Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / regcache.c
CommitLineData
32178cab 1/* Cache and manage the values of registers for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001
32178cab
MS
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "defs.h"
32178cab
MS
23#include "inferior.h"
24#include "target.h"
25#include "gdbarch.h"
705152c5 26#include "gdbcmd.h"
4e052eda 27#include "regcache.h"
61a0eb5b 28#include "gdb_assert.h"
32178cab
MS
29
30/*
31 * DATA STRUCTURE
32 *
33 * Here is the actual register cache.
34 */
35
5ebd2499 36/* NOTE: this is a write-through cache. There is no "dirty" bit for
32178cab
MS
37 recording if the register values have been changed (eg. by the
38 user). Therefore all registers must be written back to the
39 target when appropriate. */
40
41/* REGISTERS contains the cached register values (in target byte order). */
42
43char *registers;
44
45/* REGISTER_VALID is 0 if the register needs to be fetched,
46 1 if it has been fetched, and
47 -1 if the register value was not available.
48 "Not available" means don't try to fetch it again. */
49
50signed char *register_valid;
51
39f77062 52/* The thread/process associated with the current set of registers. */
32178cab 53
39f77062 54static ptid_t registers_ptid;
32178cab
MS
55
56/*
57 * FUNCTIONS:
58 */
59
60/* REGISTER_CACHED()
61
62 Returns 0 if the value is not in the cache (needs fetch).
63 >0 if the value is in the cache.
64 <0 if the value is permanently unavailable (don't ask again). */
65
66int
67register_cached (int regnum)
68{
69 return register_valid[regnum];
70}
71
7302a204
ND
72/* Record that REGNUM's value is cached if STATE is >0, uncached but
73 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
74
75void
76set_register_cached (int regnum, int state)
77{
78 register_valid[regnum] = state;
79}
80
2dc4e391
DT
81/* REGISTER_CHANGED
82
83 invalidate a single register REGNUM in the cache */
84void
85register_changed (int regnum)
86{
7302a204
ND
87 set_register_cached (regnum, 0);
88}
89
90/* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
91 else return a pointer to the start of the cache buffer. */
92
93char *
94register_buffer (int regnum)
95{
96 if (regnum < 0)
97 return registers;
98 else
99 return &registers[REGISTER_BYTE (regnum)];
100}
101
102/* Return whether register REGNUM is a real register. */
103
104static int
105real_register (int regnum)
106{
107 return regnum >= 0 && regnum < NUM_REGS;
108}
109
110/* Return whether register REGNUM is a pseudo register. */
111
112static int
113pseudo_register (int regnum)
114{
115 return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
116}
117
118/* Fetch register REGNUM into the cache. */
119
120static void
121fetch_register (int regnum)
122{
123 if (real_register (regnum))
124 target_fetch_registers (regnum);
125 else if (pseudo_register (regnum))
126 FETCH_PSEUDO_REGISTER (regnum);
127}
128
129/* Write register REGNUM cached value to the target. */
130
131static void
132store_register (int regnum)
133{
134 if (real_register (regnum))
135 target_store_registers (regnum);
136 else if (pseudo_register (regnum))
137 STORE_PSEUDO_REGISTER (regnum);
2dc4e391
DT
138}
139
32178cab
MS
140/* Low level examining and depositing of registers.
141
142 The caller is responsible for making sure that the inferior is
143 stopped before calling the fetching routines, or it will get
144 garbage. (a change from GDB version 3, in which the caller got the
145 value from the last stop). */
146
147/* REGISTERS_CHANGED ()
148
149 Indicate that registers may have changed, so invalidate the cache. */
150
151void
152registers_changed (void)
153{
154 int i;
32178cab 155
39f77062 156 registers_ptid = pid_to_ptid (-1);
32178cab
MS
157
158 /* Force cleanup of any alloca areas if using C alloca instead of
159 a builtin alloca. This particular call is used to clean up
160 areas allocated by low level target code which may build up
161 during lengthy interactions between gdb and the target before
162 gdb gives control to the user (ie watchpoints). */
163 alloca (0);
164
a728f042 165 for (i = 0; i < NUM_REGS; i++)
7302a204 166 set_register_cached (i, 0);
fcdc5976
MS
167
168 /* Assume that if all the hardware regs have changed,
169 then so have the pseudo-registers. */
170 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
7302a204 171 set_register_cached (i, 0);
32178cab
MS
172
173 if (registers_changed_hook)
174 registers_changed_hook ();
175}
176
177/* REGISTERS_FETCHED ()
178
179 Indicate that all registers have been fetched, so mark them all valid. */
180
181
182void
183registers_fetched (void)
184{
185 int i;
32178cab 186
a728f042 187 for (i = 0; i < NUM_REGS; i++)
7302a204 188 set_register_cached (i, 1);
fcdc5976
MS
189 /* Do not assume that the pseudo-regs have also been fetched.
