* terminal.h: Check HAVE_SGTTY_H.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
1f82754b 62#include "rs6000-tdep.h"
c44ca51c 63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
0bcc32ae
JB
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Hook for determining the TOC address when calling functions in the
113 inferior under AIX. The initialization code in rs6000-nat.c sets
114 this hook to point to find_toc_address. */
115
7a78ae4e
ND
116CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
117
118/* Hook to set the current architecture when starting a child process.
119 rs6000-nat.c sets this. */
120
121void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
122
123/* Static function prototypes */
124
a14ed312
KB
125static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
126 CORE_ADDR safety);
077276e8
KB
127static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
128 struct rs6000_framedata *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
383f0f5b 141
867e2dc5
JB
142/* Return true if REGNO is an SPE register, false otherwise. */
143int
144spe_register_p (int regno)
145{
146 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
147
148 /* Is it a reference to EV0 -- EV31, and do we have those? */
149 if (tdep->ppc_ev0_regnum >= 0
150 && tdep->ppc_ev31_regnum >= 0
151 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
152 return 1;
153
6ced10dd
JB
154 /* Is it a reference to one of the raw upper GPR halves? */
155 if (tdep->ppc_ev0_upper_regnum >= 0
156 && tdep->ppc_ev0_upper_regnum <= regno
157 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
158 return 1;
159
867e2dc5
JB
160 /* Is it a reference to the 64-bit accumulator, and do we have that? */
161 if (tdep->ppc_acc_regnum >= 0
162 && tdep->ppc_acc_regnum == regno)
163 return 1;
164
165 /* Is it a reference to the SPE floating-point status and control register,
166 and do we have that? */
167 if (tdep->ppc_spefscr_regnum >= 0
168 && tdep->ppc_spefscr_regnum == regno)
169 return 1;
170
171 return 0;
172}
173
174
383f0f5b
JB
175/* Return non-zero if the architecture described by GDBARCH has
176 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
177int
178ppc_floating_point_unit_p (struct gdbarch *gdbarch)
179{
383f0f5b
JB
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 return (tdep->ppc_fp0_regnum >= 0
183 && tdep->ppc_fpscr_regnum >= 0);
0a613259 184}
9f643768 185
09991fa0
JB
186
187/* Check that TABLE[GDB_REGNO] is not already initialized, and then
188 set it to SIM_REGNO.
189
190 This is a helper function for init_sim_regno_table, constructing
191 the table mapping GDB register numbers to sim register numbers; we
192 initialize every element in that table to -1 before we start
193 filling it in. */
9f643768
JB
194static void
195set_sim_regno (int *table, int gdb_regno, int sim_regno)
196{
197 /* Make sure we don't try to assign any given GDB register a sim
198 register number more than once. */
199 gdb_assert (table[gdb_regno] == -1);
200 table[gdb_regno] = sim_regno;
201}
202
09991fa0
JB
203
204/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
205 numbers to simulator register numbers, based on the values placed
206 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
207static void
208init_sim_regno_table (struct gdbarch *arch)
209{
210 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
211 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
212 const struct reg *regs = tdep->regs;
213 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
214 int i;
215
216 /* Presume that all registers not explicitly mentioned below are
217 unavailable from the sim. */
218 for (i = 0; i < total_regs; i++)
219 sim_regno[i] = -1;
220
221 /* General-purpose registers. */
222 for (i = 0; i < ppc_num_gprs; i++)
223 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
224
225 /* Floating-point registers. */
226 if (tdep->ppc_fp0_regnum >= 0)
227 for (i = 0; i < ppc_num_fprs; i++)
228 set_sim_regno (sim_regno,
229 tdep->ppc_fp0_regnum + i,
230 sim_ppc_f0_regnum + i);
231 if (tdep->ppc_fpscr_regnum >= 0)
232 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
233
234 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
235 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
236 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
237
238 /* Segment registers. */
239 if (tdep->ppc_sr0_regnum >= 0)
240 for (i = 0; i < ppc_num_srs; i++)
241 set_sim_regno (sim_regno,
242 tdep->ppc_sr0_regnum + i,
243 sim_ppc_sr0_regnum + i);
244
245 /* Altivec registers. */
246 if (tdep->ppc_vr0_regnum >= 0)
247 {
248 for (i = 0; i < ppc_num_vrs; i++)
249 set_sim_regno (sim_regno,
250 tdep->ppc_vr0_regnum + i,
251 sim_ppc_vr0_regnum + i);
252
253 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
254 we can treat this more like the other cases. */
255 set_sim_regno (sim_regno,
256 tdep->ppc_vr0_regnum + ppc_num_vrs,
257 sim_ppc_vscr_regnum);
258 }
259 /* vsave is a special-purpose register, so the code below handles it. */
260
261 /* SPE APU (E500) registers. */
262 if (tdep->ppc_ev0_regnum >= 0)
263 for (i = 0; i < ppc_num_gprs; i++)
264 set_sim_regno (sim_regno,
265 tdep->ppc_ev0_regnum + i,
266 sim_ppc_ev0_regnum + i);
6ced10dd
JB
267 if (tdep->ppc_ev0_upper_regnum >= 0)
268 for (i = 0; i < ppc_num_gprs; i++)
269 set_sim_regno (sim_regno,
270 tdep->ppc_ev0_upper_regnum + i,
271 sim_ppc_rh0_regnum + i);
9f643768
JB
272 if (tdep->ppc_acc_regnum >= 0)
273 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
274 /* spefscr is a special-purpose register, so the code below handles it. */
275
276 /* Now handle all special-purpose registers. Verify that they
277 haven't mistakenly been assigned numbers by any of the above
278 code). */
279 for (i = 0; i < total_regs; i++)
280 if (regs[i].spr_num >= 0)
281 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
282
283 /* Drop the initialized array into place. */
284 tdep->sim_regno = sim_regno;
285}
286
09991fa0
JB
287
288/* Given a GDB register number REG, return the corresponding SIM
289 register number. */
9f643768
JB
290static int
291rs6000_register_sim_regno (int reg)
292{
293 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
294 int sim_regno;
295
296 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
297 sim_regno = tdep->sim_regno[reg];
298
299 if (sim_regno >= 0)
300 return sim_regno;
301 else
302 return LEGACY_SIM_REGNO_IGNORE;
303}
304
d195bc9f
MK
305\f
306
307/* Register set support functions. */
308
309static void
310ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 311 const gdb_byte *regs, size_t offset)
d195bc9f
MK
312{
313 if (regnum != -1 && offset != -1)
314 regcache_raw_supply (regcache, regnum, regs + offset);
315}
316
317static void
318ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 319 gdb_byte *regs, size_t offset)
d195bc9f
MK
320{
321 if (regnum != -1 && offset != -1)
322 regcache_raw_collect (regcache, regnum, regs + offset);
323}
324
325/* Supply register REGNUM in the general-purpose register set REGSET
326 from the buffer specified by GREGS and LEN to register cache
327 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
328
329void
330ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
331 int regnum, const void *gregs, size_t len)
332{
333 struct gdbarch *gdbarch = get_regcache_arch (regcache);
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 const struct ppc_reg_offsets *offsets = regset->descr;
336 size_t offset;
337 int i;
338
cdf2c5f5 339 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 340 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 341 i++, offset += 4)
d195bc9f
MK
342 {
343 if (regnum == -1 || regnum == i)
344 ppc_supply_reg (regcache, i, gregs, offset);
345 }
346
347 if (regnum == -1 || regnum == PC_REGNUM)
348 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
349 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
350 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
351 gregs, offsets->ps_offset);
352 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
353 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
354 gregs, offsets->cr_offset);
355 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
356 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
357 gregs, offsets->lr_offset);
358 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
360 gregs, offsets->ctr_offset);
361 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
362 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
363 gregs, offsets->cr_offset);
364 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
365 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
366}
367
368/* Supply register REGNUM in the floating-point register set REGSET
369 from the buffer specified by FPREGS and LEN to register cache
370 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
371
372void
373ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
374 int regnum, const void *fpregs, size_t len)
375{
376 struct gdbarch *gdbarch = get_regcache_arch (regcache);
377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
378 const struct ppc_reg_offsets *offsets = regset->descr;
379 size_t offset;
380 int i;
381
383f0f5b
JB
382 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383
d195bc9f 384 offset = offsets->f0_offset;
366f009f
JB
385 for (i = tdep->ppc_fp0_regnum;
386 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 387 i++, offset += 8)
d195bc9f
MK
388 {
389 if (regnum == -1 || regnum == i)
390 ppc_supply_reg (regcache, i, fpregs, offset);
391 }
392
393 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
394 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
395 fpregs, offsets->fpscr_offset);
396}
397
398/* Collect register REGNUM in the general-purpose register set
399 REGSET. from register cache REGCACHE into the buffer specified by
400 GREGS and LEN. If REGNUM is -1, do this for all registers in
401 REGSET. */
402
403void
404ppc_collect_gregset (const struct regset *regset,
405 const struct regcache *regcache,
406 int regnum, void *gregs, size_t len)
407{
408 struct gdbarch *gdbarch = get_regcache_arch (regcache);
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410 const struct ppc_reg_offsets *offsets = regset->descr;
411 size_t offset;
412 int i;
413
414 offset = offsets->r0_offset;
cdf2c5f5 415 for (i = tdep->ppc_gp0_regnum;
063715bf 416 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 417 i++, offset += 4)
d195bc9f
MK
418 {
419 if (regnum == -1 || regnum == i)
2e56e9c1 420 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
421 }
422
423 if (regnum == -1 || regnum == PC_REGNUM)
424 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
425 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
426 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
427 gregs, offsets->ps_offset);
428 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
429 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
430 gregs, offsets->cr_offset);
431 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
432 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
433 gregs, offsets->lr_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
436 gregs, offsets->ctr_offset);
437 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
439 gregs, offsets->xer_offset);
440 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
442 gregs, offsets->mq_offset);
443}
444
445/* Collect register REGNUM in the floating-point register set
446 REGSET. from register cache REGCACHE into the buffer specified by
447 FPREGS and LEN. If REGNUM is -1, do this for all registers in
448 REGSET. */
449
450void
451ppc_collect_fpregset (const struct regset *regset,
452 const struct regcache *regcache,
453 int regnum, void *fpregs, size_t len)
454{
455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
457 const struct ppc_reg_offsets *offsets = regset->descr;
458 size_t offset;
459 int i;
460
383f0f5b
JB
461 gdb_assert (ppc_floating_point_unit_p (gdbarch));
462
d195bc9f 463 offset = offsets->f0_offset;
366f009f
JB
464 for (i = tdep->ppc_fp0_regnum;
465 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 466 i++, offset += 8)
d195bc9f
MK
467 {
468 if (regnum == -1 || regnum == i)
bdbcb8b4 469 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
470 }
471
472 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
473 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
474 fpregs, offsets->fpscr_offset);
475}
476\f
0a613259 477
7a78ae4e 478/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 479
7a78ae4e
ND
480static CORE_ADDR
481read_memory_addr (CORE_ADDR memaddr, int len)
482{
483 return read_memory_unsigned_integer (memaddr, len);
484}
c906108c 485
7a78ae4e
ND
486static CORE_ADDR
487rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
488{
489 struct rs6000_framedata frame;
077276e8 490 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
491 return pc;
492}
493
0d1243d9
PG
494static int
495insn_changes_sp_or_jumps (unsigned long insn)
496{
497 int opcode = (insn >> 26) & 0x03f;
498 int sd = (insn >> 21) & 0x01f;
499 int a = (insn >> 16) & 0x01f;
500 int subcode = (insn >> 1) & 0x3ff;
501
502 /* Changes the stack pointer. */
503
504 /* NOTE: There are many ways to change the value of a given register.
505 The ways below are those used when the register is R1, the SP,
506 in a funtion's epilogue. */
507
508 if (opcode == 31 && subcode == 444 && a == 1)
509 return 1; /* mr R1,Rn */
510 if (opcode == 14 && sd == 1)
511 return 1; /* addi R1,Rn,simm */
512 if (opcode == 58 && sd == 1)
513 return 1; /* ld R1,ds(Rn) */
514
515 /* Transfers control. */
516
517 if (opcode == 18)
518 return 1; /* b */
519 if (opcode == 16)
520 return 1; /* bc */
521 if (opcode == 19 && subcode == 16)
522 return 1; /* bclr */
523 if (opcode == 19 && subcode == 528)
524 return 1; /* bcctr */
525
526 return 0;
527}
528
529/* Return true if we are in the function's epilogue, i.e. after the
530 instruction that destroyed the function's stack frame.
531
532 1) scan forward from the point of execution:
533 a) If you find an instruction that modifies the stack pointer
534 or transfers control (except a return), execution is not in
535 an epilogue, return.
536 b) Stop scanning if you find a return instruction or reach the
537 end of the function or reach the hard limit for the size of
538 an epilogue.
539 2) scan backward from the point of execution:
540 a) If you find an instruction that modifies the stack pointer,
541 execution *is* in an epilogue, return.
