Remove some cleanups from probe.c
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
61baf725 3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
6ffbb7ab 21#include "observer.h"
c877c8e6
KB
22#include "frame.h"
23#include "inferior.h"
6ffbb7ab 24#include "gdbthread.h"
c877c8e6 25#include "gdbcore.h"
4e052eda 26#include "regcache.h"
10d6c8cd
DJ
27#include "target.h"
28#include "linux-nat.h"
c877c8e6 29#include <sys/types.h>
c877c8e6
KB
30#include <signal.h>
31#include <sys/user.h>
32#include <sys/ioctl.h>
2555fe1a 33#include "gdb_wait.h"
c877c8e6
KB
34#include <fcntl.h>
35#include <sys/procfs.h>
5826e159 36#include "nat/gdb_ptrace.h"
bcc0c096 37#include "inf-ptrace.h"
c877c8e6 38
0df8b418 39/* Prototypes for supply_gregset etc. */
c60c0f5f 40#include "gregset.h"
16333c4f 41#include "ppc-tdep.h"
7284e1be
UW
42#include "ppc-linux-tdep.h"
43
b7622095
LM
44/* Required when using the AUXV. */
45#include "elf/common.h"
46#include "auxv.h"
47
514c5338 48#include "nat/ppc-linux.h"
01904826 49
6ffbb7ab 50/* Similarly for the hardware watchpoint support. These requests are used
926bf92d 51 when the PowerPC HWDEBUG ptrace interface is not available. */
e0d24f8d
WZ
52#ifndef PTRACE_GET_DEBUGREG
53#define PTRACE_GET_DEBUGREG 25
54#endif
55#ifndef PTRACE_SET_DEBUGREG
56#define PTRACE_SET_DEBUGREG 26
57#endif
58#ifndef PTRACE_GETSIGINFO
59#define PTRACE_GETSIGINFO 0x4202
60#endif
01904826 61
926bf92d
UW
62/* These requests are used when the PowerPC HWDEBUG ptrace interface is
63 available. It exposes the debug facilities of PowerPC processors, as well
64 as additional features of BookE processors, such as ranged breakpoints and
65 watchpoints and hardware-accelerated condition evaluation. */
6ffbb7ab
TJB
66#ifndef PPC_PTRACE_GETHWDBGINFO
67
926bf92d
UW
68/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
69 ptrace interface is not present in ptrace.h, so we'll have to pretty much
70 include it all here so that the code at least compiles on older systems. */
6ffbb7ab
TJB
71#define PPC_PTRACE_GETHWDBGINFO 0x89
72#define PPC_PTRACE_SETHWDEBUG 0x88
73#define PPC_PTRACE_DELHWDEBUG 0x87
74
75struct ppc_debug_info
76{
0df8b418 77 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
78 uint32_t num_instruction_bps;
79 uint32_t num_data_bps;
80 uint32_t num_condition_regs;
81 uint32_t data_bp_alignment;
0df8b418 82 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
83 uint64_t features;
84};
85
86/* Features will have bits indicating whether there is support for: */
87#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
88#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
89#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
90#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
91
92struct ppc_hw_breakpoint
93{
94 uint32_t version; /* currently, version must be 1 */
95 uint32_t trigger_type; /* only some combinations allowed */
96 uint32_t addr_mode; /* address match mode */
97 uint32_t condition_mode; /* break/watchpoint condition flags */
98 uint64_t addr; /* break/watchpoint address */
99 uint64_t addr2; /* range end or mask */
100 uint64_t condition_value; /* contents of the DVC register */
101};
102
103/* Trigger type. */
104#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
105#define PPC_BREAKPOINT_TRIGGER_READ 0x2
106#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
107#define PPC_BREAKPOINT_TRIGGER_RW 0x6
108
109/* Address mode. */
110#define PPC_BREAKPOINT_MODE_EXACT 0x0
111#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
112#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
113#define PPC_BREAKPOINT_MODE_MASK 0x3
114
115/* Condition mode. */
116#define PPC_BREAKPOINT_CONDITION_NONE 0x0
117#define PPC_BREAKPOINT_CONDITION_AND 0x1
118#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
119#define PPC_BREAKPOINT_CONDITION_OR 0x2
120#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
121#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
122#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
123#define PPC_BREAKPOINT_CONDITION_BE(n) \
124 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
125#endif /* PPC_PTRACE_GETHWDBGINFO */
126
e23b9d6e
UW
127/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
128 watchpoint (up to 512 bytes). */
129#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
130#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
131#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
6ffbb7ab 132
1dfe79e8
SDJ
133/* Similarly for the general-purpose (gp0 -- gp31)
134 and floating-point registers (fp0 -- fp31). */
135#ifndef PTRACE_GETREGS
136#define PTRACE_GETREGS 12
137#endif
138#ifndef PTRACE_SETREGS
139#define PTRACE_SETREGS 13
140#endif
141#ifndef PTRACE_GETFPREGS
142#define PTRACE_GETFPREGS 14
143#endif
144#ifndef PTRACE_SETFPREGS
145#define PTRACE_SETFPREGS 15
146#endif
147
9abe5450
EZ
148/* This oddity is because the Linux kernel defines elf_vrregset_t as
149 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
150 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
151 the vrsave as an extra 4 bytes at the end. I opted for creating a
152 flat array of chars, so that it is easier to manipulate for gdb.
153
154 There are 32 vector registers 16 bytes longs, plus a VSCR register
155 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 156 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
157 Appended to this there is space for the VRSAVE register: 4 bytes.
158 Even though this vrsave register is not included in the regset
159 typedef, it is handled by the ptrace requests.
160
161 Note that GNU/Linux doesn't support little endian PPC hardware,
162 therefore the offset at which the real value of the VSCR register
163 is located will be always 12 bytes.
164
165 The layout is like this (where x is the actual value of the vscr reg): */
166
167/* *INDENT-OFF* */
168/*
169 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
170 <-------> <-------><-------><->
171 VR0 VR31 VSCR VRSAVE
172*/
173/* *INDENT-ON* */
174
175#define SIZEOF_VRREGS 33*16+4
176
177typedef char gdb_vrregset_t[SIZEOF_VRREGS];
178
604c2f83
LM
179/* This is the layout of the POWER7 VSX registers and the way they overlap
180 with the existing FPR and VMX registers.
181
182 VSR doubleword 0 VSR doubleword 1
183 ----------------------------------------------------------------
184 VSR[0] | FPR[0] | |
185 ----------------------------------------------------------------
186 VSR[1] | FPR[1] | |
187 ----------------------------------------------------------------
188 | ... | |
189 | ... | |
190 ----------------------------------------------------------------
191 VSR[30] | FPR[30] | |
192 ----------------------------------------------------------------
193 VSR[31] | FPR[31] | |
194 ----------------------------------------------------------------
195 VSR[32] | VR[0] |
196 ----------------------------------------------------------------
197 VSR[33] | VR[1] |
198 ----------------------------------------------------------------
199 | ... |
200 | ... |
201 ----------------------------------------------------------------
202 VSR[62] | VR[30] |
203 ----------------------------------------------------------------
204 VSR[63] | VR[31] |
205 ----------------------------------------------------------------
206
207 VSX has 64 128bit registers. The first 32 registers overlap with
208 the FP registers (doubleword 0) and hence extend them with additional
209 64 bits (doubleword 1). The other 32 regs overlap with the VMX
210 registers. */
211#define SIZEOF_VSXREGS 32*8
212
213typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826 214
b021a221 215/* On PPC processors that support the Signal Processing Extension
01904826 216 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
217 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
218 ptrace calls only access the lower half of each register, to allow
219 them to behave the same way they do on non-SPE systems. There's a
220 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
221 read and write the top halves of all the general-purpose registers
222 at once, along with some SPE-specific registers.
01904826
JB
223
224 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 225 bits long. It has unnamed raw registers that hold the upper halves
b021a221 226 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
227 'ev0' -- 'ev31', are pseudo-registers that splice the top and
228 bottom halves together.
