values are not fine. */ |
0cf6dd15 TJB |
2121 | else |
2122 | return -1; | |
2123 | } | |
2124 | ||
2125 | return found_memory_cnt; | |
2126 | } | |
2127 | ||
2128 | /* Verifies whether the expression COND can be implemented using the | |
2129 | DVC (Data Value Compare) register in BookE processors. The expression | |
2130 | must test the watch value for equality with a constant expression. | |
2131 | If the function returns 1, DATA_VALUE will contain the constant against | |
e7db58ea TJB |
2132 | which the watch value should be compared and LEN will contain the size |
2133 | of the constant. */ | |
0cf6dd15 TJB |
2134 | static int |
2135 | check_condition (CORE_ADDR watch_addr, struct expression *cond, | |
e7db58ea | 2136 | CORE_ADDR *data_value, int *len) |
0cf6dd15 TJB |
2137 | { |
2138 | int pc = 1, num_accesses_left, num_accesses_right; | |
a6535de1 TT |
2139 | struct value *left_val, *right_val; |
2140 | std::vector<value_ref_ptr> left_chain, right_chain; | |
0cf6dd15 TJB |
2141 | |
2142 | if (cond->elts[0].opcode != BINOP_EQUAL) | |
2143 | return 0; | |
2144 | ||
3a1115a0 | 2145 | fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0); |
0cf6dd15 TJB |
2146 | num_accesses_left = num_memory_accesses (left_chain); |
2147 | ||
2148 | if (left_val == NULL || num_accesses_left < 0) | |
a6535de1 | 2149 | return 0; |
0cf6dd15 | 2150 | |
3a1115a0 | 2151 | fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0); |
0cf6dd15 TJB |
2152 | num_accesses_right = num_memory_accesses (right_chain); |
2153 | ||
2154 | if (right_val == NULL || num_accesses_right < 0) | |
a6535de1 | 2155 | return 0; |
0cf6dd15 TJB |
2156 | |
2157 | if (num_accesses_left == 1 && num_accesses_right == 0 | |
2158 | && VALUE_LVAL (left_val) == lval_memory | |
2159 | && value_address (left_val) == watch_addr) | |
e7db58ea TJB |
2160 | { |
2161 | *data_value = value_as_long (right_val); | |
2162 | ||
2163 | /* DATA_VALUE is the constant in RIGHT_VAL, but actually has | |
2164 | the same type as the memory region referenced by LEFT_VAL. */ | |
2165 | *len = TYPE_LENGTH (check_typedef (value_type (left_val))); | |
2166 | } | |
0cf6dd15 TJB |
2167 | else if (num_accesses_left == 0 && num_accesses_right == 1 |
2168 | && VALUE_LVAL (right_val) == lval_memory | |
2169 | && value_address (right_val) == watch_addr) | |
e7db58ea TJB |
2170 | { |
2171 | *data_value = value_as_long (left_val); | |
2172 | ||
2173 | /* DATA_VALUE is the constant in LEFT_VAL, but actually has | |
2174 | the same type as the memory region referenced by RIGHT_VAL. */ | |
2175 | *len = TYPE_LENGTH (check_typedef (value_type (right_val))); | |
2176 | } | |
0cf6dd15 | 2177 | else |
a6535de1 | 2178 | return 0; |
0cf6dd15 TJB |
2179 | |
2180 | return 1; | |
2181 | } | |
2182 | ||
2183 | /* Return non-zero if the target is capable of using hardware to evaluate | |
2184 | the condition expression, thus only triggering the watchpoint when it is | |
2185 | true. */ | |
57810aa7 | 2186 | bool |
f6ac5f3d PA |
2187 | ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len, |
2188 | int rw, | |
2189 | struct expression *cond) | |
0cf6dd15 TJB |
2190 | { |
