2003-06-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d
AC
50#include "gdb_assert.h"
51
7a78ae4e
ND
52/* If the kernel has to deliver a signal, it pushes a sigcontext
53 structure on the stack and then calls the signal handler, passing
54 the address of the sigcontext in an argument register. Usually
55 the signal handler doesn't save this register, so we have to
56 access the sigcontext structure via an offset from the signal handler
57 frame.
58 The following constants were determined by experimentation on AIX 3.2. */
59#define SIG_FRAME_PC_OFFSET 96
60#define SIG_FRAME_LR_OFFSET 108
61#define SIG_FRAME_FP_OFFSET 284
62
7a78ae4e
ND
63/* To be used by skip_prologue. */
64
65struct rs6000_framedata
66 {
67 int offset; /* total size of frame --- the distance
68 by which we decrement sp to allocate
69 the frame */
70 int saved_gpr; /* smallest # of saved gpr */
71 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 72 int saved_vr; /* smallest # of saved vr */
96ff0de4 73 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 79 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 80 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
81 int lr_offset; /* offset of saved lr */
82 int cr_offset; /* offset of saved cr */
6be8bc0c 83 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
84 };
85
86/* Description of a single register. */
87
88struct reg
89 {
90 char *name; /* name of register */
91 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
92 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
93 unsigned char fpr; /* whether register is floating-point */
489461e2 94 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
95 };
96
c906108c
SS
97/* Breakpoint shadows for the single step instructions will be kept here. */
98
c5aa993b
JM
99static struct sstep_breaks
100 {
101 /* Address, or 0 if this is not in use. */
102 CORE_ADDR address;
103 /* Shadow contents. */
104 char data[4];
105 }
106stepBreaks[2];
c906108c
SS
107
108/* Hook for determining the TOC address when calling functions in the
109 inferior under AIX. The initialization code in rs6000-nat.c sets
110 this hook to point to find_toc_address. */
111
7a78ae4e
ND
112CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113
114/* Hook to set the current architecture when starting a child process.
115 rs6000-nat.c sets this. */
116
117void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
118
119/* Static function prototypes */
120
a14ed312
KB
121static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
7a78ae4e
ND
125static void frame_get_saved_regs (struct frame_info * fi,
126 struct rs6000_framedata * fdatap);
127static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 128
64b84175
KB
129/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
130int
131altivec_register_p (int regno)
132{
133 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
134 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
135 return 0;
136 else
137 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138}
139
0a613259
AC
140/* Use the architectures FP registers? */
141int
142ppc_floating_point_unit_p (struct gdbarch *gdbarch)
143{
144 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
145 if (info->arch == bfd_arch_powerpc)
146 return (info->mach != bfd_mach_ppc_e500);
147 if (info->arch == bfd_arch_rs6000)
148 return 1;
149 return 0;
150}
151
7a78ae4e 152/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 153
7a78ae4e
ND
154static CORE_ADDR
155read_memory_addr (CORE_ADDR memaddr, int len)
156{
157 return read_memory_unsigned_integer (memaddr, len);
158}
c906108c 159
7a78ae4e
ND
160static CORE_ADDR
161rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
162{
163 struct rs6000_framedata frame;
077276e8 164 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
165 return pc;
166}
167
168
c906108c
SS
169/* Fill in fi->saved_regs */
170
171struct frame_extra_info
172{
173 /* Functions calling alloca() change the value of the stack
174 pointer. We need to use initial stack pointer (which is saved in
175 r31 by gcc) in such cases. If a compiler emits traceback table,
176 then we should use the alloca register specified in traceback
177 table. FIXME. */
c5aa993b 178 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
179};
180
9aa1e687 181void
7a78ae4e 182rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 183{
c9012c71
AC
184 struct frame_extra_info *extra_info =
185 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
186 extra_info->initial_sp = 0;
bdd78e62
AC
187 if (get_next_frame (fi) != NULL
188 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 189 /* We're in get_prev_frame */
c906108c
SS
190 /* and this is a special signal frame. */
191 /* (fi->pc will be some low address in the kernel, */
192 /* to which the signal handler returns). */
5a203e44 193 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
194}
195
7a78ae4e
ND
196/* Put here the code to store, into a struct frame_saved_regs,
197 the addresses of the saved registers of frame described by FRAME_INFO.
198 This includes special registers such as pc and fp saved in special
199 ways in the stack frame. sp is even more special:
200 the address we return for it IS the sp for the next frame. */
c906108c 201
7a78ae4e
ND
202/* In this implementation for RS/6000, we do *not* save sp. I am
203 not sure if it will be needed. The following function takes care of gpr's
204 and fpr's only. */
205
9aa1e687 206void
7a78ae4e 207rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
208{
209 frame_get_saved_regs (fi, NULL);
210}
211
7a78ae4e
ND
212static CORE_ADDR
213rs6000_frame_args_address (struct frame_info *fi)
c906108c 214{
c9012c71
AC
215 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
216 if (extra_info->initial_sp != 0)
217 return extra_info->initial_sp;
c906108c
SS
218 else
219 return frame_initial_stack_address (fi);
220}
221
7a78ae4e
ND
222/* Immediately after a function call, return the saved pc.
223 Can't go through the frames for this because on some machines
224 the new frame is not set up until the new function executes
225 some instructions. */
226
227static CORE_ADDR
228rs6000_saved_pc_after_call (struct frame_info *fi)
229{
2188cbdd 230 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 231}
c906108c
SS
232
233/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
234
235static CORE_ADDR
7a78ae4e 236branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
237{
238 CORE_ADDR dest;
239 int immediate;
240 int absolute;
241 int ext_op;
242
243 absolute = (int) ((instr >> 1) & 1);
244
c5aa993b
JM
245 switch (opcode)
246 {
247 case 18:
248 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
249 if (absolute)
250 dest = immediate;
251 else
252 dest = pc + immediate;
253 break;
254
255 case 16:
256 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
257 if (absolute)
258 dest = immediate;
259 else
260 dest = pc + immediate;
261 break;
262
263 case 19:
264 ext_op = (instr >> 1) & 0x3ff;
265
266 if (ext_op == 16) /* br conditional register */
267 {
2188cbdd 268 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
269
270 /* If we are about to return from a signal handler, dest is
271 something like 0x3c90. The current frame is a signal handler
272 caller frame, upon completion of the sigreturn system call
273 execution will return to the saved PC in the frame. */
274 if (dest < TEXT_SEGMENT_BASE)
275 {
276 struct frame_info *fi;
277
278 fi = get_current_frame ();
279 if (fi != NULL)
8b36eed8 280 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 281 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
282 }
283 }
284
285 else if (ext_op == 528) /* br cond to count reg */
286 {
2188cbdd 287 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
288
289 /* If we are about to execute a system call, dest is something
290 like 0x22fc or 0x3b00. Upon completion the system call
291 will return to the address in the link register. */
292 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 293 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
294 }
295 else
296 return -1;
297 break;
c906108c 298
c5aa993b
JM
299 default:
300 return -1;
301 }
c906108c
SS
302 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
303}
304
305
306/* Sequence of bytes for breakpoint instruction. */
307
f4f9705a 308const static unsigned char *
7a78ae4e 309rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 310{
aaab4dba
AC
311 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
312 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 313 *bp_size = 4;
d7449b42 314 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
315 return big_breakpoint;
316 else
317 return little_breakpoint;
318}
319
320
321/* AIX does not support PT_STEP. Simulate it. */
322
323void
379d08a1
AC
324rs6000_software_single_step (enum target_signal signal,
325 int insert_breakpoints_p)
c906108c 326{
7c40d541
KB
327 CORE_ADDR dummy;
328 int breakp_sz;
f4f9705a 329 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
330 int ii, insn;
331 CORE_ADDR loc;
332 CORE_ADDR breaks[2];
333 int opcode;
334
c5aa993b
JM
335 if (insert_breakpoints_p)
336 {
c906108c 337
c5aa993b 338 loc = read_pc ();
c906108c 339
c5aa993b 340 insn = read_memory_integer (loc, 4);
c906108c 341
7c40d541 342 breaks[0] = loc + breakp_sz;
c5aa993b
JM
343 opcode = insn >> 26;
344 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 345
c5aa993b
JM
346 /* Don't put two breakpoints on the same address. */
347 if (breaks[1] == breaks[0])
348 breaks[1] = -1;
c906108c 349
c5aa993b 350 stepBreaks[1].address = 0;
c906108c 351
c5aa993b
JM
352 for (ii = 0; ii < 2; ++ii)
353 {
c906108c 354
c5aa993b
JM
355 /* ignore invalid breakpoint. */
356 if (breaks[ii] == -1)
357 continue;
7c40d541 358 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
359 stepBreaks[ii].address = breaks[ii];
360 }
c906108c 361
c5aa993b
JM
362 }
363 else
364 {
c906108c 365
c5aa993b
JM
366 /* remove step breakpoints. */
367 for (ii = 0; ii < 2; ++ii)
368 if (stepBreaks[ii].address != 0)
7c40d541
KB
369 target_remove_breakpoint (stepBreaks[ii].address,
370 stepBreaks[ii].data);
c5aa993b 371 }
c906108c 372 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 373 /* What errors? {read,write}_memory call error(). */
c906108c
SS
374}
375
376
377/* return pc value after skipping a function prologue and also return
378 information about a function frame.
379
380 in struct rs6000_framedata fdata:
c5aa993b
JM
381 - frameless is TRUE, if function does not have a frame.
382 - nosavedpc is TRUE, if function does not save %pc value in its frame.
383 - offset is the initial size of this stack frame --- the amount by
384 which we decrement the sp to allocate the frame.
385 - saved_gpr is the number of the first saved gpr.
386 - saved_fpr is the number of the first saved fpr.
6be8bc0c 387 - saved_vr is the number of the first saved vr.
96ff0de4 388 - saved_ev is the number of the first saved ev.
c5aa993b
JM
389 - alloca_reg is the number of the register used for alloca() handling.
390 Otherwise -1.
391 - gpr_offset is the offset of the first saved gpr from the previous frame.
