* blockframe.c (inside_main_func): No longer use symbol_lookup()
[deliverable/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
CommitLineData
7b112f9c
JT
1/* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
4 Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
24#include "gdbcore.h"
25#include "inferior.h"
26#include "regcache.h"
27#include "value.h"
bdf64bac 28#include "gdb_string.h"
8be9034a 29#include "gdb_assert.h"
7b112f9c
JT
30#include "ppc-tdep.h"
31
7b112f9c
JT
32/* Pass the arguments in either registers, or in the stack. Using the
33 ppc sysv ABI, the first eight words of the argument list (that might
34 be less than eight parameters if some parameters occupy more than one
35 word) are passed in r3..r10 registers. float and double parameters are
36 passed in fpr's, in addition to that. Rest of the parameters if any
37 are passed in user stack.
38
39 If the function is returning a structure, then the return address is passed
40 in r3, then the first 7 words of the parametes can be passed in registers,
41 starting from r4. */
42
43CORE_ADDR
77b2b6d4
AC
44ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
45 struct regcache *regcache, CORE_ADDR bp_addr,
46 int nargs, struct value **args, CORE_ADDR sp,
47 int struct_return, CORE_ADDR struct_addr)
7b112f9c 48{
0a613259 49 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
68856ea3
AC
50 const CORE_ADDR saved_sp = read_sp ();
51 int argspace = 0; /* 0 is an initial wrong guess. */
52 int write_pass;
7b112f9c 53
68856ea3 54 /* Go through the argument list twice.
7b112f9c 55
68856ea3
AC
56 Pass 1: Figure out how much new stack space is required for
57 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
58 ABI doesn't reserve any extra space for parameters which are put
59 in registers, but does always push structures and then pass their
60 address.
7a41266b 61
68856ea3
AC
62 Pass 2: Replay the same computation but this time also write the
63 values out to the target. */
7b112f9c 64
68856ea3
AC
65 for (write_pass = 0; write_pass < 2; write_pass++)
66 {
67 int argno;
68 /* Next available floating point register for float and double
69 arguments. */
70 int freg = 1;
71 /* Next available general register for non-float, non-vector
72 arguments. */
73 int greg = 3;
74 /* Next available vector register for vector arguments. */
75 int vreg = 2;
76 /* Arguments start above the "LR save word" and "Back chain". */
77 int argoffset = 2 * tdep->wordsize;
78 /* Structures start after the arguments. */
79 int structoffset = argoffset + argspace;
80
81 /* If the function is returning a `struct', then the first word
944fcfab
AC
82 (which will be passed in r3) is used for struct return
83 address. In that case we should advance one word and start
84 from r4 register to copy parameters. */
68856ea3 85 if (struct_return)
7b112f9c 86 {
68856ea3
AC
87 if (write_pass)
88 regcache_cooked_write_signed (regcache,
89 tdep->ppc_gp0_regnum + greg,
90 struct_addr);
91 greg++;
7b112f9c 92 }
68856ea3
AC
93
94 for (argno = 0; argno < nargs; argno++)
7b112f9c 95 {
68856ea3
AC
96 struct value *arg = args[argno];
97 struct type *type = check_typedef (VALUE_TYPE (arg));
98 int len = TYPE_LENGTH (type);
99 char *val = VALUE_CONTENTS (arg);
100
101 if (TYPE_CODE (type) == TYPE_CODE_FLT
944fcfab 102 && ppc_floating_point_unit_p (current_gdbarch) && len <= 8)
7b112f9c 103 {
68856ea3 104 /* Floating point value converted to "double" then
