Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6ced10dd 39#include "reggroups.h"
4fc771b8 40#include "dwarf2-frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
2fccf04a 46#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 47#include "coff/internal.h" /* for libcoff.h */
2fccf04a 48#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
49#include "coff/xcoff.h"
50#include "libxcoff.h"
7a78ae4e 51
9aa1e687 52#include "elf-bfd.h"
55eddb0f 53#include "elf/ppc.h"
cd453cd0 54#include "elf/ppc64.h"
7a78ae4e 55
6ded7999 56#include "solib-svr4.h"
9aa1e687 57#include "ppc-tdep.h"
debb1f09 58#include "ppc-ravenscar-thread.h"
7a78ae4e 59
a89aa300 60#include "dis-asm.h"
338ef23d 61
61a65099
KB
62#include "trad-frame.h"
63#include "frame-unwind.h"
64#include "frame-base.h"
65
7cc46491 66#include "features/rs6000/powerpc-32.c"
7284e1be 67#include "features/rs6000/powerpc-altivec32.c"
604c2f83 68#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
69#include "features/rs6000/powerpc-403.c"
70#include "features/rs6000/powerpc-403gc.c"
4d09ffea 71#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-505.c"
73#include "features/rs6000/powerpc-601.c"
74#include "features/rs6000/powerpc-602.c"
75#include "features/rs6000/powerpc-603.c"
76#include "features/rs6000/powerpc-604.c"
77#include "features/rs6000/powerpc-64.c"
7284e1be 78#include "features/rs6000/powerpc-altivec64.c"
604c2f83 79#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
80#include "features/rs6000/powerpc-7400.c"
81#include "features/rs6000/powerpc-750.c"
82#include "features/rs6000/powerpc-860.c"
83#include "features/rs6000/powerpc-e500.c"
84#include "features/rs6000/rs6000.c"
85
5a9e69ba
TJB
86/* Determine if regnum is an SPE pseudo-register. */
87#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
88 && (regnum) >= (tdep)->ppc_ev0_regnum \
89 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
90
f949c649
TJB
91/* Determine if regnum is a decimal float pseudo-register. */
92#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
93 && (regnum) >= (tdep)->ppc_dl0_regnum \
94 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
95
604c2f83
LM
96/* Determine if regnum is a POWER7 VSX register. */
97#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
98 && (regnum) >= (tdep)->ppc_vsr0_regnum \
99 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
100
101/* Determine if regnum is a POWER7 Extended FP register. */
102#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 104 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 105
55eddb0f
DJ
106/* The list of available "set powerpc ..." and "show powerpc ..."
107 commands. */
108static struct cmd_list_element *setpowerpccmdlist = NULL;
109static struct cmd_list_element *showpowerpccmdlist = NULL;
110
111static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
112
113/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 114static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
115{
116 "auto",
117 "generic",
118 "altivec",
119 "spe",
120 NULL
121};
122
123/* A variable that can be configured by the user. */
124static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
125static const char *powerpc_vector_abi_string = "auto";
126
0df8b418 127/* To be used by skip_prologue. */
7a78ae4e
ND
128
129struct rs6000_framedata
130 {
131 int offset; /* total size of frame --- the distance
132 by which we decrement sp to allocate
133 the frame */
134 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 135 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 136 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 137 int saved_vr; /* smallest # of saved vr */
96ff0de4 138 int saved_ev; /* smallest # of saved ev */
7a78ae4e 139 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
140 char frameless; /* true if frameless functions. */
141 char nosavedpc; /* true if pc not saved. */
46a9b8ed 142 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
143 int gpr_offset; /* offset of saved gprs from prev sp */
144 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 145 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 146 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 147 int lr_offset; /* offset of saved lr */
46a9b8ed 148 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 149 int cr_offset; /* offset of saved cr */
6be8bc0c 150 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
151 };
152
c906108c 153
604c2f83
LM
154/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
155int
156vsx_register_p (struct gdbarch *gdbarch, int regno)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 if (tdep->ppc_vsr0_regnum < 0)
160 return 0;
161 else
162 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
163 <= tdep->ppc_vsr0_upper_regnum + 31);
164}
165
64b84175
KB
166/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
167int
be8626e0 168altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 169{
be8626e0 170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
171 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
172 return 0;
173 else
174 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
175}
176
383f0f5b 177
867e2dc5
JB
178/* Return true if REGNO is an SPE register, false otherwise. */
179int
be8626e0 180spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 181{
be8626e0 182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
183
184 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 185 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
186 return 1;
187
6ced10dd
JB
188 /* Is it a reference to one of the raw upper GPR halves? */
189 if (tdep->ppc_ev0_upper_regnum >= 0
190 && tdep->ppc_ev0_upper_regnum <= regno
191 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
192 return 1;
193
867e2dc5
JB
194 /* Is it a reference to the 64-bit accumulator, and do we have that? */
195 if (tdep->ppc_acc_regnum >= 0
196 && tdep->ppc_acc_regnum == regno)
197 return 1;
198
199 /* Is it a reference to the SPE floating-point status and control register,
200 and do we have that? */
201 if (tdep->ppc_spefscr_regnum >= 0
202 && tdep->ppc_spefscr_regnum == regno)
203 return 1;
204
205 return 0;
206}
207
208
383f0f5b
JB
209/* Return non-zero if the architecture described by GDBARCH has
210 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
211int
212ppc_floating_point_unit_p (struct gdbarch *gdbarch)
213{
383f0f5b
JB
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 return (tdep->ppc_fp0_regnum >= 0
217 && tdep->ppc_fpscr_regnum >= 0);
0a613259 218}
9f643768 219
604c2f83
LM
220/* Return non-zero if the architecture described by GDBARCH has
221 VSX registers (vsr0 --- vsr63). */
63807e1d 222static int
604c2f83
LM
223ppc_vsx_support_p (struct gdbarch *gdbarch)
224{
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
227 return tdep->ppc_vsr0_regnum >= 0;
228}
229
06caf7d2
CES
230/* Return non-zero if the architecture described by GDBARCH has
231 Altivec registers (vr0 --- vr31, vrsave and vscr). */
232int
233ppc_altivec_support_p (struct gdbarch *gdbarch)
234{
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 return (tdep->ppc_vr0_regnum >= 0
238 && tdep->ppc_vrsave_regnum >= 0);
239}
09991fa0
JB
240
241/* Check that TABLE[GDB_REGNO] is not already initialized, and then
242 set it to SIM_REGNO.
243
244 This is a helper function for init_sim_regno_table, constructing
245 the table mapping GDB register numbers to sim register numbers; we
246 initialize every element in that table to -1 before we start
247 filling it in. */
9f643768
JB
248static void
249set_sim_regno (int *table, int gdb_regno, int sim_regno)
250{
251 /* Make sure we don't try to assign any given GDB register a sim
252 register number more than once. */
253 gdb_assert (table[gdb_regno] == -1);
254 table[gdb_regno] = sim_regno;
255}
256
09991fa0
JB
257
258/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
259 numbers to simulator register numbers, based on the values placed
260 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
261static void
262init_sim_regno_table (struct gdbarch *arch)
263{
264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 265 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
266 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
267 int i;
7cc46491
DJ
268 static const char *const segment_regs[] = {
269 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
270 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
271 };
9f643768
JB
272
273 /* Presume that all registers not explicitly mentioned below are
274 unavailable from the sim. */
275 for (i = 0; i < total_regs; i++)
276 sim_regno[i] = -1;
277
278 /* General-purpose registers. */
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
281
282 /* Floating-point registers. */
283 if (tdep->ppc_fp0_regnum >= 0)
284 for (i = 0; i < ppc_num_fprs; i++)
285 set_sim_regno (sim_regno,
286 tdep->ppc_fp0_regnum + i,
287 sim_ppc_f0_regnum + i);
288 if (tdep->ppc_fpscr_regnum >= 0)
289 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
290
291 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
292 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
293 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
294
295 /* Segment registers. */
7cc46491
DJ
296 for (i = 0; i < ppc_num_srs; i++)
297 {
298 int gdb_regno;
299
300 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
301 if (gdb_regno >= 0)
302 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
303 }
9f643768
JB
304
305 /* Altivec registers. */
306 if (tdep->ppc_vr0_regnum >= 0)
307 {
308 for (i = 0; i < ppc_num_vrs; i++)
309 set_sim_regno (sim_regno,
310 tdep->ppc_vr0_regnum + i,
311 sim_ppc_vr0_regnum + i);
312
313 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
314 we can treat this more like the other cases. */
315 set_sim_regno (sim_regno,
316 tdep->ppc_vr0_regnum + ppc_num_vrs,
317 sim_ppc_vscr_regnum);
318 }
319 /* vsave is a special-purpose register, so the code below handles it. */
320
321 /* SPE APU (E500) registers. */
6ced10dd
JB
322 if (tdep->ppc_ev0_upper_regnum >= 0)
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno,
325 tdep->ppc_ev0_upper_regnum + i,
326 sim_ppc_rh0_regnum + i);
9f643768
JB
327 if (tdep->ppc_acc_regnum >= 0)
328 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
329 /* spefscr is a special-purpose register, so the code below handles it. */
330
976102cd 331#ifdef WITH_PPC_SIM
9f643768
JB
332 /* Now handle all special-purpose registers. Verify that they
333 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
334 code. */
335 for (i = 0; i < sim_ppc_num_sprs; i++)
336 {
337 const char *spr_name = sim_spr_register_name (i);
338 int gdb_regno = -1;
339
340 if (spr_name != NULL)
341 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
342
343 if (gdb_regno != -1)
344 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
345 }
346#endif
9f643768
JB
347
348 /* Drop the initialized array into place. */
349 tdep->sim_regno = sim_regno;
350}
351
09991fa0
JB
352
353/* Given a GDB register number REG, return the corresponding SIM
354 register number. */
9f643768 355static int
e7faf938 356rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 357{
e7faf938 358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
359 int sim_regno;
360
7cc46491 361 if (tdep->sim_regno == NULL)
e7faf938 362 init_sim_regno_table (gdbarch);
7cc46491 363
f57d151a 364 gdb_assert (0 <= reg
e7faf938
MD
365 && reg <= gdbarch_num_regs (gdbarch)
366 + gdbarch_num_pseudo_regs (gdbarch));
9f643768
JB
367 sim_regno = tdep->sim_regno[reg];
368
369 if (sim_regno >= 0)
370 return sim_regno;
371 else
372 return LEGACY_SIM_REGNO_IGNORE;
373}
374
d195bc9f
MK
375\f
376
377/* Register set support functions. */
378
f2db237a
AM
379/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
380 Write the register to REGCACHE. */
381
7284e1be 382void
d195bc9f 383ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 384 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
385{
386 if (regnum != -1 && offset != -1)
f2db237a
AM
387 {
388 if (regsize > 4)
389 {
390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
391 int gdb_regsize = register_size (gdbarch, regnum);
392 if (gdb_regsize < regsize
393 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
394 offset += regsize - gdb_regsize;
395 }
396 regcache_raw_supply (regcache, regnum, regs + offset);
397 }
d195bc9f
MK
398}
399
f2db237a
AM
400/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
401 in a field REGSIZE wide. Zero pad as necessary. */
402
7284e1be 403void
d195bc9f 404ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 405 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
406{
407 if (regnum != -1 && offset != -1)
f2db237a
AM
408 {
409 if (regsize > 4)
410 {
411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
412 int gdb_regsize = register_size (gdbarch, regnum);
413 if (gdb_regsize < regsize)
414 {
415 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
416 {
417 memset (regs + offset, 0, regsize - gdb_regsize);
418 offset += regsize - gdb_regsize;
419 }
420 else
421 memset (regs + offset + regsize - gdb_regsize, 0,
422 regsize - gdb_regsize);
423 }
424 }
425 regcache_raw_collect (regcache, regnum, regs + offset);
426 }
d195bc9f
MK
427}
428
f2db237a
AM
429static int
430ppc_greg_offset (struct gdbarch *gdbarch,
431 struct gdbarch_tdep *tdep,
432 const struct ppc_reg_offsets *offsets,
433 int regnum,
434 int *regsize)
435{
436 *regsize = offsets->gpr_size;
437 if (regnum >= tdep->ppc_gp0_regnum
438 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
439 return (offsets->r0_offset
440 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
441
442 if (regnum == gdbarch_pc_regnum (gdbarch))
443 return offsets->pc_offset;
444
445 if (regnum == tdep->ppc_ps_regnum)
446 return offsets->ps_offset;
447
448 if (regnum == tdep->ppc_lr_regnum)
449 return offsets->lr_offset;
450
451 if (regnum == tdep->ppc_ctr_regnum)
452 return offsets->ctr_offset;
453
454 *regsize = offsets->xr_size;
455 if (regnum == tdep->ppc_cr_regnum)
456 return offsets->cr_offset;
457
458 if (regnum == tdep->ppc_xer_regnum)
459 return offsets->xer_offset;
460
461 if (regnum == tdep->ppc_mq_regnum)
462 return offsets->mq_offset;
463
464 return -1;
465}
466
467static int
468ppc_fpreg_offset (struct gdbarch_tdep *tdep,
469 const struct ppc_reg_offsets *offsets,
470 int regnum)
471{
472 if (regnum >= tdep->ppc_fp0_regnum
473 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
474 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
475
476 if (regnum == tdep->ppc_fpscr_regnum)
477 return offsets->fpscr_offset;
478
479 return -1;
480}
481
06caf7d2
CES
482static int
483ppc_vrreg_offset (struct gdbarch_tdep *tdep,
484 const struct ppc_reg_offsets *offsets,
485 int regnum)
486{
487 if (regnum >= tdep->ppc_vr0_regnum
488 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
489 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
490
491 if (regnum == tdep->ppc_vrsave_regnum - 1)
492 return offsets->vscr_offset;
493
494 if (regnum == tdep->ppc_vrsave_regnum)
495 return offsets->vrsave_offset;
496
497 return -1;
498}
499
d195bc9f
MK
500/* Supply register REGNUM in the general-purpose register set REGSET
501 from the buffer specified by GREGS and LEN to register cache
502 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
503
504void
505ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
506 int regnum, const void *gregs, size_t len)
507{
508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
510 const struct ppc_reg_offsets *offsets
511 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 512 size_t offset;
f2db237a 513 int regsize;
d195bc9f 514
f2db237a 515 if (regnum == -1)
d195bc9f 516 {
f2db237a
AM
517 int i;
518 int gpr_size = offsets->gpr_size;
519
520 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
521 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
522 i++, offset += gpr_size)
19ba03f4
SM
523 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
524 gpr_size);
f2db237a
AM
525
526 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 527 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 528 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 529 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 530 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 531 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 532 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 533 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 534 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
535 (const gdb_byte *) gregs, offsets->cr_offset,
536 offsets->xr_size);
f2db237a 537 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
538 (const gdb_byte *) gregs, offsets->xer_offset,
539 offsets->xr_size);
f2db237a 540 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
541 (const gdb_byte *) gregs, offsets->mq_offset,
542 offsets->xr_size);
f2db237a 543 return;
d195bc9f
MK
544 }
545
f2db237a 546 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 547 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
548}
549
550/* Supply register REGNUM in the floating-point register set REGSET
551 from the buffer specified by FPREGS and LEN to register cache
552 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
553
554void
555ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
556 int regnum, const void *fpregs, size_t len)
557{
558 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
559 struct gdbarch_tdep *tdep;
560 const struct ppc_reg_offsets *offsets;
d195bc9f 561 size_t offset;
d195bc9f 562
f2db237a
AM
563 if (!ppc_floating_point_unit_p (gdbarch))
564 return;
383f0f5b 565
f2db237a 566 tdep = gdbarch_tdep (gdbarch);
19ba03f4 567 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 568 if (regnum == -1)
d195bc9f 569 {
f2db237a
AM
570 int i;
571
572 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
573 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
574 i++, offset += 8)
19ba03f4 575 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
576
577 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
578 (const gdb_byte *) fpregs, offsets->fpscr_offset,
579 offsets->fpscr_size);
f2db237a 580 return;
d195bc9f
MK
581 }
582
f2db237a 583 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 584 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 585 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
586}
587
604c2f83
LM
588/* Supply register REGNUM in the VSX register set REGSET
589 from the buffer specified by VSXREGS and LEN to register cache
590 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
591
592void
593ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
594 int regnum, const void *vsxregs, size_t len)
595{
596 struct gdbarch *gdbarch = get_regcache_arch (regcache);
597 struct gdbarch_tdep *tdep;
598
599 if (!ppc_vsx_support_p (gdbarch))
600 return;
601
602 tdep = gdbarch_tdep (gdbarch);
603
604 if (regnum == -1)
605 {
606 int i;
607
608 for (i = tdep->ppc_vsr0_upper_regnum;
609 i < tdep->ppc_vsr0_upper_regnum + 32;
610 i++)
19ba03f4 611 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
612
613 return;
614 }
615 else
19ba03f4 616 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
617}
618
06caf7d2
CES
619/* Supply register REGNUM in the Altivec register set REGSET
620 from the buffer specified by VRREGS and LEN to register cache
621 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
622
623void
624ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
625 int regnum, const void *vrregs, size_t len)
626{
627 struct gdbarch *gdbarch = get_regcache_arch (regcache);
628 struct gdbarch_tdep *tdep;
629 const struct ppc_reg_offsets *offsets;
630 size_t offset;
631
632 if (!ppc_altivec_support_p (gdbarch))
633 return;
634
635 tdep = gdbarch_tdep (gdbarch);
19ba03f4 636 offsets = (const struct ppc_reg_offsets *) regset->regmap;
06caf7d2
CES
637 if (regnum == -1)
638 {
639 int i;
640
641 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
642 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
643 i++, offset += 16)
19ba03f4 644 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
645
646 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
19ba03f4 647 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
06caf7d2
CES
648
649 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
19ba03f4 650 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
06caf7d2
CES
651 return;
652 }
653
654 offset = ppc_vrreg_offset (tdep, offsets, regnum);
655 if (regnum != tdep->ppc_vrsave_regnum
656 && regnum != tdep->ppc_vrsave_regnum - 1)
19ba03f4 657 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
658 else
659 ppc_supply_reg (regcache, regnum,
19ba03f4 660 (const gdb_byte *) vrregs, offset, 4);
06caf7d2
CES
661}
662
d195bc9f 663/* Collect register REGNUM in the general-purpose register set
f2db237a 664 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
665 GREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668void
669ppc_collect_gregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *gregs, size_t len)
672{
673 struct gdbarch *gdbarch = get_regcache_arch (regcache);
674 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
675 const struct ppc_reg_offsets *offsets
676 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 677 size_t offset;
f2db237a 678 int regsize;
d195bc9f 679
f2db237a 680 if (regnum == -1)
d195bc9f 681 {
f2db237a
AM
682 int i;
683 int gpr_size = offsets->gpr_size;
684
685 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
686 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
687 i++, offset += gpr_size)
19ba03f4 688 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
689
690 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 691 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 692 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 693 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 694 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 695 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 696 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 697 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 698 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
699 (gdb_byte *) gregs, offsets->cr_offset,
700 offsets->xr_size);
f2db237a 701 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
702 (gdb_byte *) gregs, offsets->xer_offset,
703 offsets->xr_size);
f2db237a 704 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
705 (gdb_byte *) gregs, offsets->mq_offset,
706 offsets->xr_size);
f2db237a 707 return;
d195bc9f
MK
708 }
709
f2db237a 710 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 711 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
712}
713
714/* Collect register REGNUM in the floating-point register set
f2db237a 715 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
716 FPREGS and LEN. If REGNUM is -1, do this for all registers in
717 REGSET. */
718
719void
720ppc_collect_fpregset (const struct regset *regset,
721 const struct regcache *regcache,
722 int regnum, void *fpregs, size_t len)
723{
724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
725 struct gdbarch_tdep *tdep;
726 const struct ppc_reg_offsets *offsets;
d195bc9f 727 size_t offset;
d195bc9f 728
f2db237a
AM
729 if (!ppc_floating_point_unit_p (gdbarch))
730 return;
383f0f5b 731
f2db237a 732 tdep = gdbarch_tdep (gdbarch);
19ba03f4 733 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 734 if (regnum == -1)
d195bc9f 735 {
f2db237a
AM
736 int i;
737
738 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
739 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
740 i++, offset += 8)
19ba03f4 741 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
742
743 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
744 (gdb_byte *) fpregs, offsets->fpscr_offset,
745 offsets->fpscr_size);
f2db237a 746 return;
d195bc9f
MK
747 }
748
f2db237a 749 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 750 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 751 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 752}
06caf7d2 753
604c2f83
LM
754/* Collect register REGNUM in the VSX register set
755 REGSET from register cache REGCACHE into the buffer specified by
756 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
757 REGSET. */
758
759void
760ppc_collect_vsxregset (const struct regset *regset,
761 const struct regcache *regcache,
762 int regnum, void *vsxregs, size_t len)
763{
764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
765 struct gdbarch_tdep *tdep;
766
767 if (!ppc_vsx_support_p (gdbarch))
768 return;
769
770 tdep = gdbarch_tdep (gdbarch);
771
772 if (regnum == -1)
773 {
774 int i;
775
776 for (i = tdep->ppc_vsr0_upper_regnum;
777 i < tdep->ppc_vsr0_upper_regnum + 32;
778 i++)
19ba03f4 779 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
780
781 return;
782 }
783 else
19ba03f4 784 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
785}
786
787
06caf7d2
CES
788/* Collect register REGNUM in the Altivec register set
789 REGSET from register cache REGCACHE into the buffer specified by
790 VRREGS and LEN. If REGNUM is -1, do this for all registers in
791 REGSET. */
792
793void
794ppc_collect_vrregset (const struct regset *regset,
795 const struct regcache *regcache,
796 int regnum, void *vrregs, size_t len)
797{
798 struct gdbarch *gdbarch = get_regcache_arch (regcache);
799 struct gdbarch_tdep *tdep;
800 const struct ppc_reg_offsets *offsets;
801 size_t offset;
802
803 if (!ppc_altivec_support_p (gdbarch))
804 return;
805
806 tdep = gdbarch_tdep (gdbarch);
19ba03f4 807 offsets = (const struct ppc_reg_offsets *) regset->regmap;
06caf7d2
CES
808 if (regnum == -1)
809 {
810 int i;
811
812 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
813 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
814 i++, offset += 16)
19ba03f4 815 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
816
817 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
19ba03f4 818 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
06caf7d2
CES
819
820 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
19ba03f4 821 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
06caf7d2
CES
822 return;
823 }
824
825 offset = ppc_vrreg_offset (tdep, offsets, regnum);
826 if (regnum != tdep->ppc_vrsave_regnum
827 && regnum != tdep->ppc_vrsave_regnum - 1)
19ba03f4 828 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
829 else
830 ppc_collect_reg (regcache, regnum,
19ba03f4 831 (gdb_byte *) vrregs, offset, 4);
06caf7d2 832}
d195bc9f 833\f
0a613259 834
0d1243d9
PG
835static int
836insn_changes_sp_or_jumps (unsigned long insn)
837{
838 int opcode = (insn >> 26) & 0x03f;
839 int sd = (insn >> 21) & 0x01f;
840 int a = (insn >> 16) & 0x01f;
841 int subcode = (insn >> 1) & 0x3ff;
842
843 /* Changes the stack pointer. */
844
845 /* NOTE: There are many ways to change the value of a given register.