542 b) Stop scanning if you reach an instruction that transfers
543 control or the beginning of the function or reach the hard
544 limit for the size of an epilogue. */
545
546static int
547rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
548{
549 bfd_byte insn_buf[PPC_INSN_SIZE];
550 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
551 unsigned long insn;
552 struct frame_info *curfrm;
553
554 /* Find the search limits based on function boundaries and hard limit. */
555
556 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
557 return 0;
558
559 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
560 if (epilogue_start < func_start) epilogue_start = func_start;
561
562 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
563 if (epilogue_end > func_end) epilogue_end = func_end;
564
565 curfrm = get_current_frame ();
566
567 /* Scan forward until next 'blr'. */
568
569 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
570 {
571 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
572 return 0;
573 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
574 if (insn == 0x4e800020)
575 break;
576 if (insn_changes_sp_or_jumps (insn))
577 return 0;
578 }
579
580 /* Scan backward until adjustment to stack pointer (R1). */
581
582 for (scan_pc = pc - PPC_INSN_SIZE;
583 scan_pc >= epilogue_start;
584 scan_pc -= PPC_INSN_SIZE)
585 {
586 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
587 return 0;
588 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
589 if (insn_changes_sp_or_jumps (insn))
590 return 1;
591 }
592
593 return 0;
594}
595
b83266a0 596
c906108c
SS
597/* Fill in fi->saved_regs */
598
599struct frame_extra_info
600{
601 /* Functions calling alloca() change the value of the stack
602 pointer. We need to use initial stack pointer (which is saved in
603 r31 by gcc) in such cases. If a compiler emits traceback table,
604 then we should use the alloca register specified in traceback
605 table. FIXME. */
c5aa993b 606 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
607};
608
143985b7 609/* Get the ith function argument for the current function. */
b9362cc7 610static CORE_ADDR
143985b7
AF
611rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
612 struct type *type)
613{
50fd1280 614 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
615}
616
c906108c
SS
617/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
618
619static CORE_ADDR
7a78ae4e 620branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
621{
622 CORE_ADDR dest;
623 int immediate;
624 int absolute;
625 int ext_op;
626
627 absolute = (int) ((instr >> 1) & 1);
628
c5aa993b
JM
629 switch (opcode)
630 {
631 case 18:
632 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
633 if (absolute)
634 dest = immediate;
635 else
636 dest = pc + immediate;
637 break;
638
639 case 16:
640 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
641 if (absolute)
642 dest = immediate;
643 else
644 dest = pc + immediate;
645 break;
646
647 case 19:
648 ext_op = (instr >> 1) & 0x3ff;
649
650 if (ext_op == 16) /* br conditional register */
651 {
2188cbdd 652 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
653
654 /* If we are about to return from a signal handler, dest is
655 something like 0x3c90. The current frame is a signal handler
656 caller frame, upon completion of the sigreturn system call
657 execution will return to the saved PC in the frame. */
658 if (dest < TEXT_SEGMENT_BASE)
659 {
660 struct frame_info *fi;
661
662 fi = get_current_frame ();
663 if (fi != NULL)
8b36eed8 664 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 665 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
666 }
667 }
668
669 else if (ext_op == 528) /* br cond to count reg */
670 {
2188cbdd 671 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
672
673 /* If we are about to execute a system call, dest is something
674 like 0x22fc or 0x3b00. Upon completion the system call
675 will return to the address in the link register. */
676 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 677 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
678 }
679 else
680 return -1;
681 break;
c906108c 682
c5aa993b
JM
683 default:
684 return -1;
685 }
c906108c
SS
686 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
687}
688
689
690/* Sequence of bytes for breakpoint instruction. */
691
f4f9705a 692const static unsigned char *
7a78ae4e 693rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 694{
aaab4dba
AC
695 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
696 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 697 *bp_size = 4;
d7449b42 698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
699 return big_breakpoint;
700 else
701 return little_breakpoint;
702}
703
704
705/* AIX does not support PT_STEP. Simulate it. */
706
707void
379d08a1
AC
708rs6000_software_single_step (enum target_signal signal,
709 int insert_breakpoints_p)
c906108c 710{
7c40d541
KB
711 CORE_ADDR dummy;
712 int breakp_sz;
50fd1280 713 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
714 int ii, insn;
715 CORE_ADDR loc;
716 CORE_ADDR breaks[2];
717 int opcode;
718
c5aa993b
JM
719 if (insert_breakpoints_p)
720 {
c5aa993b 721 loc = read_pc ();
c906108c 722
c5aa993b 723 insn = read_memory_integer (loc, 4);
c906108c 724
7c40d541 725 breaks[0] = loc + breakp_sz;
c5aa993b
JM
726 opcode = insn >> 26;
727 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 728
c5aa993b
JM
729 /* Don't put two breakpoints on the same address. */
730 if (breaks[1] == breaks[0])
731 breaks[1] = -1;
c906108c 732
c5aa993b
JM
733 for (ii = 0; ii < 2; ++ii)
734 {
c5aa993b
JM
735 /* ignore invalid breakpoint. */
736 if (breaks[ii] == -1)
737 continue;
8181d85f 738 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 739 }
c5aa993b
JM
740 }
741 else
8181d85f 742 remove_single_step_breakpoints ();
c906108c 743
c906108c 744 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 745 /* What errors? {read,write}_memory call error(). */
c906108c
SS
746}
747
748
749/* return pc value after skipping a function prologue and also return
750 information about a function frame.
751
752 in struct rs6000_framedata fdata:
c5aa993b
JM
753 - frameless is TRUE, if function does not have a frame.
754 - nosavedpc is TRUE, if function does not save %pc value in its frame.
755 - offset is the initial size of this stack frame --- the amount by
756 which we decrement the sp to allocate the frame.
757 - saved_gpr is the number of the first saved gpr.
758 - saved_fpr is the number of the first saved fpr.
6be8bc0c 759 - saved_vr is the number of the first saved vr.
96ff0de4 760 - saved_ev is the number of the first saved ev.
c5aa993b
JM
761 - alloca_reg is the number of the register used for alloca() handling.
762 Otherwise -1.
763 - gpr_offset is the offset of the first saved gpr from the previous frame.
764 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 765 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 766 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
767 - lr_offset is the offset of the saved lr
768 - cr_offset is the offset of the saved cr
6be8bc0c 769 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 770 */
c906108c
SS
771
772#define SIGNED_SHORT(x) \
773 ((sizeof (short) == 2) \
774 ? ((int)(short)(x)) \
775 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
776
777#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
778
55d05f3b
KB
779/* Limit the number of skipped non-prologue instructions, as the examining
780 of the prologue is expensive. */
781static int max_skip_non_prologue_insns = 10;
782
783/* Given PC representing the starting address of a function, and
784 LIM_PC which is the (sloppy) limit to which to scan when looking
785 for a prologue, attempt to further refine this limit by using
786 the line data in the symbol table. If successful, a better guess
787 on where the prologue ends is returned, otherwise the previous
788 value of lim_pc is returned. */
634aa483
AC
789
790/* FIXME: cagney/2004-02-14: This function and logic have largely been
791 superseded by skip_prologue_using_sal. */
792
55d05f3b
KB
793static CORE_ADDR
794refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
795{
796 struct symtab_and_line prologue_sal;
797
798 prologue_sal = find_pc_line (pc, 0);
799 if (prologue_sal.line != 0)
800 {
801 int i;
802 CORE_ADDR addr = prologue_sal.end;
803
804 /* Handle the case in which compiler's optimizer/scheduler
805 has moved instructions into the prologue. We scan ahead
806 in the function looking for address ranges whose corresponding
807 line number is less than or equal to the first one that we
808 found for the function. (It can be less than when the
809 scheduler puts a body instruction before the first prologue
810 instruction.) */
811 for (i = 2 * max_skip_non_prologue_insns;
812 i > 0 && (lim_pc == 0 || addr < lim_pc);
813 i--)
814 {
815 struct symtab_and_line sal;
816
817 sal = find_pc_line (addr, 0);
818 if (sal.line == 0)
819 break;
820 if (sal.line <= prologue_sal.line
821 && sal.symtab == prologue_sal.symtab)
822 {
823 prologue_sal = sal;
824 }
825 addr = sal.end;
826 }
827
828 if (lim_pc == 0 || prologue_sal.end < lim_pc)
829 lim_pc = prologue_sal.end;
830 }
831 return lim_pc;
832}
833
773df3e5
JB
834/* Return nonzero if the given instruction OP can be part of the prologue
835 of a function and saves a parameter on the stack. FRAMEP should be
836 set if one of the previous instructions in the function has set the
837 Frame Pointer. */
838
839static int
840store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
841{
842 /* Move parameters from argument registers to temporary register. */
843 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
844 {
845 /* Rx must be scratch register r0. */
846 const int rx_regno = (op >> 16) & 31;
847 /* Ry: Only r3 - r10 are used for parameter passing. */
848 const int ry_regno = GET_SRC_REG (op);
849
850 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
851 {
852 *r0_contains_arg = 1;
853 return 1;
854 }
855 else
856 return 0;
857 }
858
859 /* Save a General Purpose Register on stack. */
860
861 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
862 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
863 {
864 /* Rx: Only r3 - r10 are used for parameter passing. */
865 const int rx_regno = GET_SRC_REG (op);
866
867 return (rx_regno >= 3 && rx_regno <= 10);
868 }
869
870 /* Save a General Purpose Register on stack via the Frame Pointer. */
871
872 if (framep &&
873 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
874 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
875 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
876 {
877 /* Rx: Usually, only r3 - r10 are used for parameter passing.
878 However, the compiler sometimes uses r0 to hold an argument. */
879 const int rx_regno = GET_SRC_REG (op);
880
881 return ((rx_regno >= 3 && rx_regno <= 10)
882 || (rx_regno == 0 && *r0_contains_arg));
883 }
884
885 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
886 {
887 /* Only f2 - f8 are used for parameter passing. */
888 const int src_regno = GET_SRC_REG (op);
889
890 return (src_regno >= 2 && src_regno <= 8);
891 }
892
893 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
894 {
895 /* Only f2 - f8 are used for parameter passing. */
896 const int src_regno = GET_SRC_REG (op);
897
898 return (src_regno >= 2 && src_regno <= 8);
899 }
900
901 /* Not an insn that saves a parameter on stack. */
902 return 0;
903}
55d05f3b 904
3c77c82a
DJ
905/* Assuming that INSN is a "bl" instruction located at PC, return
906 nonzero if the destination of the branch is a "blrl" instruction.
907
908 This sequence is sometimes found in certain function prologues.
909 It allows the function to load the LR register with a value that
910 they can use to access PIC data using PC-relative offsets. */
911
912static int
913bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
914{
915 const int opcode = 18;
916 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
917 int dest_insn;
918
919 if (dest == -1)
920 return 0; /* Should never happen, but just return zero to be safe. */
921
922 dest_insn = read_memory_integer (dest, 4);
923 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
924 return 1;
925
926 return 0;
927}
928
7a78ae4e 929static CORE_ADDR
077276e8 930skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
931{
932 CORE_ADDR orig_pc = pc;
55d05f3b 933 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 934 CORE_ADDR li_found_pc = 0;
50fd1280 935 gdb_byte buf[4];
c906108c
SS
936 unsigned long op;
937 long offset = 0;
6be8bc0c 938 long vr_saved_offset = 0;
482ca3f5
KB
939 int lr_reg = -1;
940 int cr_reg = -1;
6be8bc0c 941 int vr_reg = -1;
96ff0de4
EZ
942 int ev_reg = -1;
943 long ev_offset = 0;
6be8bc0c 944 int vrsave_reg = -1;
c906108c
SS
945 int reg;
946 int framep = 0;
947 int minimal_toc_loaded = 0;
ddb20c56 948 int prev_insn_was_prologue_insn = 1;
55d05f3b 949 int num_skip_non_prologue_insns = 0;
773df3e5 950 int r0_contains_arg = 0;
96ff0de4 951 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 952 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 953
55d05f3b
KB
954 /* Attempt to find the end of the prologue when no limit is specified.
955 Note that refine_prologue_limit() has been written so that it may
956 be used to "refine" the limits of non-zero PC values too, but this
957 is only safe if we 1) trust the line information provided by the
958 compiler and 2) iterate enough to actually find the end of the
959 prologue.
960
961 It may become a good idea at some point (for both performance and
962 accuracy) to unconditionally call refine_prologue_limit(). But,
963 until we can make a clear determination that this is beneficial,
964 we'll play it safe and only use it to obtain a limit when none
965 has been specified. */
966 if (lim_pc == 0)
967 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 968
ddb20c56 969 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
970 fdata->saved_gpr = -1;
971 fdata->saved_fpr = -1;
6be8bc0c 972 fdata->saved_vr = -1;
96ff0de4 973 fdata->saved_ev = -1;
c906108c
SS
974 fdata->alloca_reg = -1;
975 fdata->frameless = 1;
976 fdata->nosavedpc = 1;
977
55d05f3b 978 for (;; pc += 4)
c906108c 979 {
ddb20c56
KB
980 /* Sometimes it isn't clear if an instruction is a prologue
981 instruction or not. When we encounter one of these ambiguous
982 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
983 Otherwise, we'll assume that it really is a prologue instruction. */
984 if (prev_insn_was_prologue_insn)
985 last_prologue_pc = pc;
55d05f3b
KB
986
987 /* Stop scanning if we've hit the limit. */
988 if (lim_pc != 0 && pc >= lim_pc)
989 break;
990
ddb20c56
KB
991 prev_insn_was_prologue_insn = 1;
992
55d05f3b 993 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
994 if (target_read_memory (pc, buf, 4))
995 break;
996 op = extract_signed_integer (buf, 4);
c906108c 997
c5aa993b
JM
998 if ((op & 0xfc1fffff) == 0x7c0802a6)
999 { /* mflr Rx */
43b1ab88
AC
1000 /* Since shared library / PIC code, which needs to get its
1001 address at runtime, can appear to save more than one link
1002 register vis:
1003
1004 *INDENT-OFF*
1005 stwu r1,-304(r1)
1006 mflr r3
1007 bl 0xff570d0 (blrl)
1008 stw r30,296(r1)
1009 mflr r30
1010 stw r31,300(r1)
1011 stw r3,308(r1);
1012 ...
