http://sourceware.org/ml/gdb-patches/2010-11/msg00112.html
[deliverable/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
CommitLineData
7b112f9c
JT
1/* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
7b6bb8da 4 Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010, 2011
65ada037 5 Free Software Foundation, Inc.
7b112f9c
JT
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
7b112f9c
JT
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
7b112f9c
JT
21
22#include "defs.h"
23#include "gdbcore.h"
24#include "inferior.h"
25#include "regcache.h"
26#include "value.h"
bdf64bac 27#include "gdb_string.h"
8be9034a 28#include "gdb_assert.h"
7b112f9c 29#include "ppc-tdep.h"
6066c3de 30#include "target.h"
0a90bcdd 31#include "objfiles.h"
7d9b040b 32#include "infcall.h"
7b112f9c 33
0df8b418 34/* Pass the arguments in either registers, or in the stack. Using the
7b112f9c
JT
35 ppc sysv ABI, the first eight words of the argument list (that might
36 be less than eight parameters if some parameters occupy more than one
37 word) are passed in r3..r10 registers. float and double parameters are
0df8b418
MS
38 passed in fpr's, in addition to that. Rest of the parameters if any
39 are passed in user stack.
7b112f9c
JT
40
41 If the function is returning a structure, then the return address is passed
42 in r3, then the first 7 words of the parametes can be passed in registers,
0df8b418 43 starting from r4. */
7b112f9c
JT
44
45CORE_ADDR
7d9b040b 46ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
47 struct regcache *regcache, CORE_ADDR bp_addr,
48 int nargs, struct value **args, CORE_ADDR sp,
49 int struct_return, CORE_ADDR struct_addr)
7b112f9c 50{
40a6adc1 51 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 52 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fb4443d8 53 ULONGEST saved_sp;
68856ea3
AC
54 int argspace = 0; /* 0 is an initial wrong guess. */
55 int write_pass;
7b112f9c 56
b14d30e1
JM
57 gdb_assert (tdep->wordsize == 4);
58
40a6adc1 59 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 60 &saved_sp);
fb4443d8 61
68856ea3 62 /* Go through the argument list twice.
7b112f9c 63
68856ea3
AC
64 Pass 1: Figure out how much new stack space is required for
65 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
66 ABI doesn't reserve any extra space for parameters which are put
67 in registers, but does always push structures and then pass their
68 address.
7a41266b 69
68856ea3
AC
70 Pass 2: Replay the same computation but this time also write the
71 values out to the target. */
7b112f9c 72
68856ea3
AC
73 for (write_pass = 0; write_pass < 2; write_pass++)
74 {
75 int argno;
76 /* Next available floating point register for float and double
77 arguments. */
78 int freg = 1;
79 /* Next available general register for non-float, non-vector
80 arguments. */
81 int greg = 3;
82 /* Next available vector register for vector arguments. */
83 int vreg = 2;
84 /* Arguments start above the "LR save word" and "Back chain". */
85 int argoffset = 2 * tdep->wordsize;
86 /* Structures start after the arguments. */
87 int structoffset = argoffset + argspace;
88
89 /* If the function is returning a `struct', then the first word
944fcfab
AC
90 (which will be passed in r3) is used for struct return
91 address. In that case we should advance one word and start
92 from r4 register to copy parameters. */
68856ea3 93 if (struct_return)
7b112f9c 94 {
68856ea3
AC
95 if (write_pass)
96 regcache_cooked_write_signed (regcache,
97 tdep->ppc_gp0_regnum + greg,
98 struct_addr);
99 greg++;
7b112f9c 100 }
68856ea3
AC
101
102 for (argno = 0; argno < nargs; argno++)
7b112f9c 103 {
68856ea3 104 struct value *arg = args[argno];
df407dfe 105 struct type *type = check_typedef (value_type (arg));
68856ea3 106 int len = TYPE_LENGTH (type);
0fd88904 107 const bfd_byte *val = value_contents (arg);
68856ea3 108
55eddb0f
DJ
109 if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
110 && !tdep->soft_float)
7b112f9c 111 {
68856ea3 112 /* Floating point value converted to "double" then
944fcfab
AC
113 passed in an FP register, when the registers run out,
114 8 byte aligned stack is used. */
68856ea3
AC
115 if (freg <= 8)
116 {
117 if (write_pass)
118 {
119 /* Always store the floating point value using
944fcfab 120 the register's floating-point format. */
50fd1280 121 gdb_byte regval[MAX_REGISTER_SIZE];
68856ea3 122 struct type *regtype
366f009f 123 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
68856ea3 124 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
125 regcache_cooked_write (regcache,
126 tdep->ppc_fp0_regnum + freg,
68856ea3
AC
127 regval);
128 }
129 freg++;
130 }
7b112f9c
JT
131 else
132 {
f964a756
MK
133 /* The SysV ABI tells us to convert floats to
134 doubles before writing them to an 8 byte aligned
135 stack location. Unfortunately GCC does not do
136 that, and stores floats into 4 byte aligned
137 locations without converting them to doubles.