846 The ways below are those used when the register is R1, the SP,
847 in a funtion's epilogue. */
848
849 if (opcode == 31 && subcode == 444 && a == 1)
850 return 1; /* mr R1,Rn */
851 if (opcode == 14 && sd == 1)
852 return 1; /* addi R1,Rn,simm */
853 if (opcode == 58 && sd == 1)
854 return 1; /* ld R1,ds(Rn) */
855
856 /* Transfers control. */
857
858 if (opcode == 18)
859 return 1; /* b */
860 if (opcode == 16)
861 return 1; /* bc */
862 if (opcode == 19 && subcode == 16)
863 return 1; /* bclr */
864 if (opcode == 19 && subcode == 528)
865 return 1; /* bcctr */
866
867 return 0;
868}
869
870/* Return true if we are in the function's epilogue, i.e. after the
871 instruction that destroyed the function's stack frame.
872
873 1) scan forward from the point of execution:
874 a) If you find an instruction that modifies the stack pointer
875 or transfers control (except a return), execution is not in
876 an epilogue, return.
877 b) Stop scanning if you find a return instruction or reach the
878 end of the function or reach the hard limit for the size of
879 an epilogue.
880 2) scan backward from the point of execution:
881 a) If you find an instruction that modifies the stack pointer,
882 execution *is* in an epilogue, return.
883 b) Stop scanning if you reach an instruction that transfers
884 control or the beginning of the function or reach the hard
885 limit for the size of an epilogue. */
886
887static int
2608dbf8
WW
888rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
889 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 890{
46a9b8ed 891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 892 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
893 bfd_byte insn_buf[PPC_INSN_SIZE];
894 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
895 unsigned long insn;
0d1243d9
PG
896
897 /* Find the search limits based on function boundaries and hard limit. */
898
899 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
900 return 0;
901
902 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
903 if (epilogue_start < func_start) epilogue_start = func_start;
904
905 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_end > func_end) epilogue_end = func_end;
907
0d1243d9
PG
908 /* Scan forward until next 'blr'. */
909
910 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
911 {
912 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
913 return 0;
e17a4113 914 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
915 if (insn == 0x4e800020)
916 break;
46a9b8ed
DJ
917 /* Assume a bctr is a tail call unless it points strictly within
918 this function. */
919 if (insn == 0x4e800420)
920 {
921 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
922 tdep->ppc_ctr_regnum);
923 if (ctr > func_start && ctr < func_end)
924 return 0;
925 else
926 break;
927 }
0d1243d9
PG
928 if (insn_changes_sp_or_jumps (insn))
929 return 0;
930 }
931
932 /* Scan backward until adjustment to stack pointer (R1). */
933
934 for (scan_pc = pc - PPC_INSN_SIZE;
935 scan_pc >= epilogue_start;
936 scan_pc -= PPC_INSN_SIZE)
937 {
938 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
939 return 0;
e17a4113 940 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
941 if (insn_changes_sp_or_jumps (insn))
942 return 1;
943 }
944
945 return 0;
946}
947
c9cf6e20 948/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
949
950static int
c9cf6e20 951rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
952{
953 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
954 gdbarch, pc);
955}
956
143985b7 957/* Get the ith function argument for the current function. */
b9362cc7 958static CORE_ADDR
143985b7
AF
959rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
960 struct type *type)
961{
50fd1280 962 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
963}
964
c906108c
SS
965/* Sequence of bytes for breakpoint instruction. */
966
44d100c3 967static const unsigned char *
67d57894
MD
968rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
969 int *bp_size)
c906108c 970{
aaab4dba
AC
971 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
972 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 973 *bp_size = 4;
67d57894 974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
975 return big_breakpoint;
976 else
977 return little_breakpoint;
978}
979
f74c6cad
LM
980/* Instruction masks for displaced stepping. */
981#define BRANCH_MASK 0xfc000000
982#define BP_MASK 0xFC0007FE
983#define B_INSN 0x48000000
984#define BC_INSN 0x40000000
985#define BXL_INSN 0x4c000000
986#define BP_INSN 0x7C000008
987
7f03bd92
PA
988/* Instruction masks used during single-stepping of atomic
989 sequences. */
990#define LWARX_MASK 0xfc0007fe
991#define LWARX_INSTRUCTION 0x7c000028
992#define LDARX_INSTRUCTION 0x7c0000A8
993#define STWCX_MASK 0xfc0007ff
994#define STWCX_INSTRUCTION 0x7c00012d
995#define STDCX_INSTRUCTION 0x7c0001ad
996
997/* We can't displaced step atomic sequences. Otherwise this is just
998 like simple_displaced_step_copy_insn. */
999
1000static struct displaced_step_closure *
1001ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1002 CORE_ADDR from, CORE_ADDR to,
1003 struct regcache *regs)
1004{
1005 size_t len = gdbarch_max_insn_length (gdbarch);
224c3ddb 1006 gdb_byte *buf = (gdb_byte *) xmalloc (len);
7f03bd92
PA
1007 struct cleanup *old_chain = make_cleanup (xfree, buf);
1008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1009 int insn;
1010
1011 read_memory (from, buf, len);
1012
1013 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1014
1015 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1016 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1017 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1018 {
1019 if (debug_displaced)
1020 {
1021 fprintf_unfiltered (gdb_stdlog,
1022 "displaced: can't displaced step "
1023 "atomic sequence at %s\n",
1024 paddress (gdbarch, from));
1025 }
1026 do_cleanups (old_chain);
1027 return NULL;
1028 }
1029
1030 write_memory (to, buf, len);
1031
1032 if (debug_displaced)
1033 {
1034 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1035 paddress (gdbarch, from), paddress (gdbarch, to));
1036 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1037 }
1038
1039 discard_cleanups (old_chain);
1040 return (struct displaced_step_closure *) buf;
1041}
1042
f74c6cad
LM
1043/* Fix up the state of registers and memory after having single-stepped
1044 a displaced instruction. */
63807e1d 1045static void
f74c6cad 1046ppc_displaced_step_fixup (struct gdbarch *gdbarch,
63807e1d
PA
1047 struct displaced_step_closure *closure,
1048 CORE_ADDR from, CORE_ADDR to,
1049 struct regcache *regs)
f74c6cad 1050{
e17a4113 1051 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 1052 /* Our closure is a copy of the instruction. */
f74c6cad 1053 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
e17a4113 1054 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
1055 ULONGEST opcode = 0;
1056 /* Offset for non PC-relative instructions. */
1057 LONGEST offset = PPC_INSN_SIZE;
1058
1059 opcode = insn & BRANCH_MASK;
1060
1061 if (debug_displaced)
1062 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1063 "displaced: (ppc) fixup (%s, %s)\n",
1064 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
1065
1066
1067 /* Handle PC-relative branch instructions. */
1068 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1069 {
a4fafde3 1070 ULONGEST current_pc;
f74c6cad
LM
1071
1072 /* Read the current PC value after the instruction has been executed
1073 in a displaced location. Calculate the offset to be applied to the
1074 original PC value before the displaced stepping. */
1075 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1076 &current_pc);
1077 offset = current_pc - to;
1078
1079 if (opcode != BXL_INSN)
1080 {
1081 /* Check for AA bit indicating whether this is an absolute
1082 addressing or PC-relative (1: absolute, 0: relative). */
1083 if (!(insn & 0x2))
1084 {
1085 /* PC-relative addressing is being used in the branch. */
1086 if (debug_displaced)
1087 fprintf_unfiltered
1088 (gdb_stdlog,
5af949e3
UW
1089 "displaced: (ppc) branch instruction: %s\n"
1090 "displaced: (ppc) adjusted PC from %s to %s\n",
1091 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1092 paddress (gdbarch, from + offset));
f74c6cad 1093
0df8b418
MS
1094 regcache_cooked_write_unsigned (regs,
1095 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
1096 from + offset);
1097 }
1098 }
1099 else
1100 {
1101 /* If we're here, it means we have a branch to LR or CTR. If the
1102 branch was taken, the offset is probably greater than 4 (the next
1103 instruction), so it's safe to assume that an offset of 4 means we
1104 did not take the branch. */
1105 if (offset == PPC_INSN_SIZE)
1106 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1107 from + PPC_INSN_SIZE);
1108 }
1109
1110 /* Check for LK bit indicating whether we should set the link
1111 register to point to the next instruction
1112 (1: Set, 0: Don't set). */
1113 if (insn & 0x1)
1114 {
1115 /* Link register needs to be set to the next instruction's PC. */
1116 regcache_cooked_write_unsigned (regs,
1117 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1118 from + PPC_INSN_SIZE);
1119 if (debug_displaced)
1120 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1121 "displaced: (ppc) adjusted LR to %s\n",
1122 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
1123
1124 }
1125 }
1126 /* Check for breakpoints in the inferior. If we've found one, place the PC
1127 right at the breakpoint instruction. */
1128 else if ((insn & BP_MASK) == BP_INSN)
1129 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1130 else
1131 /* Handle any other instructions that do not fit in the categories above. */
1132 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1133 from + offset);
1134}
c906108c 1135
99e40580
UW
1136/* Always use hardware single-stepping to execute the
1137 displaced instruction. */
1138static int
1139ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1140 struct displaced_step_closure *closure)
1141{
1142 return 1;
1143}
1144
ce5eab59
UW
1145/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1146 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1147 is found, attempt to step through it. A breakpoint is placed at the end of
1148 the sequence. */
1149
4a7622d1
UW
1150int
1151ppc_deal_with_atomic_sequence (struct frame_info *frame)
ce5eab59 1152{
a6d9a66e 1153 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1154 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0b1b3e42 1156 CORE_ADDR pc = get_frame_pc (frame);
ce5eab59
UW
1157 CORE_ADDR breaks[2] = {-1, -1};
1158 CORE_ADDR loc = pc;
24d45690 1159 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 1160 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1161 int insn_count;
1162 int index;
1163 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1164 const int atomic_sequence_length = 16; /* Instruction sequence length. */
24d45690 1165 int opcode; /* Branch instruction's OPcode. */
ce5eab59
UW
1166 int bc_insn_count = 0; /* Conditional branch instruction count. */
1167
1168 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1169 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1170 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1171 return 0;
1172
1173 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1174 instructions. */
1175 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1176 {
1177 loc += PPC_INSN_SIZE;
e17a4113 1178 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1179
1180 /* Assume that there is at most one conditional branch in the atomic
1181 sequence. If a conditional branch is found, put a breakpoint in
1182 its destination address. */
f74c6cad 1183 if ((insn & BRANCH_MASK) == BC_INSN)
ce5eab59 1184 {
a3769e0c
AM
1185 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1186 int absolute = insn & 2;
4a7622d1 1187
ce5eab59
UW
1188 if (bc_insn_count >= 1)
1189 return 0; /* More than one conditional branch found, fallback
1190 to the standard single-step code. */
4a7622d1
UW
1191
1192 if (absolute)
1193 breaks[1] = immediate;
1194 else
a3769e0c 1195 breaks[1] = loc + immediate;
4a7622d1
UW
1196
1197 bc_insn_count++;
1198 last_breakpoint++;
ce5eab59
UW
1199 }
1200
1201 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1202 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1203 break;
1204 }
1205
1206 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1207 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1208 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1209 return 0;
1210
24d45690 1211 closing_insn = loc;
ce5eab59 1212 loc += PPC_INSN_SIZE;
e17a4113 1213 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1214
1215 /* Insert a breakpoint right after the end of the atomic sequence. */
1216 breaks[0] = loc;
1217
24d45690 1218 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1219 placed (branch instruction's destination) anywhere in sequence. */
1220 if (last_breakpoint
1221 && (breaks[1] == breaks[0]
1222 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1223 last_breakpoint = 0;
1224
1225 /* Effectively inserts the breakpoints. */
1226 for (index = 0; index <= last_breakpoint; index++)
6c95b8df 1227 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
ce5eab59
UW
1228
1229 return 1;
1230}
1231
c906108c 1232
c906108c
SS
1233#define SIGNED_SHORT(x) \
1234 ((sizeof (short) == 2) \
1235 ? ((int)(short)(x)) \
1236 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1237
1238#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1239
55d05f3b
KB
1240/* Limit the number of skipped non-prologue instructions, as the examining
1241 of the prologue is expensive. */
1242static int max_skip_non_prologue_insns = 10;
1243
773df3e5
JB
1244/* Return nonzero if the given instruction OP can be part of the prologue
1245 of a function and saves a parameter on the stack. FRAMEP should be
1246 set if one of the previous instructions in the function has set the
1247 Frame Pointer. */
1248
1249static int
1250store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1251{
1252 /* Move parameters from argument registers to temporary register. */
1253 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1254 {
1255 /* Rx must be scratch register r0. */
1256 const int rx_regno = (op >> 16) & 31;
1257 /* Ry: Only r3 - r10 are used for parameter passing. */
1258 const int ry_regno = GET_SRC_REG (op);
1259
1260 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1261 {
1262 *r0_contains_arg = 1;
1263 return 1;
1264 }
1265 else
1266 return 0;
1267 }
1268
1269 /* Save a General Purpose Register on stack. */
1270
1271 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1272 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1273 {
1274 /* Rx: Only r3 - r10 are used for parameter passing. */
1275 const int rx_regno = GET_SRC_REG (op);
1276
1277 return (rx_regno >= 3 && rx_regno <= 10);
1278 }
1279
1280 /* Save a General Purpose Register on stack via the Frame Pointer. */
1281
1282 if (framep &&
1283 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1284 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1285 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1286 {
1287 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1288 However, the compiler sometimes uses r0 to hold an argument. */
1289 const int rx_regno = GET_SRC_REG (op);
1290
1291 return ((rx_regno >= 3 && rx_regno <= 10)
1292 || (rx_regno == 0 && *r0_contains_arg));
1293 }
1294
1295 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1296 {
1297 /* Only f2 - f8 are used for parameter passing. */
1298 const int src_regno = GET_SRC_REG (op);
1299
1300 return (src_regno >= 2 && src_regno <= 8);
1301 }
1302
1303 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1304 {
1305 /* Only f2 - f8 are used for parameter passing. */
1306 const int src_regno = GET_SRC_REG (op);
1307
1308 return (src_regno >= 2 && src_regno <= 8);
1309 }
1310
1311 /* Not an insn that saves a parameter on stack. */
1312 return 0;
1313}
55d05f3b 1314
3c77c82a
DJ
1315/* Assuming that INSN is a "bl" instruction located at PC, return
1316 nonzero if the destination of the branch is a "blrl" instruction.
1317
1318 This sequence is sometimes found in certain function prologues.
1319 It allows the function to load the LR register with a value that
1320 they can use to access PIC data using PC-relative offsets. */
1321
1322static int
e17a4113 1323bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1324{
0b1b3e42
UW
1325 CORE_ADDR dest;
1326 int immediate;
1327 int absolute;
3c77c82a
DJ
1328 int dest_insn;
1329
0b1b3e42
UW
1330 absolute = (int) ((insn >> 1) & 1);
1331 immediate = ((insn & ~3) << 6) >> 6;
1332 if (absolute)
1333 dest = immediate;
1334 else
1335 dest = pc + immediate;
1336
e17a4113 1337 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1338 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1339 return 1;
1340
1341 return 0;
1342}
1343
0df8b418 1344/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1345
1346 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1347 The former is anded with the opcode in question; if the result of
1348 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1349 question is a ``bl'' instruction.
1350
1351 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1352 the branch displacement. */
1353
1354#define BL_MASK 0xfc000001
1355#define BL_INSTRUCTION 0x48000001
1356#define BL_DISPLACEMENT_MASK 0x03fffffc
1357
de9f48f0 1358static unsigned long
e17a4113 1359rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1360{
e17a4113 1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1362 gdb_byte buf[4];
1363 unsigned long op;
1364
1365 /* Fetch the instruction and convert it to an integer. */
1366 if (target_read_memory (pc, buf, 4))
1367 return 0;
e17a4113 1368 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1369
1370 return op;
1371}
1372
1373/* GCC generates several well-known sequences of instructions at the begining
1374 of each function prologue when compiling with -fstack-check. If one of
1375 such sequences starts at START_PC, then return the address of the
1376 instruction immediately past this sequence. Otherwise, return START_PC. */
1377
1378static CORE_ADDR
e17a4113 1379rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1380{
1381 CORE_ADDR pc = start_pc;
e17a4113 1382 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1383
1384 /* First possible sequence: A small number of probes.
1385 stw 0, -<some immediate>(1)
0df8b418 1386 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1387
1388 if ((op & 0xffff0000) == 0x90010000)
1389 {
1390 while ((op & 0xffff0000) == 0x90010000)
1391 {
1392 pc = pc + 4;
e17a4113 1393 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1394 }
1395 return pc;
1396 }
1397
1398 /* Second sequence: A probing loop.
1399 addi 12,1,-<some immediate>
1400 lis 0,-<some immediate>
1401 [possibly ori 0,0,<some immediate>]
1402 add 0,12,0
1403 cmpw 0,12,0
1404 beq 0,<disp>
1405 addi 12,12,-<some immediate>
1406 stw 0,0(12)
1407 b <disp>
0df8b418 1408 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1409
1410 while (1)
1411 {
1412 /* addi 12,1,-<some immediate> */
1413 if ((op & 0xffff0000) != 0x39810000)
1414 break;
1415
1416 /* lis 0,-<some immediate> */
1417 pc = pc + 4;
e17a4113 1418 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1419 if ((op & 0xffff0000) != 0x3c000000)
1420 break;
1421
1422 pc = pc + 4;
e17a4113 1423 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1424 /* [possibly ori 0,0,<some immediate>] */
1425 if ((op & 0xffff0000) == 0x60000000)
1426 {
1427 pc = pc + 4;
e17a4113 1428 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1429 }
1430 /* add 0,12,0 */
1431 if (op != 0x7c0c0214)
1432 break;
1433
1434 /* cmpw 0,12,0 */
1435 pc = pc + 4;
e17a4113 1436 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1437 if (op != 0x7c0c0000)
1438 break;
1439
1440 /* beq 0,<disp> */
1441 pc = pc + 4;
e17a4113 1442 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1443 if ((op & 0xff9f0001) != 0x41820000)
1444 break;
1445
1446 /* addi 12,12,-<some immediate> */
1447 pc = pc + 4;
e17a4113 1448 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1449 if ((op & 0xffff0000) != 0x398c0000)
1450 break;
1451
1452 /* stw 0,0(12) */
1453 pc = pc + 4;
e17a4113 1454 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1455 if (op != 0x900c0000)
1456 break;
1457
1458 /* b <disp> */
1459 pc = pc + 4;
e17a4113 1460 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1461 if ((op & 0xfc000001) != 0x48000000)
1462 break;
1463
0df8b418 1464 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1465 pc = pc + 4;
e17a4113 1466 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1467 if ((op & 0xffff0000) == 0x900c0000)
1468 {
1469 pc = pc + 4;
e17a4113 1470 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1471 }
1472
1473 /* We found a valid stack-check sequence, return the new PC. */
1474 return pc;
1475 }
1476
1477 /* Third sequence: No probe; instead, a comparizon between the stack size
1478 limit (saved in a run-time global variable) and the current stack
1479 pointer:
1480
1481 addi 0,1,-<some immediate>
1482 lis 12,__gnat_stack_limit@ha
1483 lwz 12,__gnat_stack_limit@l(12)
1484 twllt 0,12
1485
1486 or, with a small variant in the case of a bigger stack frame:
1487 addis 0,1,<some immediate>
1488 addic 0,0,-<some immediate>
1489 lis 12,__gnat_stack_limit@ha
1490 lwz 12,__gnat_stack_limit@l(12)
1491 twllt 0,12
1492 */
1493 while (1)
1494 {
1495 /* addi 0,1,-<some immediate> */
1496 if ((op & 0xffff0000) != 0x38010000)
1497 {
1498 /* small stack frame variant not recognized; try the
1499 big stack frame variant: */
1500
1501 /* addis 0,1,<some immediate> */
1502 if ((op & 0xffff0000) != 0x3c010000)
1503 break;
1504
1505 /* addic 0,0,-<some immediate> */
1506 pc = pc + 4;
e17a4113 1507 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1508 if ((op & 0xffff0000) != 0x30000000)
1509 break;
1510 }
1511
1512 /* lis 12,<some immediate> */
1513 pc = pc + 4;
e17a4113 1514 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1515 if ((op & 0xffff0000) != 0x3d800000)
1516 break;
1517
1518 /* lwz 12,<some immediate>(12) */
1519 pc = pc + 4;
e17a4113 1520 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1521 if ((op & 0xffff0000) != 0x818c0000)
1522 break;
1523
1524 /* twllt 0,12 */
1525 pc = pc + 4;
e17a4113 1526 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1527 if ((op & 0xfffffffe) != 0x7c406008)
1528 break;
1529
1530 /* We found a valid stack-check sequence, return the new PC. */
1531 return pc;
1532 }
1533
1534 /* No stack check code in our prologue, return the start_pc. */
1535 return start_pc;
1536}
1537
6a16c029
TJB
1538/* return pc value after skipping a function prologue and also return
1539 information about a function frame.
