* gdb.arch/powerpc-prologue.c, gdb.arch/powerpc-prologue.exp: New
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
197e01b6 3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
0fd88904 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
7aea86e6 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
c44ca51c
AC
62#include "reggroups.h"
63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
0bcc32ae
JB
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Breakpoint shadows for the single step instructions will be kept here. */
113
c5aa993b 114static struct sstep_breaks
50fd1280
AC
115{
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120}
c5aa993b 121stepBreaks[2];
c906108c
SS
122
123/* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
7a78ae4e
ND
127CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129/* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
133
134/* Static function prototypes */
135
a14ed312
KB
136static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
077276e8
KB
138static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
c906108c 140
64b84175
KB
141/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142int
143altivec_register_p (int regno)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150}
151
383f0f5b 152
867e2dc5
JB
153/* Return true if REGNO is an SPE register, false otherwise. */
154int
155spe_register_p (int regno)
156{
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
6ced10dd
JB
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
867e2dc5
JB
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183}
184
185
383f0f5b
JB
186/* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
188int
189ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190{
383f0f5b
JB
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
0a613259 195}
9f643768 196
09991fa0
JB
197
198/* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
9f643768
JB
205static void
206set_sim_regno (int *table, int gdb_regno, int sim_regno)
207{
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212}
213
09991fa0
JB
214
215/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
218static void
219init_sim_regno_table (struct gdbarch *arch)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
6ced10dd
JB
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
9f643768
JB
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296}
297
09991fa0
JB
298
299/* Given a GDB register number REG, return the corresponding SIM
300 register number. */
9f643768
JB
301static int
302rs6000_register_sim_regno (int reg)
303{
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314}
315
d195bc9f
MK
316\f
317
318/* Register set support functions. */
319
320static void
321ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 322 const gdb_byte *regs, size_t offset)
d195bc9f
MK
323{
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326}
327
328static void
329ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 330 gdb_byte *regs, size_t offset)
d195bc9f
MK
331{
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334}
335
336/* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340void
341ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343{
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
cdf2c5f5 350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 352 i++, offset += 4)
d195bc9f
MK
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377}
378
379/* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383void
384ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386{
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
383f0f5b
JB
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
d195bc9f 395 offset = offsets->f0_offset;
366f009f
JB
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 398 i++, offset += 8)
d195bc9f
MK
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407}
408
409/* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414void
415ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418{
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
cdf2c5f5 426 for (i = tdep->ppc_gp0_regnum;
063715bf 427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 428 i++, offset += 4)
d195bc9f
MK
429 {
430 if (regnum == -1 || regnum == i)
2e56e9c1 431 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454}
455
456/* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461void
462ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465{
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
383f0f5b
JB
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
d195bc9f 474 offset = offsets->f0_offset;
366f009f
JB
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 477 i++, offset += 8)
d195bc9f
MK
478 {
479 if (regnum == -1 || regnum == i)
bdbcb8b4 480 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486}
487\f
0a613259 488
7a78ae4e 489/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 490
7a78ae4e
ND
491static CORE_ADDR
492read_memory_addr (CORE_ADDR memaddr, int len)
493{
494 return read_memory_unsigned_integer (memaddr, len);
495}
c906108c 496
7a78ae4e
ND
497static CORE_ADDR
498rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
499{
500 struct rs6000_framedata frame;
077276e8 501 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
502 return pc;
503}
504
0d1243d9
PG
505static int
506insn_changes_sp_or_jumps (unsigned long insn)
507{
508 int opcode = (insn >> 26) & 0x03f;
509 int sd = (insn >> 21) & 0x01f;
510 int a = (insn >> 16) & 0x01f;
511 int subcode = (insn >> 1) & 0x3ff;
512
513 /* Changes the stack pointer. */
514
515 /* NOTE: There are many ways to change the value of a given register.
516 The ways below are those used when the register is R1, the SP,
517 in a funtion's epilogue. */
518
519 if (opcode == 31 && subcode == 444 && a == 1)
520 return 1; /* mr R1,Rn */
521 if (opcode == 14 && sd == 1)
522 return 1; /* addi R1,Rn,simm */
523 if (opcode == 58 && sd == 1)
524 return 1; /* ld R1,ds(Rn) */
525
526 /* Transfers control. */
527
528 if (opcode == 18)
529 return 1; /* b */
530 if (opcode == 16)
531 return 1; /* bc */
532 if (opcode == 19 && subcode == 16)
533 return 1; /* bclr */
534 if (opcode == 19 && subcode == 528)
535 return 1; /* bcctr */
536
537 return 0;
538}
539
540/* Return true if we are in the function's epilogue, i.e. after the
541 instruction that destroyed the function's stack frame.
542
543 1) scan forward from the point of execution:
544 a) If you find an instruction that modifies the stack pointer
545 or transfers control (except a return), execution is not in
546 an epilogue, return.
547 b) Stop scanning if you find a return instruction or reach the
548 end of the function or reach the hard limit for the size of
549 an epilogue.
550 2) scan backward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer,
552 execution *is* in an epilogue, return.
553 b) Stop scanning if you reach an instruction that transfers
554 control or the beginning of the function or reach the hard
555 limit for the size of an epilogue. */
556
557static int
558rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
559{
560 bfd_byte insn_buf[PPC_INSN_SIZE];
561 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
562 unsigned long insn;
563 struct frame_info *curfrm;
564
565 /* Find the search limits based on function boundaries and hard limit. */
566
567 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
568 return 0;
569
570 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
571 if (epilogue_start < func_start) epilogue_start = func_start;
572
573 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
574 if (epilogue_end > func_end) epilogue_end = func_end;
575
576 curfrm = get_current_frame ();
577
578 /* Scan forward until next 'blr'. */
579
580 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
581 {
582 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
583 return 0;
584 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
585 if (insn == 0x4e800020)
586 break;
587 if (insn_changes_sp_or_jumps (insn))
588 return 0;
589 }
590
591 /* Scan backward until adjustment to stack pointer (R1). */
592
593 for (scan_pc = pc - PPC_INSN_SIZE;
594 scan_pc >= epilogue_start;
595 scan_pc -= PPC_INSN_SIZE)
596 {
597 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
598 return 0;
599 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
600 if (insn_changes_sp_or_jumps (insn))
601 return 1;
602 }
603
604 return 0;
605}
606
b83266a0 607
c906108c
SS
608/* Fill in fi->saved_regs */
609
610struct frame_extra_info
611{
612 /* Functions calling alloca() change the value of the stack
613 pointer. We need to use initial stack pointer (which is saved in
614 r31 by gcc) in such cases. If a compiler emits traceback table,
615 then we should use the alloca register specified in traceback
616 table. FIXME. */
c5aa993b 617 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
618};
619
143985b7 620/* Get the ith function argument for the current function. */
b9362cc7 621static CORE_ADDR
143985b7
AF
622rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
623 struct type *type)
624{
50fd1280 625 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
626}
627
c906108c
SS
628/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
629
630static CORE_ADDR
7a78ae4e 631branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
632{
633 CORE_ADDR dest;
634 int immediate;
635 int absolute;
636 int ext_op;
637
638 absolute = (int) ((instr >> 1) & 1);
639
c5aa993b
JM
640 switch (opcode)
641 {
642 case 18:
643 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
644 if (absolute)
645 dest = immediate;
646 else
647 dest = pc + immediate;
648 break;
649
650 case 16:
651 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
652 if (absolute)
653 dest = immediate;
654 else
655 dest = pc + immediate;
656 break;
657
658 case 19:
659 ext_op = (instr >> 1) & 0x3ff;
660
661 if (ext_op == 16) /* br conditional register */
662 {
2188cbdd 663 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
664
665 /* If we are about to return from a signal handler, dest is
666 something like 0x3c90. The current frame is a signal handler
667 caller frame, upon completion of the sigreturn system call
668 execution will return to the saved PC in the frame. */
669 if (dest < TEXT_SEGMENT_BASE)
670 {
671 struct frame_info *fi;
672
673 fi = get_current_frame ();
674 if (fi != NULL)
8b36eed8 675 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 676 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
677 }
678 }
679
680 else if (ext_op == 528) /* br cond to count reg */
681 {
2188cbdd 682 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
683
684 /* If we are about to execute a system call, dest is something
685 like 0x22fc or 0x3b00. Upon completion the system call
686 will return to the address in the link register. */
687 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 688 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
689 }
690 else
691 return -1;
692 break;
c906108c 693
c5aa993b
JM
694 default:
695 return -1;
696 }
c906108c
SS
697 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
698}
699
700
701/* Sequence of bytes for breakpoint instruction. */
702
f4f9705a 703const static unsigned char *
7a78ae4e 704rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 705{
aaab4dba
AC
706 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
707 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 708 *bp_size = 4;
d7449b42 709 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
710 return big_breakpoint;
711 else
712 return little_breakpoint;
713}
714
715
716/* AIX does not support PT_STEP. Simulate it. */
717
718void
379d08a1
AC
719rs6000_software_single_step (enum target_signal signal,
720 int insert_breakpoints_p)
c906108c 721{
7c40d541
KB
722 CORE_ADDR dummy;
723 int breakp_sz;
50fd1280 724 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
725 int ii, insn;
726 CORE_ADDR loc;
727 CORE_ADDR breaks[2];
728 int opcode;
729
c5aa993b
JM
730 if (insert_breakpoints_p)
731 {
c906108c 732
c5aa993b 733 loc = read_pc ();
c906108c 734
c5aa993b 735 insn = read_memory_integer (loc, 4);
c906108c 736
7c40d541 737 breaks[0] = loc + breakp_sz;
c5aa993b
JM
738 opcode = insn >> 26;
739 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 740
c5aa993b
JM
741 /* Don't put two breakpoints on the same address. */
742 if (breaks[1] == breaks[0])
743 breaks[1] = -1;
c906108c 744
c5aa993b 745 stepBreaks[1].address = 0;
c906108c 746
c5aa993b
JM
747 for (ii = 0; ii < 2; ++ii)
748 {
c906108c 749
c5aa993b
JM
750 /* ignore invalid breakpoint. */
751 if (breaks[ii] == -1)
752 continue;
7c40d541 753 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
754 stepBreaks[ii].address = breaks[ii];
755 }
c906108c 756
c5aa993b
JM
757 }
758 else
759 {
c906108c 760
c5aa993b
JM
761 /* remove step breakpoints. */
762 for (ii = 0; ii < 2; ++ii)
763 if (stepBreaks[ii].address != 0)
7c40d541
KB
764 target_remove_breakpoint (stepBreaks[ii].address,
765 stepBreaks[ii].data);
c5aa993b 766 }
c906108c 767 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 768 /* What errors? {read,write}_memory call error(). */
c906108c
SS
769}
770
771
772/* return pc value after skipping a function prologue and also return
773 information about a function frame.
774
775 in struct rs6000_framedata fdata:
c5aa993b
JM
776 - frameless is TRUE, if function does not have a frame.
777 - nosavedpc is TRUE, if function does not save %pc value in its frame.
778 - offset is the initial size of this stack frame --- the amount by
779 which we decrement the sp to allocate the frame.
780 - saved_gpr is the number of the first saved gpr.
781 - saved_fpr is the number of the first saved fpr.
6be8bc0c 782 - saved_vr is the number of the first saved vr.
96ff0de4 783 - saved_ev is the number of the first saved ev.
c5aa993b
JM
784 - alloca_reg is the number of the register used for alloca() handling.
785 Otherwise -1.
786 - gpr_offset is the offset of the first saved gpr from the previous frame.
