[PATCH] Add micromips support to the MIPS simulator
[deliverable/binutils-gdb.git] / gdb / rs6000-aix-tdep.c
CommitLineData
1f82754b
JB
1/* Native support code for PPC AIX, for GDB the GNU debugger.
2
32d0add0 3 Copyright (C) 2006-2015 Free Software Foundation, Inc.
1f82754b
JB
4
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
1f82754b
JB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1f82754b
JB
21
22#include "defs.h"
23#include "osabi.h"
7a61a01c
UW
24#include "regcache.h"
25#include "regset.h"
4a7622d1
UW
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "value.h"
30#include "infcall.h"
31#include "objfiles.h"
32#include "breakpoint.h"
1f82754b 33#include "rs6000-tdep.h"
6f7f3f0d 34#include "ppc-tdep.h"
356a5233 35#include "rs6000-aix-tdep.h"
d5367fe1 36#include "xcoffread.h"
4d1eb6b4
JB
37#include "solib.h"
38#include "solib-aix.h"
356a5233 39#include "xml-utils.h"
4a7622d1
UW
40
41/* If the kernel has to deliver a signal, it pushes a sigcontext
42 structure on the stack and then calls the signal handler, passing
0df8b418 43 the address of the sigcontext in an argument register. Usually
4a7622d1
UW
44 the signal handler doesn't save this register, so we have to
45 access the sigcontext structure via an offset from the signal handler
46 frame.
47 The following constants were determined by experimentation on AIX 3.2. */
48#define SIG_FRAME_PC_OFFSET 96
49#define SIG_FRAME_LR_OFFSET 108
50#define SIG_FRAME_FP_OFFSET 284
51
7a61a01c
UW
52
53/* Core file support. */
54
55static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
56{
57 /* General-purpose registers. */
58 208, /* r0_offset */
f2db237a
AM
59 4, /* gpr_size */
60 4, /* xr_size */
7a61a01c
UW
61 24, /* pc_offset */
62 28, /* ps_offset */
63 32, /* cr_offset */
64 36, /* lr_offset */
65 40, /* ctr_offset */
66 44, /* xer_offset */
67 48, /* mq_offset */
68
69 /* Floating-point registers. */
70 336, /* f0_offset */
71 56, /* fpscr_offset */
f2db237a 72 4, /* fpscr_size */
7a61a01c
UW
73
74 /* AltiVec registers. */
75 -1, /* vr0_offset */
76 -1, /* vscr_offset */
77 -1 /* vrsave_offset */
78};
79
80static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
81{
82 /* General-purpose registers. */
83 0, /* r0_offset */
f2db237a
AM
84 8, /* gpr_size */
85 4, /* xr_size */
7a61a01c
UW
86 264, /* pc_offset */
87 256, /* ps_offset */
88 288, /* cr_offset */
89 272, /* lr_offset */
90 280, /* ctr_offset */
91 292, /* xer_offset */
92 -1, /* mq_offset */
93
94 /* Floating-point registers. */
95 312, /* f0_offset */
96 296, /* fpscr_offset */
f2db237a 97 4, /* fpscr_size */
7a61a01c
UW
98
99 /* AltiVec registers. */
100 -1, /* vr0_offset */
101 -1, /* vscr_offset */
102 -1 /* vrsave_offset */
103};
104
105
106/* Supply register REGNUM in the general-purpose register set REGSET
107 from the buffer specified by GREGS and LEN to register cache
108 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
109
110static void
111rs6000_aix_supply_regset (const struct regset *regset,
112 struct regcache *regcache, int regnum,
113 const void *gregs, size_t len)
114{
115 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
f2db237a 116 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
7a61a01c
UW
117}
118
119/* Collect register REGNUM in the general-purpose register set
0df8b418 120 REGSET, from register cache REGCACHE into the buffer specified by
7a61a01c
UW
121 GREGS and LEN. If REGNUM is -1, do this for all registers in
122 REGSET. */
123
124static void
125rs6000_aix_collect_regset (const struct regset *regset,
126 const struct regcache *regcache, int regnum,
127 void *gregs, size_t len)
128{
129 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
f2db237a 130 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
7a61a01c
UW
131}
132
133/* AIX register set. */
134
3ca7dae4 135static const struct regset rs6000_aix32_regset =
7a61a01c
UW
136{
137 &rs6000_aix32_reg_offsets,
138 rs6000_aix_supply_regset,
139 rs6000_aix_collect_regset,
140};
141
