Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / printcmd.c
CommitLineData
c906108c 1/* Print values for GNU debugger GDB.
e2ad119d 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "frame.h"
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "language.h"
26#include "expression.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "breakpoint.h"
31#include "demangle.h"
50f182aa 32#include "gdb-demangle.h"
c906108c
SS
33#include "valprint.h"
34#include "annotate.h"
c5aa993b
JM
35#include "symfile.h" /* for overlay functions */
36#include "objfiles.h" /* ditto */
c94fdfd0 37#include "completer.h" /* for completion functions */
8b93c638 38#include "ui-out.h"
fe898f56 39#include "block.h"
92bf2b80 40#include "disasm.h"
1a619819 41#include "dfp.h"
a3247a22
PP
42#include "observer.h"
43#include "solist.h"
a3247a22 44#include "parser-defs.h"
6c7a06a3 45#include "charset.h"
704e9165 46#include "arch-utils.h"
e9cafbcc 47#include "cli/cli-utils.h"
d3ce09f5 48#include "format.h"
05cba821 49#include "source.h"
c906108c 50
6a83354a 51#ifdef TUI
0df8b418 52#include "tui/tui.h" /* For tui_active et al. */
6a83354a
AC
53#endif
54
c906108c
SS
55/* Last specified output format. */
56
a6bac58e 57static char last_format = 0;
c906108c
SS
58
59/* Last specified examination size. 'b', 'h', 'w' or `q'. */
60
61static char last_size = 'w';
62
5d3729b5 63/* Default address to examine next, and associated architecture. */
c906108c 64
5d3729b5 65static struct gdbarch *next_gdbarch;
c906108c
SS
66static CORE_ADDR next_address;
67
a4642986
MR
68/* Number of delay instructions following current disassembled insn. */
69
70static int branch_delay_insns;
71
c906108c
SS
72/* Last address examined. */
73
74static CORE_ADDR last_examine_address;
75
76/* Contents of last address examined.
77 This is not valid past the end of the `x' command! */
78
3d6d86c6 79static struct value *last_examine_value;
c906108c
SS
80
81/* Largest offset between a symbolic value and an address, that will be
82 printed as `0x1234 <symbol+offset>'. */
83
84static unsigned int max_symbolic_offset = UINT_MAX;
920d2a44
AC
85static void
86show_max_symbolic_offset (struct ui_file *file, int from_tty,
87 struct cmd_list_element *c, const char *value)
88{
3e43a32a
MS
89 fprintf_filtered (file,
90 _("The largest offset that will be "
91 "printed in <symbol+1234> form is %s.\n"),
920d2a44
AC
92 value);
93}
c906108c
SS
94
95/* Append the source filename and linenumber of the symbol when
96 printing a symbolic value as `<symbol at filename:linenum>' if set. */
97static int print_symbol_filename = 0;
920d2a44
AC
98static void
99show_print_symbol_filename (struct ui_file *file, int from_tty,
100 struct cmd_list_element *c, const char *value)
101{
3e43a32a
MS
102 fprintf_filtered (file, _("Printing of source filename and "
103 "line number with <symbol> is %s.\n"),
920d2a44
AC
104 value);
105}
c906108c
SS
106
107/* Number of auto-display expression currently being displayed.
9d8fa392 108 So that we can disable it if we get a signal within it.
c906108c
SS
109 -1 when not doing one. */
110
5a18e302 111static int current_display_number;
c906108c 112
c906108c 113struct display
c5aa993b
JM
114 {
115 /* Chain link to next auto-display item. */
116 struct display *next;
6c95b8df 117
fa8a61dc
TT
118 /* The expression as the user typed it. */
119 char *exp_string;
6c95b8df 120
c5aa993b
JM
121 /* Expression to be evaluated and displayed. */
122 struct expression *exp;
6c95b8df 123
c5aa993b
JM
124 /* Item number of this auto-display item. */
125 int number;
6c95b8df 126
c5aa993b
JM
127 /* Display format specified. */
128 struct format_data format;
6c95b8df
PA
129
130 /* Program space associated with `block'. */
131 struct program_space *pspace;
132
0df8b418 133 /* Innermost block required by this expression when evaluated. */
270140bd 134 const struct block *block;
6c95b8df 135
0df8b418 136 /* Status of this display (enabled or disabled). */
b5de0fa7 137 int enabled_p;
c5aa993b 138 };
c906108c
SS
139
140/* Chain of expressions whose values should be displayed
141 automatically each time the program stops. */
142
143static struct display *display_chain;
144
145static int display_number;
146
c9174737
PA
147/* Walk the following statement or block through all displays.
148 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
149 display. */
3c3fe74c
PA
150
151#define ALL_DISPLAYS(B) \
152 for (B = display_chain; B; B = B->next)
153
c9174737
PA
154#define ALL_DISPLAYS_SAFE(B,TMP) \
155 for (B = display_chain; \
156 B ? (TMP = B->next, 1): 0; \
157 B = TMP)
158
0df8b418 159/* Prototypes for exported functions. */
c906108c 160
a14ed312 161void _initialize_printcmd (void);
c906108c 162
0df8b418 163/* Prototypes for local functions. */
c906108c 164
a14ed312 165static void do_one_display (struct display *);
c906108c 166\f
c5aa993b 167
c906108c
SS
168/* Decode a format specification. *STRING_PTR should point to it.
169 OFORMAT and OSIZE are used as defaults for the format and size
170 if none are given in the format specification.
171 If OSIZE is zero, then the size field of the returned value
172 should be set only if a size is explicitly specified by the
173 user.
174 The structure returned describes all the data
175 found in the specification. In addition, *STRING_PTR is advanced
176 past the specification and past all whitespace following it. */
177
178static struct format_data
6f937416 179decode_format (const char **string_ptr, int oformat, int osize)
c906108c
SS
180{
181 struct format_data val;
6f937416 182 const char *p = *string_ptr;
c906108c
SS
183
184 val.format = '?';
185 val.size = '?';
186 val.count = 1;
a6bac58e 187 val.raw = 0;
c906108c 188
bb556f1f
TK
189 if (*p == '-')
190 {
191 val.count = -1;
192 p++;
193 }
c906108c 194 if (*p >= '0' && *p <= '9')
bb556f1f 195 val.count *= atoi (p);
c5aa993b
JM
196 while (*p >= '0' && *p <= '9')
197 p++;
c906108c
SS
198
199 /* Now process size or format letters that follow. */
200
201 while (1)
202 {
203 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
204 val.size = *p++;
a6bac58e
TT
205 else if (*p == 'r')
206 {
207 val.raw = 1;
208 p++;
209 }
c906108c
SS
210 else if (*p >= 'a' && *p <= 'z')
211 val.format = *p++;
212 else
213 break;
214 }
215
c5aa993b
JM
216 while (*p == ' ' || *p == '\t')
217 p++;
c906108c
SS
218 *string_ptr = p;
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
5d3729b5
UW
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
c906108c
SS
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
9a22f0d0 256 case 's':
3e43a32a
MS
257 /* Display strings with byte size chars unless explicitly
258 specified. */
9a22f0d0
PM
259 val.size = '\0';
260 break;
261
c906108c
SS
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268}
269\f
79a45b7d 270/* Print value VAL on stream according to OPTIONS.
c906108c 271 Do not end with a newline.
c906108c 272 SIZE is the letter for the size of datum being printed.
ea37ba09
DJ
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
c906108c
SS
275
276static void
79a45b7d
TT
277print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
fba45db2 279 struct ui_file *stream)
c906108c 280{
df407dfe 281 struct type *type = check_typedef (value_type (val));
c906108c
SS
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
42ae5230 285 next_address = value_address (val) + len;
c906108c 286
ea37ba09 287 if (size)
c906108c 288 {
79a45b7d 289 switch (options->format)
ea37ba09
DJ
290 {
291 case 's':
6c7a06a3
TT
292 {
293 struct type *elttype = value_type (val);
ad3bbd48 294
42ae5230 295 next_address = (value_address (val)
09ca9e2e 296 + val_print_string (elttype, NULL,
42ae5230 297 value_address (val), -1,
9a22f0d0 298 stream, options) * len);
6c7a06a3 299 }
ea37ba09 300 return;
c906108c 301
ea37ba09
DJ
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
42ae5230 305 next_address = (value_address (val)
13274fc3
UW
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
ea37ba09
DJ
308 &branch_delay_insns));
309 return;
310 }
c906108c 311 }
ea37ba09 312
79a45b7d 313 if (options->format == 0 || options->format == 's'
4e885b20 314 || TYPE_CODE (type) == TYPE_CODE_REF
ea37ba09
DJ
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
79a45b7d 320 value_print (val, stream, options);
ea37ba09 321 else
b021a221
MS
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
ab2188aa
PA
324 val_print_scalar_formatted (type,
325 value_contents_for_printing (val),
326 value_embedded_offset (val),
327 val,
328 options, size, stream);
c906108c
SS
329}
330
b806fb9a
UW
331/* Return builtin floating point type of same length as TYPE.
332 If no such type is found, return TYPE itself. */
333static struct type *
50810684 334float_type_from_length (struct type *type)
b806fb9a 335{
50810684 336 struct gdbarch *gdbarch = get_type_arch (type);
b806fb9a 337 const struct builtin_type *builtin = builtin_type (gdbarch);
b806fb9a 338
744a8059 339 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
b806fb9a 340 type = builtin->builtin_float;
744a8059 341 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
b806fb9a 342 type = builtin->builtin_double;
744a8059 343 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
b806fb9a
UW
344 type = builtin->builtin_long_double;
345
346 return type;
347}
348
c906108c 349/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
ab2188aa
PA
350 according to OPTIONS and SIZE on STREAM. Formats s and i are not
351 supported at this level. */
c906108c
SS
352
353void
7c543f7b 354print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
79a45b7d
TT
355 const struct value_print_options *options,
356 int size, struct ui_file *stream)
c906108c 357{
50810684 358 struct gdbarch *gdbarch = get_type_arch (type);
81cb7cc9 359 LONGEST val_long = 0;
c906108c 360 unsigned int len = TYPE_LENGTH (type);
69feb676 361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 362
ab2188aa
PA
363 /* String printing should go through val_print_scalar_formatted. */
364 gdb_assert (options->format != 's');
ea37ba09 365
be56871e
JB
366 if (len > sizeof(LONGEST)
367 && (TYPE_CODE (type) == TYPE_CODE_INT
368 || TYPE_CODE (type) == TYPE_CODE_ENUM))
6b9acc27 369 {
79a45b7d 370 switch (options->format)
6b9acc27
JJ
371 {
372 case 'o':
d44e8473 373 print_octal_chars (stream, valaddr, len, byte_order);
6b9acc27
JJ
374 return;
375 case 'u':
376 case 'd':
d44e8473 377 print_decimal_chars (stream, valaddr, len, byte_order);
6b9acc27
JJ
378 return;
379 case 't':
d44e8473 380 print_binary_chars (stream, valaddr, len, byte_order);
6b9acc27
JJ
381 return;
382 case 'x':
d44e8473 383 print_hex_chars (stream, valaddr, len, byte_order);
6b9acc27
JJ
384 return;
385 case 'c':
6c7a06a3 386 print_char_chars (stream, type, valaddr, len, byte_order);
6b9acc27
JJ
387 return;
388 default:
389 break;
390 };
391 }
392
79a45b7d 393 if (options->format != 'f')
c906108c
SS
394 val_long = unpack_long (type, valaddr);
395
ef166cf4 396 /* If the value is a pointer, and pointers and addresses are not the
d0aee0c4 397 same, then at this point, the value's length (in target bytes) is
17a912b6 398 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
ef166cf4 399 if (TYPE_CODE (type) == TYPE_CODE_PTR)
69feb676 400 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
ef166cf4 401
c906108c
SS
402 /* If we are printing it as unsigned, truncate it in case it is actually
403 a negative signed value (e.g. "print/u (short)-1" should print 65535
404 (if shorts are 16 bits) instead of 4294967295). */
1fac167a 405 if (options->format != 'd' || TYPE_UNSIGNED (type))
c906108c
SS
406 {
407 if (len < sizeof (LONGEST))
408 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
409 }
410
79a45b7d 411 switch (options->format)
c906108c
SS
412 {
413 case 'x':
414 if (!size)
415 {
675dcf4f 416 /* No size specified, like in print. Print varying # of digits. */
c906108c
SS
417 print_longest (stream, 'x', 1, val_long);
418 }
419 else
420 switch (size)
421 {
422 case 'b':
423 case 'h':
424 case 'w':
425 case 'g':
426 print_longest (stream, size, 1, val_long);
427 break;
428 default:
8a3fe4f8 429 error (_("Undefined output size \"%c\"."), size);
c906108c
SS
430 }
431 break;
432
433 case 'd':
434 print_longest (stream, 'd', 1, val_long);
435 break;
436
437 case 'u':
438 print_longest (stream, 'u', 0, val_long);
439 break;
440
441 case 'o':
442 if (val_long)
443 print_longest (stream, 'o', 1, val_long);
444 else
445 fprintf_filtered (stream, "0");
446 break;
447
448 case 'a':
593de6a6 449 {
593de6a6 450 CORE_ADDR addr = unpack_pointer (type, valaddr);
ad3bbd48 451
5af949e3 452 print_address (gdbarch, addr, stream);
593de6a6 453 }
c906108c
SS
454 break;
455
456 case 'c':
79a45b7d
TT
457 {
458 struct value_print_options opts = *options;
69feb676 459
ad3bbd48 460 opts.format = 0;
79a45b7d 461 if (TYPE_UNSIGNED (type))
69feb676
UW
462 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
463 else
464 type = builtin_type (gdbarch)->builtin_true_char;
465
466 value_print (value_from_longest (type, val_long), stream, &opts);
79a45b7d 467 }
c906108c
SS
468 break;
469
470 case 'f':
50810684 471 type = float_type_from_length (type);
c906108c
SS
472 print_floating (valaddr, type, stream);
473 break;
474
475 case 0:
675dcf4f
MK
476 internal_error (__FILE__, __LINE__,
477 _("failed internal consistency check"));
c906108c
SS
478
479 case 't':
480 /* Binary; 't' stands for "two". */
481 {
c5aa993b
JM
482 char bits[8 * (sizeof val_long) + 1];
483 char buf[8 * (sizeof val_long) + 32];
c906108c
SS
484 char *cp = bits;
485 int width;
486
c5aa993b
JM
487 if (!size)
488 width = 8 * (sizeof val_long);
489 else
490 switch (size)
c906108c
SS
491 {
492 case 'b':
493 width = 8;
494 break;
495 case 'h':
496 width = 16;
497 break;
498 case 'w':
499 width = 32;
500 break;
501 case 'g':
502 width = 64;
503 break;
504 default:
8a3fe4f8 505 error (_("Undefined output size \"%c\"."), size);
c906108c
SS
506 }
507
c5aa993b
JM
508 bits[width] = '\0';
509 while (width-- > 0)
510 {
511 bits[width] = (val_long & 1) ? '1' : '0';
512 val_long >>= 1;
513 }
c906108c
SS
514 if (!size)
515 {
516 while (*cp && *cp == '0')
517 cp++;
518 if (*cp == '\0')
519 cp--;
520 }
daac021a 521 strncpy (buf, cp, sizeof (bits));
306d9ac5 522 fputs_filtered (buf, stream);
c906108c
SS
523 }
524 break;
525
6fbe845e
AB
526 case 'z':
527 print_hex_chars (stream, valaddr, len, byte_order);
528 break;
529
c906108c 530 default:
79a45b7d 531 error (_("Undefined output format \"%c\"."), options->format);
c906108c
SS
532 }
533}
534
535/* Specify default address for `x' command.