1540
1541 in struct rs6000_framedata fdata:
1542 - frameless is TRUE, if function does not have a frame.
1543 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1544 - offset is the initial size of this stack frame --- the amount by
1545 which we decrement the sp to allocate the frame.
1546 - saved_gpr is the number of the first saved gpr.
1547 - saved_fpr is the number of the first saved fpr.
1548 - saved_vr is the number of the first saved vr.
1549 - saved_ev is the number of the first saved ev.
1550 - alloca_reg is the number of the register used for alloca() handling.
1551 Otherwise -1.
1552 - gpr_offset is the offset of the first saved gpr from the previous frame.
1553 - fpr_offset is the offset of the first saved fpr from the previous frame.
1554 - vr_offset is the offset of the first saved vr from the previous frame.
1555 - ev_offset is the offset of the first saved ev from the previous frame.
1556 - lr_offset is the offset of the saved lr
1557 - cr_offset is the offset of the saved cr
0df8b418 1558 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1559
7a78ae4e 1560static CORE_ADDR
be8626e0
MD
1561skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1562 struct rs6000_framedata *fdata)
c906108c
SS
1563{
1564 CORE_ADDR orig_pc = pc;
55d05f3b 1565 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1566 CORE_ADDR li_found_pc = 0;
50fd1280 1567 gdb_byte buf[4];
c906108c
SS
1568 unsigned long op;
1569 long offset = 0;
6be8bc0c 1570 long vr_saved_offset = 0;
482ca3f5
KB
1571 int lr_reg = -1;
1572 int cr_reg = -1;
6be8bc0c 1573 int vr_reg = -1;
96ff0de4
EZ
1574 int ev_reg = -1;
1575 long ev_offset = 0;
6be8bc0c 1576 int vrsave_reg = -1;
c906108c
SS
1577 int reg;
1578 int framep = 0;
1579 int minimal_toc_loaded = 0;
ddb20c56 1580 int prev_insn_was_prologue_insn = 1;
55d05f3b 1581 int num_skip_non_prologue_insns = 0;
773df3e5 1582 int r0_contains_arg = 0;
be8626e0
MD
1583 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1586
ddb20c56 1587 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1588 fdata->saved_gpr = -1;
1589 fdata->saved_fpr = -1;
6be8bc0c 1590 fdata->saved_vr = -1;
96ff0de4 1591 fdata->saved_ev = -1;
c906108c
SS
1592 fdata->alloca_reg = -1;
1593 fdata->frameless = 1;
1594 fdata->nosavedpc = 1;
46a9b8ed 1595 fdata->lr_register = -1;
c906108c 1596
e17a4113 1597 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1598 if (pc >= lim_pc)
1599 pc = lim_pc;
1600
55d05f3b 1601 for (;; pc += 4)
c906108c 1602 {
ddb20c56
KB
1603 /* Sometimes it isn't clear if an instruction is a prologue
1604 instruction or not. When we encounter one of these ambiguous
1605 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1606 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1607 if (prev_insn_was_prologue_insn)
1608 last_prologue_pc = pc;
55d05f3b
KB
1609
1610 /* Stop scanning if we've hit the limit. */
4e463ff5 1611 if (pc >= lim_pc)
55d05f3b
KB
1612 break;
1613
ddb20c56
KB
1614 prev_insn_was_prologue_insn = 1;
1615
55d05f3b 1616 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1617 if (target_read_memory (pc, buf, 4))
1618 break;
e17a4113 1619 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1620
c5aa993b
JM
1621 if ((op & 0xfc1fffff) == 0x7c0802a6)
1622 { /* mflr Rx */
43b1ab88
AC
1623 /* Since shared library / PIC code, which needs to get its
1624 address at runtime, can appear to save more than one link
1625 register vis:
1626
1627 *INDENT-OFF*
1628 stwu r1,-304(r1)
1629 mflr r3
1630 bl 0xff570d0 (blrl)
1631 stw r30,296(r1)
1632 mflr r30
1633 stw r31,300(r1)
1634 stw r3,308(r1);
1635 ...
1636 *INDENT-ON*
1637
1638 remember just the first one, but skip over additional
1639 ones. */
721d14ba 1640 if (lr_reg == -1)
46a9b8ed 1641 lr_reg = (op & 0x03e00000) >> 21;
773df3e5
JB
1642 if (lr_reg == 0)
1643 r0_contains_arg = 0;
c5aa993b 1644 continue;
c5aa993b
JM
1645 }
1646 else if ((op & 0xfc1fffff) == 0x7c000026)
1647 { /* mfcr Rx */
98f08d3d 1648 cr_reg = (op & 0x03e00000);
773df3e5
JB
1649 if (cr_reg == 0)
1650 r0_contains_arg = 0;
c5aa993b 1651 continue;
c906108c 1652
c906108c 1653 }
c5aa993b
JM
1654 else if ((op & 0xfc1f0000) == 0xd8010000)
1655 { /* stfd Rx,NUM(r1) */
1656 reg = GET_SRC_REG (op);
1657 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1658 {
1659 fdata->saved_fpr = reg;
1660 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1661 }
1662 continue;
c906108c 1663
c5aa993b
JM
1664 }
1665 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1666 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1667 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1668 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1669 {
1670
1671 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1672 if ((op & 0xfc1f0000) == 0xbc010000)
1673 fdata->gpr_mask |= ~((1U << reg) - 1);
1674 else
1675 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1676 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1677 {
1678 fdata->saved_gpr = reg;
7a78ae4e 1679 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1680 op &= ~3UL;
c5aa993b
JM
1681 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1682 }
1683 continue;
c906108c 1684
ddb20c56 1685 }
ef1bc9e7
AM
1686 else if ((op & 0xffff0000) == 0x3c4c0000
1687 || (op & 0xffff0000) == 0x3c400000
1688 || (op & 0xffff0000) == 0x38420000)
1689 {
1690 /* . 0: addis 2,12,.TOC.-0b@ha
1691 . addi 2,2,.TOC.-0b@l
1692 or
1693 . lis 2,.TOC.@ha
1694 . addi 2,2,.TOC.@l
1695 used by ELFv2 global entry points to set up r2. */
1696 continue;
1697 }
1698 else if (op == 0x60000000)
ddb20c56 1699 {
96ff0de4 1700 /* nop */
ddb20c56
KB
1701 /* Allow nops in the prologue, but do not consider them to
1702 be part of the prologue unless followed by other prologue
0df8b418 1703 instructions. */
ddb20c56
KB
1704 prev_insn_was_prologue_insn = 0;
1705 continue;
1706
c906108c 1707 }
c5aa993b 1708 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1709 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1710 fdata->offset = (op & 0x0000ffff) << 16;
1711 fdata->frameless = 0;
773df3e5 1712 r0_contains_arg = 0;
c5aa993b
JM
1713 continue;
1714
1715 }
1716 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1717 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1718 fdata->offset |= (op & 0x0000ffff);
1719 fdata->frameless = 0;
773df3e5 1720 r0_contains_arg = 0;
c5aa993b
JM
1721 continue;
1722
1723 }
be723e22 1724 else if (lr_reg >= 0 &&
98f08d3d
KB
1725 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1726 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1727 /* stw Rx, NUM(r1) */
1728 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1729 /* stwu Rx, NUM(r1) */
1730 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1731 { /* where Rx == lr */
1732 fdata->lr_offset = offset;
c5aa993b 1733 fdata->nosavedpc = 0;
be723e22
MS
1734 /* Invalidate lr_reg, but don't set it to -1.
1735 That would mean that it had never been set. */
1736 lr_reg = -2;
98f08d3d
KB
1737 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1738 (op & 0xfc000000) == 0x90000000) /* stw */
1739 {
1740 /* Does not update r1, so add displacement to lr_offset. */
1741 fdata->lr_offset += SIGNED_SHORT (op);
1742 }
c5aa993b
JM
1743 continue;
1744
1745 }
be723e22 1746 else if (cr_reg >= 0 &&
98f08d3d
KB
1747 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1748 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1749 /* stw Rx, NUM(r1) */
1750 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1751 /* stwu Rx, NUM(r1) */
1752 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1753 { /* where Rx == cr */
1754 fdata->cr_offset = offset;
be723e22
MS
1755 /* Invalidate cr_reg, but don't set it to -1.
1756 That would mean that it had never been set. */
1757 cr_reg = -2;
98f08d3d
KB
1758 if ((op & 0xfc000003) == 0xf8000000 ||
1759 (op & 0xfc000000) == 0x90000000)
1760 {
1761 /* Does not update r1, so add displacement to cr_offset. */
1762 fdata->cr_offset += SIGNED_SHORT (op);
1763 }
c5aa993b
JM
1764 continue;
1765
1766 }
721d14ba
DJ
1767 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1768 {
1769 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1770 prediction bits. If the LR has already been saved, we can
1771 skip it. */
1772 continue;
1773 }
c5aa993b
JM
1774 else if (op == 0x48000005)
1775 { /* bl .+4 used in
1776 -mrelocatable */
46a9b8ed 1777 fdata->used_bl = 1;
c5aa993b
JM
1778 continue;
1779
1780 }
1781 else if (op == 0x48000004)
1782 { /* b .+4 (xlc) */
1783 break;
1784
c5aa993b 1785 }
6be8bc0c
EZ
1786 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1787 in V.4 -mminimal-toc */
c5aa993b
JM
1788 (op & 0xffff0000) == 0x3bde0000)
1789 { /* addi 30,30,foo@l */
1790 continue;
c906108c 1791
c5aa993b
JM
1792 }
1793 else if ((op & 0xfc000001) == 0x48000001)
1794 { /* bl foo,
0df8b418 1795 to save fprs??? */
c906108c 1796
c5aa993b 1797 fdata->frameless = 0;
3c77c82a
DJ
1798
1799 /* If the return address has already been saved, we can skip
1800 calls to blrl (for PIC). */
e17a4113 1801 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1802 {
1803 fdata->used_bl = 1;
1804 continue;
1805 }
3c77c82a 1806
6be8bc0c 1807 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1808 the first three instructions of the prologue and either
1809 we have no line table information or the line info tells
1810 us that the subroutine call is not part of the line
1811 associated with the prologue. */
c5aa993b 1812 if ((pc - orig_pc) > 8)
ebd98106
FF
1813 {
1814 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1815 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1816
0df8b418
MS
1817 if ((prologue_sal.line == 0)
1818 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1819 break;
1820 }
c5aa993b 1821
e17a4113 1822 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1823
6be8bc0c
EZ
1824 /* At this point, make sure this is not a trampoline
1825 function (a function that simply calls another functions,
1826 and nothing else). If the next is not a nop, this branch
0df8b418 1827 was part of the function prologue. */
c5aa993b
JM
1828
1829 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1830 break; /* Don't skip over
1831 this branch. */
c5aa993b 1832
46a9b8ed
DJ
1833 fdata->used_bl = 1;
1834 continue;
c5aa993b 1835 }
98f08d3d
KB
1836 /* update stack pointer */
1837 else if ((op & 0xfc1f0000) == 0x94010000)
1838 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1839 fdata->frameless = 0;
1840 fdata->offset = SIGNED_SHORT (op);
1841 offset = fdata->offset;
1842 continue;
c5aa993b 1843 }
98f08d3d
KB
1844 else if ((op & 0xfc1f016a) == 0x7c01016e)
1845 { /* stwux rX,r1,rY */
0df8b418 1846 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1847 fdata->frameless = 0;
1848 offset = fdata->offset;
1849 continue;
1850 }
1851 else if ((op & 0xfc1f0003) == 0xf8010001)
1852 { /* stdu rX,NUM(r1) */
1853 fdata->frameless = 0;
1854 fdata->offset = SIGNED_SHORT (op & ~3UL);
1855 offset = fdata->offset;
1856 continue;
1857 }
1858 else if ((op & 0xfc1f016a) == 0x7c01016a)
1859 { /* stdux rX,r1,rY */
0df8b418 1860 /* No way to figure out what r1 is going to be. */
c5aa993b
JM
1861 fdata->frameless = 0;
1862 offset = fdata->offset;
1863 continue;
c5aa993b 1864 }
7313566f
FF
1865 else if ((op & 0xffff0000) == 0x38210000)
1866 { /* addi r1,r1,SIMM */
1867 fdata->frameless = 0;
1868 fdata->offset += SIGNED_SHORT (op);
1869 offset = fdata->offset;
1870 continue;
1871 }
4e463ff5
DJ
1872 /* Load up minimal toc pointer. Do not treat an epilogue restore
1873 of r31 as a minimal TOC load. */
0df8b418
MS
1874 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1875 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1876 && !framep
c5aa993b 1877 && !minimal_toc_loaded)
98f08d3d 1878 {
c5aa993b
JM
1879 minimal_toc_loaded = 1;
1880 continue;
1881
f6077098
KB
1882 /* move parameters from argument registers to local variable
1883 registers */
1884 }
1885 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1886 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1887 (((op >> 21) & 31) <= 10) &&
0df8b418
MS
1888 ((long) ((op >> 16) & 31)
1889 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1890 {
1891 continue;
1892
c5aa993b
JM
1893 /* store parameters in stack */
1894 }
e802b915 1895 /* Move parameters from argument registers to temporary register. */
773df3e5 1896 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1897 {
c5aa993b
JM
1898 continue;
1899
1900 /* Set up frame pointer */
1901 }
76219d77
JB
1902 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1903 {
1904 fdata->frameless = 0;
1905 framep = 1;
1906 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1907 continue;
1908
1909 /* Another way to set up the frame pointer. */
1910 }
c5aa993b
JM
1911 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1912 || op == 0x7c3f0b78)
1913 { /* mr r31, r1 */
1914 fdata->frameless = 0;
1915 framep = 1;
6f99cb26 1916 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1917 continue;
1918
1919 /* Another way to set up the frame pointer. */
1920 }
1921 else if ((op & 0xfc1fffff) == 0x38010000)
1922 { /* addi rX, r1, 0x0 */
1923 fdata->frameless = 0;
1924 framep = 1;
6f99cb26
AC
1925 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1926 + ((op & ~0x38010000) >> 21));
c5aa993b 1927 continue;
c5aa993b 1928 }
6be8bc0c
EZ
1929 /* AltiVec related instructions. */
1930 /* Store the vrsave register (spr 256) in another register for
1931 later manipulation, or load a register into the vrsave
1932 register. 2 instructions are used: mfvrsave and
1933 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1934 and mtspr SPR256, Rn. */
1935 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1936 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1937 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1938 {
1939 vrsave_reg = GET_SRC_REG (op);
1940 continue;
1941 }
1942 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1943 {
1944 continue;
1945 }
1946 /* Store the register where vrsave was saved to onto the stack:
1947 rS is the register where vrsave was stored in a previous
1948 instruction. */
1949 /* 100100 sssss 00001 dddddddd dddddddd */
1950 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1951 {
1952 if (vrsave_reg == GET_SRC_REG (op))
1953 {
1954 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1955 vrsave_reg = -1;
1956 }
1957 continue;
1958 }
1959 /* Compute the new value of vrsave, by modifying the register
1960 where vrsave was saved to. */
1961 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1962 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1963 {
1964 continue;
1965 }
1966 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1967 in a pair of insns to save the vector registers on the
1968 stack. */
1969 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1970 /* 001110 01110 00000 iiii iiii iiii iiii */
1971 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1972 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1973 {
773df3e5
JB
1974 if ((op & 0xffff0000) == 0x38000000)
1975 r0_contains_arg = 0;
6be8bc0c
EZ
1976 li_found_pc = pc;
1977 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1978
1979 /* This insn by itself is not part of the prologue, unless
0df8b418 1980 if part of the pair of insns mentioned above. So do not
773df3e5
JB
1981 record this insn as part of the prologue yet. */
1982 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1983 }
1984 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1985 /* 011111 sssss 11111 00000 00111001110 */
1986 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1987 {
1988 if (pc == (li_found_pc + 4))
1989 {
1990 vr_reg = GET_SRC_REG (op);
1991 /* If this is the first vector reg to be saved, or if
1992 it has a lower number than others previously seen,
1993 reupdate the frame info. */
1994 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1995 {
1996 fdata->saved_vr = vr_reg;
1997 fdata->vr_offset = vr_saved_offset + offset;
1998 }
1999 vr_saved_offset = -1;
2000 vr_reg = -1;
2001 li_found_pc = 0;
2002 }
2003 }
2004 /* End AltiVec related instructions. */
96ff0de4
EZ
2005
2006 /* Start BookE related instructions. */
2007 /* Store gen register S at (r31+uimm).
2008 Any register less than r13 is volatile, so we don't care. */
2009 /* 000100 sssss 11111 iiiii 01100100001 */
2010 else if (arch_info->mach == bfd_mach_ppc_e500
2011 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2012 {
2013 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2014 {
2015 unsigned int imm;
2016 ev_reg = GET_SRC_REG (op);
2017 imm = (op >> 11) & 0x1f;
2018 ev_offset = imm * 8;
2019 /* If this is the first vector reg to be saved, or if
2020 it has a lower number than others previously seen,
2021 reupdate the frame info. */
2022 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2023 {
2024 fdata->saved_ev = ev_reg;
2025 fdata->ev_offset = ev_offset + offset;
2026 }
2027 }
2028 continue;
2029 }
2030 /* Store gen register rS at (r1+rB). */
2031 /* 000100 sssss 00001 bbbbb 01100100000 */
2032 else if (arch_info->mach == bfd_mach_ppc_e500
2033 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2034 {
2035 if (pc == (li_found_pc + 4))
2036 {
2037 ev_reg = GET_SRC_REG (op);
2038 /* If this is the first vector reg to be saved, or if
2039 it has a lower number than others previously seen,
2040 reupdate the frame info. */
2041 /* We know the contents of rB from the previous instruction. */
2042 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2043 {
2044 fdata->saved_ev = ev_reg;
2045 fdata->ev_offset = vr_saved_offset + offset;
2046 }
2047 vr_saved_offset = -1;
2048 ev_reg = -1;
2049 li_found_pc = 0;
2050 }
2051 continue;
2052 }
2053 /* Store gen register r31 at (rA+uimm). */
2054 /* 000100 11111 aaaaa iiiii 01100100001 */
2055 else if (arch_info->mach == bfd_mach_ppc_e500
2056 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2057 {
2058 /* Wwe know that the source register is 31 already, but
2059 it can't hurt to compute it. */
2060 ev_reg = GET_SRC_REG (op);
2061 ev_offset = ((op >> 11) & 0x1f) * 8;
2062 /* If this is the first vector reg to be saved, or if
2063 it has a lower number than others previously seen,
2064 reupdate the frame info. */
2065 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2066 {
2067 fdata->saved_ev = ev_reg;
2068 fdata->ev_offset = ev_offset + offset;
2069 }
2070
2071 continue;
2072 }
2073 /* Store gen register S at (r31+r0).
2074 Store param on stack when offset from SP bigger than 4 bytes. */
2075 /* 000100 sssss 11111 00000 01100100000 */
2076 else if (arch_info->mach == bfd_mach_ppc_e500
2077 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2078 {
2079 if (pc == (li_found_pc + 4))
2080 {
2081 if ((op & 0x03e00000) >= 0x01a00000)
2082 {
2083 ev_reg = GET_SRC_REG (op);
2084 /* If this is the first vector reg to be saved, or if
2085 it has a lower number than others previously seen,
2086 reupdate the frame info. */
2087 /* We know the contents of r0 from the previous
2088 instruction. */
2089 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2090 {
2091 fdata->saved_ev = ev_reg;
2092 fdata->ev_offset = vr_saved_offset + offset;
2093 }
2094 ev_reg = -1;
2095 }
2096 vr_saved_offset = -1;
2097 li_found_pc = 0;
2098 continue;
2099 }
2100 }
2101 /* End BookE related instructions. */
2102
c5aa993b
JM
2103 else
2104 {
46a9b8ed
DJ
2105 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2106
55d05f3b
KB
2107 /* Not a recognized prologue instruction.