3ca7dae4 142static const struct regset rs6000_aix64_regset =
7a61a01c
UW
143{
144 &rs6000_aix64_reg_offsets,
145 rs6000_aix_supply_regset,
146 rs6000_aix_collect_regset,
147};
148
23ea9aeb 149/* Iterate over core file register note sections. */
7a61a01c 150
23ea9aeb
AA
151static void
152rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch,
153 iterate_over_regset_sections_cb *cb,
154 void *cb_data,
155 const struct regcache *regcache)
7a61a01c
UW
156{
157 if (gdbarch_tdep (gdbarch)->wordsize == 4)
23ea9aeb 158 cb (".reg", 592, &rs6000_aix32_regset, NULL, cb_data);
7a61a01c 159 else
23ea9aeb 160 cb (".reg", 576, &rs6000_aix64_regset, NULL, cb_data);
7a61a01c
UW
161}
162
163
0df8b418 164/* Pass the arguments in either registers, or in the stack. In RS/6000,
4a7622d1
UW
165 the first eight words of the argument list (that might be less than
166 eight parameters if some parameters occupy more than one word) are
0df8b418 167 passed in r3..r10 registers. Float and double parameters are
4a7622d1
UW
168 passed in fpr's, in addition to that. Rest of the parameters if any
169 are passed in user stack. There might be cases in which half of the
170 parameter is copied into registers, the other half is pushed into
171 stack.
172
173 Stack must be aligned on 64-bit boundaries when synthesizing
174 function calls.
175
176 If the function is returning a structure, then the return address is passed
177 in r3, then the first 7 words of the parameters can be passed in registers,
178 starting from r4. */
179
180static CORE_ADDR
181rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
182 struct regcache *regcache, CORE_ADDR bp_addr,
183 int nargs, struct value **args, CORE_ADDR sp,
184 int struct_return, CORE_ADDR struct_addr)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4a7622d1
UW
188 int ii;
189 int len = 0;
190 int argno; /* current argument number */
191 int argbytes; /* current argument byte */
192 gdb_byte tmp_buffer[50];
193 int f_argno = 0; /* current floating point argno */
194 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
195 CORE_ADDR func_addr = find_function_addr (function, NULL);
196
197 struct value *arg = 0;
198 struct type *type;
199
200 ULONGEST saved_sp;
201
202 /* The calling convention this function implements assumes the
203 processor has floating-point registers. We shouldn't be using it
204 on PPC variants that lack them. */
205 gdb_assert (ppc_floating_point_unit_p (gdbarch));
206
207 /* The first eight words of ther arguments are passed in registers.
208 Copy them appropriately. */
209 ii = 0;
210
211 /* If the function is returning a `struct', then the first word
212 (which will be passed in r3) is used for struct return address.
213 In that case we should advance one word and start from r4
214 register to copy parameters. */
215 if (struct_return)
216 {
217 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
218 struct_addr);
219 ii++;
220 }
221
0df8b418 222/* effectively indirect call... gcc does...
4a7622d1
UW
223
224 return_val example( float, int);
225
226 eabi:
227 float in fp0, int in r3
228 offset of stack on overflow 8/16
229 for varargs, must go by type.
230 power open:
231 float in r3&r4, int in r5
232 offset of stack on overflow different
233 both:
234 return in r3 or f0. If no float, must study how gcc emulates floats;
0df8b418 235 pay attention to arg promotion.
4a7622d1 236 User may have to cast\args to handle promotion correctly
0df8b418 237 since gdb won't know if prototype supplied or not. */
4a7622d1
UW
238
239 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
240 {
241 int reg_size = register_size (gdbarch, ii + 3);
242
243 arg = args[argno];
244 type = check_typedef (value_type (arg));
245 len = TYPE_LENGTH (type);
246
247 if (TYPE_CODE (type) == TYPE_CODE_FLT)
248 {
4a7622d1 249 /* Floating point arguments are passed in fpr's, as well as gpr's.
0df8b418 250 There are 13 fpr's reserved for passing parameters. At this point
36d1c68c
JB
251 there is no way we would run out of them.
