* NEWS: Mention new maintenance commands check-symtabs, and
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
28e7fd62 3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
e162d11b 21#include "gdb_string.h"
6ffbb7ab 22#include "observer.h"
c877c8e6
KB
23#include "frame.h"
24#include "inferior.h"
6ffbb7ab 25#include "gdbthread.h"
c877c8e6 26#include "gdbcore.h"
4e052eda 27#include "regcache.h"
383f0f5b 28#include "gdb_assert.h"
10d6c8cd
DJ
29#include "target.h"
30#include "linux-nat.h"
c877c8e6 31
411cb3f9 32#include <stdint.h>
c877c8e6
KB
33#include <sys/types.h>
34#include <sys/param.h>
35#include <signal.h>
36#include <sys/user.h>
37#include <sys/ioctl.h>
2555fe1a 38#include "gdb_wait.h"
c877c8e6
KB
39#include <fcntl.h>
40#include <sys/procfs.h>
45229ea4 41#include <sys/ptrace.h>
c877c8e6 42
0df8b418 43/* Prototypes for supply_gregset etc. */
c60c0f5f 44#include "gregset.h"
16333c4f 45#include "ppc-tdep.h"
7284e1be
UW
46#include "ppc-linux-tdep.h"
47
b7622095
LM
48/* Required when using the AUXV. */
49#include "elf/common.h"
50#include "auxv.h"
51
7284e1be
UW
52/* This sometimes isn't defined. */
53#ifndef PT_ORIG_R3
54#define PT_ORIG_R3 34
55#endif
56#ifndef PT_TRAP
57#define PT_TRAP 40
58#endif
c60c0f5f 59
69abc51c
TJB
60/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
61 If they aren't, we can provide them ourselves (their values are fixed
62 because they are part of the kernel ABI). They are used in the AT_HWCAP
63 entry of the AUXV. */
f4d9bade
UW
64#ifndef PPC_FEATURE_CELL
65#define PPC_FEATURE_CELL 0x00010000
66#endif
b7622095
LM
67#ifndef PPC_FEATURE_BOOKE
68#define PPC_FEATURE_BOOKE 0x00008000
69#endif
f04c6d38
TJB
70#ifndef PPC_FEATURE_HAS_DFP
71#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
69abc51c 72#endif
b7622095 73
9abe5450
EZ
74/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
75 configure time check. Some older glibc's (for instance 2.2.1)
76 don't have a specific powerpc version of ptrace.h, and fall back on
77 a generic one. In such cases, sys/ptrace.h defines
78 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
79 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
80 PTRACE_SETVRREGS to be. This also makes a configury check pretty
81 much useless. */
82
83/* These definitions should really come from the glibc header files,
84 but Glibc doesn't know about the vrregs yet. */
85#ifndef PTRACE_GETVRREGS
86#define PTRACE_GETVRREGS 18
87#define PTRACE_SETVRREGS 19
88#endif
89
604c2f83
LM
90/* PTRACE requests for POWER7 VSX registers. */
91#ifndef PTRACE_GETVSXREGS
92#define PTRACE_GETVSXREGS 27
93#define PTRACE_SETVSXREGS 28
94#endif
01904826
JB
95
96/* Similarly for the ptrace requests for getting / setting the SPE
97 registers (ev0 -- ev31, acc, and spefscr). See the description of
98 gdb_evrregset_t for details. */
99#ifndef PTRACE_GETEVRREGS
100#define PTRACE_GETEVRREGS 20
101#define PTRACE_SETEVRREGS 21
102#endif
103
6ffbb7ab
TJB
104/* Similarly for the hardware watchpoint support. These requests are used
105 when the BookE kernel interface is not available. */
e0d24f8d
WZ
106#ifndef PTRACE_GET_DEBUGREG
107#define PTRACE_GET_DEBUGREG 25
108#endif
109#ifndef PTRACE_SET_DEBUGREG
110#define PTRACE_SET_DEBUGREG 26
111#endif
112#ifndef PTRACE_GETSIGINFO
113#define PTRACE_GETSIGINFO 0x4202
114#endif
01904826 115
6ffbb7ab
TJB
116/* These requests are used when the BookE kernel interface is available.
117 It exposes the additional debug features of BookE processors, such as
118 ranged breakpoints and watchpoints and hardware-accelerated condition
119 evaluation. */
120#ifndef PPC_PTRACE_GETHWDBGINFO
121
122/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
123 interface is not present in ptrace.h, so we'll have to pretty much include
124 it all here so that the code at least compiles on older systems. */
125#define PPC_PTRACE_GETHWDBGINFO 0x89
126#define PPC_PTRACE_SETHWDEBUG 0x88
127#define PPC_PTRACE_DELHWDEBUG 0x87
128
129struct ppc_debug_info
130{
0df8b418 131 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
132 uint32_t num_instruction_bps;
133 uint32_t num_data_bps;
134 uint32_t num_condition_regs;
135 uint32_t data_bp_alignment;
0df8b418 136 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
137 uint64_t features;
138};
139
140/* Features will have bits indicating whether there is support for: */
141#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
142#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
143#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
144#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
145
146struct ppc_hw_breakpoint
147{
148 uint32_t version; /* currently, version must be 1 */
149 uint32_t trigger_type; /* only some combinations allowed */
150 uint32_t addr_mode; /* address match mode */
151 uint32_t condition_mode; /* break/watchpoint condition flags */
152 uint64_t addr; /* break/watchpoint address */
153 uint64_t addr2; /* range end or mask */
154 uint64_t condition_value; /* contents of the DVC register */
155};
156
157/* Trigger type. */
158#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
159#define PPC_BREAKPOINT_TRIGGER_READ 0x2
160#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
161#define PPC_BREAKPOINT_TRIGGER_RW 0x6
162
163/* Address mode. */
164#define PPC_BREAKPOINT_MODE_EXACT 0x0
165#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
166#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
167#define PPC_BREAKPOINT_MODE_MASK 0x3
168
169/* Condition mode. */
170#define PPC_BREAKPOINT_CONDITION_NONE 0x0
171#define PPC_BREAKPOINT_CONDITION_AND 0x1
172#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
173#define PPC_BREAKPOINT_CONDITION_OR 0x2
174#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
175#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
176#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
177#define PPC_BREAKPOINT_CONDITION_BE(n) \
178 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
179#endif /* PPC_PTRACE_GETHWDBGINFO */
180
181
182
1dfe79e8
SDJ
183/* Similarly for the general-purpose (gp0 -- gp31)
184 and floating-point registers (fp0 -- fp31). */
185#ifndef PTRACE_GETREGS
186#define PTRACE_GETREGS 12
187#endif
188#ifndef PTRACE_SETREGS
189#define PTRACE_SETREGS 13
190#endif
191#ifndef PTRACE_GETFPREGS
192#define PTRACE_GETFPREGS 14
193#endif
194#ifndef PTRACE_SETFPREGS
195#define PTRACE_SETFPREGS 15
196#endif
197
9abe5450
EZ
198/* This oddity is because the Linux kernel defines elf_vrregset_t as
199 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
200 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
201 the vrsave as an extra 4 bytes at the end. I opted for creating a
202 flat array of chars, so that it is easier to manipulate for gdb.
203
204 There are 32 vector registers 16 bytes longs, plus a VSCR register
205 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 206 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
207 Appended to this there is space for the VRSAVE register: 4 bytes.
208 Even though this vrsave register is not included in the regset
209 typedef, it is handled by the ptrace requests.
210
211 Note that GNU/Linux doesn't support little endian PPC hardware,
212 therefore the offset at which the real value of the VSCR register
213 is located will be always 12 bytes.
214
215 The layout is like this (where x is the actual value of the vscr reg): */
216
217/* *INDENT-OFF* */
218/*
219 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
220 <-------> <-------><-------><->
221 VR0 VR31 VSCR VRSAVE
222*/
223/* *INDENT-ON* */
224
225#define SIZEOF_VRREGS 33*16+4
226
227typedef char gdb_vrregset_t[SIZEOF_VRREGS];
228
604c2f83
LM
229/* This is the layout of the POWER7 VSX registers and the way they overlap
230 with the existing FPR and VMX registers.
231
232 VSR doubleword 0 VSR doubleword 1
233 ----------------------------------------------------------------
234 VSR[0] | FPR[0] | |
235 ----------------------------------------------------------------
236 VSR[1] | FPR[1] | |
237 ----------------------------------------------------------------
238 | ... | |
239 | ... | |
240 ----------------------------------------------------------------
241 VSR[30] | FPR[30] | |
242 ----------------------------------------------------------------
243 VSR[31] | FPR[31] | |
244 ----------------------------------------------------------------
245 VSR[32] | VR[0] |
246 ----------------------------------------------------------------
247 VSR[33] | VR[1] |
248 ----------------------------------------------------------------
249 | ... |
250 | ... |
251 ----------------------------------------------------------------
252 VSR[62] | VR[30] |
253 ----------------------------------------------------------------
254 VSR[63] | VR[31] |
255 ----------------------------------------------------------------
256
257 VSX has 64 128bit registers. The first 32 registers overlap with
258 the FP registers (doubleword 0) and hence extend them with additional
259 64 bits (doubleword 1). The other 32 regs overlap with the VMX
260 registers. */
261#define SIZEOF_VSXREGS 32*8
262
263typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826 264
b021a221 265/* On PPC processors that support the Signal Processing Extension
01904826 266 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
267 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
268 ptrace calls only access the lower half of each register, to allow
269 them to behave the same way they do on non-SPE systems. There's a
270 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
271 read and write the top halves of all the general-purpose registers
272 at once, along with some SPE-specific registers.
01904826
JB
273
274 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 275 bits long. It has unnamed raw registers that hold the upper halves
b021a221 276 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
277 'ev0' -- 'ev31', are pseudo-registers that splice the top and
278 bottom halves together.