2108 Handle optimizer code motions into the prologue by continuing
2109 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
2110 address is not yet saved in the frame. Also skip instructions
2111 if some of the GPRs expected to be saved are not yet saved. */
2112 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2113 && (fdata->gpr_mask & all_mask) == all_mask)
55d05f3b
KB
2114 break;
2115
2116 if (op == 0x4e800020 /* blr */
2117 || op == 0x4e800420) /* bctr */
2118 /* Do not scan past epilogue in frameless functions or
2119 trampolines. */
2120 break;
2121 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 2122 /* Never skip branches. */
55d05f3b
KB
2123 break;
2124
2125 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2126 /* Do not scan too many insns, scanning insns is expensive with
2127 remote targets. */
2128 break;
2129
2130 /* Continue scanning. */
2131 prev_insn_was_prologue_insn = 0;
2132 continue;
c5aa993b 2133 }
c906108c
SS
2134 }
2135
2136#if 0
2137/* I have problems with skipping over __main() that I need to address
0df8b418 2138 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
2139 * didn't work as well as I wanted to be. -MGO */
2140
2141 /* If the first thing after skipping a prolog is a branch to a function,
2142 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2143 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2144 work before calling a function right after a prologue, thus we can
64366f1c 2145 single out such gcc2 behaviour. */
c906108c 2146
c906108c 2147
c5aa993b 2148 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2149 { /* bl foo, an initializer function? */
e17a4113 2150 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2151
2152 if (op == 0x4def7b82)
2153 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2154
64366f1c
EZ
2155 /* Check and see if we are in main. If so, skip over this
2156 initializer function as well. */
c906108c 2157
c5aa993b 2158 tmp = find_pc_misc_function (pc);
6314a349
AC
2159 if (tmp >= 0
2160 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2161 return pc + 8;
2162 }
c906108c 2163 }
c906108c 2164#endif /* 0 */
c5aa993b 2165
46a9b8ed
DJ
2166 if (pc == lim_pc && lr_reg >= 0)
2167 fdata->lr_register = lr_reg;
2168
c5aa993b 2169 fdata->offset = -fdata->offset;
ddb20c56 2170 return last_prologue_pc;
c906108c
SS
2171}
2172
7a78ae4e 2173static CORE_ADDR
4a7622d1 2174rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2175{
4a7622d1 2176 struct rs6000_framedata frame;
e3acb115 2177 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2178
4a7622d1
UW
2179 /* See if we can determine the end of the prologue via the symbol table.
2180 If so, then return either PC, or the PC after the prologue, whichever
2181 is greater. */
e3acb115 2182 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2183 {
d80b854b
UW
2184 CORE_ADDR post_prologue_pc
2185 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1
UW
2186 if (post_prologue_pc != 0)
2187 return max (pc, post_prologue_pc);
c906108c 2188 }
c906108c 2189
4a7622d1
UW
2190 /* Can't determine prologue from the symbol table, need to examine
2191 instructions. */
c906108c 2192
4a7622d1
UW
2193 /* Find an upper limit on the function prologue using the debug
2194 information. If the debug information could not be used to provide
2195 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2196 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2197 if (limit_pc == 0)
2198 limit_pc = pc + 100; /* Magic. */
794a477a 2199
e3acb115
JB
2200 /* Do not allow limit_pc to be past the function end, if we know
2201 where that end is... */
2202 if (func_end_addr && limit_pc > func_end_addr)
2203 limit_pc = func_end_addr;
2204
4a7622d1
UW
2205 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2206 return pc;
c906108c 2207}
c906108c 2208
8ab3d180
KB
2209/* When compiling for EABI, some versions of GCC emit a call to __eabi
2210 in the prologue of main().
2211
2212 The function below examines the code pointed at by PC and checks to
2213 see if it corresponds to a call to __eabi. If so, it returns the
2214 address of the instruction following that call. Otherwise, it simply
2215 returns PC. */
2216
63807e1d 2217static CORE_ADDR
8ab3d180
KB
2218rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2219{
e17a4113 2220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2221 gdb_byte buf[4];
2222 unsigned long op;
2223
2224 if (target_read_memory (pc, buf, 4))
2225 return pc;
e17a4113 2226 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2227
2228 if ((op & BL_MASK) == BL_INSTRUCTION)
2229 {
2230 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2231 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2232 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2233
2234 /* We check for ___eabi (three leading underscores) in addition
2235 to __eabi in case the GCC option "-fleading-underscore" was
2236 used to compile the program. */
7cbd4a93 2237 if (s.minsym != NULL
efd66ac6
TT
2238 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2239 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2240 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
8ab3d180
KB
2241 pc += 4;
2242 }
2243 return pc;
2244}
383f0f5b 2245
4a7622d1
UW
2246/* All the ABI's require 16 byte alignment. */
2247static CORE_ADDR
2248rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2249{
2250 return (addr & -16);
c906108c
SS
2251}
2252
977adac5
ND
2253/* Return whether handle_inferior_event() should proceed through code
2254 starting at PC in function NAME when stepping.
2255
2256 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2257 handle memory references that are too distant to fit in instructions
2258 generated by the compiler. For example, if 'foo' in the following
2259 instruction:
2260
2261 lwz r9,foo(r2)
2262
2263 is greater than 32767, the linker might replace the lwz with a branch to
2264 somewhere in @FIX1 that does the load in 2 instructions and then branches
2265 back to where execution should continue.
2266
2267 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2268 Unfortunately, the linker uses the "b" instruction for the
2269 branches, meaning that the link register doesn't get set.
2270 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2271
e76f05fa
UW
2272 Instead, use the gdbarch_skip_trampoline_code and
2273 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2274 @FIX code. */
977adac5 2275
63807e1d 2276static int
e17a4113 2277rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2278 CORE_ADDR pc, const char *name)
977adac5 2279{
61012eef 2280 return name && startswith (name, "@FIX");
977adac5
ND
2281}
2282
2283/* Skip code that the user doesn't want to see when stepping:
2284
2285 1. Indirect function calls use a piece of trampoline code to do context
2286 switching, i.e. to set the new TOC table. Skip such code if we are on
2287 its first instruction (as when we have single-stepped to here).
2288
2289 2. Skip shared library trampoline code (which is different from
c906108c 2290 indirect function call trampolines).
977adac5
ND
2291
2292 3. Skip bigtoc fixup code.
2293
c906108c 2294 Result is desired PC to step until, or NULL if we are not in
977adac5 2295 code that should be skipped. */
c906108c 2296
63807e1d 2297static CORE_ADDR
52f729a7 2298rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2299{
e17a4113
UW
2300 struct gdbarch *gdbarch = get_frame_arch (frame);
2301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2303 unsigned int ii, op;
977adac5 2304 int rel;
c906108c 2305 CORE_ADDR solib_target_pc;
7cbd4a93 2306 struct bound_minimal_symbol msymbol;
c906108c 2307
c5aa993b
JM
2308 static unsigned trampoline_code[] =
2309 {
2310 0x800b0000, /* l r0,0x0(r11) */
2311 0x90410014, /* st r2,0x14(r1) */
2312 0x7c0903a6, /* mtctr r0 */
2313 0x804b0004, /* l r2,0x4(r11) */
2314 0x816b0008, /* l r11,0x8(r11) */
2315 0x4e800420, /* bctr */
2316 0x4e800020, /* br */
2317 0
c906108c
SS
2318 };
2319
977adac5
ND
2320 /* Check for bigtoc fixup code. */
2321 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2322 if (msymbol.minsym
e17a4113 2323 && rs6000_in_solib_return_trampoline (gdbarch, pc,
efd66ac6 2324 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
977adac5
ND
2325 {
2326 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2327 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2328 if ((op & 0xfc000003) == 0x48000000)
2329 {
2330 /* Extract bits 6-29 as a signed 24-bit relative word address and
2331 add it to the containing PC. */
2332 rel = ((int)(op << 6) >> 6);
2333 return pc + 8 + rel;
2334 }
2335 }
2336
c906108c 2337 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2338 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2339 if (solib_target_pc)
2340 return solib_target_pc;
2341
c5aa993b
JM
2342 for (ii = 0; trampoline_code[ii]; ++ii)
2343 {
e17a4113 2344 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2345 if (op != trampoline_code[ii])
2346 return 0;
2347 }
0df8b418
MS
2348 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2349 addr. */
e17a4113 2350 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2351 return pc;
2352}
2353
794ac428
UW
2354/* ISA-specific vector types. */
2355
2356static struct type *
2357rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2358{
2359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2360
2361 if (!tdep->ppc_builtin_type_vec64)
2362 {
df4df182
UW
2363 const struct builtin_type *bt = builtin_type (gdbarch);
2364
794ac428
UW
2365 /* The type we're building is this: */
2366#if 0
2367 union __gdb_builtin_type_vec64
2368 {
2369 int64_t uint64;
2370 float v2_float[2];
2371 int32_t v2_int32[2];
2372 int16_t v4_int16[4];
2373 int8_t v8_int8[8];
2374 };
2375#endif
2376
2377 struct type *t;
2378
e9bb382b
UW
2379 t = arch_composite_type (gdbarch,
2380 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2381 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2382 append_composite_type_field (t, "v2_float",
df4df182 2383 init_vector_type (bt->builtin_float, 2));
794ac428 2384 append_composite_type_field (t, "v2_int32",
df4df182 2385 init_vector_type (bt->builtin_int32, 2));
794ac428 2386 append_composite_type_field (t, "v4_int16",
df4df182 2387 init_vector_type (bt->builtin_int16, 4));
794ac428 2388 append_composite_type_field (t, "v8_int8",
df4df182 2389 init_vector_type (bt->builtin_int8, 8));
794ac428 2390
876cecd0 2391 TYPE_VECTOR (t) = 1;
794ac428
UW
2392 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2393 tdep->ppc_builtin_type_vec64 = t;
2394 }
2395
2396 return tdep->ppc_builtin_type_vec64;
2397}
2398
604c2f83
LM
2399/* Vector 128 type. */
2400
2401static struct type *
2402rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2403{
2404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2405
2406 if (!tdep->ppc_builtin_type_vec128)
2407 {
df4df182
UW
2408 const struct builtin_type *bt = builtin_type (gdbarch);
2409
604c2f83
LM
2410 /* The type we're building is this
2411
2412 type = union __ppc_builtin_type_vec128 {
2413 uint128_t uint128;
db9f5df8 2414 double v2_double[2];
604c2f83
LM
2415 float v4_float[4];
2416 int32_t v4_int32[4];
2417 int16_t v8_int16[8];
2418 int8_t v16_int8[16];
2419 }
2420 */
2421
2422 struct type *t;
2423
e9bb382b
UW
2424 t = arch_composite_type (gdbarch,
2425 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 2426 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2427 append_composite_type_field (t, "v2_double",
2428 init_vector_type (bt->builtin_double, 2));
604c2f83 2429 append_composite_type_field (t, "v4_float",
df4df182 2430 init_vector_type (bt->builtin_float, 4));
604c2f83 2431 append_composite_type_field (t, "v4_int32",
df4df182 2432 init_vector_type (bt->builtin_int32, 4));
604c2f83 2433 append_composite_type_field (t, "v8_int16",
df4df182 2434 init_vector_type (bt->builtin_int16, 8));
604c2f83 2435 append_composite_type_field (t, "v16_int8",
df4df182 2436 init_vector_type (bt->builtin_int8, 16));
604c2f83 2437
803e1097 2438 TYPE_VECTOR (t) = 1;
604c2f83
LM
2439 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2440 tdep->ppc_builtin_type_vec128 = t;
2441 }
2442
2443 return tdep->ppc_builtin_type_vec128;
2444}
2445
7cc46491
DJ
2446/* Return the name of register number REGNO, or the empty string if it
2447 is an anonymous register. */
7a78ae4e 2448
fa88f677 2449static const char *
d93859e2 2450rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2451{
d93859e2 2452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2453
7cc46491
DJ
2454 /* The upper half "registers" have names in the XML description,
2455 but we present only the low GPRs and the full 64-bit registers
2456 to the user. */
2457 if (tdep->ppc_ev0_upper_regnum >= 0
2458 && tdep->ppc_ev0_upper_regnum <= regno
2459 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2460 return "";
2461
604c2f83
LM
2462 /* Hide the upper halves of the vs0~vs31 registers. */
2463 if (tdep->ppc_vsr0_regnum >= 0
2464 && tdep->ppc_vsr0_upper_regnum <= regno
2465 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2466 return "";
2467
7cc46491 2468 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2469 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2470 {
2471 static const char *const spe_regnames[] = {
2472 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2473 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2474 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2475 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2476 };
2477 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2478 }
2479
f949c649
TJB
2480 /* Check if the decimal128 pseudo-registers are available. */
2481 if (IS_DFP_PSEUDOREG (tdep, regno))
2482 {
2483 static const char *const dfp128_regnames[] = {
2484 "dl0", "dl1", "dl2", "dl3",
2485 "dl4", "dl5", "dl6", "dl7",
2486 "dl8", "dl9", "dl10", "dl11",
2487 "dl12", "dl13", "dl14", "dl15"
2488 };
2489 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2490 }
2491
604c2f83
LM
2492 /* Check if this is a VSX pseudo-register. */
2493 if (IS_VSX_PSEUDOREG (tdep, regno))
2494 {
2495 static const char *const vsx_regnames[] = {
2496 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2497 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2498 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2499 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2500 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2501 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2502 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2503 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2504 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2505 };
2506 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2507 }
2508
2509 /* Check if the this is a Extended FP pseudo-register. */
2510 if (IS_EFP_PSEUDOREG (tdep, regno))
2511 {
2512 static const char *const efpr_regnames[] = {
2513 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2514 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2515 "f46", "f47", "f48", "f49", "f50", "f51",
2516 "f52", "f53", "f54", "f55", "f56", "f57",
2517 "f58", "f59", "f60", "f61", "f62", "f63"
2518 };
2519 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2520 }
2521
d93859e2 2522 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2523}
2524
7cc46491
DJ
2525/* Return the GDB type object for the "standard" data type of data in
2526 register N. */
7a78ae4e
ND
2527
2528static struct type *
7cc46491 2529rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2530{
691d145a 2531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2532
7cc46491 2533 /* These are the only pseudo-registers we support. */
f949c649 2534 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2535 || IS_DFP_PSEUDOREG (tdep, regnum)
2536 || IS_VSX_PSEUDOREG (tdep, regnum)
2537 || IS_EFP_PSEUDOREG (tdep, regnum));
7cc46491 2538
f949c649
TJB
2539 /* These are the e500 pseudo-registers. */
2540 if (IS_SPE_PSEUDOREG (tdep, regnum))
2541 return rs6000_builtin_type_vec64 (gdbarch);
604c2f83
LM
2542 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2543 /* PPC decimal128 pseudo-registers. */
f949c649 2544 return builtin_type (gdbarch)->builtin_declong;
604c2f83
LM
2545 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2546 /* POWER7 VSX pseudo-registers. */
2547 return rs6000_builtin_type_vec128 (gdbarch);
2548 else
2549 /* POWER7 Extended FP pseudo-registers. */
2550 return builtin_type (gdbarch)->builtin_double;
7a78ae4e
ND
2551}
2552
c44ca51c
AC
2553/* Is REGNUM a member of REGGROUP? */
2554static int
7cc46491
DJ
2555rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2556 struct reggroup *group)
c44ca51c
AC
2557{
2558 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c44ca51c 2559
7cc46491 2560 /* These are the only pseudo-registers we support. */
f949c649 2561 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2562 || IS_DFP_PSEUDOREG (tdep, regnum)
2563 || IS_VSX_PSEUDOREG (tdep, regnum)
2564 || IS_EFP_PSEUDOREG (tdep, regnum));
c44ca51c 2565
604c2f83
LM
2566 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2567 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
f949c649 2568 return group == all_reggroup || group == vector_reggroup;
7cc46491 2569 else
604c2f83 2570 /* PPC decimal128 or Extended FP pseudo-registers. */
f949c649 2571 return group == all_reggroup || group == float_reggroup;
c44ca51c
AC
2572}
2573
691d145a 2574/* The register format for RS/6000 floating point registers is always
64366f1c 2575 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2576
2577static int
0abe36f5
MD
2578rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2579 struct type *type)
7a78ae4e 2580{
0abe36f5 2581 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2582
2583 return (tdep->ppc_fp0_regnum >= 0
2584 && regnum >= tdep->ppc_fp0_regnum
2585 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2586 && TYPE_CODE (type) == TYPE_CODE_FLT
0dfff4cb
UW
2587 && TYPE_LENGTH (type)
2588 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2589}
2590
8dccd430 2591static int
691d145a
JB
2592rs6000_register_to_value (struct frame_info *frame,
2593 int regnum,
2594 struct type *type,
8dccd430
PA
2595 gdb_byte *to,
2596 int *optimizedp, int *unavailablep)
7a78ae4e 2597{
0dfff4cb 2598 struct gdbarch *gdbarch = get_frame_arch (frame);
50fd1280 2599 gdb_byte from[MAX_REGISTER_SIZE];
691d145a 2600
691d145a 2601 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2602
8dccd430
PA
2603 if (!get_frame_register_bytes (frame, regnum, 0,
2604 register_size (gdbarch, regnum),
2605 from, optimizedp, unavailablep))
2606 return 0;
2607
0dfff4cb
UW
2608 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2609 to, type);
8dccd430
PA
2610 *optimizedp = *unavailablep = 0;
2611 return 1;
691d145a 2612}
7a292a7a 2613
7a78ae4e 2614static void
691d145a
JB
2615rs6000_value_to_register (struct frame_info *frame,
2616 int regnum,
2617 struct type *type,
50fd1280 2618 const gdb_byte *from)
7a78ae4e 2619{
0dfff4cb 2620 struct gdbarch *gdbarch = get_frame_arch (frame);
50fd1280 2621 gdb_byte to[MAX_REGISTER_SIZE];
691d145a 2622
691d145a
JB
2623 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2624
0dfff4cb
UW
2625 convert_typed_floating (from, type,
2626 to, builtin_type (gdbarch)->builtin_double);
691d145a 2627 put_frame_register (frame, regnum, to);
7a78ae4e 2628}
c906108c 2629
05d1431c
PA
2630 /* The type of a function that moves the value of REG between CACHE
2631 or BUF --- in either direction. */
2632typedef enum register_status (*move_ev_register_func) (struct regcache *,
2633 int, void *);
2634
6ced10dd
JB
2635/* Move SPE vector register values between a 64-bit buffer and the two
2636 32-bit raw register halves in a regcache. This function handles
2637 both splitting a 64-bit value into two 32-bit halves, and joining
2638 two halves into a whole 64-bit value, depending on the function
2639 passed as the MOVE argument.
2640
2641 EV_REG must be the number of an SPE evN vector register --- a
2642 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2643 64-bit buffer.
2644
2645 Call MOVE once for each 32-bit half of that register, passing
2646 REGCACHE, the number of the raw register corresponding to that
2647 half, and the address of the appropriate half of BUFFER.
2648
2649 For example, passing 'regcache_raw_read' as the MOVE function will
2650 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2651 'regcache_raw_supply' will supply the contents of BUFFER to the
2652 appropriate pair of raw registers in REGCACHE.