01904826
JB
229
230 This is the structure filled in by PTRACE_GETEVRREGS and written to
231 the inferior's registers by PTRACE_SETEVRREGS. */
232struct gdb_evrregset_t
233{
234 unsigned long evr[32];
235 unsigned long long acc;
236 unsigned long spefscr;
237};
238
604c2f83
LM
239/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
240 PTRACE_SETVSXREGS requests, for reading and writing the VSX
241 POWER7 registers 0 through 31. Zero if we've tried one of them and
242 gotten an error. Note that VSX registers 32 through 63 overlap
243 with VR registers 0 through 31. */
244int have_ptrace_getsetvsxregs = 1;
01904826
JB
245
246/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
247 PTRACE_SETVRREGS requests, for reading and writing the Altivec
248 registers. Zero if we've tried one of them and gotten an
249 error. */
9abe5450
EZ
250int have_ptrace_getvrregs = 1;
251
01904826
JB
252/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
253 PTRACE_SETEVRREGS requests, for reading and writing the SPE
254 registers. Zero if we've tried one of them and gotten an
255 error. */
256int have_ptrace_getsetevrregs = 1;
257
1dfe79e8
SDJ
258/* Non-zero if our kernel may support the PTRACE_GETREGS and
259 PTRACE_SETREGS requests, for reading and writing the
260 general-purpose registers. Zero if we've tried one of
261 them and gotten an error. */
262int have_ptrace_getsetregs = 1;
263
264/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
265 PTRACE_SETFPREGS requests, for reading and writing the
266 floating-pointers registers. Zero if we've tried one of
267 them and gotten an error. */
268int have_ptrace_getsetfpregs = 1;
269
16333c4f
EZ
270/* *INDENT-OFF* */
271/* registers layout, as presented by the ptrace interface:
272PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
273PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
274PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
275PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
276PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
277PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
278PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
279PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
280PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
281PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
282PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
283PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
284PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
285/* *INDENT_ON * */
c877c8e6 286
45229ea4 287static int
e101270f 288ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 289{
16333c4f 290 int u_addr = -1;
e101270f 291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
292 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
293 interface, and not the wordsize of the program's ABI. */
411cb3f9 294 int wordsize = sizeof (long);
16333c4f 295
0df8b418 296 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
297 if (regno >= tdep->ppc_gp0_regnum
298 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 299 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 300
49ff75ad
JB
301 /* Floating point regs: eight bytes each in both 32- and 64-bit
302 ptrace interfaces. Thus, two slots each in 32-bit interface, one
303 slot each in 64-bit interface. */
383f0f5b
JB
304 if (tdep->ppc_fp0_regnum >= 0
305 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
306 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
307 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 308
0df8b418 309 /* UISA special purpose registers: 1 slot each. */
e101270f 310 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 311 u_addr = PT_NIP * wordsize;
dc5cfeb6 312 if (regno == tdep->ppc_lr_regnum)
49ff75ad 313 u_addr = PT_LNK * wordsize;
dc5cfeb6 314 if (regno == tdep->ppc_cr_regnum)
49ff75ad 315 u_addr = PT_CCR * wordsize;
dc5cfeb6 316 if (regno == tdep->ppc_xer_regnum)
49ff75ad 317 u_addr = PT_XER * wordsize;
dc5cfeb6 318 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 319 u_addr = PT_CTR * wordsize;
f8c59253 320#ifdef PT_MQ
dc5cfeb6 321 if (regno == tdep->ppc_mq_regnum)
49ff75ad 322 u_addr = PT_MQ * wordsize;
f8c59253 323#endif
dc5cfeb6 324 if (regno == tdep->ppc_ps_regnum)
49ff75ad 325 u_addr = PT_MSR * wordsize;
7284e1be
UW
326 if (regno == PPC_ORIG_R3_REGNUM)
327 u_addr = PT_ORIG_R3 * wordsize;
328 if (regno == PPC_TRAP_REGNUM)
329 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
330 if (tdep->ppc_fpscr_regnum >= 0
331 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
332 {
333 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
334 kernel headers incorrectly contained the 32-bit definition of
335 PT_FPSCR. For the 32-bit definition, floating-point
336 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 337 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
338 the FPSCR instead occupies the full 64-bit 2-word-slot and
339 hence no adjustment is necessary. Hack around this. */
340 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
341 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
342 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
343 slot and not just its second word. The PT_FPSCR supplied when
344 GDB is compiled as a 32-bit app doesn't reflect this. */
345 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
346 && PT_FPSCR == (48 + 2*32 + 1))
347 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
348 else
349 u_addr = PT_FPSCR * wordsize;
350 }
16333c4f 351 return u_addr;
c877c8e6
KB
352}
353
604c2f83
LM
354/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
355 registers set mechanism, as opposed to the interface for all the
356 other registers, that stores/fetches each register individually. */
357static void
358fetch_vsx_register (struct regcache *regcache, int tid, int regno)
359{
360 int ret;
361 gdb_vsxregset_t regs;
362 struct gdbarch *gdbarch = get_regcache_arch (regcache);
363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
364 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
365
366 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
367 if (ret < 0)
368 {
369 if (errno == EIO)
370 {
371 have_ptrace_getsetvsxregs = 0;
372 return;
373 }
374 perror_with_name (_("Unable to fetch VSX register"));
375 }
376
377 regcache_raw_supply (regcache, regno,
378 regs + (regno - tdep->ppc_vsr0_upper_regnum)
379 * vsxregsize);
380}
381
9abe5450
EZ
382/* The Linux kernel ptrace interface for AltiVec registers uses the
383 registers set mechanism, as opposed to the interface for all the
384 other registers, that stores/fetches each register individually. */
385static void
56be3814 386fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
387{
388 int ret;
389 int offset = 0;
390 gdb_vrregset_t regs;
40a6adc1
MD
391 struct gdbarch *gdbarch = get_regcache_arch (regcache);
392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
393 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
394
395 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
396 if (ret < 0)
397 {
398 if (errno == EIO)
399 {
400 have_ptrace_getvrregs = 0;
401 return;
402 }
e2e0b3e5 403 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
404 }
405
406 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
407 long on the hardware. We deal only with the lower 4 bytes of the
408 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
409 there is no need to define an offset for it. */
410 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 411 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 412
56be3814 413 regcache_raw_supply (regcache, regno,
0df8b418
MS
414 regs + (regno
415 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
416}
417
01904826
JB
418/* Fetch the top 32 bits of TID's general-purpose registers and the
419 SPE-specific registers, and place the results in EVRREGSET. If we
420 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
421 zeros.
422
423 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
424 PTRACE_SETEVRREGS requests are supported is isolated here, and in
425 set_spe_registers. */
426static void
427get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
428{
429 if (have_ptrace_getsetevrregs)
430 {
431 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
432 return;
433 else
434 {
435 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
436 we just return zeros. */
437 if (errno == EIO)
438 have_ptrace_getsetevrregs = 0;
439 else
440 /* Anything else needs to be reported. */
e2e0b3e5 441 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
442 }
443 }
444
445 memset (evrregset, 0, sizeof (*evrregset));
446}
447
6ced10dd
JB
448/* Supply values from TID for SPE-specific raw registers: the upper
449 halves of the GPRs, the accumulator, and the spefscr. REGNO must
450 be the number of an upper half register, acc, spefscr, or -1 to
451 supply the values of all registers. */
01904826 452static void
56be3814 453fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 454{
40a6adc1
MD
455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
457 struct gdb_evrregset_t evrregs;
458
6ced10dd 459 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 460 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 461 gdb_assert (sizeof (evrregs.acc)
40a6adc1 462 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 463 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 464 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 465
01904826
JB
466 get_spe_registers (tid, &evrregs);
467
6ced10dd 468 if (regno == -1)
01904826 469 {
6ced10dd
JB
470 int i;
471
472 for (i = 0; i < ppc_num_gprs; i++)
56be3814 473 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 474 &evrregs.evr[i]);
01904826 475 }
6ced10dd
JB
476 else if (tdep->ppc_ev0_upper_regnum <= regno
477 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 478 regcache_raw_supply (regcache, regno,
6ced10dd
JB
479 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
480
481 if (regno == -1
482 || regno == tdep->ppc_acc_regnum)
56be3814 483 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
484
485 if (regno == -1
486 || regno == tdep->ppc_spefscr_regnum)
56be3814 487 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 488 &evrregs.spefscr);
01904826
JB
489}
490
45229ea4 491static void
56be3814 492fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 493{
40a6adc1
MD
494 struct gdbarch *gdbarch = get_regcache_arch (regcache);
495 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 496 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 497 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 498 int bytes_transferred;
0df8b418 499 unsigned int offset; /* Offset of registers within the u area. */
0f068fb5 500 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 501
be8626e0 502 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
503 {
504 /* If this is the first time through, or if it is not the first
505 time through, and we have comfirmed that there is kernel
506 support for such a ptrace request, then go and fetch the
507 register. */
508 if (have_ptrace_getvrregs)
509 {
56be3814 510 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
511 return;
512 }
513 /* If we have discovered that there is no ptrace support for
514 AltiVec registers, fall through and return zeroes, because
515 regaddr will be -1 in this case. */
516 }
604c2f83
LM
517 if (vsx_register_p (gdbarch, regno))
518 {
519 if (have_ptrace_getsetvsxregs)
520 {
521 fetch_vsx_register (regcache, tid, regno);
522 return;
523 }
524 }
be8626e0 525 else if (spe_register_p (gdbarch, regno))
01904826 526 {
56be3814 527 fetch_spe_register (regcache, tid, regno);
01904826
JB
528 return;
529 }
9abe5450 530
45229ea4
EZ
531 if (regaddr == -1)
532 {
40a6adc1 533 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 534 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
535 return;
536 }
537
411cb3f9 538 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
539 32-bit platform, 64-bit floating-point registers will require two
540 transfers. */
4a19ea35 541 for (bytes_transferred = 0;
40a6adc1 542 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 543 bytes_transferred += sizeof (long))
45229ea4 544 {
11fde611
JK
545 long l;
546
45229ea4 547 errno = 0;
11fde611 548 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 549 regaddr += sizeof (long);
45229ea4
EZ
550 if (errno != 0)
551 {
bc97b3ba 552 char message[128];
8c042590
PM
553 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
554 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 555 perror_with_name (message);
45229ea4 556 }
11fde611 557 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 558 }
56d0d96a 559
4a19ea35
JB
560 /* Now supply the register. Keep in mind that the regcache's idea
561 of the register's size may not be a multiple of sizeof
411cb3f9 562 (long). */
40a6adc1 563 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
564 {
565 /* Little-endian values are always found at the left end of the
566 bytes transferred. */
56be3814 567 regcache_raw_supply (regcache, regno, buf);
4a19ea35 568 }
40a6adc1 569 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
570 {
571 /* Big-endian values are found at the right end of the bytes
572 transferred. */
40a6adc1 573 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 574 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
575 }
576 else
a44bddec 577 internal_error (__FILE__, __LINE__,
e2e0b3e5 578 _("fetch_register: unexpected byte order: %d"),
40a6adc1 579 gdbarch_byte_order (gdbarch));
45229ea4
EZ
580}
581
604c2f83
LM
582static void
583supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
584{
585 int i;
586 struct gdbarch *gdbarch = get_regcache_arch (regcache);
587 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
588 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
589
590 for (i = 0; i < ppc_num_vshrs; i++)
591 {
592 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
593 *vsxregsetp + i * vsxregsize);
594 }
595}
596
9abe5450 597static void
56be3814 598supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
599{
600 int i;
40a6adc1
MD
601 struct gdbarch *gdbarch = get_regcache_arch (regcache);
602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 603 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
604 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
605 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
606
607 for (i = 0; i < num_of_vrregs; i++)
608 {
609 /* The last 2 registers of this set are only 32 bit long, not
610 128. However an offset is necessary only for VSCR because it
611 occupies a whole vector, while VRSAVE occupies a full 4 bytes
612 slot. */
613 if (i == (num_of_vrregs - 2))
56be3814 614 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 615 *vrregsetp + i * vrregsize + offset);
9abe5450 616 else
56be3814 617 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 618 *vrregsetp + i * vrregsize);
9abe5450
EZ
619 }
620}
621
604c2f83
LM
622static void
623fetch_vsx_registers (struct regcache *regcache, int tid)
624{
625 int ret;
626 gdb_vsxregset_t regs;
627
628 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
629 if (ret < 0)
630 {
631 if (errno == EIO)
632 {
633 have_ptrace_getsetvsxregs = 0;
634 return;
635 }
636 perror_with_name (_("Unable to fetch VSX registers"));
637 }
638 supply_vsxregset (regcache, &regs);
639}
640
9abe5450 641static void
56be3814 642fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
643{
644 int ret;
645 gdb_vrregset_t regs;
646
647 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
648 if (ret < 0)
649 {
650 if (errno == EIO)
651 {
652 have_ptrace_getvrregs = 0;
653 return;
654 }
e2e0b3e5 655 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 656 }
56be3814 657 supply_vrregset (regcache, &regs);
9abe5450
EZ
658}
659
1dfe79e8
SDJ
660/* This function actually issues the request to ptrace, telling
661 it to get all general-purpose registers and put them into the
662 specified regset.