01904826
JB
279
280 This is the structure filled in by PTRACE_GETEVRREGS and written to
281 the inferior's registers by PTRACE_SETEVRREGS. */
282struct gdb_evrregset_t
283{
284 unsigned long evr[32];
285 unsigned long long acc;
286 unsigned long spefscr;
287};
288
604c2f83
LM
289/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
290 PTRACE_SETVSXREGS requests, for reading and writing the VSX
291 POWER7 registers 0 through 31. Zero if we've tried one of them and
292 gotten an error. Note that VSX registers 32 through 63 overlap
293 with VR registers 0 through 31. */
294int have_ptrace_getsetvsxregs = 1;
01904826
JB
295
296/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
297 PTRACE_SETVRREGS requests, for reading and writing the Altivec
298 registers. Zero if we've tried one of them and gotten an
299 error. */
9abe5450
EZ
300int have_ptrace_getvrregs = 1;
301
01904826
JB
302/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
303 PTRACE_SETEVRREGS requests, for reading and writing the SPE
304 registers. Zero if we've tried one of them and gotten an
305 error. */
306int have_ptrace_getsetevrregs = 1;
307
1dfe79e8
SDJ
308/* Non-zero if our kernel may support the PTRACE_GETREGS and
309 PTRACE_SETREGS requests, for reading and writing the
310 general-purpose registers. Zero if we've tried one of
311 them and gotten an error. */
312int have_ptrace_getsetregs = 1;
313
314/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
315 PTRACE_SETFPREGS requests, for reading and writing the
316 floating-pointers registers. Zero if we've tried one of
317 them and gotten an error. */
318int have_ptrace_getsetfpregs = 1;
319
16333c4f
EZ
320/* *INDENT-OFF* */
321/* registers layout, as presented by the ptrace interface:
322PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
323PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
324PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
325PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
326PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
327PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
328PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
329PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
330PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
331PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
332PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
333PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
334PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
335/* *INDENT_ON * */
c877c8e6 336
45229ea4 337static int
e101270f 338ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 339{
16333c4f 340 int u_addr = -1;
e101270f 341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
342 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
343 interface, and not the wordsize of the program's ABI. */
411cb3f9 344 int wordsize = sizeof (long);
16333c4f 345
0df8b418 346 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
347 if (regno >= tdep->ppc_gp0_regnum
348 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 349 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 350
49ff75ad
JB
351 /* Floating point regs: eight bytes each in both 32- and 64-bit
352 ptrace interfaces. Thus, two slots each in 32-bit interface, one
353 slot each in 64-bit interface. */
383f0f5b
JB
354 if (tdep->ppc_fp0_regnum >= 0
355 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
356 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
357 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 358
0df8b418 359 /* UISA special purpose registers: 1 slot each. */
e101270f 360 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 361 u_addr = PT_NIP * wordsize;
dc5cfeb6 362 if (regno == tdep->ppc_lr_regnum)
49ff75ad 363 u_addr = PT_LNK * wordsize;
dc5cfeb6 364 if (regno == tdep->ppc_cr_regnum)
49ff75ad 365 u_addr = PT_CCR * wordsize;
dc5cfeb6 366 if (regno == tdep->ppc_xer_regnum)
49ff75ad 367 u_addr = PT_XER * wordsize;
dc5cfeb6 368 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 369 u_addr = PT_CTR * wordsize;
f8c59253 370#ifdef PT_MQ
dc5cfeb6 371 if (regno == tdep->ppc_mq_regnum)
49ff75ad 372 u_addr = PT_MQ * wordsize;
f8c59253 373#endif
dc5cfeb6 374 if (regno == tdep->ppc_ps_regnum)
49ff75ad 375 u_addr = PT_MSR * wordsize;
7284e1be
UW
376 if (regno == PPC_ORIG_R3_REGNUM)
377 u_addr = PT_ORIG_R3 * wordsize;
378 if (regno == PPC_TRAP_REGNUM)
379 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
380 if (tdep->ppc_fpscr_regnum >= 0
381 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
382 {
383 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
384 kernel headers incorrectly contained the 32-bit definition of
385 PT_FPSCR. For the 32-bit definition, floating-point
386 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 387 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
388 the FPSCR instead occupies the full 64-bit 2-word-slot and
389 hence no adjustment is necessary. Hack around this. */
390 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
391 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
392 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
393 slot and not just its second word. The PT_FPSCR supplied when
394 GDB is compiled as a 32-bit app doesn't reflect this. */
395 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
396 && PT_FPSCR == (48 + 2*32 + 1))
397 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
398 else
399 u_addr = PT_FPSCR * wordsize;
400 }
16333c4f 401 return u_addr;
c877c8e6
KB
402}
403
604c2f83
LM
404/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
405 registers set mechanism, as opposed to the interface for all the
406 other registers, that stores/fetches each register individually. */
407static void
408fetch_vsx_register (struct regcache *regcache, int tid, int regno)
409{
410 int ret;
411 gdb_vsxregset_t regs;
412 struct gdbarch *gdbarch = get_regcache_arch (regcache);
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
415
416 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
417 if (ret < 0)
418 {
419 if (errno == EIO)
420 {
421 have_ptrace_getsetvsxregs = 0;
422 return;
423 }
424 perror_with_name (_("Unable to fetch VSX register"));
425 }
426
427 regcache_raw_supply (regcache, regno,
428 regs + (regno - tdep->ppc_vsr0_upper_regnum)
429 * vsxregsize);
430}
431
9abe5450
EZ
432/* The Linux kernel ptrace interface for AltiVec registers uses the
433 registers set mechanism, as opposed to the interface for all the
434 other registers, that stores/fetches each register individually. */
435static void
56be3814 436fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
437{
438 int ret;
439 int offset = 0;
440 gdb_vrregset_t regs;
40a6adc1
MD
441 struct gdbarch *gdbarch = get_regcache_arch (regcache);
442 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
443 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
444
445 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
446 if (ret < 0)
447 {
448 if (errno == EIO)
449 {
450 have_ptrace_getvrregs = 0;
451 return;
452 }
e2e0b3e5 453 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
454 }
455
456 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
457 long on the hardware. We deal only with the lower 4 bytes of the
458 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
459 there is no need to define an offset for it. */
460 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 461 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 462
56be3814 463 regcache_raw_supply (regcache, regno,
0df8b418
MS
464 regs + (regno
465 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
466}
467
01904826
JB
468/* Fetch the top 32 bits of TID's general-purpose registers and the
469 SPE-specific registers, and place the results in EVRREGSET. If we
470 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
471 zeros.
472
473 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
474 PTRACE_SETEVRREGS requests are supported is isolated here, and in
475 set_spe_registers. */
476static void
477get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
478{
479 if (have_ptrace_getsetevrregs)
480 {
481 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
482 return;
483 else
484 {
485 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
486 we just return zeros. */
487 if (errno == EIO)
488 have_ptrace_getsetevrregs = 0;
489 else
490 /* Anything else needs to be reported. */
e2e0b3e5 491 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
492 }
493 }
494
495 memset (evrregset, 0, sizeof (*evrregset));
496}
497
6ced10dd
JB
498/* Supply values from TID for SPE-specific raw registers: the upper
499 halves of the GPRs, the accumulator, and the spefscr. REGNO must
500 be the number of an upper half register, acc, spefscr, or -1 to
501 supply the values of all registers. */
01904826 502static void
56be3814 503fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 504{
40a6adc1
MD
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
507 struct gdb_evrregset_t evrregs;
508
6ced10dd 509 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 510 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 511 gdb_assert (sizeof (evrregs.acc)
40a6adc1 512 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 513 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 514 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 515
01904826
JB
516 get_spe_registers (tid, &evrregs);
517
6ced10dd 518 if (regno == -1)
01904826 519 {
6ced10dd
JB
520 int i;
521
522 for (i = 0; i < ppc_num_gprs; i++)
56be3814 523 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 524 &evrregs.evr[i]);
01904826 525 }
6ced10dd
JB
526 else if (tdep->ppc_ev0_upper_regnum <= regno
527 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 528 regcache_raw_supply (regcache, regno,
6ced10dd
JB
529 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
530
531 if (regno == -1
532 || regno == tdep->ppc_acc_regnum)
56be3814 533 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
534
535 if (regno == -1
536 || regno == tdep->ppc_spefscr_regnum)
56be3814 537 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 538 &evrregs.spefscr);
01904826
JB
539}
540
45229ea4 541static void
56be3814 542fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 543{
40a6adc1
MD
544 struct gdbarch *gdbarch = get_regcache_arch (regcache);
545 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 546 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 547 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 548 int bytes_transferred;
0df8b418 549 unsigned int offset; /* Offset of registers within the u area. */
e362b510 550 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 551
be8626e0 552 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
553 {
554 /* If this is the first time through, or if it is not the first
555 time through, and we have comfirmed that there is kernel
556 support for such a ptrace request, then go and fetch the
557 register. */
558 if (have_ptrace_getvrregs)
559 {
56be3814 560 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
561 return;
562 }
563 /* If we have discovered that there is no ptrace support for
564 AltiVec registers, fall through and return zeroes, because
565 regaddr will be -1 in this case. */
566 }
604c2f83
LM
567 if (vsx_register_p (gdbarch, regno))
568 {
569 if (have_ptrace_getsetvsxregs)
570 {
571 fetch_vsx_register (regcache, tid, regno);
572 return;
573 }
574 }
be8626e0 575 else if (spe_register_p (gdbarch, regno))
01904826 576 {
56be3814 577 fetch_spe_register (regcache, tid, regno);
01904826
JB
578 return;
579 }
9abe5450 580
45229ea4
EZ
581 if (regaddr == -1)
582 {
40a6adc1 583 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 584 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
585 return;
586 }
587
411cb3f9 588 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
589 32-bit platform, 64-bit floating-point registers will require two
590 transfers. */
4a19ea35 591 for (bytes_transferred = 0;