2653
2654 You may need to cast away some 'const' qualifiers when passing
2655 MOVE, since this function can't tell at compile-time which of
2656 REGCACHE or BUFFER is acting as the source of the data. If C had
2657 co-variant type qualifiers, ... */
05d1431c
PA
2658
2659static enum register_status
2660e500_move_ev_register (move_ev_register_func move,
2661 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd
JB
2662{
2663 struct gdbarch *arch = get_regcache_arch (regcache);
2664 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2665 int reg_index;
19ba03f4 2666 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2667 enum register_status status;
6ced10dd 2668
5a9e69ba 2669 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2670
2671 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2672
8b164abb 2673 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2674 {
05d1431c
PA
2675 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2676 byte_buffer);
2677 if (status == REG_VALID)
2678 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2679 byte_buffer + 4);
6ced10dd
JB
2680 }
2681 else
2682 {
05d1431c
PA
2683 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2684 if (status == REG_VALID)
2685 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2686 byte_buffer + 4);
6ced10dd 2687 }
05d1431c
PA
2688
2689 return status;
6ced10dd
JB
2690}
2691
05d1431c
PA
2692static enum register_status
2693do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2694{
19ba03f4 2695 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
05d1431c
PA
2696}
2697
2698static enum register_status
2699do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2700{
19ba03f4 2701 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
05d1431c
PA
2702
2703 return REG_VALID;
2704}
2705
2706static enum register_status
c8001721 2707e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2708 int reg_nr, gdb_byte *buffer)
f949c649 2709{
05d1431c 2710 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
f949c649
TJB
2711}
2712
2713static void
2714e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2715 int reg_nr, const gdb_byte *buffer)
2716{
05d1431c
PA
2717 e500_move_ev_register (do_regcache_raw_write, regcache,
2718 reg_nr, (void *) buffer);
f949c649
TJB
2719}
2720
604c2f83 2721/* Read method for DFP pseudo-registers. */
05d1431c 2722static enum register_status
604c2f83 2723dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2724 int reg_nr, gdb_byte *buffer)
2725{
2726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2727 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
05d1431c 2728 enum register_status status;
f949c649
TJB
2729
2730 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2731 {
2732 /* Read two FP registers to form a whole dl register. */
05d1431c
PA
2733 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2734 2 * reg_index, buffer);
2735 if (status == REG_VALID)
2736 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2737 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2738 }
2739 else
2740 {
05d1431c 2741 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2742 2 * reg_index + 1, buffer);
05d1431c
PA
2743 if (status == REG_VALID)
2744 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2745 2 * reg_index, buffer + 8);
f949c649 2746 }
05d1431c
PA
2747
2748 return status;
f949c649
TJB
2749}
2750
604c2f83 2751/* Write method for DFP pseudo-registers. */
f949c649 2752static void
604c2f83 2753dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2754 int reg_nr, const gdb_byte *buffer)
2755{
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2757 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2758
2759 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2760 {
2761 /* Write each half of the dl register into a separate
2762 FP register. */
2763 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2764 2 * reg_index, buffer);
2765 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2766 2 * reg_index + 1, buffer + 8);
2767 }
2768 else
2769 {
2770 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2771 2 * reg_index + 1, buffer);
f949c649 2772 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2773 2 * reg_index, buffer + 8);
f949c649
TJB
2774 }
2775}
2776
604c2f83 2777/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2778static enum register_status
604c2f83
LM
2779vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2780 int reg_nr, gdb_byte *buffer)
2781{
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
05d1431c 2784 enum register_status status;
604c2f83
LM
2785
2786 /* Read the portion that overlaps the VMX registers. */
2787 if (reg_index > 31)
05d1431c
PA
2788 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2789 reg_index - 32, buffer);
604c2f83
LM
2790 else
2791 /* Read the portion that overlaps the FPR registers. */
2792 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2793 {
05d1431c
PA
2794 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2795 reg_index, buffer);
2796 if (status == REG_VALID)
2797 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2798 reg_index, buffer + 8);
604c2f83
LM
2799 }
2800 else
2801 {
05d1431c
PA
2802 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2803 reg_index, buffer + 8);
2804 if (status == REG_VALID)
2805 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2806 reg_index, buffer);
604c2f83 2807 }
05d1431c
PA
2808
2809 return status;
604c2f83
LM
2810}
2811
2812/* Write method for POWER7 VSX pseudo-registers. */
2813static void
2814vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2815 int reg_nr, const gdb_byte *buffer)
2816{
2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2818 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2819
2820 /* Write the portion that overlaps the VMX registers. */
2821 if (reg_index > 31)
2822 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2823 reg_index - 32, buffer);
2824 else
2825 /* Write the portion that overlaps the FPR registers. */
2826 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2827 {
2828 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2829 reg_index, buffer);
2830 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2831 reg_index, buffer + 8);
2832 }
2833 else
2834 {
2835 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2836 reg_index, buffer + 8);
2837 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2838 reg_index, buffer);
2839 }
2840}
2841
2842/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2843static enum register_status
604c2f83
LM
2844efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2845 int reg_nr, gdb_byte *buffer)
2846{
2847 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2848 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2849 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2850
d9492458 2851 /* Read the portion that overlaps the VMX register. */
084ee545
UW
2852 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2853 offset, register_size (gdbarch, reg_nr),
2854 buffer);
604c2f83
LM
2855}
2856
2857/* Write method for POWER7 Extended FP pseudo-registers. */
2858static void
2859efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2860 int reg_nr, const gdb_byte *buffer)
2861{
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2864 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2865
d9492458 2866 /* Write the portion that overlaps the VMX register. */
084ee545
UW
2867 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2868 offset, register_size (gdbarch, reg_nr),
2869 buffer);
604c2f83
LM
2870}
2871
05d1431c 2872static enum register_status
0df8b418
MS
2873rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2874 struct regcache *regcache,
f949c649 2875 int reg_nr, gdb_byte *buffer)
c8001721 2876{
6ced10dd 2877 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2879
6ced10dd 2880 gdb_assert (regcache_arch == gdbarch);
f949c649 2881
5a9e69ba 2882 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 2883 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
f949c649 2884 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2885 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2886 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
05d1431c 2887 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2888 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2889 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2890 else
a44bddec 2891 internal_error (__FILE__, __LINE__,
f949c649
TJB
2892 _("rs6000_pseudo_register_read: "
2893 "called on unexpected register '%s' (%d)"),
2894 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2895}
2896
2897static void
f949c649
TJB
2898rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2899 struct regcache *regcache,
2900 int reg_nr, const gdb_byte *buffer)
c8001721 2901{
6ced10dd 2902 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2903 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2904
6ced10dd 2905 gdb_assert (regcache_arch == gdbarch);
f949c649 2906
5a9e69ba 2907 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649
TJB
2908 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2909 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
604c2f83
LM
2910 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2911 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2912 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2913 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2914 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2915 else
a44bddec 2916 internal_error (__FILE__, __LINE__,
f949c649
TJB
2917 _("rs6000_pseudo_register_write: "
2918 "called on unexpected register '%s' (%d)"),
2919 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2920}
2921
18ed0c4e 2922/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2923static int
d3f73121 2924rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 2925{
d3f73121 2926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 2927
9f744501
JB
2928 if (0 <= num && num <= 31)
2929 return tdep->ppc_gp0_regnum + num;
2930 else if (32 <= num && num <= 63)
383f0f5b
JB
2931 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2932 specifies registers the architecture doesn't have? Our
2933 callers don't check the value we return. */
366f009f 2934 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2935 else if (77 <= num && num <= 108)
2936 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 2937 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 2938 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
2939 else
2940 switch (num)
2941 {
2942 case 64:
2943 return tdep->ppc_mq_regnum;
2944 case 65:
2945 return tdep->ppc_lr_regnum;
2946 case 66:
2947 return tdep->ppc_ctr_regnum;
2948 case 76:
2949 return tdep->ppc_xer_regnum;
2950 case 109:
2951 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2952 case 110:
2953 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2954 case 111:
18ed0c4e 2955 return tdep->ppc_acc_regnum;
867e2dc5 2956 case 112:
18ed0c4e 2957 return tdep->ppc_spefscr_regnum;
9f744501
JB
2958 default:
2959 return num;
2960 }
18ed0c4e 2961}
9f744501 2962
9f744501 2963
18ed0c4e
JB
2964/* Convert a Dwarf 2 register number to a GDB register number. */
2965static int
d3f73121 2966rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 2967{
d3f73121 2968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 2969
18ed0c4e
JB
2970 if (0 <= num && num <= 31)
2971 return tdep->ppc_gp0_regnum + num;
2972 else if (32 <= num && num <= 63)
2973 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2974 specifies registers the architecture doesn't have? Our
2975 callers don't check the value we return. */
2976 return tdep->ppc_fp0_regnum + (num - 32);
2977 else if (1124 <= num && num < 1124 + 32)
2978 return tdep->ppc_vr0_regnum + (num - 1124);
2979 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 2980 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
2981 else
2982 switch (num)
2983 {
a489f789
AS
2984 case 64:
2985 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2986 case 67:
2987 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2988 case 99:
2989 return tdep->ppc_acc_regnum;
2990 case 100:
2991 return tdep->ppc_mq_regnum;
2992 case 101:
2993 return tdep->ppc_xer_regnum;
2994 case 108:
2995 return tdep->ppc_lr_regnum;
2996 case 109:
2997 return tdep->ppc_ctr_regnum;
2998 case 356:
2999 return tdep->ppc_vrsave_regnum;
3000 case 612:
3001 return tdep->ppc_spefscr_regnum;
3002 default:
3003 return num;
3004 }
2188cbdd
EZ
3005}
3006
4fc771b8
DJ
3007/* Translate a .eh_frame register to DWARF register, or adjust a
3008 .debug_frame register. */
3009
3010static int
3011rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3012{
3013 /* GCC releases before 3.4 use GCC internal register numbering in
3014 .debug_frame (and .debug_info, et cetera). The numbering is
3015 different from the standard SysV numbering for everything except
3016 for GPRs and FPRs. We can not detect this problem in most cases
3017 - to get accurate debug info for variables living in lr, ctr, v0,
3018 et cetera, use a newer version of GCC. But we must detect
3019 one important case - lr is in column 65 in .debug_frame output,
3020 instead of 108.
3021
3022 GCC 3.4, and the "hammer" branch, have a related problem. They
3023 record lr register saves in .debug_frame as 108, but still record
3024 the return column as 65. We fix that up too.
3025
3026 We can do this because 65 is assigned to fpsr, and GCC never
3027 generates debug info referring to it. To add support for
3028 handwritten debug info that restores fpsr, we would need to add a
3029 producer version check to this. */
3030 if (!eh_frame_p)
3031 {
3032 if (num == 65)
3033 return 108;
3034 else
3035 return num;
3036 }
3037
3038 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3039 internal register numbering; translate that to the standard DWARF2
3040 register numbering. */
3041 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3042 return num;
3043 else if (68 <= num && num <= 75) /* cr0-cr8 */
3044 return num - 68 + 86;
3045 else if (77 <= num && num <= 108) /* vr0-vr31 */
3046 return num - 77 + 1124;
3047 else
3048 switch (num)
3049 {
3050 case 64: /* mq */
3051 return 100;
3052 case 65: /* lr */
3053 return 108;
3054 case 66: /* ctr */
3055 return 109;
3056 case 76: /* xer */
3057 return 101;
3058 case 109: /* vrsave */
3059 return 356;
3060 case 110: /* vscr */
3061 return 67;
3062 case 111: /* spe_acc */
3063 return 99;
3064 case 112: /* spefscr */
3065 return 612;
3066 default:
3067 return num;
3068 }
3069}
c906108c 3070\f
c5aa993b 3071
7a78ae4e 3072/* Handling the various POWER/PowerPC variants. */
c906108c 3073
c906108c 3074/* Information about a particular processor variant. */
7a78ae4e 3075
c906108c 3076struct variant
c5aa993b
JM
3077 {
3078 /* Name of this variant. */
3079 char *name;
c906108c 3080
c5aa993b
JM
3081 /* English description of the variant. */
3082 char *description;
c906108c 3083
64366f1c 3084 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3085 enum bfd_architecture arch;
3086
64366f1c 3087 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3088 unsigned long mach;
3089
7cc46491
DJ
3090 /* Target description for this variant. */
3091 struct target_desc **tdesc;
c5aa993b 3092 };
c906108c 3093
489461e2 3094static struct variant variants[] =
c906108c 3095{
7a78ae4e 3096 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3097 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3098 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3099 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3100 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3101 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3102 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3103 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3104 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3105 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3106 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3107 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3108 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3109 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3110 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3111 604, &tdesc_powerpc_604},
7a78ae4e 3112 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3113 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3114 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3115 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3116 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3117 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3118 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3119 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3120 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3121 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3122 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3123 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3124
5d57ee30
KB
3125 /* 64-bit */
3126 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3127 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3128 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3129 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3130 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3131 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3132 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3133 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3134 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3135 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3136 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3137 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3138
64366f1c 3139 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3140 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3141 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3142 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3143 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3144 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3145 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3146
3e45d68b 3147 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3148};
3149
7a78ae4e 3150/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3151 MACH. If no such variant exists, return null. */
c906108c 3152
7a78ae4e
ND
3153static const struct variant *
3154find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3155{
7a78ae4e 3156 const struct variant *v;
c5aa993b 3157
7a78ae4e
ND
3158 for (v = variants; v->name; v++)
3159 if (arch == v->arch && mach == v->mach)
3160 return v;
c906108c 3161
7a78ae4e 3162 return NULL;
c906108c 3163}
9364a0ef
EZ
3164
3165static int
3166gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3167{
40887e1a 3168 if (info->endian == BFD_ENDIAN_BIG)
9364a0ef
EZ
3169 return print_insn_big_powerpc (memaddr, info);
3170 else
3171 return print_insn_little_powerpc (memaddr, info);
3172}
7a78ae4e 3173\f
61a65099
KB
3174static CORE_ADDR
3175rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3176{
3e8c568d 3177 return frame_unwind_register_unsigned (next_frame,
8b164abb 3178 gdbarch_pc_regnum (gdbarch));
61a65099
KB
3179}
3180
3181static struct frame_id
1af5d7ce 3182rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61a65099 3183{
1af5d7ce
UW
3184 return frame_id_build (get_frame_register_unsigned
3185 (this_frame, gdbarch_sp_regnum (gdbarch)),
3186 get_frame_pc (this_frame));
61a65099
KB
3187}
3188
3189struct rs6000_frame_cache
3190{
3191 CORE_ADDR base;
3192 CORE_ADDR initial_sp;
3193 struct trad_frame_saved_reg *saved_regs;
3194};
3195
3196static struct rs6000_frame_cache *
1af5d7ce 3197rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3198{
3199 struct rs6000_frame_cache *cache;
1af5d7ce 3200 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3202 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3203 struct rs6000_framedata fdata;
3204 int wordsize = tdep->wordsize;
e10b1c4c 3205 CORE_ADDR func, pc;
61a65099
KB
3206
3207 if ((*this_cache) != NULL)
19ba03f4 3208 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3209 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3210 (*this_cache) = cache;
1af5d7ce 3211 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3212
1af5d7ce
UW
3213 func = get_frame_func (this_frame);
3214 pc = get_frame_pc (this_frame);
be8626e0 3215 skip_prologue (gdbarch, func, pc, &fdata);
e10b1c4c
DJ
3216
3217 /* Figure out the parent's stack pointer. */
3218
3219 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3220 address of the current frame. Things might be easier if the
3221 ->frame pointed to the outer-most address of the frame. In
3222 the mean time, the address of the prev frame is used as the
3223 base address of this frame. */
1af5d7ce
UW
3224 cache->base = get_frame_register_unsigned
3225 (this_frame, gdbarch_sp_regnum (gdbarch));
e10b1c4c
DJ
3226
3227 /* If the function appears to be frameless, check a couple of likely
3228 indicators that we have simply failed to find the frame setup.
3229 Two common cases of this are missing symbols (i.e.
ef02daa9 3230 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3231 stubs which have a fast exit path but set up a frame on the slow
3232 path.
3233
3234 If the LR appears to return to this function, then presume that
3235 we have an ABI compliant frame that we failed to find. */
3236 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3237 {
e10b1c4c
DJ
3238 CORE_ADDR saved_lr;
3239 int make_frame = 0;
3240
1af5d7ce 3241 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3242 if (func == 0 && saved_lr == pc)
3243 make_frame = 1;
3244 else if (func != 0)
3245 {
3246 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3247 if (func == saved_func)
3248 make_frame = 1;
3249 }
3250
3251 if (make_frame)
3252 {
3253 fdata.frameless = 0;
de6a76fd 3254 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3255 }
61a65099 3256 }
e10b1c4c
DJ
3257
3258 if (!fdata.frameless)
9d9bf2df
EBM
3259 {
3260 /* Frameless really means stackless. */
3261 LONGEST backchain;
3262
3263 if (safe_read_memory_integer (cache->base, wordsize,
3264 byte_order, &backchain))
3265 cache->base = (CORE_ADDR) backchain;
3266 }
e10b1c4c 3267
3e8c568d 3268 trad_frame_set_value (cache->saved_regs,
8b164abb 3269 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
3270
3271 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3272 All fpr's from saved_fpr to fp31 are saved. */
3273
3274 if (fdata.saved_fpr >= 0)
3275 {
3276 int i;
3277 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3278
3279 /* If skip_prologue says floating-point registers were saved,
3280 but the current architecture has no floating-point registers,
3281 then that's strange. But we have no indices to even record
3282 the addresses under, so we just ignore it. */
3283 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3284 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3285 {
3286 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3287 fpr_addr += 8;
3288 }
61a65099
KB
3289 }
3290
3291 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3292 All gpr's from saved_gpr to gpr31 are saved (except during the
3293 prologue). */
61a65099
KB
3294
3295 if (fdata.saved_gpr >= 0)
3296 {
3297 int i;
3298 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3299 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3300 {
46a9b8ed
DJ
3301 if (fdata.gpr_mask & (1U << i))
3302 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
61a65099
KB
3303 gpr_addr += wordsize;
3304 }
3305 }
3306
3307 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3308 All vr's from saved_vr to vr31 are saved. */
3309 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3310 {
3311 if (fdata.saved_vr >= 0)
3312 {
3313 int i;
3314 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3315 for (i = fdata.saved_vr; i < 32; i++)
3316 {
3317 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3318 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3319 }
3320 }
3321 }
3322
3323 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3324 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3325 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3326 {
3327 if (fdata.saved_ev >= 0)
3328 {
3329 int i;
3330 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3331 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3332
063715bf 3333 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3334 {
3335 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
dea80df0 3336 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
61a65099 3337 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3338 }
61a65099
KB
3339 }
3340 }
3341
3342 /* If != 0, fdata.cr_offset is the offset from the frame that
3343 holds the CR. */
3344 if (fdata.cr_offset != 0)
0df8b418
MS
3345 cache->saved_regs[tdep->ppc_cr_regnum].addr
3346 = cache->base + fdata.cr_offset;
61a65099
KB
3347
3348 /* If != 0, fdata.lr_offset is the offset from the frame that
3349 holds the LR. */
3350 if (fdata.lr_offset != 0)
0df8b418
MS
3351 cache->saved_regs[tdep->ppc_lr_regnum].addr
3352 = cache->base + fdata.lr_offset;
46a9b8ed
DJ
3353 else if (fdata.lr_register != -1)
3354 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
61a65099 3355 /* The PC is found in the link register. */
8b164abb 3356 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3357 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3358
3359 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3360 holds the VRSAVE. */
3361 if (fdata.vrsave_offset != 0)
0df8b418
MS
3362 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3363 = cache->base + fdata.vrsave_offset;
61a65099
KB
3364
3365 if (fdata.alloca_reg < 0)
3366 /* If no alloca register used, then fi->frame is the value of the
3367 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3368 cache->initial_sp
3369 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3370 else
1af5d7ce
UW
3371 cache->initial_sp
3372 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099
KB
3373
3374 return cache;
3375}
3376
3377static void
1af5d7ce 3378rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3379 struct frame_id *this_id)
3380{
1af5d7ce 3381 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3382 this_cache);
5b197912
UW
3383 /* This marks the outermost frame. */
3384 if (info->base == 0)
3385 return;
3386
1af5d7ce 3387 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3388}
3389
1af5d7ce
UW
3390static struct value *
3391rs6000_frame_prev_register (struct frame_info *this_frame,
3392 void **this_cache, int regnum)
61a65099 3393{
1af5d7ce 3394 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3395 this_cache);
1af5d7ce 3396 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3397}
3398
3399static const struct frame_unwind rs6000_frame_unwind =
3400{
3401 NORMAL_FRAME,
8fbca658 3402 default_frame_unwind_stop_reason,
61a65099 3403 rs6000_frame_this_id,
1af5d7ce
UW
3404 rs6000_frame_prev_register,
3405 NULL,
3406 default_frame_sniffer
61a65099 3407};
2608dbf8 3408
ddeca1df
WW
3409/* Allocate and initialize a frame cache for an epilogue frame.
