Port GDB to powerpc-lynx178.
[deliverable/binutils-gdb.git] / gdb / rs6000-lynx178-tdep.c
CommitLineData
d5367fe1
JB
1/* Copyright (C) 2012 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18#include "defs.h"
19#include "osabi.h"
20#include "regcache.h"
21#include "gdbcore.h"
22#include "gdbtypes.h"
23#include "infcall.h"
24#include "ppc-tdep.h"
25#include "value.h"
26#include "xcoffread.h"
27
28/* Implement the "push_dummy_call" gdbarch method. */
29
30static CORE_ADDR
31rs6000_lynx178_push_dummy_call (struct gdbarch *gdbarch,
32 struct value *function,
33 struct regcache *regcache, CORE_ADDR bp_addr,
34 int nargs, struct value **args, CORE_ADDR sp,
35 int struct_return, CORE_ADDR struct_addr)
36{
37 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
38 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
39 int ii;
40 int len = 0;
41 int argno; /* current argument number */
42 int argbytes; /* current argument byte */
43 gdb_byte tmp_buffer[50];
44 int f_argno = 0; /* current floating point argno */
45 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
46 CORE_ADDR func_addr = find_function_addr (function, NULL);
47
48 struct value *arg = 0;
49 struct type *type;
50
51 ULONGEST saved_sp;
52
53 /* The calling convention this function implements assumes the
54 processor has floating-point registers. We shouldn't be using it
55 on PPC variants that lack them. */
56 gdb_assert (ppc_floating_point_unit_p (gdbarch));
57
58 /* The first eight words of ther arguments are passed in registers.
59 Copy them appropriately. */
60 ii = 0;
61
62 /* If the function is returning a `struct', then the first word
63 (which will be passed in r3) is used for struct return address.
64 In that case we should advance one word and start from r4
65 register to copy parameters. */
66 if (struct_return)
67 {
68 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
69 struct_addr);
70 ii++;
71 }
72
73 /* Effectively indirect call... gcc does...
74
75 return_val example( float, int);
76
77 eabi:
78 float in fp0, int in r3
79 offset of stack on overflow 8/16
80 for varargs, must go by type.
81 power open:
82 float in r3&r4, int in r5
83 offset of stack on overflow different
84 both:
85 return in r3 or f0. If no float, must study how gcc emulates floats;
86 pay attention to arg promotion.
87 User may have to cast\args to handle promotion correctly
88 since gdb won't know if prototype supplied or not. */
89
90 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
91 {
92 int reg_size = register_size (gdbarch, ii + 3);
93
94 arg = args[argno];
95 type = check_typedef (value_type (arg));
96 len = TYPE_LENGTH (type);
97
98 if (TYPE_CODE (type) == TYPE_CODE_FLT)
99 {
100
101 /* Floating point arguments are passed in fpr's, as well as gpr's.
102 There are 13 fpr's reserved for passing parameters. At this point
103 there is no way we would run out of them. */
104
105 gdb_assert (len <= 8);
106
107 regcache_cooked_write (regcache,
108 tdep->ppc_fp0_regnum + 1 + f_argno,
109 value_contents (arg));
110 ++f_argno;
111 }
112
113 if (len > reg_size)
114 {
115
116 /* Argument takes more than one register. */
117 while (argbytes < len)
118 {
119 gdb_byte word[MAX_REGISTER_SIZE];
120 memset (word, 0, reg_size);
121 memcpy (word,
122 ((char *) value_contents (arg)) + argbytes,
123 (len - argbytes) > reg_size
124 ? reg_size : len - argbytes);
125 regcache_cooked_write (regcache,
126 tdep->ppc_gp0_regnum + 3 + ii,
127 word);
128 ++ii, argbytes += reg_size;
129
130 if (ii >= 8)
131 goto ran_out_of_registers_for_arguments;
132 }
133 argbytes = 0;
134 --ii;
135 }
136 else
137 {
138 /* Argument can fit in one register. No problem. */
139 int adj = gdbarch_byte_order (gdbarch)
140 == BFD_ENDIAN_BIG ? reg_size - len : 0;
141 gdb_byte word[MAX_REGISTER_SIZE];
142
143 memset (word, 0, reg_size);
144 memcpy (word, value_contents (arg), len);
145 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
146 }
147 ++argno;
148 }
149
150ran_out_of_registers_for_arguments:
151
152 regcache_cooked_read_unsigned (regcache,
153 gdbarch_sp_regnum (gdbarch),
154 &saved_sp);
155
156 /* Location for 8 parameters are always reserved. */