40a6adc1 592 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 593 bytes_transferred += sizeof (long))
45229ea4 594 {
11fde611
JK
595 long l;
596
45229ea4 597 errno = 0;
11fde611 598 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 599 regaddr += sizeof (long);
45229ea4
EZ
600 if (errno != 0)
601 {
bc97b3ba 602 char message[128];
8c042590
PM
603 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
604 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 605 perror_with_name (message);
45229ea4 606 }
11fde611 607 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 608 }
56d0d96a 609
4a19ea35
JB
610 /* Now supply the register. Keep in mind that the regcache's idea
611 of the register's size may not be a multiple of sizeof
411cb3f9 612 (long). */
40a6adc1 613 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
614 {
615 /* Little-endian values are always found at the left end of the
616 bytes transferred. */
56be3814 617 regcache_raw_supply (regcache, regno, buf);
4a19ea35 618 }
40a6adc1 619 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
620 {
621 /* Big-endian values are found at the right end of the bytes
622 transferred. */
40a6adc1 623 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 624 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
625 }
626 else
a44bddec 627 internal_error (__FILE__, __LINE__,
e2e0b3e5 628 _("fetch_register: unexpected byte order: %d"),
40a6adc1 629 gdbarch_byte_order (gdbarch));
45229ea4
EZ
630}
631
604c2f83
LM
632static void
633supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
634{
635 int i;
636 struct gdbarch *gdbarch = get_regcache_arch (regcache);
637 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
638 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
639
640 for (i = 0; i < ppc_num_vshrs; i++)
641 {
642 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
643 *vsxregsetp + i * vsxregsize);
644 }
645}
646
9abe5450 647static void
56be3814 648supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
649{
650 int i;
40a6adc1
MD
651 struct gdbarch *gdbarch = get_regcache_arch (regcache);
652 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 653 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
654 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
655 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
656
657 for (i = 0; i < num_of_vrregs; i++)
658 {
659 /* The last 2 registers of this set are only 32 bit long, not
660 128. However an offset is necessary only for VSCR because it
661 occupies a whole vector, while VRSAVE occupies a full 4 bytes
662 slot. */
663 if (i == (num_of_vrregs - 2))
56be3814 664 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 665 *vrregsetp + i * vrregsize + offset);
9abe5450 666 else
56be3814 667 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 668 *vrregsetp + i * vrregsize);
9abe5450
EZ
669 }
670}
671
604c2f83
LM
672static void
673fetch_vsx_registers (struct regcache *regcache, int tid)
674{
675 int ret;
676 gdb_vsxregset_t regs;
677
678 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
679 if (ret < 0)
680 {
681 if (errno == EIO)
682 {
683 have_ptrace_getsetvsxregs = 0;
684 return;
685 }
686 perror_with_name (_("Unable to fetch VSX registers"));
687 }
688 supply_vsxregset (regcache, &regs);
689}
690
9abe5450 691static void
56be3814 692fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
693{
694 int ret;
695 gdb_vrregset_t regs;
696
697 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
698 if (ret < 0)
699 {
700 if (errno == EIO)
701 {
702 have_ptrace_getvrregs = 0;
703 return;
704 }
e2e0b3e5 705 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 706 }
56be3814 707 supply_vrregset (regcache, &regs);
9abe5450
EZ
708}
709
1dfe79e8
SDJ
710/* This function actually issues the request to ptrace, telling
711 it to get all general-purpose registers and put them into the
712 specified regset.
713
714 If the ptrace request does not exist, this function returns 0
715 and properly sets the have_ptrace_* flag. If the request fails,
716 this function calls perror_with_name. Otherwise, if the request
717 succeeds, then the regcache gets filled and 1 is returned. */
718static int
719fetch_all_gp_regs (struct regcache *regcache, int tid)
720{
721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
722 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
723 gdb_gregset_t gregset;
724
725 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
726 {
727 if (errno == EIO)
728 {
729 have_ptrace_getsetregs = 0;
730 return 0;
731 }
732 perror_with_name (_("Couldn't get general-purpose registers."));
733 }
734
735 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
736
737 return 1;
738}
739
740/* This is a wrapper for the fetch_all_gp_regs function. It is
741 responsible for verifying if this target has the ptrace request
742 that can be used to fetch all general-purpose registers at one
743 shot. If it doesn't, then we should fetch them using the
744 old-fashioned way, which is to iterate over the registers and
745 request them one by one. */
746static void
747fetch_gp_regs (struct regcache *regcache, int tid)
748{
749 struct gdbarch *gdbarch = get_regcache_arch (regcache);
750 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
751 int i;
752
753 if (have_ptrace_getsetregs)
754 if (fetch_all_gp_regs (regcache, tid))
755 return;
756
757 /* If we've hit this point, it doesn't really matter which
758 architecture we are using. We just need to read the
759 registers in the "old-fashioned way". */
760 for (i = 0; i < ppc_num_gprs; i++)
761 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
762}
763
764/* This function actually issues the request to ptrace, telling
765 it to get all floating-point registers and put them into the
766 specified regset.
767
768 If the ptrace request does not exist, this function returns 0
769 and properly sets the have_ptrace_* flag. If the request fails,
770 this function calls perror_with_name. Otherwise, if the request
771 succeeds, then the regcache gets filled and 1 is returned. */
772static int
773fetch_all_fp_regs (struct regcache *regcache, int tid)
774{
775 gdb_fpregset_t fpregs;
776
777 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
778 {
779 if (errno == EIO)
780 {
781 have_ptrace_getsetfpregs = 0;
782 return 0;
783 }
784 perror_with_name (_("Couldn't get floating-point registers."));
785 }
786
787 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
788
789 return 1;
790}
791
792/* This is a wrapper for the fetch_all_fp_regs function. It is
793 responsible for verifying if this target has the ptrace request
794 that can be used to fetch all floating-point registers at one
795 shot. If it doesn't, then we should fetch them using the
796 old-fashioned way, which is to iterate over the registers and
797 request them one by one. */
798static void
799fetch_fp_regs (struct regcache *regcache, int tid)
800{
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
803 int i;
804
805 if (have_ptrace_getsetfpregs)
806 if (fetch_all_fp_regs (regcache, tid))
807 return;
808
809 /* If we've hit this point, it doesn't really matter which
810 architecture we are using. We just need to read the
811 registers in the "old-fashioned way". */
812 for (i = 0; i < ppc_num_fprs; i++)
813 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
814}
815
45229ea4 816static void
56be3814 817fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
818{
819 int i;
40a6adc1
MD
820 struct gdbarch *gdbarch = get_regcache_arch (regcache);
821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 822
1dfe79e8 823 fetch_gp_regs (regcache, tid);
32b99774 824 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 825 fetch_fp_regs (regcache, tid);
40a6adc1 826 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 827 if (tdep->ppc_ps_regnum != -1)
56be3814 828 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 829 if (tdep->ppc_cr_regnum != -1)
56be3814 830 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 831 if (tdep->ppc_lr_regnum != -1)
56be3814 832 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 833 if (tdep->ppc_ctr_regnum != -1)
56be3814 834 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 835 if (tdep->ppc_xer_regnum != -1)
56be3814 836 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 837 if (tdep->ppc_mq_regnum != -1)
56be3814 838 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
839 if (ppc_linux_trap_reg_p (gdbarch))
840 {
841 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
842 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
843 }
32b99774 844 if (tdep->ppc_fpscr_regnum != -1)
56be3814 845 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
846 if (have_ptrace_getvrregs)
847 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 848 fetch_altivec_registers (regcache, tid);
604c2f83
LM
849 if (have_ptrace_getsetvsxregs)
850 if (tdep->ppc_vsr0_upper_regnum != -1)
851 fetch_vsx_registers (regcache, tid);
6ced10dd 852 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 853 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
854}
855
856/* Fetch registers from the child process. Fetch all registers if
857 regno == -1, otherwise fetch all general registers or all floating
858 point registers depending upon the value of regno. */
10d6c8cd 859static void
28439f5e
PA
860ppc_linux_fetch_inferior_registers (struct target_ops *ops,
861 struct regcache *regcache, int regno)
45229ea4 862{
0df8b418 863 /* Overload thread id onto process id. */
05f13b9c
EZ
864 int tid = TIDGET (inferior_ptid);
865
0df8b418 866 /* No thread id, just use process id. */
05f13b9c
EZ
867 if (tid == 0)
868 tid = PIDGET (inferior_ptid);
869
9abe5450 870 if (regno == -1)
56be3814 871 fetch_ppc_registers (regcache, tid);
45229ea4 872 else
56be3814 873 fetch_register (regcache, tid, regno);
45229ea4
EZ
874}
875
0df8b418 876/* Store one VSX register. */
604c2f83
LM
877static void
878store_vsx_register (const struct regcache *regcache, int tid, int regno)
879{
880 int ret;
881 gdb_vsxregset_t regs;
882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
884 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
885
9fe70b4f 886 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
887 if (ret < 0)
888 {
889 if (errno == EIO)
890 {
891 have_ptrace_getsetvsxregs = 0;
892 return;
893 }
894 perror_with_name (_("Unable to fetch VSX register"));
895 }
896
897 regcache_raw_collect (regcache, regno, regs +
898 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
899
900 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
901 if (ret < 0)
902 perror_with_name (_("Unable to store VSX register"));
903}
904
0df8b418 905/* Store one register. */
9abe5450 906static void
56be3814 907store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
908{
909 int ret;
910 int offset = 0;
911 gdb_vrregset_t regs;
40a6adc1
MD
912 struct gdbarch *gdbarch = get_regcache_arch (regcache);
913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
914 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
915
916 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
917 if (ret < 0)
918 {
919 if (errno == EIO)
920 {
921 have_ptrace_getvrregs = 0;
922 return;
923 }
e2e0b3e5 924 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
925 }
926
927 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
928 long on the hardware. */
929 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 930 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 931
56be3814 932 regcache_raw_collect (regcache, regno,
0df8b418
MS
933 regs + (regno
934 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
935
936 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
937 if (ret < 0)
e2e0b3e5 938 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
939}
940
01904826
JB
941/* Assuming TID referrs to an SPE process, set the top halves of TID's
942 general-purpose registers and its SPE-specific registers to the
943 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
944 nothing.