252
253 Always store the floating point value using the register's
254 floating-point format. */
255 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
256 gdb_byte reg_val[MAX_REGISTER_SIZE];
257 struct type *reg_type = register_type (gdbarch, fp_regnum);
4a7622d1
UW
258
259 gdb_assert (len <= 8);
260
36d1c68c
JB
261 convert_typed_floating (value_contents (arg), type,
262 reg_val, reg_type);
263 regcache_cooked_write (regcache, fp_regnum, reg_val);
4a7622d1
UW
264 ++f_argno;
265 }
266
267 if (len > reg_size)
268 {
269
270 /* Argument takes more than one register. */
271 while (argbytes < len)
272 {
273 gdb_byte word[MAX_REGISTER_SIZE];
274 memset (word, 0, reg_size);
275 memcpy (word,
276 ((char *) value_contents (arg)) + argbytes,
277 (len - argbytes) > reg_size
278 ? reg_size : len - argbytes);
279 regcache_cooked_write (regcache,
280 tdep->ppc_gp0_regnum + 3 + ii,
281 word);
282 ++ii, argbytes += reg_size;
283
284 if (ii >= 8)
285 goto ran_out_of_registers_for_arguments;
286 }
287 argbytes = 0;
288 --ii;
289 }
290 else
291 {
292 /* Argument can fit in one register. No problem. */
293 int adj = gdbarch_byte_order (gdbarch)
294 == BFD_ENDIAN_BIG ? reg_size - len : 0;
295 gdb_byte word[MAX_REGISTER_SIZE];
296
297 memset (word, 0, reg_size);
298 memcpy (word, value_contents (arg), len);
299 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
300 }
301 ++argno;
302 }
303
304ran_out_of_registers_for_arguments:
305
306 regcache_cooked_read_unsigned (regcache,
307 gdbarch_sp_regnum (gdbarch),
308 &saved_sp);
309
310 /* Location for 8 parameters are always reserved. */
311 sp -= wordsize * 8;
312
313 /* Another six words for back chain, TOC register, link register, etc. */
314 sp -= wordsize * 6;
315
316 /* Stack pointer must be quadword aligned. */
317 sp &= -16;
318
319 /* If there are more arguments, allocate space for them in
320 the stack, then push them starting from the ninth one. */
321
322 if ((argno < nargs) || argbytes)
323 {
324 int space = 0, jj;
325
326 if (argbytes)
327 {
328 space += ((len - argbytes + 3) & -4);
329 jj = argno + 1;
330 }
331 else
332 jj = argno;
333
334 for (; jj < nargs; ++jj)
335 {
336 struct value *val = args[jj];
337 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
338 }
339
340 /* Add location required for the rest of the parameters. */
341 space = (space + 15) & -16;
342 sp -= space;
343
344 /* This is another instance we need to be concerned about
0df8b418 345 securing our stack space. If we write anything underneath %sp
4a7622d1
UW
346 (r1), we might conflict with the kernel who thinks he is free
347 to use this area. So, update %sp first before doing anything
348 else. */
349
350 regcache_raw_write_signed (regcache,
351 gdbarch_sp_regnum (gdbarch), sp);
352
353 /* If the last argument copied into the registers didn't fit there
354 completely, push the rest of it into stack. */
355
356 if (argbytes)
357 {
358 write_memory (sp + 24 + (ii * 4),
359 value_contents (arg) + argbytes,
360 len - argbytes);
361 ++argno;
362 ii += ((len - argbytes + 3) & -4) / 4;
363 }
364
365 /* Push the rest of the arguments into stack. */
366 for (; argno < nargs; ++argno)
367 {
368
369 arg = args[argno];
370 type = check_typedef (value_type (arg));
371 len = TYPE_LENGTH (type);
372
373
374 /* Float types should be passed in fpr's, as well as in the
375 stack. */
376 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
377 {
378
379 gdb_assert (len <= 8);
380
381 regcache_cooked_write (regcache,
382 tdep->ppc_fp0_regnum + 1 + f_argno,
383 value_contents (arg));
384 ++f_argno;
385 }
386
387 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
388 ii += ((len + 3) & -4) / 4;
389 }
390 }
391
392 /* Set the stack pointer. According to the ABI, the SP is meant to
393 be set _before_ the corresponding stack space is used. On AIX,
394 this even applies when the target has been completely stopped!