2191 | CORE_ADDR data_value; | |
2192 | ||
926bf92d UW |
2193 | return (have_ptrace_hwdebug_interface () |
2194 | && hwdebug_info.num_condition_regs > 0 | |
e7db58ea | 2195 | && check_condition (addr, cond, &data_value, &len)); |
0cf6dd15 TJB |
2196 | } |
2197 | ||
e09342b5 TJB |
2198 | /* Set up P with the parameters necessary to request a watchpoint covering |
2199 | LEN bytes starting at ADDR and if possible with condition expression COND | |
2200 | evaluated by hardware. INSERT tells if we are creating a request for | |
2201 | inserting or removing the watchpoint. */ | |
2202 | ||
2203 | static void | |
2204 | create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr, | |
e76460db PA |
2205 | int len, enum target_hw_bp_type type, |
2206 | struct expression *cond, int insert) | |
e09342b5 | 2207 | { |
f16c4e8b | 2208 | if (len == 1 |
926bf92d | 2209 | || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) |
e09342b5 TJB |
2210 | { |
2211 | int use_condition; | |
2212 | CORE_ADDR data_value; | |
2213 | ||
2214 | use_condition = (insert? can_use_watchpoint_cond_accel () | |
926bf92d | 2215 | : hwdebug_info.num_condition_regs > 0); |
e7db58ea TJB |
2216 | if (cond && use_condition && check_condition (addr, cond, |
2217 | &data_value, &len)) | |
e09342b5 TJB |
2218 | calculate_dvc (addr, len, data_value, &p->condition_mode, |
2219 | &p->condition_value); | |
2220 | else | |
2221 | { | |
2222 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2223 | p->condition_value = 0; | |
2224 | } | |
2225 | ||
2226 | p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
2227 | p->addr2 = 0; | |
2228 | } | |
2229 | else | |
2230 | { | |
2231 | p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
2232 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2233 | p->condition_value = 0; | |
2234 | ||
2235 | /* The watchpoint will trigger if the address of the memory access is | |
2236 | within the defined range, as follows: p->addr <= address < p->addr2. | |
2237 | ||
2238 | Note that the above sentence just documents how ptrace interprets | |
2239 | its arguments; the watchpoint is set to watch the range defined by | |
2240 | the user _inclusively_, as specified by the user interface. */ | |
2241 | p->addr2 = (uint64_t) addr + len; | |
2242 | } | |
2243 | ||
2244 | p->version = PPC_DEBUG_CURRENT_VERSION; | |
e76460db | 2245 | p->trigger_type = get_trigger_type (type); |
e09342b5 TJB |
2246 | p->addr = (uint64_t) addr; |
2247 | } | |
2248 | ||
f6ac5f3d PA |
2249 | int |
2250 | ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, | |
2251 | enum target_hw_bp_type type, | |
2252 | struct expression *cond) | |
6ffbb7ab TJB |
2253 | { |
2254 | struct lwp_info *lp; | |
6ffbb7ab TJB |
2255 | int ret = -1; |
2256 | ||
926bf92d | 2257 | if (have_ptrace_hwdebug_interface ()) |
e0d24f8d | 2258 | { |
6ffbb7ab TJB |
2259 | struct ppc_hw_breakpoint p; |
2260 | ||
e76460db | 2261 | create_watchpoint_request (&p, addr, len, type, cond, 1); |
6ffbb7ab | 2262 | |
4c38200f | 2263 | ALL_LWPS (lp) |
e38504b3 | 2264 | hwdebug_insert_point (&p, lp->ptid.lwp ()); |
6ffbb7ab TJB |
2265 | |
2266 | ret = 0; | |
e0d24f8d | 2267 | } |