663
664 If the ptrace request does not exist, this function returns 0
665 and properly sets the have_ptrace_* flag. If the request fails,
666 this function calls perror_with_name. Otherwise, if the request
667 succeeds, then the regcache gets filled and 1 is returned. */
668static int
669fetch_all_gp_regs (struct regcache *regcache, int tid)
670{
671 struct gdbarch *gdbarch = get_regcache_arch (regcache);
672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
673 gdb_gregset_t gregset;
674
675 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
676 {
677 if (errno == EIO)
678 {
679 have_ptrace_getsetregs = 0;
680 return 0;
681 }
682 perror_with_name (_("Couldn't get general-purpose registers."));
683 }
684
685 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
686
687 return 1;
688}
689
690/* This is a wrapper for the fetch_all_gp_regs function. It is
691 responsible for verifying if this target has the ptrace request
692 that can be used to fetch all general-purpose registers at one
693 shot. If it doesn't, then we should fetch them using the
694 old-fashioned way, which is to iterate over the registers and
695 request them one by one. */
696static void
697fetch_gp_regs (struct regcache *regcache, int tid)
698{
699 struct gdbarch *gdbarch = get_regcache_arch (regcache);
700 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
701 int i;
702
703 if (have_ptrace_getsetregs)
704 if (fetch_all_gp_regs (regcache, tid))
705 return;
706
707 /* If we've hit this point, it doesn't really matter which
708 architecture we are using. We just need to read the
709 registers in the "old-fashioned way". */
710 for (i = 0; i < ppc_num_gprs; i++)
711 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
712}
713
714/* This function actually issues the request to ptrace, telling
715 it to get all floating-point registers and put them into the
716 specified regset.
717
718 If the ptrace request does not exist, this function returns 0
719 and properly sets the have_ptrace_* flag. If the request fails,
720 this function calls perror_with_name. Otherwise, if the request
721 succeeds, then the regcache gets filled and 1 is returned. */
722static int
723fetch_all_fp_regs (struct regcache *regcache, int tid)
724{
725 gdb_fpregset_t fpregs;
726
727 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
728 {
729 if (errno == EIO)
730 {
731 have_ptrace_getsetfpregs = 0;
732 return 0;
733 }
734 perror_with_name (_("Couldn't get floating-point registers."));
735 }
736
737 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
738
739 return 1;
740}
741
742/* This is a wrapper for the fetch_all_fp_regs function. It is
743 responsible for verifying if this target has the ptrace request
744 that can be used to fetch all floating-point registers at one
745 shot. If it doesn't, then we should fetch them using the
746 old-fashioned way, which is to iterate over the registers and
747 request them one by one. */
748static void
749fetch_fp_regs (struct regcache *regcache, int tid)
750{
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
753 int i;
754
755 if (have_ptrace_getsetfpregs)
756 if (fetch_all_fp_regs (regcache, tid))
757 return;
758
759 /* If we've hit this point, it doesn't really matter which
760 architecture we are using. We just need to read the
761 registers in the "old-fashioned way". */
762 for (i = 0; i < ppc_num_fprs; i++)
763 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
764}
765
45229ea4 766static void
56be3814 767fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
768{
769 int i;
40a6adc1
MD
770 struct gdbarch *gdbarch = get_regcache_arch (regcache);
771 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 772
1dfe79e8 773 fetch_gp_regs (regcache, tid);
32b99774 774 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 775 fetch_fp_regs (regcache, tid);
40a6adc1 776 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 777 if (tdep->ppc_ps_regnum != -1)
56be3814 778 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 779 if (tdep->ppc_cr_regnum != -1)
56be3814 780 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 781 if (tdep->ppc_lr_regnum != -1)
56be3814 782 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 783 if (tdep->ppc_ctr_regnum != -1)
56be3814 784 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 785 if (tdep->ppc_xer_regnum != -1)
56be3814 786 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 787 if (tdep->ppc_mq_regnum != -1)
56be3814 788 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
789 if (ppc_linux_trap_reg_p (gdbarch))
790 {
791 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
792 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
793 }
32b99774 794 if (tdep->ppc_fpscr_regnum != -1)
56be3814 795 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
796 if (have_ptrace_getvrregs)
797 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 798 fetch_altivec_registers (regcache, tid);
604c2f83
LM
799 if (have_ptrace_getsetvsxregs)
800 if (tdep->ppc_vsr0_upper_regnum != -1)
801 fetch_vsx_registers (regcache, tid);
6ced10dd 802 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 803 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
804}
805
806/* Fetch registers from the child process. Fetch all registers if
807 regno == -1, otherwise fetch all general registers or all floating
808 point registers depending upon the value of regno. */
10d6c8cd 809static void
28439f5e
PA
810ppc_linux_fetch_inferior_registers (struct target_ops *ops,
811 struct regcache *regcache, int regno)
45229ea4 812{
bcc0c096 813 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
05f13b9c 814
9abe5450 815 if (regno == -1)
56be3814 816 fetch_ppc_registers (regcache, tid);
45229ea4 817 else
56be3814 818 fetch_register (regcache, tid, regno);
45229ea4
EZ
819}
820
0df8b418 821/* Store one VSX register. */
604c2f83
LM
822static void
823store_vsx_register (const struct regcache *regcache, int tid, int regno)
824{
825 int ret;
826 gdb_vsxregset_t regs;
827 struct gdbarch *gdbarch = get_regcache_arch (regcache);
828 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
829 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
830
9fe70b4f 831 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
832 if (ret < 0)
833 {
834 if (errno == EIO)
835 {
836 have_ptrace_getsetvsxregs = 0;
837 return;
838 }
839 perror_with_name (_("Unable to fetch VSX register"));
840 }
841
842 regcache_raw_collect (regcache, regno, regs +
843 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
844
845 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
846 if (ret < 0)
847 perror_with_name (_("Unable to store VSX register"));
848}
849
0df8b418 850/* Store one register. */
9abe5450 851static void
56be3814 852store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
853{
854 int ret;
855 int offset = 0;
856 gdb_vrregset_t regs;
40a6adc1
MD
857 struct gdbarch *gdbarch = get_regcache_arch (regcache);
858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
859 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
860
861 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
862 if (ret < 0)
863 {
864 if (errno == EIO)
865 {
866 have_ptrace_getvrregs = 0;
867 return;
868 }
e2e0b3e5 869 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
870 }
871
872 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
873 long on the hardware. */
874 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 875 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 876
56be3814 877 regcache_raw_collect (regcache, regno,
0df8b418
MS
878 regs + (regno
879 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
880
881 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
882 if (ret < 0)
e2e0b3e5 883 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
884}
885
01904826
JB
886/* Assuming TID referrs to an SPE process, set the top halves of TID's
887 general-purpose registers and its SPE-specific registers to the
888 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
889 nothing.
890
891 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
892 PTRACE_SETEVRREGS requests are supported is isolated here, and in
893 get_spe_registers. */
894static void
895set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
896{
897 if (have_ptrace_getsetevrregs)
898 {
899 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
900 return;
901 else
902 {
903 /* EIO means that the PTRACE_SETEVRREGS request isn't
904 supported; we fail silently, and don't try the call
905 again. */
906 if (errno == EIO)
907 have_ptrace_getsetevrregs = 0;
908 else
909 /* Anything else needs to be reported. */
e2e0b3e5 910 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
911 }
912 }
913}
914
6ced10dd
JB
915/* Write GDB's value for the SPE-specific raw register REGNO to TID.