157 sp -= wordsize * 8;
158
159 /* Another six words for back chain, TOC register, link register, etc. */
160 sp -= wordsize * 6;
161
162 /* Stack pointer must be quadword aligned. */
163 sp = align_down (sp, 16);
164
165 /* If there are more arguments, allocate space for them in
166 the stack, then push them starting from the ninth one. */
167
168 if ((argno < nargs) || argbytes)
169 {
170 int space = 0, jj;
171
172 if (argbytes)
173 {
174 space += align_up (len - argbytes, 4);
175 jj = argno + 1;
176 }
177 else
178 jj = argno;
179
180 for (; jj < nargs; ++jj)
181 {
182 struct value *val = args[jj];
183
184 space += align_up (TYPE_LENGTH (value_type (val)), 4);
185 }
186
187 /* Add location required for the rest of the parameters. */
188 space = align_up (space, 16);
189 sp -= space;
190
191 /* This is another instance we need to be concerned about
192 securing our stack space. If we write anything underneath %sp
193 (r1), we might conflict with the kernel who thinks he is free
194 to use this area. So, update %sp first before doing anything
195 else. */
196
197 regcache_raw_write_signed (regcache,
198 gdbarch_sp_regnum (gdbarch), sp);
199
200 /* If the last argument copied into the registers didn't fit there
201 completely, push the rest of it into stack. */
202
203 if (argbytes)
204 {
205 write_memory (sp + 24 + (ii * 4),
206 value_contents (arg) + argbytes,
207 len - argbytes);
208 ++argno;
209 ii += align_up (len - argbytes, 4) / 4;
210 }
211
212 /* Push the rest of the arguments into stack. */
213 for (; argno < nargs; ++argno)
214 {
215
216 arg = args[argno];
217 type = check_typedef (value_type (arg));
218 len = TYPE_LENGTH (type);
219
220
221 /* Float types should be passed in fpr's, as well as in the
222 stack. */
223 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
224 {
225
226 gdb_assert (len <= 8);
227
228 regcache_cooked_write (regcache,
229 tdep->ppc_fp0_regnum + 1 + f_argno,
230 value_contents (arg));
231 ++f_argno;
232 }
233
234 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
235 ii += align_up (len, 4) / 4;
236 }
237 }
238
239 /* Set the stack pointer. According to the ABI, the SP is meant to
240 be set _before_ the corresponding stack space is used. On AIX,
241 this even applies when the target has been completely stopped!
242 Not doing this can lead to conflicts with the kernel which thinks
243 that it still has control over this not-yet-allocated stack
244 region. */
245 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
246
247 /* Set back chain properly. */
248 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
249 write_memory (sp, tmp_buffer, wordsize);
250
251 /* Point the inferior function call's return address at the dummy's
252 breakpoint. */
253 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
254
255 target_store_registers (regcache, -1);
256 return sp;
257}
258
259/* Implement the "return_value" gdbarch method. */
260
261static enum return_value_convention
262rs6000_lynx178_return_value (struct gdbarch *gdbarch, struct value *function,
263 struct type *valtype, struct regcache *regcache,
264 gdb_byte *readbuf, const gdb_byte *writebuf)
265{
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
268
269 /* The calling convention this function implements assumes the
270 processor has floating-point registers. We shouldn't be using it
271 on PowerPC variants that lack them. */
272 gdb_assert (ppc_floating_point_unit_p (gdbarch));
273
274 /* AltiVec extension: Functions that declare a vector data type as a
275 return value place that return value in VR2. */
276 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
277 && TYPE_LENGTH (valtype) == 16)
278 {
279 if (readbuf)
280 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
281 if (writebuf)
282 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
283
284 return RETURN_VALUE_REGISTER_CONVENTION;
285 }
286
287 /* If the called subprogram returns an aggregate, there exists an
288 implicit first argument, whose value is the address of a caller-
289 allocated buffer into which the callee is assumed to store its
290 return value. All explicit parameters are appropriately
291 relabeled. */