6ffbb7ab TJB |
2268 | else |
2269 | { | |
2270 | long dabr_value; | |
2271 | long read_mode, write_mode; | |
e0d24f8d | 2272 | |
0f83012e | 2273 | if (linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE) |
6ffbb7ab TJB |
2274 | { |
2275 | /* PowerPC 440 requires only the read/write flags to be passed | |
2276 | to the kernel. */ | |
ad422571 | 2277 | read_mode = 1; |
6ffbb7ab TJB |
2278 | write_mode = 2; |
2279 | } | |
2280 | else | |
2281 | { | |
2282 | /* PowerPC 970 and other DABR-based processors are required to pass | |
2283 | the Breakpoint Translation bit together with the flags. */ | |
ad422571 | 2284 | read_mode = 5; |
6ffbb7ab TJB |
2285 | write_mode = 6; |
2286 | } | |
1c86e440 | 2287 | |
6ffbb7ab | 2288 | dabr_value = addr & ~(read_mode | write_mode); |
e76460db | 2289 | switch (type) |
6ffbb7ab TJB |
2290 | { |
2291 | case hw_read: | |
2292 | /* Set read and translate bits. */ | |
2293 | dabr_value |= read_mode; | |
2294 | break; | |
2295 | case hw_write: | |
2296 | /* Set write and translate bits. */ | |
2297 | dabr_value |= write_mode; | |
2298 | break; | |
2299 | case hw_access: | |
2300 | /* Set read, write and translate bits. */ | |
2301 | dabr_value |= read_mode | write_mode; | |
2302 | break; | |
2303 | } | |
1c86e440 | 2304 | |
6ffbb7ab TJB |
2305 | saved_dabr_value = dabr_value; |
2306 | ||
4c38200f | 2307 | ALL_LWPS (lp) |
e38504b3 | 2308 | if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, |
0cf6dd15 | 2309 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2310 | return -1; |
2311 | ||
2312 | ret = 0; | |
2313 | } | |
2314 | ||
2315 | return ret; | |
e0d24f8d WZ |
2316 | } |
2317 | ||
f6ac5f3d PA |
2318 | int |
2319 | ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len, | |
2320 | enum target_hw_bp_type type, | |
2321 | struct expression *cond) | |
e0d24f8d | 2322 | { |
9f0bdab8 | 2323 | struct lwp_info *lp; |
6ffbb7ab | 2324 | int ret = -1; |
9f0bdab8 | 2325 | |
926bf92d | 2326 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2327 | { |
2328 | struct ppc_hw_breakpoint p; | |
2329 | ||
e76460db | 2330 | create_watchpoint_request (&p, addr, len, type, cond, 0); |
6ffbb7ab | 2331 | |
4c38200f | 2332 | ALL_LWPS (lp) |
e38504b3 | 2333 | hwdebug_remove_point (&p, lp->ptid.lwp ()); |
6ffbb7ab TJB |
2334 | |
2335 | ret = 0; | |
2336 | } | |
2337 | else | |
2338 | { | |
2339 | saved_dabr_value = 0; | |
4c38200f | 2340 | ALL_LWPS (lp) |
e38504b3 | 2341 | if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, |
0cf6dd15 | 2342 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2343 | return -1; |
2344 | ||
2345 | ret = 0; | |
2346 | } | |
2347 | ||
2348 | return ret; | |
e0d24f8d WZ |
2349 | } |
2350 | ||
135340af PA |
2351 | void |
2352 | ppc_linux_nat_target::low_new_thread (struct lwp_info *lp) | |
e0d24f8d | 2353 | { |
e38504b3 | 2354 | int tid = lp->ptid.lwp (); |
6ffbb7ab | 2355 | |
926bf92d | 2356 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2357 | { |
2358 | int i; | |
2359 | struct thread_points *p; | |
2360 | struct hw_break_tuple *hw_breaks; | |
2361 | ||
5da01df5 | 2362 | if (ppc_threads.empty ()) |
6ffbb7ab TJB |