1013 *INDENT-ON*
1014
1015 remember just the first one, but skip over additional
1016 ones. */
721d14ba 1017 if (lr_reg == -1)
43b1ab88 1018 lr_reg = (op & 0x03e00000);
773df3e5
JB
1019 if (lr_reg == 0)
1020 r0_contains_arg = 0;
c5aa993b 1021 continue;
c5aa993b
JM
1022 }
1023 else if ((op & 0xfc1fffff) == 0x7c000026)
1024 { /* mfcr Rx */
98f08d3d 1025 cr_reg = (op & 0x03e00000);
773df3e5
JB
1026 if (cr_reg == 0)
1027 r0_contains_arg = 0;
c5aa993b 1028 continue;
c906108c 1029
c906108c 1030 }
c5aa993b
JM
1031 else if ((op & 0xfc1f0000) == 0xd8010000)
1032 { /* stfd Rx,NUM(r1) */
1033 reg = GET_SRC_REG (op);
1034 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1035 {
1036 fdata->saved_fpr = reg;
1037 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1038 }
1039 continue;
c906108c 1040
c5aa993b
JM
1041 }
1042 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1043 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1044 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1045 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1046 {
1047
1048 reg = GET_SRC_REG (op);
1049 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1050 {
1051 fdata->saved_gpr = reg;
7a78ae4e 1052 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1053 op &= ~3UL;
c5aa993b
JM
1054 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1055 }
1056 continue;
c906108c 1057
ddb20c56
KB
1058 }
1059 else if ((op & 0xffff0000) == 0x60000000)
1060 {
96ff0de4 1061 /* nop */
ddb20c56
KB
1062 /* Allow nops in the prologue, but do not consider them to
1063 be part of the prologue unless followed by other prologue
1064 instructions. */
1065 prev_insn_was_prologue_insn = 0;
1066 continue;
1067
c906108c 1068 }
c5aa993b
JM
1069 else if ((op & 0xffff0000) == 0x3c000000)
1070 { /* addis 0,0,NUM, used
1071 for >= 32k frames */
1072 fdata->offset = (op & 0x0000ffff) << 16;
1073 fdata->frameless = 0;
773df3e5 1074 r0_contains_arg = 0;
c5aa993b
JM
1075 continue;
1076
1077 }
1078 else if ((op & 0xffff0000) == 0x60000000)
1079 { /* ori 0,0,NUM, 2nd ha
1080 lf of >= 32k frames */
1081 fdata->offset |= (op & 0x0000ffff);
1082 fdata->frameless = 0;
773df3e5 1083 r0_contains_arg = 0;
c5aa993b
JM
1084 continue;
1085
1086 }
be723e22 1087 else if (lr_reg >= 0 &&
98f08d3d
KB
1088 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1089 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1090 /* stw Rx, NUM(r1) */
1091 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1092 /* stwu Rx, NUM(r1) */
1093 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1094 { /* where Rx == lr */
1095 fdata->lr_offset = offset;
c5aa993b 1096 fdata->nosavedpc = 0;
be723e22
MS
1097 /* Invalidate lr_reg, but don't set it to -1.
1098 That would mean that it had never been set. */
1099 lr_reg = -2;
98f08d3d
KB
1100 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1101 (op & 0xfc000000) == 0x90000000) /* stw */
1102 {
1103 /* Does not update r1, so add displacement to lr_offset. */
1104 fdata->lr_offset += SIGNED_SHORT (op);
1105 }
c5aa993b
JM
1106 continue;
1107
1108 }
be723e22 1109 else if (cr_reg >= 0 &&
98f08d3d
KB
1110 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1111 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1112 /* stw Rx, NUM(r1) */
1113 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1114 /* stwu Rx, NUM(r1) */
1115 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1116 { /* where Rx == cr */
1117 fdata->cr_offset = offset;
be723e22
MS
1118 /* Invalidate cr_reg, but don't set it to -1.
1119 That would mean that it had never been set. */
1120 cr_reg = -2;
98f08d3d
KB
1121 if ((op & 0xfc000003) == 0xf8000000 ||
1122 (op & 0xfc000000) == 0x90000000)
1123 {
1124 /* Does not update r1, so add displacement to cr_offset. */
1125 fdata->cr_offset += SIGNED_SHORT (op);
1126 }
c5aa993b
JM
1127 continue;
1128
1129 }
721d14ba
DJ
1130 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1131 {
1132 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1133 prediction bits. If the LR has already been saved, we can
1134 skip it. */
1135 continue;
1136 }
c5aa993b
JM
1137 else if (op == 0x48000005)
1138 { /* bl .+4 used in
1139 -mrelocatable */
1140 continue;
1141
1142 }
1143 else if (op == 0x48000004)
1144 { /* b .+4 (xlc) */
1145 break;
1146
c5aa993b 1147 }
6be8bc0c
EZ
1148 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1149 in V.4 -mminimal-toc */
c5aa993b
JM
1150 (op & 0xffff0000) == 0x3bde0000)
1151 { /* addi 30,30,foo@l */
1152 continue;
c906108c 1153
c5aa993b
JM
1154 }
1155 else if ((op & 0xfc000001) == 0x48000001)
1156 { /* bl foo,
1157 to save fprs??? */
c906108c 1158
c5aa993b 1159 fdata->frameless = 0;
3c77c82a
DJ
1160
1161 /* If the return address has already been saved, we can skip
1162 calls to blrl (for PIC). */
1163 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1164 continue;
1165
6be8bc0c 1166 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1167 the first three instructions of the prologue and either
1168 we have no line table information or the line info tells
1169 us that the subroutine call is not part of the line
1170 associated with the prologue. */
c5aa993b 1171 if ((pc - orig_pc) > 8)
ebd98106
FF
1172 {
1173 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1174 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1175
1176 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1177 break;
1178 }
c5aa993b
JM
1179
1180 op = read_memory_integer (pc + 4, 4);
1181
6be8bc0c
EZ
1182 /* At this point, make sure this is not a trampoline
1183 function (a function that simply calls another functions,
1184 and nothing else). If the next is not a nop, this branch
1185 was part of the function prologue. */
c5aa993b
JM
1186
1187 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1188 break; /* don't skip over
1189 this branch */
1190 continue;
1191
c5aa993b 1192 }
98f08d3d
KB
1193 /* update stack pointer */
1194 else if ((op & 0xfc1f0000) == 0x94010000)
1195 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1196 fdata->frameless = 0;
1197 fdata->offset = SIGNED_SHORT (op);
1198 offset = fdata->offset;
1199 continue;
c5aa993b 1200 }
98f08d3d
KB
1201 else if ((op & 0xfc1f016a) == 0x7c01016e)
1202 { /* stwux rX,r1,rY */
1203 /* no way to figure out what r1 is going to be */
1204 fdata->frameless = 0;
1205 offset = fdata->offset;
1206 continue;
1207 }
1208 else if ((op & 0xfc1f0003) == 0xf8010001)
1209 { /* stdu rX,NUM(r1) */
1210 fdata->frameless = 0;
1211 fdata->offset = SIGNED_SHORT (op & ~3UL);
1212 offset = fdata->offset;
1213 continue;
1214 }
1215 else if ((op & 0xfc1f016a) == 0x7c01016a)
1216 { /* stdux rX,r1,rY */
1217 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1218 fdata->frameless = 0;
1219 offset = fdata->offset;
1220 continue;
c5aa993b 1221 }
98f08d3d
KB
1222 /* Load up minimal toc pointer */
1223 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1224 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1225 && !minimal_toc_loaded)
98f08d3d 1226 {
c5aa993b
JM
1227 minimal_toc_loaded = 1;
1228 continue;
1229
f6077098
KB
1230 /* move parameters from argument registers to local variable
1231 registers */
1232 }
1233 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1234 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1235 (((op >> 21) & 31) <= 10) &&
96ff0de4 1236 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1237 {
1238 continue;
1239
c5aa993b
JM
1240 /* store parameters in stack */
1241 }
e802b915 1242 /* Move parameters from argument registers to temporary register. */
773df3e5 1243 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1244 {
c5aa993b
JM
1245 continue;
1246
1247 /* Set up frame pointer */
1248 }
1249 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1250 || op == 0x7c3f0b78)
1251 { /* mr r31, r1 */
1252 fdata->frameless = 0;
1253 framep = 1;
6f99cb26 1254 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1255 continue;
1256
1257 /* Another way to set up the frame pointer. */
1258 }
1259 else if ((op & 0xfc1fffff) == 0x38010000)
1260 { /* addi rX, r1, 0x0 */
1261 fdata->frameless = 0;
1262 framep = 1;
6f99cb26
AC
1263 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1264 + ((op & ~0x38010000) >> 21));
c5aa993b 1265 continue;
c5aa993b 1266 }
6be8bc0c
EZ
1267 /* AltiVec related instructions. */
1268 /* Store the vrsave register (spr 256) in another register for
1269 later manipulation, or load a register into the vrsave
1270 register. 2 instructions are used: mfvrsave and
1271 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1272 and mtspr SPR256, Rn. */
1273 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1274 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1275 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1276 {
1277 vrsave_reg = GET_SRC_REG (op);
1278 continue;
1279 }
1280 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1281 {
1282 continue;
1283 }
1284 /* Store the register where vrsave was saved to onto the stack:
1285 rS is the register where vrsave was stored in a previous
1286 instruction. */
1287 /* 100100 sssss 00001 dddddddd dddddddd */
1288 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1289 {
1290 if (vrsave_reg == GET_SRC_REG (op))
1291 {
1292 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1293 vrsave_reg = -1;
1294 }
1295 continue;
1296 }
1297 /* Compute the new value of vrsave, by modifying the register
1298 where vrsave was saved to. */
1299 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1300 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1301 {
1302 continue;
1303 }
1304 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1305 in a pair of insns to save the vector registers on the
1306 stack. */
1307 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1308 /* 001110 01110 00000 iiii iiii iiii iiii */
1309 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1310 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1311 {
773df3e5
JB
1312 if ((op & 0xffff0000) == 0x38000000)
1313 r0_contains_arg = 0;
6be8bc0c
EZ
1314 li_found_pc = pc;
1315 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1316
1317 /* This insn by itself is not part of the prologue, unless
1318 if part of the pair of insns mentioned above. So do not
1319 record this insn as part of the prologue yet. */
1320 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1321 }
1322 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1323 /* 011111 sssss 11111 00000 00111001110 */
1324 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1325 {
1326 if (pc == (li_found_pc + 4))
1327 {
1328 vr_reg = GET_SRC_REG (op);
1329 /* If this is the first vector reg to be saved, or if
1330 it has a lower number than others previously seen,
1331 reupdate the frame info. */
1332 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1333 {
1334 fdata->saved_vr = vr_reg;
1335 fdata->vr_offset = vr_saved_offset + offset;
1336 }
1337 vr_saved_offset = -1;
1338 vr_reg = -1;
1339 li_found_pc = 0;
1340 }
1341 }
1342 /* End AltiVec related instructions. */
96ff0de4
EZ
1343
1344 /* Start BookE related instructions. */
1345 /* Store gen register S at (r31+uimm).
1346 Any register less than r13 is volatile, so we don't care. */
1347 /* 000100 sssss 11111 iiiii 01100100001 */
1348 else if (arch_info->mach == bfd_mach_ppc_e500
1349 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1350 {
1351 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1352 {
1353 unsigned int imm;
1354 ev_reg = GET_SRC_REG (op);
1355 imm = (op >> 11) & 0x1f;
1356 ev_offset = imm * 8;
1357 /* If this is the first vector reg to be saved, or if
1358 it has a lower number than others previously seen,
1359 reupdate the frame info. */
1360 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1361 {
1362 fdata->saved_ev = ev_reg;
1363 fdata->ev_offset = ev_offset + offset;
1364 }
1365 }
1366 continue;
1367 }
1368 /* Store gen register rS at (r1+rB). */
1369 /* 000100 sssss 00001 bbbbb 01100100000 */
1370 else if (arch_info->mach == bfd_mach_ppc_e500
1371 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1372 {
1373 if (pc == (li_found_pc + 4))
1374 {
1375 ev_reg = GET_SRC_REG (op);
1376 /* If this is the first vector reg to be saved, or if
1377 it has a lower number than others previously seen,
1378 reupdate the frame info. */
1379 /* We know the contents of rB from the previous instruction. */
1380 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1381 {
1382 fdata->saved_ev = ev_reg;
1383 fdata->ev_offset = vr_saved_offset + offset;
1384 }
1385 vr_saved_offset = -1;
1386 ev_reg = -1;
1387 li_found_pc = 0;
1388 }
1389 continue;
1390 }
1391 /* Store gen register r31 at (rA+uimm). */
1392 /* 000100 11111 aaaaa iiiii 01100100001 */
1393 else if (arch_info->mach == bfd_mach_ppc_e500
1394 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1395 {
1396 /* Wwe know that the source register is 31 already, but
1397 it can't hurt to compute it. */
1398 ev_reg = GET_SRC_REG (op);
1399 ev_offset = ((op >> 11) & 0x1f) * 8;
1400 /* If this is the first vector reg to be saved, or if
1401 it has a lower number than others previously seen,
1402 reupdate the frame info. */
1403 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1404 {
1405 fdata->saved_ev = ev_reg;
1406 fdata->ev_offset = ev_offset + offset;
1407 }
1408
1409 continue;
1410 }
1411 /* Store gen register S at (r31+r0).