675dcf4f 536 The `info lines' command uses this. */
c906108c
SS
537
538void
8b9b9e1a 539set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
c906108c 540{
8b9b9e1a
UW
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542
5d3729b5 543 next_gdbarch = gdbarch;
c906108c
SS
544 next_address = addr;
545
546 /* Make address available to the user as $_. */
547 set_internalvar (lookup_internalvar ("_"),
8b9b9e1a 548 value_from_pointer (ptr_type, addr));
c906108c
SS
549}
550
551/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
552 after LEADIN. Print nothing if no symbolic name is found nearby.
553 Optionally also print source file and line number, if available.
554 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
555 or to interpret it as a possible C++ name and convert it back to source
556 form. However note that DO_DEMANGLE can be overridden by the specific
9cb709b6
TT
557 settings of the demangle and asm_demangle variables. Returns
558 non-zero if anything was printed; zero otherwise. */
c906108c 559
9cb709b6 560int
22e722e1
DJ
561print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
562 struct ui_file *stream,
675dcf4f 563 int do_demangle, char *leadin)
dfcd3bfb
JM
564{
565 char *name = NULL;
566 char *filename = NULL;
567 int unmapped = 0;
568 int offset = 0;
569 int line = 0;
570
675dcf4f 571 /* Throw away both name and filename. */
2f9429ae
AC
572 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
573 make_cleanup (free_current_contents, &filename);
dfcd3bfb 574
22e722e1 575 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
675dcf4f 576 &filename, &line, &unmapped))
2f9429ae
AC
577 {
578 do_cleanups (cleanup_chain);
9cb709b6 579 return 0;
2f9429ae 580 }
dfcd3bfb
JM
581
582 fputs_filtered (leadin, stream);
583 if (unmapped)
584 fputs_filtered ("<*", stream);
585 else
586 fputs_filtered ("<", stream);
587 fputs_filtered (name, stream);
588 if (offset != 0)
589 fprintf_filtered (stream, "+%u", (unsigned int) offset);
590
591 /* Append source filename and line number if desired. Give specific
592 line # of this addr, if we have it; else line # of the nearest symbol. */
593 if (print_symbol_filename && filename != NULL)
594 {
595 if (line != -1)
596 fprintf_filtered (stream, " at %s:%d", filename, line);
597 else
598 fprintf_filtered (stream, " in %s", filename);
599 }
600 if (unmapped)
601 fputs_filtered ("*>", stream);
602 else
603 fputs_filtered (">", stream);
604
605 do_cleanups (cleanup_chain);
9cb709b6 606 return 1;
dfcd3bfb
JM
607}
608
609/* Given an address ADDR return all the elements needed to print the
0df8b418 610 address in a symbolic form. NAME can be mangled or not depending
dfcd3bfb 611 on DO_DEMANGLE (and also on the asm_demangle global variable,
0df8b418
MS
612 manipulated via ''set print asm-demangle''). Return 0 in case of
613 success, when all the info in the OUT paramters is valid. Return 1
614 otherwise. */
dfcd3bfb 615int
22e722e1
DJ
616build_address_symbolic (struct gdbarch *gdbarch,
617 CORE_ADDR addr, /* IN */
dfcd3bfb
JM
618 int do_demangle, /* IN */
619 char **name, /* OUT */
620 int *offset, /* OUT */
621 char **filename, /* OUT */
622 int *line, /* OUT */
623 int *unmapped) /* OUT */
c906108c 624{
77e371c0 625 struct bound_minimal_symbol msymbol;
c906108c 626 struct symbol *symbol;
c906108c 627 CORE_ADDR name_location = 0;
714835d5 628 struct obj_section *section = NULL;
0d5cff50 629 const char *name_temp = "";
dfcd3bfb 630
89c83b10 631 /* Let's say it is mapped (not unmapped). */
dfcd3bfb 632 *unmapped = 0;
c906108c 633
dfcd3bfb 634 /* Determine if the address is in an overlay, and whether it is
675dcf4f 635 mapped. */
c906108c
SS
636 if (overlay_debugging)
637 {
638 section = find_pc_overlay (addr);
639 if (pc_in_unmapped_range (addr, section))
640 {
dfcd3bfb 641 *unmapped = 1;
c906108c
SS
642 addr = overlay_mapped_address (addr, section);
643 }
644 }
645
c906108c
SS
646 /* First try to find the address in the symbol table, then
647 in the minsyms. Take the closest one. */
648
649 /* This is defective in the sense that it only finds text symbols. So
650 really this is kind of pointless--we should make sure that the
651 minimal symbols have everything we need (by changing that we could
652 save some memory, but for many debug format--ELF/DWARF or
653 anything/stabs--it would be inconvenient to eliminate those minimal
654 symbols anyway). */
77e371c0 655 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
c906108c
SS
656 symbol = find_pc_sect_function (addr, section);
657
658 if (symbol)
659 {
22e722e1
DJ
660 /* If this is a function (i.e. a code address), strip out any
661 non-address bits. For instance, display a pointer to the
662 first instruction of a Thumb function as <function>; the
663 second instruction will be <function+2>, even though the
664 pointer is <function+3>. This matches the ISA behavior. */
665 addr = gdbarch_addr_bits_remove (gdbarch, addr);
666
c906108c 667 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
406fc7fb 668 if (do_demangle || asm_demangle)
de5ad195 669 name_temp = SYMBOL_PRINT_NAME (symbol);
c906108c 670 else
3567439c 671 name_temp = SYMBOL_LINKAGE_NAME (symbol);
c906108c
SS
672 }
673
77e371c0
TT
674 if (msymbol.minsym != NULL
675 && MSYMBOL_HAS_SIZE (msymbol.minsym)
676 && MSYMBOL_SIZE (msymbol.minsym) == 0
677 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
678 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
679 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
680 msymbol.minsym = NULL;
9cb709b6 681
77e371c0 682 if (msymbol.minsym != NULL)
c906108c 683 {
77e371c0 684 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
c906108c 685 {
fe8400b4
WN
686 /* If this is a function (i.e. a code address), strip out any
687 non-address bits. For instance, display a pointer to the
688 first instruction of a Thumb function as <function>; the
689 second instruction will be <function+2>, even though the
690 pointer is <function+3>. This matches the ISA behavior. */
77e371c0
TT
691 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
692 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
693 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
694 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
fe8400b4
WN
695 addr = gdbarch_addr_bits_remove (gdbarch, addr);
696
c906108c
SS
697 /* The msymbol is closer to the address than the symbol;
698 use the msymbol instead. */
699 symbol = 0;
77e371c0 700 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
406fc7fb 701 if (do_demangle || asm_demangle)
77e371c0 702 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
c906108c 703 else
77e371c0 704 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
c906108c
SS
705 }
706 }
77e371c0 707 if (symbol == NULL && msymbol.minsym == NULL)
dfcd3bfb 708 return 1;
c906108c 709
c906108c
SS
710 /* If the nearest symbol is too far away, don't print anything symbolic. */
711
712 /* For when CORE_ADDR is larger than unsigned int, we do math in
713 CORE_ADDR. But when we detect unsigned wraparound in the
714 CORE_ADDR math, we ignore this test and print the offset,
715 because addr+max_symbolic_offset has wrapped through the end
716 of the address space back to the beginning, giving bogus comparison. */
717 if (addr > name_location + max_symbolic_offset
718 && name_location + max_symbolic_offset > name_location)
dfcd3bfb 719 return 1;
c906108c 720
dfcd3bfb
JM
721 *offset = addr - name_location;
722
723 *name = xstrdup (name_temp);
c906108c 724
c906108c
SS
725 if (print_symbol_filename)
726 {
727 struct symtab_and_line sal;
728
729 sal = find_pc_sect_line (addr, section, 0);
730
731 if (sal.symtab)
dfcd3bfb 732 {
05cba821 733 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
dfcd3bfb
JM
734 *line = sal.line;
735 }
c906108c 736 }
dfcd3bfb 737 return 0;
c906108c
SS
738}
739
c906108c
SS
740
741/* Print address ADDR symbolically on STREAM.
742 First print it as a number. Then perhaps print
743 <SYMBOL + OFFSET> after the number. */
744
745void
5af949e3
UW
746print_address (struct gdbarch *gdbarch,
747 CORE_ADDR addr, struct ui_file *stream)
c906108c 748{
5af949e3 749 fputs_filtered (paddress (gdbarch, addr), stream);
22e722e1 750 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
c906108c
SS
751}
752
2b28d209
PP
753/* Return a prefix for instruction address:
754 "=> " for current instruction, else " ". */
755
756const char *
757pc_prefix (CORE_ADDR addr)
758{
759 if (has_stack_frames ())
760 {
761 struct frame_info *frame;
762 CORE_ADDR pc;
763
764 frame = get_selected_frame (NULL);
ce406537 765 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
2b28d209
PP
766 return "=> ";
767 }
768 return " ";
769}
770
c906108c
SS
771/* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
772 controls whether to print the symbolic name "raw" or demangled.
9cb709b6 773 Return non-zero if anything was printed; zero otherwise. */
c906108c 774
9cb709b6 775int
edf0c1b7
TT
776print_address_demangle (const struct value_print_options *opts,
777 struct gdbarch *gdbarch, CORE_ADDR addr,
5af949e3 778 struct ui_file *stream, int do_demangle)
c906108c 779{
1d51a733 780 if (opts->addressprint)
c906108c 781 {
5af949e3 782 fputs_filtered (paddress (gdbarch, addr), stream);
22e722e1 783 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
c906108c
SS
784 }
785 else
786 {
9cb709b6 787 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
c906108c 788 }
9cb709b6 789 return 1;
c906108c
SS
790}
791\f
792
bb556f1f
TK
793/* Find the address of the instruction that is INST_COUNT instructions before
794 the instruction at ADDR.
795 Since some architectures have variable-length instructions, we can't just
796 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
797 number information to locate the nearest known instruction boundary,
798 and disassemble forward from there. If we go out of the symbol range
799 during disassembling, we return the lowest address we've got so far and
800 set the number of instructions read to INST_READ. */
801
802static CORE_ADDR
803find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
804 int inst_count, int *inst_read)
805{
806 /* The vector PCS is used to store instruction addresses within
807 a pc range. */
808 CORE_ADDR loop_start, loop_end, p;
809 VEC (CORE_ADDR) *pcs = NULL;
810 struct symtab_and_line sal;
811 struct cleanup *cleanup = make_cleanup (VEC_cleanup (CORE_ADDR), &pcs);
812
813 *inst_read = 0;
814 loop_start = loop_end = addr;
815
816 /* In each iteration of the outer loop, we get a pc range that ends before
817 LOOP_START, then we count and store every instruction address of the range
818 iterated in the loop.
819 If the number of instructions counted reaches INST_COUNT, return the
820 stored address that is located INST_COUNT instructions back from ADDR.