945
946 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
947 PTRACE_SETEVRREGS requests are supported is isolated here, and in
948 get_spe_registers. */
949static void
950set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
951{
952 if (have_ptrace_getsetevrregs)
953 {
954 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
955 return;
956 else
957 {
958 /* EIO means that the PTRACE_SETEVRREGS request isn't
959 supported; we fail silently, and don't try the call
960 again. */
961 if (errno == EIO)
962 have_ptrace_getsetevrregs = 0;
963 else
964 /* Anything else needs to be reported. */
e2e0b3e5 965 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
966 }
967 }
968}
969
6ced10dd
JB
970/* Write GDB's value for the SPE-specific raw register REGNO to TID.
971 If REGNO is -1, write the values of all the SPE-specific
972 registers. */
01904826 973static void
56be3814 974store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 975{
40a6adc1
MD
976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
978 struct gdb_evrregset_t evrregs;
979
6ced10dd 980 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 981 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 982 gdb_assert (sizeof (evrregs.acc)
40a6adc1 983 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 984 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 985 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 986
6ced10dd
JB
987 if (regno == -1)
988 /* Since we're going to write out every register, the code below
989 should store to every field of evrregs; if that doesn't happen,
990 make it obvious by initializing it with suspicious values. */
991 memset (&evrregs, 42, sizeof (evrregs));
992 else
993 /* We can only read and write the entire EVR register set at a
994 time, so to write just a single register, we do a
995 read-modify-write maneuver. */
996 get_spe_registers (tid, &evrregs);
997
998 if (regno == -1)
01904826 999 {
6ced10dd
JB
1000 int i;
1001
1002 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1003 regcache_raw_collect (regcache,
6ced10dd
JB
1004 tdep->ppc_ev0_upper_regnum + i,
1005 &evrregs.evr[i]);
01904826 1006 }
6ced10dd
JB
1007 else if (tdep->ppc_ev0_upper_regnum <= regno
1008 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 1009 regcache_raw_collect (regcache, regno,
6ced10dd
JB
1010 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1011
1012 if (regno == -1
1013 || regno == tdep->ppc_acc_regnum)
56be3814 1014 regcache_raw_collect (regcache,
6ced10dd
JB
1015 tdep->ppc_acc_regnum,
1016 &evrregs.acc);
1017
1018 if (regno == -1
1019 || regno == tdep->ppc_spefscr_regnum)
56be3814 1020 regcache_raw_collect (regcache,
6ced10dd
JB
1021 tdep->ppc_spefscr_regnum,
1022 &evrregs.spefscr);
01904826
JB
1023
1024 /* Write back the modified register set. */
1025 set_spe_registers (tid, &evrregs);
1026}
1027
45229ea4 1028static void
56be3814 1029store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 1030{
40a6adc1
MD
1031 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 1033 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 1034 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 1035 int i;
4a19ea35 1036 size_t bytes_to_transfer;
e362b510 1037 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 1038
be8626e0 1039 if (altivec_register_p (gdbarch, regno))
45229ea4 1040 {
56be3814 1041 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
1042 return;
1043 }
604c2f83
LM
1044 if (vsx_register_p (gdbarch, regno))
1045 {
1046 store_vsx_register (regcache, tid, regno);
1047 return;
1048 }
be8626e0 1049 else if (spe_register_p (gdbarch, regno))
01904826 1050 {
56be3814 1051 store_spe_register (regcache, tid, regno);
01904826
JB
1052 return;
1053 }
45229ea4 1054
9abe5450
EZ
1055 if (regaddr == -1)
1056 return;
1057
4a19ea35
JB
1058 /* First collect the register. Keep in mind that the regcache's
1059 idea of the register's size may not be a multiple of sizeof
411cb3f9 1060 (long). */
56d0d96a 1061 memset (buf, 0, sizeof buf);
40a6adc1
MD
1062 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1063 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1064 {
1065 /* Little-endian values always sit at the left end of the buffer. */
56be3814 1066 regcache_raw_collect (regcache, regno, buf);
4a19ea35 1067 }
40a6adc1 1068 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1069 {
1070 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1071 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 1072 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
1073 }
1074
411cb3f9 1075 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1076 {
11fde611
JK
1077 long l;
1078
1079 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1080 errno = 0;
11fde611 1081 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1082 regaddr += sizeof (long);
e3f36dbd
KB
1083
1084 if (errno == EIO
7284e1be
UW
1085 && (regno == tdep->ppc_fpscr_regnum
1086 || regno == PPC_ORIG_R3_REGNUM
1087 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1088 {
7284e1be
UW
1089 /* Some older kernel versions don't allow fpscr, orig_r3
1090 or trap to be written. */
e3f36dbd
KB
1091 continue;
1092 }
1093
45229ea4
EZ
1094 if (errno != 0)
1095 {
bc97b3ba 1096 char message[128];
8c042590
PM
1097 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1098 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1099 perror_with_name (message);
45229ea4
EZ
1100 }
1101 }
1102}
1103
604c2f83
LM
1104static void
1105fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1106{
1107 int i;
1108 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1110 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1111
1112 for (i = 0; i < ppc_num_vshrs; i++)
1113 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1114 *vsxregsetp + i * vsxregsize);
1115}
1116
9abe5450 1117static void
56be3814 1118fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1119{
1120 int i;
40a6adc1
MD
1121 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1123 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1124 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1125 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1126
1127 for (i = 0; i < num_of_vrregs; i++)
1128 {
1129 /* The last 2 registers of this set are only 32 bit long, not
1130 128, but only VSCR is fetched as a 16 bytes quantity. */
1131 if (i == (num_of_vrregs - 2))
56be3814 1132 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1133 *vrregsetp + i * vrregsize + offset);
9abe5450 1134 else
56be3814 1135 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1136 *vrregsetp + i * vrregsize);
9abe5450
EZ
1137 }
1138}
1139
604c2f83
LM
1140static void
1141store_vsx_registers (const struct regcache *regcache, int tid)
1142{
1143 int ret;
1144 gdb_vsxregset_t regs;
1145
1146 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1147 if (ret < 0)
1148 {
1149 if (errno == EIO)
1150 {
1151 have_ptrace_getsetvsxregs = 0;
1152 return;
1153 }
1154 perror_with_name (_("Couldn't get VSX registers"));
1155 }
1156
1157 fill_vsxregset (regcache, &regs);
1158
1159 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1160 perror_with_name (_("Couldn't write VSX registers"));
1161}
1162
9abe5450 1163static void
56be3814 1164store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1165{
1166 int ret;
1167 gdb_vrregset_t regs;
1168
0897f59b 1169 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1170 if (ret < 0)
1171 {
1172 if (errno == EIO)
1173 {
1174 have_ptrace_getvrregs = 0;
1175 return;
1176 }
e2e0b3e5 1177 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1178 }
1179
56be3814 1180 fill_vrregset (regcache, &regs);
9abe5450 1181
0897f59b 1182 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1183 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1184}
1185
1dfe79e8
SDJ
1186/* This function actually issues the request to ptrace, telling
1187 it to store all general-purpose registers present in the specified
1188 regset.
1189
1190 If the ptrace request does not exist, this function returns 0
1191 and properly sets the have_ptrace_* flag. If the request fails,
1192 this function calls perror_with_name. Otherwise, if the request
1193 succeeds, then the regcache is stored and 1 is returned. */
1194static int
1195store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1196{
1197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1198 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1199 gdb_gregset_t gregset;
1200
1201 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1202 {
1203 if (errno == EIO)
1204 {
1205 have_ptrace_getsetregs = 0;
1206 return 0;
1207 }
1208 perror_with_name (_("Couldn't get general-purpose registers."));
1209 }
1210
1211 fill_gregset (regcache, &gregset, regno);
1212
1213 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1214 {
1215 if (errno == EIO)
1216 {
1217 have_ptrace_getsetregs = 0;
1218 return 0;
1219 }
1220 perror_with_name (_("Couldn't set general-purpose registers."));
1221 }
1222
1223 return 1;
1224}
1225
1226/* This is a wrapper for the store_all_gp_regs function. It is
1227 responsible for verifying if this target has the ptrace request
1228 that can be used to store all general-purpose registers at one
1229 shot. If it doesn't, then we should store them using the
1230 old-fashioned way, which is to iterate over the registers and
1231 store them one by one. */
45229ea4 1232static void
1dfe79e8 1233store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1234{
40a6adc1
MD
1235 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1237 int i;
1238
1239 if (have_ptrace_getsetregs)
1240 if (store_all_gp_regs (regcache, tid, regno))
1241 return;
1242
1243 /* If we hit this point, it doesn't really matter which
1244 architecture we are using. We just need to store the
1245 registers in the "old-fashioned way". */
6ced10dd 1246 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1247 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1248}
1249
1250/* This function actually issues the request to ptrace, telling
1251 it to store all floating-point registers present in the specified
1252 regset.