916 If REGNO is -1, write the values of all the SPE-specific
917 registers. */
01904826 918static void
56be3814 919store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 920{
40a6adc1
MD
921 struct gdbarch *gdbarch = get_regcache_arch (regcache);
922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
923 struct gdb_evrregset_t evrregs;
924
6ced10dd 925 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 926 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 927 gdb_assert (sizeof (evrregs.acc)
40a6adc1 928 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 929 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 930 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 931
6ced10dd
JB
932 if (regno == -1)
933 /* Since we're going to write out every register, the code below
934 should store to every field of evrregs; if that doesn't happen,
935 make it obvious by initializing it with suspicious values. */
936 memset (&evrregs, 42, sizeof (evrregs));
937 else
938 /* We can only read and write the entire EVR register set at a
939 time, so to write just a single register, we do a
940 read-modify-write maneuver. */
941 get_spe_registers (tid, &evrregs);
942
943 if (regno == -1)
01904826 944 {
6ced10dd
JB
945 int i;
946
947 for (i = 0; i < ppc_num_gprs; i++)
56be3814 948 regcache_raw_collect (regcache,
6ced10dd
JB
949 tdep->ppc_ev0_upper_regnum + i,
950 &evrregs.evr[i]);
01904826 951 }
6ced10dd
JB
952 else if (tdep->ppc_ev0_upper_regnum <= regno
953 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 954 regcache_raw_collect (regcache, regno,
6ced10dd
JB
955 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
956
957 if (regno == -1
958 || regno == tdep->ppc_acc_regnum)
56be3814 959 regcache_raw_collect (regcache,
6ced10dd
JB
960 tdep->ppc_acc_regnum,
961 &evrregs.acc);
962
963 if (regno == -1
964 || regno == tdep->ppc_spefscr_regnum)
56be3814 965 regcache_raw_collect (regcache,
6ced10dd
JB
966 tdep->ppc_spefscr_regnum,
967 &evrregs.spefscr);
01904826
JB
968
969 /* Write back the modified register set. */
970 set_spe_registers (tid, &evrregs);
971}
972
45229ea4 973static void
56be3814 974store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 975{
40a6adc1
MD
976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 978 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 979 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 980 int i;
4a19ea35 981 size_t bytes_to_transfer;
0f068fb5 982 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
45229ea4 983
be8626e0 984 if (altivec_register_p (gdbarch, regno))
45229ea4 985 {
56be3814 986 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
987 return;
988 }
604c2f83
LM
989 if (vsx_register_p (gdbarch, regno))
990 {
991 store_vsx_register (regcache, tid, regno);
992 return;
993 }
be8626e0 994 else if (spe_register_p (gdbarch, regno))
01904826 995 {
56be3814 996 store_spe_register (regcache, tid, regno);
01904826
JB
997 return;
998 }
45229ea4 999
9abe5450
EZ
1000 if (regaddr == -1)
1001 return;
1002
4a19ea35
JB
1003 /* First collect the register. Keep in mind that the regcache's
1004 idea of the register's size may not be a multiple of sizeof
411cb3f9 1005 (long). */
56d0d96a 1006 memset (buf, 0, sizeof buf);
40a6adc1
MD
1007 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1008 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1009 {
1010 /* Little-endian values always sit at the left end of the buffer. */
56be3814 1011 regcache_raw_collect (regcache, regno, buf);
4a19ea35 1012 }
40a6adc1 1013 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1014 {
1015 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1016 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 1017 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
1018 }
1019
411cb3f9 1020 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1021 {
11fde611
JK
1022 long l;
1023
1024 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1025 errno = 0;
11fde611 1026 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1027 regaddr += sizeof (long);
e3f36dbd
KB
1028
1029 if (errno == EIO
7284e1be
UW
1030 && (regno == tdep->ppc_fpscr_regnum
1031 || regno == PPC_ORIG_R3_REGNUM
1032 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1033 {
7284e1be
UW
1034 /* Some older kernel versions don't allow fpscr, orig_r3
1035 or trap to be written. */
e3f36dbd
KB
1036 continue;
1037 }
1038
45229ea4
EZ
1039 if (errno != 0)
1040 {
bc97b3ba 1041 char message[128];
8c042590
PM
1042 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1043 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1044 perror_with_name (message);
45229ea4
EZ
1045 }
1046 }
1047}
1048
604c2f83
LM
1049static void
1050fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1051{
1052 int i;
1053 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1055 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1056
1057 for (i = 0; i < ppc_num_vshrs; i++)
1058 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1059 *vsxregsetp + i * vsxregsize);
1060}
1061
9abe5450 1062static void
56be3814 1063fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1064{
1065 int i;
40a6adc1
MD
1066 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1067 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1068 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1069 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1070 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1071
1072 for (i = 0; i < num_of_vrregs; i++)
1073 {
1074 /* The last 2 registers of this set are only 32 bit long, not
1075 128, but only VSCR is fetched as a 16 bytes quantity. */
1076 if (i == (num_of_vrregs - 2))
56be3814 1077 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1078 *vrregsetp + i * vrregsize + offset);
9abe5450 1079 else
56be3814 1080 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1081 *vrregsetp + i * vrregsize);
9abe5450
EZ
1082 }
1083}
1084
604c2f83
LM
1085static void
1086store_vsx_registers (const struct regcache *regcache, int tid)
1087{
1088 int ret;
1089 gdb_vsxregset_t regs;
1090
1091 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1092 if (ret < 0)
1093 {
1094 if (errno == EIO)
1095 {
1096 have_ptrace_getsetvsxregs = 0;
1097 return;
1098 }
1099 perror_with_name (_("Couldn't get VSX registers"));
1100 }
1101
1102 fill_vsxregset (regcache, &regs);
1103
1104 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1105 perror_with_name (_("Couldn't write VSX registers"));
1106}
1107
9abe5450 1108static void
56be3814 1109store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1110{
1111 int ret;
1112 gdb_vrregset_t regs;
1113
0897f59b 1114 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1115 if (ret < 0)
1116 {
1117 if (errno == EIO)
1118 {
1119 have_ptrace_getvrregs = 0;
1120 return;
1121 }
e2e0b3e5 1122 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1123 }
1124
56be3814 1125 fill_vrregset (regcache, &regs);
9abe5450 1126
0897f59b 1127 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1128 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1129}
1130
1dfe79e8
SDJ
1131/* This function actually issues the request to ptrace, telling
1132 it to store all general-purpose registers present in the specified
1133 regset.
1134
1135 If the ptrace request does not exist, this function returns 0
1136 and properly sets the have_ptrace_* flag. If the request fails,
1137 this function calls perror_with_name. Otherwise, if the request
1138 succeeds, then the regcache is stored and 1 is returned. */
1139static int
1140store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1141{
1142 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1144 gdb_gregset_t gregset;
1145
1146 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1147 {
1148 if (errno == EIO)
1149 {
1150 have_ptrace_getsetregs = 0;
1151 return 0;
1152 }
1153 perror_with_name (_("Couldn't get general-purpose registers."));
1154 }
1155
1156 fill_gregset (regcache, &gregset, regno);
1157
1158 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1159 {
1160 if (errno == EIO)
1161 {
1162 have_ptrace_getsetregs = 0;
1163 return 0;
1164 }
1165 perror_with_name (_("Couldn't set general-purpose registers."));
1166 }
1167
1168 return 1;
1169}
1170
1171/* This is a wrapper for the store_all_gp_regs function. It is
1172 responsible for verifying if this target has the ptrace request
1173 that can be used to store all general-purpose registers at one
1174 shot. If it doesn't, then we should store them using the
1175 old-fashioned way, which is to iterate over the registers and
1176 store them one by one. */
45229ea4 1177static void
1dfe79e8 1178store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1179{
40a6adc1
MD
1180 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1182 int i;
1183
1184 if (have_ptrace_getsetregs)
1185 if (store_all_gp_regs (regcache, tid, regno))
1186 return;
1187
1188 /* If we hit this point, it doesn't really matter which
1189 architecture we are using. We just need to store the
1190 registers in the "old-fashioned way". */
6ced10dd 1191 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1192 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1193}
1194
1195/* This function actually issues the request to ptrace, telling
1196 it to store all floating-point registers present in the specified
1197 regset.
1198
1199 If the ptrace request does not exist, this function returns 0
1200 and properly sets the have_ptrace_* flag. If the request fails,
1201 this function calls perror_with_name. Otherwise, if the request
1202 succeeds, then the regcache is stored and 1 is returned. */
1203static int
1204store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1205{
1206 gdb_fpregset_t fpregs;
1207
1208 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1209 {
1210 if (errno == EIO)
1211 {
1212 have_ptrace_getsetfpregs = 0;
1213 return 0;
1214 }
1215 perror_with_name (_("Couldn't get floating-point registers."));
1216 }
1217
1218 fill_fpregset (regcache, &fpregs, regno);
1219
1220 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1221 {
1222 if (errno == EIO)
1223 {
1224 have_ptrace_getsetfpregs = 0;
1225 return 0;
1226 }
1227 perror_with_name (_("Couldn't set floating-point registers."));
1228 }
1229
1230 return 1;
1231}
1232
1233/* This is a wrapper for the store_all_fp_regs function. It is
1234 responsible for verifying if this target has the ptrace request
1235 that can be used to store all floating-point registers at one
1236 shot. If it doesn't, then we should store them using the
1237 old-fashioned way, which is to iterate over the registers and
1238 store them one by one. */
1239static void
1240store_fp_regs (const struct regcache *regcache, int tid, int regno)
1241{
1242 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1244 int i;
1245
1246 if (have_ptrace_getsetfpregs)
1247 if (store_all_fp_regs (regcache, tid, regno))
1248 return;
1249
1250 /* If we hit this point, it doesn't really matter which
1251 architecture we are using. We just need to store the
1252 registers in the "old-fashioned way". */
1253 for (i = 0; i < ppc_num_fprs; i++)
1254 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1255}
1256
1257static void
1258store_ppc_registers (const struct regcache *regcache, int tid)
1259{
1260 int i;
1261 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1263
1264 store_gp_regs (regcache, tid, -1);
32b99774 1265 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1266 store_fp_regs (regcache, tid, -1);
40a6adc1 1267 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1268 if (tdep->ppc_ps_regnum != -1)
56be3814 1269 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1270 if (tdep->ppc_cr_regnum != -1)
56be3814 1271 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1272 if (tdep->ppc_lr_regnum != -1)
56be3814 1273 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1274 if (tdep->ppc_ctr_regnum != -1)
56be3814 1275 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1276 if (tdep->ppc_xer_regnum != -1)
56be3814 1277 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1278 if (tdep->ppc_mq_regnum != -1)
56be3814 1279 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1280 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1281 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1282 if (ppc_linux_trap_reg_p (gdbarch))
1283 {
1284 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1285 store_register (regcache, tid, PPC_TRAP_REGNUM);
1286 }
9abe5450
EZ
1287 if (have_ptrace_getvrregs)
1288 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1289 store_altivec_registers (regcache, tid);
604c2f83
LM
1290 if (have_ptrace_getsetvsxregs)
1291 if (tdep->ppc_vsr0_upper_regnum != -1)
1292 store_vsx_registers (regcache, tid);
6ced10dd 1293 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1294 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1295}
1296
6ffbb7ab 1297/* Fetch the AT_HWCAP entry from the aux vector. */
b261e0c5
UW
1298static unsigned long
1299ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1300{
1301 CORE_ADDR field;
1302
1303 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1304 return (unsigned long) field;
1305
1306 return 0;
1307}
1308
1309/* The cached DABR value, to install in new threads.