392 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 393 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 394 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
395 - lr_offset is the offset of the saved lr
396 - cr_offset is the offset of the saved cr
6be8bc0c 397 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 398 */
c906108c
SS
399
400#define SIGNED_SHORT(x) \
401 ((sizeof (short) == 2) \
402 ? ((int)(short)(x)) \
403 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
404
405#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
406
55d05f3b
KB
407/* Limit the number of skipped non-prologue instructions, as the examining
408 of the prologue is expensive. */
409static int max_skip_non_prologue_insns = 10;
410
411/* Given PC representing the starting address of a function, and
412 LIM_PC which is the (sloppy) limit to which to scan when looking
413 for a prologue, attempt to further refine this limit by using
414 the line data in the symbol table. If successful, a better guess
415 on where the prologue ends is returned, otherwise the previous
416 value of lim_pc is returned. */
417static CORE_ADDR
418refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
419{
420 struct symtab_and_line prologue_sal;
421
422 prologue_sal = find_pc_line (pc, 0);
423 if (prologue_sal.line != 0)
424 {
425 int i;
426 CORE_ADDR addr = prologue_sal.end;
427
428 /* Handle the case in which compiler's optimizer/scheduler
429 has moved instructions into the prologue. We scan ahead
430 in the function looking for address ranges whose corresponding
431 line number is less than or equal to the first one that we
432 found for the function. (It can be less than when the
433 scheduler puts a body instruction before the first prologue
434 instruction.) */
435 for (i = 2 * max_skip_non_prologue_insns;
436 i > 0 && (lim_pc == 0 || addr < lim_pc);
437 i--)
438 {
439 struct symtab_and_line sal;
440
441 sal = find_pc_line (addr, 0);
442 if (sal.line == 0)
443 break;
444 if (sal.line <= prologue_sal.line
445 && sal.symtab == prologue_sal.symtab)
446 {
447 prologue_sal = sal;
448 }
449 addr = sal.end;
450 }
451
452 if (lim_pc == 0 || prologue_sal.end < lim_pc)
453 lim_pc = prologue_sal.end;
454 }
455 return lim_pc;
456}
457
458
7a78ae4e 459static CORE_ADDR
077276e8 460skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
461{
462 CORE_ADDR orig_pc = pc;
55d05f3b 463 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 464 CORE_ADDR li_found_pc = 0;
c906108c
SS
465 char buf[4];
466 unsigned long op;
467 long offset = 0;
6be8bc0c 468 long vr_saved_offset = 0;
482ca3f5
KB
469 int lr_reg = -1;
470 int cr_reg = -1;
6be8bc0c 471 int vr_reg = -1;
96ff0de4
EZ
472 int ev_reg = -1;
473 long ev_offset = 0;
6be8bc0c 474 int vrsave_reg = -1;
c906108c
SS
475 int reg;
476 int framep = 0;
477 int minimal_toc_loaded = 0;
ddb20c56 478 int prev_insn_was_prologue_insn = 1;
55d05f3b 479 int num_skip_non_prologue_insns = 0;
96ff0de4 480 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 481 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 482
55d05f3b
KB
483 /* Attempt to find the end of the prologue when no limit is specified.
484 Note that refine_prologue_limit() has been written so that it may
485 be used to "refine" the limits of non-zero PC values too, but this
486 is only safe if we 1) trust the line information provided by the
487 compiler and 2) iterate enough to actually find the end of the
488 prologue.
489
490 It may become a good idea at some point (for both performance and
491 accuracy) to unconditionally call refine_prologue_limit(). But,
492 until we can make a clear determination that this is beneficial,
493 we'll play it safe and only use it to obtain a limit when none
494 has been specified. */
495 if (lim_pc == 0)
496 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 497
ddb20c56 498 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
499 fdata->saved_gpr = -1;
500 fdata->saved_fpr = -1;
6be8bc0c 501 fdata->saved_vr = -1;
96ff0de4 502 fdata->saved_ev = -1;
c906108c
SS
503 fdata->alloca_reg = -1;
504 fdata->frameless = 1;
505 fdata->nosavedpc = 1;
506
55d05f3b 507 for (;; pc += 4)
c906108c 508 {
ddb20c56
KB
509 /* Sometimes it isn't clear if an instruction is a prologue
510 instruction or not. When we encounter one of these ambiguous
511 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
512 Otherwise, we'll assume that it really is a prologue instruction. */
513 if (prev_insn_was_prologue_insn)
514 last_prologue_pc = pc;
55d05f3b
KB
515
516 /* Stop scanning if we've hit the limit. */
517 if (lim_pc != 0 && pc >= lim_pc)
518 break;
519
ddb20c56
KB
520 prev_insn_was_prologue_insn = 1;
521
55d05f3b 522 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
523 if (target_read_memory (pc, buf, 4))
524 break;
525 op = extract_signed_integer (buf, 4);
c906108c 526
c5aa993b
JM
527 if ((op & 0xfc1fffff) == 0x7c0802a6)
528 { /* mflr Rx */
98f08d3d 529 lr_reg = (op & 0x03e00000);
c5aa993b 530 continue;
c906108c 531
c5aa993b
JM
532 }
533 else if ((op & 0xfc1fffff) == 0x7c000026)
534 { /* mfcr Rx */
98f08d3d 535 cr_reg = (op & 0x03e00000);
c5aa993b 536 continue;
c906108c 537
c906108c 538 }
c5aa993b
JM
539 else if ((op & 0xfc1f0000) == 0xd8010000)
540 { /* stfd Rx,NUM(r1) */
541 reg = GET_SRC_REG (op);
542 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
543 {
544 fdata->saved_fpr = reg;
545 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
546 }
547 continue;
c906108c 548
c5aa993b
JM
549 }
550 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
551 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
552 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
553 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
554 {
555
556 reg = GET_SRC_REG (op);
557 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
558 {
559 fdata->saved_gpr = reg;
7a78ae4e 560 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 561 op &= ~3UL;
c5aa993b
JM
562 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
563 }
564 continue;
c906108c 565
ddb20c56
KB
566 }
567 else if ((op & 0xffff0000) == 0x60000000)
568 {
96ff0de4 569 /* nop */
ddb20c56
KB
570 /* Allow nops in the prologue, but do not consider them to
571 be part of the prologue unless followed by other prologue
572 instructions. */
573 prev_insn_was_prologue_insn = 0;
574 continue;
575
c906108c 576 }
c5aa993b
JM
577 else if ((op & 0xffff0000) == 0x3c000000)
578 { /* addis 0,0,NUM, used
579 for >= 32k frames */
580 fdata->offset = (op & 0x0000ffff) << 16;
581 fdata->frameless = 0;
582 continue;
583
584 }
585 else if ((op & 0xffff0000) == 0x60000000)
586 { /* ori 0,0,NUM, 2nd ha
587 lf of >= 32k frames */
588 fdata->offset |= (op & 0x0000ffff);
589 fdata->frameless = 0;
590 continue;
591
592 }
98f08d3d
KB
593 else if (lr_reg != -1 &&
594 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
595 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
596 /* stw Rx, NUM(r1) */
597 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
598 /* stwu Rx, NUM(r1) */
599 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
600 { /* where Rx == lr */
601 fdata->lr_offset = offset;
c5aa993b
JM
602 fdata->nosavedpc = 0;
603 lr_reg = 0;
98f08d3d
KB
604 if ((op & 0xfc000003) == 0xf8000000 || /* std */
605 (op & 0xfc000000) == 0x90000000) /* stw */
606 {
607 /* Does not update r1, so add displacement to lr_offset. */
608 fdata->lr_offset += SIGNED_SHORT (op);
609 }
c5aa993b
JM
610 continue;
611
612 }
98f08d3d
KB
613 else if (cr_reg != -1 &&
614 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
615 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
616 /* stw Rx, NUM(r1) */
617 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
618 /* stwu Rx, NUM(r1) */
619 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
620 { /* where Rx == cr */
621 fdata->cr_offset = offset;
c5aa993b 622 cr_reg = 0;
98f08d3d
KB
623 if ((op & 0xfc000003) == 0xf8000000 ||
624 (op & 0xfc000000) == 0x90000000)
625 {
626 /* Does not update r1, so add displacement to cr_offset. */
627 fdata->cr_offset += SIGNED_SHORT (op);
628 }
c5aa993b
JM
629 continue;
630
631 }
632 else if (op == 0x48000005)
633 { /* bl .+4 used in
634 -mrelocatable */
635 continue;
636
637 }
638 else if (op == 0x48000004)
639 { /* b .+4 (xlc) */
640 break;
641
c5aa993b 642 }
6be8bc0c
EZ
643 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
644 in V.4 -mminimal-toc */
c5aa993b
JM
645 (op & 0xffff0000) == 0x3bde0000)
646 { /* addi 30,30,foo@l */
647 continue;
c906108c 648
c5aa993b
JM
649 }
650 else if ((op & 0xfc000001) == 0x48000001)
651 { /* bl foo,
652 to save fprs??? */
c906108c 653
c5aa993b 654 fdata->frameless = 0;
6be8bc0c
EZ
655 /* Don't skip over the subroutine call if it is not within
656 the first three instructions of the prologue. */
c5aa993b
JM
657 if ((pc - orig_pc) > 8)
658 break;
659
660 op = read_memory_integer (pc + 4, 4);
661
6be8bc0c
EZ
662 /* At this point, make sure this is not a trampoline
663 function (a function that simply calls another functions,
664 and nothing else). If the next is not a nop, this branch
665 was part of the function prologue. */
c5aa993b
JM
666
667 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
668 break; /* don't skip over
669 this branch */
670 continue;
671
c5aa993b 672 }
98f08d3d
KB
673 /* update stack pointer */
674 else if ((op & 0xfc1f0000) == 0x94010000)
675 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
676 fdata->frameless = 0;
677 fdata->offset = SIGNED_SHORT (op);
678 offset = fdata->offset;
679 continue;
c5aa993b 680 }
98f08d3d
KB
681 else if ((op & 0xfc1f016a) == 0x7c01016e)
682 { /* stwux rX,r1,rY */
683 /* no way to figure out what r1 is going to be */
684 fdata->frameless = 0;
685 offset = fdata->offset;
686 continue;
687 }
688 else if ((op & 0xfc1f0003) == 0xf8010001)
689 { /* stdu rX,NUM(r1) */
690 fdata->frameless = 0;
691 fdata->offset = SIGNED_SHORT (op & ~3UL);
692 offset = fdata->offset;
693 continue;
694 }
695 else if ((op & 0xfc1f016a) == 0x7c01016a)
696 { /* stdux rX,r1,rY */
697 /* no way to figure out what r1 is going to be */
c5aa993b
JM
698 fdata->frameless = 0;
699 offset = fdata->offset;
700 continue;
c5aa993b 701 }
98f08d3d
KB
702 /* Load up minimal toc pointer */
703 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
704 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 705 && !minimal_toc_loaded)
98f08d3d 706 {
c5aa993b
JM
707 minimal_toc_loaded = 1;
708 continue;
709
f6077098
KB
710 /* move parameters from argument registers to local variable
711 registers */
712 }
713 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
714 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
715 (((op >> 21) & 31) <= 10) &&
96ff0de4 716 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
717 {
718 continue;
719
c5aa993b
JM
720 /* store parameters in stack */
721 }
6be8bc0c 722 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 723 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
724 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
725 {
c5aa993b 726 continue;
c906108c 727
c5aa993b
JM
728 /* store parameters in stack via frame pointer */
729 }
730 else if (framep &&
731 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
732 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
733 (op & 0xfc1f0000) == 0xfc1f0000))
734 { /* frsp, fp?,NUM(r1) */
735 continue;
736
737 /* Set up frame pointer */
738 }
739 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
740 || op == 0x7c3f0b78)
741 { /* mr r31, r1 */
742 fdata->frameless = 0;
743 framep = 1;
6f99cb26 744 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
745 continue;
746
747 /* Another way to set up the frame pointer. */
748 }
749 else if ((op & 0xfc1fffff) == 0x38010000)
750 { /* addi rX, r1, 0x0 */
751 fdata->frameless = 0;
752 framep = 1;
6f99cb26
AC
753 fdata->alloca_reg = (tdep->ppc_gp0_regnum
754 + ((op & ~0x38010000) >> 21));
c5aa993b 755 continue;
c5aa993b 756 }
6be8bc0c
EZ
757 /* AltiVec related instructions. */
758 /* Store the vrsave register (spr 256) in another register for
759 later manipulation, or load a register into the vrsave
760 register. 2 instructions are used: mfvrsave and
761 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
762 and mtspr SPR256, Rn. */
763 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
764 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
765 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
766 {
767 vrsave_reg = GET_SRC_REG (op);
768 continue;
769 }
770 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
771 {
772 continue;
773 }
774 /* Store the register where vrsave was saved to onto the stack:
775 rS is the register where vrsave was stored in a previous
776 instruction. */
777 /* 100100 sssss 00001 dddddddd dddddddd */
778 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
779 {
780 if (vrsave_reg == GET_SRC_REG (op))
781 {
782 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
783 vrsave_reg = -1;
784 }
785 continue;
786 }
787 /* Compute the new value of vrsave, by modifying the register
788 where vrsave was saved to. */
789 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
790 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
791 {
792 continue;
793 }
794 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
795 in a pair of insns to save the vector registers on the
796 stack. */
797 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
798 /* 001110 01110 00000 iiii iiii iiii iiii */
799 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
800 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
801 {
802 li_found_pc = pc;
803 vr_saved_offset = SIGNED_SHORT (op);
804 }
805 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
806 /* 011111 sssss 11111 00000 00111001110 */
807 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
808 {
809 if (pc == (li_found_pc + 4))
810 {
811 vr_reg = GET_SRC_REG (op);
812 /* If this is the first vector reg to be saved, or if
813 it has a lower number than others previously seen,
814 reupdate the frame info. */
815 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
816 {
817 fdata->saved_vr = vr_reg;
818 fdata->vr_offset = vr_saved_offset + offset;
819 }
820 vr_saved_offset = -1;
821 vr_reg = -1;
822 li_found_pc = 0;
823 }
824 }
825 /* End AltiVec related instructions. */
96ff0de4
EZ
826
827 /* Start BookE related instructions. */
828 /* Store gen register S at (r31+uimm).