1253
1254 If the ptrace request does not exist, this function returns 0
1255 and properly sets the have_ptrace_* flag. If the request fails,
1256 this function calls perror_with_name. Otherwise, if the request
1257 succeeds, then the regcache is stored and 1 is returned. */
1258static int
1259store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1260{
1261 gdb_fpregset_t fpregs;
1262
1263 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1264 {
1265 if (errno == EIO)
1266 {
1267 have_ptrace_getsetfpregs = 0;
1268 return 0;
1269 }
1270 perror_with_name (_("Couldn't get floating-point registers."));
1271 }
1272
1273 fill_fpregset (regcache, &fpregs, regno);
1274
1275 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1276 {
1277 if (errno == EIO)
1278 {
1279 have_ptrace_getsetfpregs = 0;
1280 return 0;
1281 }
1282 perror_with_name (_("Couldn't set floating-point registers."));
1283 }
1284
1285 return 1;
1286}
1287
1288/* This is a wrapper for the store_all_fp_regs function. It is
1289 responsible for verifying if this target has the ptrace request
1290 that can be used to store all floating-point registers at one
1291 shot. If it doesn't, then we should store them using the
1292 old-fashioned way, which is to iterate over the registers and
1293 store them one by one. */
1294static void
1295store_fp_regs (const struct regcache *regcache, int tid, int regno)
1296{
1297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1299 int i;
1300
1301 if (have_ptrace_getsetfpregs)
1302 if (store_all_fp_regs (regcache, tid, regno))
1303 return;
1304
1305 /* If we hit this point, it doesn't really matter which
1306 architecture we are using. We just need to store the
1307 registers in the "old-fashioned way". */
1308 for (i = 0; i < ppc_num_fprs; i++)
1309 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1310}
1311
1312static void
1313store_ppc_registers (const struct regcache *regcache, int tid)
1314{
1315 int i;
1316 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1318
1319 store_gp_regs (regcache, tid, -1);
32b99774 1320 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1321 store_fp_regs (regcache, tid, -1);
40a6adc1 1322 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1323 if (tdep->ppc_ps_regnum != -1)
56be3814 1324 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1325 if (tdep->ppc_cr_regnum != -1)
56be3814 1326 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1327 if (tdep->ppc_lr_regnum != -1)
56be3814 1328 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1329 if (tdep->ppc_ctr_regnum != -1)
56be3814 1330 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1331 if (tdep->ppc_xer_regnum != -1)
56be3814 1332 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1333 if (tdep->ppc_mq_regnum != -1)
56be3814 1334 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1335 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1336 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1337 if (ppc_linux_trap_reg_p (gdbarch))
1338 {
1339 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1340 store_register (regcache, tid, PPC_TRAP_REGNUM);
1341 }
9abe5450
EZ
1342 if (have_ptrace_getvrregs)
1343 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1344 store_altivec_registers (regcache, tid);
604c2f83
LM
1345 if (have_ptrace_getsetvsxregs)
1346 if (tdep->ppc_vsr0_upper_regnum != -1)
1347 store_vsx_registers (regcache, tid);
6ced10dd 1348 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1349 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1350}
1351
6ffbb7ab 1352/* Fetch the AT_HWCAP entry from the aux vector. */
b261e0c5
UW
1353static unsigned long
1354ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1355{
1356 CORE_ADDR field;
1357
1358 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1359 return (unsigned long) field;
1360
1361 return 0;
1362}
1363
1364/* The cached DABR value, to install in new threads.
1365 This variable is used when we are dealing with non-BookE
1366 processors. */
1367static long saved_dabr_value;
1368
1369/* Global structure that will store information about the available
1370 features on this BookE processor. */
1371static struct ppc_debug_info booke_debug_info;
1372
1373/* Global variable that holds the maximum number of slots that the
1374 kernel will use. This is only used when the processor is BookE. */
1375static size_t max_slots_number = 0;
1376
1377struct hw_break_tuple
1378{
1379 long slot;
1380 struct ppc_hw_breakpoint *hw_break;
1381};
1382
1383/* This is an internal VEC created to store information about *points inserted
1384 for each thread. This is used for BookE processors. */
1385typedef struct thread_points
1386 {
1387 /* The TID to which this *point relates. */
1388 int tid;
1389 /* Information about the *point, such as its address, type, etc.
1390
1391 Each element inside this vector corresponds to a hardware
1392 breakpoint or watchpoint in the thread represented by TID. The maximum
1393 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1394 the tuple is NULL, then the position in the vector is free. */
1395 struct hw_break_tuple *hw_breaks;
1396 } *thread_points_p;
1397DEF_VEC_P (thread_points_p);
1398
1399VEC(thread_points_p) *ppc_threads = NULL;
1400
1401/* The version of the kernel interface that we will use if the processor is
1402 BookE. */
1403#define PPC_DEBUG_CURRENT_VERSION 1
1404
1405/* Returns non-zero if we support the ptrace interface which enables
1406 booke debugging resources. */
e0d24f8d 1407static int
6ffbb7ab 1408have_ptrace_booke_interface (void)
e0d24f8d 1409{
6ffbb7ab 1410 static int have_ptrace_booke_interface = -1;
e0d24f8d 1411
6ffbb7ab
TJB
1412 if (have_ptrace_booke_interface == -1)
1413 {
1414 int tid;
e0d24f8d 1415
6ffbb7ab
TJB
1416 tid = TIDGET (inferior_ptid);
1417 if (tid == 0)
1418 tid = PIDGET (inferior_ptid);
e0d24f8d 1419
6ffbb7ab
TJB
1420 /* Check for kernel support for BOOKE debug registers. */
1421 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1422 {
0c56f59b
EBM
1423 /* Check whether ptrace BOOKE interface is functional and
1424 provides any supported feature. */
1425 if (booke_debug_info.features != 0)
1426 {
1427 have_ptrace_booke_interface = 1;
1428 max_slots_number = booke_debug_info.num_instruction_bps
1429 + booke_debug_info.num_data_bps
1430 + booke_debug_info.num_condition_regs;
1431 return have_ptrace_booke_interface;
1432 }
6ffbb7ab 1433 }
0c56f59b
EBM
1434 /* Old school interface and no BOOKE debug registers support. */
1435 have_ptrace_booke_interface = 0;
1436 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1437 }
1438
1439 return have_ptrace_booke_interface;
e0d24f8d
WZ
1440}
1441
6ffbb7ab
TJB
1442static int
1443ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
b7622095 1444{
6ffbb7ab 1445 int total_hw_wp, total_hw_bp;
b7622095 1446
6ffbb7ab
TJB
1447 if (have_ptrace_booke_interface ())
1448 {
1449 /* For PPC BookE processors, the number of available hardware
1450 watchpoints and breakpoints is stored at the booke_debug_info
1451 struct. */
1452 total_hw_bp = booke_debug_info.num_instruction_bps;
1453 total_hw_wp = booke_debug_info.num_data_bps;
1454 }
1455 else
1456 {
1457 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1458 hardware breakpoints. */
1459 total_hw_bp = 0;
1460 total_hw_wp = 1;
1461 }
b7622095 1462
6ffbb7ab
TJB
1463 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1464 || type == bp_access_watchpoint || type == bp_watchpoint)
1465 {
bb08bdbd 1466 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1467 return -1;
1468 }
1469 else if (type == bp_hardware_breakpoint)
1470 {
1471 if (cnt > total_hw_bp)
1472 return -1;
1473 }
1474
1475 if (!have_ptrace_booke_interface ())
1476 {
1477 int tid;
1478 ptid_t ptid = inferior_ptid;
1479
0df8b418
MS
1480 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1481 and whether the target has DABR. If either answer is no, the
1482 ptrace call will return -1. Fail in that case. */
6ffbb7ab
TJB
1483 tid = TIDGET (ptid);
1484 if (tid == 0)
1485 tid = PIDGET (ptid);
1486
1487 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1488 return 0;
1489 }
1490
1491 return 1;
b7622095
LM
1492}
1493
e0d24f8d
WZ
1494static int
1495ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1496{
1497 /* Handle sub-8-byte quantities. */
1498 if (len <= 0)
1499 return 0;
1500
6ffbb7ab
TJB
1501 /* The new BookE ptrace interface tells if there are alignment restrictions
1502 for watchpoints in the processors. In that case, we use that information
1503 to determine the hardcoded watchable region for watchpoints. */
1504 if (have_ptrace_booke_interface ())
1505 {
e09342b5
TJB
1506 /* DAC-based processors (i.e., embedded processors), like the PowerPC 440
1507 have ranged watchpoints and can watch any access within an arbitrary
1508 memory region. This is useful to watch arrays and structs, for
1509 instance. It takes two hardware watchpoints though. */
1510 if (len > 1
1511 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)
1512 return 2;
1513 else if (booke_debug_info.data_bp_alignment
1514 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1515 + booke_debug_info.data_bp_alignment))
0cf6dd15 1516 return 0;
6ffbb7ab 1517 }
b7622095 1518 /* addr+len must fall in the 8 byte watchable region for DABR-based
6ffbb7ab
TJB
1519 processors (i.e., server processors). Without the new BookE ptrace
1520 interface, DAC-based processors (i.e., embedded processors) will use
b7622095 1521 addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1522 passed in the old ptrace interface. */
1523 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1524 && (addr + len) > (addr & ~3) + 4)
1525 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1526 return 0;
1527
1528 return 1;
1529}
1530
6ffbb7ab 1531/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1532static int
6ffbb7ab
TJB
1533booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1534{
ad422571
TJB
1535 return (a->trigger_type == b->trigger_type
1536 && a->addr_mode == b->addr_mode
1537 && a->condition_mode == b->condition_mode
1538 && a->addr == b->addr
1539 && a->addr2 == b->addr2
6ffbb7ab
TJB
1540 && a->condition_value == b->condition_value);
1541}
1542
1543/* This function can be used to retrieve a thread_points by the TID of the
1544 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1545 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1546 provided TID will be created and returned. */
1547static struct thread_points *
1548booke_find_thread_points_by_tid (int tid, int alloc_new)
1549{
1550 int i;
1551 struct thread_points *t;
1552
1553 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1554 if (t->tid == tid)
1555 return t;
1556
1557 t = NULL;
1558
1559 /* Do we need to allocate a new point_item
1560 if the wanted one does not exist? */
1561 if (alloc_new)
1562 {
1563 t = xmalloc (sizeof (struct thread_points));
0df8b418
MS
1564 t->hw_breaks
1565 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
6ffbb7ab
TJB
1566 t->tid = tid;
1567 VEC_safe_push (thread_points_p, ppc_threads, t);
1568 }
1569
1570 return t;
1571}
1572