138 Since there is no know compiler that actually
139 follows the ABI here, we implement the GCC
140 convention. */
141
142 /* Align to 4 bytes or 8 bytes depending on the type of
143 the argument (float or double). */
144 argoffset = align_up (argoffset, len);
68856ea3 145 if (write_pass)
68856ea3 146 write_memory (sp + argoffset, val, len);
f964a756 147 argoffset += len;
7b112f9c
JT
148 }
149 }
b14d30e1
JM
150 else if (TYPE_CODE (type) == TYPE_CODE_FLT
151 && len == 16
152 && !tdep->soft_float
40a6adc1 153 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
154 == floatformats_ibm_long_double))
155 {
156 /* IBM long double passed in two FP registers if
157 available, otherwise 8-byte aligned stack. */
158 if (freg <= 7)
159 {
160 if (write_pass)
161 {
162 regcache_cooked_write (regcache,
163 tdep->ppc_fp0_regnum + freg,
164 val);
165 regcache_cooked_write (regcache,
166 tdep->ppc_fp0_regnum + freg + 1,
167 val + 8);
168 }
169 freg += 2;
170 }
171 else
172 {
173 argoffset = align_up (argoffset, 8);
174 if (write_pass)
175 write_memory (sp + argoffset, val, len);
176 argoffset += 16;
177 }
178 }
55eddb0f
DJ
179 else if (len == 8
180 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
00fbcec4
JM
181 || TYPE_CODE (type) == TYPE_CODE_FLT /* double */
182 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
183 && tdep->soft_float)))
7b112f9c 184 {
00fbcec4
JM
185 /* "long long" or soft-float "double" or "_Decimal64"
186 passed in an odd/even register pair with the low
187 addressed word in the odd register and the high
188 addressed word in the even register, or when the
189 registers run out an 8 byte aligned stack
190 location. */
68856ea3
AC
191 if (greg > 9)
192 {
193 /* Just in case GREG was 10. */
194 greg = 11;
195 argoffset = align_up (argoffset, 8);
196 if (write_pass)
197 write_memory (sp + argoffset, val, len);
198 argoffset += 8;
199 }
68856ea3
AC
200 else
201 {
202 /* Must start on an odd register - r3/r4 etc. */
203 if ((greg & 1) == 0)
204 greg++;
205 if (write_pass)
206 {
207 regcache_cooked_write (regcache,
208 tdep->ppc_gp0_regnum + greg + 0,
209 val + 0);
210 regcache_cooked_write (regcache,
211 tdep->ppc_gp0_regnum + greg + 1,
212 val + 4);
213 }
214 greg += 2;
215 }
7b112f9c 216 }
00fbcec4
JM
217 else if (len == 16
218 && ((TYPE_CODE (type) == TYPE_CODE_FLT
219 && (gdbarch_long_double_format (gdbarch)
220 == floatformats_ibm_long_double))
221 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
222 && tdep->soft_float)))
b14d30e1 223 {
00fbcec4
JM
224 /* Soft-float IBM long double or _Decimal128 passed in
225 four consecutive registers, or on the stack. The
226 registers are not necessarily odd/even pairs. */
b14d30e1
JM
227 if (greg > 7)
228 {
229 greg = 11;
230 argoffset = align_up (argoffset, 8);
231 if (write_pass)
232 write_memory (sp + argoffset, val, len);
233 argoffset += 16;
234 }
235 else
236 {
237 if (write_pass)
238 {
239 regcache_cooked_write (regcache,
240 tdep->ppc_gp0_regnum + greg + 0,
241 val + 0);
242 regcache_cooked_write (regcache,
243 tdep->ppc_gp0_regnum + greg + 1,
244 val + 4);
245 regcache_cooked_write (regcache,
246 tdep->ppc_gp0_regnum + greg + 2,
247 val + 8);
248 regcache_cooked_write (regcache,
249 tdep->ppc_gp0_regnum + greg + 3,
250 val + 12);
251 }
252 greg += 4;
253 }
254 }
1300a2f4
TJB
255 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
256 && !tdep->soft_float)
257 {
258 /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
259 end up in memory. */
260
261 if (freg <= 8)
262 {
263 if (write_pass)
264 {
265 gdb_byte regval[MAX_REGISTER_SIZE];
266 const gdb_byte *p;
267
268 /* 32-bit decimal floats are right aligned in the
269 doubleword. */
270 if (TYPE_LENGTH (type) == 4)
271 {
272 memcpy (regval + 4, val, 4);
273 p = regval;
274 }
275 else
276 p = val;
277
278 regcache_cooked_write (regcache,
279 tdep->ppc_fp0_regnum + freg, p);
280 }
281
282 freg++;
283 }
284 else
285 {
286 argoffset = align_up (argoffset, len);
287
288 if (write_pass)
289 /* Write value in the stack's parameter save area. */
290 write_memory (sp + argoffset, val, len);
291
292 argoffset += len;
293 }
294 }
295 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
296 && !tdep->soft_float)
297 {
298 /* 128-bit decimal floats go in f2 .. f7, always in even/odd
299 pairs. They can end up in memory, using two doublewords. */
300
301 if (freg <= 6)
302 {
303 /* Make sure freg is even. */
304 freg += freg & 1;
305
306 if (write_pass)
307 {
308 regcache_cooked_write (regcache,
309 tdep->ppc_fp0_regnum + freg, val);
310 regcache_cooked_write (regcache,
311 tdep->ppc_fp0_regnum + freg + 1, val + 8);
312 }
313 }
314 else
315 {
316 argoffset = align_up (argoffset, 8);
317
318 if (write_pass)
319 write_memory (sp + argoffset, val, 16);
320
321 argoffset += 16;
322 }
323
324 /* If a 128-bit decimal float goes to the stack because only f7
325 and f8 are free (thus there's no even/odd register pair
326 available), these registers should be marked as occupied.
327 Hence we increase freg even when writing to memory. */
328 freg += 2;
329 }
68856ea3
AC
330 else if (len == 16
331 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
332 && TYPE_VECTOR (type)
333 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
7b112f9c 334 {
68856ea3 335 /* Vector parameter passed in an Altivec register, or
944fcfab 336 when that runs out, 16 byte aligned stack location. */
7b112f9c
JT
337 if (vreg <= 13)
338 {
68856ea3 339 if (write_pass)
9c9acae0 340 regcache_cooked_write (regcache,
944fcfab 341 tdep->ppc_vr0_regnum + vreg, val);
7b112f9c
JT
342 vreg++;
343 }
344 else
345 {
68856ea3
AC
346 argoffset = align_up (argoffset, 16);
347 if (write_pass)
348 write_memory (sp + argoffset, val, 16);
7b112f9c
JT
349 argoffset += 16;
350 }
351 }
944fcfab 352 else if (len == 8
0a613259 353 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
354 && TYPE_VECTOR (type)
355 && tdep->vector_abi == POWERPC_VEC_SPE)
944fcfab 356 {
68856ea3 357 /* Vector parameter passed in an e500 register, or when
944fcfab
AC
358 that runs out, 8 byte aligned stack location. Note
359 that since e500 vector and general purpose registers
360 both map onto the same underlying register set, a
361 "greg" and not a "vreg" is consumed here. A cooked
362 write stores the value in the correct locations
363 within the raw register cache. */
364 if (greg <= 10)
365 {
68856ea3 366 if (write_pass)
9c9acae0 367 regcache_cooked_write (regcache,
944fcfab
AC
368 tdep->ppc_ev0_regnum + greg, val);
369 greg++;
370 }
371 else
372 {
68856ea3
AC
373 argoffset = align_up (argoffset, 8);
374 if (write_pass)
375 write_memory (sp + argoffset, val, 8);
944fcfab
AC
376 argoffset += 8;
377 }
378 }
68856ea3
AC
379 else
380 {
381 /* Reduce the parameter down to something that fits in a
944fcfab 382 "word". */
50fd1280 383 gdb_byte word[MAX_REGISTER_SIZE];
68856ea3
AC
384 memset (word, 0, MAX_REGISTER_SIZE);
385 if (len > tdep->wordsize
386 || TYPE_CODE (type) == TYPE_CODE_STRUCT
387 || TYPE_CODE (type) == TYPE_CODE_UNION)
388 {
55eddb0f 389 /* Structs and large values are put in an
0df8b418 390 aligned stack slot ... */
55eddb0f
DJ
391 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
392 && TYPE_VECTOR (type)
393 && len >= 16)
394 structoffset = align_up (structoffset, 16);
395 else
396 structoffset = align_up (structoffset, 8);
397
68856ea3
AC
398 if (write_pass)
399 write_memory (sp + structoffset, val, len);
400 /* ... and then a "word" pointing to that address is
944fcfab 401 passed as the parameter. */
e17a4113 402 store_unsigned_integer (word, tdep->wordsize, byte_order,
68856ea3
AC
403 sp + structoffset);
404 structoffset += len;
405 }
406 else if (TYPE_CODE (type) == TYPE_CODE_INT)
407 /* Sign or zero extend the "int" into a "word". */
e17a4113 408 store_unsigned_integer (word, tdep->wordsize, byte_order,
68856ea3
AC
409 unpack_long (type, val));
410 else
411 /* Always goes in the low address. */
412 memcpy (word, val, len);
413 /* Store that "word" in a register, or on the stack.