944fcfab
AC
105 passed in an FP register, when the registers run out,
106 8 byte aligned stack is used. */
68856ea3
AC
107 if (freg <= 8)
108 {
109 if (write_pass)
110 {
111 /* Always store the floating point value using
944fcfab 112 the register's floating-point format. */
68856ea3
AC
113 char regval[MAX_REGISTER_SIZE];
114 struct type *regtype
115 = register_type (gdbarch, FP0_REGNUM + freg);
116 convert_typed_floating (val, type, regval, regtype);
117 regcache_cooked_write (regcache, FP0_REGNUM + freg,
118 regval);
119 }
120 freg++;
121 }
7b112f9c
JT
122 else
123 {
68856ea3 124 /* SysV ABI converts floats to doubles before
944fcfab 125 writing them to an 8 byte aligned stack location. */
68856ea3
AC
126 argoffset = align_up (argoffset, 8);
127 if (write_pass)
128 {
129 char memval[8];
130 struct type *memtype;
131 switch (TARGET_BYTE_ORDER)
132 {
133 case BFD_ENDIAN_BIG:
134 memtype = builtin_type_ieee_double_big;
135 break;
136 case BFD_ENDIAN_LITTLE:
137 memtype = builtin_type_ieee_double_little;
138 break;
139 default:
140 internal_error (__FILE__, __LINE__, "bad switch");
141 }
142 convert_typed_floating (val, type, memval, memtype);
143 write_memory (sp + argoffset, val, len);
144 }
145 argoffset += 8;
7b112f9c
JT
146 }
147 }
944fcfab
AC
148 else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
149 || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
7b112f9c 150 {
68856ea3 151 /* "long long" or "double" passed in an odd/even
944fcfab
AC
152 register pair with the low addressed word in the odd
153 register and the high addressed word in the even
154 register, or when the registers run out an 8 byte
155 aligned stack location. */
68856ea3
AC
156 if (greg > 9)
157 {
158 /* Just in case GREG was 10. */
159 greg = 11;
160 argoffset = align_up (argoffset, 8);
161 if (write_pass)
162 write_memory (sp + argoffset, val, len);
163 argoffset += 8;
164 }
165 else if (tdep->wordsize == 8)
166 {
167 if (write_pass)
168 regcache_cooked_write (regcache,
944fcfab 169 tdep->ppc_gp0_regnum + greg, val);
68856ea3
AC
170 greg += 1;
171 }
172 else
173 {
174 /* Must start on an odd register - r3/r4 etc. */
175 if ((greg & 1) == 0)
176 greg++;
177 if (write_pass)
178 {
179 regcache_cooked_write (regcache,
180 tdep->ppc_gp0_regnum + greg + 0,
181 val + 0);
182 regcache_cooked_write (regcache,
183 tdep->ppc_gp0_regnum + greg + 1,
184 val + 4);
185 }
186 greg += 2;
187 }
7b112f9c 188 }
68856ea3
AC
189 else if (len == 16
190 && TYPE_CODE (type) == TYPE_CODE_ARRAY
944fcfab 191 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
7b112f9c 192 {
68856ea3 193 /* Vector parameter passed in an Altivec register, or
944fcfab 194 when that runs out, 16 byte aligned stack location. */
7b112f9c
JT
195 if (vreg <= 13)
196 {
68856ea3
AC
197 if (write_pass)
198 regcache_cooked_write (current_regcache,
944fcfab 199 tdep->ppc_vr0_regnum + vreg, val);
7b112f9c
JT
200 vreg++;
201 }
202 else
203 {
68856ea3
AC
204 argoffset = align_up (argoffset, 16);
205 if (write_pass)
206 write_memory (sp + argoffset, val, 16);
7b112f9c
JT
207 argoffset += 16;
208 }
209 }
944fcfab 210 else if (len == 8
0a613259 211 && TYPE_CODE (type) == TYPE_CODE_ARRAY
944fcfab
AC
212 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
213 {
68856ea3 214 /* Vector parameter passed in an e500 register, or when
944fcfab
AC
215 that runs out, 8 byte aligned stack location. Note
216 that since e500 vector and general purpose registers