787 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 788 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 789 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
790 - lr_offset is the offset of the saved lr
791 - cr_offset is the offset of the saved cr
6be8bc0c 792 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 793 */
c906108c
SS
794
795#define SIGNED_SHORT(x) \
796 ((sizeof (short) == 2) \
797 ? ((int)(short)(x)) \
798 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
799
800#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
801
55d05f3b
KB
802/* Limit the number of skipped non-prologue instructions, as the examining
803 of the prologue is expensive. */
804static int max_skip_non_prologue_insns = 10;
805
806/* Given PC representing the starting address of a function, and
807 LIM_PC which is the (sloppy) limit to which to scan when looking
808 for a prologue, attempt to further refine this limit by using
809 the line data in the symbol table. If successful, a better guess
810 on where the prologue ends is returned, otherwise the previous
811 value of lim_pc is returned. */
634aa483
AC
812
813/* FIXME: cagney/2004-02-14: This function and logic have largely been
814 superseded by skip_prologue_using_sal. */
815
55d05f3b
KB
816static CORE_ADDR
817refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
818{
819 struct symtab_and_line prologue_sal;
820
821 prologue_sal = find_pc_line (pc, 0);
822 if (prologue_sal.line != 0)
823 {
824 int i;
825 CORE_ADDR addr = prologue_sal.end;
826
827 /* Handle the case in which compiler's optimizer/scheduler
828 has moved instructions into the prologue. We scan ahead
829 in the function looking for address ranges whose corresponding
830 line number is less than or equal to the first one that we
831 found for the function. (It can be less than when the
832 scheduler puts a body instruction before the first prologue
833 instruction.) */
834 for (i = 2 * max_skip_non_prologue_insns;
835 i > 0 && (lim_pc == 0 || addr < lim_pc);
836 i--)
837 {
838 struct symtab_and_line sal;
839
840 sal = find_pc_line (addr, 0);
841 if (sal.line == 0)
842 break;
843 if (sal.line <= prologue_sal.line
844 && sal.symtab == prologue_sal.symtab)
845 {
846 prologue_sal = sal;
847 }
848 addr = sal.end;
849 }
850
851 if (lim_pc == 0 || prologue_sal.end < lim_pc)
852 lim_pc = prologue_sal.end;
853 }
854 return lim_pc;
855}
856
773df3e5
JB
857/* Return nonzero if the given instruction OP can be part of the prologue
858 of a function and saves a parameter on the stack. FRAMEP should be
859 set if one of the previous instructions in the function has set the
860 Frame Pointer. */
861
862static int
863store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
864{
865 /* Move parameters from argument registers to temporary register. */
866 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
867 {
868 /* Rx must be scratch register r0. */
869 const int rx_regno = (op >> 16) & 31;
870 /* Ry: Only r3 - r10 are used for parameter passing. */
871 const int ry_regno = GET_SRC_REG (op);
872
873 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
874 {
875 *r0_contains_arg = 1;
876 return 1;
877 }
878 else
879 return 0;
880 }
881
882 /* Save a General Purpose Register on stack. */
883
884 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
885 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
886 {
887 /* Rx: Only r3 - r10 are used for parameter passing. */
888 const int rx_regno = GET_SRC_REG (op);
889
890 return (rx_regno >= 3 && rx_regno <= 10);
891 }
892
893 /* Save a General Purpose Register on stack via the Frame Pointer. */
894
895 if (framep &&
896 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
897 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
898 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
899 {
900 /* Rx: Usually, only r3 - r10 are used for parameter passing.
901 However, the compiler sometimes uses r0 to hold an argument. */
902 const int rx_regno = GET_SRC_REG (op);
903
904 return ((rx_regno >= 3 && rx_regno <= 10)
905 || (rx_regno == 0 && *r0_contains_arg));
906 }
907
908 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
909 {
910 /* Only f2 - f8 are used for parameter passing. */
911 const int src_regno = GET_SRC_REG (op);
912
913 return (src_regno >= 2 && src_regno <= 8);
914 }
915
916 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
917 {
918 /* Only f2 - f8 are used for parameter passing. */
919 const int src_regno = GET_SRC_REG (op);
920
921 return (src_regno >= 2 && src_regno <= 8);
922 }
923
924 /* Not an insn that saves a parameter on stack. */
925 return 0;
926}
55d05f3b 927
7a78ae4e 928static CORE_ADDR
077276e8 929skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
930{
931 CORE_ADDR orig_pc = pc;
55d05f3b 932 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 933 CORE_ADDR li_found_pc = 0;
50fd1280 934 gdb_byte buf[4];
c906108c
SS
935 unsigned long op;
936 long offset = 0;
6be8bc0c 937 long vr_saved_offset = 0;
482ca3f5
KB
938 int lr_reg = -1;
939 int cr_reg = -1;
6be8bc0c 940 int vr_reg = -1;
96ff0de4
EZ
941 int ev_reg = -1;
942 long ev_offset = 0;
6be8bc0c 943 int vrsave_reg = -1;
c906108c
SS
944 int reg;
945 int framep = 0;
946 int minimal_toc_loaded = 0;
ddb20c56 947 int prev_insn_was_prologue_insn = 1;
55d05f3b 948 int num_skip_non_prologue_insns = 0;
773df3e5 949 int r0_contains_arg = 0;
96ff0de4 950 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 951 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 952
55d05f3b
KB
953 /* Attempt to find the end of the prologue when no limit is specified.
954 Note that refine_prologue_limit() has been written so that it may
955 be used to "refine" the limits of non-zero PC values too, but this
956 is only safe if we 1) trust the line information provided by the
957 compiler and 2) iterate enough to actually find the end of the
958 prologue.
959
960 It may become a good idea at some point (for both performance and
961 accuracy) to unconditionally call refine_prologue_limit(). But,
962 until we can make a clear determination that this is beneficial,
963 we'll play it safe and only use it to obtain a limit when none
964 has been specified. */
965 if (lim_pc == 0)
966 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 967
ddb20c56 968 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
969 fdata->saved_gpr = -1;
970 fdata->saved_fpr = -1;
6be8bc0c 971 fdata->saved_vr = -1;
96ff0de4 972 fdata->saved_ev = -1;
c906108c
SS
973 fdata->alloca_reg = -1;
974 fdata->frameless = 1;
975 fdata->nosavedpc = 1;
976
55d05f3b 977 for (;; pc += 4)
c906108c 978 {
ddb20c56
KB
979 /* Sometimes it isn't clear if an instruction is a prologue
980 instruction or not. When we encounter one of these ambiguous
981 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
982 Otherwise, we'll assume that it really is a prologue instruction. */
983 if (prev_insn_was_prologue_insn)
984 last_prologue_pc = pc;
55d05f3b
KB
985
986 /* Stop scanning if we've hit the limit. */
987 if (lim_pc != 0 && pc >= lim_pc)
988 break;
989
ddb20c56
KB
990 prev_insn_was_prologue_insn = 1;
991
55d05f3b 992 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
993 if (target_read_memory (pc, buf, 4))
994 break;
995 op = extract_signed_integer (buf, 4);
c906108c 996
c5aa993b
JM
997 if ((op & 0xfc1fffff) == 0x7c0802a6)
998 { /* mflr Rx */
43b1ab88
AC
999 /* Since shared library / PIC code, which needs to get its
1000 address at runtime, can appear to save more than one link
1001 register vis:
1002
1003 *INDENT-OFF*
1004 stwu r1,-304(r1)
1005 mflr r3
1006 bl 0xff570d0 (blrl)
1007 stw r30,296(r1)
1008 mflr r30
1009 stw r31,300(r1)
1010 stw r3,308(r1);
1011 ...
1012 *INDENT-ON*
1013
1014 remember just the first one, but skip over additional
1015 ones. */
1016 if (lr_reg < 0)
1017 lr_reg = (op & 0x03e00000);
773df3e5
JB
1018 if (lr_reg == 0)
1019 r0_contains_arg = 0;
c5aa993b 1020 continue;
c5aa993b
JM
1021 }
1022 else if ((op & 0xfc1fffff) == 0x7c000026)
1023 { /* mfcr Rx */
98f08d3d 1024 cr_reg = (op & 0x03e00000);
773df3e5
JB
1025 if (cr_reg == 0)
1026 r0_contains_arg = 0;
c5aa993b 1027 continue;
c906108c 1028
c906108c 1029 }
c5aa993b
JM
1030 else if ((op & 0xfc1f0000) == 0xd8010000)
1031 { /* stfd Rx,NUM(r1) */
1032 reg = GET_SRC_REG (op);
1033 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1034 {
1035 fdata->saved_fpr = reg;
1036 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1037 }
1038 continue;
c906108c 1039
c5aa993b
JM
1040 }
1041 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1042 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1043 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1044 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1045 {
1046
1047 reg = GET_SRC_REG (op);
1048 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1049 {
1050 fdata->saved_gpr = reg;
7a78ae4e 1051 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1052 op &= ~3UL;
c5aa993b
JM
1053 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1054 }
1055 continue;
c906108c 1056
ddb20c56
KB
1057 }
1058 else if ((op & 0xffff0000) == 0x60000000)
1059 {
96ff0de4 1060 /* nop */
ddb20c56
KB
1061 /* Allow nops in the prologue, but do not consider them to
1062 be part of the prologue unless followed by other prologue
1063 instructions. */
1064 prev_insn_was_prologue_insn = 0;
1065 continue;
1066
c906108c 1067 }
c5aa993b
JM
1068 else if ((op & 0xffff0000) == 0x3c000000)
1069 { /* addis 0,0,NUM, used
1070 for >= 32k frames */
1071 fdata->offset = (op & 0x0000ffff) << 16;
1072 fdata->frameless = 0;
773df3e5 1073 r0_contains_arg = 0;
c5aa993b
JM
1074 continue;
1075
1076 }
1077 else if ((op & 0xffff0000) == 0x60000000)
1078 { /* ori 0,0,NUM, 2nd ha
1079 lf of >= 32k frames */
1080 fdata->offset |= (op & 0x0000ffff);
1081 fdata->frameless = 0;
773df3e5 1082 r0_contains_arg = 0;
c5aa993b
JM
1083 continue;
1084
1085 }
be723e22 1086 else if (lr_reg >= 0 &&
98f08d3d
KB
1087 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1088 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1089 /* stw Rx, NUM(r1) */
1090 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1091 /* stwu Rx, NUM(r1) */
1092 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1093 { /* where Rx == lr */
1094 fdata->lr_offset = offset;
c5aa993b 1095 fdata->nosavedpc = 0;
be723e22
MS
1096 /* Invalidate lr_reg, but don't set it to -1.
1097 That would mean that it had never been set. */
1098 lr_reg = -2;
98f08d3d
KB
1099 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1100 (op & 0xfc000000) == 0x90000000) /* stw */
1101 {
1102 /* Does not update r1, so add displacement to lr_offset. */
1103 fdata->lr_offset += SIGNED_SHORT (op);
1104 }
c5aa993b
JM
1105 continue;
1106
1107 }
be723e22 1108 else if (cr_reg >= 0 &&
98f08d3d
KB
1109 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1110 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1111 /* stw Rx, NUM(r1) */
1112 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1113 /* stwu Rx, NUM(r1) */
1114 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1115 { /* where Rx == cr */
1116 fdata->cr_offset = offset;
be723e22
MS
1117 /* Invalidate cr_reg, but don't set it to -1.