821 If INST_COUNT is not reached, we subtract the number of counted
822 instructions from INST_COUNT, and go to the next iteration. */
823 do
824 {
825 VEC_truncate (CORE_ADDR, pcs, 0);
826 sal = find_pc_sect_line (loop_start, NULL, 1);
827 if (sal.line <= 0)
828 {
829 /* We reach here when line info is not available. In this case,
830 we print a message and just exit the loop. The return value
831 is calculated after the loop. */
832 printf_filtered (_("No line number information available "
833 "for address "));
834 wrap_here (" ");
835 print_address (gdbarch, loop_start - 1, gdb_stdout);
836 printf_filtered ("\n");
837 break;
838 }
839
840 loop_end = loop_start;
841 loop_start = sal.pc;
842
843 /* This loop pushes instruction addresses in the range from
844 LOOP_START to LOOP_END. */
845 for (p = loop_start; p < loop_end;)
846 {
847 VEC_safe_push (CORE_ADDR, pcs, p);
848 p += gdb_insn_length (gdbarch, p);
849 }
850
851 inst_count -= VEC_length (CORE_ADDR, pcs);
852 *inst_read += VEC_length (CORE_ADDR, pcs);
853 }
854 while (inst_count > 0);
855
856 /* After the loop, the vector PCS has instruction addresses of the last
857 source line we processed, and INST_COUNT has a negative value.
858 We return the address at the index of -INST_COUNT in the vector for
859 the reason below.
860 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
861 Line X of File
862 0x4000
863 0x4001
864 0x4005
865 Line Y of File
866 0x4009
867 0x400c
868 => 0x400e
869 0x4011
870 find_instruction_backward is called with INST_COUNT = 4 and expected to
871 return 0x4001. When we reach here, INST_COUNT is set to -1 because
872 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
873 4001 is located at the index 1 of the last iterated line (= Line X),
874 which is simply calculated by -INST_COUNT.
875 The case when the length of PCS is 0 means that we reached an area for
876 which line info is not available. In such case, we return LOOP_START,
877 which was the lowest instruction address that had line info. */
878 p = VEC_length (CORE_ADDR, pcs) > 0
879 ? VEC_index (CORE_ADDR, pcs, -inst_count)
880 : loop_start;
881
882 /* INST_READ includes all instruction addresses in a pc range. Need to
883 exclude the beginning part up to the address we're returning. That
884 is, exclude {0x4000} in the example above. */
885 if (inst_count < 0)
886 *inst_read += inst_count;
887
888 do_cleanups (cleanup);
889 return p;
890}
891
892/* Backward read LEN bytes of target memory from address MEMADDR + LEN,
893 placing the results in GDB's memory from MYADDR + LEN. Returns
894 a count of the bytes actually read. */
895
896static int
897read_memory_backward (struct gdbarch *gdbarch,
898 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
899{
900 int errcode;
901 int nread; /* Number of bytes actually read. */
902
903 /* First try a complete read. */
904 errcode = target_read_memory (memaddr, myaddr, len);
905 if (errcode == 0)
906 {
907 /* Got it all. */
908 nread = len;
909 }
910 else
911 {
912 /* Loop, reading one byte at a time until we get as much as we can. */
913 memaddr += len;
914 myaddr += len;
915 for (nread = 0; nread < len; ++nread)
916 {
917 errcode = target_read_memory (--memaddr, --myaddr, 1);
918 if (errcode != 0)
919 {
920 /* The read was unsuccessful, so exit the loop. */
921 printf_filtered (_("Cannot access memory at address %s\n"),
922 paddress (gdbarch, memaddr));
923 break;
924 }
925 }
926 }
927 return nread;
928}
929
930/* Returns true if X (which is LEN bytes wide) is the number zero. */
931
932static int
933integer_is_zero (const gdb_byte *x, int len)
934{
935 int i = 0;
936
937 while (i < len && x[i] == 0)
938 ++i;
939 return (i == len);
940}
941
942/* Find the start address of a string in which ADDR is included.
943 Basically we search for '\0' and return the next address,
944 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
945 we stop searching and return the address to print characters as many as
946 PRINT_MAX from the string. */
947
948static CORE_ADDR
949find_string_backward (struct gdbarch *gdbarch,
950 CORE_ADDR addr, int count, int char_size,
951 const struct value_print_options *options,
952 int *strings_counted)
953{
954 const int chunk_size = 0x20;
955 gdb_byte *buffer = NULL;
956 struct cleanup *cleanup = NULL;
957 int read_error = 0;
958 int chars_read = 0;
959 int chars_to_read = chunk_size;
960 int chars_counted = 0;
961 int count_original = count;
962 CORE_ADDR string_start_addr = addr;
963
964 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
965 buffer = (gdb_byte *) xmalloc (chars_to_read * char_size);
966 cleanup = make_cleanup (xfree, buffer);
967 while (count > 0 && read_error == 0)
968 {
969 int i;
970
971 addr -= chars_to_read * char_size;
972 chars_read = read_memory_backward (gdbarch, addr, buffer,
973 chars_to_read * char_size);
974 chars_read /= char_size;
975 read_error = (chars_read == chars_to_read) ? 0 : 1;
976 /* Searching for '\0' from the end of buffer in backward direction. */
977 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
978 {
979 int offset = (chars_to_read - i - 1) * char_size;
980
981 if (integer_is_zero (buffer + offset, char_size)
982 || chars_counted == options->print_max)
983 {
984 /* Found '\0' or reached print_max. As OFFSET is the offset to
985 '\0', we add CHAR_SIZE to return the start address of
986 a string. */
987 --count;
988 string_start_addr = addr + offset + char_size;
989 chars_counted = 0;
990 }
991 }
992 }
993
994 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
995 *strings_counted = count_original - count;
996
997 if (read_error != 0)
998 {
999 /* In error case, STRING_START_ADDR is pointing to the string that
1000 was last successfully loaded. Rewind the partially loaded string. */
1001 string_start_addr -= chars_counted * char_size;
1002 }
1003
1004 do_cleanups (cleanup);
1005 return string_start_addr;
1006}
1007
c906108c
SS
1008/* Examine data at address ADDR in format FMT.
1009 Fetch it from memory and print on gdb_stdout. */
1010
1011static void
5d3729b5 1012do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
c906108c 1013{
52f0bd74
AC
1014 char format = 0;
1015 char size;
1016 int count = 1;
c906108c 1017 struct type *val_type = NULL;
52f0bd74
AC
1018 int i;
1019 int maxelts;
79a45b7d 1020 struct value_print_options opts;
bb556f1f
TK
1021 int need_to_update_next_address = 0;
1022 CORE_ADDR addr_rewound = 0;
c906108c
SS
1023
1024 format = fmt.format;
1025 size = fmt.size;
1026 count = fmt.count;
5d3729b5 1027 next_gdbarch = gdbarch;
c906108c 1028 next_address = addr;
c906108c 1029
9a22f0d0
PM
1030 /* Instruction format implies fetch single bytes
1031 regardless of the specified size.
1032 The case of strings is handled in decode_format, only explicit
1033 size operator are not changed to 'b'. */
1034 if (format == 'i')
c906108c
SS
1035 size = 'b';
1036
5d3729b5
UW
1037 if (size == 'a')
1038 {
1039 /* Pick the appropriate size for an address. */
1040 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1041 size = 'g';
1042 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1043 size = 'w';
1044 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1045 size = 'h';
1046 else
1047 /* Bad value for gdbarch_ptr_bit. */
1048 internal_error (__FILE__, __LINE__,
1049 _("failed internal consistency check"));
1050 }
1051
1052 if (size == 'b')
df4df182 1053 val_type = builtin_type (next_gdbarch)->builtin_int8;
c906108c 1054 else if (size == 'h')
df4df182 1055 val_type = builtin_type (next_gdbarch)->builtin_int16;
c906108c 1056 else if (size == 'w')
df4df182 1057 val_type = builtin_type (next_gdbarch)->builtin_int32;
c906108c 1058 else if (size == 'g')
df4df182 1059 val_type = builtin_type (next_gdbarch)->builtin_int64;
c906108c 1060
9a22f0d0
PM
1061 if (format == 's')
1062 {
1063 struct type *char_type = NULL;
ad3bbd48 1064
9a22f0d0
PM
1065 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1066 if type is not found. */
1067 if (size == 'h')
1068 char_type = builtin_type (next_gdbarch)->builtin_char16;
1069 else if (size == 'w')
1070 char_type = builtin_type (next_gdbarch)->builtin_char32;
1071 if (char_type)
1072 val_type = char_type;
1073 else
1074 {
1075 if (size != '\0' && size != 'b')
0df8b418
MS
1076 warning (_("Unable to display strings with "
1077 "size '%c', using 'b' instead."), size);
9a22f0d0
PM
1078 size = 'b';
1079 val_type = builtin_type (next_gdbarch)->builtin_int8;
1080 }
1081 }
1082
c906108c
SS
1083 maxelts = 8;
1084 if (size == 'w')
1085 maxelts = 4;
1086 if (size == 'g')
1087 maxelts = 2;
1088 if (format == 's' || format == 'i')
1089 maxelts = 1;
1090
79a45b7d
TT
1091 get_formatted_print_options (&opts, format);
1092
bb556f1f
TK
1093 if (count < 0)
1094 {
1095 /* This is the negative repeat count case.
1096 We rewind the address based on the given repeat count and format,
1097 then examine memory from there in forward direction. */
1098
1099 count = -count;
1100 if (format == 'i')
1101 {
1102 next_address = find_instruction_backward (gdbarch, addr, count,
1103 &count);
1104 }
1105 else if (format == 's')
1106 {
1107 next_address = find_string_backward (gdbarch, addr, count,
1108 TYPE_LENGTH (val_type),
1109 &opts, &count);
1110 }
1111 else
1112 {
1113 next_address = addr - count * TYPE_LENGTH (val_type);
1114 }
1115
1116 /* The following call to print_formatted updates next_address in every
1117 iteration. In backward case, we store the start address here
1118 and update next_address with it before exiting the function. */
1119 addr_rewound = (format == 's'
1120 ? next_address - TYPE_LENGTH (val_type)
1121 : next_address);
1122 need_to_update_next_address = 1;
1123 }
1124
c906108c
SS
1125 /* Print as many objects as specified in COUNT, at most maxelts per line,
1126 with the address of the next one at the start of each line. */
1127
1128 while (count > 0)
1129 {
1130 QUIT;
2b28d209
PP
1131 if (format == 'i')
1132 fputs_filtered (pc_prefix (next_address), gdb_stdout);
5af949e3 1133 print_address (next_gdbarch, next_address, gdb_stdout);
c906108c
SS
1134 printf_filtered (":");
1135 for (i = maxelts;
1136 i > 0 && count > 0;
1137 i--, count--)
1138 {
1139 printf_filtered ("\t");
1140 /* Note that print_formatted sets next_address for the next
1141 object. */
1142 last_examine_address = next_address;
1143
1144 if (last_examine_value)
1145 value_free (last_examine_value);
1146
1147 /* The value to be displayed is not fetched greedily.
5d51a2db
MR
1148 Instead, to avoid the possibility of a fetched value not
1149 being used, its retrieval is delayed until the print code
c5aa993b
JM
1150 uses it. When examining an instruction stream, the
1151 disassembler will perform its own memory fetch using just
1152 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1153 the disassembler be modified so that LAST_EXAMINE_VALUE
1154 is left with the byte sequence from the last complete
0df8b418 1155 instruction fetched from memory? */
00a4c844 1156 last_examine_value = value_at_lazy (val_type, next_address);
c906108c
SS
1157
1158 if (last_examine_value)
1159 release_value (last_examine_value);
1160
79a45b7d 1161 print_formatted (last_examine_value, size, &opts, gdb_stdout);
a4642986
MR
1162
1163 /* Display any branch delay slots following the final insn. */
1164 if (format == 'i' && count == 1)
1165 count += branch_delay_insns;
c906108c
SS
1166 }
1167 printf_filtered ("\n");
1168 gdb_flush (gdb_stdout);
1169 }
bb556f1f
TK
1170
1171 if (need_to_update_next_address)
1172 next_address = addr_rewound;
c906108c
SS
1173}
1174\f
1175static void
8d89f51a 1176validate_format (struct format_data fmt, const char *cmdname)
c906108c
SS
1177{
1178 if (fmt.size != 0)
8a3fe4f8 1179 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
c906108c 1180 if (fmt.count != 1)
8a3fe4f8 1181 error (_("Item count other than 1 is meaningless in \"%s\" command."),
c906108c 1182 cmdname);
ea37ba09 1183 if (fmt.format == 'i')
8a3fe4f8 1184 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
c906108c
SS
1185 fmt.format, cmdname);
1186}
1187
1c88ceb1
JK
1188/* Parse print command format string into *FMTP and update *EXPP.