217 both map onto the same underlying register set, a
218 "greg" and not a "vreg" is consumed here. A cooked
219 write stores the value in the correct locations
220 within the raw register cache. */
221 if (greg <= 10)
222 {
68856ea3
AC
223 if (write_pass)
224 regcache_cooked_write (current_regcache,
944fcfab
AC
225 tdep->ppc_ev0_regnum + greg, val);
226 greg++;
227 }
228 else
229 {
68856ea3
AC
230 argoffset = align_up (argoffset, 8);
231 if (write_pass)
232 write_memory (sp + argoffset, val, 8);
944fcfab
AC
233 argoffset += 8;
234 }
235 }
68856ea3
AC
236 else
237 {
238 /* Reduce the parameter down to something that fits in a
944fcfab 239 "word". */
68856ea3
AC
240 char word[MAX_REGISTER_SIZE];
241 memset (word, 0, MAX_REGISTER_SIZE);
242 if (len > tdep->wordsize
243 || TYPE_CODE (type) == TYPE_CODE_STRUCT
244 || TYPE_CODE (type) == TYPE_CODE_UNION)
245 {
246 /* Structs and large values are put on an 8 byte
944fcfab 247 aligned stack ... */
68856ea3
AC
248 structoffset = align_up (structoffset, 8);
249 if (write_pass)
250 write_memory (sp + structoffset, val, len);
251 /* ... and then a "word" pointing to that address is
944fcfab 252 passed as the parameter. */
68856ea3
AC
253 store_unsigned_integer (word, tdep->wordsize,
254 sp + structoffset);
255 structoffset += len;
256 }
257 else if (TYPE_CODE (type) == TYPE_CODE_INT)
258 /* Sign or zero extend the "int" into a "word". */
259 store_unsigned_integer (word, tdep->wordsize,
260 unpack_long (type, val));
261 else
262 /* Always goes in the low address. */
263 memcpy (word, val, len);
264 /* Store that "word" in a register, or on the stack.
944fcfab 265 The words have "4" byte alignment. */
68856ea3
AC
266 if (greg <= 10)
267 {
268 if (write_pass)
269 regcache_cooked_write (regcache,
944fcfab 270 tdep->ppc_gp0_regnum + greg, word);
68856ea3
AC
271 greg++;
272 }
273 else
274 {
275 argoffset = align_up (argoffset, tdep->wordsize);
276 if (write_pass)
277 write_memory (sp + argoffset, word, tdep->wordsize);
278 argoffset += tdep->wordsize;
279 }
280 }
281 }
282
283 /* Compute the actual stack space requirements. */
284 if (!write_pass)
285 {
286 /* Remember the amount of space needed by the arguments. */
287 argspace = argoffset;
288 /* Allocate space for both the arguments and the structures. */
289 sp -= (argoffset + structoffset);
290 /* Ensure that the stack is still 16 byte aligned. */
291 sp = align_down (sp, 16);
292 }
7b112f9c
JT
293 }
294
68856ea3
AC
295 /* Update %sp. */
296 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
297
298 /* Write the backchain (it occupies WORDSIZED bytes). */
299 write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
300
e56a0ecc
AC
301 /* Point the inferior function call's return address at the dummy's
302 breakpoint. */
68856ea3 303 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
e56a0ecc 304
7b112f9c
JT
305 return sp;
306}
307
7b112f9c
JT
308/* Structures 8 bytes or less long are returned in the r3 & r4
309 registers, according to the SYSV ABI. */
310int
311ppc_sysv_abi_use_struct_convention (int gcc_p, struct type *value_type)
312{
0a613259 313 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
7b112f9c
JT
314 && TYPE_VECTOR (value_type))
315 return 0;
316
317 return (TYPE_LENGTH (value_type) > 8);
944fcfab 318}
afd48b75 319
8be9034a
AC
320/* Pass the arguments in either registers, or in the stack. Using the
321 ppc 64 bit SysV ABI.