926bf92d
UW
1310 This variable is used when the PowerPC HWDEBUG ptrace
1311 interface is not available. */
6ffbb7ab
TJB
1312static long saved_dabr_value;
1313
1314/* Global structure that will store information about the available
926bf92d
UW
1315 features provided by the PowerPC HWDEBUG ptrace interface. */
1316static struct ppc_debug_info hwdebug_info;
6ffbb7ab
TJB
1317
1318/* Global variable that holds the maximum number of slots that the
926bf92d
UW
1319 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1320 is available. */
6ffbb7ab
TJB
1321static size_t max_slots_number = 0;
1322
1323struct hw_break_tuple
1324{
1325 long slot;
1326 struct ppc_hw_breakpoint *hw_break;
1327};
1328
1329/* This is an internal VEC created to store information about *points inserted
926bf92d
UW
1330 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1331 available. */
6ffbb7ab
TJB
1332typedef struct thread_points
1333 {
1334 /* The TID to which this *point relates. */
1335 int tid;
1336 /* Information about the *point, such as its address, type, etc.
1337
1338 Each element inside this vector corresponds to a hardware
1339 breakpoint or watchpoint in the thread represented by TID. The maximum
1340 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1341 the tuple is NULL, then the position in the vector is free. */
1342 struct hw_break_tuple *hw_breaks;
1343 } *thread_points_p;
1344DEF_VEC_P (thread_points_p);
1345
1346VEC(thread_points_p) *ppc_threads = NULL;
1347
926bf92d
UW
1348/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1349 available. */
6ffbb7ab
TJB
1350#define PPC_DEBUG_CURRENT_VERSION 1
1351
926bf92d 1352/* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
e0d24f8d 1353static int
926bf92d 1354have_ptrace_hwdebug_interface (void)
e0d24f8d 1355{
926bf92d 1356 static int have_ptrace_hwdebug_interface = -1;
e0d24f8d 1357
926bf92d 1358 if (have_ptrace_hwdebug_interface == -1)
6ffbb7ab
TJB
1359 {
1360 int tid;
e0d24f8d 1361
dfd4cc63 1362 tid = ptid_get_lwp (inferior_ptid);
6ffbb7ab 1363 if (tid == 0)
dfd4cc63 1364 tid = ptid_get_pid (inferior_ptid);
e0d24f8d 1365
926bf92d
UW
1366 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1367 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
6ffbb7ab 1368 {
926bf92d 1369 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
0c56f59b 1370 provides any supported feature. */
926bf92d 1371 if (hwdebug_info.features != 0)
0c56f59b 1372 {
926bf92d
UW
1373 have_ptrace_hwdebug_interface = 1;
1374 max_slots_number = hwdebug_info.num_instruction_bps
1375 + hwdebug_info.num_data_bps
1376 + hwdebug_info.num_condition_regs;
1377 return have_ptrace_hwdebug_interface;
0c56f59b 1378 }
6ffbb7ab 1379 }
926bf92d
UW
1380 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1381 have_ptrace_hwdebug_interface = 0;
1382 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1383 }
1384
926bf92d 1385 return have_ptrace_hwdebug_interface;
e0d24f8d
WZ
1386}
1387
6ffbb7ab 1388static int
5461485a 1389ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
f486487f 1390 enum bptype type, int cnt, int ot)
b7622095 1391{
6ffbb7ab 1392 int total_hw_wp, total_hw_bp;
b7622095 1393
926bf92d 1394 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1395 {
926bf92d
UW
1396 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1397 available hardware watchpoints and breakpoints is stored at the
1398 hwdebug_info struct. */
1399 total_hw_bp = hwdebug_info.num_instruction_bps;
1400 total_hw_wp = hwdebug_info.num_data_bps;
6ffbb7ab
TJB
1401 }
1402 else
1403 {
926bf92d
UW
1404 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1405 consider having 1 hardware watchpoint and no hardware breakpoints. */
6ffbb7ab
TJB
1406 total_hw_bp = 0;
1407 total_hw_wp = 1;
1408 }
b7622095 1409
6ffbb7ab
TJB
1410 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1411 || type == bp_access_watchpoint || type == bp_watchpoint)
1412 {
bb08bdbd 1413 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1414 return -1;
1415 }
1416 else if (type == bp_hardware_breakpoint)
1417 {
572f6555
EBM
1418 if (total_hw_bp == 0)
1419 {
1420 /* No hardware breakpoint support. */
1421 return 0;
1422 }
6ffbb7ab
TJB
1423 if (cnt > total_hw_bp)
1424 return -1;
1425 }
1426
926bf92d 1427 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1428 {
1429 int tid;
1430 ptid_t ptid = inferior_ptid;
1431
0df8b418
MS
1432 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1433 and whether the target has DABR. If either answer is no, the
1434 ptrace call will return -1. Fail in that case. */
dfd4cc63 1435 tid = ptid_get_lwp (ptid);
6ffbb7ab 1436 if (tid == 0)
dfd4cc63 1437 tid = ptid_get_pid (ptid);
6ffbb7ab
TJB
1438
1439 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1440 return 0;
1441 }
1442
1443 return 1;
b7622095
LM
1444}
1445
e0d24f8d 1446static int
31568a15
TT
1447ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1448 CORE_ADDR addr, int len)
e0d24f8d
WZ
1449{
1450 /* Handle sub-8-byte quantities. */
1451 if (len <= 0)
1452 return 0;
1453
926bf92d
UW
1454 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1455 restrictions for watchpoints in the processors. In that case, we use that
1456 information to determine the hardcoded watchable region for
1457 watchpoints. */
1458 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1459 {
e23b9d6e 1460 int region_size;
4feebbdd
EBM
1461 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1462 watchpoints and can watch any access within an arbitrary memory
1463 region. This is useful to watch arrays and structs, for instance. It
1464 takes two hardware watchpoints though. */
e09342b5 1465 if (len > 1
926bf92d 1466 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
4feebbdd 1467 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
e09342b5 1468 return 2;
e23b9d6e
UW
1469 /* Check if the processor provides DAWR interface. */
1470 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1471 /* DAWR interface allows to watch up to 512 byte wide ranges which
1472 can't cross a 512 byte boundary. */
1473 region_size = 512;
1474 else
1475 region_size = hwdebug_info.data_bp_alignment;
4feebbdd
EBM
1476 /* Server processors provide one hardware watchpoint and addr+len should
1477 fall in the watchable region provided by the ptrace interface. */
e23b9d6e
UW
1478 if (region_size
1479 && (addr + len > (addr & ~(region_size - 1)) + region_size))
0cf6dd15 1480 return 0;
6ffbb7ab 1481 }
b7622095 1482 /* addr+len must fall in the 8 byte watchable region for DABR-based
926bf92d
UW
1483 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1484 ptrace interface, DAC-based processors (i.e., embedded processors) will
1485 use addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1486 passed in the old ptrace interface. */
1487 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1488 && (addr + len) > (addr & ~3) + 4)
1489 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1490 return 0;
1491
1492 return 1;
1493}
1494
6ffbb7ab 1495/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1496static int
926bf92d 1497hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
6ffbb7ab 1498{
ad422571
TJB
1499 return (a->trigger_type == b->trigger_type
1500 && a->addr_mode == b->addr_mode
1501 && a->condition_mode == b->condition_mode
1502 && a->addr == b->addr
1503 && a->addr2 == b->addr2
6ffbb7ab
TJB
1504 && a->condition_value == b->condition_value);
1505}
1506
1507/* This function can be used to retrieve a thread_points by the TID of the
1508 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1509 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1510 provided TID will be created and returned. */
1511static struct thread_points *
926bf92d 1512hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
6ffbb7ab
TJB
1513{
1514 int i;
1515 struct thread_points *t;
1516
1517 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1518 if (t->tid == tid)
1519 return t;
1520
1521 t = NULL;
1522
1523 /* Do we need to allocate a new point_item
1524 if the wanted one does not exist? */
1525 if (alloc_new)
1526 {
8d749320
SM
1527 t = XNEW (struct thread_points);
1528 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
6ffbb7ab
TJB
1529 t->tid = tid;
1530 VEC_safe_push (thread_points_p, ppc_threads, t);
1531 }
1532
1533 return t;
1534}
1535
1536/* This function is a generic wrapper that is responsible for inserting a
1537 *point (i.e., calling `ptrace' in order to issue the request to the
1538 kernel) and registering it internally in GDB. */
1539static void
926bf92d 1540hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1541{
1542 int i;
1543 long slot;
8d749320 1544 struct ppc_hw_breakpoint *p = XNEW (struct ppc_hw_breakpoint);
6ffbb7ab
TJB
1545 struct hw_break_tuple *hw_breaks;
1546 struct cleanup *c = make_cleanup (xfree, p);
1547 struct thread_points *t;
1548 struct hw_break_tuple *tuple;
1549
1550 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1551
1552 errno = 0;
1553 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1554 if (slot < 0)
1555 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1556
1557 /* Everything went fine, so we have to register this *point. */
926bf92d 1558 t = hwdebug_find_thread_points_by_tid (tid, 1);
6ffbb7ab
TJB
1559 gdb_assert (t != NULL);
1560 hw_breaks = t->hw_breaks;
1561
1562 /* Find a free element in the hw_breaks vector. */
1563 for (i = 0; i < max_slots_number; i++)
1564 if (hw_breaks[i].hw_break == NULL)
1565 {
1566 hw_breaks[i].slot = slot;
1567 hw_breaks[i].hw_break = p;
1568 break;
1569 }
1570
1571 gdb_assert (i != max_slots_number);
1572
1573 discard_cleanups (c);
1574}
1575
1576/* This function is a generic wrapper that is responsible for removing a
1577 *point (i.e., calling `ptrace' in order to issue the request to the
1578 kernel), and unregistering it internally at GDB. */
1579static void
926bf92d 1580hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1581{
1582 int i;
1583 struct hw_break_tuple *hw_breaks;
1584 struct thread_points *t;
1585
926bf92d 1586 t = hwdebug_find_thread_points_by_tid (tid, 0);
6ffbb7ab
TJB
1587 gdb_assert (t != NULL);
1588 hw_breaks = t->hw_breaks;
1589
1590 for (i = 0; i < max_slots_number; i++)
926bf92d 1591 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
6ffbb7ab
TJB
1592 break;
1593
1594 gdb_assert (i != max_slots_number);
1595
1596 /* We have to ignore ENOENT errors because the kernel implements hardware