829 Any register less than r13 is volatile, so we don't care. */
830 /* 000100 sssss 11111 iiiii 01100100001 */
831 else if (arch_info->mach == bfd_mach_ppc_e500
832 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
833 {
834 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
835 {
836 unsigned int imm;
837 ev_reg = GET_SRC_REG (op);
838 imm = (op >> 11) & 0x1f;
839 ev_offset = imm * 8;
840 /* If this is the first vector reg to be saved, or if
841 it has a lower number than others previously seen,
842 reupdate the frame info. */
843 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
844 {
845 fdata->saved_ev = ev_reg;
846 fdata->ev_offset = ev_offset + offset;
847 }
848 }
849 continue;
850 }
851 /* Store gen register rS at (r1+rB). */
852 /* 000100 sssss 00001 bbbbb 01100100000 */
853 else if (arch_info->mach == bfd_mach_ppc_e500
854 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
855 {
856 if (pc == (li_found_pc + 4))
857 {
858 ev_reg = GET_SRC_REG (op);
859 /* If this is the first vector reg to be saved, or if
860 it has a lower number than others previously seen,
861 reupdate the frame info. */
862 /* We know the contents of rB from the previous instruction. */
863 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
864 {
865 fdata->saved_ev = ev_reg;
866 fdata->ev_offset = vr_saved_offset + offset;
867 }
868 vr_saved_offset = -1;
869 ev_reg = -1;
870 li_found_pc = 0;
871 }
872 continue;
873 }
874 /* Store gen register r31 at (rA+uimm). */
875 /* 000100 11111 aaaaa iiiii 01100100001 */
876 else if (arch_info->mach == bfd_mach_ppc_e500
877 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
878 {
879 /* Wwe know that the source register is 31 already, but
880 it can't hurt to compute it. */
881 ev_reg = GET_SRC_REG (op);
882 ev_offset = ((op >> 11) & 0x1f) * 8;
883 /* If this is the first vector reg to be saved, or if
884 it has a lower number than others previously seen,
885 reupdate the frame info. */
886 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
887 {
888 fdata->saved_ev = ev_reg;
889 fdata->ev_offset = ev_offset + offset;
890 }
891
892 continue;
893 }
894 /* Store gen register S at (r31+r0).
895 Store param on stack when offset from SP bigger than 4 bytes. */
896 /* 000100 sssss 11111 00000 01100100000 */
897 else if (arch_info->mach == bfd_mach_ppc_e500
898 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
899 {
900 if (pc == (li_found_pc + 4))
901 {
902 if ((op & 0x03e00000) >= 0x01a00000)
903 {
904 ev_reg = GET_SRC_REG (op);
905 /* If this is the first vector reg to be saved, or if
906 it has a lower number than others previously seen,
907 reupdate the frame info. */
908 /* We know the contents of r0 from the previous
909 instruction. */
910 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
911 {
912 fdata->saved_ev = ev_reg;
913 fdata->ev_offset = vr_saved_offset + offset;
914 }
915 ev_reg = -1;
916 }
917 vr_saved_offset = -1;
918 li_found_pc = 0;
919 continue;
920 }
921 }
922 /* End BookE related instructions. */
923
c5aa993b
JM
924 else
925 {
55d05f3b
KB
926 /* Not a recognized prologue instruction.
927 Handle optimizer code motions into the prologue by continuing
928 the search if we have no valid frame yet or if the return
929 address is not yet saved in the frame. */
930 if (fdata->frameless == 0
931 && (lr_reg == -1 || fdata->nosavedpc == 0))
932 break;
933
934 if (op == 0x4e800020 /* blr */
935 || op == 0x4e800420) /* bctr */
936 /* Do not scan past epilogue in frameless functions or
937 trampolines. */
938 break;
939 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 940 /* Never skip branches. */
55d05f3b
KB
941 break;
942
943 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
944 /* Do not scan too many insns, scanning insns is expensive with
945 remote targets. */
946 break;
947
948 /* Continue scanning. */
949 prev_insn_was_prologue_insn = 0;
950 continue;
c5aa993b 951 }
c906108c
SS
952 }
953
954#if 0
955/* I have problems with skipping over __main() that I need to address
956 * sometime. Previously, I used to use misc_function_vector which
957 * didn't work as well as I wanted to be. -MGO */
958
959 /* If the first thing after skipping a prolog is a branch to a function,
960 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 961 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 962 work before calling a function right after a prologue, thus we can
64366f1c 963 single out such gcc2 behaviour. */
c906108c 964
c906108c 965
c5aa993b
JM
966 if ((op & 0xfc000001) == 0x48000001)
967 { /* bl foo, an initializer function? */
968 op = read_memory_integer (pc + 4, 4);
969
970 if (op == 0x4def7b82)
971 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 972
64366f1c
EZ
973 /* Check and see if we are in main. If so, skip over this
974 initializer function as well. */
c906108c 975
c5aa993b 976 tmp = find_pc_misc_function (pc);
51cc5b07 977 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
978 return pc + 8;
979 }
c906108c 980 }
c906108c 981#endif /* 0 */
c5aa993b
JM
982
983 fdata->offset = -fdata->offset;
ddb20c56 984 return last_prologue_pc;
c906108c
SS
985}
986
987
988/*************************************************************************
f6077098 989 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
990 frames, etc.
991*************************************************************************/
992
c906108c 993
64366f1c 994/* Pop the innermost frame, go back to the caller. */
c5aa993b 995
c906108c 996static void
7a78ae4e 997rs6000_pop_frame (void)
c906108c 998{
470d5666 999 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1000 struct rs6000_framedata fdata;
1001 struct frame_info *frame = get_current_frame ();
470d5666 1002 int ii, wordsize;
c906108c
SS
1003
1004 pc = read_pc ();
c193f6ac 1005 sp = get_frame_base (frame);
c906108c 1006
bdd78e62 1007 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1008 get_frame_base (frame),
1009 get_frame_base (frame)))
c906108c 1010 {
7a78ae4e
ND
1011 generic_pop_dummy_frame ();
1012 flush_cached_frames ();
1013 return;
c906108c
SS
1014 }
1015
1016 /* Make sure that all registers are valid. */
b8b527c5 1017 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1018
64366f1c 1019 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1020 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1021 saved %pc value in the previous frame. */
c906108c 1022
be41e9f4 1023 addr = get_frame_func (frame);
bdd78e62 1024 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1025
21283beb 1026 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1027 if (fdata.frameless)
1028 prev_sp = sp;
1029 else
7a78ae4e 1030 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1031 if (fdata.lr_offset == 0)
2188cbdd 1032 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1033 else
7a78ae4e 1034 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1035
1036 /* reset %pc value. */
1037 write_register (PC_REGNUM, lr);
1038
64366f1c 1039 /* reset register values if any was saved earlier. */
c906108c
SS
1040
1041 if (fdata.saved_gpr != -1)
1042 {
1043 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1044 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1045 {
524d7c18
AC
1046 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1047 wordsize);
7a78ae4e 1048 addr += wordsize;
c5aa993b 1049 }
c906108c
SS
1050 }
1051
1052 if (fdata.saved_fpr != -1)
1053 {
1054 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1055 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1056 {
524d7c18 1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1058 addr += 8;
1059 }
c906108c
SS
1060 }
1061
1062 write_register (SP_REGNUM, prev_sp);
1063 target_store_registers (-1);
1064 flush_cached_frames ();
1065}
1066
7a78ae4e 1067/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1068 address. Its arguments will be passed by gdb. */
c906108c 1069
7a78ae4e
ND
1070static void
1071rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1072 int nargs, struct value **args, struct type *type,
7a78ae4e 1073 int gcc_p)
c906108c 1074{
c906108c
SS
1075 int ii;
1076 CORE_ADDR target_addr;
1077
7a78ae4e 1078 if (rs6000_find_toc_address_hook != NULL)
f6077098 1079 {
7a78ae4e 1080 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1081 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1082 tocvalue);
f6077098 1083 }
c906108c
SS
1084}
1085
11269d7e
AC
1086/* All the ABI's require 16 byte alignment. */
1087static CORE_ADDR
1088rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1089{
1090 return (addr & -16);
1091}
1092
7a78ae4e 1093/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1094 the first eight words of the argument list (that might be less than
1095 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1096 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1097 passed in fpr's, in addition to that. Rest of the parameters if any
1098 are passed in user stack. There might be cases in which half of the
c906108c
SS
1099 parameter is copied into registers, the other half is pushed into
1100 stack.
1101
7a78ae4e
ND
1102 Stack must be aligned on 64-bit boundaries when synthesizing
1103 function calls.
1104
c906108c
SS
1105 If the function is returning a structure, then the return address is passed
1106 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1107 starting from r4. */
c906108c 1108
7a78ae4e 1109static CORE_ADDR
ea7c478f 1110rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1111 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1112{
1113 int ii;
1114 int len = 0;
c5aa993b
JM
1115 int argno; /* current argument number */
1116 int argbytes; /* current argument byte */
1117 char tmp_buffer[50];
1118 int f_argno = 0; /* current floating point argno */
21283beb 1119 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1120
ea7c478f 1121 struct value *arg = 0;
c906108c
SS
1122 struct type *type;
1123
1124 CORE_ADDR saved_sp;
1125
64366f1c
EZ
1126 /* The first eight words of ther arguments are passed in registers.