322
323 This implements a dumbed down version of the ABI. It always writes
324 values to memory, GPR and FPR, even when not necessary. Doing this
325 greatly simplifies the logic. */
326
327CORE_ADDR
328ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
329 struct regcache *regcache, CORE_ADDR bp_addr,
330 int nargs, struct value **args, CORE_ADDR sp,
331 int struct_return, CORE_ADDR struct_addr)
332{
333 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
334 /* By this stage in the proceedings, SP has been decremented by "red
335 zone size" + "struct return size". Fetch the stack-pointer from
336 before this and use that as the BACK_CHAIN. */
337 const CORE_ADDR back_chain = read_sp ();
338 /* See for-loop comment below. */
339 int write_pass;
340 /* Size of the Altivec's vector parameter region, the final value is
341 computed in the for-loop below. */
342 LONGEST vparam_size = 0;
343 /* Size of the general parameter region, the final value is computed
344 in the for-loop below. */
345 LONGEST gparam_size = 0;
346 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
347 calls to align_up(), align_down(), etc. because this makes it
348 easier to reuse this code (in a copy/paste sense) in the future,
349 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
350 at some point makes it easier to verify that this function is
351 correct without having to do a non-local analysis to figure out
352 the possible values of tdep->wordsize. */
353 gdb_assert (tdep->wordsize == 8);
354
355 /* Go through the argument list twice.
356
357 Pass 1: Compute the function call's stack space and register
358 requirements.
359
360 Pass 2: Replay the same computation but this time also write the
361 values out to the target. */
362
363 for (write_pass = 0; write_pass < 2; write_pass++)
364 {
365 int argno;
366 /* Next available floating point register for float and double
367 arguments. */
368 int freg = 1;
369 /* Next available general register for non-vector (but possibly
370 float) arguments. */
371 int greg = 3;
372 /* Next available vector register for vector arguments. */
373 int vreg = 2;
374 /* The address, at which the next general purpose parameter
375 (integer, struct, float, ...) should be saved. */
376 CORE_ADDR gparam;
377 /* Address, at which the next Altivec vector parameter should be
378 saved. */
379 CORE_ADDR vparam;
380
381 if (!write_pass)
382 {
383 /* During the first pass, GPARAM and VPARAM are more like
384 offsets (start address zero) than addresses. That way
385 the accumulate the total stack space each region
386 requires. */
387 gparam = 0;
388 vparam = 0;
389 }
390 else
391 {
392 /* Decrement the stack pointer making space for the Altivec
393 and general on-stack parameters. Set vparam and gparam
394 to their corresponding regions. */
395 vparam = align_down (sp - vparam_size, 16);
396 gparam = align_down (vparam - gparam_size, 16);
397 /* Add in space for the TOC, link editor double word,
398 compiler double word, LR save area, CR save area. */
399 sp = align_down (gparam - 48, 16);
400 }
401
402 /* If the function is returning a `struct', then there is an
403 extra hidden parameter (which will be passed in r3)
404 containing the address of that struct.. In that case we
405 should advance one word and start from r4 register to copy
406 parameters. This also consumes one on-stack parameter slot. */
407 if (struct_return)
408 {
409 if (write_pass)
410 regcache_cooked_write_signed (regcache,
411 tdep->ppc_gp0_regnum + greg,
412 struct_addr);
413 greg++;
414 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
415 }
416
417 for (argno = 0; argno < nargs; argno++)
418 {
419 struct value *arg = args[argno];
420 struct type *type = check_typedef (VALUE_TYPE (arg));
421 char *val = VALUE_CONTENTS (arg);
422 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
423 {
424 /* Floats and Doubles go in f1 .. f13. They also
425 consume a left aligned GREG,, and can end up in
426 memory. */
427 if (write_pass)
428 {
429 if (ppc_floating_point_unit_p (current_gdbarch)
430 && freg <= 13)
431 {
432 char regval[MAX_REGISTER_SIZE];
433 struct type *regtype = register_type (gdbarch,
434 FP0_REGNUM);
435 convert_typed_floating (val, type, regval, regtype);
436 regcache_cooked_write (regcache, FP0_REGNUM + freg,
437 regval);
438 }
439 if (greg <= 10)
440 {
441 /* The ABI states "Single precision floating
442 point values are mapped to the first word in
443 a single doubleword" and "... floating point
444 values mapped to the first eight doublewords
445 of the parameter save area are also passed in
446 general registers").