944fcfab 414 The words have "4" byte alignment. */
68856ea3
AC
415 if (greg <= 10)
416 {
417 if (write_pass)
418 regcache_cooked_write (regcache,
944fcfab 419 tdep->ppc_gp0_regnum + greg, word);
68856ea3
AC
420 greg++;
421 }
422 else
423 {
424 argoffset = align_up (argoffset, tdep->wordsize);
425 if (write_pass)
426 write_memory (sp + argoffset, word, tdep->wordsize);
427 argoffset += tdep->wordsize;
428 }
429 }
430 }
431
432 /* Compute the actual stack space requirements. */
433 if (!write_pass)
434 {
435 /* Remember the amount of space needed by the arguments. */
436 argspace = argoffset;
437 /* Allocate space for both the arguments and the structures. */
438 sp -= (argoffset + structoffset);
439 /* Ensure that the stack is still 16 byte aligned. */
440 sp = align_down (sp, 16);
441 }
65ada037
MK
442
443 /* The psABI says that "A caller of a function that takes a
444 variable argument list shall set condition register bit 6 to
445 1 if it passes one or more arguments in the floating-point
0df8b418 446 registers. It is strongly recommended that the caller set the
65ada037
MK
447 bit to 0 otherwise..." Doing this for normal functions too
448 shouldn't hurt. */
449 if (write_pass)
450 {
451 ULONGEST cr;
452
453 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
454 if (freg > 1)
455 cr |= 0x02000000;
456 else
457 cr &= ~0x02000000;
458 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
459 }
7b112f9c
JT
460 }
461
68856ea3 462 /* Update %sp. */
40a6adc1 463 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
68856ea3
AC
464
465 /* Write the backchain (it occupies WORDSIZED bytes). */
e17a4113 466 write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
68856ea3 467
e56a0ecc
AC
468 /* Point the inferior function call's return address at the dummy's
469 breakpoint. */
68856ea3 470 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
e56a0ecc 471
7b112f9c
JT
472 return sp;
473}
474
1300a2f4
TJB
475/* Handle the return-value conventions for Decimal Floating Point values
476 in both ppc32 and ppc64, which are the same. */
477static int
478get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
479 struct regcache *regcache, gdb_byte *readbuf,
480 const gdb_byte *writebuf)
481{
482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
483
484 gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
485
486 /* 32-bit and 64-bit decimal floats in f1. */
487 if (TYPE_LENGTH (valtype) <= 8)
488 {
489 if (writebuf != NULL)
490 {
491 gdb_byte regval[MAX_REGISTER_SIZE];
492 const gdb_byte *p;
493
494 /* 32-bit decimal float is right aligned in the doubleword. */
495 if (TYPE_LENGTH (valtype) == 4)
496 {
497 memcpy (regval + 4, writebuf, 4);
498 p = regval;
499 }
500 else
501 p = writebuf;
502
503 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
504 }
505 if (readbuf != NULL)
506 {
507 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
508
509 /* Left align 32-bit decimal float. */
510 if (TYPE_LENGTH (valtype) == 4)
511 memcpy (readbuf, readbuf + 4, 4);
512 }
513 }
514 /* 128-bit decimal floats in f2,f3. */
515 else if (TYPE_LENGTH (valtype) == 16)
516 {
517 if (writebuf != NULL || readbuf != NULL)
518 {
519 int i;
520
521 for (i = 0; i < 2; i++)
522 {
523 if (writebuf != NULL)
524 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
525 writebuf + i * 8);
526 if (readbuf != NULL)
527 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
528 readbuf + i * 8);
529 }
530 }
531 }
532 else
533 /* Can't happen. */
534 internal_error (__FILE__, __LINE__, "Unknown decimal float size.");
535
536 return RETURN_VALUE_REGISTER_CONVENTION;
537}
538
e754ae69
AC
539/* Handle the return-value conventions specified by the SysV 32-bit
540 PowerPC ABI (including all the supplements):
541
542 no floating-point: floating-point values returned using 32-bit
543 general-purpose registers.
544
545 Altivec: 128-bit vectors returned using vector registers.
546
547 e500: 64-bit vectors returned using the full full 64 bit EV
548 register, floating-point values returned using 32-bit
549 general-purpose registers.
550
551 GCC (broken): Small struct values right (instead of left) aligned
552 when returned in general-purpose registers. */
553
554static enum return_value_convention
05580c65 555do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
55eddb0f
DJ
556 struct regcache *regcache, gdb_byte *readbuf,
557 const gdb_byte *writebuf, int broken_gcc)
e754ae69 558{
05580c65 559 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e754ae69
AC
561 gdb_assert (tdep->wordsize == 4);
562 if (TYPE_CODE (type) == TYPE_CODE_FLT
563 && TYPE_LENGTH (type) <= 8
55eddb0f 564 && !tdep->soft_float)
e754ae69 565 {
963e2bb7 566 if (readbuf)
e754ae69
AC
567 {
568 /* Floats and doubles stored in "f1". Convert the value to
569 the required type. */
50fd1280 570 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f
JB
571 struct type *regtype = register_type (gdbarch,
572 tdep->ppc_fp0_regnum + 1);
573 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 574 convert_typed_floating (regval, regtype, readbuf, type);
e754ae69 575 }
963e2bb7 576 if (writebuf)
e754ae69
AC
577 {
578 /* Floats and doubles stored in "f1". Convert the value to
579 the register's "double" type. */
50fd1280 580 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 581 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 582 convert_typed_floating (writebuf, type, regval, regtype);
366f009f 583 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
e754ae69
AC
584 }
585 return RETURN_VALUE_REGISTER_CONVENTION;
586 }
b14d30e1
JM
587 if (TYPE_CODE (type) == TYPE_CODE_FLT
588 && TYPE_LENGTH (type) == 16
589 && !tdep->soft_float
0df8b418
MS
590 && (gdbarch_long_double_format (gdbarch)
591 == floatformats_ibm_long_double))
b14d30e1
JM
592 {
593 /* IBM long double stored in f1 and f2. */
594 if (readbuf)
595 {
596 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
597 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
598 readbuf + 8);
599 }
600 if (writebuf)
601 {
602 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
603 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
604 writebuf + 8);
605 }
606 return RETURN_VALUE_REGISTER_CONVENTION;
607 }
00fbcec4
JM
608 if (TYPE_LENGTH (type) == 16
609 && ((TYPE_CODE (type) == TYPE_CODE_FLT
0df8b418
MS
610 && (gdbarch_long_double_format (gdbarch)
611 == floatformats_ibm_long_double))
00fbcec4 612 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
b14d30e1 613 {
00fbcec4
JM
614 /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
615 r5, r6. */
b14d30e1
JM
616 if (readbuf)
617 {
618 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
619 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
620 readbuf + 4);
621 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
622 readbuf + 8);
623 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
624 readbuf + 12);
625 }
626 if (writebuf)
627 {
628 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
629 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
630 writebuf + 4);
631 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
632 writebuf + 8);
633 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
634 writebuf + 12);
635 }
636 return RETURN_VALUE_REGISTER_CONVENTION;
637 }
e754ae69 638 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
00fbcec4
JM
639 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
640 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
641 && tdep->soft_float))
e754ae69 642 {
963e2bb7 643 if (readbuf)
e754ae69 644 {
00fbcec4
JM
645 /* A long long, double or _Decimal64 stored in the 32 bit