1127 Copy them appropriately.
c906108c
SS
1128
1129 If the function is returning a `struct', then the first word (which
64366f1c 1130 will be passed in r3) is used for struct return address. In that
c906108c 1131 case we should advance one word and start from r4 register to copy
64366f1c 1132 parameters. */
c906108c 1133
c5aa993b 1134 ii = struct_return ? 1 : 0;
c906108c
SS
1135
1136/*
c5aa993b
JM
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
c906108c 1154
c5aa993b
JM
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
f6077098 1157 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
64366f1c 1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1167 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1168 there is no way we would run out of them. */
c5aa993b
JM
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
524d7c18 1174 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
f6077098 1180 if (len > reg_size)
c5aa993b
JM
1181 {
1182
64366f1c 1183 /* Argument takes more than one register. */
c5aa993b
JM
1184 while (argbytes < len)
1185 {
524d7c18
AC
1186 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1187 reg_size);
1188 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
c5aa993b
JM
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
64366f1c
EZ
1201 {
1202 /* Argument can fit in one register. No problem. */
d7449b42 1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1204 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1206 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1207 }
1208 ++argno;
c906108c 1209 }
c906108c
SS
1210
1211ran_out_of_registers_for_arguments:
1212
7a78ae4e 1213 saved_sp = read_sp ();
cc9836a8 1214
64366f1c 1215 /* Location for 8 parameters are always reserved. */
7a78ae4e 1216 sp -= wordsize * 8;
f6077098 1217
64366f1c 1218 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1219 sp -= wordsize * 6;
f6077098 1220
64366f1c 1221 /* Stack pointer must be quadword aligned. */
7a78ae4e 1222 sp &= -16;
c906108c 1223
64366f1c
EZ
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
c906108c 1226
c5aa993b
JM
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
c906108c 1230
c5aa993b
JM
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
c906108c 1238
c5aa993b
JM
1239 for (; jj < nargs; ++jj)
1240 {
ea7c478f 1241 struct value *val = args[jj];
c5aa993b
JM
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
c906108c 1244
64366f1c 1245 /* Add location required for the rest of the parameters. */
f6077098 1246 space = (space + 15) & -16;
c5aa993b 1247 sp -= space;
c906108c 1248
64366f1c
EZ
1249 /* This is another instance we need to be concerned about
1250 securing our stack space. If we write anything underneath %sp
1251 (r1), we might conflict with the kernel who thinks he is free
1252 to use this area. So, update %sp first before doing anything
1253 else. */
c906108c 1254
c5aa993b 1255 write_register (SP_REGNUM, sp);
c906108c 1256
64366f1c
EZ
1257 /* If the last argument copied into the registers didn't fit there
1258 completely, push the rest of it into stack. */
c906108c 1259
c5aa993b
JM
1260 if (argbytes)
1261 {
1262 write_memory (sp + 24 + (ii * 4),
1263 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1264 len - argbytes);
1265 ++argno;
1266 ii += ((len - argbytes + 3) & -4) / 4;
1267 }
c906108c 1268
64366f1c 1269 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1270 for (; argno < nargs; ++argno)
1271 {
c906108c 1272
c5aa993b
JM
1273 arg = args[argno];
1274 type = check_typedef (VALUE_TYPE (arg));
1275 len = TYPE_LENGTH (type);
c906108c
SS
1276
1277
64366f1c
EZ
1278 /* Float types should be passed in fpr's, as well as in the
1279 stack. */
c5aa993b
JM
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1281 {
c906108c 1282
c5aa993b
JM
1283 if (len > 8)
1284 printf_unfiltered (
1285 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1286
524d7c18 1287 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1288 VALUE_CONTENTS (arg),
1289 len);
1290 ++f_argno;
1291 }
c906108c 1292
c5aa993b
JM
1293 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1294 ii += ((len + 3) & -4) / 4;
1295 }
c906108c 1296 }
c906108c 1297 else
64366f1c 1298 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1299 write_register (SP_REGNUM, sp);
1300
c906108c 1301 /* set back chain properly */
fbd9dcd3 1302 store_unsigned_integer (tmp_buffer, 4, saved_sp);
c906108c
SS
1303 write_memory (sp, tmp_buffer, 4);
1304
1305 target_store_registers (-1);
1306 return sp;
1307}
c906108c
SS
1308
1309/* Function: ppc_push_return_address (pc, sp)
64366f1c 1310 Set up the return address for the inferior function call. */
c906108c 1311
7a78ae4e
ND
1312static CORE_ADDR
1313ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1314{
2188cbdd
EZ
1315 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1316 CALL_DUMMY_ADDRESS ());
c906108c
SS
1317 return sp;
1318}
1319
7a78ae4e 1320/* Extract a function return value of type TYPE from raw register array
64366f1c 1321 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1322static void
46d79c04 1323e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1324{
1325 int offset = 0;
1326 int vallen = TYPE_LENGTH (valtype);
1327 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1328
1329 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1330 && vallen == 8
1331 && TYPE_VECTOR (valtype))
1332 {
1333 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1334 }
1335 else
1336 {
1337 /* Return value is copied starting from r3. Note that r3 for us
1338 is a pseudo register. */
1339 int offset = 0;
1340 int return_regnum = tdep->ppc_gp0_regnum + 3;
1341 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1342 int reg_part_size;
1343 char *val_buffer;
1344 int copied = 0;
1345 int i = 0;
1346
1347 /* Compute where we will start storing the value from. */
1348 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1349 {
1350 if (vallen <= reg_size)
1351 offset = reg_size - vallen;
1352 else
1353 offset = reg_size + (reg_size - vallen);
1354 }
1355
1356 /* How big does the local buffer need to be? */
1357 if (vallen <= reg_size)
1358 val_buffer = alloca (reg_size);
1359 else
1360 val_buffer = alloca (vallen);
1361
1362 /* Read all we need into our private buffer. We copy it in
1363 chunks that are as long as one register, never shorter, even
1364 if the value is smaller than the register. */
1365 while (copied < vallen)
1366 {
1367 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1368 /* It is a pseudo/cooked register. */
1369 regcache_cooked_read (regbuf, return_regnum + i,
1370 val_buffer + copied);
1371 copied += reg_part_size;
1372 i++;
1373 }
1374 /* Put the stuff in the return buffer. */
1375 memcpy (valbuf, val_buffer + offset, vallen);
1376 }
1377}
c906108c 1378
7a78ae4e
ND
1379static void
1380rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1381{
1382 int offset = 0;
ace1378a 1383 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1384
c5aa993b
JM
1385 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1386 {
c906108c 1387
c5aa993b
JM
1388 double dd;
1389 float ff;
1390 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1391 We need to truncate the return value into float size (4 byte) if
64366f1c 1392 necessary. */
c906108c 1393
c5aa993b
JM
1394 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1395 memcpy (valbuf,
1396 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1397 TYPE_LENGTH (valtype));
1398 else
1399 { /* float */
1400 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1401 ff = (float) dd;
1402 memcpy (valbuf, &ff, sizeof (float));
1403 }
1404 }
ace1378a
EZ
1405 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1406 && TYPE_LENGTH (valtype) == 16
1407 && TYPE_VECTOR (valtype))
1408 {
1409 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1410 TYPE_LENGTH (valtype));
1411 }
c5aa993b
JM
1412 else
1413 {
1414 /* return value is copied starting from r3. */
d7449b42 1415 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1416 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1417 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1418
1419 memcpy (valbuf,
1420 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1421 TYPE_LENGTH (valtype));
c906108c 1422 }
c906108c
SS
1423}
1424
977adac5
ND
1425/* Return whether handle_inferior_event() should proceed through code
1426 starting at PC in function NAME when stepping.
1427
1428 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1429 handle memory references that are too distant to fit in instructions
1430 generated by the compiler. For example, if 'foo' in the following
1431 instruction:
1432
1433 lwz r9,foo(r2)
1434
1435 is greater than 32767, the linker might replace the lwz with a branch to
1436 somewhere in @FIX1 that does the load in 2 instructions and then branches
1437 back to where execution should continue.
1438
1439 GDB should silently step over @FIX code, just like AIX dbx does.
1440 Unfortunately, the linker uses the "b" instruction for the branches,
1441 meaning that the link register doesn't get set. Therefore, GDB's usual
1442 step_over_function() mechanism won't work.
1443
1444 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1445 in handle_inferior_event() to skip past @FIX code. */
1446
1447int
1448rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1449{
1450 return name && !strncmp (name, "@FIX", 4);
1451}
1452
1453/* Skip code that the user doesn't want to see when stepping:
1454
1455 1. Indirect function calls use a piece of trampoline code to do context
1456 switching, i.e. to set the new TOC table. Skip such code if we are on
1457 its first instruction (as when we have single-stepped to here).
1458
1459 2. Skip shared library trampoline code (which is different from
c906108c 1460 indirect function call trampolines).
977adac5
ND
1461
1462 3. Skip bigtoc fixup code.