447
448 This code interprets that to mean: store it,
449 left aligned, in the general register. */
450 char regval[MAX_REGISTER_SIZE];
451 memset (regval, 0, sizeof regval);
452 memcpy (regval, val, TYPE_LENGTH (type));
453 regcache_cooked_write (regcache,
454 tdep->ppc_gp0_regnum + greg,
455 regval);
456 }
457 write_memory (gparam, val, TYPE_LENGTH (type));
458 }
459 /* Always consume parameter stack space. */
460 freg++;
461 greg++;
462 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
463 }
464 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
465 && TYPE_CODE (type) == TYPE_CODE_ARRAY
466 && tdep->ppc_vr0_regnum >= 0)
467 {
468 /* In the Altivec ABI, vectors go in the vector
469 registers v2 .. v13, or when that runs out, a vector
470 annex which goes above all the normal parameters.
471 NOTE: cagney/2003-09-21: This is a guess based on the
472 PowerOpen Altivec ABI. */
473 if (vreg <= 13)
474 {
475 if (write_pass)
476 regcache_cooked_write (regcache,
477 tdep->ppc_vr0_regnum + vreg, val);
478 vreg++;
479 }
480 else
481 {
482 if (write_pass)
483 write_memory (vparam, val, TYPE_LENGTH (type));
484 vparam = align_up (vparam + TYPE_LENGTH (type), 16);
485 }
486 }
487 else if ((TYPE_CODE (type) == TYPE_CODE_INT
488 || TYPE_CODE (type) == TYPE_CODE_ENUM)
489 && TYPE_LENGTH (type) <= 8)
490 {
491 /* Scalars get sign[un]extended and go in gpr3 .. gpr10.
492 They can also end up in memory. */
493 if (write_pass)
494 {
495 /* Sign extend the value, then store it unsigned. */
496 ULONGEST word = unpack_long (type, val);
497 if (greg <= 10)
498 regcache_cooked_write_unsigned (regcache,
499 tdep->ppc_gp0_regnum +
500 greg, word);
501 write_memory_unsigned_integer (gparam, tdep->wordsize,
502 word);
503 }
504 greg++;
505 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
506 }
507 else
508 {
509 int byte;
510 for (byte = 0; byte < TYPE_LENGTH (type);
511 byte += tdep->wordsize)
512 {
513 if (write_pass && greg <= 10)
514 {
515 char regval[MAX_REGISTER_SIZE];
516 int len = TYPE_LENGTH (type) - byte;
517 if (len > tdep->wordsize)
518 len = tdep->wordsize;
519 memset (regval, 0, sizeof regval);
520 /* WARNING: cagney/2003-09-21: As best I can
521 tell, the ABI specifies that the value should
522 be left aligned. Unfortunately, GCC doesn't
523 do this - it instead right aligns even sized
524 values and puts odd sized values on the
525 stack. Work around that by putting both a
526 left and right aligned value into the
527 register (hopefully no one notices :-^).
528 Arrrgh! */
529 /* Left aligned (8 byte values such as pointers
530 fill the buffer). */
531 memcpy (regval, val + byte, len);
532 /* Right aligned (but only if even). */
533 if (len == 1 || len == 2 || len == 4)
534 memcpy (regval + tdep->wordsize - len,
535 val + byte, len);
536 regcache_cooked_write (regcache, greg, regval);
537 }
538 greg++;
539 }
540 if (write_pass)
541 /* WARNING: cagney/2003-09-21: Strictly speaking, this
542 isn't necessary, unfortunately, GCC appears to get
543 "struct convention" parameter passing wrong putting
544 odd sized structures in memory instead of in a
545 register. Work around this by always writing the
546 value to memory. Fortunately, doing this
547 simplifies the code. */
548 write_memory (gparam, val, TYPE_LENGTH (type));
549 /* Always consume parameter stack space. */
550 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
551 }
552 }
553
554 if (!write_pass)
555 {
556 /* Save the true region sizes ready for the second pass. */
557 vparam_size = vparam;
558 /* Make certain that the general parameter save area is at
559 least the minimum 8 registers (or doublewords) in size. */
560 if (greg < 8)
561 gparam_size = 8 * tdep->wordsize;
562 else
563 gparam_size = gparam;
564 }
565 }
566
567 /* Update %sp. */
568 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
569
570 /* Write the backchain (it occupies WORDSIZED bytes). */
571 write_memory_signed_integer (sp, tdep->wordsize, back_chain);
572
573 /* Point the inferior function call's return address at the dummy's
574 breakpoint. */
575 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
576
577 /* Find a value for the TOC register. Every symbol should have both
578 ".FN" and "FN" in the minimal symbol table. "FN" points at the
579 FN's descriptor, while ".FN" points at the entry point (which
580 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
581 FN's descriptor address. */
582 {
583 /* Find the minimal symbol that corresponds to FUNC_ADDR (should
584 have the name ".FN"). */
585 struct minimal_symbol *dot_fn = lookup_minimal_symbol_by_pc (func_addr);
586 if (dot_fn != NULL && SYMBOL_LINKAGE_NAME (dot_fn)[0] == '.')