395 Not doing this can lead to conflicts with the kernel which thinks
396 that it still has control over this not-yet-allocated stack
397 region. */
398 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
399
400 /* Set back chain properly. */
e17a4113 401 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
4a7622d1
UW
402 write_memory (sp, tmp_buffer, wordsize);
403
404 /* Point the inferior function call's return address at the dummy's
405 breakpoint. */
406 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
407
4d1eb6b4
JB
408 /* Set the TOC register value. */
409 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum,
410 solib_aix_get_toc_value (func_addr));
4a7622d1
UW
411
412 target_store_registers (regcache, -1);
413 return sp;
414}
415
416static enum return_value_convention
6a3a010b 417rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
4a7622d1
UW
418 struct type *valtype, struct regcache *regcache,
419 gdb_byte *readbuf, const gdb_byte *writebuf)
420{
421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 422 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4a7622d1
UW
423
424 /* The calling convention this function implements assumes the
425 processor has floating-point registers. We shouldn't be using it
426 on PowerPC variants that lack them. */
427 gdb_assert (ppc_floating_point_unit_p (gdbarch));
428
429 /* AltiVec extension: Functions that declare a vector data type as a
430 return value place that return value in VR2. */
431 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
432 && TYPE_LENGTH (valtype) == 16)
433 {
434 if (readbuf)
435 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
436 if (writebuf)
437 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
438
439 return RETURN_VALUE_REGISTER_CONVENTION;
440 }
441
442 /* If the called subprogram returns an aggregate, there exists an
443 implicit first argument, whose value is the address of a caller-
444 allocated buffer into which the callee is assumed to store its
0df8b418 445 return value. All explicit parameters are appropriately
4a7622d1
UW
446 relabeled. */
447 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
448 || TYPE_CODE (valtype) == TYPE_CODE_UNION
449 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
450 return RETURN_VALUE_STRUCT_CONVENTION;
451
452 /* Scalar floating-point values are returned in FPR1 for float or
453 double, and in FPR1:FPR2 for quadword precision. Fortran
454 complex*8 and complex*16 are returned in FPR1:FPR2, and
455 complex*32 is returned in FPR1:FPR4. */
456 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
457 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
458 {
459 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
460 gdb_byte regval[8];
461
462 /* FIXME: kettenis/2007-01-01: Add support for quadword
463 precision and complex. */
464
465 if (readbuf)
466 {
467 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
468 convert_typed_floating (regval, regtype, readbuf, valtype);
469 }
470 if (writebuf)
471 {
472 convert_typed_floating (writebuf, valtype, regval, regtype);
473 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
474 }
475
476 return RETURN_VALUE_REGISTER_CONVENTION;
477 }
478
479 /* Values of the types int, long, short, pointer, and char (length
480 is less than or equal to four bytes), as well as bit values of
481 lengths less than or equal to 32 bits, must be returned right
482 justified in GPR3 with signed values sign extended and unsigned
483 values zero extended, as necessary. */
484 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
485 {
486 if (readbuf)
487 {
488 ULONGEST regval;
489
490 /* For reading we don't have to worry about sign extension. */
491 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
492 &regval);
e17a4113
UW
493 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
494 regval);
4a7622d1
UW
495 }
496 if (writebuf)
497 {
498 /* For writing, use unpack_long since that should handle any
499 required sign extension. */
500 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
501 unpack_long (valtype, writebuf));
502 }
503
504 return RETURN_VALUE_REGISTER_CONVENTION;
505 }
506
507 /* Eight-byte non-floating-point scalar values must be returned in
508 GPR3:GPR4. */
509
510 if (TYPE_LENGTH (valtype) == 8)
511 {
512 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
513 gdb_assert (tdep->wordsize == 4);
514
515 if (readbuf)
516 {
517 gdb_byte regval[8];
518
519 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
520 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
521 regval + 4);
522 memcpy (readbuf, regval, 8);
523 }
524 if (writebuf)
525 {
526 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
527 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
528 writebuf + 4);
529 }
530
531 return RETURN_VALUE_REGISTER_CONVENTION;
532 }
533
534 return RETURN_VALUE_STRUCT_CONVENTION;
535}
536
537/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
538
539 Usually a function pointer's representation is simply the address
0df8b418
MS
540 of the function. On the RS/6000 however, a function pointer is
541 represented by a pointer to an OPD entry. This OPD entry contains
4a7622d1
UW
542 three words, the first word is the address of the function, the
543 second word is the TOC pointer (r2), and the third word is the
544 static chain value. Throughout GDB it is currently assumed that a
545 function pointer contains the address of the function, which is not
546 easy to fix. In addition, the conversion of a function address to
547 a function pointer would require allocation of an OPD entry in the
548 inferior's memory space, with all its drawbacks. To be able to
549 call C++ virtual methods in the inferior (which are called via
550 function pointers), find_function_addr uses this function to get the
551 function address from a function pointer. */
552
553/* Return real function address if ADDR (a function pointer) is in the data
554 space and is therefore a special function pointer. */
555
556static CORE_ADDR
557rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
558 CORE_ADDR addr,
559 struct target_ops *targ)
560{
e17a4113
UW
561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
562 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4a7622d1
UW
563 struct obj_section *s;
564
565 s = find_pc_section (addr);
4a7622d1 566
40adab56
JB
567 /* Normally, functions live inside a section that is executable.