1189 CMDNAME should name the current command. */
1190
1191void
1192print_command_parse_format (const char **expp, const char *cmdname,
1193 struct format_data *fmtp)
1194{
1195 const char *exp = *expp;
1196
1197 if (exp && *exp == '/')
1198 {
1199 exp++;
1200 *fmtp = decode_format (&exp, last_format, 0);
1201 validate_format (*fmtp, cmdname);
1202 last_format = fmtp->format;
1203 }
1204 else
1205 {
1206 fmtp->count = 1;
1207 fmtp->format = 0;
1208 fmtp->size = 0;
1209 fmtp->raw = 0;
1210 }
1211
1212 *expp = exp;
1213}
1214
1215/* Print VAL to console according to *FMTP, including recording it to
1216 the history. */
1217
1218void
1219print_value (struct value *val, const struct format_data *fmtp)
1220{
1221 struct value_print_options opts;
1222 int histindex = record_latest_value (val);
1223
1224 annotate_value_history_begin (histindex, value_type (val));
1225
1226 printf_filtered ("$%d = ", histindex);
1227
1228 annotate_value_history_value ();
1229
1230 get_formatted_print_options (&opts, fmtp->format);
1231 opts.raw = fmtp->raw;
1232
1233 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1234 printf_filtered ("\n");
1235
1236 annotate_value_history_end ();
1237}
1238
675dcf4f 1239/* Evaluate string EXP as an expression in the current language and
c5aa993b 1240 print the resulting value. EXP may contain a format specifier as the
675dcf4f 1241 first argument ("/x myvar" for example, to print myvar in hex). */
c906108c
SS
1242
1243static void
6f937416 1244print_command_1 (const char *exp, int voidprint)
c906108c 1245{
1c4ff080 1246 struct expression *expr;
27833de7 1247 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3d6d86c6 1248 struct value *val;
c906108c 1249 struct format_data fmt;
c906108c 1250
1c88ceb1 1251 print_command_parse_format (&exp, "print", &fmt);
c906108c
SS
1252
1253 if (exp && *exp)
1254 {
c906108c 1255 expr = parse_expression (exp);
27833de7 1256 make_cleanup (free_current_contents, &expr);
c906108c 1257 val = evaluate_expression (expr);
c906108c
SS
1258 }
1259 else
1260 val = access_value_history (0);
1261
df407dfe
AC
1262 if (voidprint || (val && value_type (val) &&
1263 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1c88ceb1 1264 print_value (val, &fmt);
c906108c 1265
27833de7 1266 do_cleanups (old_chain);
c906108c
SS
1267}
1268
c906108c 1269static void
fba45db2 1270print_command (char *exp, int from_tty)
c906108c 1271{
e93a8774 1272 print_command_1 (exp, 1);
c906108c
SS
1273}
1274
675dcf4f 1275/* Same as print, except it doesn't print void results. */
c906108c 1276static void
fba45db2 1277call_command (char *exp, int from_tty)
c906108c 1278{
e93a8774 1279 print_command_1 (exp, 0);
c906108c
SS
1280}
1281
6f937416
PA
1282/* Implementation of the "output" command. */
1283
1284static void
fba45db2 1285output_command (char *exp, int from_tty)
6f937416
PA
1286{
1287 output_command_const (exp, from_tty);
1288}
1289
1290/* Like output_command, but takes a const string as argument. */
1291
1292void
1293output_command_const (const char *exp, int from_tty)
c906108c
SS
1294{
1295 struct expression *expr;
52f0bd74
AC
1296 struct cleanup *old_chain;
1297 char format = 0;
3d6d86c6 1298 struct value *val;
c906108c 1299 struct format_data fmt;
79a45b7d 1300 struct value_print_options opts;
c906108c 1301
777ea8f1 1302 fmt.size = 0;
a6bac58e 1303 fmt.raw = 0;
777ea8f1 1304
c906108c
SS
1305 if (exp && *exp == '/')
1306 {
1307 exp++;
1308 fmt = decode_format (&exp, 0, 0);
1309 validate_format (fmt, "output");
1310 format = fmt.format;
1311 }
1312
1313 expr = parse_expression (exp);
c13c43fd 1314 old_chain = make_cleanup (free_current_contents, &expr);
c906108c
SS
1315
1316 val = evaluate_expression (expr);
1317
df407dfe 1318 annotate_value_begin (value_type (val));
c906108c 1319
79a45b7d 1320 get_formatted_print_options (&opts, format);
a6bac58e 1321 opts.raw = fmt.raw;
79a45b7d 1322 print_formatted (val, fmt.size, &opts, gdb_stdout);
c906108c
SS
1323
1324 annotate_value_end ();
1325
2acceee2
JM
1326 wrap_here ("");
1327 gdb_flush (gdb_stdout);
1328
c906108c
SS
1329 do_cleanups (old_chain);
1330}
1331
c906108c 1332static void
fba45db2 1333set_command (char *exp, int from_tty)
c906108c
SS
1334{
1335 struct expression *expr = parse_expression (exp);
52f0bd74 1336 struct cleanup *old_chain =
c13c43fd 1337 make_cleanup (free_current_contents, &expr);
ad3bbd48 1338
0ece64fd
TG
1339 if (expr->nelts >= 1)
1340 switch (expr->elts[0].opcode)
1341 {
1342 case UNOP_PREINCREMENT:
1343 case UNOP_POSTINCREMENT:
1344 case UNOP_PREDECREMENT:
1345 case UNOP_POSTDECREMENT:
1346 case BINOP_ASSIGN:
1347 case BINOP_ASSIGN_MODIFY:
1348 case BINOP_COMMA:
1349 break;
1350 default:
1351 warning
1352 (_("Expression is not an assignment (and might have no effect)"));
1353 }
52b3699b 1354
c906108c
SS
1355 evaluate_expression (expr);
1356 do_cleanups (old_chain);
1357}
1358
c906108c 1359static void
fba45db2 1360sym_info (char *arg, int from_tty)
c906108c
SS
1361{
1362 struct minimal_symbol *msymbol;
c5aa993b
JM
1363 struct objfile *objfile;
1364 struct obj_section *osect;
c5aa993b
JM
1365 CORE_ADDR addr, sect_addr;
1366 int matches = 0;
1367 unsigned int offset;
c906108c
SS
1368
1369 if (!arg)
e2e0b3e5 1370 error_no_arg (_("address"));
c906108c
SS
1371
1372 addr = parse_and_eval_address (arg);
1373 ALL_OBJSECTIONS (objfile, osect)
c5aa993b 1374 {
94277a38
DJ
1375 /* Only process each object file once, even if there's a separate
1376 debug file. */
1377 if (objfile->separate_debug_objfile_backlink)
1378 continue;
1379
714835d5 1380 sect_addr = overlay_mapped_address (addr, osect);
c906108c 1381
f1f6aadf
PA
1382 if (obj_section_addr (osect) <= sect_addr
1383 && sect_addr < obj_section_endaddr (osect)
7cbd4a93
TT
1384 && (msymbol
1385 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
c5aa993b 1386 {
c14c28ba 1387 const char *obj_name, *mapped, *sec_name, *msym_name;
e2fd701e
DE
1388 char *loc_string;
1389 struct cleanup *old_chain;
c14c28ba 1390
c5aa993b 1391 matches = 1;
77e371c0 1392 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
c14c28ba
PP
1393 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1394 sec_name = osect->the_bfd_section->name;
efd66ac6 1395 msym_name = MSYMBOL_PRINT_NAME (msymbol);
c14c28ba 1396
e2fd701e
DE
1397 /* Don't print the offset if it is zero.
1398 We assume there's no need to handle i18n of "sym + offset". */
1399 if (offset)
549ba0f8 1400 loc_string = xstrprintf ("%s + %u", msym_name, offset);
e2fd701e 1401 else
549ba0f8 1402 loc_string = xstrprintf ("%s", msym_name);
e2fd701e
DE
1403
1404 /* Use a cleanup to free loc_string in case the user quits
1405 a pagination request inside printf_filtered. */
1406 old_chain = make_cleanup (xfree, loc_string);
1407
4262abfb
JK
1408 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1409 obj_name = objfile_name (osect->objfile);
c14c28ba
PP
1410
1411 if (MULTI_OBJFILE_P ())
1412 if (pc_in_unmapped_range (addr, osect))
1413 if (section_is_overlay (osect))
e2fd701e 1414 printf_filtered (_("%s in load address range of "
c14c28ba 1415 "%s overlay section %s of %s\n"),
e2fd701e 1416 loc_string, mapped, sec_name, obj_name);
c14c28ba 1417 else
e2fd701e 1418 printf_filtered (_("%s in load address range of "
c14c28ba 1419 "section %s of %s\n"),
e2fd701e 1420 loc_string, sec_name, obj_name);
c14c28ba
PP
1421 else
1422 if (section_is_overlay (osect))
e2fd701e
DE
1423 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1424 loc_string, mapped, sec_name, obj_name);
c14c28ba 1425 else
e2fd701e
DE
1426 printf_filtered (_("%s in section %s of %s\n"),
1427 loc_string, sec_name, obj_name);
c5aa993b 1428 else
c14c28ba
PP
1429 if (pc_in_unmapped_range (addr, osect))
1430 if (section_is_overlay (osect))
e2fd701e 1431 printf_filtered (_("%s in load address range of %s overlay "
c14c28ba 1432 "section %s\n"),
e2fd701e 1433 loc_string, mapped, sec_name);
c14c28ba 1434 else
e2fd701e
DE
1435 printf_filtered (_("%s in load address range of section %s\n"),
1436 loc_string, sec_name);
c14c28ba
PP
1437 else
1438 if (section_is_overlay (osect))
e2fd701e
DE
1439 printf_filtered (_("%s in %s overlay section %s\n"),
1440 loc_string, mapped, sec_name);
c14c28ba 1441 else
e2fd701e
DE
1442 printf_filtered (_("%s in section %s\n"),
1443 loc_string, sec_name);
1444
1445 do_cleanups (old_chain);
c5aa993b
JM
1446 }
1447 }
c906108c 1448 if (matches == 0)
a3f17187 1449 printf_filtered (_("No symbol matches %s.\n"), arg);
c906108c
SS
1450}
1451
c906108c 1452static void
fba45db2 1453address_info (char *exp, int from_tty)
c906108c 1454{
768a979c
UW
1455 struct gdbarch *gdbarch;
1456 int regno;
52f0bd74 1457 struct symbol *sym;
7c7b6655 1458 struct bound_minimal_symbol msymbol;
52f0bd74 1459 long val;
714835d5 1460 struct obj_section *section;
08922a10 1461 CORE_ADDR load_addr, context_pc = 0;
1993b719 1462 struct field_of_this_result is_a_field_of_this;
c906108c
SS
1463
1464 if (exp == 0)
8a3fe4f8 1465 error (_("Argument required."));
c906108c 1466
08922a10 1467 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
d12307c1 1468 &is_a_field_of_this).symbol;
c906108c
SS
1469 if (sym == NULL)
1470 {
1993b719 1471 if (is_a_field_of_this.type != NULL)
c906108c
SS
1472 {
1473 printf_filtered ("Symbol \"");
1474 fprintf_symbol_filtered (gdb_stdout, exp,
1475 current_language->la_language, DMGL_ANSI);
e2b23ee9
AF
1476 printf_filtered ("\" is a field of the local class variable ");
1477 if (current_language->la_language == language_objc)
2625d86c 1478 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
e2b23ee9 1479 else
2625d86c 1480 printf_filtered ("`this'\n");
c906108c
SS
1481 return;
1482 }
1483
7c7b6655 1484 msymbol = lookup_bound_minimal_symbol (exp);
c906108c 1485
7c7b6655 1486 if (msymbol.minsym != NULL)
c906108c 1487 {
7c7b6655 1488 struct objfile *objfile = msymbol.objfile;
e27d198c
TT
1489
1490 gdbarch = get_objfile_arch (objfile);
77e371c0 1491 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
c906108c
SS
1492
1493 printf_filtered ("Symbol \"");
1494 fprintf_symbol_filtered (gdb_stdout, exp,
1495 current_language->la_language, DMGL_ANSI);
1496 printf_filtered ("\" is at ");
5af949e3 1497 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
c906108c 1498 printf_filtered (" in a file compiled without debugging");
efd66ac6 1499 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
c906108c
SS
1500 if (section_is_overlay (section))
1501 {
1502 load_addr = overlay_unmapped_address (load_addr, section);
1503 printf_filtered (",\n -- loaded at ");
5af949e3 1504 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
714835d5
UW
1505 printf_filtered (" in overlay section %s",
1506 section->the_bfd_section->name);
c906108c
SS
1507 }
1508 printf_filtered (".\n");
1509 }
1510 else
8a3fe4f8 1511 error (_("No symbol \"%s\" in current context."), exp);
c906108c
SS
1512 return;
1513 }
1514
1515 printf_filtered ("Symbol \"");
3567439c 1516 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
c906108c
SS
1517 current_language->la_language, DMGL_ANSI);
1518 printf_filtered ("\" is ");
c5aa993b 1519 val = SYMBOL_VALUE (sym);
1994afbf
DE
1520 if (SYMBOL_OBJFILE_OWNED (sym))
1521 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1522 else
1523 section = NULL;
08be3fe3 1524 gdbarch = symbol_arch (sym);
c906108c 1525
24d6c2a0
TT
1526 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1527 {
1528 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1529 gdb_stdout);
1530 printf_filtered (".\n");
1531 return;
1532 }
1533
c906108c
SS
1534 switch (SYMBOL_CLASS (sym))
1535 {
1536 case LOC_CONST:
1537 case LOC_CONST_BYTES:
1538 printf_filtered ("constant");
1539 break;
1540
1541 case LOC_LABEL:
1542 printf_filtered ("a label at address ");
5af949e3
UW
1543 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1544 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
c906108c
SS
1545 if (section_is_overlay (section))
1546 {
1547 load_addr = overlay_unmapped_address (load_addr, section);
1548 printf_filtered (",\n -- loaded at ");
5af949e3 1549 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
714835d5
UW
1550 printf_filtered (" in overlay section %s",
1551 section->the_bfd_section->name);
c906108c
SS
1552 }
1553 break;
1554