587 {
588 /* Now find the corresponding "FN" (dropping ".") minimal
589 symbol's address. */
590 struct minimal_symbol *fn =
591 lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
592 NULL);
593 if (fn != NULL)
594 {
595 /* Got the address of that descriptor. The TOC is the
596 second double word. */
597 CORE_ADDR toc =
598 read_memory_unsigned_integer (SYMBOL_VALUE_ADDRESS (fn) +
599 tdep->wordsize, tdep->wordsize);
600 regcache_cooked_write_unsigned (regcache,
601 tdep->ppc_gp0_regnum + 2, toc);
602 }
603 }
604 }
605
606 return sp;
607}
608
afd48b75
AC
609
610/* The 64 bit ABI retun value convention.
611
612 Return non-zero if the return-value is stored in a register, return
613 0 if the return-value is instead stored on the stack (a.k.a.,
614 struct return convention).
615
616 For a return-value stored in a register: when INVAL is non-NULL,
617 copy the buffer to the corresponding register return-value location
618 location; when OUTVAL is non-NULL, fill the buffer from the
619 corresponding register return-value location. */
620
621/* Potential ways that a function can return a value of a given type. */
622enum return_value_convention
623{
624 /* Where the return value has been squeezed into one or more
625 registers. */
626 RETURN_VALUE_REGISTER_CONVENTION,
627 /* Commonly known as the "struct return convention". The caller
628 passes an additional hidden first parameter to the caller. That
629 parameter contains the address at which the value being returned
630 should be stored. While typically, and historically, used for
631 large structs, this is convention is applied to values of many
632 different types. */
633 RETURN_VALUE_STRUCT_CONVENTION
634};
635
636static enum return_value_convention
637ppc64_sysv_abi_return_value (struct type *valtype, struct regcache *regcache,
638 const void *inval, void *outval)
639{
640 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
641 /* Floats and doubles in F1. */
944fcfab 642 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
afd48b75
AC
643 {
644 char regval[MAX_REGISTER_SIZE];
645 struct type *regtype = register_type (current_gdbarch, FP0_REGNUM);
646 if (inval != NULL)
647 {
648 convert_typed_floating (inval, valtype, regval, regtype);
649 regcache_cooked_write (regcache, FP0_REGNUM + 1, regval);
650 }
651 if (outval != NULL)
652 {
653 regcache_cooked_read (regcache, FP0_REGNUM + 1, regval);
654 convert_typed_floating (regval, regtype, outval, valtype);
655 }
656 return RETURN_VALUE_REGISTER_CONVENTION;
657 }
944fcfab 658 if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 8)
afd48b75
AC
659 {
660 /* Integers in r3. */
661 if (inval != NULL)
662 {
663 /* Be careful to sign extend the value. */
664 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
665 unpack_long (valtype, inval));
666 }
667 if (outval != NULL)
668 {
669 /* Extract the integer from r3. Since this is truncating the
670 value, there isn't a sign extension problem. */
671 ULONGEST regval;
672 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
673 &regval);
674 store_unsigned_integer (outval, TYPE_LENGTH (valtype), regval);
675 }
676 return RETURN_VALUE_REGISTER_CONVENTION;
677 }
678 /* All pointers live in r3. */
679 if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
680 {
681 /* All pointers live in r3. */
682 if (inval != NULL)
683 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, inval);
684 if (outval != NULL)
685 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, outval);
686 return RETURN_VALUE_REGISTER_CONVENTION;
687 }
688 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
689 && TYPE_LENGTH (valtype) <= 8