1412 Store param on stack when offset from SP bigger than 4 bytes. */
1413 /* 000100 sssss 11111 00000 01100100000 */
1414 else if (arch_info->mach == bfd_mach_ppc_e500
1415 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1416 {
1417 if (pc == (li_found_pc + 4))
1418 {
1419 if ((op & 0x03e00000) >= 0x01a00000)
1420 {
1421 ev_reg = GET_SRC_REG (op);
1422 /* If this is the first vector reg to be saved, or if
1423 it has a lower number than others previously seen,
1424 reupdate the frame info. */
1425 /* We know the contents of r0 from the previous
1426 instruction. */
1427 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1428 {
1429 fdata->saved_ev = ev_reg;
1430 fdata->ev_offset = vr_saved_offset + offset;
1431 }
1432 ev_reg = -1;
1433 }
1434 vr_saved_offset = -1;
1435 li_found_pc = 0;
1436 continue;
1437 }
1438 }
1439 /* End BookE related instructions. */
1440
c5aa993b
JM
1441 else
1442 {
55d05f3b
KB
1443 /* Not a recognized prologue instruction.
1444 Handle optimizer code motions into the prologue by continuing
1445 the search if we have no valid frame yet or if the return
1446 address is not yet saved in the frame. */
1447 if (fdata->frameless == 0
1448 && (lr_reg == -1 || fdata->nosavedpc == 0))
1449 break;
1450
1451 if (op == 0x4e800020 /* blr */
1452 || op == 0x4e800420) /* bctr */
1453 /* Do not scan past epilogue in frameless functions or
1454 trampolines. */
1455 break;
1456 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1457 /* Never skip branches. */
55d05f3b
KB
1458 break;
1459
1460 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1461 /* Do not scan too many insns, scanning insns is expensive with
1462 remote targets. */
1463 break;
1464
1465 /* Continue scanning. */
1466 prev_insn_was_prologue_insn = 0;
1467 continue;
c5aa993b 1468 }
c906108c
SS
1469 }
1470
1471#if 0
1472/* I have problems with skipping over __main() that I need to address
1473 * sometime. Previously, I used to use misc_function_vector which
1474 * didn't work as well as I wanted to be. -MGO */
1475
1476 /* If the first thing after skipping a prolog is a branch to a function,
1477 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1478 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1479 work before calling a function right after a prologue, thus we can
64366f1c 1480 single out such gcc2 behaviour. */
c906108c 1481
c906108c 1482
c5aa993b
JM
1483 if ((op & 0xfc000001) == 0x48000001)
1484 { /* bl foo, an initializer function? */
1485 op = read_memory_integer (pc + 4, 4);
1486
1487 if (op == 0x4def7b82)
1488 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1489
64366f1c
EZ
1490 /* Check and see if we are in main. If so, skip over this
1491 initializer function as well. */
c906108c 1492
c5aa993b 1493 tmp = find_pc_misc_function (pc);
6314a349
AC
1494 if (tmp >= 0
1495 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1496 return pc + 8;
1497 }
c906108c 1498 }
c906108c 1499#endif /* 0 */
c5aa993b
JM
1500
1501 fdata->offset = -fdata->offset;
ddb20c56 1502 return last_prologue_pc;
c906108c
SS
1503}
1504
1505
1506/*************************************************************************
f6077098 1507 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1508 frames, etc.
1509*************************************************************************/
1510
c906108c 1511
11269d7e
AC
1512/* All the ABI's require 16 byte alignment. */
1513static CORE_ADDR
1514rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1515{
1516 return (addr & -16);
1517}
1518
7a78ae4e 1519/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1520 the first eight words of the argument list (that might be less than
1521 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1522 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1523 passed in fpr's, in addition to that. Rest of the parameters if any
1524 are passed in user stack. There might be cases in which half of the
c906108c
SS
1525 parameter is copied into registers, the other half is pushed into
1526 stack.
1527
7a78ae4e
ND
1528 Stack must be aligned on 64-bit boundaries when synthesizing
1529 function calls.
1530
c906108c
SS
1531 If the function is returning a structure, then the return address is passed
1532 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1533 starting from r4. */
c906108c 1534
7a78ae4e 1535static CORE_ADDR
7d9b040b 1536rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1537 struct regcache *regcache, CORE_ADDR bp_addr,
1538 int nargs, struct value **args, CORE_ADDR sp,
1539 int struct_return, CORE_ADDR struct_addr)
c906108c 1540{
7a41266b 1541 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1542 int ii;
1543 int len = 0;
c5aa993b
JM
1544 int argno; /* current argument number */
1545 int argbytes; /* current argument byte */
50fd1280 1546 gdb_byte tmp_buffer[50];
c5aa993b 1547 int f_argno = 0; /* current floating point argno */
21283beb 1548 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1549 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1550
ea7c478f 1551 struct value *arg = 0;
c906108c
SS
1552 struct type *type;
1553
1554 CORE_ADDR saved_sp;
1555
383f0f5b
JB
1556 /* The calling convention this function implements assumes the
1557 processor has floating-point registers. We shouldn't be using it
1558 on PPC variants that lack them. */
1559 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1560
64366f1c 1561 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1562 Copy them appropriately. */
1563 ii = 0;
1564
1565 /* If the function is returning a `struct', then the first word
1566 (which will be passed in r3) is used for struct return address.
1567 In that case we should advance one word and start from r4
1568 register to copy parameters. */
1569 if (struct_return)
1570 {
1571 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1572 struct_addr);
1573 ii++;
1574 }
c906108c
SS
1575
1576/*
c5aa993b
JM
1577 effectively indirect call... gcc does...
1578
1579 return_val example( float, int);
1580
1581 eabi:
1582 float in fp0, int in r3
1583 offset of stack on overflow 8/16
1584 for varargs, must go by type.
1585 power open:
1586 float in r3&r4, int in r5
1587 offset of stack on overflow different
1588 both:
1589 return in r3 or f0. If no float, must study how gcc emulates floats;
1590 pay attention to arg promotion.
1591 User may have to cast\args to handle promotion correctly
1592 since gdb won't know if prototype supplied or not.
1593 */
c906108c 1594
c5aa993b
JM
1595 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1596 {
3acba339 1597 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1598
1599 arg = args[argno];
df407dfe 1600 type = check_typedef (value_type (arg));
c5aa993b
JM
1601 len = TYPE_LENGTH (type);
1602
1603 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1604 {
1605
64366f1c 1606 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1607 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1608 there is no way we would run out of them. */
c5aa993b 1609
9f335945
KB
1610 gdb_assert (len <= 8);
1611
1612 regcache_cooked_write (regcache,
1613 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1614 value_contents (arg));
c5aa993b
JM
1615 ++f_argno;
1616 }
1617
f6077098 1618 if (len > reg_size)
c5aa993b
JM
1619 {
1620
64366f1c 1621 /* Argument takes more than one register. */
c5aa993b
JM
1622 while (argbytes < len)
1623 {
50fd1280 1624 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1625 memset (word, 0, reg_size);
1626 memcpy (word,
0fd88904 1627 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1628 (len - argbytes) > reg_size
1629 ? reg_size : len - argbytes);
9f335945
KB
1630 regcache_cooked_write (regcache,
1631 tdep->ppc_gp0_regnum + 3 + ii,
1632 word);
f6077098 1633 ++ii, argbytes += reg_size;
c5aa993b
JM
1634
1635 if (ii >= 8)
1636 goto ran_out_of_registers_for_arguments;
1637 }
1638 argbytes = 0;
1639 --ii;
1640 }
1641 else
64366f1c
EZ
1642 {
1643 /* Argument can fit in one register. No problem. */
d7449b42 1644 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1645 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1646
1647 memset (word, 0, reg_size);
0fd88904 1648 memcpy (word, value_contents (arg), len);
9f335945 1649 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1650 }
1651 ++argno;
c906108c 1652 }
c906108c
SS
1653
1654ran_out_of_registers_for_arguments:
1655
7a78ae4e 1656 saved_sp = read_sp ();
cc9836a8 1657
64366f1c 1658 /* Location for 8 parameters are always reserved. */
7a78ae4e 1659 sp -= wordsize * 8;
f6077098 1660
64366f1c 1661 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1662 sp -= wordsize * 6;
f6077098 1663
64366f1c 1664 /* Stack pointer must be quadword aligned. */
7a78ae4e 1665 sp &= -16;
c906108c 1666
64366f1c
EZ
1667 /* If there are more arguments, allocate space for them in
1668 the stack, then push them starting from the ninth one. */
c906108c 1669
c5aa993b
JM
1670 if ((argno < nargs) || argbytes)
1671 {
1672 int space = 0, jj;
c906108c 1673
c5aa993b
JM
1674 if (argbytes)
1675 {
1676 space += ((len - argbytes + 3) & -4);
1677 jj = argno + 1;
1678 }
1679 else
1680 jj = argno;
c906108c 1681
c5aa993b
JM
1682 for (; jj < nargs; ++jj)
1683 {
ea7c478f 1684 struct value *val = args[jj];
df407dfe 1685 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1686 }
c906108c 1687
64366f1c 1688 /* Add location required for the rest of the parameters. */
f6077098 1689 space = (space + 15) & -16;
c5aa993b 1690 sp -= space;
c906108c 1691
7aea86e6
AC
1692 /* This is another instance we need to be concerned about
1693 securing our stack space. If we write anything underneath %sp
1694 (r1), we might conflict with the kernel who thinks he is free
1695 to use this area. So, update %sp first before doing anything
1696 else. */
1697
1698 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1699
64366f1c
EZ
1700 /* If the last argument copied into the registers didn't fit there
1701 completely, push the rest of it into stack. */
c906108c 1702
c5aa993b
JM
1703 if (argbytes)
1704 {
1705 write_memory (sp + 24 + (ii * 4),
50fd1280 1706 value_contents (arg) + argbytes,
c5aa993b
JM
1707 len - argbytes);
1708 ++argno;
1709 ii += ((len - argbytes + 3) & -4) / 4;
1710 }
c906108c 1711
64366f1c 1712 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1713 for (; argno < nargs; ++argno)
1714 {
c906108c 1715
c5aa993b 1716 arg = args[argno];
df407dfe 1717 type = check_typedef (value_type (arg));
c5aa993b 1718 len = TYPE_LENGTH (type);
c906108c
SS
1719
1720
64366f1c
EZ
1721 /* Float types should be passed in fpr's, as well as in the
1722 stack. */
c5aa993b
JM
1723 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1724 {
c906108c 1725
9f335945 1726 gdb_assert (len <= 8);
c906108c 1727
9f335945
KB
1728 regcache_cooked_write (regcache,
1729 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1730 value_contents (arg));
c5aa993b
JM
1731 ++f_argno;
1732 }
c906108c 1733
50fd1280 1734 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1735 ii += ((len + 3) & -4) / 4;
1736 }
c906108c 1737 }
c906108c 1738
69517000 1739 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1740 be set _before_ the corresponding stack space is used. On AIX,
1741 this even applies when the target has been completely stopped!