190 Fetching all real regs might not account for all pseudo-regs. */
32178cab
MS
191}
192
193/* read_register_bytes and write_register_bytes are generally a *BAD*
194 idea. They are inefficient because they need to check for partial
195 updates, which can only be done by scanning through all of the
196 registers and seeing if the bytes that are being read/written fall
197 inside of an invalid register. [The main reason this is necessary
198 is that register sizes can vary, so a simple index won't suffice.]
199 It is far better to call read_register_gen and write_register_gen
200 if you want to get at the raw register contents, as it only takes a
5ebd2499 201 regnum as an argument, and therefore can't do a partial register
32178cab
MS
202 update.
203
204 Prior to the recent fixes to check for partial updates, both read
205 and write_register_bytes always checked to see if any registers
206 were stale, and then called target_fetch_registers (-1) to update
207 the whole set. This caused really slowed things down for remote
208 targets. */
209
210/* Copy INLEN bytes of consecutive data from registers
211 starting with the INREGBYTE'th byte of register data
212 into memory at MYADDR. */
213
214void
61a0eb5b 215read_register_bytes (int in_start, char *in_buf, int in_len)
32178cab 216{
61a0eb5b 217 int in_end = in_start + in_len;
5ebd2499 218 int regnum;
61a0eb5b 219 char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE);
32178cab
MS
220
221 /* See if we are trying to read bytes from out-of-date registers. If so,
222 update just those registers. */
223
5ebd2499 224 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
32178cab 225 {
61a0eb5b
AC
226 int reg_start;
227 int reg_end;
228 int reg_len;
229 int start;
230 int end;
231 int byte;
32178cab 232
5ebd2499 233 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
32178cab
MS
234 continue;
235
61a0eb5b
AC
236 reg_start = REGISTER_BYTE (regnum);
237 reg_len = REGISTER_RAW_SIZE (regnum);
238 reg_end = reg_start + reg_len;
32178cab 239
61a0eb5b 240 if (reg_end <= in_start || in_end <= reg_start)
5ebd2499 241 /* The range the user wants to read doesn't overlap with regnum. */
32178cab
MS
242 continue;
243
61a0eb5b
AC
244 /* Force the cache to fetch the entire register. */
245 read_register_gen (regnum, reg_buf);
32178cab 246
61a0eb5b
AC
247 /* Legacy note: This function, for some reason, allows a NULL
248 input buffer. If the buffer is NULL, the registers are still
249 fetched, just the final transfer is skipped. */
250 if (in_buf == NULL)
251 continue;
252
253 /* start = max (reg_start, in_start) */
254 if (reg_start > in_start)
255 start = reg_start;
256 else
257 start = in_start;
258
259 /* end = min (reg_end, in_end) */
260 if (reg_end < in_end)
261 end = reg_end;
262 else
263 end = in_end;
264
265 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
266 for (byte = start; byte < end; byte++)
165cd47f 267 {
61a0eb5b 268 in_buf[byte - in_start] = reg_buf[byte - reg_start];
165cd47f 269 }
32178cab 270 }
32178cab
MS
271}
272
5ebd2499
ND
273/* Read register REGNUM into memory at MYADDR, which must be large
274 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
32178cab
MS
275 register is known to be the size of a CORE_ADDR or smaller,
276 read_register can be used instead. */
277
61a0eb5b
AC
278static void
279legacy_read_register_gen (int regnum, char *myaddr)
32178cab 280{
61a0eb5b 281 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
39f77062 282 if (! ptid_equal (registers_ptid, inferior_ptid))
32178cab
MS
283 {
284 registers_changed ();
39f77062 285 registers_ptid = inferior_ptid;
32178cab
MS
286 }
287
7302a204
ND
288 if (!register_cached (regnum))
289 fetch_register (regnum);
290
291 memcpy (myaddr, register_buffer (regnum),
5ebd2499 292 REGISTER_RAW_SIZE (regnum));
32178cab
MS
293}
294
61a0eb5b
AC
295void
296regcache_read (int rawnum, char *buf)
297{
298 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
299 /* For moment, just use underlying legacy code. Ulgh!!! */