1463
c906108c 1464 Result is desired PC to step until, or NULL if we are not in
977adac5 1465 code that should be skipped. */
c906108c
SS
1466
1467CORE_ADDR
7a78ae4e 1468rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1469{
1470 register unsigned int ii, op;
977adac5 1471 int rel;
c906108c 1472 CORE_ADDR solib_target_pc;
977adac5 1473 struct minimal_symbol *msymbol;
c906108c 1474
c5aa993b
JM
1475 static unsigned trampoline_code[] =
1476 {
1477 0x800b0000, /* l r0,0x0(r11) */
1478 0x90410014, /* st r2,0x14(r1) */
1479 0x7c0903a6, /* mtctr r0 */
1480 0x804b0004, /* l r2,0x4(r11) */
1481 0x816b0008, /* l r11,0x8(r11) */
1482 0x4e800420, /* bctr */
1483 0x4e800020, /* br */
1484 0
c906108c
SS
1485 };
1486
977adac5
ND
1487 /* Check for bigtoc fixup code. */
1488 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1489 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1490 {
1491 /* Double-check that the third instruction from PC is relative "b". */
1492 op = read_memory_integer (pc + 8, 4);
1493 if ((op & 0xfc000003) == 0x48000000)
1494 {
1495 /* Extract bits 6-29 as a signed 24-bit relative word address and
1496 add it to the containing PC. */
1497 rel = ((int)(op << 6) >> 6);
1498 return pc + 8 + rel;
1499 }
1500 }
1501
c906108c
SS
1502 /* If pc is in a shared library trampoline, return its target. */
1503 solib_target_pc = find_solib_trampoline_target (pc);
1504 if (solib_target_pc)
1505 return solib_target_pc;
1506
c5aa993b
JM
1507 for (ii = 0; trampoline_code[ii]; ++ii)
1508 {
1509 op = read_memory_integer (pc + (ii * 4), 4);
1510 if (op != trampoline_code[ii])
1511 return 0;
1512 }
1513 ii = read_register (11); /* r11 holds destination addr */
21283beb 1514 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1515 return pc;
1516}
1517
1518/* Determines whether the function FI has a frame on the stack or not. */
1519
9aa1e687 1520int
c877c8e6 1521rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1522{
1523 CORE_ADDR func_start;
1524 struct rs6000_framedata fdata;
1525
1526 /* Don't even think about framelessness except on the innermost frame
1527 or if the function was interrupted by a signal. */
75e3c1f9
AC
1528 if (get_next_frame (fi) != NULL
1529 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1530 return 0;
c5aa993b 1531
be41e9f4 1532 func_start = get_frame_func (fi);
c906108c
SS
1533
1534 /* If we failed to find the start of the function, it is a mistake
64366f1c 1535 to inspect the instructions. */
c906108c
SS
1536
1537 if (!func_start)
1538 {
1539 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1540 function pointer, normally causing an immediate core dump of the
64366f1c 1541 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1542 of setting up a stack frame. */
bdd78e62 1543 if (get_frame_pc (fi) == 0)
c906108c
SS
1544 return 1;
1545 else
1546 return 0;
1547 }
1548
bdd78e62 1549 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1550 return fdata.frameless;
1551}
1552
64366f1c 1553/* Return the PC saved in a frame. */
c906108c 1554
9aa1e687 1555CORE_ADDR
c877c8e6 1556rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1557{
1558 CORE_ADDR func_start;
1559 struct rs6000_framedata fdata;
21283beb 1560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1561 int wordsize = tdep->wordsize;
c906108c 1562
5a203e44 1563 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1564 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1565 wordsize);
c906108c 1566
bdd78e62 1567 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1568 get_frame_base (fi),
1569 get_frame_base (fi)))
bdd78e62 1570 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1571 get_frame_base (fi), PC_REGNUM);
c906108c 1572
be41e9f4 1573 func_start = get_frame_func (fi);
c906108c
SS
1574
1575 /* If we failed to find the start of the function, it is a mistake
64366f1c 1576 to inspect the instructions. */
c906108c
SS
1577 if (!func_start)
1578 return 0;
1579
bdd78e62 1580 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1581
75e3c1f9 1582 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1583 {
75e3c1f9 1584 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1585 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1586 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1587 wordsize);
bdd78e62 1588 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1589 /* The link register wasn't saved by this frame and the next
1590 (inner, newer) frame is a dummy. Get the link register
1591 value by unwinding it from that [dummy] frame. */
1592 {
1593 ULONGEST lr;
1594 frame_unwind_unsigned_register (get_next_frame (fi),
1595 tdep->ppc_lr_regnum, &lr);
1596 return lr;
1597 }
c906108c 1598 else
618ce49f
AC
1599 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1600 + tdep->lr_frame_offset,
7a78ae4e 1601 wordsize);
c906108c
SS
1602 }
1603
1604 if (fdata.lr_offset == 0)
2188cbdd 1605 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1606
618ce49f
AC
1607 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1608 wordsize);
c906108c
SS
1609}
1610
1611/* If saved registers of frame FI are not known yet, read and cache them.
1612 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1613 in which case the framedata are read. */
1614
1615static void
7a78ae4e 1616frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1617{
c5aa993b 1618 CORE_ADDR frame_addr;
c906108c 1619 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1620 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1621 int wordsize = tdep->wordsize;
c906108c 1622
c9012c71 1623 if (get_frame_saved_regs (fi))
c906108c 1624 return;
c5aa993b 1625
c906108c
SS
1626 if (fdatap == NULL)
1627 {
1628 fdatap = &work_fdata;
be41e9f4 1629 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1630 }
1631
1632 frame_saved_regs_zalloc (fi);
1633
1634 /* If there were any saved registers, figure out parent's stack
64366f1c 1635 pointer. */
c906108c 1636 /* The following is true only if the frame doesn't have a call to
64366f1c 1637 alloca(), FIXME. */
c906108c 1638
6be8bc0c
EZ
1639 if (fdatap->saved_fpr == 0
1640 && fdatap->saved_gpr == 0
1641 && fdatap->saved_vr == 0
96ff0de4 1642 && fdatap->saved_ev == 0
6be8bc0c
EZ
1643 && fdatap->lr_offset == 0
1644 && fdatap->cr_offset == 0
96ff0de4
EZ
1645 && fdatap->vr_offset == 0
1646 && fdatap->ev_offset == 0)
c906108c 1647 frame_addr = 0;
c906108c 1648 else
bf75c8c1
AC
1649 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1650 address of the current frame. Things might be easier if the
1651 ->frame pointed to the outer-most address of the frame. In the
1652 mean time, the address of the prev frame is used as the base
1653 address of this frame. */
618ce49f 1654 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1655
c906108c
SS
1656 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1657 All fpr's from saved_fpr to fp31 are saved. */
1658
1659 if (fdatap->saved_fpr >= 0)
1660 {
1661 int i;
7a78ae4e 1662 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1663 for (i = fdatap->saved_fpr; i < 32; i++)
1664 {
c9012c71 1665 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1666 fpr_addr += 8;
c906108c
SS
1667 }
1668 }
1669
1670 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1671 All gpr's from saved_gpr to gpr31 are saved. */
1672
1673 if (fdatap->saved_gpr >= 0)
1674 {
1675 int i;
7a78ae4e 1676 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1677 for (i = fdatap->saved_gpr; i < 32; i++)
1678 {
366cfc9e 1679 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1680 gpr_addr += wordsize;
c906108c
SS
1681 }
1682 }
1683
6be8bc0c
EZ
1684 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1685 All vr's from saved_vr to vr31 are saved. */
1686 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1687 {
1688 if (fdatap->saved_vr >= 0)
1689 {
1690 int i;
1691 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1692 for (i = fdatap->saved_vr; i < 32; i++)
1693 {
c9012c71 1694 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1695 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1696 }
1697 }
1698 }
1699
96ff0de4
EZ
1700 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1701 All vr's from saved_ev to ev31 are saved. ????? */
1702 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1703 {
1704 if (fdatap->saved_ev >= 0)
1705 {
1706 int i;
1707 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1708 for (i = fdatap->saved_ev; i < 32; i++)
1709 {
c9012c71
AC
1710 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1711 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1712 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1713 }
1714 }
1715 }
1716
c906108c
SS
1717 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1718 the CR. */
1719 if (fdatap->cr_offset != 0)
c9012c71 1720 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1721
1722 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1723 the LR. */
1724 if (fdatap->lr_offset != 0)
c9012c71 1725 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1726
1727 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1728 the VRSAVE. */
1729 if (fdatap->vrsave_offset != 0)
c9012c71 1730 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1731}
1732
1733/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1734 was first allocated. For functions calling alloca(), it might be saved in
1735 an alloca register. */
c906108c
SS
1736
1737static CORE_ADDR
7a78ae4e 1738frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1739{
1740 CORE_ADDR tmpaddr;
1741 struct rs6000_framedata fdata;
1742 struct frame_info *callee_fi;
1743
64366f1c
EZ
1744 /* If the initial stack pointer (frame address) of this frame is known,
1745 just return it. */
c906108c 1746
c9012c71
AC
1747 if (get_frame_extra_info (fi)->initial_sp)
1748 return get_frame_extra_info (fi)->initial_sp;
c906108c 1749
64366f1c 1750 /* Find out if this function is using an alloca register. */
c906108c 1751
be41e9f4 1752 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1753
64366f1c
EZ
1754 /* If saved registers of this frame are not known yet, read and
1755 cache them. */
c906108c 1756
c9012c71 1757 if (!get_frame_saved_regs (fi))
c906108c
SS
1758 frame_get_saved_regs (fi, &fdata);
1759
1760 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1761 this frame, and it is good enough. */
c906108c
SS
1762
1763 if (fdata.alloca_reg < 0)
1764 {
c9012c71
AC
1765 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1766 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1767 }
1768
953836b2
AC
1769 /* There is an alloca register, use its value, in the current frame,
1770 as the initial stack pointer. */
1771 {
d9d9c31f 1772 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1773 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1774 {
c9012c71 1775 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1776 = extract_unsigned_integer (tmpbuf,
1777 REGISTER_RAW_SIZE (fdata.alloca_reg));
1778 }
1779 else
1780 /* NOTE: cagney/2002-04-17: At present the only time
1781 frame_register_read will fail is when the register isn't
1782 available. If that does happen, use the frame. */
c9012c71 1783 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1784 }
c9012c71 1785 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1786}
1787
7a78ae4e
ND
1788/* Describe the pointer in each stack frame to the previous stack frame
1789 (its caller). */
1790
618ce49f
AC
1791/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1792 the frame's chain-pointer. */
7a78ae4e
ND
1793
1794/* In the case of the RS/6000, the frame's nominal address
1795 is the address of a 4-byte word containing the calling frame's address. */
1796
9aa1e687 1797CORE_ADDR
7a78ae4e 1798rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1799{
7a78ae4e 1800 CORE_ADDR fp, fpp, lr;
21283beb 1801 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1802
bdd78e62 1803 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1804 get_frame_base (thisframe),
1805 get_frame_base (thisframe)))
9f3b7f07
AC
1806 /* A dummy frame always correctly chains back to the previous
1807 frame. */
8b36eed8 1808 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1809
bdd78e62
AC
1810 if (inside_entry_file (get_frame_pc (thisframe))
1811 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1812 return 0;
1813
5a203e44 1814 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1815 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1816 wordsize);
75e3c1f9
AC
1817 else if (get_next_frame (thisframe) != NULL
1818 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1819 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1820 /* A frameless function interrupted by a signal did not change the
1821 frame pointer. */
c193f6ac 1822 fp = get_frame_base (thisframe);
c906108c 1823 else
8b36eed8 1824 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1825 return fp;
1826}
1827
1828/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1829 isn't available with that word size, return 0. */
7a78ae4e
ND
1830
1831static int
1832regsize (const struct reg *reg, int wordsize)
1833{
1834 return wordsize == 8 ? reg->sz64 : reg->sz32;
1835}
1836
1837/* Return the name of register number N, or null if no such register exists
64366f1c 1838 in the current architecture. */
7a78ae4e 1839
fa88f677 1840static const char *
7a78ae4e
ND
1841rs6000_register_name (int n)
1842{
21283beb 1843 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1844 const struct reg *reg = tdep->regs + n;
1845
1846 if (!regsize (reg, tdep->wordsize))
1847 return NULL;
1848 return reg->name;
1849}
1850
1851/* Index within `registers' of the first byte of the space for
1852 register N. */
1853
1854static int
1855rs6000_register_byte (int n)
1856{
21283beb 1857 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1858}
1859
1860/* Return the number of bytes of storage in the actual machine representation
64366f1c 1861 for register N if that register is available, else return 0. */
7a78ae4e
ND
1862
1863static int
1864rs6000_register_raw_size (int n)
1865{
21283beb 1866 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1867 const struct reg *reg = tdep->regs + n;
1868 return regsize (reg, tdep->wordsize);
1869}
1870
7a78ae4e
ND
1871/* Return the GDB type object for the "standard" data type
1872 of data in register N. */
1873
1874static struct type *
fba45db2 1875rs6000_register_virtual_type (int n)
7a78ae4e 1876{
21283beb 1877 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1878 const struct reg *reg = tdep->regs + n;
1879
1fcc0bb8
EZ
1880 if (reg->fpr)
1881 return builtin_type_double;
1882 else
1883 {
1884 int size = regsize (reg, tdep->wordsize);
1885 switch (size)
1886 {
1887 case 8:
c8001721
EZ
1888 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1889 return builtin_type_vec64;
1890 else
1891 return builtin_type_int64;
1fcc0bb8
EZ
1892 break;
1893 case 16:
08cf96df 1894 return builtin_type_vec128;
1fcc0bb8
EZ
1895 break;
1896 default:
1897 return builtin_type_int32;
1898 break;
1899 }
1900 }
7a78ae4e
ND
1901}
1902
7a78ae4e
ND
1903/* Return whether register N requires conversion when moving from raw format
1904 to virtual format.