568 So, if ADDR points to a non-executable section, then treat it
569 as a function descriptor and return the target address iff
570 the target address itself points to a section that is executable. */
571 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
572 {
57174f31 573 CORE_ADDR pc = 0;
2971b56b 574 struct obj_section *pc_section;
2971b56b 575
492d29ea 576 TRY
2971b56b
JB
577 {
578 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
579 }
492d29ea 580 CATCH (e, RETURN_MASK_ERROR)
2971b56b
JB
581 {
582 /* An error occured during reading. Probably a memory error
583 due to the section not being loaded yet. This address
584 cannot be a function descriptor. */
585 return addr;
586 }
492d29ea
PA
587 END_CATCH
588
2971b56b 589 pc_section = find_pc_section (pc);
40adab56
JB
590
591 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
592 return pc;
593 }
594
595 return addr;
4a7622d1
UW
596}
597
598
599/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
600
601static CORE_ADDR
602branch_dest (struct frame_info *frame, int opcode, int instr,
603 CORE_ADDR pc, CORE_ADDR safety)
604{
e17a4113
UW
605 struct gdbarch *gdbarch = get_frame_arch (frame);
606 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4a7622d1
UW
608 CORE_ADDR dest;
609 int immediate;
610 int absolute;
611 int ext_op;
612
613 absolute = (int) ((instr >> 1) & 1);
614
615 switch (opcode)
616 {
617 case 18:
618 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
619 if (absolute)
620 dest = immediate;
621 else
622 dest = pc + immediate;
623 break;
624
625 case 16:
626 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
627 if (absolute)
628 dest = immediate;
629 else
630 dest = pc + immediate;
631 break;
632
633 case 19:
634 ext_op = (instr >> 1) & 0x3ff;
635
636 if (ext_op == 16) /* br conditional register */
637 {
638 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
639
640 /* If we are about to return from a signal handler, dest is
641 something like 0x3c90. The current frame is a signal handler
642 caller frame, upon completion of the sigreturn system call
643 execution will return to the saved PC in the frame. */
644 if (dest < AIX_TEXT_SEGMENT_BASE)
645 dest = read_memory_unsigned_integer
646 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
e17a4113 647 tdep->wordsize, byte_order);
4a7622d1
UW
648 }
649
650 else if (ext_op == 528) /* br cond to count reg */
651 {
0df8b418
MS
652 dest = get_frame_register_unsigned (frame,
653 tdep->ppc_ctr_regnum) & ~3;
4a7622d1
UW
654
655 /* If we are about to execute a system call, dest is something
656 like 0x22fc or 0x3b00. Upon completion the system call
657 will return to the address in the link register. */
658 if (dest < AIX_TEXT_SEGMENT_BASE)
0df8b418
MS
659 dest = get_frame_register_unsigned (frame,
660 tdep->ppc_lr_regnum) & ~3;
4a7622d1
UW
661 }
662 else
663 return -1;
664 break;
665
666 default:
667 return -1;
668 }
669 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
670}
671
672/* AIX does not support PT_STEP. Simulate it. */
673
674static int
675rs6000_software_single_step (struct frame_info *frame)
676{
a6d9a66e 677 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 678 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4a7622d1
UW
680 int ii, insn;
681 CORE_ADDR loc;
682 CORE_ADDR breaks[2];
683 int opcode;
684
685 loc = get_frame_pc (frame);
686
e17a4113 687 insn = read_memory_integer (loc, 4, byte_order);
4a7622d1
UW
688
689 if (ppc_deal_with_atomic_sequence (frame))
690 return 1;
691
692 breaks[0] = loc + PPC_INSN_SIZE;
693 opcode = insn >> 26;
694 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
695
0df8b418 696 /* Don't put two breakpoints on the same address. */
4a7622d1
UW
697 if (breaks[1] == breaks[0])
698 breaks[1] = -1;
699
700 for (ii = 0; ii < 2; ++ii)
701 {
0df8b418 702 /* ignore invalid breakpoint. */
4a7622d1
UW
703 if (breaks[ii] == -1)
704 continue;
6c95b8df 705 insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]);
4a7622d1
UW
706 }
707
0df8b418 708 errno = 0; /* FIXME, don't ignore errors! */
4a7622d1
UW
709 /* What errors? {read,write}_memory call error(). */
710 return 1;
711}
712
38a69d0a
JB
713/* Implement the "auto_wide_charset" gdbarch method for this platform. */
714
715static const char *
716rs6000_aix_auto_wide_charset (void)
717{
718 return "UTF-16";
719}
720
beb4b03c
JB
721/* Implement an osabi sniffer for RS6000/AIX.