300 legacy_read_register_gen (rawnum, buf);
301}
302
303void
304read_register_gen (int regnum, char *buf)
305{
306 if (! gdbarch_register_read_p (current_gdbarch))
307 {
308 legacy_read_register_gen (regnum, buf);
309 return;
310 }
311 gdbarch_register_read (current_gdbarch, regnum, buf);
312}
313
314
5ebd2499
ND
315/* Write register REGNUM at MYADDR to the target. MYADDR points at
316 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
32178cab
MS
317
318/* Registers we shouldn't try to store. */
319#if !defined (CANNOT_STORE_REGISTER)
5ebd2499 320#define CANNOT_STORE_REGISTER(regnum) 0
32178cab
MS
321#endif
322
61a0eb5b
AC
323static void
324legacy_write_register_gen (int regnum, char *myaddr)
32178cab
MS
325{
326 int size;
61a0eb5b 327 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
32178cab
MS
328
329 /* On the sparc, writing %g0 is a no-op, so we don't even want to
330 change the registers array if something writes to this register. */
5ebd2499 331 if (CANNOT_STORE_REGISTER (regnum))
32178cab
MS
332 return;
333
39f77062 334 if (! ptid_equal (registers_ptid, inferior_ptid))
32178cab
MS
335 {
336 registers_changed ();
39f77062 337 registers_ptid = inferior_ptid;
32178cab
MS
338 }
339
5ebd2499 340 size = REGISTER_RAW_SIZE (regnum);
32178cab
MS
341
342 /* If we have a valid copy of the register, and new value == old value,
343 then don't bother doing the actual store. */
344
7302a204
ND
345 if (register_cached (regnum)
346 && memcmp (register_buffer (regnum), myaddr, size) == 0)
32178cab
MS
347 return;
348
7302a204 349 if (real_register (regnum))
fcdc5976 350 target_prepare_to_store ();
32178cab 351
7302a204 352 memcpy (register_buffer (regnum), myaddr, size);
32178cab 353
7302a204
ND
354 set_register_cached (regnum, 1);
355 store_register (regnum);
32178cab
MS
356}
357
61a0eb5b
AC
358void
359regcache_write (int rawnum, char *buf)
360{
361 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
362 /* For moment, just use underlying legacy code. Ulgh!!! */
363 legacy_write_register_gen (rawnum, buf);
364}
365
366void
367write_register_gen (int regnum, char *buf)
368{
369 if (! gdbarch_register_write_p (current_gdbarch))
370 {
371 legacy_write_register_gen (regnum, buf);
372 return;
373 }
374 gdbarch_register_write (current_gdbarch, regnum, buf);
375}
376
32178cab
MS
377/* Copy INLEN bytes of consecutive data from memory at MYADDR
378 into registers starting with the MYREGSTART'th byte of register data. */
379
380void
381write_register_bytes (int myregstart, char *myaddr, int inlen)
382{
383 int myregend = myregstart + inlen;
5ebd2499 384 int regnum;
32178cab
MS
385
386 target_prepare_to_store ();
387
388 /* Scan through the registers updating any that are covered by the
389 range myregstart<=>myregend using write_register_gen, which does
390 nice things like handling threads, and avoiding updates when the
391 new and old contents are the same. */
392
5ebd2499 393 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
32178cab
MS
394 {
395 int regstart, regend;
396
5ebd2499
ND
397 regstart = REGISTER_BYTE (regnum);
398 regend = regstart + REGISTER_RAW_SIZE (regnum);
32178cab
MS
399
400 /* Is this register completely outside the range the user is writing? */
401 if (myregend <= regstart || regend <= myregstart)
402 /* do nothing */ ;
403
404 /* Is this register completely within the range the user is writing? */
405 else if (myregstart <= regstart && regend <= myregend)
5ebd2499 406 write_register_gen (regnum, myaddr + (regstart - myregstart));
32178cab
MS
407
408 /* The register partially overlaps the range being written. */
409 else
410 {
e6cbd02a 411 char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
32178cab
MS
412 /* What's the overlap between this register's bytes and
413 those the caller wants to write? */
414 int overlapstart = max (regstart, myregstart);
415 int overlapend = min (regend, myregend);
416
417 /* We may be doing a partial update of an invalid register.