1905
1906 The register format for RS/6000 floating point registers is always
64366f1c 1907 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1908
1909static int
1910rs6000_register_convertible (int n)
1911{
21283beb 1912 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1913 return reg->fpr;
1914}
1915
1916/* Convert data from raw format for register N in buffer FROM
64366f1c 1917 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1918
1919static void
1920rs6000_register_convert_to_virtual (int n, struct type *type,
1921 char *from, char *to)
1922{
1923 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1924 {
f1908289
AC
1925 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1926 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1927 }
1928 else
1929 memcpy (to, from, REGISTER_RAW_SIZE (n));
1930}
1931
1932/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1933 to raw format for register N in buffer TO. */
7a292a7a 1934
7a78ae4e
ND
1935static void
1936rs6000_register_convert_to_raw (struct type *type, int n,
1937 char *from, char *to)
1938{
1939 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1940 {
f1908289
AC
1941 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1942 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1943 }
7a78ae4e
ND
1944 else
1945 memcpy (to, from, REGISTER_RAW_SIZE (n));
1946}
c906108c 1947
c8001721
EZ
1948static void
1949e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1950 int reg_nr, void *buffer)
1951{
1952 int base_regnum;
1953 int offset = 0;
d9d9c31f 1954 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1956
1957 if (reg_nr >= tdep->ppc_gp0_regnum
1958 && reg_nr <= tdep->ppc_gplast_regnum)
1959 {
1960 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1961
1962 /* Build the value in the provided buffer. */
1963 /* Read the raw register of which this one is the lower portion. */
1964 regcache_raw_read (regcache, base_regnum, temp_buffer);
1965 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1966 offset = 4;
1967 memcpy ((char *) buffer, temp_buffer + offset, 4);
1968 }
1969}
1970
1971static void
1972e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1973 int reg_nr, const void *buffer)
1974{
1975 int base_regnum;
1976 int offset = 0;
d9d9c31f 1977 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1979
1980 if (reg_nr >= tdep->ppc_gp0_regnum
1981 && reg_nr <= tdep->ppc_gplast_regnum)
1982 {
1983 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1984 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1985 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1986 offset = 4;
1987
1988 /* Let's read the value of the base register into a temporary
1989 buffer, so that overwriting the last four bytes with the new
1990 value of the pseudo will leave the upper 4 bytes unchanged. */
1991 regcache_raw_read (regcache, base_regnum, temp_buffer);
1992
1993 /* Write as an 8 byte quantity. */
1994 memcpy (temp_buffer + offset, (char *) buffer, 4);
1995 regcache_raw_write (regcache, base_regnum, temp_buffer);
1996 }
1997}
1998
1999/* Convert a dwarf2 register number to a gdb REGNUM. */
2000static int
2001e500_dwarf2_reg_to_regnum (int num)
2002{
2003 int regnum;
2004 if (0 <= num && num <= 31)
2005 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2006 else
2007 return num;
2008}
2009
2188cbdd 2010/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 2011 REGNUM. */
2188cbdd
EZ
2012static int
2013rs6000_stab_reg_to_regnum (int num)
2014{
2015 int regnum;
2016 switch (num)
2017 {
2018 case 64:
2019 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2020 break;
2021 case 65:
2022 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2023 break;
2024 case 66:
2025 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2026 break;
2027 case 76:
2028 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2029 break;
2030 default:
2031 regnum = num;
2032 break;
2033 }
2034 return regnum;
2035}
2036
7a78ae4e 2037/* Store the address of the place in which to copy the structure the
11269d7e 2038 subroutine will return. */
7a78ae4e
ND
2039
2040static void
2041rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2042{
da3eff49
AC
2043 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2044 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2045}
2046
2047/* Write into appropriate registers a function return value
2048 of type TYPE, given in virtual format. */
96ff0de4
EZ
2049static void
2050e500_store_return_value (struct type *type, char *valbuf)
2051{
2052 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2053
2054 /* Everything is returned in GPR3 and up. */
2055 int copied = 0;
2056 int i = 0;
2057 int len = TYPE_LENGTH (type);
2058 while (copied < len)
2059 {
2060 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2061 int reg_size = REGISTER_RAW_SIZE (regnum);
2062 char *reg_val_buf = alloca (reg_size);
2063
2064 memcpy (reg_val_buf, valbuf + copied, reg_size);
2065 copied += reg_size;
4caf0990 2066 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2067 i++;
2068 }
2069}
7a78ae4e
ND
2070
2071static void
2072rs6000_store_return_value (struct type *type, char *valbuf)
2073{
ace1378a
EZ
2074 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2075
7a78ae4e
ND
2076 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2077
2078 /* Floating point values are returned starting from FPR1 and up.
2079 Say a double_double_double type could be returned in
64366f1c 2080 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2081
73937e03
AC
2082 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2083 TYPE_LENGTH (type));
ace1378a
EZ
2084 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2085 {
2086 if (TYPE_LENGTH (type) == 16
2087 && TYPE_VECTOR (type))
73937e03
AC
2088 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2089 valbuf, TYPE_LENGTH (type));
ace1378a 2090 }
7a78ae4e 2091 else
64366f1c 2092 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2093 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2094 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2095}
2096
2097/* Extract from an array REGBUF containing the (raw) register state
2098 the address in which a function should return its structure value,
2099 as a CORE_ADDR (or an expression that can be used as one). */
2100
2101static CORE_ADDR
11269d7e
AC
2102rs6000_extract_struct_value_address (struct regcache *regcache)
2103{
2104 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2105 function call GDB knows the address of the struct return value
2106 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2107 the current call_function_by_hand() code only saves the most
2108 recent struct address leading to occasional calls. The code
2109 should instead maintain a stack of such addresses (in the dummy
2110 frame object). */
11269d7e
AC
2111 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2112 really got no idea where the return value is being stored. While
2113 r3, on function entry, contained the address it will have since
2114 been reused (scratch) and hence wouldn't be valid */
2115 return 0;
7a78ae4e
ND
2116}
2117
2118/* Return whether PC is in a dummy function call.
2119
2120 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2121 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2122
2123static int
2124rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2125{
2126 return sp < pc && pc < fp;
2127}
2128
64366f1c 2129/* Hook called when a new child process is started. */
7a78ae4e
ND
2130
2131void
2132rs6000_create_inferior (int pid)
2133{
2134 if (rs6000_set_host_arch_hook)
2135 rs6000_set_host_arch_hook (pid);
c906108c
SS
2136}
2137\f
7a78ae4e
ND
2138/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2139
2140 Usually a function pointer's representation is simply the address
2141 of the function. On the RS/6000 however, a function pointer is
2142 represented by a pointer to a TOC entry. This TOC entry contains
2143 three words, the first word is the address of the function, the
2144 second word is the TOC pointer (r2), and the third word is the
2145 static chain value. Throughout GDB it is currently assumed that a
2146 function pointer contains the address of the function, which is not
2147 easy to fix. In addition, the conversion of a function address to
2148 a function pointer would require allocation of a TOC entry in the
2149 inferior's memory space, with all its drawbacks. To be able to
2150 call C++ virtual methods in the inferior (which are called via
f517ea4e 2151 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2152 function address from a function pointer. */
2153
f517ea4e
PS
2154/* Return real function address if ADDR (a function pointer) is in the data
2155 space and is therefore a special function pointer. */
c906108c 2156
7a78ae4e
ND
2157CORE_ADDR
2158rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2159{
2160 struct obj_section *s;
2161
2162 s = find_pc_section (addr);
2163 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2164 return addr;
c906108c 2165
7a78ae4e 2166 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2167 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2168}
c906108c 2169\f
c5aa993b 2170
7a78ae4e 2171/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2172
2173
7a78ae4e
ND
2174/* The arrays here called registers_MUMBLE hold information about available
2175 registers.
c906108c
SS
2176
2177 For each family of PPC variants, I've tried to isolate out the
2178 common registers and put them up front, so that as long as you get
2179 the general family right, GDB will correctly identify the registers
2180 common to that family. The common register sets are:
2181
2182 For the 60x family: hid0 hid1 iabr dabr pir
2183
2184 For the 505 and 860 family: eie eid nri
2185
2186 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2187 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2188 pbu1 pbl2 pbu2
c906108c
SS
2189
2190 Most of these register groups aren't anything formal. I arrived at
2191 them by looking at the registers that occurred in more than one
6f5987a6
KB
2192 processor.