2363 | return; |
2364 | ||
0df8b418 | 2365 | /* Get a list of breakpoints from any thread. */ |
5da01df5 | 2366 | p = ppc_threads.back (); |
6ffbb7ab TJB |
2367 | hw_breaks = p->hw_breaks; |
2368 | ||
0df8b418 | 2369 | /* Copy that thread's breakpoints and watchpoints to the new thread. */ |
6ffbb7ab TJB |
2370 | for (i = 0; i < max_slots_number; i++) |
2371 | if (hw_breaks[i].hw_break) | |
aacbb8a5 LM |
2372 | { |
2373 | /* Older kernels did not make new threads inherit their parent | |
2374 | thread's debug state, so we always clear the slot and replicate | |
2375 | the debug state ourselves, ensuring compatibility with all | |
2376 | kernels. */ | |
2377 | ||
2378 | /* The ppc debug resource accounting is done through "slots". | |
2379 | Ask the kernel the deallocate this specific *point's slot. */ | |
2380 | ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot); | |
2381 | ||
926bf92d | 2382 | hwdebug_insert_point (hw_breaks[i].hw_break, tid); |
aacbb8a5 | 2383 | } |
6ffbb7ab TJB |
2384 | } |
2385 | else | |
2386 | ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value); | |
2387 | } | |
2388 | ||
2389 | static void | |
2390 | ppc_linux_thread_exit (struct thread_info *tp, int silent) | |
2391 | { | |
2392 | int i; | |
e38504b3 | 2393 | int tid = tp->ptid.lwp (); |
6ffbb7ab | 2394 | struct hw_break_tuple *hw_breaks; |
5da01df5 | 2395 | struct thread_points *t = NULL; |
6ffbb7ab | 2396 | |
926bf92d | 2397 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2398 | return; |
2399 | ||
5da01df5 TT |
2400 | for (i = 0; i < ppc_threads.size (); i++) |
2401 | { | |
2402 | if (ppc_threads[i]->tid == tid) | |
2403 | { | |
2404 | t = ppc_threads[i]; | |
2405 | break; | |
2406 | } | |
2407 | } | |
6ffbb7ab TJB |
2408 | |
2409 | if (t == NULL) | |
2410 | return; | |
2411 | ||
5da01df5 | 2412 | unordered_remove (ppc_threads, i); |
6ffbb7ab TJB |
2413 | |
2414 | hw_breaks = t->hw_breaks; | |
2415 | ||
2416 | for (i = 0; i < max_slots_number; i++) | |
2417 | if (hw_breaks[i].hw_break) | |
2418 | xfree (hw_breaks[i].hw_break); | |
2419 | ||
2420 | xfree (t->hw_breaks); | |
2421 | xfree (t); | |
e0d24f8d WZ |
2422 | } |
2423 | ||
57810aa7 | 2424 | bool |
f6ac5f3d | 2425 | ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) |
e0d24f8d | 2426 | { |
f865ee35 | 2427 | siginfo_t siginfo; |
e0d24f8d | 2428 | |
f865ee35 | 2429 | if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) |
57810aa7 | 2430 | return false; |
e0d24f8d | 2431 | |
f865ee35 JK |
2432 | if (siginfo.si_signo != SIGTRAP |
2433 | || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) | |
57810aa7 | 2434 | return false; |
e0d24f8d | 2435 | |
926bf92d | 2436 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2437 | { |
2438 | int i; | |
2439 | struct thread_points *t; | |
2440 | struct hw_break_tuple *hw_breaks; | |
2441 | /* The index (or slot) of the *point is passed in the si_errno field. */ | |
f865ee35 | 2442 | int slot = siginfo.si_errno; |
6ffbb7ab | 2443 | |
e38504b3 | 2444 | t = hwdebug_find_thread_points_by_tid (inferior_ptid.lwp (), 0); |
6ffbb7ab TJB |
2445 | |
2446 | /* Find out if this *point is a hardware breakpoint. | |