722
723 This function assumes that ABFD's flavour is XCOFF. In other words,
724 it should be registered as a sniffer for bfd_target_xcoff_flavour
725 objfiles only. A failed assertion will be raised if this condition
726 is not met. */
727
1f82754b
JB
728static enum gdb_osabi
729rs6000_aix_osabi_sniffer (bfd *abfd)
730{
beb4b03c 731 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
1f82754b 732
d5367fe1
JB
733 /* The only noticeable difference between Lynx178 XCOFF files and
734 AIX XCOFF files comes from the fact that there are no shared
735 libraries on Lynx178. On AIX, we are betting that an executable
736 linked with no shared library will never exist. */
737 if (xcoff_get_n_import_files (abfd) <= 0)
738 return GDB_OSABI_UNKNOWN;
739
beb4b03c 740 return GDB_OSABI_AIX;
1f82754b
JB
741}
742
356a5233
JB
743/* A structure encoding the offset and size of a field within
744 a struct. */
745
746struct field_info
747{
748 int offset;
749 int size;
750};
751
752/* A structure describing the layout of all the fields of interest
753 in AIX's struct ld_info. Each field in this struct corresponds
754 to the field of the same name in struct ld_info. */
755
756struct ld_info_desc
757{
758 struct field_info ldinfo_next;
759 struct field_info ldinfo_fd;
760 struct field_info ldinfo_textorg;
761 struct field_info ldinfo_textsize;
762 struct field_info ldinfo_dataorg;
763 struct field_info ldinfo_datasize;
764 struct field_info ldinfo_filename;
765};
766
767/* The following data has been generated by compiling and running
768 the following program on AIX 5.3. */
769
770#if 0
1c432e72
JB
771#include <stddef.h>
772#include <stdio.h>
773#define __LDINFO_PTRACE32__
774#define __LDINFO_PTRACE64__
775#include <sys/ldr.h>
776
777#define pinfo(type,member) \
778 { \
779 struct type ldi = {0}; \
780 \
781 printf (" {%d, %d},\t/* %s */\n", \
782 offsetof (struct type, member), \
783 sizeof (ldi.member), \
784 #member); \
785 } \
786 while (0)
787
788int
789main (void)
790{
791 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n");
792 pinfo (__ld_info32, ldinfo_next);
793 pinfo (__ld_info32, ldinfo_fd);
794 pinfo (__ld_info32, ldinfo_textorg);
795 pinfo (__ld_info32, ldinfo_textsize);
796 pinfo (__ld_info32, ldinfo_dataorg);
797 pinfo (__ld_info32, ldinfo_datasize);
798 pinfo (__ld_info32, ldinfo_filename);
799 printf ("};\n");
800
801 printf ("\n");
802
803 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n");
804 pinfo (__ld_info64, ldinfo_next);
805 pinfo (__ld_info64, ldinfo_fd);
806 pinfo (__ld_info64, ldinfo_textorg);
807 pinfo (__ld_info64, ldinfo_textsize);
808 pinfo (__ld_info64, ldinfo_dataorg);
809 pinfo (__ld_info64, ldinfo_datasize);
810 pinfo (__ld_info64, ldinfo_filename);
811 printf ("};\n");
812
813 return 0;
814}
356a5233
JB
815#endif /* 0 */
816
817/* Layout of the 32bit version of struct ld_info. */
818
819static const struct ld_info_desc ld_info32_desc =
820{
821 {0, 4}, /* ldinfo_next */
822 {4, 4}, /* ldinfo_fd */
823 {8, 4}, /* ldinfo_textorg */
824 {12, 4}, /* ldinfo_textsize */
825 {16, 4}, /* ldinfo_dataorg */
826 {20, 4}, /* ldinfo_datasize */
827 {24, 2}, /* ldinfo_filename */
828};
829
830/* Layout of the 64bit version of struct ld_info. */
831
832static const struct ld_info_desc ld_info64_desc =
833{
834 {0, 4}, /* ldinfo_next */
835 {8, 4}, /* ldinfo_fd */
836 {16, 8}, /* ldinfo_textorg */
837 {24, 8}, /* ldinfo_textsize */
838 {32, 8}, /* ldinfo_dataorg */
839 {40, 8}, /* ldinfo_datasize */
840 {48, 2}, /* ldinfo_filename */
841};
842
843/* A structured representation of one entry read from the ld_info
844 binary data provided by the AIX loader. */
845
846struct ld_info
847{
848 ULONGEST next;
849 int fd;
850 CORE_ADDR textorg;
851 ULONGEST textsize;
852 CORE_ADDR dataorg;
853 ULONGEST datasize;
854 char *filename;
855 char *member_name;
856};