2193
2194 Note: kevinb/2002-04-30: Support for the fpscr register was added
2195 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2196 for Power. For PowerPC, slot 70 was unused and was already in the
2197 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2198 slot 70 was being used for "mq", so the next available slot (71)
2199 was chosen. It would have been nice to be able to make the
2200 register numbers the same across processor cores, but this wasn't
2201 possible without either 1) renumbering some registers for some
2202 processors or 2) assigning fpscr to a really high slot that's
2203 larger than any current register number. Doing (1) is bad because
2204 existing stubs would break. Doing (2) is undesirable because it
2205 would introduce a really large gap between fpscr and the rest of
2206 the registers for most processors. */
7a78ae4e 2207
64366f1c 2208/* Convenience macros for populating register arrays. */
7a78ae4e 2209
64366f1c 2210/* Within another macro, convert S to a string. */
7a78ae4e
ND
2211
2212#define STR(s) #s
2213
2214/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2215 and 64 bits on 64-bit systems. */
489461e2 2216#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2217
2218/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2219 systems. */
489461e2 2220#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2221
2222/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2223 systems. */
489461e2 2224#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2225
1fcc0bb8 2226/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2227 systems. */
489461e2 2228#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2229
64366f1c 2230/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2231#define F(name) { STR(name), 8, 8, 1, 0 }
2232
64366f1c 2233/* Return a struct reg defining a pseudo register NAME. */
489461e2 2234#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2235
2236/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2237 systems and that doesn't exist on 64-bit systems. */
489461e2 2238#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2239
2240/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2241 systems and that doesn't exist on 32-bit systems. */
489461e2 2242#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2243
64366f1c 2244/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2245#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2246
2247/* UISA registers common across all architectures, including POWER. */
2248
2249#define COMMON_UISA_REGS \
2250 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2251 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2252 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2253 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2254 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2255 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2256 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2257 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2258 /* 64 */ R(pc), R(ps)
2259
ebeac11a
EZ
2260#define COMMON_UISA_NOFP_REGS \
2261 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2262 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2263 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2264 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2265 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2266 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2267 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2268 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2269 /* 64 */ R(pc), R(ps)
2270
7a78ae4e
ND
2271/* UISA-level SPRs for PowerPC. */
2272#define PPC_UISA_SPRS \
e3f36dbd 2273 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2274
c8001721
EZ
2275/* UISA-level SPRs for PowerPC without floating point support. */
2276#define PPC_UISA_NOFP_SPRS \
2277 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2278
7a78ae4e
ND
2279/* Segment registers, for PowerPC. */
2280#define PPC_SEGMENT_REGS \
2281 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2282 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2283 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2284 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2285
2286/* OEA SPRs for PowerPC. */
2287#define PPC_OEA_SPRS \
2288 /* 87 */ R4(pvr), \
2289 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2290 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2291 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2292 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2293 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2294 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2295 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2296 /* 116 */ R4(dec), R(dabr), R4(ear)
2297
64366f1c 2298/* AltiVec registers. */
1fcc0bb8
EZ
2299#define PPC_ALTIVEC_REGS \
2300 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2301 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2302 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2303 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2304 /*151*/R4(vscr), R4(vrsave)
2305
c8001721
EZ
2306/* Vectors of hi-lo general purpose registers. */
2307#define PPC_EV_REGS \
2308 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2309 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2310 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2311 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2312
2313/* Lower half of the EV registers. */
2314#define PPC_GPRS_PSEUDO_REGS \
2315 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2316 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2317 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2318 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2319
7a78ae4e 2320/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2321 user-level SPR's. */
7a78ae4e 2322static const struct reg registers_power[] =
c906108c 2323{
7a78ae4e 2324 COMMON_UISA_REGS,
e3f36dbd
KB
2325 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2326 /* 71 */ R4(fpscr)
c906108c
SS
2327};
2328
7a78ae4e 2329/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2330 view of the PowerPC. */
7a78ae4e 2331static const struct reg registers_powerpc[] =
c906108c 2332{
7a78ae4e 2333 COMMON_UISA_REGS,
1fcc0bb8
EZ
2334 PPC_UISA_SPRS,
2335 PPC_ALTIVEC_REGS
c906108c
SS
2336};
2337
ebeac11a
EZ
2338/* PowerPC UISA - a PPC processor as viewed by user-level
2339 code, but without floating point registers. */
2340static const struct reg registers_powerpc_nofp[] =
2341{
2342 COMMON_UISA_NOFP_REGS,
2343 PPC_UISA_SPRS
2344};
2345
64366f1c 2346/* IBM PowerPC 403. */
7a78ae4e 2347static const struct reg registers_403[] =
c5aa993b 2348{
7a78ae4e
ND
2349 COMMON_UISA_REGS,
2350 PPC_UISA_SPRS,
2351 PPC_SEGMENT_REGS,
2352 PPC_OEA_SPRS,
2353 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2354 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2355 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2356 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2357 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2358 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2359};
2360
64366f1c 2361/* IBM PowerPC 403GC. */
7a78ae4e 2362static const struct reg registers_403GC[] =
c5aa993b 2363{
7a78ae4e
ND
2364 COMMON_UISA_REGS,
2365 PPC_UISA_SPRS,
2366 PPC_SEGMENT_REGS,
2367 PPC_OEA_SPRS,
2368 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2369 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2370 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2371 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2372 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2373 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2374 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2375 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2376};
2377
64366f1c 2378/* Motorola PowerPC 505. */
7a78ae4e 2379static const struct reg registers_505[] =
c5aa993b 2380{
7a78ae4e
ND
2381 COMMON_UISA_REGS,
2382 PPC_UISA_SPRS,
2383 PPC_SEGMENT_REGS,
2384 PPC_OEA_SPRS,
2385 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2386};
2387
64366f1c 2388/* Motorola PowerPC 860 or 850. */
7a78ae4e 2389static const struct reg registers_860[] =
c5aa993b 2390{
7a78ae4e
ND
2391 COMMON_UISA_REGS,
2392 PPC_UISA_SPRS,
2393 PPC_SEGMENT_REGS,
2394 PPC_OEA_SPRS,
2395 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2396 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2397 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2398 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2399 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2400 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2401 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2402 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2403 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2404 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2405 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2406 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2407};
2408
7a78ae4e
ND
2409/* Motorola PowerPC 601. Note that the 601 has different register numbers
2410 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2411 register is the stub's problem. */
7a78ae4e 2412static const struct reg registers_601[] =
c5aa993b 2413{
7a78ae4e
ND
2414 COMMON_UISA_REGS,
2415 PPC_UISA_SPRS,
2416 PPC_SEGMENT_REGS,
2417 PPC_OEA_SPRS,
2418 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2419 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2420};
2421
64366f1c 2422/* Motorola PowerPC 602. */
7a78ae4e 2423static const struct reg registers_602[] =
c5aa993b 2424{
7a78ae4e
ND
2425 COMMON_UISA_REGS,
2426 PPC_UISA_SPRS,
2427 PPC_SEGMENT_REGS,
2428 PPC_OEA_SPRS,
2429 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2430 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2431 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2432};
2433
64366f1c 2434/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2435static const struct reg registers_603[] =
c5aa993b 2436{
7a78ae4e
ND
2437 COMMON_UISA_REGS,
2438 PPC_UISA_SPRS,
2439 PPC_SEGMENT_REGS,
2440 PPC_OEA_SPRS,
2441 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2442 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2443 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2444};
2445
64366f1c 2446/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2447static const struct reg registers_604[] =
c5aa993b 2448{
7a78ae4e
ND
2449 COMMON_UISA_REGS,
2450 PPC_UISA_SPRS,
2451 PPC_SEGMENT_REGS,
2452 PPC_OEA_SPRS,
2453 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2454 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2455 /* 127 */ R(sia), R(sda)
c906108c
SS
2456};
2457
64366f1c 2458/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2459static const struct reg registers_750[] =
c5aa993b 2460{
7a78ae4e
ND
2461 COMMON_UISA_REGS,
2462 PPC_UISA_SPRS,
2463 PPC_SEGMENT_REGS,
2464 PPC_OEA_SPRS,
2465 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2466 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2467 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2468 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2469 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2470 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2471};
2472
2473
64366f1c 2474/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2475static const struct reg registers_7400[] =
2476{
2477 /* gpr0-gpr31, fpr0-fpr31 */
2478 COMMON_UISA_REGS,
2479 /* ctr, xre, lr, cr */
2480 PPC_UISA_SPRS,
2481 /* sr0-sr15 */
2482 PPC_SEGMENT_REGS,
2483 PPC_OEA_SPRS,
2484 /* vr0-vr31, vrsave, vscr */
2485 PPC_ALTIVEC_REGS
2486 /* FIXME? Add more registers? */
2487};
2488
c8001721
EZ
2489/* Motorola e500. */
2490static const struct reg registers_e500[] =
2491{
2492 R(pc), R(ps),
2493 /* cr, lr, ctr, xer, "" */
2494 PPC_UISA_NOFP_SPRS,
2495 /* 7...38 */
2496 PPC_EV_REGS,
338ef23d
AC
2497 R8(acc), R(spefscr),
2498 /* NOTE: Add new registers here the end of the raw register
2499 list and just before the first pseudo register. */
c8001721
EZ
2500 /* 39...70 */
2501 PPC_GPRS_PSEUDO_REGS
2502};
2503
c906108c 2504/* Information about a particular processor variant. */
7a78ae4e 2505
c906108c 2506struct variant
c5aa993b
JM
2507 {
2508 /* Name of this variant. */
2509 char *name;
c906108c 2510
c5aa993b
JM
2511 /* English description of the variant. */
2512 char *description;
c906108c 2513
64366f1c 2514 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2515 enum bfd_architecture arch;
2516
64366f1c 2517 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2518 unsigned long mach;
2519
489461e2
EZ
2520 /* Number of real registers. */
2521 int nregs;
2522
2523 /* Number of pseudo registers. */
2524 int npregs;
2525
2526 /* Number of total registers (the sum of nregs and npregs). */
2527 int num_tot_regs;
2528
c5aa993b
JM
2529 /* Table of register names; registers[R] is the name of the register
2530 number R. */
7a78ae4e 2531 const struct reg *regs;
c5aa993b 2532 };
c906108c 2533
489461e2
EZ
2534#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2535
2536static int
2537num_registers (const struct reg *reg_list, int num_tot_regs)
2538{
2539 int i;
2540 int nregs = 0;
2541
2542 for (i = 0; i < num_tot_regs; i++)
2543 if (!reg_list[i].pseudo)
2544 nregs++;
2545
2546 return nregs;
2547}
2548
2549static int
2550num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2551{
2552 int i;
2553 int npregs = 0;
2554
2555 for (i = 0; i < num_tot_regs; i++)
2556 if (reg_list[i].pseudo)
2557 npregs ++;
2558
2559 return npregs;
2560}
c906108c 2561
c906108c
SS
2562/* Information in this table comes from the following web sites:
2563 IBM: http://www.chips.ibm.com:80/products/embedded/
2564 Motorola: http://www.mot.com/SPS/PowerPC/
2565
2566 I'm sure I've got some of the variant descriptions not quite right.
2567 Please report any inaccuracies you find to GDB's maintainer.
2568
2569 If you add entries to this table, please be sure to allow the new
2570 value as an argument to the --with-cpu flag, in configure.in. */
2571
489461e2 2572static struct variant variants[] =
c906108c 2573{
489461e2 2574
7a78ae4e 2575 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2576 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2577 registers_powerpc},
7a78ae4e 2578 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2579 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2580 registers_power},
7a78ae4e 2581 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2582 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2583 registers_403},
7a78ae4e 2584 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2585 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2586 registers_601},
7a78ae4e 2587 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2588 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2589 registers_602},
7a78ae4e 2590 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2591 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2592 registers_603},
7a78ae4e 2593 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2594 604, -1, -1, tot_num_registers (registers_604),
2595 registers_604},
7a78ae4e 2596 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2597 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2598 registers_403GC},
7a78ae4e 2599 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2600 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2601 registers_505},
7a78ae4e 2602 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2603 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2604 registers_860},
7a78ae4e 2605 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2606 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2607 registers_750},
1fcc0bb8 2608 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2609 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2610 registers_7400},
c8001721
EZ
2611 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2612 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2613 registers_e500},
7a78ae4e 2614
5d57ee30
KB
2615 /* 64-bit */
2616 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2617 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2618 registers_powerpc},
7a78ae4e 2619 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2620 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2621 registers_powerpc},
5d57ee30 2622 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2623 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2624 registers_powerpc},
7a78ae4e 2625 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2626 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2627 registers_powerpc},
5d57ee30 2628 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2629 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2630 registers_powerpc},
5d57ee30 2631 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2632 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2633 registers_powerpc},
5d57ee30 2634
64366f1c 2635 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2636 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2637 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2638 registers_power},
7a78ae4e 2639 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2640 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2641 registers_power},
7a78ae4e 2642 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2643 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2644 registers_power},
7a78ae4e 2645
489461e2 2646 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2647};
2648
64366f1c 2649/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2650
2651static void
2652init_variants (void)
2653{
2654 struct variant *v;
2655
2656 for (v = variants; v->name; v++)
2657 {
2658 if (v->nregs == -1)
2659 v->nregs = num_registers (v->regs, v->num_tot_regs);
2660 if (v->npregs == -1)
2661 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2662 }
2663}
c906108c 2664
7a78ae4e 2665/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2666 MACH. If no such variant exists, return null. */
c906108c 2667
7a78ae4e
ND
2668static const struct variant *
2669find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2670{
7a78ae4e 2671 const struct variant *v;
c5aa993b 2672
7a78ae4e
ND
2673 for (v = variants; v->name; v++)
2674 if (arch == v->arch && mach == v->mach)
2675 return v;
c906108c 2676
7a78ae4e 2677 return NULL;
c906108c 2678}
9364a0ef
EZ
2679
2680static int
2681gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2682{
2683 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2684 return print_insn_big_powerpc (memaddr, info);
2685 else
2686 return print_insn_little_powerpc (memaddr, info);
2687}
7a78ae4e 2688\f
7a78ae4e
ND
2689/* Initialize the current architecture based on INFO. If possible, re-use an
2690 architecture from ARCHES, which is a list of architectures already created
2691 during this debugging session.