646 r3/r4. */
e754ae69 647 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 648 readbuf + 0);
e754ae69 649 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 650 readbuf + 4);
e754ae69 651 }
963e2bb7 652 if (writebuf)
e754ae69 653 {
00fbcec4
JM
654 /* A long long, double or _Decimal64 stored in the 32 bit
655 r3/r4. */
e754ae69 656 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 657 writebuf + 0);
e754ae69 658 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 659 writebuf + 4);
e754ae69
AC
660 }
661 return RETURN_VALUE_REGISTER_CONVENTION;
662 }
1300a2f4
TJB
663 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
664 return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
665 writebuf);
f0027ce2
DJ
666 else if ((TYPE_CODE (type) == TYPE_CODE_INT
667 || TYPE_CODE (type) == TYPE_CODE_CHAR
668 || TYPE_CODE (type) == TYPE_CODE_BOOL
669 || TYPE_CODE (type) == TYPE_CODE_PTR
670 || TYPE_CODE (type) == TYPE_CODE_REF
671 || TYPE_CODE (type) == TYPE_CODE_ENUM)
672 && TYPE_LENGTH (type) <= tdep->wordsize)
e754ae69 673 {
963e2bb7 674 if (readbuf)
e754ae69
AC
675 {
676 /* Some sort of integer stored in r3. Since TYPE isn't
677 bigger than the register, sign extension isn't a problem
678 - just do everything unsigned. */
679 ULONGEST regval;
680 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
681 &regval);
e17a4113
UW
682 store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
683 regval);
e754ae69 684 }
963e2bb7 685 if (writebuf)
e754ae69
AC
686 {
687 /* Some sort of integer stored in r3. Use unpack_long since
688 that should handle any required sign extension. */
689 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 690 unpack_long (type, writebuf));
e754ae69
AC
691 }
692 return RETURN_VALUE_REGISTER_CONVENTION;
693 }
694 if (TYPE_LENGTH (type) == 16
695 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
696 && TYPE_VECTOR (type)
697 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
e754ae69 698 {
963e2bb7 699 if (readbuf)
e754ae69
AC
700 {
701 /* Altivec places the return value in "v2". */
963e2bb7 702 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
e754ae69 703 }
963e2bb7 704 if (writebuf)
e754ae69
AC
705 {
706 /* Altivec places the return value in "v2". */
963e2bb7 707 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
e754ae69
AC
708 }
709 return RETURN_VALUE_REGISTER_CONVENTION;
710 }
55eddb0f
DJ
711 if (TYPE_LENGTH (type) == 16
712 && TYPE_CODE (type) == TYPE_CODE_ARRAY
713 && TYPE_VECTOR (type)
714 && tdep->vector_abi == POWERPC_VEC_GENERIC)
715 {
716 /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
717 GCC without AltiVec returns them in memory, but it warns about
718 ABI risks in that case; we don't try to support it. */
719 if (readbuf)
720 {
721 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
722 readbuf + 0);
723 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
724 readbuf + 4);
725 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
726 readbuf + 8);
727 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
728 readbuf + 12);
729 }
730 if (writebuf)
731 {
732 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
733 writebuf + 0);
734 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
735 writebuf + 4);
736 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
737 writebuf + 8);
738 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
739 writebuf + 12);
740 }
741 return RETURN_VALUE_REGISTER_CONVENTION;
742 }
e754ae69
AC
743 if (TYPE_LENGTH (type) == 8
744 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
745 && TYPE_VECTOR (type)
746 && tdep->vector_abi == POWERPC_VEC_SPE)
e754ae69
AC
747 {
748 /* The e500 ABI places return values for the 64-bit DSP types
749 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
750 corresponds to the entire r3 value for e500, whereas GDB's r3
751 only corresponds to the least significant 32-bits. So place
752 the 64-bit DSP type's value in ev3. */
963e2bb7
AC
753 if (readbuf)
754 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
755 if (writebuf)
756 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
e754ae69
AC
757 return RETURN_VALUE_REGISTER_CONVENTION;
758 }
759 if (broken_gcc && TYPE_LENGTH (type) <= 8)
760 {
61bf9ae0
MK
761 /* GCC screwed up for structures or unions whose size is less
762 than or equal to 8 bytes.. Instead of left-aligning, it
763 right-aligns the data into the buffer formed by r3, r4. */
764 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
765 int len = TYPE_LENGTH (type);
766 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
767
963e2bb7 768 if (readbuf)
e754ae69 769 {
61bf9ae0
MK
770 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
771 regvals + 0 * tdep->wordsize);
772 if (len > tdep->wordsize)
773 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
774 regvals + 1 * tdep->wordsize);
775 memcpy (readbuf, regvals + offset, len);
e754ae69 776 }
963e2bb7 777 if (writebuf)
e754ae69 778 {
61bf9ae0
MK
779 memset (regvals, 0, sizeof regvals);
780 memcpy (regvals + offset, writebuf, len);
781 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
782 regvals + 0 * tdep->wordsize);
783 if (len > tdep->wordsize)
784 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
785 regvals + 1 * tdep->wordsize);
e754ae69 786 }
61bf9ae0 787
e754ae69
AC
788 return RETURN_VALUE_REGISTER_CONVENTION;
789 }
790 if (TYPE_LENGTH (type) <= 8)
791 {
963e2bb7 792 if (readbuf)
e754ae69
AC
793 {
794 /* This matches SVr4 PPC, it does not match GCC. */
795 /* The value is right-padded to 8 bytes and then loaded, as
796 two "words", into r3/r4. */
50fd1280 797 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69
AC
798 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
799 regvals + 0 * tdep->wordsize);
800 if (TYPE_LENGTH (type) > tdep->wordsize)
801 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
802 regvals + 1 * tdep->wordsize);
963e2bb7 803 memcpy (readbuf, regvals, TYPE_LENGTH (type));
e754ae69 804 }
963e2bb7 805 if (writebuf)
e754ae69
AC
806 {
807 /* This matches SVr4 PPC, it does not match GCC. */
808 /* The value is padded out to 8 bytes and then loaded, as
809 two "words" into r3/r4. */
50fd1280 810 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69 811 memset (regvals, 0, sizeof regvals);
963e2bb7 812 memcpy (regvals, writebuf, TYPE_LENGTH (type));
e754ae69
AC
813 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
814 regvals + 0 * tdep->wordsize);
815 if (TYPE_LENGTH (type) > tdep->wordsize)
816 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
817 regvals + 1 * tdep->wordsize);
818 }
819 return RETURN_VALUE_REGISTER_CONVENTION;
820 }
821 return RETURN_VALUE_STRUCT_CONVENTION;
822}
823
05580c65 824enum return_value_convention
c055b101
CV
825ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
826 struct type *valtype, struct regcache *regcache,
827 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 828{
963e2bb7
AC
829 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
830 writebuf, 0);
e754ae69
AC
831}
832
05580c65 833enum return_value_convention
963e2bb7 834ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
c055b101 835 struct type *func_type,
963e2bb7
AC
836 struct type *valtype,
837 struct regcache *regcache,
50fd1280 838 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 839{
963e2bb7
AC
840 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
841 writebuf, 1);
944fcfab 842}
afd48b75 843
b6e1c027
AC
844/* The helper function for 64-bit SYSV push_dummy_call. Converts the
845 function's code address back into the function's descriptor
846 address.