1118 That would mean that it had never been set. */
1119 cr_reg = -2;
98f08d3d
KB
1120 if ((op & 0xfc000003) == 0xf8000000 ||
1121 (op & 0xfc000000) == 0x90000000)
1122 {
1123 /* Does not update r1, so add displacement to cr_offset. */
1124 fdata->cr_offset += SIGNED_SHORT (op);
1125 }
c5aa993b
JM
1126 continue;
1127
1128 }
1129 else if (op == 0x48000005)
1130 { /* bl .+4 used in
1131 -mrelocatable */
1132 continue;
1133
1134 }
1135 else if (op == 0x48000004)
1136 { /* b .+4 (xlc) */
1137 break;
1138
c5aa993b 1139 }
6be8bc0c
EZ
1140 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1141 in V.4 -mminimal-toc */
c5aa993b
JM
1142 (op & 0xffff0000) == 0x3bde0000)
1143 { /* addi 30,30,foo@l */
1144 continue;
c906108c 1145
c5aa993b
JM
1146 }
1147 else if ((op & 0xfc000001) == 0x48000001)
1148 { /* bl foo,
1149 to save fprs??? */
c906108c 1150
c5aa993b 1151 fdata->frameless = 0;
6be8bc0c 1152 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1153 the first three instructions of the prologue and either
1154 we have no line table information or the line info tells
1155 us that the subroutine call is not part of the line
1156 associated with the prologue. */
c5aa993b 1157 if ((pc - orig_pc) > 8)
ebd98106
FF
1158 {
1159 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1160 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1161
1162 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1163 break;
1164 }
c5aa993b
JM
1165
1166 op = read_memory_integer (pc + 4, 4);
1167
6be8bc0c
EZ
1168 /* At this point, make sure this is not a trampoline
1169 function (a function that simply calls another functions,
1170 and nothing else). If the next is not a nop, this branch
1171 was part of the function prologue. */
c5aa993b
JM
1172
1173 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1174 break; /* don't skip over
1175 this branch */
1176 continue;
1177
c5aa993b 1178 }
98f08d3d
KB
1179 /* update stack pointer */
1180 else if ((op & 0xfc1f0000) == 0x94010000)
1181 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1182 fdata->frameless = 0;
1183 fdata->offset = SIGNED_SHORT (op);
1184 offset = fdata->offset;
1185 continue;
c5aa993b 1186 }
98f08d3d
KB
1187 else if ((op & 0xfc1f016a) == 0x7c01016e)
1188 { /* stwux rX,r1,rY */
1189 /* no way to figure out what r1 is going to be */
1190 fdata->frameless = 0;
1191 offset = fdata->offset;
1192 continue;
1193 }
1194 else if ((op & 0xfc1f0003) == 0xf8010001)
1195 { /* stdu rX,NUM(r1) */
1196 fdata->frameless = 0;
1197 fdata->offset = SIGNED_SHORT (op & ~3UL);
1198 offset = fdata->offset;
1199 continue;
1200 }
1201 else if ((op & 0xfc1f016a) == 0x7c01016a)
1202 { /* stdux rX,r1,rY */
1203 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1204 fdata->frameless = 0;
1205 offset = fdata->offset;
1206 continue;
c5aa993b 1207 }
98f08d3d
KB
1208 /* Load up minimal toc pointer */
1209 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1210 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1211 && !minimal_toc_loaded)
98f08d3d 1212 {
c5aa993b
JM
1213 minimal_toc_loaded = 1;
1214 continue;
1215
f6077098
KB
1216 /* move parameters from argument registers to local variable
1217 registers */
1218 }
1219 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1220 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1221 (((op >> 21) & 31) <= 10) &&
96ff0de4 1222 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1223 {
1224 continue;
1225
c5aa993b
JM
1226 /* store parameters in stack */
1227 }
e802b915 1228 /* Move parameters from argument registers to temporary register. */
773df3e5 1229 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1230 {
c5aa993b
JM
1231 continue;
1232
1233 /* Set up frame pointer */
1234 }
1235 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1236 || op == 0x7c3f0b78)
1237 { /* mr r31, r1 */
1238 fdata->frameless = 0;
1239 framep = 1;
6f99cb26 1240 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1241 continue;
1242
1243 /* Another way to set up the frame pointer. */
1244 }
1245 else if ((op & 0xfc1fffff) == 0x38010000)
1246 { /* addi rX, r1, 0x0 */
1247 fdata->frameless = 0;
1248 framep = 1;
6f99cb26
AC
1249 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1250 + ((op & ~0x38010000) >> 21));
c5aa993b 1251 continue;
c5aa993b 1252 }
6be8bc0c
EZ
1253 /* AltiVec related instructions. */
1254 /* Store the vrsave register (spr 256) in another register for
1255 later manipulation, or load a register into the vrsave
1256 register. 2 instructions are used: mfvrsave and
1257 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1258 and mtspr SPR256, Rn. */
1259 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1260 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1261 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1262 {
1263 vrsave_reg = GET_SRC_REG (op);
1264 continue;
1265 }
1266 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1267 {
1268 continue;
1269 }
1270 /* Store the register where vrsave was saved to onto the stack:
1271 rS is the register where vrsave was stored in a previous
1272 instruction. */
1273 /* 100100 sssss 00001 dddddddd dddddddd */
1274 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1275 {
1276 if (vrsave_reg == GET_SRC_REG (op))
1277 {
1278 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1279 vrsave_reg = -1;
1280 }
1281 continue;
1282 }
1283 /* Compute the new value of vrsave, by modifying the register
1284 where vrsave was saved to. */
1285 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1286 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1287 {
1288 continue;
1289 }
1290 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1291 in a pair of insns to save the vector registers on the
1292 stack. */
1293 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1294 /* 001110 01110 00000 iiii iiii iiii iiii */
1295 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1296 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1297 {
773df3e5
JB
1298 if ((op & 0xffff0000) == 0x38000000)
1299 r0_contains_arg = 0;
6be8bc0c
EZ
1300 li_found_pc = pc;
1301 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1302
1303 /* This insn by itself is not part of the prologue, unless
1304 if part of the pair of insns mentioned above. So do not
1305 record this insn as part of the prologue yet. */
1306 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1307 }
1308 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1309 /* 011111 sssss 11111 00000 00111001110 */
1310 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1311 {
1312 if (pc == (li_found_pc + 4))
1313 {
1314 vr_reg = GET_SRC_REG (op);
1315 /* If this is the first vector reg to be saved, or if
1316 it has a lower number than others previously seen,
1317 reupdate the frame info. */
1318 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1319 {
1320 fdata->saved_vr = vr_reg;
1321 fdata->vr_offset = vr_saved_offset + offset;
1322 }
1323 vr_saved_offset = -1;
1324 vr_reg = -1;
1325 li_found_pc = 0;
1326 }
1327 }
1328 /* End AltiVec related instructions. */
96ff0de4
EZ
1329
1330 /* Start BookE related instructions. */
1331 /* Store gen register S at (r31+uimm).
1332 Any register less than r13 is volatile, so we don't care. */
1333 /* 000100 sssss 11111 iiiii 01100100001 */
1334 else if (arch_info->mach == bfd_mach_ppc_e500
1335 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1336 {
1337 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1338 {
1339 unsigned int imm;
1340 ev_reg = GET_SRC_REG (op);
1341 imm = (op >> 11) & 0x1f;
1342 ev_offset = imm * 8;
1343 /* If this is the first vector reg to be saved, or if
1344 it has a lower number than others previously seen,
1345 reupdate the frame info. */
1346 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1347 {
1348 fdata->saved_ev = ev_reg;
1349 fdata->ev_offset = ev_offset + offset;
1350 }
1351 }
1352 continue;
1353 }
1354 /* Store gen register rS at (r1+rB). */
1355 /* 000100 sssss 00001 bbbbb 01100100000 */
1356 else if (arch_info->mach == bfd_mach_ppc_e500
1357 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1358 {
1359 if (pc == (li_found_pc + 4))
1360 {
1361 ev_reg = GET_SRC_REG (op);
1362 /* If this is the first vector reg to be saved, or if
1363 it has a lower number than others previously seen,
1364 reupdate the frame info. */
1365 /* We know the contents of rB from the previous instruction. */
1366 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1367 {
1368 fdata->saved_ev = ev_reg;
1369 fdata->ev_offset = vr_saved_offset + offset;
1370 }
1371 vr_saved_offset = -1;
1372 ev_reg = -1;
1373 li_found_pc = 0;
1374 }
1375 continue;
1376 }
1377 /* Store gen register r31 at (rA+uimm). */
1378 /* 000100 11111 aaaaa iiiii 01100100001 */
1379 else if (arch_info->mach == bfd_mach_ppc_e500
1380 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1381 {
1382 /* Wwe know that the source register is 31 already, but
1383 it can't hurt to compute it. */
1384 ev_reg = GET_SRC_REG (op);
1385 ev_offset = ((op >> 11) & 0x1f) * 8;
1386 /* If this is the first vector reg to be saved, or if
1387 it has a lower number than others previously seen,
1388 reupdate the frame info. */
1389 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1390 {
1391 fdata->saved_ev = ev_reg;
1392 fdata->ev_offset = ev_offset + offset;
1393 }
1394
1395 continue;
1396 }
1397 /* Store gen register S at (r31+r0).
1398 Store param on stack when offset from SP bigger than 4 bytes. */
1399 /* 000100 sssss 11111 00000 01100100000 */
1400 else if (arch_info->mach == bfd_mach_ppc_e500
1401 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1402 {
1403 if (pc == (li_found_pc + 4))
1404 {
1405 if ((op & 0x03e00000) >= 0x01a00000)
1406 {
1407 ev_reg = GET_SRC_REG (op);
1408 /* If this is the first vector reg to be saved, or if
1409 it has a lower number than others previously seen,
1410 reupdate the frame info. */
1411 /* We know the contents of r0 from the previous
1412 instruction. */
1413 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1414 {
1415 fdata->saved_ev = ev_reg;
1416 fdata->ev_offset = vr_saved_offset + offset;
1417 }
1418 ev_reg = -1;
1419 }
1420 vr_saved_offset = -1;
1421 li_found_pc = 0;
1422 continue;
1423 }
1424 }
1425 /* End BookE related instructions. */
1426
c5aa993b
JM
1427 else
1428 {
55d05f3b
KB
1429 /* Not a recognized prologue instruction.
1430 Handle optimizer code motions into the prologue by continuing
1431 the search if we have no valid frame yet or if the return
1432 address is not yet saved in the frame. */
1433 if (fdata->frameless == 0
1434 && (lr_reg == -1 || fdata->nosavedpc == 0))
1435 break;
1436
1437 if (op == 0x4e800020 /* blr */
1438 || op == 0x4e800420) /* bctr */
1439 /* Do not scan past epilogue in frameless functions or
1440 trampolines. */
1441 break;
1442 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1443 /* Never skip branches. */
55d05f3b
KB
1444 break;
1445
1446 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1447 /* Do not scan too many insns, scanning insns is expensive with
1448 remote targets. */
1449 break;
1450
1451 /* Continue scanning. */
1452 prev_insn_was_prologue_insn = 0;
1453 continue;
c5aa993b 1454 }
c906108c
SS
1455 }
1456
1457#if 0
1458/* I have problems with skipping over __main() that I need to address
1459 * sometime. Previously, I used to use misc_function_vector which
1460 * didn't work as well as I wanted to be. -MGO */
1461
1462 /* If the first thing after skipping a prolog is a branch to a function,
1463 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1464 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1465 work before calling a function right after a prologue, thus we can
64366f1c 1466 single out such gcc2 behaviour. */
c906108c 1467
c906108c 1468
c5aa993b
JM
1469 if ((op & 0xfc000001) == 0x48000001)
1470 { /* bl foo, an initializer function? */
1471 op = read_memory_integer (pc + 4, 4);
1472
1473 if (op == 0x4def7b82)
1474 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1475
64366f1c
EZ
1476 /* Check and see if we are in main. If so, skip over this
1477 initializer function as well. */
c906108c 1478
c5aa993b 1479 tmp = find_pc_misc_function (pc);
6314a349
AC
1480 if (tmp >= 0
1481 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1482 return pc + 8;
1483 }
c906108c 1484 }
c906108c 1485#endif /* 0 */
c5aa993b
JM
1486
1487 fdata->offset = -fdata->offset;
ddb20c56 1488 return last_prologue_pc;
c906108c
SS
1489}
1490
1491
1492/*************************************************************************
f6077098 1493 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1494 frames, etc.
1495*************************************************************************/
1496
c906108c 1497
11269d7e
AC
1498/* All the ABI's require 16 byte alignment. */
1499static CORE_ADDR
1500rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1501{
1502 return (addr & -16);
1503}
1504
7a78ae4e 1505/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1506 the first eight words of the argument list (that might be less than
1507 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1508 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1509 passed in fpr's, in addition to that. Rest of the parameters if any
1510 are passed in user stack. There might be cases in which half of the
c906108c
SS
1511 parameter is copied into registers, the other half is pushed into
1512 stack.
1513
7a78ae4e
ND
1514 Stack must be aligned on 64-bit boundaries when synthesizing
1515 function calls.
1516
c906108c
SS
1517 If the function is returning a structure, then the return address is passed
1518 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1519 starting from r4. */
c906108c 1520
7a78ae4e 1521static CORE_ADDR
7d9b040b 1522rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1523 struct regcache *regcache, CORE_ADDR bp_addr,
1524 int nargs, struct value **args, CORE_ADDR sp,
1525 int struct_return, CORE_ADDR struct_addr)
c906108c 1526{
7a41266b 1527 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1528 int ii;
1529 int len = 0;
c5aa993b
JM
1530 int argno; /* current argument number */
1531 int argbytes; /* current argument byte */
50fd1280 1532 gdb_byte tmp_buffer[50];
c5aa993b 1533 int f_argno = 0; /* current floating point argno */
21283beb 1534 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1535 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1536
ea7c478f 1537 struct value *arg = 0;
c906108c
SS
1538 struct type *type;
1539
1540 CORE_ADDR saved_sp;
1541
383f0f5b
JB
1542 /* The calling convention this function implements assumes the
1543 processor has floating-point registers. We shouldn't be using it
1544 on PPC variants that lack them. */
1545 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1546
64366f1c 1547 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1548 Copy them appropriately. */
1549 ii = 0;
1550
1551 /* If the function is returning a `struct', then the first word
1552 (which will be passed in r3) is used for struct return address.