857
858/* Return a struct ld_info object corresponding to the entry at
859 LDI_BUF.
860
861 Note that the filename and member_name strings still point
862 to the data in LDI_BUF. So LDI_BUF must not be deallocated
863 while the struct ld_info object returned is in use. */
864
865static struct ld_info
866rs6000_aix_extract_ld_info (struct gdbarch *gdbarch,
867 const gdb_byte *ldi_buf)
868{
869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
872 const struct ld_info_desc desc
873 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc;
874 struct ld_info info;
875
876 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset,
877 desc.ldinfo_next.size,
878 byte_order);
879 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset,
880 desc.ldinfo_fd.size,
881 byte_order);
882 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset,
883 ptr_type);
884 info.textsize
885 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset,
886 desc.ldinfo_textsize.size,
887 byte_order);
888 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset,
889 ptr_type);
890 info.datasize
891 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset,
892 desc.ldinfo_datasize.size,
893 byte_order);
894 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset;
895 info.member_name = info.filename + strlen (info.filename) + 1;
896
897 return info;
898}
899
900/* Append to OBJSTACK an XML string description of the shared library
901 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX
902 format. */
903
904static void
905rs6000_aix_shared_library_to_xml (struct ld_info *ldi,
906 struct obstack *obstack)
907{
908 char *p;
909
910 obstack_grow_str (obstack, "<library name=\"");
911 p = xml_escape_text (ldi->filename);
912 obstack_grow_str (obstack, p);
913 xfree (p);
914 obstack_grow_str (obstack, "\"");
915
916 if (ldi->member_name[0] != '\0')
917 {
918 obstack_grow_str (obstack, " member=\"");
919 p = xml_escape_text (ldi->member_name);
920 obstack_grow_str (obstack, p);
921 xfree (p);
922 obstack_grow_str (obstack, "\"");
923 }
924
925 obstack_grow_str (obstack, " text_addr=\"");
926 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg));
927 obstack_grow_str (obstack, "\"");
928
929 obstack_grow_str (obstack, " text_size=\"");
930 obstack_grow_str (obstack, pulongest (ldi->textsize));
931 obstack_grow_str (obstack, "\"");
932
933 obstack_grow_str (obstack, " data_addr=\"");
934 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg));
935 obstack_grow_str (obstack, "\"");
936
937 obstack_grow_str (obstack, " data_size=\"");
938 obstack_grow_str (obstack, pulongest (ldi->datasize));
939 obstack_grow_str (obstack, "\"");
940
941 obstack_grow_str (obstack, "></library>");
942}
943
944/* Convert the ld_info binary data provided by the AIX loader into
945 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX
946 format.
947
948 LDI_BUF is a buffer containing the ld_info data.
949 READBUF, OFFSET and LEN follow the same semantics as target_ops'
950 to_xfer_partial target_ops method.