c906108c 2692
7a78ae4e 2693 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2694 a binary file. */
c906108c 2695
7a78ae4e
ND
2696static struct gdbarch *
2697rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2698{
2699 struct gdbarch *gdbarch;
2700 struct gdbarch_tdep *tdep;
9aa1e687 2701 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2702 struct reg *regs;
2703 const struct variant *v;
2704 enum bfd_architecture arch;
2705 unsigned long mach;
2706 bfd abfd;
7b112f9c 2707 int sysv_abi;
5bf1c677 2708 asection *sect;
7a78ae4e 2709
9aa1e687 2710 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2711 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2712
9aa1e687
KB
2713 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2714 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2715
2716 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2717
e712c1cf 2718 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2719 that, else choose a likely default. */
9aa1e687 2720 if (from_xcoff_exec)
c906108c 2721 {
11ed25ac 2722 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2723 wordsize = 8;
2724 else
2725 wordsize = 4;
c906108c 2726 }
9aa1e687
KB
2727 else if (from_elf_exec)
2728 {
2729 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2730 wordsize = 8;
2731 else
2732 wordsize = 4;
2733 }
c906108c 2734 else
7a78ae4e 2735 {
27b15785
KB
2736 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2737 wordsize = info.bfd_arch_info->bits_per_word /
2738 info.bfd_arch_info->bits_per_byte;
2739 else
2740 wordsize = 4;
7a78ae4e 2741 }
c906108c 2742
64366f1c 2743 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2744 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2745 arches != NULL;
2746 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2747 {
2748 /* Word size in the various PowerPC bfd_arch_info structs isn't
2749 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2750 separate word size check. */
7a78ae4e 2751 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2752 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2753 return arches->gdbarch;
2754 }
c906108c 2755
7a78ae4e
ND
2756 /* None found, create a new architecture from INFO, whose bfd_arch_info
2757 validity depends on the source:
2758 - executable useless
2759 - rs6000_host_arch() good
2760 - core file good
2761 - "set arch" trust blindly
2762 - GDB startup useless but harmless */
c906108c 2763
9aa1e687 2764 if (!from_xcoff_exec)
c906108c 2765 {
b732d07d 2766 arch = info.bfd_arch_info->arch;
7a78ae4e 2767 mach = info.bfd_arch_info->mach;
c906108c 2768 }
7a78ae4e 2769 else
c906108c 2770 {
7a78ae4e 2771 arch = bfd_arch_powerpc;
35cec841 2772 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2773 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2774 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2775 }
2776 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2777 tdep->wordsize = wordsize;
5bf1c677
EZ
2778
2779 /* For e500 executables, the apuinfo section is of help here. Such
2780 section contains the identifier and revision number of each
2781 Application-specific Processing Unit that is present on the
2782 chip. The content of the section is determined by the assembler
2783 which looks at each instruction and determines which unit (and
2784 which version of it) can execute it. In our case we just look for
2785 the existance of the section. */
2786
2787 if (info.abfd)
2788 {
2789 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2790 if (sect)
2791 {
2792 arch = info.bfd_arch_info->arch;
2793 mach = bfd_mach_ppc_e500;
2794 bfd_default_set_arch_mach (&abfd, arch, mach);
2795 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2796 }
2797 }
2798
7a78ae4e
ND
2799 gdbarch = gdbarch_alloc (&info, tdep);
2800 power = arch == bfd_arch_rs6000;
2801
489461e2
EZ
2802 /* Initialize the number of real and pseudo registers in each variant. */
2803 init_variants ();
2804
64366f1c 2805 /* Choose variant. */
7a78ae4e
ND
2806 v = find_variant_by_arch (arch, mach);
2807 if (!v)
dd47e6fd
EZ
2808 return NULL;
2809
7a78ae4e
ND
2810 tdep->regs = v->regs;
2811
2188cbdd
EZ
2812 tdep->ppc_gp0_regnum = 0;
2813 tdep->ppc_gplast_regnum = 31;
2814 tdep->ppc_toc_regnum = 2;
2815 tdep->ppc_ps_regnum = 65;
2816 tdep->ppc_cr_regnum = 66;
2817 tdep->ppc_lr_regnum = 67;
2818 tdep->ppc_ctr_regnum = 68;
2819 tdep->ppc_xer_regnum = 69;
2820 if (v->mach == bfd_mach_ppc_601)
2821 tdep->ppc_mq_regnum = 124;
e3f36dbd 2822 else if (power)
2188cbdd 2823 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2824 else
2825 tdep->ppc_mq_regnum = -1;
2826 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2827
c8001721
EZ
2828 set_gdbarch_pc_regnum (gdbarch, 64);
2829 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2830 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2831 set_gdbarch_deprecated_extract_return_value (gdbarch,
2832 rs6000_extract_return_value);
46d79c04 2833 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2834
1fcc0bb8
EZ
2835 if (v->arch == bfd_arch_powerpc)
2836 switch (v->mach)
2837 {
2838 case bfd_mach_ppc:
2839 tdep->ppc_vr0_regnum = 71;
2840 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2841 tdep->ppc_ev0_regnum = -1;
2842 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2843 break;
2844 case bfd_mach_ppc_7400:
2845 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2846 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2847 tdep->ppc_ev0_regnum = -1;
2848 tdep->ppc_ev31_regnum = -1;
2849 break;
2850 case bfd_mach_ppc_e500:
338ef23d
AC
2851 tdep->ppc_gp0_regnum = 41;
2852 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2853 tdep->ppc_toc_regnum = -1;
2854 tdep->ppc_ps_regnum = 1;
2855 tdep->ppc_cr_regnum = 2;
2856 tdep->ppc_lr_regnum = 3;
2857 tdep->ppc_ctr_regnum = 4;
2858 tdep->ppc_xer_regnum = 5;
2859 tdep->ppc_ev0_regnum = 7;
2860 tdep->ppc_ev31_regnum = 38;
2861 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2862 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2863 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2864 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2865 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2866 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2867 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2868 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2869 break;
2870 default:
2871 tdep->ppc_vr0_regnum = -1;
2872 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2873 tdep->ppc_ev0_regnum = -1;
2874 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2875 break;
2876 }
2877
338ef23d
AC
2878 /* Sanity check on registers. */
2879 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2880
a88376a3
KB
2881 /* Set lr_frame_offset. */
2882 if (wordsize == 8)
2883 tdep->lr_frame_offset = 16;
2884 else if (sysv_abi)
2885 tdep->lr_frame_offset = 4;
2886 else
2887 tdep->lr_frame_offset = 8;
2888
2889 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2890 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2891 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2892 {
2893 tdep->regoff[i] = off;
2894 off += regsize (v->regs + i, wordsize);
c906108c
SS
2895 }
2896
56a6dfb9
KB
2897 /* Select instruction printer. */
2898 if (arch == power)
9364a0ef 2899 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2900 else
9364a0ef 2901 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2902
7a78ae4e
ND
2903 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2904 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e 2905 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
6c0e89ed 2906 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
7a78ae4e
ND
2907
2908 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2909 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2910 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2911 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2912 set_gdbarch_deprecated_register_bytes (gdbarch, off);
7a78ae4e
ND
2913 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2914 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
a0ed5532 2915 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
b2e75d78 2916 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
a0ed5532 2917 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2918 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2919
2920 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2921 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2922 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2923 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2924 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2925 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2926 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2927 if (sysv_abi)
2928 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2929 else
2930 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2931 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2932
b1e29e33 2933 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2934 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
58223630 2935 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
28f617b3 2936 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
7a78ae4e 2937 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e
ND
2938
2939 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2940 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2941 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2942 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2943 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2944 is correct for the SysV ABI when the wordsize is 8, but I'm also
2945 fairly certain that ppc_sysv_abi_push_arguments() will give even
2946 worse results since it only works for 32-bit code. So, for the moment,
2947 we're better off calling rs6000_push_arguments() since it works for
2948 64-bit code. At some point in the future, this matter needs to be
2949 revisited. */
2950 if (sysv_abi && wordsize == 4)
b81774d8 2951 set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
9aa1e687 2952 else
b81774d8 2953 set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2954
4183d812 2955 set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2956 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2957 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2958
2959 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2960 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2961 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2962 set_gdbarch_function_start_offset (gdbarch, 0);
2963 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2964
2965 /* Not sure on this. FIXMEmgo */
2966 set_gdbarch_frame_args_skip (gdbarch, 8);
2967
8e0662df 2968 if (sysv_abi)
7b112f9c
JT
2969 set_gdbarch_use_struct_convention (gdbarch,
2970 ppc_sysv_abi_use_struct_convention);
8e0662df 2971 else
7b112f9c
JT
2972 set_gdbarch_use_struct_convention (gdbarch,
2973 generic_use_struct_convention);
8e0662df 2974
7b112f9c
JT
2975 set_gdbarch_frameless_function_invocation (gdbarch,
2976 rs6000_frameless_function_invocation);
618ce49f 2977 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2978 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2979
f30ee0bc 2980 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2981 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2982
15813d3f
AC
2983 if (!sysv_abi)
2984 {
2985 /* Handle RS/6000 function pointers (which are really function
2986 descriptors). */
f517ea4e
PS
2987 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2988 rs6000_convert_from_func_ptr_addr);
9aa1e687 2989 }
7a78ae4e
ND
2990 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2991 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2992 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e
ND
2993
2994 /* We can't tell how many args there are
2995 now that the C compiler delays popping them. */
2996 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2997
7b112f9c 2998 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2999 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3000
7a78ae4e 3001 return gdbarch;
c906108c
SS
3002}
3003
7b112f9c
JT
3004static void
3005rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3006{
3007 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3008
3009 if (tdep == NULL)
3010 return;
3011
4be87837 3012 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3013}
3014
1fcc0bb8
EZ
3015static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3016
3017static void
3018rs6000_info_powerpc_command (char *args, int from_tty)
3019{
3020 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3021}
3022
c906108c
SS
3023/* Initialization code. */
3024
3025void
fba45db2 3026_initialize_rs6000_tdep (void)
c906108c 3027{
7b112f9c
JT
3028 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3029 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3030
3031 /* Add root prefix command for "info powerpc" commands */
3032 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3033 "Various POWERPC info specific commands.",
3034 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3035}
This page took 0.608724 seconds and 4 git commands to generate.