1597 breakpoints/watchpoints as "one-shot", that is, they are automatically
1598 deleted when hit. */
1599 errno = 0;
1600 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1601 if (errno != ENOENT)
0df8b418
MS
1602 perror_with_name (_("Unexpected error deleting "
1603 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1604
1605 xfree (hw_breaks[i].hw_break);
1606 hw_breaks[i].hw_break = NULL;
1607}
9f0bdab8 1608
f1310107
TJB
1609/* Return the number of registers needed for a ranged breakpoint. */
1610
1611static int
1612ppc_linux_ranged_break_num_registers (struct target_ops *target)
1613{
926bf92d
UW
1614 return ((have_ptrace_hwdebug_interface ()
1615 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
f1310107
TJB
1616 2 : -1);
1617}
1618
1619/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1620 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1621
2c387241 1622static int
23a26771
TT
1623ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1624 struct gdbarch *gdbarch,
6ffbb7ab 1625 struct bp_target_info *bp_tgt)
e0d24f8d 1626{
9f0bdab8 1627 struct lwp_info *lp;
6ffbb7ab
TJB
1628 struct ppc_hw_breakpoint p;
1629
926bf92d 1630 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1631 return -1;
1632
ad422571
TJB
1633 p.version = PPC_DEBUG_CURRENT_VERSION;
1634 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571 1635 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
0d5ed153 1636 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
6ffbb7ab
TJB
1637 p.condition_value = 0;
1638
f1310107
TJB
1639 if (bp_tgt->length)
1640 {
1641 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1642
1643 /* The breakpoint will trigger if the address of the instruction is
1644 within the defined range, as follows: p.addr <= address < p.addr2. */
1645 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1646 }
1647 else
1648 {
1649 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1650 p.addr2 = 0;
1651 }
1652
4c38200f 1653 ALL_LWPS (lp)
dfd4cc63 1654 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1655
1656 return 0;
1657}
1658
1659static int
a64dc96c
TT
1660ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1661 struct gdbarch *gdbarch,
6ffbb7ab
TJB
1662 struct bp_target_info *bp_tgt)
1663{
6ffbb7ab
TJB
1664 struct lwp_info *lp;
1665 struct ppc_hw_breakpoint p;
b7622095 1666
926bf92d 1667 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1668 return -1;
1669
ad422571
TJB
1670 p.version = PPC_DEBUG_CURRENT_VERSION;
1671 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1672 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1673 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1674 p.condition_value = 0;
1675
f1310107
TJB
1676 if (bp_tgt->length)
1677 {
1678 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1679
1680 /* The breakpoint will trigger if the address of the instruction is within
1681 the defined range, as follows: p.addr <= address < p.addr2. */
1682 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1683 }
1684 else
1685 {
1686 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1687 p.addr2 = 0;
1688 }
1689
4c38200f 1690 ALL_LWPS (lp)
dfd4cc63 1691 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1692
1693 return 0;
1694}
1695
1696static int
e76460db 1697get_trigger_type (enum target_hw_bp_type type)
6ffbb7ab
TJB
1698{
1699 int t;
1700
e76460db 1701 if (type == hw_read)
6ffbb7ab 1702 t = PPC_BREAKPOINT_TRIGGER_READ;
e76460db 1703 else if (type == hw_write)
6ffbb7ab 1704 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1705 else
6ffbb7ab
TJB
1706 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1707
1708 return t;
1709}
1710
9c06b0b4
TJB
1711/* Insert a new masked watchpoint at ADDR using the mask MASK.
1712 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1713 or hw_access for an access watchpoint. Returns 0 on success and throws
1714 an error on failure. */
1715
1716static int
1717ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
f4b0a671 1718 CORE_ADDR mask, enum target_hw_bp_type rw)
9c06b0b4 1719{
9c06b0b4
TJB
1720 struct lwp_info *lp;
1721 struct ppc_hw_breakpoint p;
1722
926bf92d 1723 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1724
1725 p.version = PPC_DEBUG_CURRENT_VERSION;
1726 p.trigger_type = get_trigger_type (rw);
1727 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1728 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1729 p.addr = addr;
1730 p.addr2 = mask;
1731 p.condition_value = 0;
1732
4c38200f 1733 ALL_LWPS (lp)
dfd4cc63 1734 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1735
1736 return 0;
1737}
1738
1739/* Remove a masked watchpoint at ADDR with the mask MASK.
1740 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1741 or hw_access for an access watchpoint. Returns 0 on success and throws
1742 an error on failure. */
1743
1744static int
1745ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
f4b0a671 1746 CORE_ADDR mask, enum target_hw_bp_type rw)
9c06b0b4 1747{
9c06b0b4
TJB
1748 struct lwp_info *lp;
1749 struct ppc_hw_breakpoint p;
1750
926bf92d 1751 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1752
1753 p.version = PPC_DEBUG_CURRENT_VERSION;
1754 p.trigger_type = get_trigger_type (rw);
1755 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1756 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1757 p.addr = addr;
1758 p.addr2 = mask;
1759 p.condition_value = 0;
1760
4c38200f 1761 ALL_LWPS (lp)
dfd4cc63 1762 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1763
1764 return 0;
1765}
1766
0cf6dd15
TJB
1767/* Check whether we have at least one free DVC register. */
1768static int
1769can_use_watchpoint_cond_accel (void)
1770{
1771 struct thread_points *p;
dfd4cc63 1772 int tid = ptid_get_lwp (inferior_ptid);
926bf92d 1773 int cnt = hwdebug_info.num_condition_regs, i;
0cf6dd15
TJB
1774 CORE_ADDR tmp_value;
1775
926bf92d 1776 if (!have_ptrace_hwdebug_interface () || cnt == 0)
0cf6dd15
TJB
1777 return 0;
1778
926bf92d 1779 p = hwdebug_find_thread_points_by_tid (tid, 0);
0cf6dd15
TJB
1780
1781 if (p)
1782 {
1783 for (i = 0; i < max_slots_number; i++)
1784 if (p->hw_breaks[i].hw_break != NULL
1785 && (p->hw_breaks[i].hw_break->condition_mode
1786 != PPC_BREAKPOINT_CONDITION_NONE))
1787 cnt--;
1788
1789 /* There are no available slots now. */
1790 if (cnt <= 0)
1791 return 0;
1792 }
1793
1794 return 1;
1795}
1796
1797/* Calculate the enable bits and the contents of the Data Value Compare
1798 debug register present in BookE processors.
1799
1800 ADDR is the address to be watched, LEN is the length of watched data
1801 and DATA_VALUE is the value which will trigger the watchpoint.
1802 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1803 CONDITION_VALUE will hold the value which should be put in the
1804 DVC register. */
1805static void
1806calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1807 uint32_t *condition_mode, uint64_t *condition_value)
1808{
1809 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1810 rightmost_enabled_byte;
1811 CORE_ADDR addr_end_data, addr_end_dvc;
1812
1813 /* The DVC register compares bytes within fixed-length windows which
1814 are word-aligned, with length equal to that of the DVC register.
1815 We need to calculate where our watch region is relative to that
1816 window and enable comparison of the bytes which fall within it. */
1817
926bf92d 1818 align_offset = addr % hwdebug_info.sizeof_condition;
0cf6dd15
TJB
1819 addr_end_data = addr + len;
1820 addr_end_dvc = (addr - align_offset
926bf92d 1821 + hwdebug_info.sizeof_condition);
0cf6dd15
TJB
1822 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1823 addr_end_data - addr_end_dvc : 0;
1824 num_byte_enable = len - num_bytes_off_dvc;
1825 /* Here, bytes are numbered from right to left. */
1826 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1827 addr_end_dvc - addr_end_data : 0;
1828
1829 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1830 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1831 *condition_mode
1832 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1833
1834 /* Now we need to match the position within the DVC of the comparison
1835 value with where the watch region is relative to the window
1836 (i.e., the ALIGN_OFFSET). */
1837
1838 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1839 << rightmost_enabled_byte * 8);
1840}
1841
1842/* Return the number of memory locations that need to be accessed to
1843 evaluate the expression which generated the given value chain.
1844 Returns -1 if there's any register access involved, or if there are
1845 other kinds of values which are not acceptable in a condition
1846 expression (e.g., lval_computed or lval_internalvar). */
1847static int
1848num_memory_accesses (struct value *v)
1849{
1850 int found_memory_cnt = 0;
1851 struct value *head = v;
1852
1853 /* The idea here is that evaluating an expression generates a series
1854 of values, one holding the value of every subexpression. (The
1855 expression a*b+c has five subexpressions: a, b, a*b, c, and
1856 a*b+c.) GDB's values hold almost enough information to establish
1857 the criteria given above --- they identify memory lvalues,
1858 register lvalues, computed values, etcetera. So we can evaluate
1859 the expression, and then scan the chain of values that leaves
1860 behind to determine the memory locations involved in the evaluation
1861 of an expression.
1862
1863 However, I don't think that the values returned by inferior
1864 function calls are special in any way. So this function may not
1865 notice that an expression contains an inferior function call.
1866 FIXME. */
1867
1868 for (; v; v = value_next (v))
1869 {
1870 /* Constants and values from the history are fine. */
1871 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1872 continue;
1873 else if (VALUE_LVAL (v) == lval_memory)
1874 {
1875 /* A lazy memory lvalue is one that GDB never needed to fetch;
1876 we either just used its address (e.g., `a' in `a.b') or
1877 we never needed it at all (e.g., `a' in `a,b'). */
1878 if (!value_lazy (v))
1879 found_memory_cnt++;
1880 }
0df8b418 1881 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1882 else
1883 return -1;
1884 }
1885
1886 return found_memory_cnt;
1887}
1888
1889/* Verifies whether the expression COND can be implemented using the
1890 DVC (Data Value Compare) register in BookE processors. The expression
1891 must test the watch value for equality with a constant expression.