2447 | If so, we should return 0. */ | |
2448 | if (t) | |
2449 | { | |
2450 | hw_breaks = t->hw_breaks; | |
2451 | for (i = 0; i < max_slots_number; i++) | |
2452 | if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot | |
2453 | && hw_breaks[i].hw_break->trigger_type | |
2454 | == PPC_BREAKPOINT_TRIGGER_EXECUTE) | |
57810aa7 | 2455 | return false; |
6ffbb7ab TJB |
2456 | } |
2457 | } | |
2458 | ||
f865ee35 | 2459 | *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; |
57810aa7 | 2460 | return true; |
e0d24f8d WZ |
2461 | } |
2462 | ||
57810aa7 | 2463 | bool |
f6ac5f3d | 2464 | ppc_linux_nat_target::stopped_by_watchpoint () |
9f0bdab8 DJ |
2465 | { |
2466 | CORE_ADDR addr; | |
f6ac5f3d | 2467 | return stopped_data_address (&addr); |
9f0bdab8 DJ |
2468 | } |
2469 | ||
57810aa7 | 2470 | bool |
f6ac5f3d PA |
2471 | ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, |
2472 | CORE_ADDR start, | |
2473 | int length) | |
5009afc5 | 2474 | { |
b7622095 LM |
2475 | int mask; |
2476 | ||
926bf92d | 2477 | if (have_ptrace_hwdebug_interface () |
0f83012e | 2478 | && linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE) |
6ffbb7ab | 2479 | return start <= addr && start + length >= addr; |
0f83012e | 2480 | else if (linux_get_hwcap (current_top_target ()) & PPC_FEATURE_BOOKE) |
b7622095 LM |
2481 | mask = 3; |
2482 | else | |
2483 | mask = 7; | |
2484 | ||
2485 | addr &= ~mask; | |
2486 | ||
0df8b418 | 2487 | /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ |
b7622095 | 2488 | return start <= addr + mask && start + length - 1 >= addr; |
5009afc5 AS |
2489 | } |
2490 | ||
9c06b0b4 TJB |
2491 | /* Return the number of registers needed for a masked hardware watchpoint. */ |
2492 | ||
f6ac5f3d PA |
2493 | int |
2494 | ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) | |
9c06b0b4 | 2495 | { |
926bf92d UW |
2496 | if (!have_ptrace_hwdebug_interface () |
2497 | || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) | |
9c06b0b4 TJB |
2498 | return -1; |
2499 | else if ((mask & 0xC0000000) != 0xC0000000) | |
2500 | { | |
2501 | warning (_("The given mask covers kernel address space " | |
2502 | "and cannot be used.\n")); | |
2503 | ||
2504 | return -2; | |
2505 | } | |
2506 | else | |
2507 | return 2; | |
2508 | } | |
2509 | ||
f6ac5f3d PA |
2510 | void |
2511 | ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno) | |
45229ea4 | 2512 | { |
222312d3 | 2513 | pid_t tid = get_ptrace_pid (regcache->ptid ()); |
05f13b9c | 2514 | |
45229ea4 | 2515 | if (regno >= 0) |
56be3814 | 2516 | store_register (regcache, tid, regno); |
45229ea4 | 2517 | else |
56be3814 | 2518 | store_ppc_registers (regcache, tid); |
45229ea4 EZ |
2519 | } |
2520 | ||
f2db237a AM |
2521 | /* Functions for transferring registers between a gregset_t or fpregset_t |
2522 | (see sys/ucontext.h) and gdb's regcache. The word size is that used | |
0df8b418 | 2523 | by the ptrace interface, not the current program's ABI. Eg. if a |
f2db237a AM |
2524 | powerpc64-linux gdb is being used to debug a powerpc32-linux app, we |
2525 | read or write 64-bit gregsets. This is to suit the host libthread_db. */ | |