1553 In that case we should advance one word and start from r4
1554 register to copy parameters. */
1555 if (struct_return)
1556 {
1557 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1558 struct_addr);
1559 ii++;
1560 }
c906108c
SS
1561
1562/*
c5aa993b
JM
1563 effectively indirect call... gcc does...
1564
1565 return_val example( float, int);
1566
1567 eabi:
1568 float in fp0, int in r3
1569 offset of stack on overflow 8/16
1570 for varargs, must go by type.
1571 power open:
1572 float in r3&r4, int in r5
1573 offset of stack on overflow different
1574 both:
1575 return in r3 or f0. If no float, must study how gcc emulates floats;
1576 pay attention to arg promotion.
1577 User may have to cast\args to handle promotion correctly
1578 since gdb won't know if prototype supplied or not.
1579 */
c906108c 1580
c5aa993b
JM
1581 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1582 {
3acba339 1583 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1584
1585 arg = args[argno];
df407dfe 1586 type = check_typedef (value_type (arg));
c5aa993b
JM
1587 len = TYPE_LENGTH (type);
1588
1589 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1590 {
1591
64366f1c 1592 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1593 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1594 there is no way we would run out of them. */
c5aa993b 1595
9f335945
KB
1596 gdb_assert (len <= 8);
1597
1598 regcache_cooked_write (regcache,
1599 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1600 value_contents (arg));
c5aa993b
JM
1601 ++f_argno;
1602 }
1603
f6077098 1604 if (len > reg_size)
c5aa993b
JM
1605 {
1606
64366f1c 1607 /* Argument takes more than one register. */
c5aa993b
JM
1608 while (argbytes < len)
1609 {
50fd1280 1610 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1611 memset (word, 0, reg_size);
1612 memcpy (word,
0fd88904 1613 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1614 (len - argbytes) > reg_size
1615 ? reg_size : len - argbytes);
9f335945
KB
1616 regcache_cooked_write (regcache,
1617 tdep->ppc_gp0_regnum + 3 + ii,
1618 word);
f6077098 1619 ++ii, argbytes += reg_size;
c5aa993b
JM
1620
1621 if (ii >= 8)
1622 goto ran_out_of_registers_for_arguments;
1623 }
1624 argbytes = 0;
1625 --ii;
1626 }
1627 else
64366f1c
EZ
1628 {
1629 /* Argument can fit in one register. No problem. */
d7449b42 1630 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1631 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1632
1633 memset (word, 0, reg_size);
0fd88904 1634 memcpy (word, value_contents (arg), len);
9f335945 1635 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1636 }
1637 ++argno;
c906108c 1638 }
c906108c
SS
1639
1640ran_out_of_registers_for_arguments:
1641
7a78ae4e 1642 saved_sp = read_sp ();
cc9836a8 1643
64366f1c 1644 /* Location for 8 parameters are always reserved. */
7a78ae4e 1645 sp -= wordsize * 8;
f6077098 1646
64366f1c 1647 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1648 sp -= wordsize * 6;
f6077098 1649
64366f1c 1650 /* Stack pointer must be quadword aligned. */
7a78ae4e 1651 sp &= -16;
c906108c 1652
64366f1c
EZ
1653 /* If there are more arguments, allocate space for them in
1654 the stack, then push them starting from the ninth one. */
c906108c 1655
c5aa993b
JM
1656 if ((argno < nargs) || argbytes)
1657 {
1658 int space = 0, jj;
c906108c 1659
c5aa993b
JM
1660 if (argbytes)
1661 {
1662 space += ((len - argbytes + 3) & -4);
1663 jj = argno + 1;
1664 }
1665 else
1666 jj = argno;
c906108c 1667
c5aa993b
JM
1668 for (; jj < nargs; ++jj)
1669 {
ea7c478f 1670 struct value *val = args[jj];
df407dfe 1671 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1672 }
c906108c 1673
64366f1c 1674 /* Add location required for the rest of the parameters. */
f6077098 1675 space = (space + 15) & -16;
c5aa993b 1676 sp -= space;
c906108c 1677
7aea86e6
AC
1678 /* This is another instance we need to be concerned about
1679 securing our stack space. If we write anything underneath %sp
1680 (r1), we might conflict with the kernel who thinks he is free
1681 to use this area. So, update %sp first before doing anything
1682 else. */
1683
1684 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1685
64366f1c
EZ
1686 /* If the last argument copied into the registers didn't fit there
1687 completely, push the rest of it into stack. */
c906108c 1688
c5aa993b
JM
1689 if (argbytes)
1690 {
1691 write_memory (sp + 24 + (ii * 4),
50fd1280 1692 value_contents (arg) + argbytes,
c5aa993b
JM
1693 len - argbytes);
1694 ++argno;
1695 ii += ((len - argbytes + 3) & -4) / 4;
1696 }
c906108c 1697
64366f1c 1698 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1699 for (; argno < nargs; ++argno)
1700 {
c906108c 1701
c5aa993b 1702 arg = args[argno];
df407dfe 1703 type = check_typedef (value_type (arg));
c5aa993b 1704 len = TYPE_LENGTH (type);
c906108c
SS
1705
1706
64366f1c
EZ
1707 /* Float types should be passed in fpr's, as well as in the
1708 stack. */
c5aa993b
JM
1709 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1710 {
c906108c 1711
9f335945 1712 gdb_assert (len <= 8);
c906108c 1713
9f335945
KB
1714 regcache_cooked_write (regcache,
1715 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1716 value_contents (arg));
c5aa993b
JM
1717 ++f_argno;
1718 }
c906108c 1719
50fd1280 1720 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1721 ii += ((len + 3) & -4) / 4;
1722 }
c906108c 1723 }
c906108c 1724
69517000 1725 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1726 be set _before_ the corresponding stack space is used. On AIX,
1727 this even applies when the target has been completely stopped!
1728 Not doing this can lead to conflicts with the kernel which thinks
1729 that it still has control over this not-yet-allocated stack
1730 region. */
33a7c2fc
AC
1731 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1732
7aea86e6 1733 /* Set back chain properly. */
8ba0209f
AM
1734 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1735 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1736
e56a0ecc
AC
1737 /* Point the inferior function call's return address at the dummy's
1738 breakpoint. */
1739 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1740
794a477a
AC
1741 /* Set the TOC register, get the value from the objfile reader
1742 which, in turn, gets it from the VMAP table. */
1743 if (rs6000_find_toc_address_hook != NULL)
1744 {
1745 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1746 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1747 }
1748
c906108c
SS
1749 target_store_registers (-1);
1750 return sp;
1751}
c906108c 1752
b9ff3018
AC
1753/* PowerOpen always puts structures in memory. Vectors, which were
1754 added later, do get returned in a register though. */
1755
1756static int
1757rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1758{
1759 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1760 && TYPE_VECTOR (value_type))
1761 return 0;
1762 return 1;
1763}
1764
7a78ae4e 1765static void
50fd1280
AC
1766rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1767 gdb_byte *valbuf)
c906108c
SS
1768{
1769 int offset = 0;
ace1378a 1770 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1771
383f0f5b
JB
1772 /* The calling convention this function implements assumes the
1773 processor has floating-point registers. We shouldn't be using it
1774 on PPC variants that lack them. */
1775 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1776
c5aa993b
JM
1777 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1778 {
c906108c 1779
c5aa993b
JM
1780 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1781 We need to truncate the return value into float size (4 byte) if
64366f1c 1782 necessary. */
c906108c 1783
65951cd9 1784 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1785 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1786 builtin_type_double,
1787 valbuf,
1788 valtype);
c5aa993b 1789 }
ace1378a
EZ
1790 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1791 && TYPE_LENGTH (valtype) == 16
1792 && TYPE_VECTOR (valtype))
1793 {
62700349 1794 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1795 TYPE_LENGTH (valtype));
1796 }
c5aa993b
JM
1797 else
1798 {
1799 /* return value is copied starting from r3. */
d7449b42 1800 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1801 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1802 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1803
1804 memcpy (valbuf,
62700349 1805 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1806 TYPE_LENGTH (valtype));
c906108c 1807 }
c906108c
SS
1808}
1809
977adac5
ND
1810/* Return whether handle_inferior_event() should proceed through code
1811 starting at PC in function NAME when stepping.
1812
1813 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1814 handle memory references that are too distant to fit in instructions
1815 generated by the compiler. For example, if 'foo' in the following
1816 instruction:
1817
1818 lwz r9,foo(r2)
1819
1820 is greater than 32767, the linker might replace the lwz with a branch to
1821 somewhere in @FIX1 that does the load in 2 instructions and then branches
1822 back to where execution should continue.
1823
1824 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1825 Unfortunately, the linker uses the "b" instruction for the
1826 branches, meaning that the link register doesn't get set.
1827 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1828
2ec664f5
MS
1829 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1830 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1831 @FIX code. */
977adac5
ND
1832
1833int
1834rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1835{
1836 return name && !strncmp (name, "@FIX", 4);
1837}
1838
1839/* Skip code that the user doesn't want to see when stepping:
1840
1841 1. Indirect function calls use a piece of trampoline code to do context
1842 switching, i.e. to set the new TOC table. Skip such code if we are on
1843 its first instruction (as when we have single-stepped to here).
1844
1845 2. Skip shared library trampoline code (which is different from
c906108c 1846 indirect function call trampolines).
977adac5
ND
1847
1848 3. Skip bigtoc fixup code.