1742 Not doing this can lead to conflicts with the kernel which thinks
1743 that it still has control over this not-yet-allocated stack
1744 region. */
33a7c2fc
AC
1745 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1746
7aea86e6 1747 /* Set back chain properly. */
8ba0209f
AM
1748 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1749 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1750
e56a0ecc
AC
1751 /* Point the inferior function call's return address at the dummy's
1752 breakpoint. */
1753 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1754
794a477a
AC
1755 /* Set the TOC register, get the value from the objfile reader
1756 which, in turn, gets it from the VMAP table. */
1757 if (rs6000_find_toc_address_hook != NULL)
1758 {
1759 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1760 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1761 }
1762
c906108c
SS
1763 target_store_registers (-1);
1764 return sp;
1765}
c906108c 1766
d217aaed
MK
1767static enum return_value_convention
1768rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1769 struct regcache *regcache, gdb_byte *readbuf,
1770 const gdb_byte *writebuf)
c906108c 1771{
ace1378a 1772 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
d217aaed 1773 gdb_byte buf[8];
c906108c 1774
383f0f5b
JB
1775 /* The calling convention this function implements assumes the
1776 processor has floating-point registers. We shouldn't be using it
d217aaed 1777 on PowerPC variants that lack them. */
383f0f5b
JB
1778 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1779
d217aaed
MK
1780 /* AltiVec extension: Functions that declare a vector data type as a
1781 return value place that return value in VR2. */
1782 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1783 && TYPE_LENGTH (valtype) == 16)
c5aa993b 1784 {
d217aaed
MK
1785 if (readbuf)
1786 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1787 if (writebuf)
1788 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
c906108c 1789
d217aaed 1790 return RETURN_VALUE_REGISTER_CONVENTION;
c5aa993b 1791 }
d217aaed
MK
1792
1793 /* If the called subprogram returns an aggregate, there exists an
1794 implicit first argument, whose value is the address of a caller-
1795 allocated buffer into which the callee is assumed to store its
1796 return value. All explicit parameters are appropriately
1797 relabeled. */
1798 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1799 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1800 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1801 return RETURN_VALUE_STRUCT_CONVENTION;
1802
1803 /* Scalar floating-point values are returned in FPR1 for float or
1804 double, and in FPR1:FPR2 for quadword precision. Fortran
1805 complex*8 and complex*16 are returned in FPR1:FPR2, and
1806 complex*32 is returned in FPR1:FPR4. */
1807 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1808 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1809 {
1810 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1811 gdb_byte regval[8];
1812
1813 /* FIXME: kettenis/2007-01-01: Add support for quadword
1814 precision and complex. */
1815
1816 if (readbuf)
1817 {
1818 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1819 convert_typed_floating (regval, regtype, readbuf, valtype);
1820 }
1821 if (writebuf)
1822 {
1823 convert_typed_floating (writebuf, valtype, regval, regtype);
1824 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1825 }
1826
1827 return RETURN_VALUE_REGISTER_CONVENTION;
1828 }
1829
1830 /* Values of the types int, long, short, pointer, and char (length
1831 is less than or equal to four bytes), as well as bit values of
1832 lengths less than or equal to 32 bits, must be returned right
1833 justified in GPR3 with signed values sign extended and unsigned
1834 values zero extended, as necessary. */
1835 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
ace1378a 1836 {
d217aaed
MK
1837 if (readbuf)
1838 {
1839 ULONGEST regval;
1840
1841 /* For reading we don't have to worry about sign extension. */
1842 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1843 &regval);
1844 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1845 }
1846 if (writebuf)
1847 {
1848 /* For writing, use unpack_long since that should handle any
1849 required sign extension. */
1850 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1851 unpack_long (valtype, writebuf));
1852 }
1853
1854 return RETURN_VALUE_REGISTER_CONVENTION;
ace1378a 1855 }
d217aaed
MK
1856
1857 /* Eight-byte non-floating-point scalar values must be returned in
1858 GPR3:GPR4. */
1859
1860 if (TYPE_LENGTH (valtype) == 8)
c5aa993b 1861 {
d217aaed
MK
1862 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1863 gdb_assert (tdep->wordsize == 4);
1864
1865 if (readbuf)
1866 {
1867 gdb_byte regval[8];
1868
1869 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1870 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1871 regval + 4);
1872 memcpy (readbuf, regval, 8);
1873 }
1874 if (writebuf)
1875 {
1876 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1877 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1878 writebuf + 4);
1879 }
1880
1881 return RETURN_VALUE_REGISTER_CONVENTION;
c906108c 1882 }
d217aaed
MK
1883
1884 return RETURN_VALUE_STRUCT_CONVENTION;
c906108c
SS
1885}
1886
977adac5
ND
1887/* Return whether handle_inferior_event() should proceed through code
1888 starting at PC in function NAME when stepping.
1889
1890 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1891 handle memory references that are too distant to fit in instructions
1892 generated by the compiler. For example, if 'foo' in the following
1893 instruction:
1894
1895 lwz r9,foo(r2)
1896
1897 is greater than 32767, the linker might replace the lwz with a branch to
1898 somewhere in @FIX1 that does the load in 2 instructions and then branches
1899 back to where execution should continue.
1900
1901 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1902 Unfortunately, the linker uses the "b" instruction for the
1903 branches, meaning that the link register doesn't get set.
1904 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1905
2ec664f5
MS
1906 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1907 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1908 @FIX code. */
977adac5
ND
1909
1910int
1911rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1912{
1913 return name && !strncmp (name, "@FIX", 4);
1914}
1915
1916/* Skip code that the user doesn't want to see when stepping:
1917
1918 1. Indirect function calls use a piece of trampoline code to do context
1919 switching, i.e. to set the new TOC table. Skip such code if we are on
1920 its first instruction (as when we have single-stepped to here).
1921
1922 2. Skip shared library trampoline code (which is different from
c906108c 1923 indirect function call trampolines).
977adac5
ND
1924
1925 3. Skip bigtoc fixup code.
1926
c906108c 1927 Result is desired PC to step until, or NULL if we are not in
977adac5 1928 code that should be skipped. */
c906108c
SS
1929
1930CORE_ADDR
7a78ae4e 1931rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1932{
52f0bd74 1933 unsigned int ii, op;
977adac5 1934 int rel;
c906108c 1935 CORE_ADDR solib_target_pc;
977adac5 1936 struct minimal_symbol *msymbol;
c906108c 1937
c5aa993b
JM
1938 static unsigned trampoline_code[] =
1939 {
1940 0x800b0000, /* l r0,0x0(r11) */
1941 0x90410014, /* st r2,0x14(r1) */
1942 0x7c0903a6, /* mtctr r0 */
1943 0x804b0004, /* l r2,0x4(r11) */
1944 0x816b0008, /* l r11,0x8(r11) */
1945 0x4e800420, /* bctr */
1946 0x4e800020, /* br */
1947 0
c906108c
SS
1948 };
1949
977adac5
ND
1950 /* Check for bigtoc fixup code. */
1951 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1952 if (msymbol
1953 && rs6000_in_solib_return_trampoline (pc,
1954 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1955 {
1956 /* Double-check that the third instruction from PC is relative "b". */
1957 op = read_memory_integer (pc + 8, 4);
1958 if ((op & 0xfc000003) == 0x48000000)
1959 {
1960 /* Extract bits 6-29 as a signed 24-bit relative word address and
1961 add it to the containing PC. */
1962 rel = ((int)(op << 6) >> 6);
1963 return pc + 8 + rel;
1964 }
1965 }
1966
c906108c
SS
1967 /* If pc is in a shared library trampoline, return its target. */
1968 solib_target_pc = find_solib_trampoline_target (pc);
1969 if (solib_target_pc)
1970 return solib_target_pc;
1971
c5aa993b
JM
1972 for (ii = 0; trampoline_code[ii]; ++ii)
1973 {
1974 op = read_memory_integer (pc + (ii * 4), 4);
1975 if (op != trampoline_code[ii])
1976 return 0;
1977 }
1978 ii = read_register (11); /* r11 holds destination addr */
21283beb 1979 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1980 return pc;
1981}
1982
7a78ae4e 1983/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1984 isn't available with that word size, return 0. */
7a78ae4e
ND
1985
1986static int
1987regsize (const struct reg *reg, int wordsize)
1988{
1989 return wordsize == 8 ? reg->sz64 : reg->sz32;
1990}
1991
1992/* Return the name of register number N, or null if no such register exists
64366f1c 1993 in the current architecture. */
7a78ae4e 1994
fa88f677 1995static const char *
7a78ae4e
ND
1996rs6000_register_name (int n)
1997{
21283beb 1998 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1999 const struct reg *reg = tdep->regs + n;
2000
2001 if (!regsize (reg, tdep->wordsize))
2002 return NULL;
2003 return reg->name;
2004}
2005
7a78ae4e
ND
2006/* Return the GDB type object for the "standard" data type
2007 of data in register N. */
2008
2009static struct type *
691d145a 2010rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 2011{
691d145a 2012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
2013 const struct reg *reg = tdep->regs + n;
2014
1fcc0bb8
EZ
2015 if (reg->fpr)
2016 return builtin_type_double;
2017 else
2018 {
2019 int size = regsize (reg, tdep->wordsize);
2020 switch (size)
2021 {
449a5da4
AC
2022 case 0:
2023 return builtin_type_int0;
2024 case 4:
ed6edd9b 2025 return builtin_type_uint32;
1fcc0bb8 2026 case 8:
c8001721
EZ
2027 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2028 return builtin_type_vec64;
2029 else
ed6edd9b 2030 return builtin_type_uint64;
1fcc0bb8
EZ
2031 break;
2032 case 16:
08cf96df 2033 return builtin_type_vec128;
1fcc0bb8
EZ
2034 break;
2035 default:
e2e0b3e5 2036 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 2037 n, size);
1fcc0bb8
EZ
2038 }
2039 }
7a78ae4e
ND
2040}
2041
c44ca51c
AC
2042/* Is REGNUM a member of REGGROUP? */
2043static int
2044rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2045 struct reggroup *group)
2046{
2047 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2048 int float_p;
2049 int vector_p;
2050 int general_p;
2051
2052 if (REGISTER_NAME (regnum) == NULL
2053 || *REGISTER_NAME (regnum) == '\0')
2054 return 0;
2055 if (group == all_reggroup)
2056 return 1;
2057
2058 float_p = (regnum == tdep->ppc_fpscr_regnum
2059 || (regnum >= tdep->ppc_fp0_regnum
2060 && regnum < tdep->ppc_fp0_regnum + 32));
2061 if (group == float_reggroup)
2062 return float_p;
2063
826d5376
PG
2064 vector_p = ((tdep->ppc_vr0_regnum >= 0
2065 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 2066 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
2067 || (tdep->ppc_ev0_regnum >= 0
2068 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 2069 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 2070 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
2071 || regnum == tdep->ppc_vrsave_regnum
2072 || regnum == tdep->ppc_acc_regnum
2073 || regnum == tdep->ppc_spefscr_regnum);
2074 if (group == vector_reggroup)
2075 return vector_p;
2076
2077 /* Note that PS aka MSR isn't included - it's a system register (and
2078 besides, due to GCC's CFI foobar you do not want to restore
2079 it). */
2080 general_p = ((regnum >= tdep->ppc_gp0_regnum
2081 && regnum < tdep->ppc_gp0_regnum + 32)
2082 || regnum == tdep->ppc_toc_regnum
2083 || regnum == tdep->ppc_cr_regnum
2084 || regnum == tdep->ppc_lr_regnum
2085 || regnum == tdep->ppc_ctr_regnum
2086 || regnum == tdep->ppc_xer_regnum
2087 || regnum == PC_REGNUM);
2088 if (group == general_reggroup)
2089 return general_p;
2090
2091 if (group == save_reggroup || group == restore_reggroup)
2092 return general_p || vector_p || float_p;
2093
2094 return 0;
2095}
2096
691d145a 2097/* The register format for RS/6000 floating point registers is always
64366f1c 2098 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2099
2100static int
691d145a 2101rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2102{
691d145a
JB
2103 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2104
2105 return (reg->fpr
2106 && TYPE_CODE (type) == TYPE_CODE_FLT
2107 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2108}
2109
7a78ae4e 2110static void
691d145a
JB
2111rs6000_register_to_value (struct frame_info *frame,
2112 int regnum,
2113 struct type *type,
50fd1280 2114 gdb_byte *to)
7a78ae4e 2115{
691d145a 2116 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2117 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2118
2119 gdb_assert (reg->fpr);
2120 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2121
691d145a
JB
2122 get_frame_register (frame, regnum, from);
2123 convert_typed_floating (from, builtin_type_double, to, type);
2124}
7a292a7a 2125
7a78ae4e 2126static void
691d145a
JB
2127rs6000_value_to_register (struct frame_info *frame,
2128 int regnum,
2129 struct type *type,
50fd1280 2130 const gdb_byte *from)
7a78ae4e 2131{
691d145a 2132 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2133 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2134
2135 gdb_assert (reg->fpr);
2136 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2137
2138 convert_typed_floating (from, type, to, builtin_type_double);
2139 put_frame_register (frame, regnum, to);
7a78ae4e 2140}
c906108c 2141
6ced10dd
JB
2142/* Move SPE vector register values between a 64-bit buffer and the two
2143 32-bit raw register halves in a regcache. This function handles
2144 both splitting a 64-bit value into two 32-bit halves, and joining
2145 two halves into a whole 64-bit value, depending on the function
2146 passed as the MOVE argument.
2147
2148 EV_REG must be the number of an SPE evN vector register --- a
2149 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2150 64-bit buffer.
2151
2152 Call MOVE once for each 32-bit half of that register, passing
2153 REGCACHE, the number of the raw register corresponding to that
2154 half, and the address of the appropriate half of BUFFER.
2155
2156 For example, passing 'regcache_raw_read' as the MOVE function will
2157 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2158 'regcache_raw_supply' will supply the contents of BUFFER to the
2159 appropriate pair of raw registers in REGCACHE.