418 Update it from the target before scribbling on it. */
5ebd2499 419 read_register_gen (regnum, regbuf);
32178cab
MS
420
421 memcpy (registers + overlapstart,
422 myaddr + (overlapstart - myregstart),
423 overlapend - overlapstart);
424
7302a204 425 store_register (regnum);
32178cab
MS
426 }
427 }
428}
429
430
5ebd2499 431/* Return the contents of register REGNUM as an unsigned integer. */
32178cab 432
173155e8 433ULONGEST
5ebd2499 434read_register (int regnum)
32178cab 435{
61a0eb5b
AC
436 char *buf = alloca (REGISTER_RAW_SIZE (regnum));
437 read_register_gen (regnum, buf);
438 return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
32178cab
MS
439}
440
173155e8 441ULONGEST
39f77062 442read_register_pid (int regnum, ptid_t ptid)
32178cab 443{
39f77062 444 ptid_t save_ptid;
32178cab
MS
445 int save_pid;
446 CORE_ADDR retval;
447
39f77062 448 if (ptid_equal (ptid, inferior_ptid))
5ebd2499 449 return read_register (regnum);
32178cab 450
39f77062 451 save_ptid = inferior_ptid;
32178cab 452
39f77062 453 inferior_ptid = ptid;
32178cab 454
5ebd2499 455 retval = read_register (regnum);
32178cab 456
39f77062 457 inferior_ptid = save_ptid;
32178cab
MS
458
459 return retval;
460}
461
5ebd2499 462/* Return the contents of register REGNUM as a signed integer. */
173155e8
AC
463
464LONGEST
5ebd2499 465read_signed_register (int regnum)
173155e8 466{
61a0eb5b
AC
467 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
468 read_register_gen (regnum, buf);
469 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
173155e8
AC
470}
471
472LONGEST
39f77062 473read_signed_register_pid (int regnum, ptid_t ptid)
173155e8 474{
39f77062 475 ptid_t save_ptid;
173155e8
AC
476 LONGEST retval;
477
39f77062 478 if (ptid_equal (ptid, inferior_ptid))
5ebd2499 479 return read_signed_register (regnum);
173155e8 480
39f77062 481 save_ptid = inferior_ptid;
173155e8 482
39f77062 483 inferior_ptid = ptid;
173155e8 484
5ebd2499 485 retval = read_signed_register (regnum);
173155e8 486
39f77062 487 inferior_ptid = save_ptid;
173155e8
AC
488
489 return retval;
490}
491
5ebd2499 492/* Store VALUE into the raw contents of register number REGNUM. */
32178cab
MS
493
494void
5ebd2499 495write_register (int regnum, LONGEST val)
32178cab 496{
61a0eb5b 497 void *buf;
32178cab 498 int size;
5ebd2499 499 size = REGISTER_RAW_SIZE (regnum);
32178cab
MS
500 buf = alloca (size);
501 store_signed_integer (buf, size, (LONGEST) val);
61a0eb5b 502 write_register_gen (regnum, buf);
32178cab
MS
503}
504
505void
39f77062 506write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
32178cab 507{
39f77062 508 ptid_t save_ptid;
32178cab 509
39f77062 510 if (ptid_equal (ptid, inferior_ptid))
32178cab 511 {
5ebd2499 512 write_register (regnum, val);
32178cab
MS
513 return;
514 }
515
39f77062 516 save_ptid = inferior_ptid;
32178cab 517
39f77062 518 inferior_ptid = ptid;
32178cab 519
5ebd2499 520 write_register (regnum, val);
32178cab 521
39f77062 522 inferior_ptid = save_ptid;
32178cab
MS
523}
524
525/* SUPPLY_REGISTER()
526
5ebd2499 527 Record that register REGNUM contains VAL. This is used when the
32178cab
MS
528 value is obtained from the inferior or core dump, so there is no
529 need to store the value there.