1849
c906108c 1850 Result is desired PC to step until, or NULL if we are not in
977adac5 1851 code that should be skipped. */
c906108c
SS
1852
1853CORE_ADDR
7a78ae4e 1854rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1855{
52f0bd74 1856 unsigned int ii, op;
977adac5 1857 int rel;
c906108c 1858 CORE_ADDR solib_target_pc;
977adac5 1859 struct minimal_symbol *msymbol;
c906108c 1860
c5aa993b
JM
1861 static unsigned trampoline_code[] =
1862 {
1863 0x800b0000, /* l r0,0x0(r11) */
1864 0x90410014, /* st r2,0x14(r1) */
1865 0x7c0903a6, /* mtctr r0 */
1866 0x804b0004, /* l r2,0x4(r11) */
1867 0x816b0008, /* l r11,0x8(r11) */
1868 0x4e800420, /* bctr */
1869 0x4e800020, /* br */
1870 0
c906108c
SS
1871 };
1872
977adac5
ND
1873 /* Check for bigtoc fixup code. */
1874 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1875 if (msymbol
1876 && rs6000_in_solib_return_trampoline (pc,
1877 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1878 {
1879 /* Double-check that the third instruction from PC is relative "b". */
1880 op = read_memory_integer (pc + 8, 4);
1881 if ((op & 0xfc000003) == 0x48000000)
1882 {
1883 /* Extract bits 6-29 as a signed 24-bit relative word address and
1884 add it to the containing PC. */
1885 rel = ((int)(op << 6) >> 6);
1886 return pc + 8 + rel;
1887 }
1888 }
1889
c906108c
SS
1890 /* If pc is in a shared library trampoline, return its target. */
1891 solib_target_pc = find_solib_trampoline_target (pc);
1892 if (solib_target_pc)
1893 return solib_target_pc;
1894
c5aa993b
JM
1895 for (ii = 0; trampoline_code[ii]; ++ii)
1896 {
1897 op = read_memory_integer (pc + (ii * 4), 4);
1898 if (op != trampoline_code[ii])
1899 return 0;
1900 }
1901 ii = read_register (11); /* r11 holds destination addr */
21283beb 1902 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1903 return pc;
1904}
1905
7a78ae4e 1906/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1907 isn't available with that word size, return 0. */
7a78ae4e
ND
1908
1909static int
1910regsize (const struct reg *reg, int wordsize)
1911{
1912 return wordsize == 8 ? reg->sz64 : reg->sz32;
1913}
1914
1915/* Return the name of register number N, or null if no such register exists
64366f1c 1916 in the current architecture. */
7a78ae4e 1917
fa88f677 1918static const char *
7a78ae4e
ND
1919rs6000_register_name (int n)
1920{
21283beb 1921 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1922 const struct reg *reg = tdep->regs + n;
1923
1924 if (!regsize (reg, tdep->wordsize))
1925 return NULL;
1926 return reg->name;
1927}
1928
7a78ae4e
ND
1929/* Return the GDB type object for the "standard" data type
1930 of data in register N. */
1931
1932static struct type *
691d145a 1933rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1934{
691d145a 1935 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1936 const struct reg *reg = tdep->regs + n;
1937
1fcc0bb8
EZ
1938 if (reg->fpr)
1939 return builtin_type_double;
1940 else
1941 {
1942 int size = regsize (reg, tdep->wordsize);
1943 switch (size)
1944 {
449a5da4
AC
1945 case 0:
1946 return builtin_type_int0;
1947 case 4:
ed6edd9b 1948 return builtin_type_uint32;
1fcc0bb8 1949 case 8:
c8001721
EZ
1950 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1951 return builtin_type_vec64;
1952 else
ed6edd9b 1953 return builtin_type_uint64;
1fcc0bb8
EZ
1954 break;
1955 case 16:
08cf96df 1956 return builtin_type_vec128;
1fcc0bb8
EZ
1957 break;
1958 default:
e2e0b3e5 1959 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1960 n, size);
1fcc0bb8
EZ
1961 }
1962 }
7a78ae4e
ND
1963}
1964
c44ca51c
AC
1965/* Is REGNUM a member of REGGROUP? */
1966static int
1967rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1968 struct reggroup *group)
1969{
1970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1971 int float_p;
1972 int vector_p;
1973 int general_p;
1974
1975 if (REGISTER_NAME (regnum) == NULL
1976 || *REGISTER_NAME (regnum) == '\0')
1977 return 0;
1978 if (group == all_reggroup)
1979 return 1;
1980
1981 float_p = (regnum == tdep->ppc_fpscr_regnum
1982 || (regnum >= tdep->ppc_fp0_regnum
1983 && regnum < tdep->ppc_fp0_regnum + 32));
1984 if (group == float_reggroup)
1985 return float_p;
1986
826d5376
PG
1987 vector_p = ((tdep->ppc_vr0_regnum >= 0
1988 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 1989 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
1990 || (tdep->ppc_ev0_regnum >= 0
1991 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 1992 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 1993 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
1994 || regnum == tdep->ppc_vrsave_regnum
1995 || regnum == tdep->ppc_acc_regnum
1996 || regnum == tdep->ppc_spefscr_regnum);
1997 if (group == vector_reggroup)
1998 return vector_p;
1999
2000 /* Note that PS aka MSR isn't included - it's a system register (and
2001 besides, due to GCC's CFI foobar you do not want to restore
2002 it). */
2003 general_p = ((regnum >= tdep->ppc_gp0_regnum
2004 && regnum < tdep->ppc_gp0_regnum + 32)
2005 || regnum == tdep->ppc_toc_regnum
2006 || regnum == tdep->ppc_cr_regnum
2007 || regnum == tdep->ppc_lr_regnum
2008 || regnum == tdep->ppc_ctr_regnum
2009 || regnum == tdep->ppc_xer_regnum
2010 || regnum == PC_REGNUM);
2011 if (group == general_reggroup)
2012 return general_p;
2013
2014 if (group == save_reggroup || group == restore_reggroup)
2015 return general_p || vector_p || float_p;
2016
2017 return 0;
2018}
2019
691d145a 2020/* The register format for RS/6000 floating point registers is always
64366f1c 2021 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2022
2023static int
691d145a 2024rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2025{
691d145a
JB
2026 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2027
2028 return (reg->fpr
2029 && TYPE_CODE (type) == TYPE_CODE_FLT
2030 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2031}
2032
7a78ae4e 2033static void
691d145a
JB
2034rs6000_register_to_value (struct frame_info *frame,
2035 int regnum,
2036 struct type *type,
50fd1280 2037 gdb_byte *to)
7a78ae4e 2038{
691d145a 2039 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2040 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2041
2042 gdb_assert (reg->fpr);
2043 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2044
691d145a
JB
2045 get_frame_register (frame, regnum, from);
2046 convert_typed_floating (from, builtin_type_double, to, type);
2047}
7a292a7a 2048
7a78ae4e 2049static void
691d145a
JB
2050rs6000_value_to_register (struct frame_info *frame,
2051 int regnum,
2052 struct type *type,
50fd1280 2053 const gdb_byte *from)
7a78ae4e 2054{
691d145a 2055 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2056 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2057
2058 gdb_assert (reg->fpr);
2059 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2060
2061 convert_typed_floating (from, type, to, builtin_type_double);
2062 put_frame_register (frame, regnum, to);
7a78ae4e 2063}
c906108c 2064
6ced10dd
JB
2065/* Move SPE vector register values between a 64-bit buffer and the two
2066 32-bit raw register halves in a regcache. This function handles
2067 both splitting a 64-bit value into two 32-bit halves, and joining
2068 two halves into a whole 64-bit value, depending on the function
2069 passed as the MOVE argument.
2070
2071 EV_REG must be the number of an SPE evN vector register --- a
2072 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2073 64-bit buffer.
2074
2075 Call MOVE once for each 32-bit half of that register, passing
2076 REGCACHE, the number of the raw register corresponding to that
2077 half, and the address of the appropriate half of BUFFER.
2078
2079 For example, passing 'regcache_raw_read' as the MOVE function will
2080 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2081 'regcache_raw_supply' will supply the contents of BUFFER to the
2082 appropriate pair of raw registers in REGCACHE.
2083
2084 You may need to cast away some 'const' qualifiers when passing
2085 MOVE, since this function can't tell at compile-time which of
2086 REGCACHE or BUFFER is acting as the source of the data. If C had
2087 co-variant type qualifiers, ... */
2088static void
2089e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2090 int regnum, gdb_byte *buf),
6ced10dd 2091 struct regcache *regcache, int ev_reg,
50fd1280 2092 gdb_byte *buffer)
6ced10dd
JB
2093{
2094 struct gdbarch *arch = get_regcache_arch (regcache);
2095 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2096 int reg_index;
50fd1280 2097 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2098
2099 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2100 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2101
2102 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2103
2104 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2105 {
2106 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2107 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2108 }
2109 else
2110 {
2111 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2112 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2113 }
2114}
2115
c8001721
EZ
2116static void
2117e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2118 int reg_nr, gdb_byte *buffer)
c8001721 2119{
6ced10dd 2120 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2122
6ced10dd
JB
2123 gdb_assert (regcache_arch == gdbarch);
2124
2125 if (tdep->ppc_ev0_regnum <= reg_nr
2126 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2127 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2128 else
a44bddec 2129 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2130 _("e500_pseudo_register_read: "
2131 "called on unexpected register '%s' (%d)"),
a44bddec 2132 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2133}
2134
2135static void
2136e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2137 int reg_nr, const gdb_byte *buffer)
c8001721 2138{
6ced10dd 2139 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141
6ced10dd
JB
2142 gdb_assert (regcache_arch == gdbarch);
2143
2144 if (tdep->ppc_ev0_regnum <= reg_nr
2145 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2146 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2147 regcache_raw_write,
50fd1280 2148 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2149 else
a44bddec 2150 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2151 _("e500_pseudo_register_read: "
2152 "called on unexpected register '%s' (%d)"),
a44bddec 2153 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2154}
2155
2156/* The E500 needs a custom reggroup function: it has anonymous raw
2157 registers, and default_register_reggroup_p assumes that anonymous
2158 registers are not members of any reggroup. */
2159static int
2160e500_register_reggroup_p (struct gdbarch *gdbarch,
2161 int regnum,
2162 struct reggroup *group)
2163{
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165
2166 /* The save and restore register groups need to include the
2167 upper-half registers, even though they're anonymous. */
2168 if ((group == save_reggroup
2169 || group == restore_reggroup)
2170 && (tdep->ppc_ev0_upper_regnum <= regnum
2171 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2172 return 1;
2173
2174 /* In all other regards, the default reggroup definition is fine. */
2175 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2176}
2177
18ed0c4e 2178/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2179static int
18ed0c4e 2180rs6000_stab_reg_to_regnum (int num)
c8001721 2181{
9f744501 2182 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2183
9f744501
JB
2184 if (0 <= num && num <= 31)
2185 return tdep->ppc_gp0_regnum + num;
2186 else if (32 <= num && num <= 63)
383f0f5b
JB
2187 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2188 specifies registers the architecture doesn't have? Our
2189 callers don't check the value we return. */
366f009f 2190 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2191 else if (77 <= num && num <= 108)
2192 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2193 else if (1200 <= num && num < 1200 + 32)
2194 return tdep->ppc_ev0_regnum + (num - 1200);
2195 else
2196 switch (num)
2197 {
2198 case 64:
2199 return tdep->ppc_mq_regnum;
2200 case 65:
2201 return tdep->ppc_lr_regnum;
2202 case 66:
2203 return tdep->ppc_ctr_regnum;
2204 case 76:
2205 return tdep->ppc_xer_regnum;
2206 case 109:
2207 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2208 case 110:
2209 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2210 case 111:
18ed0c4e 2211 return tdep->ppc_acc_regnum;
867e2dc5 2212 case 112:
18ed0c4e 2213 return tdep->ppc_spefscr_regnum;
9f744501
JB
2214 default:
2215 return num;
2216 }
18ed0c4e 2217}
9f744501 2218
9f744501 2219
18ed0c4e
JB
2220/* Convert a Dwarf 2 register number to a GDB register number. */
2221static int
2222rs6000_dwarf2_reg_to_regnum (int num)
2223{
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2225
18ed0c4e
JB
2226 if (0 <= num && num <= 31)
2227 return tdep->ppc_gp0_regnum + num;
2228 else if (32 <= num && num <= 63)
2229 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2230 specifies registers the architecture doesn't have? Our
2231 callers don't check the value we return. */
2232 return tdep->ppc_fp0_regnum + (num - 32);
2233 else if (1124 <= num && num < 1124 + 32)
2234 return tdep->ppc_vr0_regnum + (num - 1124);
2235 else if (1200 <= num && num < 1200 + 32)
2236 return tdep->ppc_ev0_regnum + (num - 1200);
2237 else
2238 switch (num)
2239 {
2240 case 67:
2241 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2242 case 99:
2243 return tdep->ppc_acc_regnum;
2244 case 100:
2245 return tdep->ppc_mq_regnum;
2246 case 101:
2247 return tdep->ppc_xer_regnum;
2248 case 108:
2249 return tdep->ppc_lr_regnum;
2250 case 109:
2251 return tdep->ppc_ctr_regnum;
2252 case 356:
2253 return tdep->ppc_vrsave_regnum;
2254 case 612:
2255 return tdep->ppc_spefscr_regnum;
2256 default:
2257 return num;
2258 }
2188cbdd
EZ
2259}
2260
18ed0c4e 2261
7a78ae4e 2262static void
a3c001ce
JB
2263rs6000_store_return_value (struct type *type,
2264 struct regcache *regcache,
50fd1280 2265 const gdb_byte *valbuf)
7a78ae4e 2266{
a3c001ce
JB
2267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2269 int regnum = -1;
ace1378a 2270
383f0f5b
JB
2271 /* The calling convention this function implements assumes the
2272 processor has floating-point registers. We shouldn't be using it
2273 on PPC variants that lack them. */
a3c001ce 2274 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2275
7a78ae4e 2276 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2277 /* Floating point values are returned starting from FPR1 and up.