2160
2161 You may need to cast away some 'const' qualifiers when passing
2162 MOVE, since this function can't tell at compile-time which of
2163 REGCACHE or BUFFER is acting as the source of the data. If C had
2164 co-variant type qualifiers, ... */
2165static void
2166e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2167 int regnum, gdb_byte *buf),
6ced10dd 2168 struct regcache *regcache, int ev_reg,
50fd1280 2169 gdb_byte *buffer)
6ced10dd
JB
2170{
2171 struct gdbarch *arch = get_regcache_arch (regcache);
2172 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2173 int reg_index;
50fd1280 2174 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2175
2176 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2177 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2178
2179 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2180
2181 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2182 {
2183 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2184 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2185 }
2186 else
2187 {
2188 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2189 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2190 }
2191}
2192
c8001721
EZ
2193static void
2194e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2195 int reg_nr, gdb_byte *buffer)
c8001721 2196{
6ced10dd 2197 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2198 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2199
6ced10dd
JB
2200 gdb_assert (regcache_arch == gdbarch);
2201
2202 if (tdep->ppc_ev0_regnum <= reg_nr
2203 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2204 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2205 else
a44bddec 2206 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2207 _("e500_pseudo_register_read: "
2208 "called on unexpected register '%s' (%d)"),
a44bddec 2209 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2210}
2211
2212static void
2213e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2214 int reg_nr, const gdb_byte *buffer)
c8001721 2215{
6ced10dd 2216 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218
6ced10dd
JB
2219 gdb_assert (regcache_arch == gdbarch);
2220
2221 if (tdep->ppc_ev0_regnum <= reg_nr
2222 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2223 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2224 regcache_raw_write,
50fd1280 2225 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2226 else
a44bddec 2227 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2228 _("e500_pseudo_register_read: "
2229 "called on unexpected register '%s' (%d)"),
a44bddec 2230 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2231}
2232
2233/* The E500 needs a custom reggroup function: it has anonymous raw
2234 registers, and default_register_reggroup_p assumes that anonymous
2235 registers are not members of any reggroup. */
2236static int
2237e500_register_reggroup_p (struct gdbarch *gdbarch,
2238 int regnum,
2239 struct reggroup *group)
2240{
2241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2242
2243 /* The save and restore register groups need to include the
2244 upper-half registers, even though they're anonymous. */
2245 if ((group == save_reggroup
2246 || group == restore_reggroup)
2247 && (tdep->ppc_ev0_upper_regnum <= regnum
2248 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2249 return 1;
2250
2251 /* In all other regards, the default reggroup definition is fine. */
2252 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2253}
2254
18ed0c4e 2255/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2256static int
18ed0c4e 2257rs6000_stab_reg_to_regnum (int num)
c8001721 2258{
9f744501 2259 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2260
9f744501
JB
2261 if (0 <= num && num <= 31)
2262 return tdep->ppc_gp0_regnum + num;
2263 else if (32 <= num && num <= 63)
383f0f5b
JB
2264 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2265 specifies registers the architecture doesn't have? Our
2266 callers don't check the value we return. */
366f009f 2267 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2268 else if (77 <= num && num <= 108)
2269 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2270 else if (1200 <= num && num < 1200 + 32)
2271 return tdep->ppc_ev0_regnum + (num - 1200);
2272 else
2273 switch (num)
2274 {
2275 case 64:
2276 return tdep->ppc_mq_regnum;
2277 case 65:
2278 return tdep->ppc_lr_regnum;
2279 case 66:
2280 return tdep->ppc_ctr_regnum;
2281 case 76:
2282 return tdep->ppc_xer_regnum;
2283 case 109:
2284 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2285 case 110:
2286 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2287 case 111:
18ed0c4e 2288 return tdep->ppc_acc_regnum;
867e2dc5 2289 case 112:
18ed0c4e 2290 return tdep->ppc_spefscr_regnum;
9f744501
JB
2291 default:
2292 return num;
2293 }
18ed0c4e 2294}
9f744501 2295
9f744501 2296
18ed0c4e
JB
2297/* Convert a Dwarf 2 register number to a GDB register number. */
2298static int
2299rs6000_dwarf2_reg_to_regnum (int num)
2300{
2301 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2302
18ed0c4e
JB
2303 if (0 <= num && num <= 31)
2304 return tdep->ppc_gp0_regnum + num;
2305 else if (32 <= num && num <= 63)
2306 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2307 specifies registers the architecture doesn't have? Our
2308 callers don't check the value we return. */
2309 return tdep->ppc_fp0_regnum + (num - 32);
2310 else if (1124 <= num && num < 1124 + 32)
2311 return tdep->ppc_vr0_regnum + (num - 1124);
2312 else if (1200 <= num && num < 1200 + 32)
2313 return tdep->ppc_ev0_regnum + (num - 1200);
2314 else
2315 switch (num)
2316 {
2317 case 67:
2318 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2319 case 99:
2320 return tdep->ppc_acc_regnum;
2321 case 100:
2322 return tdep->ppc_mq_regnum;
2323 case 101:
2324 return tdep->ppc_xer_regnum;
2325 case 108:
2326 return tdep->ppc_lr_regnum;
2327 case 109:
2328 return tdep->ppc_ctr_regnum;
2329 case 356:
2330 return tdep->ppc_vrsave_regnum;
2331 case 612:
2332 return tdep->ppc_spefscr_regnum;
2333 default:
2334 return num;
2335 }
2188cbdd
EZ
2336}
2337
64366f1c 2338/* Hook called when a new child process is started. */
7a78ae4e
ND
2339
2340void
2341rs6000_create_inferior (int pid)
2342{
2343 if (rs6000_set_host_arch_hook)
2344 rs6000_set_host_arch_hook (pid);
c906108c
SS
2345}
2346\f
e2d0e7eb 2347/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2348
2349 Usually a function pointer's representation is simply the address
2350 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2351 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2352 three words, the first word is the address of the function, the
2353 second word is the TOC pointer (r2), and the third word is the
2354 static chain value. Throughout GDB it is currently assumed that a
2355 function pointer contains the address of the function, which is not
2356 easy to fix. In addition, the conversion of a function address to
8ba0209f 2357 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2358 inferior's memory space, with all its drawbacks. To be able to
2359 call C++ virtual methods in the inferior (which are called via
f517ea4e 2360 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2361 function address from a function pointer. */
2362
f517ea4e
PS
2363/* Return real function address if ADDR (a function pointer) is in the data
2364 space and is therefore a special function pointer. */
c906108c 2365
b9362cc7 2366static CORE_ADDR
e2d0e7eb
AC
2367rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2368 CORE_ADDR addr,
2369 struct target_ops *targ)
c906108c
SS
2370{
2371 struct obj_section *s;
2372
2373 s = find_pc_section (addr);
2374 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2375 return addr;
c906108c 2376
7a78ae4e 2377 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2378 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2379}
c906108c 2380\f
c5aa993b 2381
7a78ae4e 2382/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2383
2384
7a78ae4e
ND
2385/* The arrays here called registers_MUMBLE hold information about available
2386 registers.
c906108c
SS
2387
2388 For each family of PPC variants, I've tried to isolate out the
2389 common registers and put them up front, so that as long as you get
2390 the general family right, GDB will correctly identify the registers
2391 common to that family. The common register sets are:
2392
2393 For the 60x family: hid0 hid1 iabr dabr pir
2394
2395 For the 505 and 860 family: eie eid nri
2396
2397 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2398 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2399 pbu1 pbl2 pbu2
c906108c
SS
2400
2401 Most of these register groups aren't anything formal. I arrived at
2402 them by looking at the registers that occurred in more than one
6f5987a6
KB
2403 processor.
2404
2405 Note: kevinb/2002-04-30: Support for the fpscr register was added
2406 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2407 for Power. For PowerPC, slot 70 was unused and was already in the
2408 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2409 slot 70 was being used for "mq", so the next available slot (71)
2410 was chosen. It would have been nice to be able to make the
2411 register numbers the same across processor cores, but this wasn't
2412 possible without either 1) renumbering some registers for some
2413 processors or 2) assigning fpscr to a really high slot that's
2414 larger than any current register number. Doing (1) is bad because
2415 existing stubs would break. Doing (2) is undesirable because it
2416 would introduce a really large gap between fpscr and the rest of
2417 the registers for most processors. */
7a78ae4e 2418
64366f1c 2419/* Convenience macros for populating register arrays. */
7a78ae4e 2420
64366f1c 2421/* Within another macro, convert S to a string. */
7a78ae4e
ND
2422
2423#define STR(s) #s
2424
2425/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2426 and 64 bits on 64-bit systems. */
13ac140c 2427#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2428
2429/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2430 systems. */
13ac140c 2431#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2432
2433/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2434 systems. */
13ac140c 2435#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2436
1fcc0bb8 2437/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2438 systems. */
13ac140c 2439#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2440
64366f1c 2441/* Return a struct reg defining floating-point register NAME. */
13ac140c 2442#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2443
6ced10dd
JB
2444/* Return a struct reg defining a pseudo register NAME that is 64 bits
2445 long on all systems. */
2446#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2447
2448/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2449 systems and that doesn't exist on 64-bit systems. */
13ac140c 2450#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2451
2452/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2453 systems and that doesn't exist on 32-bit systems. */
13ac140c 2454#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2455
64366f1c 2456/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2457#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2458
6ced10dd
JB
2459/* Return a struct reg defining an anonymous raw register that's 32
2460 bits on all systems. */
2461#define A4 { 0, 4, 4, 0, 0, -1 }
2462
13ac140c
JB
2463/* Return a struct reg defining an SPR named NAME that is 32 bits on
2464 32-bit systems and 64 bits on 64-bit systems. */
2465#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2466
2467/* Return a struct reg defining an SPR named NAME that is 32 bits on
2468 all systems. */
2469#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2470
2471/* Return a struct reg defining an SPR named NAME that is 32 bits on
2472 all systems, and whose SPR number is NUMBER. */
2473#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2474
2475/* Return a struct reg defining an SPR named NAME that's 64 bits on
2476 64-bit systems and that doesn't exist on 32-bit systems. */
2477#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2478
7a78ae4e
ND
2479/* UISA registers common across all architectures, including POWER. */
2480
2481#define COMMON_UISA_REGS \
2482 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2483 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2484 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2485 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2486 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2487 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2488 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2489 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2490 /* 64 */ R(pc), R(ps)
2491
2492/* UISA-level SPRs for PowerPC. */
2493#define PPC_UISA_SPRS \
13ac140c 2494 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2495
c8001721
EZ
2496/* UISA-level SPRs for PowerPC without floating point support. */
2497#define PPC_UISA_NOFP_SPRS \
13ac140c 2498 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2499
7a78ae4e
ND
2500/* Segment registers, for PowerPC. */
2501#define PPC_SEGMENT_REGS \
2502 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2503 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2504 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2505 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2506
2507/* OEA SPRs for PowerPC. */
2508#define PPC_OEA_SPRS \
13ac140c
JB
2509 /* 87 */ S4(pvr), \
2510 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2511 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2512 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2513 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2514 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2515 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2516 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2517 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2518
64366f1c 2519/* AltiVec registers. */
1fcc0bb8
EZ
2520#define PPC_ALTIVEC_REGS \
2521 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2522 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2523 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2524 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2525 /*151*/R4(vscr), R4(vrsave)
2526
c8001721 2527
6ced10dd
JB
2528/* On machines supporting the SPE APU, the general-purpose registers
2529 are 64 bits long. There are SIMD vector instructions to treat them
2530 as pairs of floats, but the rest of the instruction set treats them
2531 as 32-bit registers, and only operates on their lower halves.
2532
2533 In the GDB regcache, we treat their high and low halves as separate
2534 registers. The low halves we present as the general-purpose
2535 registers, and then we have pseudo-registers that stitch together
2536 the upper and lower halves and present them as pseudo-registers. */
2537
2538/* SPE GPR lower halves --- raw registers. */
2539#define PPC_SPE_GP_REGS \
2540 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2541 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2542 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2543 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2544
2545/* SPE GPR upper halves --- anonymous raw registers. */
2546#define PPC_SPE_UPPER_GP_REGS \
2547 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2548 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2549 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2550 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2551
2552/* SPE GPR vector registers --- pseudo registers based on underlying
2553 gprs and the anonymous upper half raw registers. */
2554#define PPC_EV_PSEUDO_REGS \
2555/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2556/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2557/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2558/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2559
7a78ae4e 2560/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2561 user-level SPR's. */
7a78ae4e 2562static const struct reg registers_power[] =
c906108c 2563{
7a78ae4e 2564 COMMON_UISA_REGS,
13ac140c 2565 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2566 /* 71 */ R4(fpscr)
c906108c
SS
2567};
2568
7a78ae4e 2569/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2570 view of the PowerPC. */
7a78ae4e 2571static const struct reg registers_powerpc[] =
c906108c 2572{
7a78ae4e 2573 COMMON_UISA_REGS,
1fcc0bb8
EZ
2574 PPC_UISA_SPRS,
2575 PPC_ALTIVEC_REGS
c906108c
SS
2576};
2577
13ac140c
JB
2578/* IBM PowerPC 403.
2579
2580 Some notes about the "tcr" special-purpose register:
2581 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2582 403's programmable interval timer, fixed interval timer, and
2583 watchdog timer.
2584 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2585 watchdog timer, and nothing else.
2586
2587 Some of the fields are similar between the two, but they're not
2588 compatible with each other. Since the two variants have different
2589 registers, with different numbers, but the same name, we can't
2590 splice the register name to get the SPR number. */
7a78ae4e 2591static const struct reg registers_403[] =
c5aa993b 2592{
7a78ae4e
ND
2593 COMMON_UISA_REGS,
2594 PPC_UISA_SPRS,
2595 PPC_SEGMENT_REGS,
2596 PPC_OEA_SPRS,
13ac140c
JB
2597 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2598 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2599 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2600 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2601 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2602 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2603};
2604
13ac140c
JB
2605/* IBM PowerPC 403GC.