690 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
691 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
692 {
693 /* Small character arrays are returned, right justified, in r3. */
694 int offset = (register_size (current_gdbarch, tdep->ppc_gp0_regnum + 3)
695 - TYPE_LENGTH (valtype));
696 if (inval != NULL)
697 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
698 offset, TYPE_LENGTH (valtype), inval);
699 if (outval != NULL)
700 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
701 offset, TYPE_LENGTH (valtype), outval);
702 return RETURN_VALUE_REGISTER_CONVENTION;
703 }
704 /* Big floating point values get stored in adjacent floating
705 point registers. */
706 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
944fcfab 707 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
afd48b75
AC
708 {
709 if (inval || outval != NULL)
710 {
711 int i;
712 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
713 {
714 if (inval != NULL)
715 regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
716 (const bfd_byte *) inval + i * 8);
717 if (outval != NULL)
718 regcache_cooked_read (regcache, FP0_REGNUM + 1 + i,
719 (bfd_byte *) outval + i * 8);
720 }
721 }
722 return RETURN_VALUE_REGISTER_CONVENTION;
723 }
724 /* Complex values get returned in f1:f2, need to convert. */
725 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
726 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
727 {
728 if (regcache != NULL)
729 {
730 int i;
731 for (i = 0; i < 2; i++)
732 {
733 char regval[MAX_REGISTER_SIZE];
944fcfab
AC
734 struct type *regtype =
735 register_type (current_gdbarch, FP0_REGNUM);
afd48b75
AC
736 if (inval != NULL)
737 {
944fcfab
AC
738 convert_typed_floating ((const bfd_byte *) inval +
739 i * (TYPE_LENGTH (valtype) / 2),
afd48b75 740 valtype, regval, regtype);
944fcfab
AC
741 regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
742 regval);
afd48b75
AC
743 }
744 if (outval != NULL)
745 {
746 regcache_cooked_read (regcache, FP0_REGNUM + 1 + i, regval);
747 convert_typed_floating (regval, regtype,
944fcfab
AC
748 (bfd_byte *) outval +
749 i * (TYPE_LENGTH (valtype) / 2),
afd48b75
AC
750 valtype);
751 }
752 }
753 }
754 return RETURN_VALUE_REGISTER_CONVENTION;
755 }
756 /* Big complex values get stored in f1:f4. */
944fcfab 757 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
afd48b75
AC
758 {
759 if (regcache != NULL)
760 {
761 int i;
762 for (i = 0; i < 4; i++)
763 {
764 if (inval != NULL)
765 regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
766 (const bfd_byte *) inval + i * 8);
767 if (outval != NULL)
768 regcache_cooked_read (regcache, FP0_REGNUM + 1 + i,
769 (bfd_byte *) outval + i * 8);
770 }
771 }
772 return RETURN_VALUE_REGISTER_CONVENTION;
773 }
774 return RETURN_VALUE_STRUCT_CONVENTION;
775}
776
777int
778ppc64_sysv_abi_use_struct_convention (int gcc_p, struct type *value_type)
779{
780 return (ppc64_sysv_abi_return_value (value_type, NULL, NULL, NULL)
781 == RETURN_VALUE_STRUCT_CONVENTION);
782}
783
784void
785ppc64_sysv_abi_extract_return_value (struct type *valtype,
944fcfab 786 struct regcache *regbuf, void *valbuf)
afd48b75
AC
787{
788 if (ppc64_sysv_abi_return_value (valtype, regbuf, NULL, valbuf)
789 != RETURN_VALUE_REGISTER_CONVENTION)
790 error ("Function return value unknown");
791}
792
793void
794ppc64_sysv_abi_store_return_value (struct type *valtype,
795 struct regcache *regbuf,
796 const void *valbuf)
797{
798 if (!ppc64_sysv_abi_return_value (valtype, regbuf, valbuf, NULL))
799 error ("Function return value location unknown");
800}
This page took 0.196141 seconds and 4 git commands to generate.