3410 SP is restored and prev-PC is stored in LR. */
3411
2608dbf8
WW
3412static struct rs6000_frame_cache *
3413rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3414{
2608dbf8
WW
3415 struct rs6000_frame_cache *cache;
3416 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3418
3419 if (*this_cache)
19ba03f4 3420 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3421
3422 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3423 (*this_cache) = cache;
3424 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3425
492d29ea 3426 TRY
2608dbf8
WW
3427 {
3428 /* At this point the stack looks as if we just entered the
3429 function, and the return address is stored in LR. */
3430 CORE_ADDR sp, lr;
3431
3432 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3433 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3434
3435 cache->base = sp;
3436 cache->initial_sp = sp;
3437
3438 trad_frame_set_value (cache->saved_regs,
3439 gdbarch_pc_regnum (gdbarch), lr);
3440 }
492d29ea 3441 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
3442 {
3443 if (ex.error != NOT_AVAILABLE_ERROR)
3444 throw_exception (ex);
3445 }
492d29ea 3446 END_CATCH
2608dbf8
WW
3447
3448 return cache;
3449}
3450
ddeca1df
WW
3451/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3452 Return the frame ID of an epilogue frame. */
3453
2608dbf8
WW
3454static void
3455rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3456 void **this_cache, struct frame_id *this_id)
3457{
3458 CORE_ADDR pc;
3459 struct rs6000_frame_cache *info =
3460 rs6000_epilogue_frame_cache (this_frame, this_cache);
3461
3462 pc = get_frame_func (this_frame);
3463 if (info->base == 0)
3464 (*this_id) = frame_id_build_unavailable_stack (pc);
3465 else
3466 (*this_id) = frame_id_build (info->base, pc);
3467}
3468
ddeca1df
WW
3469/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3470 Return the register value of REGNUM in previous frame. */
3471
2608dbf8
WW
3472static struct value *
3473rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3474 void **this_cache, int regnum)
3475{
3476 struct rs6000_frame_cache *info =
3477 rs6000_epilogue_frame_cache (this_frame, this_cache);
3478 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3479}
3480
ddeca1df
WW
3481/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3482 Check whether this an epilogue frame. */
3483
2608dbf8
WW
3484static int
3485rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3486 struct frame_info *this_frame,
3487 void **this_prologue_cache)
3488{
3489 if (frame_relative_level (this_frame) == 0)
3490 return rs6000_in_function_epilogue_frame_p (this_frame,
3491 get_frame_arch (this_frame),
3492 get_frame_pc (this_frame));
3493 else
3494 return 0;
3495}
3496
ddeca1df
WW
3497/* Frame unwinder for epilogue frame. This is required for reverse step-over
3498 a function without debug information. */
3499
2608dbf8
WW
3500static const struct frame_unwind rs6000_epilogue_frame_unwind =
3501{
3502 NORMAL_FRAME,
3503 default_frame_unwind_stop_reason,
3504 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3505 NULL,
3506 rs6000_epilogue_frame_sniffer
3507};
61a65099
KB
3508\f
3509
3510static CORE_ADDR
1af5d7ce 3511rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3512{
1af5d7ce 3513 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3514 this_cache);
3515 return info->initial_sp;
3516}
3517
3518static const struct frame_base rs6000_frame_base = {
3519 &rs6000_frame_unwind,
3520 rs6000_frame_base_address,
3521 rs6000_frame_base_address,
3522 rs6000_frame_base_address
3523};
3524
3525static const struct frame_base *
1af5d7ce 3526rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3527{
3528 return &rs6000_frame_base;
3529}
3530
9274a07c
LM
3531/* DWARF-2 frame support. Used to handle the detection of
3532 clobbered registers during function calls. */
3533
3534static void
3535ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3536 struct dwarf2_frame_state_reg *reg,
4a4e5149 3537 struct frame_info *this_frame)
9274a07c
LM
3538{
3539 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3540
3541 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3542 non-volatile registers. We will use the same code for both. */
3543
3544 /* Call-saved GP registers. */
3545 if ((regnum >= tdep->ppc_gp0_regnum + 14
3546 && regnum <= tdep->ppc_gp0_regnum + 31)
3547 || (regnum == tdep->ppc_gp0_regnum + 1))
3548 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3549
3550 /* Call-clobbered GP registers. */
3551 if ((regnum >= tdep->ppc_gp0_regnum + 3
3552 && regnum <= tdep->ppc_gp0_regnum + 12)
3553 || (regnum == tdep->ppc_gp0_regnum))
3554 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3555
3556 /* Deal with FP registers, if supported. */
3557 if (tdep->ppc_fp0_regnum >= 0)
3558 {
3559 /* Call-saved FP registers. */
3560 if ((regnum >= tdep->ppc_fp0_regnum + 14
3561 && regnum <= tdep->ppc_fp0_regnum + 31))
3562 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3563
3564 /* Call-clobbered FP registers. */
3565 if ((regnum >= tdep->ppc_fp0_regnum
3566 && regnum <= tdep->ppc_fp0_regnum + 13))
3567 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3568 }
3569
3570 /* Deal with ALTIVEC registers, if supported. */
3571 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3572 {
3573 /* Call-saved Altivec registers. */
3574 if ((regnum >= tdep->ppc_vr0_regnum + 20
3575 && regnum <= tdep->ppc_vr0_regnum + 31)
3576 || regnum == tdep->ppc_vrsave_regnum)
3577 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3578
3579 /* Call-clobbered Altivec registers. */
3580 if ((regnum >= tdep->ppc_vr0_regnum
3581 && regnum <= tdep->ppc_vr0_regnum + 19))
3582 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3583 }
3584
3585 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3586 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3587 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3588 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3589 reg->how = DWARF2_FRAME_REG_CFA;
3590}
3591
3592
74af9197
NF
3593/* Return true if a .gnu_attributes section exists in BFD and it
3594 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3595 section exists in BFD and it indicates that SPE extensions are in
3596 use. Check the .gnu.attributes section first, as the binary might be
3597 compiled for SPE, but not actually using SPE instructions. */
3598
3599static int
3600bfd_uses_spe_extensions (bfd *abfd)
3601{
3602 asection *sect;
3603 gdb_byte *contents = NULL;
3604 bfd_size_type size;
3605 gdb_byte *ptr;
3606 int success = 0;
3607 int vector_abi;
3608
3609 if (!abfd)
3610 return 0;
3611
50a99728 3612#ifdef HAVE_ELF
74af9197
NF
3613 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3614 could be using the SPE vector abi without actually using any spe
3615 bits whatsoever. But it's close enough for now. */
3616 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3617 Tag_GNU_Power_ABI_Vector);
3618 if (vector_abi == 3)
3619 return 1;
50a99728 3620#endif
74af9197
NF
3621
3622 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3623 if (!sect)
3624 return 0;
3625
3626 size = bfd_get_section_size (sect);
224c3ddb 3627 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3628 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3629 {
3630 xfree (contents);
3631 return 0;
3632 }
3633
3634 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3635
3636 struct {
3637 uint32 name_len;
3638 uint32 data_len;
3639 uint32 type;
3640 char name[name_len rounded up to 4-byte alignment];
3641 char data[data_len];
3642 };
3643
3644 Technically, there's only supposed to be one such structure in a
3645 given apuinfo section, but the linker is not always vigilant about
3646 merging apuinfo sections from input files. Just go ahead and parse
3647 them all, exiting early when we discover the binary uses SPE
3648 insns.
3649
3650 It's not specified in what endianness the information in this
3651 section is stored. Assume that it's the endianness of the BFD. */
3652 ptr = contents;
3653 while (1)
3654 {
3655 unsigned int name_len;
3656 unsigned int data_len;
3657 unsigned int type;
3658
3659 /* If we can't read the first three fields, we're done. */
3660 if (size < 12)
3661 break;
3662
3663 name_len = bfd_get_32 (abfd, ptr);
3664 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3665 data_len = bfd_get_32 (abfd, ptr + 4);
3666 type = bfd_get_32 (abfd, ptr + 8);
3667 ptr += 12;
3668
3669 /* The name must be "APUinfo\0". */
3670 if (name_len != 8
3671 && strcmp ((const char *) ptr, "APUinfo") != 0)
3672 break;
3673 ptr += name_len;
3674
3675 /* The type must be 2. */
3676 if (type != 2)
3677 break;
3678
3679 /* The data is stored as a series of uint32. The upper half of
3680 each uint32 indicates the particular APU used and the lower
3681 half indicates the revision of that APU. We just care about
3682 the upper half. */
3683
3684 /* Not 4-byte quantities. */
3685 if (data_len & 3U)
3686 break;
3687
3688 while (data_len)
3689 {
3690 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3691 unsigned int apu = apuinfo >> 16;
3692 ptr += 4;
3693 data_len -= 4;
3694
3695 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3696 either. */
3697 if (apu == 0x100 || apu == 0x101)
3698 {
3699 success = 1;
3700 data_len = 0;
3701 }
3702 }
3703
3704 if (success)
3705 break;
3706 }
3707
3708 xfree (contents);
3709 return success;
3710}
3711
b4cdae6f
WW
3712/* These are macros for parsing instruction fields (I.1.6.28) */
3713
3714#define PPC_FIELD(value, from, len) \
3715 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3716#define PPC_SEXT(v, bs) \
3717 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3718 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3719 - ((CORE_ADDR) 1 << ((bs) - 1)))
3720#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3721#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3722#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3723#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3724#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3725#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3726#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3727#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3728#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3729#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3730 | (PPC_FIELD (insn, 16, 5) << 5))
3731#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3732#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3733#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3734#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3735#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3736#define PPC_OE(insn) PPC_BIT (insn, 21)
3737#define PPC_RC(insn) PPC_BIT (insn, 31)
3738#define PPC_Rc(insn) PPC_BIT (insn, 21)
3739#define PPC_LK(insn) PPC_BIT (insn, 31)
3740#define PPC_TX(insn) PPC_BIT (insn, 31)
3741#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3742
3743#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3744#define PPC_XER_NB(xer) (xer & 0x7f)
3745
ddeca1df
WW
3746/* Record Vector-Scalar Registers.
3747 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3748 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
3749
3750static int
3751ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3752{
3753 if (vsr < 0 || vsr >= 64)
3754 return -1;
3755
3756 if (vsr >= 32)
3757 {
3758 if (tdep->ppc_vr0_regnum >= 0)
3759 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3760 }
3761 else
3762 {
3763 if (tdep->ppc_fp0_regnum >= 0)
3764 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3765 if (tdep->ppc_vsr0_upper_regnum >= 0)
3766 record_full_arch_list_add_reg (regcache,
3767 tdep->ppc_vsr0_upper_regnum + vsr);
3768 }
3769
3770 return 0;
3771}
3772
ddeca1df
WW
3773/* Parse and record instructions primary opcode-4 at ADDR.
3774 Return 0 if successful. */
b4cdae6f
WW
3775
3776static int
3777ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 3778 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
3779{
3780 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3781 int ext = PPC_FIELD (insn, 21, 11);
3782
3783 switch (ext & 0x3f)
3784 {
3785 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3786 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3787 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3788 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3789 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3790 /* FALL-THROUGH */
3791 case 42: /* Vector Select */
3792 case 43: /* Vector Permute */
3793 case 44: /* Vector Shift Left Double by Octet Immediate */
3794 case 45: /* Vector Permute and Exclusive-OR */
3795 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3796 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3797 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3798 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3799 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3800 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3801 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3802 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3803 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3804 case 46: /* Vector Multiply-Add Single-Precision */
3805 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3806 record_full_arch_list_add_reg (regcache,
3807 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3808 return 0;
3809 }
3810
3811 switch ((ext & 0x1ff))
3812 {
3813 /* 5.16 Decimal Integer Arithmetic Instructions */
3814 case 1: /* Decimal Add Modulo */
3815 case 65: /* Decimal Subtract Modulo */
3816
3817 /* Bit-21 should be set. */
3818 if (!PPC_BIT (insn, 21))
3819 break;
3820
3821 record_full_arch_list_add_reg (regcache,
3822 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3823 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3824 return 0;
3825 }
3826
3827 /* Bit-21 is used for RC */
3828 switch (ext & 0x3ff)
3829 {
3830 case 6: /* Vector Compare Equal To Unsigned Byte */
3831 case 70: /* Vector Compare Equal To Unsigned Halfword */
3832 case 134: /* Vector Compare Equal To Unsigned Word */
3833 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3834 case 774: /* Vector Compare Greater Than Signed Byte */
3835 case 838: /* Vector Compare Greater Than Signed Halfword */
3836 case 902: /* Vector Compare Greater Than Signed Word */
3837 case 967: /* Vector Compare Greater Than Signed Doubleword */
3838 case 518: /* Vector Compare Greater Than Unsigned Byte */
3839 case 646: /* Vector Compare Greater Than Unsigned Word */
3840 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3841 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3842 case 966: /* Vector Compare Bounds Single-Precision */
3843 case 198: /* Vector Compare Equal To Single-Precision */
3844 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3845 case 710: /* Vector Compare Greater Than Single-Precision */
3846 if (PPC_Rc (insn))
3847 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3848 record_full_arch_list_add_reg (regcache,
3849 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3850 return 0;
3851 }
3852
3853 switch (ext)
3854 {
3855 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3856 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3857 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3858 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3859 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3860 case 462: /* Vector Pack Signed Word Signed Saturate */
3861 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3862 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3863 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3864 case 512: /* Vector Add Unsigned Byte Saturate */
3865 case 576: /* Vector Add Unsigned Halfword Saturate */
3866 case 640: /* Vector Add Unsigned Word Saturate */
3867 case 768: /* Vector Add Signed Byte Saturate */
3868 case 832: /* Vector Add Signed Halfword Saturate */
3869 case 896: /* Vector Add Signed Word Saturate */
3870 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3871 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3872 case 1664: /* Vector Subtract Unsigned Word Saturate */
3873 case 1792: /* Vector Subtract Signed Byte Saturate */
3874 case 1856: /* Vector Subtract Signed Halfword Saturate */
3875 case 1920: /* Vector Subtract Signed Word Saturate */
3876
3877 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3878 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3879 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3880 case 1672: /* Vector Sum across Half Signed Word Saturate */
3881 case 1928: /* Vector Sum across Signed Word Saturate */
3882 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3883 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3884 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3885 /* FALL-THROUGH */
3886 case 12: /* Vector Merge High Byte */
3887 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3888 case 76: /* Vector Merge High Halfword */
3889 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3890 case 140: /* Vector Merge High Word */
3891 case 268: /* Vector Merge Low Byte */
3892 case 332: /* Vector Merge Low Halfword */
3893 case 396: /* Vector Merge Low Word */
3894 case 526: /* Vector Unpack High Signed Byte */
3895 case 590: /* Vector Unpack High Signed Halfword */
3896 case 654: /* Vector Unpack Low Signed Byte */
3897 case 718: /* Vector Unpack Low Signed Halfword */
3898 case 782: /* Vector Pack Pixel */
3899 case 846: /* Vector Unpack High Pixel */
3900 case 974: /* Vector Unpack Low Pixel */
3901 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3902 case 1614: /* Vector Unpack High Signed Word */
3903 case 1676: /* Vector Merge Odd Word */
3904 case 1742: /* Vector Unpack Low Signed Word */
3905 case 1932: /* Vector Merge Even Word */
3906 case 524: /* Vector Splat Byte */
3907 case 588: /* Vector Splat Halfword */
3908 case 652: /* Vector Splat Word */
3909 case 780: /* Vector Splat Immediate Signed Byte */
3910 case 844: /* Vector Splat Immediate Signed Halfword */
3911 case 908: /* Vector Splat Immediate Signed Word */
3912 case 452: /* Vector Shift Left */
3913 case 708: /* Vector Shift Right */
3914 case 1036: /* Vector Shift Left by Octet */
3915 case 1100: /* Vector Shift Right by Octet */
3916 case 0: /* Vector Add Unsigned Byte Modulo */
3917 case 64: /* Vector Add Unsigned Halfword Modulo */
3918 case 128: /* Vector Add Unsigned Word Modulo */
3919 case 192: /* Vector Add Unsigned Doubleword Modulo */
3920 case 256: /* Vector Add Unsigned Quadword Modulo */
3921 case 320: /* Vector Add & write Carry Unsigned Quadword */
3922 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
3923 case 8: /* Vector Multiply Odd Unsigned Byte */
3924 case 72: /* Vector Multiply Odd Unsigned Halfword */
3925 case 136: /* Vector Multiply Odd Unsigned Word */
3926 case 264: /* Vector Multiply Odd Signed Byte */
3927 case 328: /* Vector Multiply Odd Signed Halfword */
3928 case 392: /* Vector Multiply Odd Signed Word */
3929 case 520: /* Vector Multiply Even Unsigned Byte */
3930 case 584: /* Vector Multiply Even Unsigned Halfword */
3931 case 648: /* Vector Multiply Even Unsigned Word */
3932 case 776: /* Vector Multiply Even Signed Byte */
3933 case 840: /* Vector Multiply Even Signed Halfword */
3934 case 904: /* Vector Multiply Even Signed Word */
3935 case 137: /* Vector Multiply Unsigned Word Modulo */
3936 case 1024: /* Vector Subtract Unsigned Byte Modulo */
3937 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
3938 case 1152: /* Vector Subtract Unsigned Word Modulo */
3939 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
3940 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
3941 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
3942 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
3943 case 1282: /* Vector Average Signed Byte */
3944 case 1346: /* Vector Average Signed Halfword */
3945 case 1410: /* Vector Average Signed Word */
3946 case 1026: /* Vector Average Unsigned Byte */
3947 case 1090: /* Vector Average Unsigned Halfword */
3948 case 1154: /* Vector Average Unsigned Word */
3949 case 258: /* Vector Maximum Signed Byte */
3950 case 322: /* Vector Maximum Signed Halfword */
3951 case 386: /* Vector Maximum Signed Word */
3952 case 450: /* Vector Maximum Signed Doubleword */
3953 case 2: /* Vector Maximum Unsigned Byte */
3954 case 66: /* Vector Maximum Unsigned Halfword */
3955 case 130: /* Vector Maximum Unsigned Word */
3956 case 194: /* Vector Maximum Unsigned Doubleword */
3957 case 770: /* Vector Minimum Signed Byte */
3958 case 834: /* Vector Minimum Signed Halfword */
3959 case 898: /* Vector Minimum Signed Word */
3960 case 962: /* Vector Minimum Signed Doubleword */
3961 case 514: /* Vector Minimum Unsigned Byte */
3962 case 578: /* Vector Minimum Unsigned Halfword */
3963 case 642: /* Vector Minimum Unsigned Word */
3964 case 706: /* Vector Minimum Unsigned Doubleword */
3965 case 1028: /* Vector Logical AND */
3966 case 1668: /* Vector Logical Equivalent */
3967 case 1092: /* Vector Logical AND with Complement */
3968 case 1412: /* Vector Logical NAND */
3969 case 1348: /* Vector Logical OR with Complement */
3970 case 1156: /* Vector Logical OR */
3971 case 1284: /* Vector Logical NOR */
3972 case 1220: /* Vector Logical XOR */
3973 case 4: /* Vector Rotate Left Byte */
3974 case 132: /* Vector Rotate Left Word VX-form */
3975 case 68: /* Vector Rotate Left Halfword */
3976 case 196: /* Vector Rotate Left Doubleword */
3977 case 260: /* Vector Shift Left Byte */
3978 case 388: /* Vector Shift Left Word */
3979 case 324: /* Vector Shift Left Halfword */
3980 case 1476: /* Vector Shift Left Doubleword */
3981 case 516: /* Vector Shift Right Byte */
3982 case 644: /* Vector Shift Right Word */
3983 case 580: /* Vector Shift Right Halfword */
3984 case 1732: /* Vector Shift Right Doubleword */
3985 case 772: /* Vector Shift Right Algebraic Byte */
3986 case 900: /* Vector Shift Right Algebraic Word */
3987 case 836: /* Vector Shift Right Algebraic Halfword */
3988 case 964: /* Vector Shift Right Algebraic Doubleword */
3989 case 10: /* Vector Add Single-Precision */
3990 case 74: /* Vector Subtract Single-Precision */
3991 case 1034: /* Vector Maximum Single-Precision */
3992 case 1098: /* Vector Minimum Single-Precision */
3993 case 842: /* Vector Convert From Signed Fixed-Point Word */
3994 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
3995 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
3996 case 522: /* Vector Round to Single-Precision Integer Nearest */
3997 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
3998 case 586: /* Vector Round to Single-Precision Integer toward Zero */
3999 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4000 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4001 case 266: /* Vector Reciprocal Estimate Single-Precision */
4002 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4003 case 1288: /* Vector AES Cipher */
4004 case 1289: /* Vector AES Cipher Last */
4005 case 1352: /* Vector AES Inverse Cipher */
4006 case 1353: /* Vector AES Inverse Cipher Last */
4007 case 1480: /* Vector AES SubBytes */
4008 case 1730: /* Vector SHA-512 Sigma Doubleword */
4009 case 1666: /* Vector SHA-256 Sigma Word */
4010 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4011 case 1160: /* Vector Polynomial Multiply-Sum Word */
4012 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4013 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4014 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4015 case 1794: /* Vector Count Leading Zeros Byte */
4016 case 1858: /* Vector Count Leading Zeros Halfword */
4017 case 1922: /* Vector Count Leading Zeros Word */
4018 case 1986: /* Vector Count Leading Zeros Doubleword */
4019 case 1795: /* Vector Population Count Byte */
4020 case 1859: /* Vector Population Count Halfword */
4021 case 1923: /* Vector Population Count Word */
4022 case 1987: /* Vector Population Count Doubleword */
4023 case 1356: /* Vector Bit Permute Quadword */
4024 record_full_arch_list_add_reg (regcache,
4025 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4026 return 0;
4027
4028 case 1604: /* Move To Vector Status and Control Register */
4029 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4030 return 0;
4031 case 1540: /* Move From Vector Status and Control Register */
4032 record_full_arch_list_add_reg (regcache,
4033 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4034 return 0;
4035 }
4036
810c1026
WW
4037 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4038 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4039 return -1;
4040}
4041
ddeca1df
WW
4042/* Parse and record instructions of primary opcode-19 at ADDR.
4043 Return 0 if successful. */
b4cdae6f
WW
4044
4045static int
4046ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4047 CORE_ADDR addr, uint32_t insn)
4048{
4049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4050 int ext = PPC_EXTOP (insn);
4051
4052 switch (ext)
4053 {
4054 case 0: /* Move Condition Register Field */
4055 case 33: /* Condition Register NOR */
4056 case 129: /* Condition Register AND with Complement */
4057 case 193: /* Condition Register XOR */
4058 case 225: /* Condition Register NAND */
4059 case 257: /* Condition Register AND */
4060 case 289: /* Condition Register Equivalent */
4061 case 417: /* Condition Register OR with Complement */
4062 case 449: /* Condition Register OR */
4063 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4064 return 0;
4065
4066 case 16: /* Branch Conditional */
4067 case 560: /* Branch Conditional to Branch Target Address Register */
4068 if ((PPC_BO (insn) & 0x4) == 0)
4069 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4070 /* FALL-THROUGH */
4071 case 528: /* Branch Conditional to Count Register */
4072 if (PPC_LK (insn))
4073 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4074 return 0;
4075
4076 case 150: /* Instruction Synchronize */
4077 /* Do nothing. */
4078 return 0;
4079 }
4080
810c1026
WW
4081 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4082 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4083 return -1;
4084}
4085
ddeca1df
WW
4086/* Parse and record instructions of primary opcode-31 at ADDR.
4087 Return 0 if successful. */
b4cdae6f
WW
4088
4089static int
4090ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4091 CORE_ADDR addr, uint32_t insn)
4092{
4093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4094 int ext = PPC_EXTOP (insn);
4095 int tmp, nr, nb, i;
4096 CORE_ADDR at_dcsz, ea = 0;
4097 ULONGEST rb, ra, xer;
4098 int size = 0;
4099
4100 /* These instructions have OE bit. */
4101 switch (ext & 0x1ff)
4102 {
4103 /* These write RT and XER. Update CR if RC is set. */
4104 case 8: /* Subtract from carrying */
4105 case 10: /* Add carrying */
4106 case 136: /* Subtract from extended */
4107 case 138: /* Add extended */
4108 case 200: /* Subtract from zero extended */
4109 case 202: /* Add to zero extended */
4110 case 232: /* Subtract from minus one extended */
4111 case 234: /* Add to minus one extended */
4112 /* CA is always altered, but SO/OV are only altered when OE=1.