1573/* This function is a generic wrapper that is responsible for inserting a
1574 *point (i.e., calling `ptrace' in order to issue the request to the
1575 kernel) and registering it internally in GDB. */
1576static void
1577booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1578{
1579 int i;
1580 long slot;
1581 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1582 struct hw_break_tuple *hw_breaks;
1583 struct cleanup *c = make_cleanup (xfree, p);
1584 struct thread_points *t;
1585 struct hw_break_tuple *tuple;
1586
1587 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1588
1589 errno = 0;
1590 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1591 if (slot < 0)
1592 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1593
1594 /* Everything went fine, so we have to register this *point. */
1595 t = booke_find_thread_points_by_tid (tid, 1);
1596 gdb_assert (t != NULL);
1597 hw_breaks = t->hw_breaks;
1598
1599 /* Find a free element in the hw_breaks vector. */
1600 for (i = 0; i < max_slots_number; i++)
1601 if (hw_breaks[i].hw_break == NULL)
1602 {
1603 hw_breaks[i].slot = slot;
1604 hw_breaks[i].hw_break = p;
1605 break;
1606 }
1607
1608 gdb_assert (i != max_slots_number);
1609
1610 discard_cleanups (c);
1611}
1612
1613/* This function is a generic wrapper that is responsible for removing a
1614 *point (i.e., calling `ptrace' in order to issue the request to the
1615 kernel), and unregistering it internally at GDB. */
1616static void
1617booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1618{
1619 int i;
1620 struct hw_break_tuple *hw_breaks;
1621 struct thread_points *t;
1622
1623 t = booke_find_thread_points_by_tid (tid, 0);
1624 gdb_assert (t != NULL);
1625 hw_breaks = t->hw_breaks;
1626
1627 for (i = 0; i < max_slots_number; i++)
1628 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1629 break;
1630
1631 gdb_assert (i != max_slots_number);
1632
1633 /* We have to ignore ENOENT errors because the kernel implements hardware
1634 breakpoints/watchpoints as "one-shot", that is, they are automatically
1635 deleted when hit. */
1636 errno = 0;
1637 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1638 if (errno != ENOENT)
0df8b418
MS
1639 perror_with_name (_("Unexpected error deleting "
1640 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1641
1642 xfree (hw_breaks[i].hw_break);
1643 hw_breaks[i].hw_break = NULL;
1644}
9f0bdab8 1645
f1310107
TJB
1646/* Return the number of registers needed for a ranged breakpoint. */
1647
1648static int
1649ppc_linux_ranged_break_num_registers (struct target_ops *target)
1650{
1651 return ((have_ptrace_booke_interface ()
1652 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1653 2 : -1);
1654}
1655
1656/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1657 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1658
2c387241 1659static int
6ffbb7ab
TJB
1660ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1661 struct bp_target_info *bp_tgt)
e0d24f8d 1662{
9f0bdab8 1663 struct lwp_info *lp;
6ffbb7ab
TJB
1664 struct ppc_hw_breakpoint p;
1665
1666 if (!have_ptrace_booke_interface ())
1667 return -1;
1668
ad422571
TJB
1669 p.version = PPC_DEBUG_CURRENT_VERSION;
1670 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1671 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1672 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1673 p.condition_value = 0;
1674
f1310107
TJB
1675 if (bp_tgt->length)
1676 {
1677 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1678
1679 /* The breakpoint will trigger if the address of the instruction is
1680 within the defined range, as follows: p.addr <= address < p.addr2. */
1681 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1682 }
1683 else
1684 {
1685 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1686 p.addr2 = 0;
1687 }
1688
4c38200f
PA
1689 ALL_LWPS (lp)
1690 booke_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1691
1692 return 0;
1693}
1694
1695static int
1696ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1697 struct bp_target_info *bp_tgt)
1698{
6ffbb7ab
TJB
1699 struct lwp_info *lp;
1700 struct ppc_hw_breakpoint p;
b7622095 1701
6ffbb7ab
TJB
1702 if (!have_ptrace_booke_interface ())
1703 return -1;
1704
ad422571
TJB
1705 p.version = PPC_DEBUG_CURRENT_VERSION;
1706 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1707 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1708 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1709 p.condition_value = 0;
1710
f1310107
TJB
1711 if (bp_tgt->length)
1712 {
1713 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1714
1715 /* The breakpoint will trigger if the address of the instruction is within
1716 the defined range, as follows: p.addr <= address < p.addr2. */
1717 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1718 }
1719 else
1720 {
1721 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1722 p.addr2 = 0;
1723 }
1724
4c38200f
PA
1725 ALL_LWPS (lp)
1726 booke_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1727
1728 return 0;
1729}
1730
1731static int
1732get_trigger_type (int rw)
1733{
1734 int t;
1735
1736 if (rw == hw_read)
1737 t = PPC_BREAKPOINT_TRIGGER_READ;
1738 else if (rw == hw_write)
1739 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1740 else
6ffbb7ab
TJB
1741 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1742
1743 return t;
1744}
1745
9c06b0b4
TJB
1746/* Insert a new masked watchpoint at ADDR using the mask MASK.
1747 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1748 or hw_access for an access watchpoint. Returns 0 on success and throws
1749 an error on failure. */
1750
1751static int
1752ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1753 CORE_ADDR mask, int rw)
1754{
9c06b0b4
TJB
1755 struct lwp_info *lp;
1756 struct ppc_hw_breakpoint p;
1757
1758 gdb_assert (have_ptrace_booke_interface ());
1759
1760 p.version = PPC_DEBUG_CURRENT_VERSION;
1761 p.trigger_type = get_trigger_type (rw);
1762 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1763 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1764 p.addr = addr;
1765 p.addr2 = mask;
1766 p.condition_value = 0;
1767
4c38200f
PA
1768 ALL_LWPS (lp)
1769 booke_insert_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1770
1771 return 0;
1772}
1773
1774/* Remove a masked watchpoint at ADDR with the mask MASK.
1775 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1776 or hw_access for an access watchpoint. Returns 0 on success and throws
1777 an error on failure. */
1778
1779static int
1780ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1781 CORE_ADDR mask, int rw)
1782{
9c06b0b4
TJB
1783 struct lwp_info *lp;
1784 struct ppc_hw_breakpoint p;
1785
1786 gdb_assert (have_ptrace_booke_interface ());
1787
1788 p.version = PPC_DEBUG_CURRENT_VERSION;
1789 p.trigger_type = get_trigger_type (rw);
1790 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1791 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1792 p.addr = addr;
1793 p.addr2 = mask;
1794 p.condition_value = 0;
1795
4c38200f
PA
1796 ALL_LWPS (lp)
1797 booke_remove_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1798
1799 return 0;
1800}
1801
0cf6dd15
TJB
1802/* Check whether we have at least one free DVC register. */
1803static int
1804can_use_watchpoint_cond_accel (void)
1805{
1806 struct thread_points *p;
1807 int tid = TIDGET (inferior_ptid);
1808 int cnt = booke_debug_info.num_condition_regs, i;
1809 CORE_ADDR tmp_value;
1810
1811 if (!have_ptrace_booke_interface () || cnt == 0)
1812 return 0;
1813
1814 p = booke_find_thread_points_by_tid (tid, 0);
1815
1816 if (p)
1817 {
1818 for (i = 0; i < max_slots_number; i++)
1819 if (p->hw_breaks[i].hw_break != NULL
1820 && (p->hw_breaks[i].hw_break->condition_mode
1821 != PPC_BREAKPOINT_CONDITION_NONE))
1822 cnt--;
1823
1824 /* There are no available slots now. */
1825 if (cnt <= 0)
1826 return 0;
1827 }
1828
1829 return 1;
1830}
1831
1832/* Calculate the enable bits and the contents of the Data Value Compare
1833 debug register present in BookE processors.
1834
1835 ADDR is the address to be watched, LEN is the length of watched data
1836 and DATA_VALUE is the value which will trigger the watchpoint.
1837 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1838 CONDITION_VALUE will hold the value which should be put in the
1839 DVC register. */
1840static void
1841calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1842 uint32_t *condition_mode, uint64_t *condition_value)
1843{
1844 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1845 rightmost_enabled_byte;
1846 CORE_ADDR addr_end_data, addr_end_dvc;
1847
1848 /* The DVC register compares bytes within fixed-length windows which
1849 are word-aligned, with length equal to that of the DVC register.
1850 We need to calculate where our watch region is relative to that
1851 window and enable comparison of the bytes which fall within it. */
1852
1853 align_offset = addr % booke_debug_info.sizeof_condition;
1854 addr_end_data = addr + len;
1855 addr_end_dvc = (addr - align_offset
1856 + booke_debug_info.sizeof_condition);
1857 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1858 addr_end_data - addr_end_dvc : 0;
1859 num_byte_enable = len - num_bytes_off_dvc;
1860 /* Here, bytes are numbered from right to left. */
1861 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1862 addr_end_dvc - addr_end_data : 0;
1863
1864 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1865 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1866 *condition_mode
1867 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1868
1869 /* Now we need to match the position within the DVC of the comparison
1870 value with where the watch region is relative to the window
1871 (i.e., the ALIGN_OFFSET). */
1872
1873 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1874 << rightmost_enabled_byte * 8);
1875}
1876
1877/* Return the number of memory locations that need to be accessed to
1878 evaluate the expression which generated the given value chain.
1879 Returns -1 if there's any register access involved, or if there are
1880 other kinds of values which are not acceptable in a condition
1881 expression (e.g., lval_computed or lval_internalvar). */
1882static int
1883num_memory_accesses (struct value *v)
1884{
1885 int found_memory_cnt = 0;
1886 struct value *head = v;
1887
1888 /* The idea here is that evaluating an expression generates a series
1889 of values, one holding the value of every subexpression. (The
1890 expression a*b+c has five subexpressions: a, b, a*b, c, and
1891 a*b+c.) GDB's values hold almost enough information to establish
1892 the criteria given above --- they identify memory lvalues,
1893 register lvalues, computed values, etcetera. So we can evaluate
1894 the expression, and then scan the chain of values that leaves
1895 behind to determine the memory locations involved in the evaluation
1896 of an expression.
1897
1898 However, I don't think that the values returned by inferior
1899 function calls are special in any way. So this function may not
1900 notice that an expression contains an inferior function call.