2606 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2607static const struct reg registers_403GC[] =
c5aa993b 2608{
7a78ae4e
ND
2609 COMMON_UISA_REGS,
2610 PPC_UISA_SPRS,
2611 PPC_SEGMENT_REGS,
2612 PPC_OEA_SPRS,
13ac140c
JB
2613 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2614 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2615 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2616 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2617 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2618 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2619 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2620 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2621};
2622
64366f1c 2623/* Motorola PowerPC 505. */
7a78ae4e 2624static const struct reg registers_505[] =
c5aa993b 2625{
7a78ae4e
ND
2626 COMMON_UISA_REGS,
2627 PPC_UISA_SPRS,
2628 PPC_SEGMENT_REGS,
2629 PPC_OEA_SPRS,
13ac140c 2630 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2631};
2632
64366f1c 2633/* Motorola PowerPC 860 or 850. */
7a78ae4e 2634static const struct reg registers_860[] =
c5aa993b 2635{
7a78ae4e
ND
2636 COMMON_UISA_REGS,
2637 PPC_UISA_SPRS,
2638 PPC_SEGMENT_REGS,
2639 PPC_OEA_SPRS,
13ac140c
JB
2640 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2641 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2642 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2643 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2644 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2645 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2646 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2647 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2648 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2649 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2650 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2651 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2652};
2653
7a78ae4e
ND
2654/* Motorola PowerPC 601. Note that the 601 has different register numbers
2655 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2656 register is the stub's problem. */
7a78ae4e 2657static const struct reg registers_601[] =
c5aa993b 2658{
7a78ae4e
ND
2659 COMMON_UISA_REGS,
2660 PPC_UISA_SPRS,
2661 PPC_SEGMENT_REGS,
2662 PPC_OEA_SPRS,
13ac140c
JB
2663 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2664 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2665};
2666
13ac140c
JB
2667/* Motorola PowerPC 602.
2668 See the notes under the 403 about 'tcr'. */
7a78ae4e 2669static const struct reg registers_602[] =
c5aa993b 2670{
7a78ae4e
ND
2671 COMMON_UISA_REGS,
2672 PPC_UISA_SPRS,
2673 PPC_SEGMENT_REGS,
2674 PPC_OEA_SPRS,
13ac140c
JB
2675 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2676 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2677 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2678};
2679
64366f1c 2680/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2681static const struct reg registers_603[] =
c5aa993b 2682{
7a78ae4e
ND
2683 COMMON_UISA_REGS,
2684 PPC_UISA_SPRS,
2685 PPC_SEGMENT_REGS,
2686 PPC_OEA_SPRS,
13ac140c
JB
2687 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2688 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2689 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2690};
2691
64366f1c 2692/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2693static const struct reg registers_604[] =
c5aa993b 2694{
7a78ae4e
ND
2695 COMMON_UISA_REGS,
2696 PPC_UISA_SPRS,
2697 PPC_SEGMENT_REGS,
2698 PPC_OEA_SPRS,
13ac140c
JB
2699 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2700 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2701 /* 127 */ S(sia), S(sda)
c906108c
SS
2702};
2703
64366f1c 2704/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2705static const struct reg registers_750[] =
c5aa993b 2706{
7a78ae4e
ND
2707 COMMON_UISA_REGS,
2708 PPC_UISA_SPRS,
2709 PPC_SEGMENT_REGS,
2710 PPC_OEA_SPRS,
13ac140c
JB
2711 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2712 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2713 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2714 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2715 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2716 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2717};
2718
2719
64366f1c 2720/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2721static const struct reg registers_7400[] =
2722{
2723 /* gpr0-gpr31, fpr0-fpr31 */
2724 COMMON_UISA_REGS,
13c7b1ca 2725 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2726 PPC_UISA_SPRS,
2727 /* sr0-sr15 */
2728 PPC_SEGMENT_REGS,
2729 PPC_OEA_SPRS,
2730 /* vr0-vr31, vrsave, vscr */
2731 PPC_ALTIVEC_REGS
2732 /* FIXME? Add more registers? */
2733};
2734
c8001721
EZ
2735/* Motorola e500. */
2736static const struct reg registers_e500[] =
2737{
6ced10dd
JB
2738 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2739 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2740 /* 64 .. 65 */ R(pc), R(ps),
2741 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2742 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2743 /* NOTE: Add new registers here the end of the raw register
2744 list and just before the first pseudo register. */
6ced10dd 2745 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2746};
2747
c906108c 2748/* Information about a particular processor variant. */
7a78ae4e 2749
c906108c 2750struct variant
c5aa993b
JM
2751 {
2752 /* Name of this variant. */
2753 char *name;
c906108c 2754
c5aa993b
JM
2755 /* English description of the variant. */
2756 char *description;
c906108c 2757
64366f1c 2758 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2759 enum bfd_architecture arch;
2760
64366f1c 2761 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2762 unsigned long mach;
2763
489461e2
EZ
2764 /* Number of real registers. */
2765 int nregs;
2766
2767 /* Number of pseudo registers. */
2768 int npregs;
2769
2770 /* Number of total registers (the sum of nregs and npregs). */
2771 int num_tot_regs;
2772
c5aa993b
JM
2773 /* Table of register names; registers[R] is the name of the register
2774 number R. */
7a78ae4e 2775 const struct reg *regs;
c5aa993b 2776 };
c906108c 2777
489461e2
EZ
2778#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2779
2780static int
2781num_registers (const struct reg *reg_list, int num_tot_regs)
2782{
2783 int i;
2784 int nregs = 0;
2785
2786 for (i = 0; i < num_tot_regs; i++)
2787 if (!reg_list[i].pseudo)
2788 nregs++;
2789
2790 return nregs;
2791}
2792
2793static int
2794num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2795{
2796 int i;
2797 int npregs = 0;
2798
2799 for (i = 0; i < num_tot_regs; i++)
2800 if (reg_list[i].pseudo)
2801 npregs ++;
2802
2803 return npregs;
2804}
c906108c 2805
c906108c
SS
2806/* Information in this table comes from the following web sites:
2807 IBM: http://www.chips.ibm.com:80/products/embedded/
2808 Motorola: http://www.mot.com/SPS/PowerPC/
2809
2810 I'm sure I've got some of the variant descriptions not quite right.
2811 Please report any inaccuracies you find to GDB's maintainer.
2812
2813 If you add entries to this table, please be sure to allow the new
2814 value as an argument to the --with-cpu flag, in configure.in. */
2815
489461e2 2816static struct variant variants[] =
c906108c 2817{
489461e2 2818
7a78ae4e 2819 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2820 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2821 registers_powerpc},
7a78ae4e 2822 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2823 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2824 registers_power},
7a78ae4e 2825 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2826 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2827 registers_403},
7a78ae4e 2828 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2829 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2830 registers_601},
7a78ae4e 2831 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2832 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2833 registers_602},
7a78ae4e 2834 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2835 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2836 registers_603},
7a78ae4e 2837 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2838 604, -1, -1, tot_num_registers (registers_604),
2839 registers_604},
7a78ae4e 2840 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2841 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2842 registers_403GC},
7a78ae4e 2843 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2844 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2845 registers_505},
7a78ae4e 2846 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2847 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2848 registers_860},
7a78ae4e 2849 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2850 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2851 registers_750},
1fcc0bb8 2852 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2853 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2854 registers_7400},
c8001721
EZ
2855 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2856 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2857 registers_e500},
7a78ae4e 2858
5d57ee30
KB
2859 /* 64-bit */
2860 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2861 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2862 registers_powerpc},
7a78ae4e 2863 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2864 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2865 registers_powerpc},
5d57ee30 2866 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2867 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2868 registers_powerpc},
7a78ae4e 2869 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2870 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2871 registers_powerpc},
5d57ee30 2872 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2873 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2874 registers_powerpc},
5d57ee30 2875 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2876 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2877 registers_powerpc},
5d57ee30 2878
64366f1c 2879 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2880 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2881 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2882 registers_power},
7a78ae4e 2883 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2884 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2885 registers_power},
7a78ae4e 2886 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2887 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2888 registers_power},
7a78ae4e 2889
489461e2 2890 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2891};
2892
64366f1c 2893/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2894
2895static void
2896init_variants (void)
2897{
2898 struct variant *v;
2899
2900 for (v = variants; v->name; v++)
2901 {
2902 if (v->nregs == -1)
2903 v->nregs = num_registers (v->regs, v->num_tot_regs);
2904 if (v->npregs == -1)
2905 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2906 }
2907}
c906108c 2908
7a78ae4e 2909/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2910 MACH. If no such variant exists, return null. */
c906108c 2911
7a78ae4e
ND
2912static const struct variant *
2913find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2914{
7a78ae4e 2915 const struct variant *v;
c5aa993b 2916
7a78ae4e
ND
2917 for (v = variants; v->name; v++)
2918 if (arch == v->arch && mach == v->mach)
2919 return v;
c906108c 2920
7a78ae4e 2921 return NULL;
c906108c 2922}
9364a0ef
EZ
2923
2924static int
2925gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2926{
ee4f0f76
DJ
2927 if (!info->disassembler_options)
2928 info->disassembler_options = "any";
2929
9364a0ef
EZ
2930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2931 return print_insn_big_powerpc (memaddr, info);
2932 else
2933 return print_insn_little_powerpc (memaddr, info);
2934}
7a78ae4e 2935\f
61a65099
KB
2936static CORE_ADDR
2937rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2938{
2939 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2940}
2941
2942static struct frame_id
2943rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2944{
2945 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2946 SP_REGNUM),
2947 frame_pc_unwind (next_frame));
2948}
2949
2950struct rs6000_frame_cache
2951{
2952 CORE_ADDR base;
2953 CORE_ADDR initial_sp;
2954 struct trad_frame_saved_reg *saved_regs;
2955};
2956
2957static struct rs6000_frame_cache *
2958rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2959{
2960 struct rs6000_frame_cache *cache;
2961 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2963 struct rs6000_framedata fdata;
2964 int wordsize = tdep->wordsize;
e10b1c4c 2965 CORE_ADDR func, pc;
61a65099
KB
2966
2967 if ((*this_cache) != NULL)
2968 return (*this_cache);
2969 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2970 (*this_cache) = cache;
2971 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2972
e10b1c4c
DJ
2973 func = frame_func_unwind (next_frame);
2974 pc = frame_pc_unwind (next_frame);
2975 skip_prologue (func, pc, &fdata);
2976
2977 /* Figure out the parent's stack pointer. */
2978
2979 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2980 address of the current frame. Things might be easier if the
2981 ->frame pointed to the outer-most address of the frame. In
2982 the mean time, the address of the prev frame is used as the
2983 base address of this frame. */
2984 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2985
2986 /* If the function appears to be frameless, check a couple of likely
2987 indicators that we have simply failed to find the frame setup.
2988 Two common cases of this are missing symbols (i.e.
2989 frame_func_unwind returns the wrong address or 0), and assembly
2990 stubs which have a fast exit path but set up a frame on the slow
2991 path.