4113 In any case, XER is always altered. */
4114 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4115 if (PPC_RC (insn))
4116 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4117 record_full_arch_list_add_reg (regcache,
4118 tdep->ppc_gp0_regnum + PPC_RT (insn));
4119 return 0;
4120
4121 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4122 case 40: /* Subtract from */
4123 case 104: /* Negate */
4124 case 233: /* Multiply low doubleword */
4125 case 235: /* Multiply low word */
4126 case 266: /* Add */
4127 case 393: /* Divide Doubleword Extended Unsigned */
4128 case 395: /* Divide Word Extended Unsigned */
4129 case 425: /* Divide Doubleword Extended */
4130 case 427: /* Divide Word Extended */
4131 case 457: /* Divide Doubleword Unsigned */
4132 case 459: /* Divide Word Unsigned */
4133 case 489: /* Divide Doubleword */
4134 case 491: /* Divide Word */
4135 if (PPC_OE (insn))
4136 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4137 /* FALL-THROUGH */
4138 case 9: /* Multiply High Doubleword Unsigned */
4139 case 11: /* Multiply High Word Unsigned */
4140 case 73: /* Multiply High Doubleword */
4141 case 75: /* Multiply High Word */
4142 if (PPC_RC (insn))
4143 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4144 record_full_arch_list_add_reg (regcache,
4145 tdep->ppc_gp0_regnum + PPC_RT (insn));
4146 return 0;
4147 }
4148
4149 if ((ext & 0x1f) == 15)
4150 {
4151 /* Integer Select. bit[16:20] is used for BC. */
4152 record_full_arch_list_add_reg (regcache,
4153 tdep->ppc_gp0_regnum + PPC_RT (insn));
4154 return 0;
4155 }
4156
4157 switch (ext)
4158 {
4159 case 78: /* Determine Leftmost Zero Byte */
4160 if (PPC_RC (insn))
4161 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4162 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4163 record_full_arch_list_add_reg (regcache,
4164 tdep->ppc_gp0_regnum + PPC_RT (insn));
4165 return 0;
4166
4167 /* These only write RT. */
4168 case 19: /* Move from condition register */
4169 /* Move From One Condition Register Field */
4170 case 74: /* Add and Generate Sixes */
4171 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4172 case 302: /* Move From Branch History Rolling Buffer */
4173 case 339: /* Move From Special Purpose Register */
4174 case 371: /* Move From Time Base [Phased-Out] */
4175 record_full_arch_list_add_reg (regcache,
4176 tdep->ppc_gp0_regnum + PPC_RT (insn));
4177 return 0;
4178
4179 /* These only write to RA. */
4180 case 51: /* Move From VSR Doubleword */
4181 case 115: /* Move From VSR Word and Zero */
4182 case 122: /* Population count bytes */
4183 case 378: /* Population count words */
4184 case 506: /* Population count doublewords */
4185 case 154: /* Parity Word */
4186 case 186: /* Parity Doubleword */
4187 case 252: /* Bit Permute Doubleword */
4188 case 282: /* Convert Declets To Binary Coded Decimal */
4189 case 314: /* Convert Binary Coded Decimal To Declets */
4190 case 508: /* Compare bytes */
4191 record_full_arch_list_add_reg (regcache,
4192 tdep->ppc_gp0_regnum + PPC_RA (insn));
4193 return 0;
4194
4195 /* These write CR and optional RA. */
4196 case 792: /* Shift Right Algebraic Word */
4197 case 794: /* Shift Right Algebraic Doubleword */
4198 case 824: /* Shift Right Algebraic Word Immediate */
4199 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4200 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4201 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4202 record_full_arch_list_add_reg (regcache,
4203 tdep->ppc_gp0_regnum + PPC_RA (insn));
4204 /* FALL-THROUGH */
4205 case 0: /* Compare */
4206 case 32: /* Compare logical */
4207 case 144: /* Move To Condition Register Fields */
4208 /* Move To One Condition Register Field */
4209 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4210 return 0;
4211
4212 /* These write to RT. Update RA if 'update indexed.' */
4213 case 53: /* Load Doubleword with Update Indexed */
4214 case 119: /* Load Byte and Zero with Update Indexed */
4215 case 311: /* Load Halfword and Zero with Update Indexed */
4216 case 55: /* Load Word and Zero with Update Indexed */
4217 case 375: /* Load Halfword Algebraic with Update Indexed */
4218 case 373: /* Load Word Algebraic with Update Indexed */
4219 record_full_arch_list_add_reg (regcache,
4220 tdep->ppc_gp0_regnum + PPC_RA (insn));
4221 /* FALL-THROUGH */
4222 case 21: /* Load Doubleword Indexed */
4223 case 52: /* Load Byte And Reserve Indexed */
4224 case 116: /* Load Halfword And Reserve Indexed */
4225 case 20: /* Load Word And Reserve Indexed */
4226 case 84: /* Load Doubleword And Reserve Indexed */
4227 case 87: /* Load Byte and Zero Indexed */
4228 case 279: /* Load Halfword and Zero Indexed */
4229 case 23: /* Load Word and Zero Indexed */
4230 case 343: /* Load Halfword Algebraic Indexed */
4231 case 341: /* Load Word Algebraic Indexed */
4232 case 790: /* Load Halfword Byte-Reverse Indexed */
4233 case 534: /* Load Word Byte-Reverse Indexed */
4234 case 532: /* Load Doubleword Byte-Reverse Indexed */
4235 record_full_arch_list_add_reg (regcache,
4236 tdep->ppc_gp0_regnum + PPC_RT (insn));
4237 return 0;
4238
4239 case 597: /* Load String Word Immediate */
4240 case 533: /* Load String Word Indexed */
4241 if (ext == 597)
4242 {
4243 nr = PPC_NB (insn);
4244 if (nr == 0)
4245 nr = 32;
4246 }
4247 else
4248 {
4249 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4250 nr = PPC_XER_NB (xer);
4251 }
4252
4253 nr = (nr + 3) >> 2;
4254
4255 /* If n=0, the contents of register RT are undefined. */
4256 if (nr == 0)
4257 nr = 1;
4258
4259 for (i = 0; i < nr; i++)
4260 record_full_arch_list_add_reg (regcache,
4261 tdep->ppc_gp0_regnum
4262 + ((PPC_RT (insn) + i) & 0x1f));
4263 return 0;
4264
4265 case 276: /* Load Quadword And Reserve Indexed */
4266 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4267 record_full_arch_list_add_reg (regcache, tmp);
4268 record_full_arch_list_add_reg (regcache, tmp + 1);
4269 return 0;
4270
4271 /* These write VRT. */
4272 case 6: /* Load Vector for Shift Left Indexed */
4273 case 38: /* Load Vector for Shift Right Indexed */
4274 case 7: /* Load Vector Element Byte Indexed */
4275 case 39: /* Load Vector Element Halfword Indexed */
4276 case 71: /* Load Vector Element Word Indexed */
4277 case 103: /* Load Vector Indexed */
4278 case 359: /* Load Vector Indexed LRU */
4279 record_full_arch_list_add_reg (regcache,
4280 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4281 return 0;
4282
4283 /* These write FRT. Update RA if 'update indexed.' */
4284 case 567: /* Load Floating-Point Single with Update Indexed */
4285 case 631: /* Load Floating-Point Double with Update Indexed */
4286 record_full_arch_list_add_reg (regcache,
4287 tdep->ppc_gp0_regnum + PPC_RA (insn));
4288 /* FALL-THROUGH */
4289 case 535: /* Load Floating-Point Single Indexed */
4290 case 599: /* Load Floating-Point Double Indexed */
4291 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4292 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4293 record_full_arch_list_add_reg (regcache,
4294 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4295 return 0;
4296
4297 case 791: /* Load Floating-Point Double Pair Indexed */
4298 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4299 record_full_arch_list_add_reg (regcache, tmp);
4300 record_full_arch_list_add_reg (regcache, tmp + 1);
4301 return 0;
4302
4303 case 179: /* Move To VSR Doubleword */
4304 case 211: /* Move To VSR Word Algebraic */
4305 case 243: /* Move To VSR Word and Zero */
4306 case 588: /* Load VSX Scalar Doubleword Indexed */
4307 case 524: /* Load VSX Scalar Single-Precision Indexed */
4308 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4309 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4310 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4311 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4312 case 780: /* Load VSX Vector Word*4 Indexed */
4313 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4314 return 0;
4315
4316 /* These write RA. Update CR if RC is set. */
4317 case 24: /* Shift Left Word */
4318 case 26: /* Count Leading Zeros Word */
4319 case 27: /* Shift Left Doubleword */
4320 case 28: /* AND */
4321 case 58: /* Count Leading Zeros Doubleword */
4322 case 60: /* AND with Complement */
4323 case 124: /* NOR */
4324 case 284: /* Equivalent */
4325 case 316: /* XOR */
4326 case 476: /* NAND */
4327 case 412: /* OR with Complement */
4328 case 444: /* OR */
4329 case 536: /* Shift Right Word */
4330 case 539: /* Shift Right Doubleword */
4331 case 922: /* Extend Sign Halfword */
4332 case 954: /* Extend Sign Byte */
4333 case 986: /* Extend Sign Word */
4334 if (PPC_RC (insn))
4335 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4336 record_full_arch_list_add_reg (regcache,
4337 tdep->ppc_gp0_regnum + PPC_RA (insn));
4338 return 0;
4339
4340 /* Store memory. */
4341 case 181: /* Store Doubleword with Update Indexed */
4342 case 183: /* Store Word with Update Indexed */
4343 case 247: /* Store Byte with Update Indexed */
4344 case 439: /* Store Half Word with Update Indexed */
4345 case 695: /* Store Floating-Point Single with Update Indexed */
4346 case 759: /* Store Floating-Point Double with Update Indexed */
4347 record_full_arch_list_add_reg (regcache,
4348 tdep->ppc_gp0_regnum + PPC_RA (insn));
4349 /* FALL-THROUGH */
4350 case 135: /* Store Vector Element Byte Indexed */
4351 case 167: /* Store Vector Element Halfword Indexed */
4352 case 199: /* Store Vector Element Word Indexed */
4353 case 231: /* Store Vector Indexed */
4354 case 487: /* Store Vector Indexed LRU */
4355 case 716: /* Store VSX Scalar Doubleword Indexed */
4356 case 140: /* Store VSX Scalar as Integer Word Indexed */
4357 case 652: /* Store VSX Scalar Single-Precision Indexed */
4358 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4359 case 908: /* Store VSX Vector Word*4 Indexed */
4360 case 149: /* Store Doubleword Indexed */
4361 case 151: /* Store Word Indexed */
4362 case 215: /* Store Byte Indexed */
4363 case 407: /* Store Half Word Indexed */
4364 case 694: /* Store Byte Conditional Indexed */
4365 case 726: /* Store Halfword Conditional Indexed */
4366 case 150: /* Store Word Conditional Indexed */
4367 case 214: /* Store Doubleword Conditional Indexed */
4368 case 182: /* Store Quadword Conditional Indexed */
4369 case 662: /* Store Word Byte-Reverse Indexed */
4370 case 918: /* Store Halfword Byte-Reverse Indexed */
4371 case 660: /* Store Doubleword Byte-Reverse Indexed */
4372 case 663: /* Store Floating-Point Single Indexed */
4373 case 727: /* Store Floating-Point Double Indexed */
4374 case 919: /* Store Floating-Point Double Pair Indexed */
4375 case 983: /* Store Floating-Point as Integer Word Indexed */
4376 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4377 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4378
4379 ra = 0;
4380 if (PPC_RA (insn) != 0)
4381 regcache_raw_read_unsigned (regcache,
4382 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4383 regcache_raw_read_unsigned (regcache,
4384 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4385 ea = ra + rb;
4386
4387 switch (ext)
4388 {
4389 case 183: /* Store Word with Update Indexed */
4390 case 199: /* Store Vector Element Word Indexed */
4391 case 140: /* Store VSX Scalar as Integer Word Indexed */
4392 case 652: /* Store VSX Scalar Single-Precision Indexed */
4393 case 151: /* Store Word Indexed */
4394 case 150: /* Store Word Conditional Indexed */
4395 case 662: /* Store Word Byte-Reverse Indexed */
4396 case 663: /* Store Floating-Point Single Indexed */
4397 case 695: /* Store Floating-Point Single with Update Indexed */
4398 case 983: /* Store Floating-Point as Integer Word Indexed */
4399 size = 4;
4400 break;
4401 case 247: /* Store Byte with Update Indexed */
4402 case 135: /* Store Vector Element Byte Indexed */
4403 case 215: /* Store Byte Indexed */
4404 case 694: /* Store Byte Conditional Indexed */
4405 size = 1;
4406 break;
4407 case 439: /* Store Halfword with Update Indexed */
4408 case 167: /* Store Vector Element Halfword Indexed */
4409 case 407: /* Store Halfword Indexed */
4410 case 726: /* Store Halfword Conditional Indexed */
4411 case 918: /* Store Halfword Byte-Reverse Indexed */
4412 size = 2;
4413 break;
4414 case 181: /* Store Doubleword with Update Indexed */
4415 case 716: /* Store VSX Scalar Doubleword Indexed */
4416 case 149: /* Store Doubleword Indexed */
4417 case 214: /* Store Doubleword Conditional Indexed */
4418 case 660: /* Store Doubleword Byte-Reverse Indexed */
4419 case 727: /* Store Floating-Point Double Indexed */
4420 case 759: /* Store Floating-Point Double with Update Indexed */
4421 size = 8;
4422 break;
4423 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4424 case 908: /* Store VSX Vector Word*4 Indexed */
4425 case 182: /* Store Quadword Conditional Indexed */
4426 case 231: /* Store Vector Indexed */
4427 case 487: /* Store Vector Indexed LRU */
4428 case 919: /* Store Floating-Point Double Pair Indexed */
4429 size = 16;
4430 break;
4431 default:
4432 gdb_assert (0);
4433 }
4434
4435 /* Align address for Store Vector instructions. */
4436 switch (ext)
4437 {
4438 case 167: /* Store Vector Element Halfword Indexed */
4439 addr = addr & ~0x1ULL;
4440 break;
4441
4442 case 199: /* Store Vector Element Word Indexed */
4443 addr = addr & ~0x3ULL;
4444 break;
4445
4446 case 231: /* Store Vector Indexed */
4447 case 487: /* Store Vector Indexed LRU */
4448 addr = addr & ~0xfULL;
4449 break;
4450 }
4451
4452 record_full_arch_list_add_mem (addr, size);
4453 return 0;
4454
4455 case 725: /* Store String Word Immediate */
4456 ra = 0;
4457 if (PPC_RA (insn) != 0)
4458 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4459 ea += ra;
4460
4461 nb = PPC_NB (insn);
4462 if (nb == 0)
4463 nb = 32;
4464
4465 record_full_arch_list_add_mem (ea, nb);
4466
4467 return 0;
4468
4469 case 661: /* Store String Word Indexed */
4470 ra = 0;
4471 if (PPC_RA (insn) != 0)
4472 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4473 ea += ra;
4474
4475 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4476 nb = PPC_XER_NB (xer);
4477
4478 if (nb != 0)
4479 {
4480 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &rb);
4481 ea += rb;
4482 record_full_arch_list_add_mem (ea, nb);
4483 }
4484
4485 return 0;
4486
4487 case 467: /* Move To Special Purpose Register */
4488 switch (PPC_SPR (insn))
4489 {
4490 case 1: /* XER */
4491 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4492 return 0;
4493 case 8: /* LR */
4494 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4495 return 0;
4496 case 9: /* CTR */
4497 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4498 return 0;
4499 case 256: /* VRSAVE */
4500 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4501 return 0;
4502 }
4503
4504 goto UNKNOWN_OP;
4505
4506 case 147: /* Move To Split Little Endian */
4507 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4508 return 0;
4509
4510 case 512: /* Move to Condition Register from XER */
4511 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4512 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4513 return 0;
4514
4515 case 4: /* Trap Word */
4516 case 68: /* Trap Doubleword */
4517 case 430: /* Clear BHRB */
4518 case 598: /* Synchronize */
4519 case 62: /* Wait for Interrupt */
4520 case 22: /* Instruction Cache Block Touch */
4521 case 854: /* Enforce In-order Execution of I/O */
4522 case 246: /* Data Cache Block Touch for Store */
4523 case 54: /* Data Cache Block Store */
4524 case 86: /* Data Cache Block Flush */
4525 case 278: /* Data Cache Block Touch */
4526 case 758: /* Data Cache Block Allocate */
4527 case 982: /* Instruction Cache Block Invalidate */
4528 return 0;
4529
4530 case 654: /* Transaction Begin */
4531 case 686: /* Transaction End */
4532 case 718: /* Transaction Check */
4533 case 750: /* Transaction Suspend or Resume */
4534 case 782: /* Transaction Abort Word Conditional */
4535 case 814: /* Transaction Abort Doubleword Conditional */
4536 case 846: /* Transaction Abort Word Conditional Immediate */
4537 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4538 case 910: /* Transaction Abort */
4539 fprintf_unfiltered (gdb_stdlog, "Cannot record Transaction instructions. "
810c1026
WW
4540 "%08x at %s, 31-%d.\n",
4541 insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4542 return -1;
4543
4544 case 1014: /* Data Cache Block set to Zero */
4545 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4546 || at_dcsz == 0)
4547 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4548
4549 if (PPC_RA (insn) != 0)
4550 regcache_raw_read_unsigned (regcache,
4551 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4552 regcache_raw_read_unsigned (regcache,
4553 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4554 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4555 record_full_arch_list_add_mem (ea, at_dcsz);
4556 return 0;
4557 }
4558
4559UNKNOWN_OP:
810c1026
WW
4560 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4561 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4562 return -1;
4563}
4564
ddeca1df
WW
4565/* Parse and record instructions of primary opcode-59 at ADDR.
4566 Return 0 if successful. */
b4cdae6f
WW
4567
4568static int
4569ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4570 CORE_ADDR addr, uint32_t insn)
4571{
4572 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4573 int ext = PPC_EXTOP (insn);
4574
4575 switch (ext & 0x1f)
4576 {
4577 case 18: /* Floating Divide */
4578 case 20: /* Floating Subtract */
4579 case 21: /* Floating Add */
4580 case 22: /* Floating Square Root */
4581 case 24: /* Floating Reciprocal Estimate */
4582 case 25: /* Floating Multiply */
4583 case 26: /* Floating Reciprocal Square Root Estimate */
4584 case 28: /* Floating Multiply-Subtract */
4585 case 29: /* Floating Multiply-Add */
4586 case 30: /* Floating Negative Multiply-Subtract */
4587 case 31: /* Floating Negative Multiply-Add */
4588 record_full_arch_list_add_reg (regcache,
4589 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4590 if (PPC_RC (insn))
4591 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4592 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4593
4594 return 0;
4595 }
4596
4597 switch (ext)
4598 {
4599 case 2: /* DFP Add */
4600 case 3: /* DFP Quantize */
4601 case 34: /* DFP Multiply */
4602 case 35: /* DFP Reround */
4603 case 67: /* DFP Quantize Immediate */
4604 case 99: /* DFP Round To FP Integer With Inexact */
4605 case 227: /* DFP Round To FP Integer Without Inexact */
4606 case 258: /* DFP Convert To DFP Long! */
4607 case 290: /* DFP Convert To Fixed */
4608 case 514: /* DFP Subtract */
4609 case 546: /* DFP Divide */
4610 case 770: /* DFP Round To DFP Short! */
4611 case 802: /* DFP Convert From Fixed */
4612 case 834: /* DFP Encode BCD To DPD */
4613 if (PPC_RC (insn))
4614 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4615 record_full_arch_list_add_reg (regcache,
4616 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4617 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4618 return 0;
4619
4620 case 130: /* DFP Compare Ordered */
4621 case 162: /* DFP Test Exponent */
4622 case 194: /* DFP Test Data Class */
4623 case 226: /* DFP Test Data Group */
4624 case 642: /* DFP Compare Unordered */
4625 case 674: /* DFP Test Significance */
4626 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4627 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4628 return 0;
4629
4630 case 66: /* DFP Shift Significand Left Immediate */
4631 case 98: /* DFP Shift Significand Right Immediate */
4632 case 322: /* DFP Decode DPD To BCD */
4633 case 354: /* DFP Extract Biased Exponent */
4634 case 866: /* DFP Insert Biased Exponent */
4635 record_full_arch_list_add_reg (regcache,
4636 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4637 if (PPC_RC (insn))
4638 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4639 return 0;
4640
4641 case 846: /* Floating Convert From Integer Doubleword Single */
4642 case 974: /* Floating Convert From Integer Doubleword Unsigned
4643 Single */
4644 record_full_arch_list_add_reg (regcache,
4645 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4646 if (PPC_RC (insn))
4647 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4648 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4649
4650 return 0;
4651 }
4652
810c1026
WW
4653 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4654 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4655 return -1;
4656}
4657
ddeca1df
WW
4658/* Parse and record instructions of primary opcode-60 at ADDR.