847
848 Find a value for the TOC register. Every symbol should have both
849 ".FN" and "FN" in the minimal symbol table. "FN" points at the
850 FN's descriptor, while ".FN" points at the entry point (which
851 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
852 FN's descriptor address (while at the same time being careful to
853 find "FN" in the same object file as ".FN"). */
854
855static int
856convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
857{
858 struct obj_section *dot_fn_section;
859 struct minimal_symbol *dot_fn;
860 struct minimal_symbol *fn;
861 CORE_ADDR toc;
862 /* Find the minimal symbol that corresponds to CODE_ADDR (should
863 have a name of the form ".FN"). */
864 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
865 if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
866 return 0;
867 /* Get the section that contains CODE_ADDR. Need this for the
868 "objfile" that it contains. */
869 dot_fn_section = find_pc_section (code_addr);
870 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
871 return 0;
872 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
873 address. Only look for the minimal symbol in ".FN"'s object file
874 - avoids problems when two object files (i.e., shared libraries)
875 contain a minimal symbol with the same name. */
876 fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
877 dot_fn_section->objfile);
878 if (fn == NULL)
879 return 0;
880 /* Found a descriptor. */
881 (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
882 return 1;
883}
884
0df8b418 885/* Pass the arguments in either registers, or in the stack. Using the
8be9034a
AC
886 ppc 64 bit SysV ABI.
887
888 This implements a dumbed down version of the ABI. It always writes
889 values to memory, GPR and FPR, even when not necessary. Doing this
0df8b418 890 greatly simplifies the logic. */
8be9034a
AC
891
892CORE_ADDR
0df8b418
MS
893ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
894 struct value *function,
8be9034a
AC
895 struct regcache *regcache, CORE_ADDR bp_addr,
896 int nargs, struct value **args, CORE_ADDR sp,
897 int struct_return, CORE_ADDR struct_addr)
898{
7d9b040b 899 CORE_ADDR func_addr = find_function_addr (function, NULL);
40a6adc1 900 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fb4443d8 902 ULONGEST back_chain;
8be9034a
AC
903 /* See for-loop comment below. */
904 int write_pass;
905 /* Size of the Altivec's vector parameter region, the final value is
906 computed in the for-loop below. */
907 LONGEST vparam_size = 0;
908 /* Size of the general parameter region, the final value is computed
909 in the for-loop below. */
910 LONGEST gparam_size = 0;
911 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
0df8b418 912 calls to align_up(), align_down(), etc. because this makes it
8be9034a
AC
913 easier to reuse this code (in a copy/paste sense) in the future,
914 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
915 at some point makes it easier to verify that this function is
916 correct without having to do a non-local analysis to figure out
917 the possible values of tdep->wordsize. */
918 gdb_assert (tdep->wordsize == 8);
919
55eddb0f
DJ
920 /* This function exists to support a calling convention that
921 requires floating-point registers. It shouldn't be used on
922 processors that lack them. */
923 gdb_assert (ppc_floating_point_unit_p (gdbarch));
924
fb4443d8
UW
925 /* By this stage in the proceedings, SP has been decremented by "red
926 zone size" + "struct return size". Fetch the stack-pointer from
927 before this and use that as the BACK_CHAIN. */
40a6adc1 928 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 929 &back_chain);
fb4443d8 930
8be9034a
AC
931 /* Go through the argument list twice.
932
933 Pass 1: Compute the function call's stack space and register
934 requirements.
935
936 Pass 2: Replay the same computation but this time also write the
937 values out to the target. */
938
939 for (write_pass = 0; write_pass < 2; write_pass++)
940 {
941 int argno;
942 /* Next available floating point register for float and double
943 arguments. */
944 int freg = 1;
945 /* Next available general register for non-vector (but possibly
946 float) arguments. */
947 int greg = 3;
948 /* Next available vector register for vector arguments. */
949 int vreg = 2;
950 /* The address, at which the next general purpose parameter
951 (integer, struct, float, ...) should be saved. */
952 CORE_ADDR gparam;
953 /* Address, at which the next Altivec vector parameter should be
954 saved. */
955 CORE_ADDR vparam;
956
957 if (!write_pass)
958 {
959 /* During the first pass, GPARAM and VPARAM are more like
960 offsets (start address zero) than addresses. That way
938f5214 961 they accumulate the total stack space each region
8be9034a
AC
962 requires. */
963 gparam = 0;
964 vparam = 0;
965 }
966 else
967 {
968 /* Decrement the stack pointer making space for the Altivec
969 and general on-stack parameters. Set vparam and gparam
970 to their corresponding regions. */
971 vparam = align_down (sp - vparam_size, 16);
972 gparam = align_down (vparam - gparam_size, 16);
973 /* Add in space for the TOC, link editor double word,
974 compiler double word, LR save area, CR save area. */
975 sp = align_down (gparam - 48, 16);
976 }
977
978 /* If the function is returning a `struct', then there is an
979 extra hidden parameter (which will be passed in r3)
980 containing the address of that struct.. In that case we
981 should advance one word and start from r4 register to copy
982 parameters. This also consumes one on-stack parameter slot. */
983 if (struct_return)
984 {
985 if (write_pass)
986 regcache_cooked_write_signed (regcache,
987 tdep->ppc_gp0_regnum + greg,
988 struct_addr);
989 greg++;
990 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
991 }
992
993 for (argno = 0; argno < nargs; argno++)
994 {
995 struct value *arg = args[argno];
df407dfe 996 struct type *type = check_typedef (value_type (arg));
0fd88904 997 const bfd_byte *val = value_contents (arg);
ce0451ad 998
8be9034a
AC
999 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
1000 {
1001 /* Floats and Doubles go in f1 .. f13. They also
1002 consume a left aligned GREG,, and can end up in
1003 memory. */
1004 if (write_pass)
1005 {
ce0451ad
TJB
1006 gdb_byte regval[MAX_REGISTER_SIZE];
1007 const gdb_byte *p;
1008
1009 /* Version 1.7 of the 64-bit PowerPC ELF ABI says:
1010
1011 "Single precision floating point values are mapped to
1012 the first word in a single doubleword."