4c2df51b 1555 case LOC_COMPUTED:
24d6c2a0 1556 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
4c2df51b 1557
c906108c 1558 case LOC_REGISTER:
768a979c
UW
1559 /* GDBARCH is the architecture associated with the objfile the symbol
1560 is defined in; the target architecture may be different, and may
1561 provide additional registers. However, we do not know the target
1562 architecture at this point. We assume the objfile architecture
1563 will contain all the standard registers that occur in debug info
1564 in that objfile. */
1565 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1566
2a2d4dc3
AS
1567 if (SYMBOL_IS_ARGUMENT (sym))
1568 printf_filtered (_("an argument in register %s"),
768a979c 1569 gdbarch_register_name (gdbarch, regno));
2a2d4dc3
AS
1570 else
1571 printf_filtered (_("a variable in register %s"),
768a979c 1572 gdbarch_register_name (gdbarch, regno));
c906108c
SS
1573 break;
1574
1575 case LOC_STATIC:
a3f17187 1576 printf_filtered (_("static storage at address "));
5af949e3
UW
1577 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1578 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
c906108c
SS
1579 if (section_is_overlay (section))
1580 {
1581 load_addr = overlay_unmapped_address (load_addr, section);
a3f17187 1582 printf_filtered (_(",\n -- loaded at "));
5af949e3 1583 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
714835d5
UW
1584 printf_filtered (_(" in overlay section %s"),
1585 section->the_bfd_section->name);
c906108c
SS
1586 }
1587 break;
1588
c906108c 1589 case LOC_REGPARM_ADDR:
768a979c
UW
1590 /* Note comment at LOC_REGISTER. */
1591 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
675dcf4f 1592 printf_filtered (_("address of an argument in register %s"),
768a979c 1593 gdbarch_register_name (gdbarch, regno));
c906108c
SS
1594 break;
1595
1596 case LOC_ARG:
a3f17187 1597 printf_filtered (_("an argument at offset %ld"), val);
c906108c
SS
1598 break;
1599
c906108c 1600 case LOC_LOCAL:
a3f17187 1601 printf_filtered (_("a local variable at frame offset %ld"), val);
c906108c
SS
1602 break;
1603
1604 case LOC_REF_ARG:
a3f17187 1605 printf_filtered (_("a reference argument at offset %ld"), val);
c906108c
SS
1606 break;
1607
c906108c 1608 case LOC_TYPEDEF:
a3f17187 1609 printf_filtered (_("a typedef"));
c906108c
SS
1610 break;
1611
1612 case LOC_BLOCK:
a3f17187 1613 printf_filtered (_("a function at address "));
675dcf4f 1614 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
5af949e3 1615 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
c906108c
SS
1616 if (section_is_overlay (section))
1617 {
1618 load_addr = overlay_unmapped_address (load_addr, section);
a3f17187 1619 printf_filtered (_(",\n -- loaded at "));
5af949e3 1620 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
714835d5
UW
1621 printf_filtered (_(" in overlay section %s"),
1622 section->the_bfd_section->name);
c906108c
SS
1623 }
1624 break;
1625
1626 case LOC_UNRESOLVED:
1627 {
e27d198c 1628 struct bound_minimal_symbol msym;
c906108c 1629
e27d198c
TT
1630 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1631 if (msym.minsym == NULL)
c906108c
SS
1632 printf_filtered ("unresolved");
1633 else
1634 {
efd66ac6 1635 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
e0740f77
JK
1636
1637 if (section
1638 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
5382cfab
PW
1639 {
1640 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1641 printf_filtered (_("a thread-local variable at offset %s "
1642 "in the thread-local storage for `%s'"),
1643 paddress (gdbarch, load_addr),
1644 objfile_name (section->objfile));
1645 }
e0740f77 1646 else
c906108c 1647 {
5382cfab 1648 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
e0740f77 1649 printf_filtered (_("static storage at address "));
5af949e3 1650 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
e0740f77
JK
1651 if (section_is_overlay (section))
1652 {
1653 load_addr = overlay_unmapped_address (load_addr, section);
1654 printf_filtered (_(",\n -- loaded at "));
5af949e3 1655 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
e0740f77
JK
1656 printf_filtered (_(" in overlay section %s"),
1657 section->the_bfd_section->name);
1658 }
c906108c
SS
1659 }
1660 }
1661 }
1662 break;
1663
c906108c 1664 case LOC_OPTIMIZED_OUT:
a3f17187 1665 printf_filtered (_("optimized out"));
c906108c 1666 break;
c5aa993b 1667
c906108c 1668 default:
a3f17187 1669 printf_filtered (_("of unknown (botched) type"));
c906108c
SS
1670 break;
1671 }
1672 printf_filtered (".\n");
1673}
1674\f
675dcf4f
MK
1675
1676static void
fba45db2 1677x_command (char *exp, int from_tty)
c906108c
SS
1678{
1679 struct expression *expr;
1680 struct format_data fmt;
1681 struct cleanup *old_chain;
1682 struct value *val;
1683
a6bac58e 1684 fmt.format = last_format ? last_format : 'x';
c906108c
SS
1685 fmt.size = last_size;
1686 fmt.count = 1;
a6bac58e 1687 fmt.raw = 0;
c906108c
SS
1688
1689 if (exp && *exp == '/')
1690 {
6f937416
PA
1691 const char *tmp = exp + 1;
1692
1693 fmt = decode_format (&tmp, last_format, last_size);
1694 exp = (char *) tmp;
c906108c
SS
1695 }
1696
1697 /* If we have an expression, evaluate it and use it as the address. */
1698
1699 if (exp != 0 && *exp != 0)
1700 {
1701 expr = parse_expression (exp);
675dcf4f
MK
1702 /* Cause expression not to be there any more if this command is
1703 repeated with Newline. But don't clobber a user-defined
1704 command's definition. */
c906108c
SS
1705 if (from_tty)
1706 *exp = 0;
c13c43fd 1707 old_chain = make_cleanup (free_current_contents, &expr);
c906108c 1708 val = evaluate_expression (expr);
df407dfe 1709 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
e1c34c5d 1710 val = coerce_ref (val);
c906108c 1711 /* In rvalue contexts, such as this, functions are coerced into
c5aa993b 1712 pointers to functions. This makes "x/i main" work. */
c0d8fd9a 1713 if (/* last_format == 'i' && */
df407dfe 1714 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
c5aa993b 1715 && VALUE_LVAL (val) == lval_memory)
42ae5230 1716 next_address = value_address (val);
c906108c 1717 else
1aa20aa8 1718 next_address = value_as_address (val);
5d3729b5
UW
1719
1720 next_gdbarch = expr->gdbarch;
c906108c
SS
1721 do_cleanups (old_chain);
1722 }
1723
5d3729b5
UW
1724 if (!next_gdbarch)
1725 error_no_arg (_("starting display address"));
1726
1727 do_examine (fmt, next_gdbarch, next_address);
c906108c 1728
675dcf4f 1729 /* If the examine succeeds, we remember its size and format for next
9a22f0d0
PM
1730 time. Set last_size to 'b' for strings. */
1731 if (fmt.format == 's')
1732 last_size = 'b';
1733 else
1734 last_size = fmt.size;
c906108c
SS
1735 last_format = fmt.format;
1736
0df8b418 1737 /* Set a couple of internal variables if appropriate. */
c906108c
SS
1738 if (last_examine_value)
1739 {
1740 /* Make last address examined available to the user as $_. Use
c5aa993b 1741 the correct pointer type. */
4478b372 1742 struct type *pointer_type
df407dfe 1743 = lookup_pointer_type (value_type (last_examine_value));
c906108c 1744 set_internalvar (lookup_internalvar ("_"),
4478b372
JB
1745 value_from_pointer (pointer_type,
1746 last_examine_address));
c5aa993b 1747
675dcf4f
MK
1748 /* Make contents of last address examined available to the user
1749 as $__. If the last value has not been fetched from memory
1750 then don't fetch it now; instead mark it by voiding the $__
1751 variable. */
d69fe07e 1752 if (value_lazy (last_examine_value))
4fa62494 1753 clear_internalvar (lookup_internalvar ("__"));
c906108c
SS
1754 else
1755 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1756 }
1757}
c906108c 1758\f
c5aa993b 1759
c906108c
SS
1760/* Add an expression to the auto-display chain.
1761 Specify the expression. */
1762
1763static void
6f937416 1764display_command (char *arg, int from_tty)
c906108c
SS
1765{
1766 struct format_data fmt;
52f0bd74 1767 struct expression *expr;
fe978cb0 1768 struct display *newobj;
6f937416 1769 const char *exp = arg;
c906108c 1770
7bd0be3a 1771 if (exp == 0)
c906108c 1772 {
7bd0be3a
AB
1773 do_displays ();
1774 return;
1775 }
c906108c 1776
7bd0be3a
AB
1777 if (*exp == '/')
1778 {
1779 exp++;
1780 fmt = decode_format (&exp, 0, 0);
1781 if (fmt.size && fmt.format == 0)
1782 fmt.format = 'x';
1783 if (fmt.format == 'i' || fmt.format == 's')
1784 fmt.size = 'b';
1785 }
1786 else
1787 {
1788 fmt.format = 0;
1789 fmt.size = 0;
1790 fmt.count = 0;
1791 fmt.raw = 0;
1792 }
c906108c 1793
7bd0be3a
AB
1794 innermost_block = NULL;
1795 expr = parse_expression (exp);
c906108c 1796
8d749320 1797 newobj = XNEW (struct display);
c906108c 1798
7bd0be3a
AB
1799 newobj->exp_string = xstrdup (exp);
1800 newobj->exp = expr;
1801 newobj->block = innermost_block;
1802 newobj->pspace = current_program_space;
7bd0be3a
AB
1803 newobj->number = ++display_number;
1804 newobj->format = fmt;
1805 newobj->enabled_p = 1;
62147a22
PA
1806 newobj->next = NULL;
1807
1808 if (display_chain == NULL)
1809 display_chain = newobj;
1810 else
1811 {
1812 struct display *last;
1813
1814 for (last = display_chain; last->next != NULL; last = last->next)
1815 ;
1816 last->next = newobj;
1817 }
c906108c 1818
7bd0be3a
AB
1819 if (from_tty)
1820 do_one_display (newobj);
c906108c 1821
7bd0be3a 1822 dont_repeat ();
c906108c
SS
1823}
1824
1825static void
fba45db2 1826free_display (struct display *d)
c906108c 1827{
fa8a61dc 1828 xfree (d->exp_string);
b8c9b27d
KB
1829 xfree (d->exp);
1830 xfree (d);
c906108c
SS
1831}
1832
675dcf4f
MK
1833/* Clear out the display_chain. Done when new symtabs are loaded,
1834 since this invalidates the types stored in many expressions. */
c906108c
SS
1835
1836void
fba45db2 1837clear_displays (void)
c906108c 1838{
52f0bd74 1839 struct display *d;
c906108c
SS
1840
1841 while ((d = display_chain) != NULL)
1842 {
c906108c 1843 display_chain = d->next;
fa8a61dc 1844 free_display (d);
c906108c
SS
1845 }
1846}
1847
3c3fe74c 1848/* Delete the auto-display DISPLAY. */
c906108c
SS
1849
1850static void
3c3fe74c 1851delete_display (struct display *display)
c906108c 1852{
3c3fe74c 1853 struct display *d;
c906108c 1854
3c3fe74c 1855 gdb_assert (display != NULL);
c906108c 1856
3c3fe74c
PA
1857 if (display_chain == display)
1858 display_chain = display->next;
1859
1860 ALL_DISPLAYS (d)
1861 if (d->next == display)
c906108c 1862 {
3c3fe74c
PA
1863 d->next = display->next;
1864 break;
c906108c 1865 }
3c3fe74c
PA
1866
1867 free_display (display);
c906108c
SS
1868}
1869
c9174737
PA
1870/* Call FUNCTION on each of the displays whose numbers are given in
1871 ARGS. DATA is passed unmodified to FUNCTION. */
c906108c
SS
1872
1873static void
c9174737
PA
1874map_display_numbers (char *args,
1875 void (*function) (struct display *,
1876 void *),
1877 void *data)
c906108c 1878{
197f0a60 1879 struct get_number_or_range_state state;
c9174737 1880 int num;
c906108c 1881
c9174737
PA
1882 if (args == NULL)
1883 error_no_arg (_("one or more display numbers"));
c906108c 1884
197f0a60 1885 init_number_or_range (&state, args);
c9174737 1886
197f0a60 1887 while (!state.finished)
c906108c 1888 {
e799154c 1889 const char *p = state.string;
c906108c 1890
197f0a60 1891 num = get_number_or_range (&state);
3c3fe74c
PA
1892 if (num == 0)
1893 warning (_("bad display number at or near '%s'"), p);
1894 else
1895 {
c9174737 1896 struct display *d, *tmp;
c906108c 1897
c9174737 1898 ALL_DISPLAYS_SAFE (d, tmp)
3c3fe74c
PA
1899 if (d->number == num)
1900 break;
1901 if (d == NULL)
1902 printf_unfiltered (_("No display number %d.\n"), num);
1903 else
c9174737 1904 function (d, data);
3c3fe74c 1905 }
c906108c 1906 }
c9174737
PA
1907}
1908
1909/* Callback for map_display_numbers, that deletes a display. */
1910
1911static void
1912do_delete_display (struct display *d, void *data)
1913{
1914 delete_display (d);
1915}
1916
1917/* "undisplay" command. */
1918
1919static void
1920undisplay_command (char *args, int from_tty)
1921{
c9174737
PA
1922 if (args == NULL)
1923 {
1924 if (query (_("Delete all auto-display expressions? ")))
1925 clear_displays ();
1926 dont_repeat ();
1927 return;
1928 }
1929
1930 map_display_numbers (args, do_delete_display, NULL);
c906108c
SS
1931 dont_repeat ();
1932}
1933
1934/* Display a single auto-display.