2278 Say a double_double_double type could be returned in
64366f1c 2279 FPR1/FPR2/FPR3 triple. */
a3c001ce 2280 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2281 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2282 {
2283 if (TYPE_LENGTH (type) == 16
2284 && TYPE_VECTOR (type))
a3c001ce
JB
2285 regnum = tdep->ppc_vr0_regnum + 2;
2286 else
a44bddec 2287 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2288 _("rs6000_store_return_value: "
2289 "unexpected array return type"));
ace1378a 2290 }
7a78ae4e 2291 else
64366f1c 2292 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2293 regnum = tdep->ppc_gp0_regnum + 3;
2294
2295 {
2296 size_t bytes_written = 0;
2297
2298 while (bytes_written < TYPE_LENGTH (type))
2299 {
2300 /* How much of this value can we write to this register? */
2301 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2302 register_size (gdbarch, regnum));
2303 regcache_cooked_write_part (regcache, regnum,
2304 0, bytes_to_write,
50fd1280 2305 valbuf + bytes_written);
a3c001ce
JB
2306 regnum++;
2307 bytes_written += bytes_to_write;
2308 }
2309 }
7a78ae4e
ND
2310}
2311
a3c001ce 2312
7a78ae4e
ND
2313/* Extract from an array REGBUF containing the (raw) register state
2314 the address in which a function should return its structure value,
2315 as a CORE_ADDR (or an expression that can be used as one). */
2316
2317static CORE_ADDR
11269d7e
AC
2318rs6000_extract_struct_value_address (struct regcache *regcache)
2319{
2320 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2321 function call GDB knows the address of the struct return value
2322 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2323 the current call_function_by_hand() code only saves the most
2324 recent struct address leading to occasional calls. The code
2325 should instead maintain a stack of such addresses (in the dummy
2326 frame object). */
11269d7e
AC
2327 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2328 really got no idea where the return value is being stored. While
2329 r3, on function entry, contained the address it will have since
2330 been reused (scratch) and hence wouldn't be valid */
2331 return 0;
7a78ae4e
ND
2332}
2333
64366f1c 2334/* Hook called when a new child process is started. */
7a78ae4e
ND
2335
2336void
2337rs6000_create_inferior (int pid)
2338{
2339 if (rs6000_set_host_arch_hook)
2340 rs6000_set_host_arch_hook (pid);
c906108c
SS
2341}
2342\f
e2d0e7eb 2343/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2344
2345 Usually a function pointer's representation is simply the address
2346 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2347 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2348 three words, the first word is the address of the function, the
2349 second word is the TOC pointer (r2), and the third word is the
2350 static chain value. Throughout GDB it is currently assumed that a
2351 function pointer contains the address of the function, which is not
2352 easy to fix. In addition, the conversion of a function address to
8ba0209f 2353 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2354 inferior's memory space, with all its drawbacks. To be able to
2355 call C++ virtual methods in the inferior (which are called via
f517ea4e 2356 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2357 function address from a function pointer. */
2358
f517ea4e
PS
2359/* Return real function address if ADDR (a function pointer) is in the data
2360 space and is therefore a special function pointer. */
c906108c 2361
b9362cc7 2362static CORE_ADDR
e2d0e7eb
AC
2363rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2364 CORE_ADDR addr,
2365 struct target_ops *targ)
c906108c
SS
2366{
2367 struct obj_section *s;
2368
2369 s = find_pc_section (addr);
2370 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2371 return addr;
c906108c 2372
7a78ae4e 2373 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2374 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2375}
c906108c 2376\f
c5aa993b 2377
7a78ae4e 2378/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2379
2380
7a78ae4e
ND
2381/* The arrays here called registers_MUMBLE hold information about available
2382 registers.
c906108c
SS
2383
2384 For each family of PPC variants, I've tried to isolate out the
2385 common registers and put them up front, so that as long as you get
2386 the general family right, GDB will correctly identify the registers
2387 common to that family. The common register sets are:
2388
2389 For the 60x family: hid0 hid1 iabr dabr pir
2390
2391 For the 505 and 860 family: eie eid nri
2392
2393 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2394 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2395 pbu1 pbl2 pbu2
c906108c
SS
2396
2397 Most of these register groups aren't anything formal. I arrived at
2398 them by looking at the registers that occurred in more than one
6f5987a6
KB
2399 processor.
2400
2401 Note: kevinb/2002-04-30: Support for the fpscr register was added
2402 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2403 for Power. For PowerPC, slot 70 was unused and was already in the
2404 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2405 slot 70 was being used for "mq", so the next available slot (71)
2406 was chosen. It would have been nice to be able to make the
2407 register numbers the same across processor cores, but this wasn't
2408 possible without either 1) renumbering some registers for some
2409 processors or 2) assigning fpscr to a really high slot that's
2410 larger than any current register number. Doing (1) is bad because
2411 existing stubs would break. Doing (2) is undesirable because it
2412 would introduce a really large gap between fpscr and the rest of
2413 the registers for most processors. */
7a78ae4e 2414
64366f1c 2415/* Convenience macros for populating register arrays. */
7a78ae4e 2416
64366f1c 2417/* Within another macro, convert S to a string. */
7a78ae4e
ND
2418
2419#define STR(s) #s
2420
2421/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2422 and 64 bits on 64-bit systems. */
13ac140c 2423#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2424
2425/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2426 systems. */
13ac140c 2427#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2428
2429/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2430 systems. */
13ac140c 2431#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2432
1fcc0bb8 2433/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2434 systems. */
13ac140c 2435#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2436
64366f1c 2437/* Return a struct reg defining floating-point register NAME. */
13ac140c 2438#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2439
6ced10dd
JB
2440/* Return a struct reg defining a pseudo register NAME that is 64 bits
2441 long on all systems. */
2442#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2443
2444/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2445 systems and that doesn't exist on 64-bit systems. */
13ac140c 2446#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2447
2448/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2449 systems and that doesn't exist on 32-bit systems. */
13ac140c 2450#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2451
64366f1c 2452/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2453#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2454
6ced10dd
JB
2455/* Return a struct reg defining an anonymous raw register that's 32
2456 bits on all systems. */
2457#define A4 { 0, 4, 4, 0, 0, -1 }
2458
13ac140c
JB
2459/* Return a struct reg defining an SPR named NAME that is 32 bits on
2460 32-bit systems and 64 bits on 64-bit systems. */
2461#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2462
2463/* Return a struct reg defining an SPR named NAME that is 32 bits on
2464 all systems. */
2465#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2466
2467/* Return a struct reg defining an SPR named NAME that is 32 bits on
2468 all systems, and whose SPR number is NUMBER. */
2469#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2470
2471/* Return a struct reg defining an SPR named NAME that's 64 bits on
2472 64-bit systems and that doesn't exist on 32-bit systems. */
2473#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2474
7a78ae4e
ND
2475/* UISA registers common across all architectures, including POWER. */
2476
2477#define COMMON_UISA_REGS \
2478 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2479 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2480 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2481 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2482 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2483 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2484 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2485 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2486 /* 64 */ R(pc), R(ps)
2487
2488/* UISA-level SPRs for PowerPC. */
2489#define PPC_UISA_SPRS \
13ac140c 2490 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2491
c8001721
EZ
2492/* UISA-level SPRs for PowerPC without floating point support. */
2493#define PPC_UISA_NOFP_SPRS \
13ac140c 2494 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2495
7a78ae4e
ND
2496/* Segment registers, for PowerPC. */
2497#define PPC_SEGMENT_REGS \
2498 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2499 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2500 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2501 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2502
2503/* OEA SPRs for PowerPC. */
2504#define PPC_OEA_SPRS \
13ac140c
JB
2505 /* 87 */ S4(pvr), \
2506 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2507 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2508 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2509 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2510 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2511 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2512 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2513 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2514
64366f1c 2515/* AltiVec registers. */
1fcc0bb8
EZ
2516#define PPC_ALTIVEC_REGS \
2517 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2518 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2519 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2520 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2521 /*151*/R4(vscr), R4(vrsave)
2522
c8001721 2523
6ced10dd
JB
2524/* On machines supporting the SPE APU, the general-purpose registers
2525 are 64 bits long. There are SIMD vector instructions to treat them
2526 as pairs of floats, but the rest of the instruction set treats them
2527 as 32-bit registers, and only operates on their lower halves.
2528
2529 In the GDB regcache, we treat their high and low halves as separate
2530 registers. The low halves we present as the general-purpose
2531 registers, and then we have pseudo-registers that stitch together
2532 the upper and lower halves and present them as pseudo-registers. */
2533
2534/* SPE GPR lower halves --- raw registers. */
2535#define PPC_SPE_GP_REGS \
2536 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2537 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2538 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2539 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2540
2541/* SPE GPR upper halves --- anonymous raw registers. */
2542#define PPC_SPE_UPPER_GP_REGS \
2543 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2544 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2545 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2546 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2547
2548/* SPE GPR vector registers --- pseudo registers based on underlying
2549 gprs and the anonymous upper half raw registers. */
2550#define PPC_EV_PSEUDO_REGS \
2551/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2552/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2553/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2554/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2555
7a78ae4e 2556/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2557 user-level SPR's. */
7a78ae4e 2558static const struct reg registers_power[] =
c906108c 2559{
7a78ae4e 2560 COMMON_UISA_REGS,
13ac140c 2561 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2562 /* 71 */ R4(fpscr)
c906108c
SS
2563};
2564
7a78ae4e 2565/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2566 view of the PowerPC. */
7a78ae4e 2567static const struct reg registers_powerpc[] =
c906108c 2568{
7a78ae4e 2569 COMMON_UISA_REGS,
1fcc0bb8
EZ
2570 PPC_UISA_SPRS,
2571 PPC_ALTIVEC_REGS
c906108c
SS
2572};
2573
13ac140c
JB
2574/* IBM PowerPC 403.
2575
2576 Some notes about the "tcr" special-purpose register:
2577 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2578 403's programmable interval timer, fixed interval timer, and
2579 watchdog timer.
2580 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2581 watchdog timer, and nothing else.
2582
2583 Some of the fields are similar between the two, but they're not
2584 compatible with each other. Since the two variants have different
2585 registers, with different numbers, but the same name, we can't
2586 splice the register name to get the SPR number. */
7a78ae4e 2587static const struct reg registers_403[] =
c5aa993b 2588{
7a78ae4e
ND
2589 COMMON_UISA_REGS,
2590 PPC_UISA_SPRS,
2591 PPC_SEGMENT_REGS,
2592 PPC_OEA_SPRS,
13ac140c
JB
2593 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2594 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2595 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2596 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2597 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2598 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2599};
2600
13ac140c
JB
2601/* IBM PowerPC 403GC.
2602 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2603static const struct reg registers_403GC[] =
c5aa993b 2604{
7a78ae4e
ND
2605 COMMON_UISA_REGS,
2606 PPC_UISA_SPRS,
2607 PPC_SEGMENT_REGS,
2608 PPC_OEA_SPRS,
13ac140c
JB
2609 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2610 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2611 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2612 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2613 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2614 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2615 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2616 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2617};
2618
64366f1c 2619/* Motorola PowerPC 505. */
7a78ae4e 2620static const struct reg registers_505[] =
c5aa993b 2621{
7a78ae4e
ND
2622 COMMON_UISA_REGS,
2623 PPC_UISA_SPRS,
2624 PPC_SEGMENT_REGS,
2625 PPC_OEA_SPRS,
13ac140c 2626 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2627};
2628
64366f1c 2629/* Motorola PowerPC 860 or 850. */
7a78ae4e 2630static const struct reg registers_860[] =
c5aa993b 2631{
7a78ae4e
ND
2632 COMMON_UISA_REGS,
2633 PPC_UISA_SPRS,
2634 PPC_SEGMENT_REGS,
2635 PPC_OEA_SPRS,
13ac140c
JB
2636 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2637 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2638 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2639 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2640 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2641 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2642 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2643 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2644 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2645 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2646 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2647 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2648};
2649
7a78ae4e
ND
2650/* Motorola PowerPC 601. Note that the 601 has different register numbers
2651 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2652 register is the stub's problem. */
7a78ae4e 2653static const struct reg registers_601[] =
c5aa993b 2654{
7a78ae4e
ND
2655 COMMON_UISA_REGS,
2656 PPC_UISA_SPRS,
2657 PPC_SEGMENT_REGS,
2658 PPC_OEA_SPRS,
13ac140c
JB
2659 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2660 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2661};
2662
13ac140c
JB
2663/* Motorola PowerPC 602.