1901 FIXME. */
1902
1903 for (; v; v = value_next (v))
1904 {
1905 /* Constants and values from the history are fine. */
1906 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1907 continue;
1908 else if (VALUE_LVAL (v) == lval_memory)
1909 {
1910 /* A lazy memory lvalue is one that GDB never needed to fetch;
1911 we either just used its address (e.g., `a' in `a.b') or
1912 we never needed it at all (e.g., `a' in `a,b'). */
1913 if (!value_lazy (v))
1914 found_memory_cnt++;
1915 }
0df8b418 1916 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1917 else
1918 return -1;
1919 }
1920
1921 return found_memory_cnt;
1922}
1923
1924/* Verifies whether the expression COND can be implemented using the
1925 DVC (Data Value Compare) register in BookE processors. The expression
1926 must test the watch value for equality with a constant expression.
1927 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1928 which the watch value should be compared and LEN will contain the size
1929 of the constant. */
0cf6dd15
TJB
1930static int
1931check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1932 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1933{
1934 int pc = 1, num_accesses_left, num_accesses_right;
1935 struct value *left_val, *right_val, *left_chain, *right_chain;
1936
1937 if (cond->elts[0].opcode != BINOP_EQUAL)
1938 return 0;
1939
1940 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1941 num_accesses_left = num_memory_accesses (left_chain);
1942
1943 if (left_val == NULL || num_accesses_left < 0)
1944 {
1945 free_value_chain (left_chain);
1946
1947 return 0;
1948 }
1949
1950 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1951 num_accesses_right = num_memory_accesses (right_chain);
1952
1953 if (right_val == NULL || num_accesses_right < 0)
1954 {
1955 free_value_chain (left_chain);
1956 free_value_chain (right_chain);
1957
1958 return 0;
1959 }
1960
1961 if (num_accesses_left == 1 && num_accesses_right == 0
1962 && VALUE_LVAL (left_val) == lval_memory
1963 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1964 {
1965 *data_value = value_as_long (right_val);
1966
1967 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1968 the same type as the memory region referenced by LEFT_VAL. */
1969 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1970 }
0cf6dd15
TJB
1971 else if (num_accesses_left == 0 && num_accesses_right == 1
1972 && VALUE_LVAL (right_val) == lval_memory
1973 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1974 {
1975 *data_value = value_as_long (left_val);
1976
1977 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1978 the same type as the memory region referenced by RIGHT_VAL. */
1979 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1980 }
0cf6dd15
TJB
1981 else
1982 {
1983 free_value_chain (left_chain);
1984 free_value_chain (right_chain);
1985
1986 return 0;
1987 }
1988
1989 free_value_chain (left_chain);
1990 free_value_chain (right_chain);
1991
1992 return 1;
1993}
1994
1995/* Return non-zero if the target is capable of using hardware to evaluate
1996 the condition expression, thus only triggering the watchpoint when it is
1997 true. */
1998static int
1999ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
2000 struct expression *cond)
2001{
2002 CORE_ADDR data_value;
2003
2004 return (have_ptrace_booke_interface ()
2005 && booke_debug_info.num_condition_regs > 0
e7db58ea 2006 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
2007}
2008
e09342b5
TJB
2009/* Set up P with the parameters necessary to request a watchpoint covering
2010 LEN bytes starting at ADDR and if possible with condition expression COND
2011 evaluated by hardware. INSERT tells if we are creating a request for
2012 inserting or removing the watchpoint. */
2013
2014static void
2015create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2016 int len, int rw, struct expression *cond,
2017 int insert)
2018{
f16c4e8b
AS
2019 if (len == 1
2020 || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
2021 {
2022 int use_condition;
2023 CORE_ADDR data_value;
2024
2025 use_condition = (insert? can_use_watchpoint_cond_accel ()
2026 : booke_debug_info.num_condition_regs > 0);
e7db58ea
TJB
2027 if (cond && use_condition && check_condition (addr, cond,
2028 &data_value, &len))
e09342b5
TJB
2029 calculate_dvc (addr, len, data_value, &p->condition_mode,
2030 &p->condition_value);
2031 else
2032 {
2033 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2034 p->condition_value = 0;
2035 }
2036
2037 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2038 p->addr2 = 0;
2039 }
2040 else
2041 {
2042 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2043 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2044 p->condition_value = 0;
2045
2046 /* The watchpoint will trigger if the address of the memory access is
2047 within the defined range, as follows: p->addr <= address < p->addr2.
2048
2049 Note that the above sentence just documents how ptrace interprets
2050 its arguments; the watchpoint is set to watch the range defined by
2051 the user _inclusively_, as specified by the user interface. */
2052 p->addr2 = (uint64_t) addr + len;
2053 }
2054
2055 p->version = PPC_DEBUG_CURRENT_VERSION;
2056 p->trigger_type = get_trigger_type (rw);
2057 p->addr = (uint64_t) addr;
2058}
2059
6ffbb7ab 2060static int
0cf6dd15
TJB
2061ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2062 struct expression *cond)
6ffbb7ab
TJB
2063{
2064 struct lwp_info *lp;
6ffbb7ab
TJB
2065 int ret = -1;
2066
2067 if (have_ptrace_booke_interface ())
e0d24f8d 2068 {
6ffbb7ab
TJB
2069 struct ppc_hw_breakpoint p;
2070
e09342b5 2071 create_watchpoint_request (&p, addr, len, rw, cond, 1);
6ffbb7ab 2072
4c38200f
PA
2073 ALL_LWPS (lp)
2074 booke_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2075
2076 ret = 0;
e0d24f8d 2077 }
6ffbb7ab
TJB
2078 else
2079 {
2080 long dabr_value;
2081 long read_mode, write_mode;
e0d24f8d 2082
6ffbb7ab
TJB
2083 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2084 {
2085 /* PowerPC 440 requires only the read/write flags to be passed
2086 to the kernel. */
ad422571 2087 read_mode = 1;
6ffbb7ab
TJB
2088 write_mode = 2;
2089 }
2090 else
2091 {
2092 /* PowerPC 970 and other DABR-based processors are required to pass
2093 the Breakpoint Translation bit together with the flags. */
ad422571 2094 read_mode = 5;
6ffbb7ab
TJB
2095 write_mode = 6;
2096 }
1c86e440 2097
6ffbb7ab
TJB
2098 dabr_value = addr & ~(read_mode | write_mode);
2099 switch (rw)
2100 {
2101 case hw_read:
2102 /* Set read and translate bits. */
2103 dabr_value |= read_mode;
2104 break;
2105 case hw_write:
2106 /* Set write and translate bits. */
2107 dabr_value |= write_mode;
2108 break;
2109 case hw_access:
2110 /* Set read, write and translate bits. */
2111 dabr_value |= read_mode | write_mode;
2112 break;
2113 }
1c86e440 2114
6ffbb7ab
TJB
2115 saved_dabr_value = dabr_value;
2116
4c38200f
PA
2117 ALL_LWPS (lp)
2118 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2119 saved_dabr_value) < 0)
6ffbb7ab
TJB
2120 return -1;
2121
2122 ret = 0;
2123 }
2124
2125 return ret;
e0d24f8d
WZ
2126}
2127
2c387241 2128static int
0cf6dd15
TJB
2129ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2130 struct expression *cond)
e0d24f8d 2131{
9f0bdab8 2132 struct lwp_info *lp;
6ffbb7ab 2133 int ret = -1;
9f0bdab8 2134
6ffbb7ab
TJB
2135 if (have_ptrace_booke_interface ())
2136 {
2137 struct ppc_hw_breakpoint p;
2138
e09342b5 2139 create_watchpoint_request (&p, addr, len, rw, cond, 0);
6ffbb7ab 2140
4c38200f
PA
2141 ALL_LWPS (lp)
2142 booke_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2143
2144 ret = 0;
2145 }
2146 else
2147 {
2148 saved_dabr_value = 0;
4c38200f
PA
2149 ALL_LWPS (lp)
2150 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2151 saved_dabr_value) < 0)
6ffbb7ab
TJB
2152 return -1;
2153
2154 ret = 0;
2155 }
2156
2157 return ret;
e0d24f8d
WZ
2158}
2159
9f0bdab8 2160static void
7b50312a 2161ppc_linux_new_thread (struct lwp_info *lp)
e0d24f8d 2162{
7b50312a 2163 int tid = TIDGET (lp->ptid);
6ffbb7ab
TJB
2164
2165 if (have_ptrace_booke_interface ())
2166 {
2167 int i;
2168 struct thread_points *p;
2169 struct hw_break_tuple *hw_breaks;
2170
2171 if (VEC_empty (thread_points_p, ppc_threads))
2172 return;
2173
0df8b418 2174 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
2175 p = VEC_last (thread_points_p, ppc_threads);
2176 hw_breaks = p->hw_breaks;
2177
0df8b418 2178 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
2179 for (i = 0; i < max_slots_number; i++)
2180 if (hw_breaks[i].hw_break)
aacbb8a5
LM
2181 {
2182 /* Older kernels did not make new threads inherit their parent
2183 thread's debug state, so we always clear the slot and replicate
2184 the debug state ourselves, ensuring compatibility with all
2185 kernels. */
2186
2187 /* The ppc debug resource accounting is done through "slots".