1935 Do nothing if the display cannot be printed in the current context,
0df8b418 1936 or if the display is disabled. */
c906108c
SS
1937
1938static void
fba45db2 1939do_one_display (struct display *d)
c906108c 1940{
af6e93b2 1941 struct cleanup *old_chain;
c906108c
SS
1942 int within_current_scope;
1943
b5de0fa7 1944 if (d->enabled_p == 0)
c906108c
SS
1945 return;
1946
704e9165
UW
1947 /* The expression carries the architecture that was used at parse time.
1948 This is a problem if the expression depends on architecture features
1949 (e.g. register numbers), and the current architecture is now different.
1950 For example, a display statement like "display/i $pc" is expected to
1951 display the PC register of the current architecture, not the arch at
1952 the time the display command was given. Therefore, we re-parse the
1953 expression if the current architecture has changed. */
1954 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1955 {
1956 xfree (d->exp);
1957 d->exp = NULL;
1958 d->block = NULL;
1959 }
1960
a3247a22
PP
1961 if (d->exp == NULL)
1962 {
ad3bbd48 1963
492d29ea 1964 TRY
a3247a22
PP
1965 {
1966 innermost_block = NULL;
1967 d->exp = parse_expression (d->exp_string);
1968 d->block = innermost_block;
1969 }
492d29ea 1970 CATCH (ex, RETURN_MASK_ALL)
a3247a22
PP
1971 {
1972 /* Can't re-parse the expression. Disable this display item. */
1973 d->enabled_p = 0;
1974 warning (_("Unable to display \"%s\": %s"),
1975 d->exp_string, ex.message);
1976 return;
1977 }
492d29ea 1978 END_CATCH
a3247a22
PP
1979 }
1980
c906108c 1981 if (d->block)
6c95b8df
PA
1982 {
1983 if (d->pspace == current_program_space)
1984 within_current_scope = contained_in (get_selected_block (0), d->block);
1985 else
1986 within_current_scope = 0;
1987 }
c906108c
SS
1988 else
1989 within_current_scope = 1;
1990 if (!within_current_scope)
1991 return;
1992
9d8fa392 1993 old_chain = make_cleanup_restore_integer (&current_display_number);
c906108c
SS
1994 current_display_number = d->number;
1995
1996 annotate_display_begin ();
1997 printf_filtered ("%d", d->number);
1998 annotate_display_number_end ();
1999 printf_filtered (": ");
2000 if (d->format.size)
2001 {
c906108c
SS
2002
2003 annotate_display_format ();
2004
2005 printf_filtered ("x/");
2006 if (d->format.count != 1)
2007 printf_filtered ("%d", d->format.count);
2008 printf_filtered ("%c", d->format.format);
2009 if (d->format.format != 'i' && d->format.format != 's')
2010 printf_filtered ("%c", d->format.size);
2011 printf_filtered (" ");
2012
2013 annotate_display_expression ();
2014
fa8a61dc 2015 puts_filtered (d->exp_string);
c906108c
SS
2016 annotate_display_expression_end ();
2017
6a2eb474 2018 if (d->format.count != 1 || d->format.format == 'i')
c906108c
SS
2019 printf_filtered ("\n");
2020 else
2021 printf_filtered (" ");
c5aa993b 2022
c906108c
SS
2023 annotate_display_value ();
2024
492d29ea 2025 TRY
9d8fa392
PA
2026 {
2027 struct value *val;
2028 CORE_ADDR addr;
2029
2030 val = evaluate_expression (d->exp);
2031 addr = value_as_address (val);
2032 if (d->format.format == 'i')
2033 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2034 do_examine (d->format, d->exp->gdbarch, addr);
2035 }
492d29ea
PA
2036 CATCH (ex, RETURN_MASK_ERROR)
2037 {
2038 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
2039 }
2040 END_CATCH
c906108c
SS
2041 }
2042 else
2043 {
79a45b7d
TT
2044 struct value_print_options opts;
2045
c906108c
SS
2046 annotate_display_format ();
2047
2048 if (d->format.format)
2049 printf_filtered ("/%c ", d->format.format);
2050
2051 annotate_display_expression ();
2052
fa8a61dc 2053 puts_filtered (d->exp_string);
c906108c
SS
2054 annotate_display_expression_end ();
2055
2056 printf_filtered (" = ");
2057
2058 annotate_display_expression ();
2059
79a45b7d 2060 get_formatted_print_options (&opts, d->format.format);
a6bac58e 2061 opts.raw = d->format.raw;
9d8fa392 2062
492d29ea 2063 TRY
9d8fa392
PA
2064 {
2065 struct value *val;
2066
2067 val = evaluate_expression (d->exp);
2068 print_formatted (val, d->format.size, &opts, gdb_stdout);
2069 }
492d29ea
PA
2070 CATCH (ex, RETURN_MASK_ERROR)
2071 {
2072 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2073 }
2074 END_CATCH
2075
c906108c
SS
2076 printf_filtered ("\n");
2077 }
2078
2079 annotate_display_end ();
2080
2081 gdb_flush (gdb_stdout);
9d8fa392 2082 do_cleanups (old_chain);
c906108c
SS
2083}
2084
2085/* Display all of the values on the auto-display chain which can be
2086 evaluated in the current scope. */
2087
2088void
fba45db2 2089do_displays (void)
c906108c 2090{
52f0bd74 2091 struct display *d;
c906108c
SS
2092
2093 for (d = display_chain; d; d = d->next)
2094 do_one_display (d);
2095}
2096
2097/* Delete the auto-display which we were in the process of displaying.
2098 This is done when there is an error or a signal. */
2099
2100void
fba45db2 2101disable_display (int num)
c906108c 2102{
52f0bd74 2103 struct display *d;
c906108c
SS
2104
2105 for (d = display_chain; d; d = d->next)
2106 if (d->number == num)
2107 {
b5de0fa7 2108 d->enabled_p = 0;
c906108c
SS
2109 return;
2110 }
a3f17187 2111 printf_unfiltered (_("No display number %d.\n"), num);
c906108c 2112}
c5aa993b 2113
c906108c 2114void
fba45db2 2115disable_current_display (void)
c906108c
SS
2116{
2117 if (current_display_number >= 0)
2118 {
2119 disable_display (current_display_number);
3e43a32a
MS
2120 fprintf_unfiltered (gdb_stderr,
2121 _("Disabling display %d to "
2122 "avoid infinite recursion.\n"),
c5aa993b 2123 current_display_number);
c906108c
SS
2124 }
2125 current_display_number = -1;
2126}
2127
2128static void
fba45db2 2129display_info (char *ignore, int from_tty)
c906108c 2130{
52f0bd74 2131 struct display *d;
c906108c
SS
2132
2133 if (!display_chain)
a3f17187 2134 printf_unfiltered (_("There are no auto-display expressions now.\n"));
c906108c 2135 else
a3f17187
AC
2136 printf_filtered (_("Auto-display expressions now in effect:\n\
2137Num Enb Expression\n"));
c906108c
SS
2138
2139 for (d = display_chain; d; d = d->next)
2140 {
b5de0fa7 2141 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
c906108c
SS
2142 if (d->format.size)
2143 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
c5aa993b 2144 d->format.format);
c906108c
SS
2145 else if (d->format.format)
2146 printf_filtered ("/%c ", d->format.format);
fa8a61dc 2147 puts_filtered (d->exp_string);
ae767bfb 2148 if (d->block && !contained_in (get_selected_block (0), d->block))
a3f17187 2149 printf_filtered (_(" (cannot be evaluated in the current context)"));
c906108c
SS
2150 printf_filtered ("\n");
2151 gdb_flush (gdb_stdout);
2152 }
2153}
2154
c9174737
PA
2155/* Callback fo map_display_numbers, that enables or disables the
2156 passed in display D. */
2157
c906108c 2158static void
c9174737 2159do_enable_disable_display (struct display *d, void *data)
c906108c 2160{
c9174737
PA
2161 d->enabled_p = *(int *) data;
2162}
c906108c 2163
c9174737
PA
2164/* Implamentation of both the "disable display" and "enable display"
2165 commands. ENABLE decides what to do. */
2166
2167static void
2168enable_disable_display_command (char *args, int from_tty, int enable)
2169{
2170 if (args == NULL)
c906108c 2171 {
c9174737 2172 struct display *d;
c5aa993b 2173
c9174737
PA
2174 ALL_DISPLAYS (d)
2175 d->enabled_p = enable;
2176 return;
2177 }
c5aa993b 2178
c9174737 2179 map_display_numbers (args, do_enable_disable_display, &enable);
c906108c
SS
2180}
2181
c9174737
PA
2182/* The "enable display" command. */
2183
c906108c 2184static void
c9174737 2185enable_display_command (char *args, int from_tty)
c906108c 2186{
c9174737
PA
2187 enable_disable_display_command (args, from_tty, 1);
2188}
c5aa993b 2189
c9174737 2190/* The "disable display" command. */
c906108c 2191
c9174737
PA
2192static void
2193disable_display_command (char *args, int from_tty)
2194{
2195 enable_disable_display_command (args, from_tty, 0);
c906108c 2196}
a3247a22 2197
a3247a22
PP
2198/* display_chain items point to blocks and expressions. Some expressions in
2199 turn may point to symbols.
2200 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2201 obstack_free'd when a shared library is unloaded.
2202 Clear pointers that are about to become dangling.
2203 Both .exp and .block fields will be restored next time we need to display
2204 an item by re-parsing .exp_string field in the new execution context. */
2205
2206static void
63644780 2207clear_dangling_display_expressions (struct objfile *objfile)
a3247a22
PP
2208{
2209 struct display *d;
63644780 2210 struct program_space *pspace;
a3247a22 2211
c0201579
JK
2212 /* With no symbol file we cannot have a block or expression from it. */
2213 if (objfile == NULL)
2214 return;
63644780 2215 pspace = objfile->pspace;
c0201579 2216 if (objfile->separate_debug_objfile_backlink)
63644780
NB
2217 {
2218 objfile = objfile->separate_debug_objfile_backlink;
2219 gdb_assert (objfile->pspace == pspace);
2220 }
c0201579
JK
2221
2222 for (d = display_chain; d != NULL; d = d->next)
a3247a22 2223 {
63644780 2224 if (d->pspace != pspace)
c0201579
JK
2225 continue;
2226
2227 if (lookup_objfile_from_block (d->block) == objfile
2228 || (d->exp && exp_uses_objfile (d->exp, objfile)))
2229 {
2230 xfree (d->exp);
2231 d->exp = NULL;
2232 d->block = NULL;
2233 }
a3247a22
PP
2234 }
2235}
c906108c 2236\f
c5aa993b 2237
675dcf4f 2238/* Print the value in stack frame FRAME of a variable specified by a
aad95b57
TT
2239 struct symbol. NAME is the name to print; if NULL then VAR's print
2240 name will be used. STREAM is the ui_file on which to print the
2241 value. INDENT specifies the number of indent levels to print
8f043999
JK
2242 before printing the variable name.
2243
2244 This function invalidates FRAME. */
c906108c
SS
2245
2246void
aad95b57
TT
2247print_variable_and_value (const char *name, struct symbol *var,
2248 struct frame_info *frame,
2249 struct ui_file *stream, int indent)
c906108c 2250{
c906108c 2251
aad95b57
TT
2252 if (!name)
2253 name = SYMBOL_PRINT_NAME (var);
2254
2255 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
492d29ea 2256 TRY
0f6a939d
PM
2257 {
2258 struct value *val;
2259 struct value_print_options opts;
aad95b57 2260
63e43d3a
PMR
2261 /* READ_VAR_VALUE needs a block in order to deal with non-local
2262 references (i.e. to handle nested functions). In this context, we
2263 print variables that are local to this frame, so we can avoid passing
2264 a block to it. */
2265 val = read_var_value (var, NULL, frame);
0f6a939d 2266 get_user_print_options (&opts);
3343315b 2267 opts.deref_ref = 1;
0f6a939d 2268 common_val_print (val, stream, indent, &opts, current_language);
8f043999
JK
2269
2270 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2271 function. */
2272 frame = NULL;
0f6a939d 2273 }
492d29ea
PA
2274 CATCH (except, RETURN_MASK_ERROR)
2275 {
2276 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2277 except.message);
2278 }
2279 END_CATCH
2280
aad95b57 2281 fprintf_filtered (stream, "\n");
c906108c
SS
2282}
2283
c2792f5a
DE
2284/* Subroutine of ui_printf to simplify it.