2526 | ||
50c9bd31 | 2527 | void |
7f7fe91e | 2528 | supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) |
c877c8e6 | 2529 | { |
f2db237a | 2530 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2531 | |
f2db237a | 2532 | ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); |
c877c8e6 KB |
2533 | } |
2534 | ||
fdb28ac4 | 2535 | void |
7f7fe91e UW |
2536 | fill_gregset (const struct regcache *regcache, |
2537 | gdb_gregset_t *gregsetp, int regno) | |
fdb28ac4 | 2538 | { |
f2db237a | 2539 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2540 | |
f2db237a AM |
2541 | if (regno == -1) |
2542 | memset (gregsetp, 0, sizeof (*gregsetp)); | |
2543 | ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); | |
fdb28ac4 KB |
2544 | } |
2545 | ||
50c9bd31 | 2546 | void |
7f7fe91e | 2547 | supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) |
c877c8e6 | 2548 | { |
f2db237a AM |
2549 | const struct regset *regset = ppc_linux_fpregset (); |
2550 | ||
2551 | ppc_supply_fpregset (regset, regcache, -1, | |
2552 | fpregsetp, sizeof (*fpregsetp)); | |
c877c8e6 | 2553 | } |
fdb28ac4 | 2554 | |
fdb28ac4 | 2555 | void |
7f7fe91e UW |
2556 | fill_fpregset (const struct regcache *regcache, |
2557 | gdb_fpregset_t *fpregsetp, int regno) | |
fdb28ac4 | 2558 | { |
f2db237a AM |
2559 | const struct regset *regset = ppc_linux_fpregset (); |
2560 | ||
2561 | ppc_collect_fpregset (regset, regcache, regno, | |
2562 | fpregsetp, sizeof (*fpregsetp)); | |
fdb28ac4 | 2563 | } |
10d6c8cd | 2564 | |
2e077f5e PFC |
2565 | int |
2566 | ppc_linux_nat_target::auxv_parse (gdb_byte **readptr, | |
2567 | gdb_byte *endptr, CORE_ADDR *typep, | |
2568 | CORE_ADDR *valp) | |
409c383c | 2569 | { |
e38504b3 | 2570 | int tid = inferior_ptid.lwp (); |
409c383c | 2571 | if (tid == 0) |
e99b03dc | 2572 | tid = inferior_ptid.pid (); |
409c383c | 2573 | |
2e077f5e | 2574 | int sizeof_auxv_field = ppc_linux_target_wordsize (tid); |
409c383c | 2575 | |
f5656ead | 2576 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
409c383c UW |
2577 | gdb_byte *ptr = *readptr; |
2578 | ||
2579 | if (endptr == ptr) | |
2580 | return 0; | |
2581 | ||
2582 | if (endptr - ptr < sizeof_auxv_field * 2) | |
2583 | return -1; | |
2584 | ||
e17a4113 | 2585 | *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c | 2586 | ptr += sizeof_auxv_field; |
e17a4113 | 2587 | *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c UW |
2588 | ptr += sizeof_auxv_field; |
2589 | ||
2590 | *readptr = ptr; | |
2591 | return 1; | |
2592 | } | |
2593 | ||
f6ac5f3d PA |
2594 | const struct target_desc * |
2595 | ppc_linux_nat_target::read_description () | |
310a98e1 | 2596 | { |
e38504b3 | 2597 | int tid = inferior_ptid.lwp (); |
7284e1be | 2598 | if (tid == 0) |
e99b03dc | 2599 | tid = inferior_ptid.pid (); |
7284e1be | 2600 | |
310a98e1 DJ |
2601 | if (have_ptrace_getsetevrregs) |
2602 | { | |
2603 | struct gdb_evrregset_t evrregset; | |
310a98e1 DJ |
2604 | |
2605 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) | |
7284e1be UW |
2606 | return tdesc_powerpc_e500l; |
2607 | ||
2608 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported. | |