530
531 If VAL is a NULL pointer, then it's probably an unsupported register.
5ebd2499 532 We just set its value to all zeros. We might want to record this
32178cab
MS
533 fact, and report it to the users of read_register and friends. */
534
535void
5ebd2499 536supply_register (int regnum, char *val)
32178cab
MS
537{
538#if 1
39f77062 539 if (! ptid_equal (registers_ptid, inferior_ptid))
32178cab
MS
540 {
541 registers_changed ();
39f77062 542 registers_ptid = inferior_ptid;
32178cab
MS
543 }
544#endif
545
7302a204 546 set_register_cached (regnum, 1);
32178cab 547 if (val)
7302a204 548 memcpy (register_buffer (regnum), val,
5ebd2499 549 REGISTER_RAW_SIZE (regnum));
32178cab 550 else
7302a204 551 memset (register_buffer (regnum), '\000',
5ebd2499 552 REGISTER_RAW_SIZE (regnum));
32178cab
MS
553
554 /* On some architectures, e.g. HPPA, there are a few stray bits in
555 some registers, that the rest of the code would like to ignore. */
556
61a0eb5b
AC
557 /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
558 going to be deprecated. Instead architectures will leave the raw
559 register value as is and instead clean things up as they pass
560 through the method gdbarch_register_read() clean up the
561 values. */
562
32178cab 563#ifdef CLEAN_UP_REGISTER_VALUE
7302a204 564 CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum));
32178cab
MS
565#endif
566}
567
568/* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
569 Special handling for registers PC, SP, and FP. */
570
4e052eda
AC
571/* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
572 read_pc_pid(), read_pc(), generic_target_write_pc(),
573 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
574 generic_target_write_sp(), write_sp(), generic_target_read_fp(),
575 read_fp(), generic_target_write_fp(), write_fp will eventually be
576 moved out of the reg-cache into either frame.[hc] or to the
577 multi-arch framework. The are not part of the raw register cache. */
578
32178cab
MS
579/* This routine is getting awfully cluttered with #if's. It's probably
580 time to turn this into READ_PC and define it in the tm.h file.
581 Ditto for write_pc.
582
583 1999-06-08: The following were re-written so that it assumes the
8e1a459b 584 existence of a TARGET_READ_PC et.al. macro. A default generic
32178cab
MS
585 version of that macro is made available where needed.
586
587 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
588 by the multi-arch framework, it will eventually be possible to
589 eliminate the intermediate read_pc_pid(). The client would call
590 TARGET_READ_PC directly. (cagney). */
591
32178cab 592CORE_ADDR
39f77062 593generic_target_read_pc (ptid_t ptid)
32178cab
MS
594{
595#ifdef PC_REGNUM
596 if (PC_REGNUM >= 0)
597 {
39f77062 598 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid));
32178cab
MS
599 return pc_val;
600 }
601#endif
8e65ff28
AC
602 internal_error (__FILE__, __LINE__,
603 "generic_target_read_pc");
32178cab
MS
604 return 0;
605}
606
607CORE_ADDR
39f77062 608read_pc_pid (ptid_t ptid)
32178cab 609{
39f77062 610 ptid_t saved_inferior_ptid;
32178cab
MS
611 CORE_ADDR pc_val;
612
39f77062
KB
613 /* In case ptid != inferior_ptid. */
614 saved_inferior_ptid = inferior_ptid;
615 inferior_ptid = ptid;
32178cab 616
39f77062 617 pc_val = TARGET_READ_PC (ptid);
32178cab 618
39f77062 619 inferior_ptid = saved_inferior_ptid;
32178cab
MS
620 return pc_val;
621}
622
623CORE_ADDR
624read_pc (void)
625{
39f77062 626 return read_pc_pid (inferior_ptid);
32178cab
MS
627}
628
32178cab 629void
39f77062 630generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
32178cab
MS
631{
632#ifdef PC_REGNUM
633 if (PC_REGNUM >= 0)
39f77062 634 write_register_pid (PC_REGNUM, pc, ptid);
32178cab 635 if (NPC_REGNUM >= 0)