1892 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1893 which the watch value should be compared and LEN will contain the size
1894 of the constant. */
0cf6dd15
TJB
1895static int
1896check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1897 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1898{
1899 int pc = 1, num_accesses_left, num_accesses_right;
1900 struct value *left_val, *right_val, *left_chain, *right_chain;
1901
1902 if (cond->elts[0].opcode != BINOP_EQUAL)
1903 return 0;
1904
3a1115a0 1905 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
0cf6dd15
TJB
1906 num_accesses_left = num_memory_accesses (left_chain);
1907
1908 if (left_val == NULL || num_accesses_left < 0)
1909 {
1910 free_value_chain (left_chain);
1911
1912 return 0;
1913 }
1914
3a1115a0 1915 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
0cf6dd15
TJB
1916 num_accesses_right = num_memory_accesses (right_chain);
1917
1918 if (right_val == NULL || num_accesses_right < 0)
1919 {
1920 free_value_chain (left_chain);
1921 free_value_chain (right_chain);
1922
1923 return 0;
1924 }
1925
1926 if (num_accesses_left == 1 && num_accesses_right == 0
1927 && VALUE_LVAL (left_val) == lval_memory
1928 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1929 {
1930 *data_value = value_as_long (right_val);
1931
1932 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1933 the same type as the memory region referenced by LEFT_VAL. */
1934 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1935 }
0cf6dd15
TJB
1936 else if (num_accesses_left == 0 && num_accesses_right == 1
1937 && VALUE_LVAL (right_val) == lval_memory
1938 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1939 {
1940 *data_value = value_as_long (left_val);
1941
1942 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1943 the same type as the memory region referenced by RIGHT_VAL. */
1944 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1945 }
0cf6dd15
TJB
1946 else
1947 {
1948 free_value_chain (left_chain);
1949 free_value_chain (right_chain);
1950
1951 return 0;
1952 }
1953
1954 free_value_chain (left_chain);
1955 free_value_chain (right_chain);
1956
1957 return 1;
1958}
1959
1960/* Return non-zero if the target is capable of using hardware to evaluate
1961 the condition expression, thus only triggering the watchpoint when it is
1962 true. */
1963static int
c3a5ff89
TT
1964ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
1965 CORE_ADDR addr, int len, int rw,
0cf6dd15
TJB
1966 struct expression *cond)
1967{
1968 CORE_ADDR data_value;
1969
926bf92d
UW
1970 return (have_ptrace_hwdebug_interface ()
1971 && hwdebug_info.num_condition_regs > 0
e7db58ea 1972 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
1973}
1974
e09342b5
TJB
1975/* Set up P with the parameters necessary to request a watchpoint covering
1976 LEN bytes starting at ADDR and if possible with condition expression COND
1977 evaluated by hardware. INSERT tells if we are creating a request for
1978 inserting or removing the watchpoint. */
1979
1980static void
1981create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
e76460db
PA
1982 int len, enum target_hw_bp_type type,
1983 struct expression *cond, int insert)
e09342b5 1984{
f16c4e8b 1985 if (len == 1
926bf92d 1986 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
1987 {
1988 int use_condition;
1989 CORE_ADDR data_value;
1990
1991 use_condition = (insert? can_use_watchpoint_cond_accel ()
926bf92d 1992 : hwdebug_info.num_condition_regs > 0);
e7db58ea
TJB
1993 if (cond && use_condition && check_condition (addr, cond,
1994 &data_value, &len))
e09342b5
TJB
1995 calculate_dvc (addr, len, data_value, &p->condition_mode,
1996 &p->condition_value);
1997 else
1998 {
1999 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2000 p->condition_value = 0;
2001 }
2002
2003 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2004 p->addr2 = 0;
2005 }
2006 else
2007 {
2008 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2009 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2010 p->condition_value = 0;
2011
2012 /* The watchpoint will trigger if the address of the memory access is
2013 within the defined range, as follows: p->addr <= address < p->addr2.
2014
2015 Note that the above sentence just documents how ptrace interprets
2016 its arguments; the watchpoint is set to watch the range defined by
2017 the user _inclusively_, as specified by the user interface. */
2018 p->addr2 = (uint64_t) addr + len;
2019 }
2020
2021 p->version = PPC_DEBUG_CURRENT_VERSION;
e76460db 2022 p->trigger_type = get_trigger_type (type);
e09342b5
TJB
2023 p->addr = (uint64_t) addr;
2024}
2025
6ffbb7ab 2026static int
e76460db
PA
2027ppc_linux_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
2028 enum target_hw_bp_type type,
0cf6dd15 2029 struct expression *cond)
6ffbb7ab
TJB
2030{
2031 struct lwp_info *lp;
6ffbb7ab
TJB
2032 int ret = -1;
2033
926bf92d 2034 if (have_ptrace_hwdebug_interface ())
e0d24f8d 2035 {
6ffbb7ab
TJB
2036 struct ppc_hw_breakpoint p;
2037
e76460db 2038 create_watchpoint_request (&p, addr, len, type, cond, 1);
6ffbb7ab 2039
4c38200f 2040 ALL_LWPS (lp)
dfd4cc63 2041 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
2042
2043 ret = 0;
e0d24f8d 2044 }
6ffbb7ab
TJB
2045 else
2046 {
2047 long dabr_value;
2048 long read_mode, write_mode;
e0d24f8d 2049
6ffbb7ab
TJB
2050 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2051 {
2052 /* PowerPC 440 requires only the read/write flags to be passed
2053 to the kernel. */
ad422571 2054 read_mode = 1;
6ffbb7ab
TJB
2055 write_mode = 2;
2056 }
2057 else
2058 {
2059 /* PowerPC 970 and other DABR-based processors are required to pass
2060 the Breakpoint Translation bit together with the flags. */
ad422571 2061 read_mode = 5;
6ffbb7ab
TJB
2062 write_mode = 6;
2063 }
1c86e440 2064
6ffbb7ab 2065 dabr_value = addr & ~(read_mode | write_mode);
e76460db 2066 switch (type)
6ffbb7ab
TJB
2067 {
2068 case hw_read:
2069 /* Set read and translate bits. */
2070 dabr_value |= read_mode;
2071 break;
2072 case hw_write:
2073 /* Set write and translate bits. */
2074 dabr_value |= write_mode;
2075 break;
2076 case hw_access:
2077 /* Set read, write and translate bits. */
2078 dabr_value |= read_mode | write_mode;
2079 break;
2080 }
1c86e440 2081
6ffbb7ab
TJB
2082 saved_dabr_value = dabr_value;
2083
4c38200f 2084 ALL_LWPS (lp)
dfd4cc63 2085 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 2086 saved_dabr_value) < 0)
6ffbb7ab
TJB
2087 return -1;
2088
2089 ret = 0;
2090 }
2091
2092 return ret;
e0d24f8d
WZ
2093}
2094
2c387241 2095static int
e76460db
PA
2096ppc_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
2097 enum target_hw_bp_type type,
0cf6dd15 2098 struct expression *cond)
e0d24f8d 2099{
9f0bdab8 2100 struct lwp_info *lp;
6ffbb7ab 2101 int ret = -1;
9f0bdab8 2102
926bf92d 2103 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2104 {
2105 struct ppc_hw_breakpoint p;
2106
e76460db 2107 create_watchpoint_request (&p, addr, len, type, cond, 0);
6ffbb7ab 2108
4c38200f 2109 ALL_LWPS (lp)
dfd4cc63 2110 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
2111
2112 ret = 0;
2113 }
2114 else
2115 {
2116 saved_dabr_value = 0;
4c38200f 2117 ALL_LWPS (lp)
dfd4cc63 2118 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 2119 saved_dabr_value) < 0)
6ffbb7ab
TJB
2120 return -1;
2121
2122 ret = 0;
2123 }
2124
2125 return ret;
e0d24f8d
WZ
2126}
2127
9f0bdab8 2128static void
7b50312a 2129ppc_linux_new_thread (struct lwp_info *lp)
e0d24f8d 2130{
dfd4cc63 2131 int tid = ptid_get_lwp (lp->ptid);
6ffbb7ab 2132
926bf92d 2133 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2134 {
2135 int i;
2136 struct thread_points *p;
2137 struct hw_break_tuple *hw_breaks;
2138
2139 if (VEC_empty (thread_points_p, ppc_threads))
2140 return;
2141
0df8b418 2142 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
2143 p = VEC_last (thread_points_p, ppc_threads);
2144 hw_breaks = p->hw_breaks;
2145
0df8b418 2146 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
2147 for (i = 0; i < max_slots_number; i++)
2148 if (hw_breaks[i].hw_break)
aacbb8a5
LM
2149 {
2150 /* Older kernels did not make new threads inherit their parent
2151 thread's debug state, so we always clear the slot and replicate
2152 the debug state ourselves, ensuring compatibility with all
2153 kernels. */
2154
2155 /* The ppc debug resource accounting is done through "slots".