1013
1014 And version 1.9 says:
1015
1016 "Single precision floating point values are mapped to
1017 the second word in a single doubleword."
1018
1019 GDB then writes single precision floating point values
1020 at both words in a doubleword, to support both ABIs. */
1021 if (TYPE_LENGTH (type) == 4)
1022 {
1023 memcpy (regval, val, 4);
1024 memcpy (regval + 4, val, 4);
1025 p = regval;
1026 }
1027 else
1028 p = val;
1029
1030 /* Write value in the stack's parameter save area. */
1031 write_memory (gparam, p, 8);
1032
55eddb0f 1033 if (freg <= 13)
8be9034a 1034 {
366f009f
JB
1035 struct type *regtype
1036 = register_type (gdbarch, tdep->ppc_fp0_regnum);
ce0451ad 1037
8be9034a 1038 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
1039 regcache_cooked_write (regcache,
1040 tdep->ppc_fp0_regnum + freg,
8be9034a
AC
1041 regval);
1042 }
1043 if (greg <= 10)
ce0451ad
TJB
1044 regcache_cooked_write (regcache,
1045 tdep->ppc_gp0_regnum + greg,
1046 regval);
8be9034a 1047 }
ce0451ad 1048
8be9034a
AC
1049 freg++;
1050 greg++;
ce0451ad
TJB
1051 /* Always consume parameter stack space. */
1052 gparam = align_up (gparam + 8, tdep->wordsize);
8be9034a 1053 }
b14d30e1
JM
1054 else if (TYPE_CODE (type) == TYPE_CODE_FLT
1055 && TYPE_LENGTH (type) == 16
40a6adc1 1056 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
1057 == floatformats_ibm_long_double))
1058 {
1059 /* IBM long double stored in two doublewords of the
1060 parameter save area and corresponding registers. */
1061 if (write_pass)
1062 {
1063 if (!tdep->soft_float && freg <= 13)
1064 {
1065 regcache_cooked_write (regcache,
1066 tdep->ppc_fp0_regnum + freg,
1067 val);
1068 if (freg <= 12)
1069 regcache_cooked_write (regcache,
1070 tdep->ppc_fp0_regnum + freg + 1,
1071 val + 8);
1072 }
1073 if (greg <= 10)
1074 {
1075 regcache_cooked_write (regcache,
1076 tdep->ppc_gp0_regnum + greg,
1077 val);
1078 if (greg <= 9)
1079 regcache_cooked_write (regcache,
1080 tdep->ppc_gp0_regnum + greg + 1,
1081 val + 8);
1082 }
1083 write_memory (gparam, val, TYPE_LENGTH (type));
1084 }
1085 freg += 2;
1086 greg += 2;
1087 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1088 }
1300a2f4
TJB
1089 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1090 && TYPE_LENGTH (type) <= 8)
1091 {
1092 /* 32-bit and 64-bit decimal floats go in f1 .. f13. They can
1093 end up in memory. */
1094 if (write_pass)
1095 {
1096 gdb_byte regval[MAX_REGISTER_SIZE];
1097 const gdb_byte *p;
1098
1099 /* 32-bit decimal floats are right aligned in the
1100 doubleword. */
1101 if (TYPE_LENGTH (type) == 4)
1102 {
1103 memcpy (regval + 4, val, 4);
1104 p = regval;
1105 }
1106 else
1107 p = val;
1108
1109 /* Write value in the stack's parameter save area. */
1110 write_memory (gparam, p, 8);
1111
1112 if (freg <= 13)
1113 regcache_cooked_write (regcache,
1114 tdep->ppc_fp0_regnum + freg, p);
1115 }
1116
1117 freg++;
1118 greg++;
1119 /* Always consume parameter stack space. */
1120 gparam = align_up (gparam + 8, tdep->wordsize);
1121 }
1122 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT &&
1123 TYPE_LENGTH (type) == 16)
1124 {
1125 /* 128-bit decimal floats go in f2 .. f12, always in even/odd
1126 pairs. They can end up in memory, using two doublewords. */
1127 if (write_pass)
1128 {
1129 if (freg <= 12)
1130 {
1131 /* Make sure freg is even. */
1132 freg += freg & 1;
1133 regcache_cooked_write (regcache,
1134 tdep->ppc_fp0_regnum + freg, val);
1135 regcache_cooked_write (regcache,
1136 tdep->ppc_fp0_regnum + freg + 1, val + 8);
1137 }
1138
1139 write_memory (gparam, val, TYPE_LENGTH (type));
1140 }
1141
1142 freg += 2;
1143 greg += 2;
1144 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1145 }
8be9034a
AC
1146 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
1147 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1148 && tdep->ppc_vr0_regnum >= 0)
1149 {
1150 /* In the Altivec ABI, vectors go in the vector
1151 registers v2 .. v13, or when that runs out, a vector
1152 annex which goes above all the normal parameters.