39f77062 636 write_register_pid (NPC_REGNUM, pc + 4, ptid);
32178cab 637 if (NNPC_REGNUM >= 0)
39f77062 638 write_register_pid (NNPC_REGNUM, pc + 8, ptid);
32178cab 639#else
8e65ff28
AC
640 internal_error (__FILE__, __LINE__,
641 "generic_target_write_pc");
32178cab
MS
642#endif
643}
644
645void
39f77062 646write_pc_pid (CORE_ADDR pc, ptid_t ptid)
32178cab 647{
39f77062 648 ptid_t saved_inferior_ptid;
32178cab 649
39f77062
KB
650 /* In case ptid != inferior_ptid. */
651 saved_inferior_ptid = inferior_ptid;
652 inferior_ptid = ptid;
32178cab 653
39f77062 654 TARGET_WRITE_PC (pc, ptid);
32178cab 655
39f77062 656 inferior_ptid = saved_inferior_ptid;
32178cab
MS
657}
658
659void
660write_pc (CORE_ADDR pc)
661{
39f77062 662 write_pc_pid (pc, inferior_ptid);
32178cab
MS
663}
664
665/* Cope with strage ways of getting to the stack and frame pointers */
666
32178cab
MS
667CORE_ADDR
668generic_target_read_sp (void)
669{
670#ifdef SP_REGNUM
671 if (SP_REGNUM >= 0)
672 return read_register (SP_REGNUM);
673#endif
8e65ff28
AC
674 internal_error (__FILE__, __LINE__,
675 "generic_target_read_sp");
32178cab
MS
676}
677
678CORE_ADDR
679read_sp (void)
680{
681 return TARGET_READ_SP ();
682}
683
32178cab
MS
684void
685generic_target_write_sp (CORE_ADDR val)
686{
687#ifdef SP_REGNUM
688 if (SP_REGNUM >= 0)
689 {
690 write_register (SP_REGNUM, val);
691 return;
692 }
693#endif
8e65ff28
AC
694 internal_error (__FILE__, __LINE__,
695 "generic_target_write_sp");
32178cab
MS
696}
697
698void
699write_sp (CORE_ADDR val)
700{
701 TARGET_WRITE_SP (val);
702}
703
32178cab
MS
704CORE_ADDR
705generic_target_read_fp (void)
706{
707#ifdef FP_REGNUM
708 if (FP_REGNUM >= 0)
709 return read_register (FP_REGNUM);
710#endif
8e65ff28
AC
711 internal_error (__FILE__, __LINE__,
712 "generic_target_read_fp");
32178cab
MS
713}
714
715CORE_ADDR
716read_fp (void)
717{
718 return TARGET_READ_FP ();
719}
720
32178cab
MS
721void
722generic_target_write_fp (CORE_ADDR val)
723{
724#ifdef FP_REGNUM
725 if (FP_REGNUM >= 0)
726 {
727 write_register (FP_REGNUM, val);
728 return;
729 }
730#endif
8e65ff28
AC
731 internal_error (__FILE__, __LINE__,
732 "generic_target_write_fp");
32178cab
MS
733}
734
735void
736write_fp (CORE_ADDR val)
737{
738 TARGET_WRITE_FP (val);
739}
740
705152c5
MS
741/* ARGSUSED */
742static void
743reg_flush_command (char *command, int from_tty)
744{
745 /* Force-flush the register cache. */
746 registers_changed ();
747 if (from_tty)
748 printf_filtered ("Register cache flushed.\n");
749}
750
751
32178cab
MS
752static void
753build_regcache (void)
754{
755 /* We allocate some extra slop since we do a lot of memcpy's around
756 `registers', and failing-soft is better than failing hard. */
757 int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
fcdc5976
MS
758 int sizeof_register_valid =
759 (NUM_REGS + NUM_PSEUDO_REGS) * sizeof (*register_valid);
32178cab
MS
760 registers = xmalloc (sizeof_registers);
761 memset (registers, 0, sizeof_registers);
762 register_valid = xmalloc (sizeof_register_valid);
763 memset (register_valid, 0, sizeof_register_valid);
764}
765
766void
767_initialize_regcache (void)
768{
769 build_regcache ();
770
771 register_gdbarch_swap (&registers, sizeof (registers), NULL);
772 register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
773 register_gdbarch_swap (NULL, 0, build_regcache);
705152c5
MS
774
775 add_com ("flushregs", class_maintenance, reg_flush_command,
776 "Force gdb to flush its register cache (maintainer command)");
39f77062
KB
777
778 /* Initialize the thread/process associated with the current set of
779 registers. For now, -1 is special, and means `no current process'. */
780 registers_ptid = pid_to_ptid (-1);
32178cab 781}
This page took 0.115772 seconds and 4 git commands to generate.