2188 Ask the kernel the deallocate this specific *point's slot. */
2189 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2190
2191 booke_insert_point (hw_breaks[i].hw_break, tid);
2192 }
6ffbb7ab
TJB
2193 }
2194 else
2195 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2196}
2197
2198static void
2199ppc_linux_thread_exit (struct thread_info *tp, int silent)
2200{
2201 int i;
2202 int tid = TIDGET (tp->ptid);
2203 struct hw_break_tuple *hw_breaks;
2204 struct thread_points *t = NULL, *p;
2205
2206 if (!have_ptrace_booke_interface ())
2207 return;
2208
2209 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2210 if (p->tid == tid)
2211 {
2212 t = p;
2213 break;
2214 }
2215
2216 if (t == NULL)
2217 return;
2218
2219 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2220
2221 hw_breaks = t->hw_breaks;
2222
2223 for (i = 0; i < max_slots_number; i++)
2224 if (hw_breaks[i].hw_break)
2225 xfree (hw_breaks[i].hw_break);
2226
2227 xfree (t->hw_breaks);
2228 xfree (t);
e0d24f8d
WZ
2229}
2230
2231static int
9f0bdab8 2232ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
e0d24f8d 2233{
f865ee35 2234 siginfo_t siginfo;
e0d24f8d 2235
f865ee35
JK
2236 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2237 return 0;
e0d24f8d 2238
f865ee35
JK
2239 if (siginfo.si_signo != SIGTRAP
2240 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
e0d24f8d
WZ
2241 return 0;
2242
6ffbb7ab
TJB
2243 if (have_ptrace_booke_interface ())
2244 {
2245 int i;
2246 struct thread_points *t;
2247 struct hw_break_tuple *hw_breaks;
2248 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2249 int slot = siginfo.si_errno;
6ffbb7ab
TJB
2250
2251 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2252
2253 /* Find out if this *point is a hardware breakpoint.
2254 If so, we should return 0. */
2255 if (t)
2256 {
2257 hw_breaks = t->hw_breaks;
2258 for (i = 0; i < max_slots_number; i++)
2259 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2260 && hw_breaks[i].hw_break->trigger_type
2261 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2262 return 0;
2263 }
2264 }
2265
f865ee35 2266 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
e0d24f8d
WZ
2267 return 1;
2268}
2269
9f0bdab8
DJ
2270static int
2271ppc_linux_stopped_by_watchpoint (void)
2272{
2273 CORE_ADDR addr;
2274 return ppc_linux_stopped_data_address (&current_target, &addr);
2275}
2276
5009afc5
AS
2277static int
2278ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2279 CORE_ADDR addr,
2280 CORE_ADDR start, int length)
2281{
b7622095
LM
2282 int mask;
2283
6ffbb7ab
TJB
2284 if (have_ptrace_booke_interface ()
2285 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2286 return start <= addr && start + length >= addr;
2287 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2288 mask = 3;
2289 else
2290 mask = 7;
2291
2292 addr &= ~mask;
2293
0df8b418 2294 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2295 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2296}
2297
9c06b0b4
TJB
2298/* Return the number of registers needed for a masked hardware watchpoint. */
2299
2300static int
2301ppc_linux_masked_watch_num_registers (struct target_ops *target,
2302 CORE_ADDR addr, CORE_ADDR mask)
2303{
2304 if (!have_ptrace_booke_interface ()
2305 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2306 return -1;
2307 else if ((mask & 0xC0000000) != 0xC0000000)
2308 {
2309 warning (_("The given mask covers kernel address space "
2310 "and cannot be used.\n"));
2311
2312 return -2;
2313 }
2314 else
2315 return 2;
2316}
2317
10d6c8cd 2318static void
28439f5e
PA
2319ppc_linux_store_inferior_registers (struct target_ops *ops,
2320 struct regcache *regcache, int regno)
45229ea4 2321{
0df8b418 2322 /* Overload thread id onto process id. */
05f13b9c
EZ
2323 int tid = TIDGET (inferior_ptid);
2324
0df8b418 2325 /* No thread id, just use process id. */
05f13b9c
EZ
2326 if (tid == 0)
2327 tid = PIDGET (inferior_ptid);
2328
45229ea4 2329 if (regno >= 0)
56be3814 2330 store_register (regcache, tid, regno);
45229ea4 2331 else
56be3814 2332 store_ppc_registers (regcache, tid);
45229ea4
EZ
2333}
2334
f2db237a
AM
2335/* Functions for transferring registers between a gregset_t or fpregset_t
2336 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2337 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2338 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2339 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2340
50c9bd31 2341void
7f7fe91e 2342supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2343{
f2db237a 2344 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2345
f2db237a 2346 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2347}
2348
fdb28ac4 2349void
7f7fe91e
UW
2350fill_gregset (const struct regcache *regcache,
2351 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2352{
f2db237a 2353 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2354
f2db237a
AM
2355 if (regno == -1)
2356 memset (gregsetp, 0, sizeof (*gregsetp));
2357 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2358}
2359
50c9bd31 2360void
7f7fe91e 2361supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2362{
f2db237a
AM
2363 const struct regset *regset = ppc_linux_fpregset ();
2364
2365 ppc_supply_fpregset (regset, regcache, -1,
2366 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2367}
fdb28ac4 2368
fdb28ac4 2369void
7f7fe91e
UW
2370fill_fpregset (const struct regcache *regcache,
2371 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2372{
f2db237a
AM
2373 const struct regset *regset = ppc_linux_fpregset ();
2374
2375 ppc_collect_fpregset (regset, regcache, regno,
2376 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2377}
10d6c8cd 2378
409c383c
UW
2379static int
2380ppc_linux_target_wordsize (void)
2381{
2382 int wordsize = 4;
2383
2384 /* Check for 64-bit inferior process. This is the case when the host is
2385 64-bit, and in addition the top bit of the MSR register is set. */
2386#ifdef __powerpc64__
2387 long msr;
2388
2389 int tid = TIDGET (inferior_ptid);
2390 if (tid == 0)
2391 tid = PIDGET (inferior_ptid);
2392
2393 errno = 0;
2394 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2395 if (errno == 0 && msr < 0)
2396 wordsize = 8;
2397#endif
2398
2399 return wordsize;
2400}
2401
2402static int
2403ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2404 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2405{
2406 int sizeof_auxv_field = ppc_linux_target_wordsize ();
f5656ead 2407 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2408 gdb_byte *ptr = *readptr;
2409
2410 if (endptr == ptr)
2411 return 0;
2412
2413 if (endptr - ptr < sizeof_auxv_field * 2)
2414 return -1;
2415
e17a4113 2416 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2417 ptr += sizeof_auxv_field;
e17a4113 2418 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2419 ptr += sizeof_auxv_field;
2420
2421 *readptr = ptr;
2422 return 1;
2423}
2424
310a98e1
DJ
2425static const struct target_desc *
2426ppc_linux_read_description (struct target_ops *ops)
2427{
7284e1be 2428 int altivec = 0;
604c2f83 2429 int vsx = 0;
69abc51c 2430 int isa205 = 0;
f4d9bade 2431 int cell = 0;
7284e1be
UW
2432
2433 int tid = TIDGET (inferior_ptid);
2434 if (tid == 0)
2435 tid = PIDGET (inferior_ptid);
2436
310a98e1
DJ
2437 if (have_ptrace_getsetevrregs)
2438 {
2439 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2440
2441 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2442 return tdesc_powerpc_e500l;
2443
2444 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2445 Anything else needs to be reported. */
2446 else if (errno != EIO)
2447 perror_with_name (_("Unable to fetch SPE registers"));
2448 }
2449
604c2f83
LM
2450 if (have_ptrace_getsetvsxregs)
2451 {
2452 gdb_vsxregset_t vsxregset;
2453
2454 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2455 vsx = 1;
2456
2457 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2458 Anything else needs to be reported. */
2459 else if (errno != EIO)
2460 perror_with_name (_("Unable to fetch VSX registers"));
2461 }
2462
7284e1be
UW
2463 if (have_ptrace_getvrregs)
2464 {
2465 gdb_vrregset_t vrregset;
2466
2467 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2468 altivec = 1;
2469
2470 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2471 Anything else needs to be reported. */
2472 else if (errno != EIO)
2473 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2474 }
2475
f04c6d38 2476 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
0df8b418 2477 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
f04c6d38
TJB
2478 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2479 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2480 half of the register are for Decimal Floating Point, we check if that
2481 feature is available to decide the size of the FPSCR. */
2482 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
2483 isa205 = 1;
2484
f4d9bade
UW
2485 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2486 cell = 1;
2487
409c383c
UW
2488 if (ppc_linux_target_wordsize () == 8)
2489 {
f4d9bade
UW
2490 if (cell)
2491 return tdesc_powerpc_cell64l;
2492 else if (vsx)
409c383c
UW
2493 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2494 else if (altivec)
0df8b418
MS
2495 return isa205
2496 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
409c383c
UW
2497
2498 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2499 }
7284e1be 2500
f4d9bade
UW
2501 if (cell)
2502 return tdesc_powerpc_cell32l;
2503 else if (vsx)
69abc51c 2504 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 2505 else if (altivec)
69abc51c 2506 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 2507
69abc51c 2508 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
2509}
2510
10d6c8cd
DJ
2511void _initialize_ppc_linux_nat (void);
2512
2513void
2514_initialize_ppc_linux_nat (void)
2515{
2516 struct target_ops *t;
2517
2518 /* Fill in the generic GNU/Linux methods. */
2519 t = linux_target ();
2520
2521 /* Add our register access methods. */
2522 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2523 t->to_store_registers = ppc_linux_store_inferior_registers;
2524
6ffbb7ab
TJB
2525 /* Add our breakpoint/watchpoint methods. */
2526 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2527 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2528 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
e0d24f8d
WZ
2529 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2530 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2531 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
9c06b0b4
TJB
2532 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2533 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
e0d24f8d
WZ
2534 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2535 t->to_stopped_data_address = ppc_linux_stopped_data_address;
5009afc5 2536 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
0df8b418
MS
2537 t->to_can_accel_watchpoint_condition
2538 = ppc_linux_can_accel_watchpoint_condition;
9c06b0b4 2539 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
f1310107 2540 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
e0d24f8d 2541
310a98e1 2542 t->to_read_description = ppc_linux_read_description;
409c383c 2543 t->to_auxv_parse = ppc_linux_auxv_parse;
310a98e1 2544
6ffbb7ab
TJB
2545 observer_attach_thread_exit (ppc_linux_thread_exit);
2546
10d6c8cd 2547 /* Register the target. */
f973ed9c 2548 linux_nat_add_target (t);
9f0bdab8 2549 linux_nat_set_new_thread (t, ppc_linux_new_thread);
10d6c8cd 2550}
This page took 1.781219 seconds and 4 git commands to generate.