1153 NOTE: cagney/2003-09-21: This is a guess based on the
1154 PowerOpen Altivec ABI. */
1155 if (vreg <= 13)
1156 {
1157 if (write_pass)
1158 regcache_cooked_write (regcache,
1159 tdep->ppc_vr0_regnum + vreg, val);
1160 vreg++;
1161 }
1162 else
1163 {
1164 if (write_pass)
1165 write_memory (vparam, val, TYPE_LENGTH (type));
1166 vparam = align_up (vparam + TYPE_LENGTH (type), 16);
1167 }
1168 }
1169 else if ((TYPE_CODE (type) == TYPE_CODE_INT
b6e1c027 1170 || TYPE_CODE (type) == TYPE_CODE_ENUM
93d4208d
UW
1171 || TYPE_CODE (type) == TYPE_CODE_BOOL
1172 || TYPE_CODE (type) == TYPE_CODE_CHAR
1173 || TYPE_CODE (type) == TYPE_CODE_PTR
1174 || TYPE_CODE (type) == TYPE_CODE_REF)
8be9034a
AC
1175 && TYPE_LENGTH (type) <= 8)
1176 {
b6e1c027
AC
1177 /* Scalars and Pointers get sign[un]extended and go in
1178 gpr3 .. gpr10. They can also end up in memory. */
8be9034a
AC
1179 if (write_pass)
1180 {
1181 /* Sign extend the value, then store it unsigned. */
1182 ULONGEST word = unpack_long (type, val);
b6e1c027
AC
1183 /* Convert any function code addresses into
1184 descriptors. */
1185 if (TYPE_CODE (type) == TYPE_CODE_PTR
93d4208d 1186 || TYPE_CODE (type) == TYPE_CODE_REF)
b6e1c027 1187 {
93d4208d
UW
1188 struct type *target_type;
1189 target_type = check_typedef (TYPE_TARGET_TYPE (type));
1190
1191 if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
1192 || TYPE_CODE (target_type) == TYPE_CODE_METHOD)
1193 {
1194 CORE_ADDR desc = word;
1195 convert_code_addr_to_desc_addr (word, &desc);
1196 word = desc;
1197 }
b6e1c027 1198 }
8be9034a
AC
1199 if (greg <= 10)
1200 regcache_cooked_write_unsigned (regcache,
1201 tdep->ppc_gp0_regnum +
1202 greg, word);
1203 write_memory_unsigned_integer (gparam, tdep->wordsize,
e17a4113 1204 byte_order, word);
8be9034a
AC
1205 }
1206 greg++;
1207 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1208 }
1209 else
1210 {
1211 int byte;
1212 for (byte = 0; byte < TYPE_LENGTH (type);
1213 byte += tdep->wordsize)
1214 {
1215 if (write_pass && greg <= 10)
1216 {
50fd1280 1217 gdb_byte regval[MAX_REGISTER_SIZE];
8be9034a
AC
1218 int len = TYPE_LENGTH (type) - byte;
1219 if (len > tdep->wordsize)
1220 len = tdep->wordsize;
1221 memset (regval, 0, sizeof regval);
36815e57
JM
1222 /* The ABI (version 1.9) specifies that values
1223 smaller than one doubleword are right-aligned
1224 and those larger are left-aligned. GCC
1225 versions before 3.4 implemented this
1226 incorrectly; see
1227 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
1228 if (byte == 0)
8be9034a
AC
1229 memcpy (regval + tdep->wordsize - len,
1230 val + byte, len);
36815e57
JM
1231 else
1232 memcpy (regval, val + byte, len);
8be9034a
AC
1233 regcache_cooked_write (regcache, greg, regval);
1234 }
1235 greg++;
1236 }
1237 if (write_pass)
93d4208d
UW
1238 {
1239 /* WARNING: cagney/2003-09-21: Strictly speaking, this
1240 isn't necessary, unfortunately, GCC appears to get
1241 "struct convention" parameter passing wrong putting
1242 odd sized structures in memory instead of in a
1243 register. Work around this by always writing the
1244 value to memory. Fortunately, doing this
1245 simplifies the code. */
1246 int len = TYPE_LENGTH (type);
1247 if (len < tdep->wordsize)
1248 write_memory (gparam + tdep->wordsize - len, val, len);
1249 else
1250 write_memory (gparam, val, len);
1251 }
36815e57
JM
1252 if (freg <= 13
1253 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1254 && TYPE_NFIELDS (type) == 1
1255 && TYPE_LENGTH (type) <= 16)
1256 {
1257 /* The ABI (version 1.9) specifies that structs
1258 containing a single floating-point value, at any
1259 level of nesting of single-member structs, are
1260 passed in floating-point registers. */
1261 while (TYPE_CODE (type) == TYPE_CODE_STRUCT
1262 && TYPE_NFIELDS (type) == 1)
1263 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1264 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1265 {
1266 if (TYPE_LENGTH (type) <= 8)
1267 {
1268 if (write_pass)
1269 {
1270 gdb_byte regval[MAX_REGISTER_SIZE];
1271 struct type *regtype
1272 = register_type (gdbarch,
1273 tdep->ppc_fp0_regnum);
1274 convert_typed_floating (val, type, regval,
1275 regtype);
1276 regcache_cooked_write (regcache,
1277 (tdep->ppc_fp0_regnum
1278 + freg),
1279 regval);
1280 }
1281 freg++;
1282 }
1283 else if (TYPE_LENGTH (type) == 16
40a6adc1 1284 && (gdbarch_long_double_format (gdbarch)
36815e57
JM
1285 == floatformats_ibm_long_double))
1286 {
1287 if (write_pass)
1288 {
1289 regcache_cooked_write (regcache,
1290 (tdep->ppc_fp0_regnum
1291 + freg),
1292 val);
1293 if (freg <= 12)
1294 regcache_cooked_write (regcache,
1295 (tdep->ppc_fp0_regnum
1296 + freg + 1),
1297 val + 8);
1298 }
1299 freg += 2;
1300 }
1301 }
1302 }
8be9034a
AC
1303 /* Always consume parameter stack space. */
1304 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1305 }
1306 }
1307
1308 if (!write_pass)
1309 {
1310 /* Save the true region sizes ready for the second pass. */
1311 vparam_size = vparam;
1312 /* Make certain that the general parameter save area is at
1313 least the minimum 8 registers (or doublewords) in size. */
1314 if (greg < 8)
1315 gparam_size = 8 * tdep->wordsize;
1316 else
1317 gparam_size = gparam;
1318 }
1319 }
1320
1321 /* Update %sp. */
40a6adc1 1322 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
8be9034a
AC
1323
1324 /* Write the backchain (it occupies WORDSIZED bytes). */
e17a4113 1325 write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
8be9034a
AC
1326
1327 /* Point the inferior function call's return address at the dummy's
1328 breakpoint. */
1329 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1330
b6e1c027 1331 /* Use the func_addr to find the descriptor, and use that to find
69368a60
UW
1332 the TOC. If we're calling via a function pointer, the pointer
1333 itself identifies the descriptor. */
8be9034a 1334 {
69368a60
UW
1335 struct type *ftype = check_typedef (value_type (function));
1336 CORE_ADDR desc_addr = value_as_address (function);
1337
1338 if (TYPE_CODE (ftype) == TYPE_CODE_PTR
1339 || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
8be9034a 1340 {
b6e1c027
AC
1341 /* The TOC is the second double word in the descriptor. */
1342 CORE_ADDR toc =
1343 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
e17a4113 1344 tdep->wordsize, byte_order);
b6e1c027
AC
1345 regcache_cooked_write_unsigned (regcache,
1346 tdep->ppc_gp0_regnum + 2, toc);
8be9034a
AC
1347 }
1348 }
1349
1350 return sp;
1351}
1352
afd48b75 1353
55eddb0f 1354/* The 64 bit ABI return value convention.
afd48b75
AC
1355
1356 Return non-zero if the return-value is stored in a register, return
1357 0 if the return-value is instead stored on the stack (a.k.a.,
1358 struct return convention).