2664 See the notes under the 403 about 'tcr'. */
7a78ae4e 2665static const struct reg registers_602[] =
c5aa993b 2666{
7a78ae4e
ND
2667 COMMON_UISA_REGS,
2668 PPC_UISA_SPRS,
2669 PPC_SEGMENT_REGS,
2670 PPC_OEA_SPRS,
13ac140c
JB
2671 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2672 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2673 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2674};
2675
64366f1c 2676/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2677static const struct reg registers_603[] =
c5aa993b 2678{
7a78ae4e
ND
2679 COMMON_UISA_REGS,
2680 PPC_UISA_SPRS,
2681 PPC_SEGMENT_REGS,
2682 PPC_OEA_SPRS,
13ac140c
JB
2683 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2684 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2685 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2686};
2687
64366f1c 2688/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2689static const struct reg registers_604[] =
c5aa993b 2690{
7a78ae4e
ND
2691 COMMON_UISA_REGS,
2692 PPC_UISA_SPRS,
2693 PPC_SEGMENT_REGS,
2694 PPC_OEA_SPRS,
13ac140c
JB
2695 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2696 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2697 /* 127 */ S(sia), S(sda)
c906108c
SS
2698};
2699
64366f1c 2700/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2701static const struct reg registers_750[] =
c5aa993b 2702{
7a78ae4e
ND
2703 COMMON_UISA_REGS,
2704 PPC_UISA_SPRS,
2705 PPC_SEGMENT_REGS,
2706 PPC_OEA_SPRS,
13ac140c
JB
2707 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2708 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2709 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2710 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2711 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2712 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2713};
2714
2715
64366f1c 2716/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2717static const struct reg registers_7400[] =
2718{
2719 /* gpr0-gpr31, fpr0-fpr31 */
2720 COMMON_UISA_REGS,
13c7b1ca 2721 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2722 PPC_UISA_SPRS,
2723 /* sr0-sr15 */
2724 PPC_SEGMENT_REGS,
2725 PPC_OEA_SPRS,
2726 /* vr0-vr31, vrsave, vscr */
2727 PPC_ALTIVEC_REGS
2728 /* FIXME? Add more registers? */
2729};
2730
c8001721
EZ
2731/* Motorola e500. */
2732static const struct reg registers_e500[] =
2733{
6ced10dd
JB
2734 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2735 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2736 /* 64 .. 65 */ R(pc), R(ps),
2737 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2738 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2739 /* NOTE: Add new registers here the end of the raw register
2740 list and just before the first pseudo register. */
6ced10dd 2741 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2742};
2743
c906108c 2744/* Information about a particular processor variant. */
7a78ae4e 2745
c906108c 2746struct variant
c5aa993b
JM
2747 {
2748 /* Name of this variant. */
2749 char *name;
c906108c 2750
c5aa993b
JM
2751 /* English description of the variant. */
2752 char *description;
c906108c 2753
64366f1c 2754 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2755 enum bfd_architecture arch;
2756
64366f1c 2757 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2758 unsigned long mach;
2759
489461e2
EZ
2760 /* Number of real registers. */
2761 int nregs;
2762
2763 /* Number of pseudo registers. */
2764 int npregs;
2765
2766 /* Number of total registers (the sum of nregs and npregs). */
2767 int num_tot_regs;
2768
c5aa993b
JM
2769 /* Table of register names; registers[R] is the name of the register
2770 number R. */
7a78ae4e 2771 const struct reg *regs;
c5aa993b 2772 };
c906108c 2773
489461e2
EZ
2774#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2775
2776static int
2777num_registers (const struct reg *reg_list, int num_tot_regs)
2778{
2779 int i;
2780 int nregs = 0;
2781
2782 for (i = 0; i < num_tot_regs; i++)
2783 if (!reg_list[i].pseudo)
2784 nregs++;
2785
2786 return nregs;
2787}
2788
2789static int
2790num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2791{
2792 int i;
2793 int npregs = 0;
2794
2795 for (i = 0; i < num_tot_regs; i++)
2796 if (reg_list[i].pseudo)
2797 npregs ++;
2798
2799 return npregs;
2800}
c906108c 2801
c906108c
SS
2802/* Information in this table comes from the following web sites:
2803 IBM: http://www.chips.ibm.com:80/products/embedded/
2804 Motorola: http://www.mot.com/SPS/PowerPC/
2805
2806 I'm sure I've got some of the variant descriptions not quite right.
2807 Please report any inaccuracies you find to GDB's maintainer.
2808
2809 If you add entries to this table, please be sure to allow the new
2810 value as an argument to the --with-cpu flag, in configure.in. */
2811
489461e2 2812static struct variant variants[] =
c906108c 2813{
489461e2 2814
7a78ae4e 2815 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2816 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2817 registers_powerpc},
7a78ae4e 2818 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2819 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2820 registers_power},
7a78ae4e 2821 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2822 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2823 registers_403},
7a78ae4e 2824 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2825 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2826 registers_601},
7a78ae4e 2827 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2828 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2829 registers_602},
7a78ae4e 2830 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2831 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2832 registers_603},
7a78ae4e 2833 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2834 604, -1, -1, tot_num_registers (registers_604),
2835 registers_604},
7a78ae4e 2836 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2837 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2838 registers_403GC},
7a78ae4e 2839 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2840 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2841 registers_505},
7a78ae4e 2842 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2843 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2844 registers_860},
7a78ae4e 2845 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2846 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2847 registers_750},
1fcc0bb8 2848 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2849 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2850 registers_7400},
c8001721
EZ
2851 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2852 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2853 registers_e500},
7a78ae4e 2854
5d57ee30
KB
2855 /* 64-bit */
2856 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2857 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2858 registers_powerpc},
7a78ae4e 2859 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2860 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2861 registers_powerpc},
5d57ee30 2862 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2863 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2864 registers_powerpc},
7a78ae4e 2865 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2866 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2867 registers_powerpc},
5d57ee30 2868 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2869 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2870 registers_powerpc},
5d57ee30 2871 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2872 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2873 registers_powerpc},
5d57ee30 2874
64366f1c 2875 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2876 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2877 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2878 registers_power},
7a78ae4e 2879 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2880 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2881 registers_power},
7a78ae4e 2882 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2883 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2884 registers_power},
7a78ae4e 2885
489461e2 2886 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2887};
2888
64366f1c 2889/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2890
2891static void
2892init_variants (void)
2893{
2894 struct variant *v;
2895
2896 for (v = variants; v->name; v++)
2897 {
2898 if (v->nregs == -1)
2899 v->nregs = num_registers (v->regs, v->num_tot_regs);
2900 if (v->npregs == -1)
2901 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2902 }
2903}
c906108c 2904
7a78ae4e 2905/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2906 MACH. If no such variant exists, return null. */
c906108c 2907
7a78ae4e
ND
2908static const struct variant *
2909find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2910{
7a78ae4e 2911 const struct variant *v;
c5aa993b 2912
7a78ae4e
ND
2913 for (v = variants; v->name; v++)
2914 if (arch == v->arch && mach == v->mach)
2915 return v;
c906108c 2916
7a78ae4e 2917 return NULL;
c906108c 2918}
9364a0ef
EZ
2919
2920static int
2921gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2922{
2923 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2924 return print_insn_big_powerpc (memaddr, info);
2925 else
2926 return print_insn_little_powerpc (memaddr, info);
2927}
7a78ae4e 2928\f
61a65099
KB
2929static CORE_ADDR
2930rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2931{
2932 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2933}
2934
2935static struct frame_id
2936rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2937{
2938 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2939 SP_REGNUM),
2940 frame_pc_unwind (next_frame));
2941}
2942
2943struct rs6000_frame_cache
2944{
2945 CORE_ADDR base;
2946 CORE_ADDR initial_sp;
2947 struct trad_frame_saved_reg *saved_regs;
2948};
2949
2950static struct rs6000_frame_cache *
2951rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2952{
2953 struct rs6000_frame_cache *cache;
2954 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2956 struct rs6000_framedata fdata;
2957 int wordsize = tdep->wordsize;
e10b1c4c 2958 CORE_ADDR func, pc;
61a65099
KB
2959
2960 if ((*this_cache) != NULL)
2961 return (*this_cache);
2962 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2963 (*this_cache) = cache;
2964 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2965
e10b1c4c
DJ
2966 func = frame_func_unwind (next_frame);
2967 pc = frame_pc_unwind (next_frame);
2968 skip_prologue (func, pc, &fdata);
2969
2970 /* Figure out the parent's stack pointer. */
2971
2972 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2973 address of the current frame. Things might be easier if the
2974 ->frame pointed to the outer-most address of the frame. In
2975 the mean time, the address of the prev frame is used as the
2976 base address of this frame. */
2977 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2978
2979 /* If the function appears to be frameless, check a couple of likely
2980 indicators that we have simply failed to find the frame setup.
2981 Two common cases of this are missing symbols (i.e.
2982 frame_func_unwind returns the wrong address or 0), and assembly
2983 stubs which have a fast exit path but set up a frame on the slow
2984 path.
2985
2986 If the LR appears to return to this function, then presume that
2987 we have an ABI compliant frame that we failed to find. */
2988 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2989 {
e10b1c4c
DJ
2990 CORE_ADDR saved_lr;
2991 int make_frame = 0;
2992
2993 saved_lr = frame_unwind_register_unsigned (next_frame,
2994 tdep->ppc_lr_regnum);
2995 if (func == 0 && saved_lr == pc)
2996 make_frame = 1;
2997 else if (func != 0)
2998 {
2999 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3000 if (func == saved_func)
3001 make_frame = 1;
3002 }
3003
3004 if (make_frame)
3005 {
3006 fdata.frameless = 0;
3007 fdata.lr_offset = wordsize;
3008 }
61a65099 3009 }
e10b1c4c
DJ
3010
3011 if (!fdata.frameless)
3012 /* Frameless really means stackless. */
3013 cache->base = read_memory_addr (cache->base, wordsize);
3014
61a65099
KB
3015 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3016
3017 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3018 All fpr's from saved_fpr to fp31 are saved. */
3019
3020 if (fdata.saved_fpr >= 0)
3021 {
3022 int i;
3023 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3024
3025 /* If skip_prologue says floating-point registers were saved,
3026 but the current architecture has no floating-point registers,
3027 then that's strange. But we have no indices to even record
3028 the addresses under, so we just ignore it. */
3029 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3030 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3031 {
3032 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3033 fpr_addr += 8;
3034 }
61a65099
KB
3035 }
3036
3037 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3038 All gpr's from saved_gpr to gpr31 are saved. */
3039
3040 if (fdata.saved_gpr >= 0)
3041 {
3042 int i;
3043 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3044 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3045 {
3046 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3047 gpr_addr += wordsize;
3048 }
3049 }
3050
3051 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3052 All vr's from saved_vr to vr31 are saved. */
3053 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3054 {
3055 if (fdata.saved_vr >= 0)
3056 {
3057 int i;
3058 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3059 for (i = fdata.saved_vr; i < 32; i++)
3060 {
3061 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3062 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3063 }
3064 }
3065 }
3066
3067 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3068 All vr's from saved_ev to ev31 are saved. ????? */
3069 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3070 {
3071 if (fdata.saved_ev >= 0)
3072 {
3073 int i;
3074 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3075 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3076 {
3077 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3078 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3079 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3080 }
3081 }
3082 }
3083
3084 /* If != 0, fdata.cr_offset is the offset from the frame that
3085 holds the CR. */
3086 if (fdata.cr_offset != 0)
3087 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3088
3089 /* If != 0, fdata.lr_offset is the offset from the frame that
3090 holds the LR. */
3091 if (fdata.lr_offset != 0)
3092 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3093 /* The PC is found in the link register. */
3094 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3095
3096 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3097 holds the VRSAVE. */
3098 if (fdata.vrsave_offset != 0)
3099 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3100
3101 if (fdata.alloca_reg < 0)
3102 /* If no alloca register used, then fi->frame is the value of the
3103 %sp for this frame, and it is good enough. */
3104 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3105 else
3106 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3107 fdata.alloca_reg);
3108
3109 return cache;
3110}
3111
3112static void
3113rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3114 struct frame_id *this_id)
3115{
3116 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3117 this_cache);
3118 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3119}
3120
3121static void
3122rs6000_frame_prev_register (struct frame_info *next_frame,
3123 void **this_cache,
3124 int regnum, int *optimizedp,
3125 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3126 int *realnump, gdb_byte *valuep)
61a65099
KB
3127{
3128 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3129 this_cache);
1f67027d
AC
3130 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3131 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3132}
3133
3134static const struct frame_unwind rs6000_frame_unwind =
3135{
3136 NORMAL_FRAME,
3137 rs6000_frame_this_id,
3138 rs6000_frame_prev_register
3139};
3140
3141static const struct frame_unwind *
3142rs6000_frame_sniffer (struct frame_info *next_frame)
3143{
3144 return &rs6000_frame_unwind;
3145}
3146
3147\f
3148
3149static CORE_ADDR
3150rs6000_frame_base_address (struct frame_info *next_frame,
3151 void **this_cache)
3152{
3153 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3154 this_cache);
3155 return info->initial_sp;
3156}
3157
3158static const struct frame_base rs6000_frame_base = {
3159 &rs6000_frame_unwind,
3160 rs6000_frame_base_address,
3161 rs6000_frame_base_address,
3162 rs6000_frame_base_address
3163};
3164
3165static const struct frame_base *
3166rs6000_frame_base_sniffer (struct frame_info *next_frame)
3167{
3168 return &rs6000_frame_base;
3169}
3170
7a78ae4e
ND
3171/* Initialize the current architecture based on INFO. If possible, re-use an
3172 architecture from ARCHES, which is a list of architectures already created
3173 during this debugging session.