2992
2993 If the LR appears to return to this function, then presume that
2994 we have an ABI compliant frame that we failed to find. */
2995 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2996 {
e10b1c4c
DJ
2997 CORE_ADDR saved_lr;
2998 int make_frame = 0;
2999
3000 saved_lr = frame_unwind_register_unsigned (next_frame,
3001 tdep->ppc_lr_regnum);
3002 if (func == 0 && saved_lr == pc)
3003 make_frame = 1;
3004 else if (func != 0)
3005 {
3006 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3007 if (func == saved_func)
3008 make_frame = 1;
3009 }
3010
3011 if (make_frame)
3012 {
3013 fdata.frameless = 0;
3014 fdata.lr_offset = wordsize;
3015 }
61a65099 3016 }
e10b1c4c
DJ
3017
3018 if (!fdata.frameless)
3019 /* Frameless really means stackless. */
3020 cache->base = read_memory_addr (cache->base, wordsize);
3021
61a65099
KB
3022 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3023
3024 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3025 All fpr's from saved_fpr to fp31 are saved. */
3026
3027 if (fdata.saved_fpr >= 0)
3028 {
3029 int i;
3030 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3031
3032 /* If skip_prologue says floating-point registers were saved,
3033 but the current architecture has no floating-point registers,
3034 then that's strange. But we have no indices to even record
3035 the addresses under, so we just ignore it. */
3036 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3037 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3038 {
3039 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3040 fpr_addr += 8;
3041 }
61a65099
KB
3042 }
3043
3044 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3045 All gpr's from saved_gpr to gpr31 are saved. */
3046
3047 if (fdata.saved_gpr >= 0)
3048 {
3049 int i;
3050 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3051 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3052 {
3053 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3054 gpr_addr += wordsize;
3055 }
3056 }
3057
3058 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3059 All vr's from saved_vr to vr31 are saved. */
3060 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3061 {
3062 if (fdata.saved_vr >= 0)
3063 {
3064 int i;
3065 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3066 for (i = fdata.saved_vr; i < 32; i++)
3067 {
3068 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3069 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3070 }
3071 }
3072 }
3073
3074 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3075 All vr's from saved_ev to ev31 are saved. ????? */
3076 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3077 {
3078 if (fdata.saved_ev >= 0)
3079 {
3080 int i;
3081 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3082 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3083 {
3084 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3085 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3086 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3087 }
3088 }
3089 }
3090
3091 /* If != 0, fdata.cr_offset is the offset from the frame that
3092 holds the CR. */
3093 if (fdata.cr_offset != 0)
3094 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3095
3096 /* If != 0, fdata.lr_offset is the offset from the frame that
3097 holds the LR. */
3098 if (fdata.lr_offset != 0)
3099 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3100 /* The PC is found in the link register. */
3101 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3102
3103 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3104 holds the VRSAVE. */
3105 if (fdata.vrsave_offset != 0)
3106 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3107
3108 if (fdata.alloca_reg < 0)
3109 /* If no alloca register used, then fi->frame is the value of the
3110 %sp for this frame, and it is good enough. */
3111 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3112 else
3113 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3114 fdata.alloca_reg);
3115
3116 return cache;
3117}
3118
3119static void
3120rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3121 struct frame_id *this_id)
3122{
3123 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3124 this_cache);
3125 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3126}
3127
3128static void
3129rs6000_frame_prev_register (struct frame_info *next_frame,
3130 void **this_cache,
3131 int regnum, int *optimizedp,
3132 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3133 int *realnump, gdb_byte *valuep)
61a65099
KB
3134{
3135 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3136 this_cache);
1f67027d
AC
3137 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3138 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3139}
3140
3141static const struct frame_unwind rs6000_frame_unwind =
3142{
3143 NORMAL_FRAME,
3144 rs6000_frame_this_id,
3145 rs6000_frame_prev_register
3146};
3147
3148static const struct frame_unwind *
3149rs6000_frame_sniffer (struct frame_info *next_frame)
3150{
3151 return &rs6000_frame_unwind;
3152}
3153
3154\f
3155
3156static CORE_ADDR
3157rs6000_frame_base_address (struct frame_info *next_frame,
3158 void **this_cache)
3159{
3160 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3161 this_cache);
3162 return info->initial_sp;
3163}
3164
3165static const struct frame_base rs6000_frame_base = {
3166 &rs6000_frame_unwind,
3167 rs6000_frame_base_address,
3168 rs6000_frame_base_address,
3169 rs6000_frame_base_address
3170};
3171
3172static const struct frame_base *
3173rs6000_frame_base_sniffer (struct frame_info *next_frame)
3174{
3175 return &rs6000_frame_base;
3176}
3177
7a78ae4e
ND
3178/* Initialize the current architecture based on INFO. If possible, re-use an
3179 architecture from ARCHES, which is a list of architectures already created
3180 during this debugging session.
c906108c 3181
7a78ae4e 3182 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3183 a binary file. */
c906108c 3184
7a78ae4e
ND
3185static struct gdbarch *
3186rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3187{
3188 struct gdbarch *gdbarch;
3189 struct gdbarch_tdep *tdep;
708ff411 3190 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3191 struct reg *regs;
3192 const struct variant *v;
3193 enum bfd_architecture arch;
3194 unsigned long mach;
3195 bfd abfd;
7b112f9c 3196 int sysv_abi;
5bf1c677 3197 asection *sect;
7a78ae4e 3198
9aa1e687 3199 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3200 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3201
9aa1e687
KB
3202 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3203 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3204
3205 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3206
e712c1cf 3207 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3208 that, else choose a likely default. */
9aa1e687 3209 if (from_xcoff_exec)
c906108c 3210 {
11ed25ac 3211 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3212 wordsize = 8;
3213 else
3214 wordsize = 4;
c906108c 3215 }
9aa1e687
KB
3216 else if (from_elf_exec)
3217 {
3218 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3219 wordsize = 8;
3220 else
3221 wordsize = 4;
3222 }
c906108c 3223 else
7a78ae4e 3224 {
27b15785
KB
3225 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3226 wordsize = info.bfd_arch_info->bits_per_word /
3227 info.bfd_arch_info->bits_per_byte;
3228 else
3229 wordsize = 4;
7a78ae4e 3230 }
c906108c 3231
13c0b536 3232 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3233 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3234 arches != NULL;
3235 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3236 {
3237 /* Word size in the various PowerPC bfd_arch_info structs isn't
3238 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3239 separate word size check. */
7a78ae4e 3240 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3241 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3242 return arches->gdbarch;
3243 }
c906108c 3244
7a78ae4e
ND
3245 /* None found, create a new architecture from INFO, whose bfd_arch_info
3246 validity depends on the source:
3247 - executable useless
3248 - rs6000_host_arch() good
3249 - core file good
3250 - "set arch" trust blindly
3251 - GDB startup useless but harmless */
c906108c 3252
9aa1e687 3253 if (!from_xcoff_exec)
c906108c 3254 {
b732d07d 3255 arch = info.bfd_arch_info->arch;
7a78ae4e 3256 mach = info.bfd_arch_info->mach;
c906108c 3257 }
7a78ae4e 3258 else
c906108c 3259 {
7a78ae4e 3260 arch = bfd_arch_powerpc;
35cec841 3261 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3262 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3263 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3264 }
3265 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3266 tdep->wordsize = wordsize;
5bf1c677
EZ
3267
3268 /* For e500 executables, the apuinfo section is of help here. Such
3269 section contains the identifier and revision number of each
3270 Application-specific Processing Unit that is present on the
3271 chip. The content of the section is determined by the assembler
3272 which looks at each instruction and determines which unit (and
3273 which version of it) can execute it. In our case we just look for
3274 the existance of the section. */
3275
3276 if (info.abfd)
3277 {
3278 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3279 if (sect)
3280 {
3281 arch = info.bfd_arch_info->arch;
3282 mach = bfd_mach_ppc_e500;
3283 bfd_default_set_arch_mach (&abfd, arch, mach);
3284 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3285 }
3286 }
3287
7a78ae4e 3288 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3289
489461e2
EZ
3290 /* Initialize the number of real and pseudo registers in each variant. */
3291 init_variants ();
3292
64366f1c 3293 /* Choose variant. */
7a78ae4e
ND
3294 v = find_variant_by_arch (arch, mach);
3295 if (!v)
dd47e6fd
EZ
3296 return NULL;
3297
7a78ae4e
ND
3298 tdep->regs = v->regs;
3299
2188cbdd 3300 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3301 tdep->ppc_toc_regnum = 2;
3302 tdep->ppc_ps_regnum = 65;
3303 tdep->ppc_cr_regnum = 66;
3304 tdep->ppc_lr_regnum = 67;
3305 tdep->ppc_ctr_regnum = 68;
3306 tdep->ppc_xer_regnum = 69;
3307 if (v->mach == bfd_mach_ppc_601)
3308 tdep->ppc_mq_regnum = 124;
708ff411 3309 else if (arch == bfd_arch_rs6000)
2188cbdd 3310 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3311 else
3312 tdep->ppc_mq_regnum = -1;
366f009f 3313 tdep->ppc_fp0_regnum = 32;
708ff411 3314 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3315 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3316 tdep->ppc_vr0_regnum = -1;
3317 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3318 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3319 tdep->ppc_ev0_regnum = -1;
3320 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3321 tdep->ppc_acc_regnum = -1;
3322 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3323
c8001721
EZ
3324 set_gdbarch_pc_regnum (gdbarch, 64);
3325 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3326 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3327 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3328 if (sysv_abi && wordsize == 8)
05580c65 3329 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3330 else if (sysv_abi && wordsize == 4)
05580c65 3331 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75 3332 else
d217aaed 3333 set_gdbarch_return_value (gdbarch, rs6000_return_value);
c8001721 3334
baffbae0
JB
3335 /* Set lr_frame_offset. */
3336 if (wordsize == 8)
3337 tdep->lr_frame_offset = 16;
3338 else if (sysv_abi)
3339 tdep->lr_frame_offset = 4;
3340 else
3341 tdep->lr_frame_offset = 8;
3342
f86a7158
JB
3343 if (v->arch == bfd_arch_rs6000)
3344 tdep->ppc_sr0_regnum = -1;
3345 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3346 switch (v->mach)
3347 {
3348 case bfd_mach_ppc:
412b3060 3349 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3350 tdep->ppc_vr0_regnum = 71;
3351 tdep->ppc_vrsave_regnum = 104;
3352 break;
3353 case bfd_mach_ppc_7400:
3354 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3355 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3356 break;
3357 case bfd_mach_ppc_e500:
c8001721 3358 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3359 tdep->ppc_ev0_upper_regnum = 32;
3360 tdep->ppc_ev0_regnum = 73;
3361 tdep->ppc_ev31_regnum = 104;
3362 tdep->ppc_acc_regnum = 71;
3363 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3364 tdep->ppc_fp0_regnum = -1;
3365 tdep->ppc_fpscr_regnum = -1;
f86a7158 3366 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3367 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3368 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3369 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3370 break;
f86a7158
JB
3371
3372 case bfd_mach_ppc64:
3373 case bfd_mach_ppc_620:
3374 case bfd_mach_ppc_630:
3375 case bfd_mach_ppc_a35:
3376 case bfd_mach_ppc_rs64ii:
3377 case bfd_mach_ppc_rs64iii:
3378 /* These processor's register sets don't have segment registers. */
3379 tdep->ppc_sr0_regnum = -1;
3380 break;
1fcc0bb8 3381 }
f86a7158
JB
3382 else
3383 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3384 _("rs6000_gdbarch_init: "
3385 "received unexpected BFD 'arch' value"));
1fcc0bb8 3386
e0d24f8d
WZ
3387 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3388
338ef23d
AC
3389 /* Sanity check on registers. */
3390 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3391
56a6dfb9 3392 /* Select instruction printer. */
708ff411 3393 if (arch == bfd_arch_rs6000)
9364a0ef 3394 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3395 else
9364a0ef 3396 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3397
7a78ae4e 3398 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3399
3400 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3401 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3402 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3403 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3404 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3405
3406 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3407 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3408 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3409 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3410 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3411 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3412 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3413 if (sysv_abi)
3414 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3415 else
3416 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3417 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3418
11269d7e 3419 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3420 if (sysv_abi && wordsize == 8)
3421 /* PPC64 SYSV. */
3422 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3423 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3424 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3425 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3426 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3427 224. */
3428 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3429
691d145a
JB
3430 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3431 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3432 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3433
18ed0c4e
JB
3434 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3435 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3436
2ea5f656 3437 if (sysv_abi && wordsize == 4)
77b2b6d4 3438 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3439 else if (sysv_abi && wordsize == 8)
3440 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3441 else
77b2b6d4 3442 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3443
7a78ae4e 3444 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3445 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3446
7a78ae4e 3447 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3448 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3449
6066c3de
AC
3450 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3451 for the descriptor and ".FN" for the entry-point -- a user
3452 specifying "break FN" will unexpectedly end up with a breakpoint
3453 on the descriptor and not the function. This architecture method
3454 transforms any breakpoints on descriptors into breakpoints on the
3455 corresponding entry point. */
3456 if (sysv_abi && wordsize == 8)
3457 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3458
7a78ae4e
ND
3459 /* Not sure on this. FIXMEmgo */
3460 set_gdbarch_frame_args_skip (gdbarch, 8);
3461
15813d3f
AC
3462 if (!sysv_abi)
3463 {
3464 /* Handle RS/6000 function pointers (which are really function
3465 descriptors). */
f517ea4e
PS
3466 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3467 rs6000_convert_from_func_ptr_addr);
9aa1e687 3468 }
7a78ae4e 3469
143985b7
AF
3470 /* Helpers for function argument information. */
3471 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3472
7b112f9c 3473 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3474 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3475
61a65099
KB
3476 switch (info.osabi)
3477 {
f5aecab8
PG
3478 case GDB_OSABI_LINUX:
3479 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3480 have altivec registers. If not, ptrace will fail the first time it's
3481 called to access one and will not be called again. This wart will
3482 be removed when Daniel Jacobowitz's proposal for autodetecting target
3483 registers is implemented. */
3484 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3485 {
3486 tdep->ppc_vr0_regnum = 71;
3487 tdep->ppc_vrsave_regnum = 104;
3488 }
3489 /* Fall Thru */
61a65099
KB
3490 case GDB_OSABI_NETBSD_AOUT:
3491 case GDB_OSABI_NETBSD_ELF:
3492 case GDB_OSABI_UNKNOWN:
61a65099
KB
3493 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3494 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3495 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3496 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3497 break;
3498 default:
61a65099 3499 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3500
3501 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3502 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3503 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3504 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3505 }
3506
9f643768
JB
3507 init_sim_regno_table (gdbarch);
3508
7a78ae4e 3509 return gdbarch;
c906108c
SS
3510}
3511
7b112f9c
JT
3512static void
3513rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3514{
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3516
3517 if (tdep == NULL)
3518 return;
3519
4be87837 3520 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3521}
3522
c906108c
SS
3523/* Initialization code. */
3524
a78f21af 3525extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3526
c906108c 3527void
fba45db2 3528_initialize_rs6000_tdep (void)
c906108c 3529{
7b112f9c
JT
3530 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3531 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3532}
This page took 1.007786 seconds and 4 git commands to generate.