2609 | Anything else needs to be reported. */ | |
2610 | else if (errno != EIO) | |
2611 | perror_with_name (_("Unable to fetch SPE registers")); | |
2612 | } | |
2613 | ||
bd64614e PFC |
2614 | struct ppc_linux_features features = ppc_linux_no_features; |
2615 | ||
2e077f5e | 2616 | features.wordsize = ppc_linux_target_wordsize (tid); |
bd64614e | 2617 | |
0f83012e AH |
2618 | CORE_ADDR hwcap = linux_get_hwcap (current_top_target ()); |
2619 | CORE_ADDR hwcap2 = linux_get_hwcap2 (current_top_target ()); | |
bd64614e | 2620 | |
0154d990 | 2621 | if (have_ptrace_getsetvsxregs |
bd64614e | 2622 | && (hwcap & PPC_FEATURE_HAS_VSX)) |
604c2f83 LM |
2623 | { |
2624 | gdb_vsxregset_t vsxregset; | |
2625 | ||
2626 | if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) | |
bd64614e | 2627 | features.vsx = true; |
604c2f83 LM |
2628 | |
2629 | /* EIO means that the PTRACE_GETVSXREGS request isn't supported. | |
2630 | Anything else needs to be reported. */ | |
2631 | else if (errno != EIO) | |
2632 | perror_with_name (_("Unable to fetch VSX registers")); | |
2633 | } | |
2634 | ||
0154d990 | 2635 | if (have_ptrace_getvrregs |
bd64614e | 2636 | && (hwcap & PPC_FEATURE_HAS_ALTIVEC)) |
7284e1be UW |
2637 | { |
2638 | gdb_vrregset_t vrregset; | |
2639 | ||
2640 | if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) | |
bd64614e | 2641 | features.altivec = true; |
7284e1be UW |
2642 | |
2643 | /* EIO means that the PTRACE_GETVRREGS request isn't supported. | |
2644 | Anything else needs to be reported. */ | |
2645 | else if (errno != EIO) | |
2646 | perror_with_name (_("Unable to fetch AltiVec registers")); | |
310a98e1 DJ |
2647 | } |
2648 | ||
bd64614e | 2649 | features.isa205 = ppc_linux_has_isa205 (hwcap); |
604c2f83 | 2650 | |
7ca18ed6 EBM |
2651 | if ((hwcap2 & PPC_FEATURE2_DSCR) |
2652 | && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET) | |
2653 | && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET)) | |
f2cf6173 EBM |
2654 | { |
2655 | features.ppr_dscr = true; | |
2656 | if ((hwcap2 & PPC_FEATURE2_ARCH_2_07) | |
2657 | && (hwcap2 & PPC_FEATURE2_TAR) | |
232bfb86 EBM |
2658 | && (hwcap2 & PPC_FEATURE2_EBB) |
2659 | && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET) | |
2660 | && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET) | |
2661 | && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET)) | |
8d619c01 EBM |
2662 | { |
2663 | features.isa207 = true; | |
2664 | if ((hwcap2 & PPC_FEATURE2_HTM) | |
2665 | && check_regset (tid, NT_PPC_TM_SPR, | |
2666 | PPC_LINUX_SIZEOF_TM_SPRREGSET)) | |
2667 | features.htm = true; | |
2668 | } | |
f2cf6173 | 2669 | } |
7ca18ed6 | 2670 | |
bd64614e | 2671 | return ppc_linux_match_description (features); |
310a98e1 DJ |
2672 | } |
2673 | ||
10d6c8cd DJ |
2674 | void |
2675 | _initialize_ppc_linux_nat (void) | |
2676 | { | |
f6ac5f3d | 2677 | linux_target = &the_ppc_linux_nat_target; |
310a98e1 | 2678 | |
76727919 | 2679 | gdb::observers::thread_exit.attach (ppc_linux_thread_exit); |
6ffbb7ab | 2680 | |
10d6c8cd | 2681 | /* Register the target. */ |
d9f719f1 | 2682 | add_inf_child_target (linux_target); |
10d6c8cd | 2683 | } |