2285 Print VALUE to STREAM using FORMAT.
e12f57ab 2286 VALUE is a C-style string on the target. */
c2792f5a
DE
2287
2288static void
2289printf_c_string (struct ui_file *stream, const char *format,
2290 struct value *value)
2291{
2292 gdb_byte *str;
2293 CORE_ADDR tem;
2294 int j;
2295
2296 tem = value_as_address (value);
2297
2298 /* This is a %s argument. Find the length of the string. */
2299 for (j = 0;; j++)
2300 {
2301 gdb_byte c;
2302
2303 QUIT;
2304 read_memory (tem + j, &c, 1);
2305 if (c == 0)
2306 break;
2307 }
2308
2309 /* Copy the string contents into a string inside GDB. */
2310 str = (gdb_byte *) alloca (j + 1);
2311 if (j != 0)
2312 read_memory (tem, str, j);
2313 str[j] = 0;
2314
2315 fprintf_filtered (stream, format, (char *) str);
2316}
2317
2318/* Subroutine of ui_printf to simplify it.
2319 Print VALUE to STREAM using FORMAT.
e12f57ab 2320 VALUE is a wide C-style string on the target. */
c2792f5a
DE
2321
2322static void
2323printf_wide_c_string (struct ui_file *stream, const char *format,
2324 struct value *value)
2325{
2326 gdb_byte *str;
2327 CORE_ADDR tem;
2328 int j;
2329 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2331 struct type *wctype = lookup_typename (current_language, gdbarch,
2332 "wchar_t", NULL, 0);
2333 int wcwidth = TYPE_LENGTH (wctype);
224c3ddb 2334 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
c2792f5a
DE
2335 struct obstack output;
2336 struct cleanup *inner_cleanup;
2337
2338 tem = value_as_address (value);
2339
2340 /* This is a %s argument. Find the length of the string. */
2341 for (j = 0;; j += wcwidth)
2342 {
2343 QUIT;
2344 read_memory (tem + j, buf, wcwidth);
2345 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2346 break;
2347 }
2348
2349 /* Copy the string contents into a string inside GDB. */
2350 str = (gdb_byte *) alloca (j + wcwidth);
2351 if (j != 0)
2352 read_memory (tem, str, j);
2353 memset (&str[j], 0, wcwidth);
2354
2355 obstack_init (&output);
2356 inner_cleanup = make_cleanup_obstack_free (&output);
2357
2358 convert_between_encodings (target_wide_charset (gdbarch),
2359 host_charset (),
2360 str, j, wcwidth,
2361 &output, translit_char);
2362 obstack_grow_str0 (&output, "");
2363
2364 fprintf_filtered (stream, format, obstack_base (&output));
2365 do_cleanups (inner_cleanup);
2366}
2367
2368/* Subroutine of ui_printf to simplify it.
2369 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2370
2371static void
2372printf_decfloat (struct ui_file *stream, const char *format,
2373 struct value *value)
2374{
2375 const gdb_byte *param_ptr = value_contents (value);
2376
2377#if defined (PRINTF_HAS_DECFLOAT)
2378 /* If we have native support for Decimal floating
2379 printing, handle it here. */
2380 fprintf_filtered (stream, format, param_ptr);
2381#else
2382 /* As a workaround until vasprintf has native support for DFP
2383 we convert the DFP values to string and print them using
2384 the %s format specifier. */
2385 const char *p;
2386
2387 /* Parameter data. */
2388 struct type *param_type = value_type (value);
2389 struct gdbarch *gdbarch = get_type_arch (param_type);
2390 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2391
2392 /* DFP output data. */
2393 struct value *dfp_value = NULL;
2394 gdb_byte *dfp_ptr;
2395 int dfp_len = 16;
2396 gdb_byte dec[16];
2397 struct type *dfp_type = NULL;
2398 char decstr[MAX_DECIMAL_STRING];
2399
2400 /* Points to the end of the string so that we can go back
2401 and check for DFP length modifiers. */
2402 p = format + strlen (format);
2403
2404 /* Look for the float/double format specifier. */
2405 while (*p != 'f' && *p != 'e' && *p != 'E'
2406 && *p != 'g' && *p != 'G')
2407 p--;
2408
2409 /* Search for the '%' char and extract the size and type of
2410 the output decimal value based on its modifiers
2411 (%Hf, %Df, %DDf). */
2412 while (*--p != '%')
2413 {
2414 if (*p == 'H')
2415 {
2416 dfp_len = 4;
2417 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2418 }
2419 else if (*p == 'D' && *(p - 1) == 'D')
2420 {
2421 dfp_len = 16;
2422 dfp_type = builtin_type (gdbarch)->builtin_declong;
2423 p--;
2424 }
2425 else
2426 {
2427 dfp_len = 8;
2428 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2429 }
2430 }
2431
2432 /* Conversion between different DFP types. */
2433 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2434 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2435 byte_order, dec, dfp_len, byte_order);
2436 else
2437 /* If this is a non-trivial conversion, just output 0.
2438 A correct converted value can be displayed by explicitly
2439 casting to a DFP type. */
2440 decimal_from_string (dec, dfp_len, byte_order, "0");
2441
2442 dfp_value = value_from_decfloat (dfp_type, dec);
2443
2444 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2445
2446 decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2447
2448 /* Print the DFP value. */
2449 fprintf_filtered (stream, "%s", decstr);
2450#endif
2451}
2452
2453/* Subroutine of ui_printf to simplify it.
2454 Print VALUE, a target pointer, to STREAM using FORMAT. */
2455
2456static void
2457printf_pointer (struct ui_file *stream, const char *format,
2458 struct value *value)
2459{
2460 /* We avoid the host's %p because pointers are too
2461 likely to be the wrong size. The only interesting
2462 modifier for %p is a width; extract that, and then
2463 handle %p as glibc would: %#x or a literal "(nil)". */
2464
2465 const char *p;
2466 char *fmt, *fmt_p;
2467#ifdef PRINTF_HAS_LONG_LONG
2468 long long val = value_as_long (value);
2469#else
2470 long val = value_as_long (value);
2471#endif
2472
224c3ddb 2473 fmt = (char *) alloca (strlen (format) + 5);
c2792f5a
DE
2474
2475 /* Copy up to the leading %. */
2476 p = format;
2477 fmt_p = fmt;
2478 while (*p)
2479 {
2480 int is_percent = (*p == '%');
2481
2482 *fmt_p++ = *p++;
2483 if (is_percent)
2484 {
2485 if (*p == '%')
2486 *fmt_p++ = *p++;
2487 else
2488 break;
2489 }
2490 }
2491
2492 if (val != 0)
2493 *fmt_p++ = '#';
2494
2495 /* Copy any width. */
2496 while (*p >= '0' && *p < '9')
2497 *fmt_p++ = *p++;
2498
2499 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2500 if (val != 0)
2501 {
2502#ifdef PRINTF_HAS_LONG_LONG
2503 *fmt_p++ = 'l';
2504#endif
2505 *fmt_p++ = 'l';
2506 *fmt_p++ = 'x';
2507 *fmt_p++ = '\0';
2508 fprintf_filtered (stream, fmt, val);
2509 }
2510 else
2511 {
2512 *fmt_p++ = 's';
2513 *fmt_p++ = '\0';
2514 fprintf_filtered (stream, fmt, "(nil)");
2515 }
2516}
2517
a04b0428
JB
2518/* printf "printf format string" ARG to STREAM. */
2519
2520static void
bbc13ae3 2521ui_printf (const char *arg, struct ui_file *stream)
c906108c 2522{
d3ce09f5 2523 struct format_piece *fpieces;
bbc13ae3 2524 const char *s = arg;
3d6d86c6 2525 struct value **val_args;
c906108c
SS
2526 int allocated_args = 20;
2527 struct cleanup *old_cleanups;
2528
8d749320 2529 val_args = XNEWVEC (struct value *, allocated_args);
c13c43fd 2530 old_cleanups = make_cleanup (free_current_contents, &val_args);
c906108c
SS
2531
2532 if (s == 0)
e2e0b3e5 2533 error_no_arg (_("format-control string and values to print"));
c906108c 2534
bbc13ae3 2535 s = skip_spaces_const (s);
c906108c 2536
675dcf4f 2537 /* A format string should follow, enveloped in double quotes. */
c906108c 2538 if (*s++ != '"')
8a3fe4f8 2539 error (_("Bad format string, missing '\"'."));
c906108c 2540
d3ce09f5 2541 fpieces = parse_format_string (&s);
c906108c 2542
d3ce09f5 2543 make_cleanup (free_format_pieces_cleanup, &fpieces);
c906108c 2544
d3ce09f5
SS
2545 if (*s++ != '"')
2546 error (_("Bad format string, non-terminated '\"'."));
2547
bbc13ae3 2548 s = skip_spaces_const (s);
c906108c
SS
2549
2550 if (*s != ',' && *s != 0)
8a3fe4f8 2551 error (_("Invalid argument syntax"));
c906108c 2552
c5aa993b
JM
2553 if (*s == ',')
2554 s++;
bbc13ae3 2555 s = skip_spaces_const (s);
c906108c 2556
c906108c 2557 {
d3ce09f5 2558 int nargs = 0;
c906108c 2559 int nargs_wanted;
d3ce09f5
SS
2560 int i, fr;
2561 char *current_substring;
c906108c 2562
c906108c 2563 nargs_wanted = 0;
d3ce09f5
SS
2564 for (fr = 0; fpieces[fr].string != NULL; fr++)
2565 if (fpieces[fr].argclass != literal_piece)
2566 ++nargs_wanted;
c906108c
SS
2567
2568 /* Now, parse all arguments and evaluate them.
2569 Store the VALUEs in VAL_ARGS. */
2570
2571 while (*s != '\0')
2572 {
bbc13ae3 2573 const char *s1;
ad3bbd48 2574
c906108c 2575 if (nargs == allocated_args)
f976f6d4
AC
2576 val_args = (struct value **) xrealloc ((char *) val_args,
2577 (allocated_args *= 2)
2578 * sizeof (struct value *));
a04b0428
JB
2579 s1 = s;
2580 val_args[nargs] = parse_to_comma_and_eval (&s1);
c5aa993b 2581
c906108c
SS
2582 nargs++;
2583 s = s1;
2584 if (*s == ',')
2585 s++;
2586 }
c5aa993b 2587
c906108c 2588 if (nargs != nargs_wanted)
8a3fe4f8 2589 error (_("Wrong number of arguments for specified format-string"));
c906108c
SS
2590
2591 /* Now actually print them. */
d3ce09f5
SS
2592 i = 0;
2593 for (fr = 0; fpieces[fr].string != NULL; fr++)
c906108c 2594 {
d3ce09f5
SS
2595 current_substring = fpieces[fr].string;
2596 switch (fpieces[fr].argclass)
c906108c
SS
2597 {
2598 case string_arg:
c2792f5a 2599 printf_c_string (stream, current_substring, val_args[i]);
c906108c 2600 break;
6c7a06a3 2601 case wide_string_arg:
c2792f5a 2602 printf_wide_c_string (stream, current_substring, val_args[i]);
6c7a06a3
TT
2603 break;
2604 case wide_char_arg:
2605 {
50810684
UW
2606 struct gdbarch *gdbarch
2607 = get_type_arch (value_type (val_args[i]));
2608 struct type *wctype = lookup_typename (current_language, gdbarch,
e6c014f2 2609 "wchar_t", NULL, 0);
6c7a06a3
TT
2610 struct type *valtype;
2611 struct obstack output;
2612 struct cleanup *inner_cleanup;
2613 const gdb_byte *bytes;
2614
2615 valtype = value_type (val_args[i]);
2616 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2617 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2618 error (_("expected wchar_t argument for %%lc"));
2619
2620 bytes = value_contents (val_args[i]);
2621
2622 obstack_init (&output);
2623 inner_cleanup = make_cleanup_obstack_free (&output);
2624
f870a310 2625 convert_between_encodings (target_wide_charset (gdbarch),
6c7a06a3
TT
2626 host_charset (),
2627 bytes, TYPE_LENGTH (valtype),
2628 TYPE_LENGTH (valtype),
2629 &output, translit_char);
2630 obstack_grow_str0 (&output, "");
2631
f1421989
HZ
2632 fprintf_filtered (stream, current_substring,
2633 obstack_base (&output));
6c7a06a3
TT
2634 do_cleanups (inner_cleanup);
2635 }
2636 break;
c906108c
SS
2637 case double_arg:
2638 {
b806fb9a
UW
2639 struct type *type = value_type (val_args[i]);
2640 DOUBLEST val;
2641 int inv;
2642
2643 /* If format string wants a float, unchecked-convert the value
2644 to floating point of the same size. */
50810684 2645 type = float_type_from_length (type);
b806fb9a
UW
2646 val = unpack_double (type, value_contents (val_args[i]), &inv);
2647 if (inv)
2648 error (_("Invalid floating value found in program."));
2649
f1421989 2650 fprintf_filtered (stream, current_substring, (double) val);
c906108c
SS
2651 break;
2652 }
46e9880c
DJ
2653 case long_double_arg:
2654#ifdef HAVE_LONG_DOUBLE
2655 {
b806fb9a
UW
2656 struct type *type = value_type (val_args[i]);
2657 DOUBLEST val;
2658 int inv;
2659
2660 /* If format string wants a float, unchecked-convert the value
2661 to floating point of the same size. */
50810684 2662 type = float_type_from_length (type);
b806fb9a
UW
2663 val = unpack_double (type, value_contents (val_args[i]), &inv);
2664 if (inv)
2665 error (_("Invalid floating value found in program."));
2666
f1421989
HZ
2667 fprintf_filtered (stream, current_substring,
2668 (long double) val);
46e9880c
DJ
2669 break;
2670 }
2671#else
2672 error (_("long double not supported in printf"));
2673#endif
c906108c 2674 case long_long_arg:
74a0d9f6 2675#ifdef PRINTF_HAS_LONG_LONG
c906108c
SS
2676 {
2677 long long val = value_as_long (val_args[i]);
ad3bbd48 2678
f1421989 2679 fprintf_filtered (stream, current_substring, val);
c906108c
SS
2680 break;
2681 }
2682#else
8a3fe4f8 2683 error (_("long long not supported in printf"));
c906108c
SS
2684#endif
2685 case int_arg:
2686 {
46e9880c 2687 int val = value_as_long (val_args[i]);
ad3bbd48 2688
f1421989 2689 fprintf_filtered (stream, current_substring, val);
46e9880c
DJ
2690 break;
2691 }
2692 case long_arg:
2693 {
c906108c 2694 long val = value_as_long (val_args[i]);
ad3bbd48 2695
f1421989 2696 fprintf_filtered (stream, current_substring, val);
c906108c
SS
2697 break;
2698 }
0aea4bf3 2699 /* Handles decimal floating values. */
c2792f5a
DE
2700 case decfloat_arg:
2701 printf_decfloat (stream, current_substring, val_args[i]);
2702 break;
2025a643 2703 case ptr_arg:
c2792f5a
DE
2704 printf_pointer (stream, current_substring, val_args[i]);
2705 break;
d3ce09f5
SS
2706 case literal_piece:
2707 /* Print a portion of the format string that has no
2708 directives. Note that this will not include any
2709 ordinary %-specs, but it might include "%%". That is
2710 why we use printf_filtered and not puts_filtered here.