951
952 If CLOSE_LDINFO_FD is nonzero, then this routine also closes
953 the ldinfo_fd file descriptor. This is useful when the ldinfo
954 data is obtained via ptrace, as ptrace opens a file descriptor
955 for each and every entry; but we cannot use this descriptor
956 as the consumer of the XML library list might live in a different
957 process. */
958
c09f20e4 959ULONGEST
356a5233 960rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf,
b55e14c7 961 gdb_byte *readbuf, ULONGEST offset, ULONGEST len,
356a5233
JB
962 int close_ldinfo_fd)
963{
964 struct obstack obstack;
965 const char *buf;
c09f20e4 966 ULONGEST len_avail;
356a5233
JB
967
968 obstack_init (&obstack);
969 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n");
970
971 while (1)
972 {
973 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf);
974
975 rs6000_aix_shared_library_to_xml (&ldi, &obstack);
976 if (close_ldinfo_fd)
977 close (ldi.fd);
978
979 if (!ldi.next)
980 break;
981 ldi_buf = ldi_buf + ldi.next;
982 }
983
984 obstack_grow_str0 (&obstack, "</library-list-aix>\n");
985
986 buf = obstack_finish (&obstack);
987 len_avail = strlen (buf);
988 if (offset >= len_avail)
989 len= 0;
990 else
991 {
992 if (len > len_avail - offset)
993 len = len_avail - offset;
994 memcpy (readbuf, buf + offset, len);
995 }
996
997 obstack_free (&obstack, NULL);
998 return len;
999}
1000
1001/* Implement the core_xfer_shared_libraries_aix gdbarch method. */
1002
c09f20e4 1003static ULONGEST
356a5233
JB
1004rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch,
1005 gdb_byte *readbuf,
1006 ULONGEST offset,
7ec1862d 1007 ULONGEST len)
356a5233
JB
1008{
1009 struct bfd_section *ldinfo_sec;
1010 int ldinfo_size;
1011 gdb_byte *ldinfo_buf;
1012 struct cleanup *cleanup;
1013 LONGEST result;
1014
1015 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1016 if (ldinfo_sec == NULL)
1017 error (_("cannot find .ldinfo section from core file: %s"),
1018 bfd_errmsg (bfd_get_error ()));
1019 ldinfo_size = bfd_get_section_size (ldinfo_sec);
1020
1021 ldinfo_buf = xmalloc (ldinfo_size);
1022 cleanup = make_cleanup (xfree, ldinfo_buf);
1023
1024 if (! bfd_get_section_contents (core_bfd, ldinfo_sec,
1025 ldinfo_buf, 0, ldinfo_size))
1026 error (_("unable to read .ldinfo section from core file: %s"),
1027 bfd_errmsg (bfd_get_error ()));
1028
1029 result = rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf, readbuf,
1030 offset, len, 0);
1031
1032 do_cleanups (cleanup);
1033 return result;
1034}
1035
1f82754b
JB
1036static void
1037rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
1038{
4a7622d1
UW
1039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1040
1f82754b
JB
1041 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
1042 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
6f7f3f0d 1043
2454a024
UW
1044 /* Displaced stepping is currently not supported in combination with
1045 software single-stepping. */
1046 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
1047 set_gdbarch_displaced_step_fixup (gdbarch, NULL);
1048 set_gdbarch_displaced_step_free_closure (gdbarch, NULL);
1049 set_gdbarch_displaced_step_location (gdbarch, NULL);
1050
4a7622d1
UW
1051 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
1052 set_gdbarch_return_value (gdbarch, rs6000_return_value);
1053 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1054
1055 /* Handle RS/6000 function pointers (which are really function
1056 descriptors). */
1057 set_gdbarch_convert_from_func_ptr_addr
1058 (gdbarch, rs6000_convert_from_func_ptr_addr);
1059
7a61a01c 1060 /* Core file support. */
23ea9aeb
AA
1061 set_gdbarch_iterate_over_regset_sections
1062 (gdbarch, rs6000_aix_iterate_over_regset_sections);
356a5233
JB
1063 set_gdbarch_core_xfer_shared_libraries_aix
1064 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix);
7a61a01c 1065
4a7622d1
UW
1066 if (tdep->wordsize == 8)
1067 tdep->lr_frame_offset = 16;
1068 else
1069 tdep->lr_frame_offset = 8;
1070
1071 if (tdep->wordsize == 4)
1072 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
1073 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
1074 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
1075 224. */
1076 set_gdbarch_frame_red_zone_size (gdbarch, 224);
1077 else
1078 set_gdbarch_frame_red_zone_size (gdbarch, 0);
38a69d0a
JB
1079
1080 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset);
4d1eb6b4
JB
1081
1082 set_solib_ops (gdbarch, &solib_aix_so_ops);
1f82754b
JB
1083}
1084
63807e1d
PA
1085/* Provide a prototype to silence -Wmissing-prototypes. */
1086extern initialize_file_ftype _initialize_rs6000_aix_tdep;
1087
1f82754b
JB
1088void
1089_initialize_rs6000_aix_tdep (void)
1090{
1091 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
1092 bfd_target_xcoff_flavour,
1093 rs6000_aix_osabi_sniffer);
7a61a01c
UW
1094 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
1095 bfd_target_xcoff_flavour,
1096 rs6000_aix_osabi_sniffer);
1f82754b
JB
1097
1098 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
1099 rs6000_aix_init_osabi);
7a61a01c
UW
1100 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
1101 rs6000_aix_init_osabi);
1f82754b
JB
1102}
1103
This page took 0.992882 seconds and 4 git commands to generate.