c906108c 3174
7a78ae4e 3175 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3176 a binary file. */
c906108c 3177
7a78ae4e
ND
3178static struct gdbarch *
3179rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3180{
3181 struct gdbarch *gdbarch;
3182 struct gdbarch_tdep *tdep;
708ff411 3183 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3184 struct reg *regs;
3185 const struct variant *v;
3186 enum bfd_architecture arch;
3187 unsigned long mach;
3188 bfd abfd;
7b112f9c 3189 int sysv_abi;
5bf1c677 3190 asection *sect;
7a78ae4e 3191
9aa1e687 3192 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3193 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3194
9aa1e687
KB
3195 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3196 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3197
3198 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3199
e712c1cf 3200 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3201 that, else choose a likely default. */
9aa1e687 3202 if (from_xcoff_exec)
c906108c 3203 {
11ed25ac 3204 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3205 wordsize = 8;
3206 else
3207 wordsize = 4;
c906108c 3208 }
9aa1e687
KB
3209 else if (from_elf_exec)
3210 {
3211 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3212 wordsize = 8;
3213 else
3214 wordsize = 4;
3215 }
c906108c 3216 else
7a78ae4e 3217 {
27b15785
KB
3218 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3219 wordsize = info.bfd_arch_info->bits_per_word /
3220 info.bfd_arch_info->bits_per_byte;
3221 else
3222 wordsize = 4;
7a78ae4e 3223 }
c906108c 3224
13c0b536 3225 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3226 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3227 arches != NULL;
3228 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3229 {
3230 /* Word size in the various PowerPC bfd_arch_info structs isn't
3231 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3232 separate word size check. */
7a78ae4e 3233 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3234 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3235 return arches->gdbarch;
3236 }
c906108c 3237
7a78ae4e
ND
3238 /* None found, create a new architecture from INFO, whose bfd_arch_info
3239 validity depends on the source:
3240 - executable useless
3241 - rs6000_host_arch() good
3242 - core file good
3243 - "set arch" trust blindly
3244 - GDB startup useless but harmless */
c906108c 3245
9aa1e687 3246 if (!from_xcoff_exec)
c906108c 3247 {
b732d07d 3248 arch = info.bfd_arch_info->arch;
7a78ae4e 3249 mach = info.bfd_arch_info->mach;
c906108c 3250 }
7a78ae4e 3251 else
c906108c 3252 {
7a78ae4e 3253 arch = bfd_arch_powerpc;
35cec841 3254 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3255 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3256 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3257 }
3258 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3259 tdep->wordsize = wordsize;
5bf1c677
EZ
3260
3261 /* For e500 executables, the apuinfo section is of help here. Such
3262 section contains the identifier and revision number of each
3263 Application-specific Processing Unit that is present on the
3264 chip. The content of the section is determined by the assembler
3265 which looks at each instruction and determines which unit (and
3266 which version of it) can execute it. In our case we just look for
3267 the existance of the section. */
3268
3269 if (info.abfd)
3270 {
3271 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3272 if (sect)
3273 {
3274 arch = info.bfd_arch_info->arch;
3275 mach = bfd_mach_ppc_e500;
3276 bfd_default_set_arch_mach (&abfd, arch, mach);
3277 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3278 }
3279 }
3280
7a78ae4e 3281 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3282
489461e2
EZ
3283 /* Initialize the number of real and pseudo registers in each variant. */
3284 init_variants ();
3285
64366f1c 3286 /* Choose variant. */
7a78ae4e
ND
3287 v = find_variant_by_arch (arch, mach);
3288 if (!v)
dd47e6fd
EZ
3289 return NULL;
3290
7a78ae4e
ND
3291 tdep->regs = v->regs;
3292
2188cbdd 3293 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3294 tdep->ppc_toc_regnum = 2;
3295 tdep->ppc_ps_regnum = 65;
3296 tdep->ppc_cr_regnum = 66;
3297 tdep->ppc_lr_regnum = 67;
3298 tdep->ppc_ctr_regnum = 68;
3299 tdep->ppc_xer_regnum = 69;
3300 if (v->mach == bfd_mach_ppc_601)
3301 tdep->ppc_mq_regnum = 124;
708ff411 3302 else if (arch == bfd_arch_rs6000)
2188cbdd 3303 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3304 else
3305 tdep->ppc_mq_regnum = -1;
366f009f 3306 tdep->ppc_fp0_regnum = 32;
708ff411 3307 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3308 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3309 tdep->ppc_vr0_regnum = -1;
3310 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3311 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3312 tdep->ppc_ev0_regnum = -1;
3313 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3314 tdep->ppc_acc_regnum = -1;
3315 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3316
c8001721
EZ
3317 set_gdbarch_pc_regnum (gdbarch, 64);
3318 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3319 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3320 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3321 if (sysv_abi && wordsize == 8)
05580c65 3322 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3323 else if (sysv_abi && wordsize == 4)
05580c65 3324 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3325 else
3326 {
3327 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3328 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3329 }
c8001721 3330
baffbae0
JB
3331 /* Set lr_frame_offset. */
3332 if (wordsize == 8)
3333 tdep->lr_frame_offset = 16;
3334 else if (sysv_abi)
3335 tdep->lr_frame_offset = 4;
3336 else
3337 tdep->lr_frame_offset = 8;
3338
f86a7158
JB
3339 if (v->arch == bfd_arch_rs6000)
3340 tdep->ppc_sr0_regnum = -1;
3341 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3342 switch (v->mach)
3343 {
3344 case bfd_mach_ppc:
412b3060 3345 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3346 tdep->ppc_vr0_regnum = 71;
3347 tdep->ppc_vrsave_regnum = 104;
3348 break;
3349 case bfd_mach_ppc_7400:
3350 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3351 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3352 break;
3353 case bfd_mach_ppc_e500:
c8001721 3354 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3355 tdep->ppc_ev0_upper_regnum = 32;
3356 tdep->ppc_ev0_regnum = 73;
3357 tdep->ppc_ev31_regnum = 104;
3358 tdep->ppc_acc_regnum = 71;
3359 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3360 tdep->ppc_fp0_regnum = -1;
3361 tdep->ppc_fpscr_regnum = -1;
f86a7158 3362 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3363 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3364 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3365 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3366 break;
f86a7158
JB
3367
3368 case bfd_mach_ppc64:
3369 case bfd_mach_ppc_620:
3370 case bfd_mach_ppc_630:
3371 case bfd_mach_ppc_a35:
3372 case bfd_mach_ppc_rs64ii:
3373 case bfd_mach_ppc_rs64iii:
3374 /* These processor's register sets don't have segment registers. */
3375 tdep->ppc_sr0_regnum = -1;
3376 break;
1fcc0bb8 3377 }
f86a7158
JB
3378 else
3379 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3380 _("rs6000_gdbarch_init: "
3381 "received unexpected BFD 'arch' value"));
1fcc0bb8 3382
338ef23d
AC
3383 /* Sanity check on registers. */
3384 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3385
56a6dfb9 3386 /* Select instruction printer. */
708ff411 3387 if (arch == bfd_arch_rs6000)
9364a0ef 3388 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3389 else
9364a0ef 3390 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3391
7a78ae4e 3392 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3393
3394 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3395 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3396 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3397 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3398 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3399
3400 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3401 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3402 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3403 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3404 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3405 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3406 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3407 if (sysv_abi)
3408 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3409 else
3410 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3411 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3412
11269d7e 3413 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3414 if (sysv_abi && wordsize == 8)
3415 /* PPC64 SYSV. */
3416 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3417 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3418 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3419 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3420 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3421 224. */
3422 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3423
691d145a
JB
3424 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3425 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3426 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3427
18ed0c4e
JB
3428 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3429 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3430 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3431 is correct for the SysV ABI when the wordsize is 8, but I'm also
3432 fairly certain that ppc_sysv_abi_push_arguments() will give even
3433 worse results since it only works for 32-bit code. So, for the moment,
3434 we're better off calling rs6000_push_arguments() since it works for
3435 64-bit code. At some point in the future, this matter needs to be
3436 revisited. */
3437 if (sysv_abi && wordsize == 4)
77b2b6d4 3438 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3439 else if (sysv_abi && wordsize == 8)
3440 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3441 else
77b2b6d4 3442 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3443
74055713 3444 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3445
3446 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3447 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3448
7a78ae4e 3449 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3450 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3451
6066c3de
AC
3452 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3453 for the descriptor and ".FN" for the entry-point -- a user
3454 specifying "break FN" will unexpectedly end up with a breakpoint
3455 on the descriptor and not the function. This architecture method
3456 transforms any breakpoints on descriptors into breakpoints on the
3457 corresponding entry point. */
3458 if (sysv_abi && wordsize == 8)
3459 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3460
7a78ae4e
ND
3461 /* Not sure on this. FIXMEmgo */
3462 set_gdbarch_frame_args_skip (gdbarch, 8);
3463
05580c65 3464 if (!sysv_abi)
b5622e8d 3465 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3466
15813d3f
AC
3467 if (!sysv_abi)
3468 {
3469 /* Handle RS/6000 function pointers (which are really function
3470 descriptors). */
f517ea4e
PS
3471 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3472 rs6000_convert_from_func_ptr_addr);
9aa1e687 3473 }
7a78ae4e 3474
143985b7
AF
3475 /* Helpers for function argument information. */
3476 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3477
7b112f9c 3478 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3479 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3480
61a65099
KB
3481 switch (info.osabi)
3482 {
f5aecab8
PG
3483 case GDB_OSABI_LINUX:
3484 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3485 have altivec registers. If not, ptrace will fail the first time it's
3486 called to access one and will not be called again. This wart will
3487 be removed when Daniel Jacobowitz's proposal for autodetecting target
3488 registers is implemented. */
3489 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3490 {
3491 tdep->ppc_vr0_regnum = 71;
3492 tdep->ppc_vrsave_regnum = 104;
3493 }
3494 /* Fall Thru */
61a65099
KB
3495 case GDB_OSABI_NETBSD_AOUT:
3496 case GDB_OSABI_NETBSD_ELF:
3497 case GDB_OSABI_UNKNOWN:
61a65099
KB
3498 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3499 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3500 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3501 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3502 break;
3503 default:
61a65099 3504 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3505
3506 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3507 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3508 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3509 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3510 }
3511
ef5200c1
AC
3512 if (from_xcoff_exec)
3513 {
3514 /* NOTE: jimix/2003-06-09: This test should really check for
3515 GDB_OSABI_AIX when that is defined and becomes
3516 available. (Actually, once things are properly split apart,
3517 the test goes away.) */
3518 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3519 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3520 }
3521
9f643768
JB
3522 init_sim_regno_table (gdbarch);
3523
7a78ae4e 3524 return gdbarch;
c906108c
SS
3525}
3526
7b112f9c
JT
3527static void
3528rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3529{
3530 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3531
3532 if (tdep == NULL)
3533 return;
3534
4be87837 3535 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3536}
3537
c906108c
SS
3538/* Initialization code. */
3539
a78f21af 3540extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3541
c906108c 3542void
fba45db2 3543_initialize_rs6000_tdep (void)
c906108c 3544{
7b112f9c
JT
3545 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3546 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3547}
This page took 0.870841 seconds and 4 git commands to generate.