2711 Also, we pass a dummy argument because some platforms
2712 have modified GCC to include -Wformat-security by
2713 default, which will warn here if there is no
2714 argument. */
2715 fprintf_filtered (stream, current_substring, 0);
2716 break;
675dcf4f
MK
2717 default:
2718 internal_error (__FILE__, __LINE__,
2025a643 2719 _("failed internal consistency check"));
c906108c 2720 }
d3ce09f5
SS
2721 /* Maybe advance to the next argument. */
2722 if (fpieces[fr].argclass != literal_piece)
2723 ++i;
c906108c 2724 }
c906108c
SS
2725 }
2726 do_cleanups (old_cleanups);
2727}
c906108c 2728
f1421989
HZ
2729/* Implement the "printf" command. */
2730
a04b0428 2731static void
f1421989
HZ
2732printf_command (char *arg, int from_tty)
2733{
a04b0428 2734 ui_printf (arg, gdb_stdout);
50b34a18 2735 gdb_flush (gdb_stdout);
f1421989
HZ
2736}
2737
2738/* Implement the "eval" command. */
2739
2740static void
2741eval_command (char *arg, int from_tty)
2742{
2743 struct ui_file *ui_out = mem_fileopen ();
2744 struct cleanup *cleanups = make_cleanup_ui_file_delete (ui_out);
2745 char *expanded;
2746
a04b0428 2747 ui_printf (arg, ui_out);
f1421989
HZ
2748
2749 expanded = ui_file_xstrdup (ui_out, NULL);
2750 make_cleanup (xfree, expanded);
2751
2752 execute_command (expanded, from_tty);
2753
2754 do_cleanups (cleanups);
2755}
2756
c906108c 2757void
fba45db2 2758_initialize_printcmd (void)
c906108c 2759{
c94fdfd0
EZ
2760 struct cmd_list_element *c;
2761
c906108c
SS
2762 current_display_number = -1;
2763
63644780 2764 observer_attach_free_objfile (clear_dangling_display_expressions);
a3247a22 2765
c906108c 2766 add_info ("address", address_info,
1bedd215 2767 _("Describe where symbol SYM is stored."));
c906108c 2768
1bedd215
AC
2769 add_info ("symbol", sym_info, _("\
2770Describe what symbol is at location ADDR.\n\
2771Only for symbols with fixed locations (global or static scope)."));
c906108c 2772
1bedd215
AC
2773 add_com ("x", class_vars, x_command, _("\
2774Examine memory: x/FMT ADDRESS.\n\
c906108c
SS
2775ADDRESS is an expression for the memory address to examine.\n\
2776FMT is a repeat count followed by a format letter and a size letter.\n\
2777Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
6fbe845e
AB
2778 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2779 and z(hex, zero padded on the left).\n\
1bedd215 2780Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
c906108c 2781The specified number of objects of the specified size are printed\n\
bb556f1f
TK
2782according to the format. If a negative number is specified, memory is\n\
2783examined backward from the address.\n\n\
c906108c
SS
2784Defaults for format and size letters are those previously used.\n\
2785Default count is 1. Default address is following last thing printed\n\
1bedd215 2786with this command or \"print\"."));
c906108c 2787
c906108c
SS
2788#if 0
2789 add_com ("whereis", class_vars, whereis_command,
1bedd215 2790 _("Print line number and file of definition of variable."));
c906108c 2791#endif
c5aa993b 2792
1bedd215
AC
2793 add_info ("display", display_info, _("\
2794Expressions to display when program stops, with code numbers."));
c906108c 2795
1a966eab
AC
2796 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2797Cancel some expressions to be displayed when program stops.\n\
c906108c
SS
2798Arguments are the code numbers of the expressions to stop displaying.\n\
2799No argument means cancel all automatic-display expressions.\n\
2800\"delete display\" has the same effect as this command.\n\
1a966eab 2801Do \"info display\" to see current list of code numbers."),
c5aa993b 2802 &cmdlist);
c906108c 2803
1bedd215
AC
2804 add_com ("display", class_vars, display_command, _("\
2805Print value of expression EXP each time the program stops.\n\
c906108c
SS
2806/FMT may be used before EXP as in the \"print\" command.\n\
2807/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2808as in the \"x\" command, and then EXP is used to get the address to examine\n\
2809and examining is done as in the \"x\" command.\n\n\
2810With no argument, display all currently requested auto-display expressions.\n\
1bedd215 2811Use \"undisplay\" to cancel display requests previously made."));
c906108c 2812
c9174737 2813 add_cmd ("display", class_vars, enable_display_command, _("\
1a966eab 2814Enable some expressions to be displayed when program stops.\n\
c906108c
SS
2815Arguments are the code numbers of the expressions to resume displaying.\n\
2816No argument means enable all automatic-display expressions.\n\
1a966eab 2817Do \"info display\" to see current list of code numbers."), &enablelist);
c906108c 2818
1a966eab
AC
2819 add_cmd ("display", class_vars, disable_display_command, _("\
2820Disable some expressions to be displayed when program stops.\n\
c906108c
SS
2821Arguments are the code numbers of the expressions to stop displaying.\n\
2822No argument means disable all automatic-display expressions.\n\
1a966eab 2823Do \"info display\" to see current list of code numbers."), &disablelist);
c906108c 2824
1a966eab
AC
2825 add_cmd ("display", class_vars, undisplay_command, _("\
2826Cancel some expressions to be displayed when program stops.\n\
c906108c
SS
2827Arguments are the code numbers of the expressions to stop displaying.\n\
2828No argument means cancel all automatic-display expressions.\n\
1a966eab 2829Do \"info display\" to see current list of code numbers."), &deletelist);
c906108c 2830
1bedd215
AC
2831 add_com ("printf", class_vars, printf_command, _("\
2832printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2833This is useful for formatted output in user-defined commands."));
c906108c 2834
1bedd215
AC
2835 add_com ("output", class_vars, output_command, _("\
2836Like \"print\" but don't put in value history and don't print newline.\n\
2837This is useful in user-defined commands."));
c906108c 2838
1bedd215
AC
2839 add_prefix_cmd ("set", class_vars, set_command, _("\
2840Evaluate expression EXP and assign result to variable VAR, using assignment\n\
c906108c
SS
2841syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2842example). VAR may be a debugger \"convenience\" variable (names starting\n\
2843with $), a register (a few standard names starting with $), or an actual\n\
1bedd215
AC
2844variable in the program being debugged. EXP is any valid expression.\n\
2845Use \"set variable\" for variables with names identical to set subcommands.\n\
2846\n\
2847With a subcommand, this command modifies parts of the gdb environment.\n\
2848You can see these environment settings with the \"show\" command."),
c5aa993b 2849 &setlist, "set ", 1, &cmdlist);
c906108c 2850 if (dbx_commands)
1bedd215
AC
2851 add_com ("assign", class_vars, set_command, _("\
2852Evaluate expression EXP and assign result to variable VAR, using assignment\n\
c906108c
SS
2853syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2854example). VAR may be a debugger \"convenience\" variable (names starting\n\
2855with $), a register (a few standard names starting with $), or an actual\n\
1bedd215
AC
2856variable in the program being debugged. EXP is any valid expression.\n\
2857Use \"set variable\" for variables with names identical to set subcommands.\n\
c906108c 2858\nWith a subcommand, this command modifies parts of the gdb environment.\n\
1bedd215 2859You can see these environment settings with the \"show\" command."));
c906108c 2860
0df8b418 2861 /* "call" is the same as "set", but handy for dbx users to call fns. */
1bedd215
AC
2862 c = add_com ("call", class_vars, call_command, _("\
2863Call a function in the program.\n\
c906108c
SS
2864The argument is the function name and arguments, in the notation of the\n\
2865current working language. The result is printed and saved in the value\n\
1bedd215 2866history, if it is not void."));
65d12d83 2867 set_cmd_completer (c, expression_completer);
c906108c 2868
1a966eab
AC
2869 add_cmd ("variable", class_vars, set_command, _("\
2870Evaluate expression EXP and assign result to variable VAR, using assignment\n\
c906108c
SS
2871syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2872example). VAR may be a debugger \"convenience\" variable (names starting\n\
2873with $), a register (a few standard names starting with $), or an actual\n\
2874variable in the program being debugged. EXP is any valid expression.\n\
1a966eab 2875This may usually be abbreviated to simply \"set\"."),
c5aa993b 2876 &setlist);
c906108c 2877
1bedd215
AC
2878 c = add_com ("print", class_vars, print_command, _("\
2879Print value of expression EXP.\n\
c906108c
SS
2880Variables accessible are those of the lexical environment of the selected\n\
2881stack frame, plus all those whose scope is global or an entire file.\n\
2882\n\
2883$NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2884$$NUM refers to NUM'th value back from the last one.\n\
1bedd215
AC
2885Names starting with $ refer to registers (with the values they would have\n\
2886if the program were to return to the stack frame now selected, restoring\n\
c906108c
SS
2887all registers saved by frames farther in) or else to debugger\n\
2888\"convenience\" variables (any such name not a known register).\n\
1bedd215
AC
2889Use assignment expressions to give values to convenience variables.\n\
2890\n\
c906108c
SS
2891{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2892@ is a binary operator for treating consecutive data objects\n\
2893anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2894element is FOO, whose second element is stored in the space following\n\
2895where FOO is stored, etc. FOO must be an expression whose value\n\
1bedd215
AC
2896resides in memory.\n\
2897\n\
c906108c 2898EXP may be preceded with /FMT, where FMT is a format letter\n\
1bedd215 2899but no count or size letter (see \"x\" command)."));
65d12d83 2900 set_cmd_completer (c, expression_completer);
c906108c 2901 add_com_alias ("p", "print", class_vars, 1);
e93a8774 2902 add_com_alias ("inspect", "print", class_vars, 1);
c906108c 2903
35096d9d
AC
2904 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2905 &max_symbolic_offset, _("\
2906Set the largest offset that will be printed in <symbol+1234> form."), _("\
f81d1120
PA
2907Show the largest offset that will be printed in <symbol+1234> form."), _("\
2908Tell GDB to only display the symbolic form of an address if the\n\
2909offset between the closest earlier symbol and the address is less than\n\
2910the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2911to always print the symbolic form of an address if any symbol precedes\n\
2912it. Zero is equivalent to \"unlimited\"."),
35096d9d 2913 NULL,
920d2a44 2914 show_max_symbolic_offset,
35096d9d 2915 &setprintlist, &showprintlist);
5bf193a2
AC
2916 add_setshow_boolean_cmd ("symbol-filename", no_class,
2917 &print_symbol_filename, _("\
2918Set printing of source filename and line number with <symbol>."), _("\
2919Show printing of source filename and line number with <symbol>."), NULL,
2920 NULL,
920d2a44 2921 show_print_symbol_filename,
5bf193a2 2922 &setprintlist, &showprintlist);
f1421989
HZ
2923
2924 add_com ("eval", no_class, eval_command, _("\
2925Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2926a command line, and call it."));
c906108c 2927}
This page took 1.795027 seconds and 4 git commands to generate.