1359
963e2bb7 1360 For a return-value stored in a register: when WRITEBUF is non-NULL,
afd48b75 1361 copy the buffer to the corresponding register return-value location
963e2bb7 1362 location; when READBUF is non-NULL, fill the buffer from the
afd48b75 1363 corresponding register return-value location. */
05580c65 1364enum return_value_convention
c055b101
CV
1365ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
1366 struct type *valtype, struct regcache *regcache,
1367 gdb_byte *readbuf, const gdb_byte *writebuf)
afd48b75 1368{
05580c65 1369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1370 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
16796152
JB
1371
1372 /* This function exists to support a calling convention that
1373 requires floating-point registers. It shouldn't be used on
1374 processors that lack them. */
1375 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1376
afd48b75 1377 /* Floats and doubles in F1. */
944fcfab 1378 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
afd48b75 1379 {
50fd1280 1380 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 1381 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 1382 if (writebuf != NULL)
afd48b75 1383 {
963e2bb7 1384 convert_typed_floating (writebuf, valtype, regval, regtype);
366f009f 1385 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
afd48b75 1386 }
963e2bb7 1387 if (readbuf != NULL)
afd48b75 1388 {
366f009f 1389 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 1390 convert_typed_floating (regval, regtype, readbuf, valtype);
afd48b75
AC
1391 }
1392 return RETURN_VALUE_REGISTER_CONVENTION;
1393 }
1300a2f4
TJB
1394 if (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
1395 return get_decimal_float_return_value (gdbarch, valtype, regcache, readbuf,
1396 writebuf);
3d8476bc 1397 /* Integers in r3. */
b6e1c027 1398 if ((TYPE_CODE (valtype) == TYPE_CODE_INT
93d4208d
UW
1399 || TYPE_CODE (valtype) == TYPE_CODE_ENUM
1400 || TYPE_CODE (valtype) == TYPE_CODE_CHAR
1401 || TYPE_CODE (valtype) == TYPE_CODE_BOOL)
b6e1c027 1402 && TYPE_LENGTH (valtype) <= 8)
afd48b75 1403 {
963e2bb7 1404 if (writebuf != NULL)
afd48b75
AC
1405 {
1406 /* Be careful to sign extend the value. */
1407 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 1408 unpack_long (valtype, writebuf));
afd48b75 1409 }
963e2bb7 1410 if (readbuf != NULL)
afd48b75
AC
1411 {
1412 /* Extract the integer from r3. Since this is truncating the
1413 value, there isn't a sign extension problem. */
1414 ULONGEST regval;
1415 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1416 &regval);
e17a4113
UW
1417 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
1418 regval);
afd48b75
AC
1419 }
1420 return RETURN_VALUE_REGISTER_CONVENTION;
1421 }
1422 /* All pointers live in r3. */
93d4208d
UW
1423 if (TYPE_CODE (valtype) == TYPE_CODE_PTR
1424 || TYPE_CODE (valtype) == TYPE_CODE_REF)
afd48b75
AC
1425 {
1426 /* All pointers live in r3. */
963e2bb7
AC
1427 if (writebuf != NULL)
1428 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1429 if (readbuf != NULL)
1430 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
afd48b75
AC
1431 return RETURN_VALUE_REGISTER_CONVENTION;
1432 }
3d8476bc
PG
1433 /* Array type has more than one use. */
1434 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
afd48b75
AC
1435 {
1436 /* Small character arrays are returned, right justified, in r3. */
3d8476bc
PG
1437 if (TYPE_LENGTH (valtype) <= 8
1438 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
1439 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
1440 {
1441 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
1442 - TYPE_LENGTH (valtype));
1443 if (writebuf != NULL)
1444 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
1445 offset, TYPE_LENGTH (valtype), writebuf);
1446 if (readbuf != NULL)
1447 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
1448 offset, TYPE_LENGTH (valtype), readbuf);
1449 return RETURN_VALUE_REGISTER_CONVENTION;
1450 }
1451 /* A VMX vector is returned in v2. */
1452 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1453 && TYPE_VECTOR (valtype) && tdep->ppc_vr0_regnum >= 0)
1454 {
1455 if (readbuf)
1456 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1457 if (writebuf)
0df8b418
MS
1458 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2,
1459 writebuf);
3d8476bc
PG
1460 return RETURN_VALUE_REGISTER_CONVENTION;
1461 }
afd48b75
AC
1462 }
1463 /* Big floating point values get stored in adjacent floating
3d8476bc 1464 point registers, starting with F1. */
afd48b75 1465 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
944fcfab 1466 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
afd48b75 1467 {
963e2bb7 1468 if (writebuf || readbuf != NULL)
afd48b75
AC
1469 {
1470 int i;
1471 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
1472 {
963e2bb7 1473 if (writebuf != NULL)
366f009f 1474 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1475 (const bfd_byte *) writebuf + i * 8);
1476 if (readbuf != NULL)
366f009f 1477 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1478 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1479 }
1480 }
1481 return RETURN_VALUE_REGISTER_CONVENTION;
1482 }
1483 /* Complex values get returned in f1:f2, need to convert. */
1484 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
1485 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
1486 {
1487 if (regcache != NULL)
1488 {
1489 int i;
1490 for (i = 0; i < 2; i++)
1491 {
50fd1280 1492 gdb_byte regval[MAX_REGISTER_SIZE];
944fcfab 1493 struct type *regtype =
40a6adc1 1494 register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 1495 if (writebuf != NULL)
afd48b75 1496 {
963e2bb7 1497 convert_typed_floating ((const bfd_byte *) writebuf +
944fcfab 1498 i * (TYPE_LENGTH (valtype) / 2),
afd48b75 1499 valtype, regval, regtype);
366f009f
JB
1500 regcache_cooked_write (regcache,
1501 tdep->ppc_fp0_regnum + 1 + i,
944fcfab 1502 regval);
afd48b75 1503 }
963e2bb7 1504 if (readbuf != NULL)
afd48b75 1505 {
366f009f
JB
1506 regcache_cooked_read (regcache,
1507 tdep->ppc_fp0_regnum + 1 + i,
1508 regval);
afd48b75 1509 convert_typed_floating (regval, regtype,
963e2bb7 1510 (bfd_byte *) readbuf +
944fcfab 1511 i * (TYPE_LENGTH (valtype) / 2),
afd48b75
AC
1512 valtype);
1513 }
1514 }
1515 }
1516 return RETURN_VALUE_REGISTER_CONVENTION;
1517 }
1518 /* Big complex values get stored in f1:f4. */
944fcfab 1519 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
afd48b75
AC
1520 {
1521 if (regcache != NULL)
1522 {
1523 int i;
1524 for (i = 0; i < 4; i++)
1525 {
963e2bb7 1526 if (writebuf != NULL)
366f009f 1527 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1528 (const bfd_byte *) writebuf + i * 8);
1529 if (readbuf != NULL)
366f009f 1530 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1531 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1532 }
1533 }
1534 return RETURN_VALUE_REGISTER_CONVENTION;
1535 }
1536 return RETURN_VALUE_STRUCT_CONVENTION;
1537}
1538
This page took 0.839983 seconds and 4 git commands to generate.