2156 Ask the kernel the deallocate this specific *point's slot. */
2157 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2158
926bf92d 2159 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
aacbb8a5 2160 }
6ffbb7ab
TJB
2161 }
2162 else
2163 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2164}
2165
2166static void
2167ppc_linux_thread_exit (struct thread_info *tp, int silent)
2168{
2169 int i;
dfd4cc63 2170 int tid = ptid_get_lwp (tp->ptid);
6ffbb7ab
TJB
2171 struct hw_break_tuple *hw_breaks;
2172 struct thread_points *t = NULL, *p;
2173
926bf92d 2174 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2175 return;
2176
2177 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2178 if (p->tid == tid)
2179 {
2180 t = p;
2181 break;
2182 }
2183
2184 if (t == NULL)
2185 return;
2186
2187 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2188
2189 hw_breaks = t->hw_breaks;
2190
2191 for (i = 0; i < max_slots_number; i++)
2192 if (hw_breaks[i].hw_break)
2193 xfree (hw_breaks[i].hw_break);
2194
2195 xfree (t->hw_breaks);
2196 xfree (t);
e0d24f8d
WZ
2197}
2198
2199static int
9f0bdab8 2200ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
e0d24f8d 2201{
f865ee35 2202 siginfo_t siginfo;
e0d24f8d 2203
f865ee35
JK
2204 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2205 return 0;
e0d24f8d 2206
f865ee35
JK
2207 if (siginfo.si_signo != SIGTRAP
2208 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
e0d24f8d
WZ
2209 return 0;
2210
926bf92d 2211 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2212 {
2213 int i;
2214 struct thread_points *t;
2215 struct hw_break_tuple *hw_breaks;
2216 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2217 int slot = siginfo.si_errno;
6ffbb7ab 2218
dfd4cc63 2219 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
6ffbb7ab
TJB
2220
2221 /* Find out if this *point is a hardware breakpoint.
2222 If so, we should return 0. */
2223 if (t)
2224 {
2225 hw_breaks = t->hw_breaks;
2226 for (i = 0; i < max_slots_number; i++)
2227 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2228 && hw_breaks[i].hw_break->trigger_type
2229 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2230 return 0;
2231 }
2232 }
2233
f865ee35 2234 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
e0d24f8d
WZ
2235 return 1;
2236}
2237
9f0bdab8 2238static int
6a109b6b 2239ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
9f0bdab8
DJ
2240{
2241 CORE_ADDR addr;
6a109b6b 2242 return ppc_linux_stopped_data_address (ops, &addr);
9f0bdab8
DJ
2243}
2244
5009afc5
AS
2245static int
2246ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2247 CORE_ADDR addr,
2248 CORE_ADDR start, int length)
2249{
b7622095
LM
2250 int mask;
2251
926bf92d 2252 if (have_ptrace_hwdebug_interface ()
6ffbb7ab
TJB
2253 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2254 return start <= addr && start + length >= addr;
2255 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2256 mask = 3;
2257 else
2258 mask = 7;
2259
2260 addr &= ~mask;
2261
0df8b418 2262 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2263 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2264}
2265
9c06b0b4
TJB
2266/* Return the number of registers needed for a masked hardware watchpoint. */
2267
2268static int
2269ppc_linux_masked_watch_num_registers (struct target_ops *target,
2270 CORE_ADDR addr, CORE_ADDR mask)
2271{
926bf92d
UW
2272 if (!have_ptrace_hwdebug_interface ()
2273 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
9c06b0b4
TJB
2274 return -1;
2275 else if ((mask & 0xC0000000) != 0xC0000000)
2276 {
2277 warning (_("The given mask covers kernel address space "
2278 "and cannot be used.\n"));
2279
2280 return -2;
2281 }
2282 else
2283 return 2;
2284}
2285
10d6c8cd 2286static void
28439f5e
PA
2287ppc_linux_store_inferior_registers (struct target_ops *ops,
2288 struct regcache *regcache, int regno)
45229ea4 2289{
bcc0c096 2290 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
05f13b9c 2291
45229ea4 2292 if (regno >= 0)
56be3814 2293 store_register (regcache, tid, regno);
45229ea4 2294 else
56be3814 2295 store_ppc_registers (regcache, tid);
45229ea4
EZ
2296}
2297
f2db237a
AM
2298/* Functions for transferring registers between a gregset_t or fpregset_t
2299 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2300 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2301 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2302 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2303
50c9bd31 2304void
7f7fe91e 2305supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2306{
f2db237a 2307 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2308
f2db237a 2309 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2310}
2311
fdb28ac4 2312void
7f7fe91e
UW
2313fill_gregset (const struct regcache *regcache,
2314 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2315{
f2db237a 2316 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2317
f2db237a
AM
2318 if (regno == -1)
2319 memset (gregsetp, 0, sizeof (*gregsetp));
2320 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2321}
2322
50c9bd31 2323void
7f7fe91e 2324supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2325{
f2db237a
AM
2326 const struct regset *regset = ppc_linux_fpregset ();
2327
2328 ppc_supply_fpregset (regset, regcache, -1,
2329 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2330}
fdb28ac4 2331
fdb28ac4 2332void
7f7fe91e
UW
2333fill_fpregset (const struct regcache *regcache,
2334 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2335{
f2db237a
AM
2336 const struct regset *regset = ppc_linux_fpregset ();
2337
2338 ppc_collect_fpregset (regset, regcache, regno,
2339 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2340}
10d6c8cd 2341
409c383c
UW
2342static int
2343ppc_linux_target_wordsize (void)
2344{
2345 int wordsize = 4;
2346
2347 /* Check for 64-bit inferior process. This is the case when the host is
2348 64-bit, and in addition the top bit of the MSR register is set. */
2349#ifdef __powerpc64__
2350 long msr;
2351
dfd4cc63 2352 int tid = ptid_get_lwp (inferior_ptid);
409c383c 2353 if (tid == 0)
dfd4cc63 2354 tid = ptid_get_pid (inferior_ptid);
409c383c
UW
2355
2356 errno = 0;
2357 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
cdf43629 2358 if (errno == 0 && ppc64_64bit_inferior_p (msr))
409c383c
UW
2359 wordsize = 8;
2360#endif
2361
2362 return wordsize;
2363}
2364
2365static int
2366ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2367 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2368{
2369 int sizeof_auxv_field = ppc_linux_target_wordsize ();
f5656ead 2370 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2371 gdb_byte *ptr = *readptr;
2372
2373 if (endptr == ptr)
2374 return 0;
2375
2376 if (endptr - ptr < sizeof_auxv_field * 2)
2377 return -1;
2378
e17a4113 2379 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2380 ptr += sizeof_auxv_field;
e17a4113 2381 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2382 ptr += sizeof_auxv_field;
2383
2384 *readptr = ptr;
2385 return 1;
2386}
2387
310a98e1
DJ
2388static const struct target_desc *
2389ppc_linux_read_description (struct target_ops *ops)
2390{
7284e1be 2391 int altivec = 0;
604c2f83 2392 int vsx = 0;
69abc51c 2393 int isa205 = 0;
f4d9bade 2394 int cell = 0;
7284e1be 2395
dfd4cc63 2396 int tid = ptid_get_lwp (inferior_ptid);
7284e1be 2397 if (tid == 0)
dfd4cc63 2398 tid = ptid_get_pid (inferior_ptid);
7284e1be 2399
310a98e1
DJ
2400 if (have_ptrace_getsetevrregs)
2401 {
2402 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2403
2404 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2405 return tdesc_powerpc_e500l;
2406
2407 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2408 Anything else needs to be reported. */
2409 else if (errno != EIO)
2410 perror_with_name (_("Unable to fetch SPE registers"));
2411 }
2412
0154d990
EBM
2413 if (have_ptrace_getsetvsxregs
2414 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX))
604c2f83
LM
2415 {
2416 gdb_vsxregset_t vsxregset;
2417
2418 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2419 vsx = 1;
2420
2421 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2422 Anything else needs to be reported. */
2423 else if (errno != EIO)
2424 perror_with_name (_("Unable to fetch VSX registers"));
2425 }
2426
0154d990
EBM
2427 if (have_ptrace_getvrregs
2428 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC))
7284e1be
UW
2429 {
2430 gdb_vrregset_t vrregset;
2431
2432 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2433 altivec = 1;
2434
2435 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2436 Anything else needs to be reported. */
2437 else if (errno != EIO)
2438 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2439 }
2440
f04c6d38 2441 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
0df8b418 2442 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
f04c6d38
TJB
2443 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2444 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2445 half of the register are for Decimal Floating Point, we check if that
2446 feature is available to decide the size of the FPSCR. */
2447 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
2448 isa205 = 1;
2449
f4d9bade
UW
2450 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2451 cell = 1;
2452
409c383c
UW
2453 if (ppc_linux_target_wordsize () == 8)
2454 {
f4d9bade
UW
2455 if (cell)
2456 return tdesc_powerpc_cell64l;
2457 else if (vsx)
409c383c
UW
2458 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2459 else if (altivec)
0df8b418
MS
2460 return isa205
2461 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
409c383c
UW
2462
2463 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2464 }
7284e1be 2465
f4d9bade
UW
2466 if (cell)
2467 return tdesc_powerpc_cell32l;
2468 else if (vsx)
69abc51c 2469 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 2470 else if (altivec)
69abc51c 2471 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 2472
69abc51c 2473 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
2474}
2475
10d6c8cd
DJ
2476void
2477_initialize_ppc_linux_nat (void)
2478{
2479 struct target_ops *t;
2480
2481 /* Fill in the generic GNU/Linux methods. */
2482 t = linux_target ();
2483
2484 /* Add our register access methods. */
2485 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2486 t->to_store_registers = ppc_linux_store_inferior_registers;
2487
6ffbb7ab
TJB
2488 /* Add our breakpoint/watchpoint methods. */
2489 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2490 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2491 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
e0d24f8d
WZ
2492 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2493 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2494 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
9c06b0b4
TJB
2495 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2496 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
e0d24f8d
WZ
2497 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2498 t->to_stopped_data_address = ppc_linux_stopped_data_address;
5009afc5 2499 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
0df8b418
MS
2500 t->to_can_accel_watchpoint_condition
2501 = ppc_linux_can_accel_watchpoint_condition;
9c06b0b4 2502 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
f1310107 2503 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
e0d24f8d 2504
310a98e1 2505 t->to_read_description = ppc_linux_read_description;
409c383c 2506 t->to_auxv_parse = ppc_linux_auxv_parse;
310a98e1 2507
6ffbb7ab
TJB
2508 observer_attach_thread_exit (ppc_linux_thread_exit);
2509
10d6c8cd 2510 /* Register the target. */
f973ed9c 2511 linux_nat_add_target (t);
9f0bdab8 2512 linux_nat_set_new_thread (t, ppc_linux_new_thread);
10d6c8cd 2513}
This page took 1.88004 seconds and 4 git commands to generate.