292 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
293 || TYPE_CODE (valtype) == TYPE_CODE_UNION
294 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
295 return RETURN_VALUE_STRUCT_CONVENTION;
296
297 /* Scalar floating-point values are returned in FPR1 for float or
298 double, and in FPR1:FPR2 for quadword precision. Fortran
299 complex*8 and complex*16 are returned in FPR1:FPR2, and
300 complex*32 is returned in FPR1:FPR4. */
301 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
302 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
303 {
304 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
305 gdb_byte regval[8];
306
307 /* FIXME: kettenis/2007-01-01: Add support for quadword
308 precision and complex. */
309
310 if (readbuf)
311 {
312 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
313 convert_typed_floating (regval, regtype, readbuf, valtype);
314 }
315 if (writebuf)
316 {
317 convert_typed_floating (writebuf, valtype, regval, regtype);
318 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
319 }
320
321 return RETURN_VALUE_REGISTER_CONVENTION;
322 }
323
324 /* Values of the types int, long, short, pointer, and char (length
325 is less than or equal to four bytes), as well as bit values of
326 lengths less than or equal to 32 bits, must be returned right
327 justified in GPR3 with signed values sign extended and unsigned
328 values zero extended, as necessary. */
329 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
330 {
331 if (readbuf)
332 {
333 ULONGEST regval;
334
335 /* For reading we don't have to worry about sign extension. */
336 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
337 &regval);
338 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
339 regval);
340 }
341 if (writebuf)
342 {
343 /* For writing, use unpack_long since that should handle any
344 required sign extension. */
345 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
346 unpack_long (valtype, writebuf));
347 }
348
349 return RETURN_VALUE_REGISTER_CONVENTION;
350 }
351
352 /* Eight-byte non-floating-point scalar values must be returned in
353 GPR3:GPR4. */
354
355 if (TYPE_LENGTH (valtype) == 8)
356 {
357 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
358 gdb_assert (tdep->wordsize == 4);
359
360 if (readbuf)
361 {
362 gdb_byte regval[8];
363
364 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
365 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
366 regval + 4);
367 memcpy (readbuf, regval, 8);
368 }
369 if (writebuf)
370 {
371 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
372 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
373 writebuf + 4);
374 }
375
376 return RETURN_VALUE_REGISTER_CONVENTION;
377 }
378
379 return RETURN_VALUE_STRUCT_CONVENTION;
380}
381
382/* PowerPC Lynx178 OSABI sniffer. */
383
384static enum gdb_osabi
385rs6000_lynx178_osabi_sniffer (bfd *abfd)
386{
387 if (bfd_get_flavour (abfd) != bfd_target_xcoff_flavour)
388 return GDB_OSABI_UNKNOWN;
389
390 /* The only noticeable difference between Lynx178 XCOFF files and
391 AIX XCOFF files comes from the fact that there are no shared
392 libraries on Lynx178. So if the number of import files is
393 different from zero, it cannot be a Lynx178 binary. */
394 if (xcoff_get_n_import_files (abfd) != 0)
395 return GDB_OSABI_UNKNOWN;
396
397 return GDB_OSABI_LYNXOS178;
398}
399
400/* Callback for powerpc-lynx178 initialization. */
401
402static void
403rs6000_lynx178_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
404{
405 set_gdbarch_push_dummy_call (gdbarch, rs6000_lynx178_push_dummy_call);
406 set_gdbarch_return_value (gdbarch, rs6000_lynx178_return_value);
407 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
408}
409
410/* -Wmissing-prototypes. */
411extern initialize_file_ftype _initialize_rs6000_lynx178_tdep;
412
413void
414_initialize_rs6000_lynx178_tdep (void)
415{
416 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
417 bfd_target_xcoff_flavour,
418 rs6000_lynx178_osabi_sniffer);
419 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_LYNXOS178,
420 rs6000_lynx178_init_osabi);
421}
422
This page took 0.056958 seconds and 4 git commands to generate.