4659 Return 0 if successful. */
b4cdae6f
WW
4660
4661static int
4662ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4663 CORE_ADDR addr, uint32_t insn)
4664{
4665 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4666 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
4667
4668 switch (ext >> 2)
4669 {
4670 case 0: /* VSX Scalar Add Single-Precision */
4671 case 32: /* VSX Scalar Add Double-Precision */
4672 case 24: /* VSX Scalar Divide Single-Precision */
4673 case 56: /* VSX Scalar Divide Double-Precision */
4674 case 176: /* VSX Scalar Copy Sign Double-Precision */
4675 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4676 case 41: /* ditto */
4677 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4678 case 9: /* ditto */
4679 case 160: /* VSX Scalar Maximum Double-Precision */
4680 case 168: /* VSX Scalar Minimum Double-Precision */
4681 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4682 case 57: /* ditto */
4683 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4684 case 25: /* ditto */
4685 case 48: /* VSX Scalar Multiply Double-Precision */
4686 case 16: /* VSX Scalar Multiply Single-Precision */
4687 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4688 case 169: /* ditto */
4689 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4690 case 137: /* ditto */
4691 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4692 case 185: /* ditto */
4693 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4694 case 153: /* ditto */
4695 case 40: /* VSX Scalar Subtract Double-Precision */
4696 case 8: /* VSX Scalar Subtract Single-Precision */
4697 case 96: /* VSX Vector Add Double-Precision */
4698 case 64: /* VSX Vector Add Single-Precision */
4699 case 120: /* VSX Vector Divide Double-Precision */
4700 case 88: /* VSX Vector Divide Single-Precision */
4701 case 97: /* VSX Vector Multiply-Add Double-Precision */
4702 case 105: /* ditto */
4703 case 65: /* VSX Vector Multiply-Add Single-Precision */
4704 case 73: /* ditto */
4705 case 224: /* VSX Vector Maximum Double-Precision */
4706 case 192: /* VSX Vector Maximum Single-Precision */
4707 case 232: /* VSX Vector Minimum Double-Precision */
4708 case 200: /* VSX Vector Minimum Single-Precision */
4709 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4710 case 121: /* ditto */
4711 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4712 case 89: /* ditto */
4713 case 112: /* VSX Vector Multiply Double-Precision */
4714 case 80: /* VSX Vector Multiply Single-Precision */
4715 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4716 case 233: /* ditto */
4717 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4718 case 201: /* ditto */
4719 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4720 case 249: /* ditto */
4721 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4722 case 217: /* ditto */
4723 case 104: /* VSX Vector Subtract Double-Precision */
4724 case 72: /* VSX Vector Subtract Single-Precision */
4725 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4726 case 240: /* VSX Vector Copy Sign Double-Precision */
4727 case 208: /* VSX Vector Copy Sign Single-Precision */
4728 case 130: /* VSX Logical AND */
4729 case 138: /* VSX Logical AND with Complement */
4730 case 186: /* VSX Logical Equivalence */
4731 case 178: /* VSX Logical NAND */
4732 case 170: /* VSX Logical OR with Complement */
4733 case 162: /* VSX Logical NOR */
4734 case 146: /* VSX Logical OR */
4735 case 154: /* VSX Logical XOR */
4736 case 18: /* VSX Merge High Word */
4737 case 50: /* VSX Merge Low Word */
4738 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4739 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4740 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4741 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4742 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4743 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4744 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4745 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
4746 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4747 return 0;
4748
4749 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4750 case 125: /* VSX Vector Test for software Divide Double-Precision */
4751 case 93: /* VSX Vector Test for software Divide Single-Precision */
4752 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4753 return 0;
4754
4755 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4756 case 43: /* VSX Scalar Compare Ordered Double-Precision */
4757 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4758 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4759 return 0;
4760 }
4761
4762 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4763 {
4764 case 99: /* VSX Vector Compare Equal To Double-Precision */
4765 case 67: /* VSX Vector Compare Equal To Single-Precision */
4766 case 115: /* VSX Vector Compare Greater Than or
4767 Equal To Double-Precision */
4768 case 83: /* VSX Vector Compare Greater Than or
4769 Equal To Single-Precision */
4770 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4771 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4772 if (PPC_Rc (insn))
4773 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4774 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4775 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4776 return 0;
4777 }
4778
4779 switch (ext >> 1)
4780 {
4781 case 265: /* VSX Scalar round Double-Precision to
4782 Single-Precision and Convert to
4783 Single-Precision format */
4784 case 344: /* VSX Scalar truncate Double-Precision to
4785 Integer and Convert to Signed Integer
4786 Doubleword format with Saturate */
4787 case 88: /* VSX Scalar truncate Double-Precision to
4788 Integer and Convert to Signed Integer Word
4789 Format with Saturate */
4790 case 328: /* VSX Scalar truncate Double-Precision integer
4791 and Convert to Unsigned Integer Doubleword
4792 Format with Saturate */
4793 case 72: /* VSX Scalar truncate Double-Precision to
4794 Integer and Convert to Unsigned Integer Word
4795 Format with Saturate */
4796 case 329: /* VSX Scalar Convert Single-Precision to
4797 Double-Precision format */
4798 case 376: /* VSX Scalar Convert Signed Integer
4799 Doubleword to floating-point format and
4800 Round to Double-Precision format */
4801 case 312: /* VSX Scalar Convert Signed Integer
4802 Doubleword to floating-point format and
4803 round to Single-Precision */
4804 case 360: /* VSX Scalar Convert Unsigned Integer
4805 Doubleword to floating-point format and
4806 Round to Double-Precision format */
4807 case 296: /* VSX Scalar Convert Unsigned Integer
4808 Doubleword to floating-point format and
4809 Round to Single-Precision */
4810 case 73: /* VSX Scalar Round to Double-Precision Integer
4811 Using Round to Nearest Away */
4812 case 107: /* VSX Scalar Round to Double-Precision Integer
4813 Exact using Current rounding mode */
4814 case 121: /* VSX Scalar Round to Double-Precision Integer
4815 Using Round toward -Infinity */
4816 case 105: /* VSX Scalar Round to Double-Precision Integer
4817 Using Round toward +Infinity */
4818 case 89: /* VSX Scalar Round to Double-Precision Integer
4819 Using Round toward Zero */
4820 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
4821 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
4822 case 281: /* VSX Scalar Round to Single-Precision */
4823 case 74: /* VSX Scalar Reciprocal Square Root Estimate
4824 Double-Precision */
4825 case 10: /* VSX Scalar Reciprocal Square Root Estimate
4826 Single-Precision */
4827 case 75: /* VSX Scalar Square Root Double-Precision */
4828 case 11: /* VSX Scalar Square Root Single-Precision */
4829 case 393: /* VSX Vector round Double-Precision to
4830 Single-Precision and Convert to
4831 Single-Precision format */
4832 case 472: /* VSX Vector truncate Double-Precision to
4833 Integer and Convert to Signed Integer
4834 Doubleword format with Saturate */
4835 case 216: /* VSX Vector truncate Double-Precision to
4836 Integer and Convert to Signed Integer Word
4837 Format with Saturate */
4838 case 456: /* VSX Vector truncate Double-Precision to
4839 Integer and Convert to Unsigned Integer
4840 Doubleword format with Saturate */
4841 case 200: /* VSX Vector truncate Double-Precision to
4842 Integer and Convert to Unsigned Integer Word
4843 Format with Saturate */
4844 case 457: /* VSX Vector Convert Single-Precision to
4845 Double-Precision format */
4846 case 408: /* VSX Vector truncate Single-Precision to
4847 Integer and Convert to Signed Integer
4848 Doubleword format with Saturate */
4849 case 152: /* VSX Vector truncate Single-Precision to
4850 Integer and Convert to Signed Integer Word
4851 Format with Saturate */
4852 case 392: /* VSX Vector truncate Single-Precision to
4853 Integer and Convert to Unsigned Integer
4854 Doubleword format with Saturate */
4855 case 136: /* VSX Vector truncate Single-Precision to
4856 Integer and Convert to Unsigned Integer Word
4857 Format with Saturate */
4858 case 504: /* VSX Vector Convert and round Signed Integer
4859 Doubleword to Double-Precision format */
4860 case 440: /* VSX Vector Convert and round Signed Integer
4861 Doubleword to Single-Precision format */
4862 case 248: /* VSX Vector Convert Signed Integer Word to
4863 Double-Precision format */
4864 case 184: /* VSX Vector Convert and round Signed Integer
4865 Word to Single-Precision format */
4866 case 488: /* VSX Vector Convert and round Unsigned
4867 Integer Doubleword to Double-Precision format */
4868 case 424: /* VSX Vector Convert and round Unsigned
4869 Integer Doubleword to Single-Precision format */
4870 case 232: /* VSX Vector Convert and round Unsigned
4871 Integer Word to Double-Precision format */
4872 case 168: /* VSX Vector Convert and round Unsigned
4873 Integer Word to Single-Precision format */
4874 case 201: /* VSX Vector Round to Double-Precision
4875 Integer using round to Nearest Away */
4876 case 235: /* VSX Vector Round to Double-Precision
4877 Integer Exact using Current rounding mode */
4878 case 249: /* VSX Vector Round to Double-Precision
4879 Integer using round toward -Infinity */
4880 case 233: /* VSX Vector Round to Double-Precision
4881 Integer using round toward +Infinity */
4882 case 217: /* VSX Vector Round to Double-Precision
4883 Integer using round toward Zero */
4884 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
4885 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
4886 case 137: /* VSX Vector Round to Single-Precision Integer
4887 Using Round to Nearest Away */
4888 case 171: /* VSX Vector Round to Single-Precision Integer
4889 Exact Using Current rounding mode */
4890 case 185: /* VSX Vector Round to Single-Precision Integer
4891 Using Round toward -Infinity */
4892 case 169: /* VSX Vector Round to Single-Precision Integer
4893 Using Round toward +Infinity */
4894 case 153: /* VSX Vector Round to Single-Precision Integer
4895 Using round toward Zero */
4896 case 202: /* VSX Vector Reciprocal Square Root Estimate
4897 Double-Precision */
4898 case 138: /* VSX Vector Reciprocal Square Root Estimate
4899 Single-Precision */
4900 case 203: /* VSX Vector Square Root Double-Precision */
4901 case 139: /* VSX Vector Square Root Single-Precision */
4902 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4903 case 345: /* VSX Scalar Absolute Value Double-Precision */
4904 case 267: /* VSX Scalar Convert Scalar Single-Precision to
4905 Vector Single-Precision format Non-signalling */
4906 case 331: /* VSX Scalar Convert Single-Precision to
4907 Double-Precision format Non-signalling */
4908 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
4909 case 377: /* VSX Scalar Negate Double-Precision */
4910 case 473: /* VSX Vector Absolute Value Double-Precision */
4911 case 409: /* VSX Vector Absolute Value Single-Precision */
4912 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
4913 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
4914 case 505: /* VSX Vector Negate Double-Precision */
4915 case 441: /* VSX Vector Negate Single-Precision */
4916 case 164: /* VSX Splat Word */
4917 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4918 return 0;
4919
4920 case 106: /* VSX Scalar Test for software Square Root
4921 Double-Precision */
4922 case 234: /* VSX Vector Test for software Square Root
4923 Double-Precision */
4924 case 170: /* VSX Vector Test for software Square Root
4925 Single-Precision */
4926 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4927 return 0;
4928 }
4929
4930 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
4931 {
4932 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4933 return 0;
4934 }
4935
810c1026
WW
4936 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4937 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4938 return -1;
4939}
4940
ddeca1df
WW
4941/* Parse and record instructions of primary opcode-63 at ADDR.
4942 Return 0 if successful. */
b4cdae6f
WW
4943
4944static int
4945ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
4946 CORE_ADDR addr, uint32_t insn)
4947{
4948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4949 int ext = PPC_EXTOP (insn);
4950 int tmp;
4951
4952 switch (ext & 0x1f)
4953 {
4954 case 18: /* Floating Divide */
4955 case 20: /* Floating Subtract */
4956 case 21: /* Floating Add */
4957 case 22: /* Floating Square Root */
4958 case 24: /* Floating Reciprocal Estimate */
4959 case 25: /* Floating Multiply */
4960 case 26: /* Floating Reciprocal Square Root Estimate */
4961 case 28: /* Floating Multiply-Subtract */
4962 case 29: /* Floating Multiply-Add */
4963 case 30: /* Floating Negative Multiply-Subtract */
4964 case 31: /* Floating Negative Multiply-Add */
4965 record_full_arch_list_add_reg (regcache,
4966 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4967 if (PPC_RC (insn))
4968 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4969 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4970 return 0;
4971
4972 case 23: /* Floating Select */
4973 record_full_arch_list_add_reg (regcache,
4974 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4975 if (PPC_RC (insn))
4976 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4977 }
4978
4979 switch (ext)
4980 {
4981 case 2: /* DFP Add Quad */
4982 case 3: /* DFP Quantize Quad */
4983 case 34: /* DFP Multiply Quad */
4984 case 35: /* DFP Reround Quad */
4985 case 67: /* DFP Quantize Immediate Quad */
4986 case 99: /* DFP Round To FP Integer With Inexact Quad */
4987 case 227: /* DFP Round To FP Integer Without Inexact Quad */
4988 case 258: /* DFP Convert To DFP Extended Quad */
4989 case 514: /* DFP Subtract Quad */
4990 case 546: /* DFP Divide Quad */
4991 case 770: /* DFP Round To DFP Long Quad */
4992 case 802: /* DFP Convert From Fixed Quad */
4993 case 834: /* DFP Encode BCD To DPD Quad */
4994 if (PPC_RC (insn))
4995 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4996 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4997 record_full_arch_list_add_reg (regcache, tmp);
4998 record_full_arch_list_add_reg (regcache, tmp + 1);
4999 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5000 return 0;
5001
5002 case 130: /* DFP Compare Ordered Quad */
5003 case 162: /* DFP Test Exponent Quad */
5004 case 194: /* DFP Test Data Class Quad */
5005 case 226: /* DFP Test Data Group Quad */
5006 case 642: /* DFP Compare Unordered Quad */
5007 case 674: /* DFP Test Significance Quad */
5008 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5009 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5010 return 0;
5011
5012 case 66: /* DFP Shift Significand Left Immediate Quad */
5013 case 98: /* DFP Shift Significand Right Immediate Quad */
5014 case 322: /* DFP Decode DPD To BCD Quad */
5015 case 866: /* DFP Insert Biased Exponent Quad */
5016 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5017 record_full_arch_list_add_reg (regcache, tmp);
5018 record_full_arch_list_add_reg (regcache, tmp + 1);
5019 if (PPC_RC (insn))
5020 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5021 return 0;
5022
5023 case 290: /* DFP Convert To Fixed Quad */
5024 record_full_arch_list_add_reg (regcache,
5025 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5026 if (PPC_RC (insn))
5027 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5028 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5029 break;
5030
5031 case 354: /* DFP Extract Biased Exponent Quad */
5032 record_full_arch_list_add_reg (regcache,
5033 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5034 if (PPC_RC (insn))
5035 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5036 return 0;
5037
5038 case 12: /* Floating Round to Single-Precision */
5039 case 14: /* Floating Convert To Integer Word */
5040 case 15: /* Floating Convert To Integer Word
5041 with round toward Zero */
5042 case 142: /* Floating Convert To Integer Word Unsigned */
5043 case 143: /* Floating Convert To Integer Word Unsigned
5044 with round toward Zero */
5045 case 392: /* Floating Round to Integer Nearest */
5046 case 424: /* Floating Round to Integer Toward Zero */
5047 case 456: /* Floating Round to Integer Plus */
5048 case 488: /* Floating Round to Integer Minus */
5049 case 814: /* Floating Convert To Integer Doubleword */
5050 case 815: /* Floating Convert To Integer Doubleword
5051 with round toward Zero */
5052 case 846: /* Floating Convert From Integer Doubleword */
5053 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5054 case 943: /* Floating Convert To Integer Doubleword Unsigned
5055 with round toward Zero */
5056 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5057 record_full_arch_list_add_reg (regcache,
5058 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5059 if (PPC_RC (insn))
5060 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5061 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5062 return 0;
5063
5064 case 583: /* Move From FPSCR */
5065 case 8: /* Floating Copy Sign */
5066 case 40: /* Floating Negate */
5067 case 72: /* Floating Move Register */
5068 case 136: /* Floating Negative Absolute Value */
5069 case 264: /* Floating Absolute Value */
5070 record_full_arch_list_add_reg (regcache,
5071 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5072 if (PPC_RC (insn))
5073 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5074 return 0;
5075
5076 case 838: /* Floating Merge Odd Word */
5077 case 966: /* Floating Merge Even Word */
5078 record_full_arch_list_add_reg (regcache,
5079 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5080 return 0;
5081
5082 case 38: /* Move To FPSCR Bit 1 */
5083 case 70: /* Move To FPSCR Bit 0 */
5084 case 134: /* Move To FPSCR Field Immediate */
5085 case 711: /* Move To FPSCR Fields */
5086 if (PPC_RC (insn))
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5088 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5089 break;
5090
5091 case 0: /* Floating Compare Unordered */
5092 case 32: /* Floating Compare Ordered */
5093 case 64: /* Move to Condition Register from FPSCR */
5094 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5095 /* FALL-THROUGH */
5096 case 128: /* Floating Test for software Divide */
5097 case 160: /* Floating Test for software Square Root */
5098 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5099 return 0;
5100
5101 }
5102
810c1026
WW
5103 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5104 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5105 return -1;
5106}
5107
5108/* Parse the current instruction and record the values of the registers and
5109 memory that will be changed in current instruction to "record_arch_list".
5110 Return -1 if something wrong. */
5111
5112int
5113ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5114 CORE_ADDR addr)
5115{
5116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5118 uint32_t insn;
5119 int op6, tmp, i;
5120
5121 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5122 op6 = PPC_OP6 (insn);
5123
5124 switch (op6)
5125 {
5126 case 2: /* Trap Doubleword Immediate */
5127 case 3: /* Trap Word Immediate */
5128 /* Do nothing. */
5129 break;
5130
5131 case 4:
5132 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5133 return -1;
5134 break;
5135
5136 case 17: /* System call */
5137 if (PPC_LEV (insn) != 0)
5138 goto UNKNOWN_OP;
5139
5140 if (tdep->ppc_syscall_record != NULL)
5141 {
5142 if (tdep->ppc_syscall_record (regcache) != 0)
5143 return -1;
5144 }
5145 else
5146 {
5147 printf_unfiltered (_("no syscall record support\n"));
5148 return -1;
5149 }
5150 break;
5151
5152 case 7: /* Multiply Low Immediate */
5153 record_full_arch_list_add_reg (regcache,
5154 tdep->ppc_gp0_regnum + PPC_RT (insn));
5155 break;
5156
5157 case 8: /* Subtract From Immediate Carrying */
5158 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5159 record_full_arch_list_add_reg (regcache,
5160 tdep->ppc_gp0_regnum + PPC_RT (insn));
5161 break;
5162
5163 case 10: /* Compare Logical Immediate */
5164 case 11: /* Compare Immediate */
5165 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5166 break;
5167
5168 case 13: /* Add Immediate Carrying and Record */
5169 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5170 /* FALL-THROUGH */
5171 case 12: /* Add Immediate Carrying */
5172 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5173 /* FALL-THROUGH */
5174 case 14: /* Add Immediate */
5175 case 15: /* Add Immediate Shifted */
5176 record_full_arch_list_add_reg (regcache,
5177 tdep->ppc_gp0_regnum + PPC_RT (insn));
5178 break;
5179
5180 case 16: /* Branch Conditional */
5181 if ((PPC_BO (insn) & 0x4) == 0)
5182 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5183 /* FALL-THROUGH */
5184 case 18: /* Branch */
5185 if (PPC_LK (insn))
5186 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5187 break;
5188
5189 case 19:
5190 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5191 return -1;
5192 break;
5193
5194 case 20: /* Rotate Left Word Immediate then Mask Insert */
5195 case 21: /* Rotate Left Word Immediate then AND with Mask */
5196 case 23: /* Rotate Left Word then AND with Mask */
5197 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5198 /* Rotate Left Doubleword Immediate then Clear Right */
5199 /* Rotate Left Doubleword Immediate then Clear */
5200 /* Rotate Left Doubleword then Clear Left */
5201 /* Rotate Left Doubleword then Clear Right */
5202 /* Rotate Left Doubleword Immediate then Mask Insert */
5203 if (PPC_RC (insn))
5204 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5205 record_full_arch_list_add_reg (regcache,
5206 tdep->ppc_gp0_regnum + PPC_RA (insn));
5207 break;
5208
5209 case 28: /* AND Immediate */
5210 case 29: /* AND Immediate Shifted */
5211 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5212 /* FALL-THROUGH */
5213 case 24: /* OR Immediate */
5214 case 25: /* OR Immediate Shifted */
5215 case 26: /* XOR Immediate */
5216 case 27: /* XOR Immediate Shifted */
5217 record_full_arch_list_add_reg (regcache,
5218 tdep->ppc_gp0_regnum + PPC_RA (insn));
5219 break;
5220
5221 case 31:
5222 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5223 return -1;
5224 break;
5225
5226 case 33: /* Load Word and Zero with Update */
5227 case 35: /* Load Byte and Zero with Update */
5228 case 41: /* Load Halfword and Zero with Update */
5229 case 43: /* Load Halfword Algebraic with Update */
5230 record_full_arch_list_add_reg (regcache,
5231 tdep->ppc_gp0_regnum + PPC_RA (insn));
5232 /* FALL-THROUGH */
5233 case 32: /* Load Word and Zero */
5234 case 34: /* Load Byte and Zero */
5235 case 40: /* Load Halfword and Zero */
5236 case 42: /* Load Halfword Algebraic */
5237 record_full_arch_list_add_reg (regcache,
5238 tdep->ppc_gp0_regnum + PPC_RT (insn));
5239 break;
5240
5241 case 46: /* Load Multiple Word */
5242 for (i = PPC_RT (insn); i < 32; i++)
5243 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5244 break;
5245
5246 case 56: /* Load Quadword */
5247 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5248 record_full_arch_list_add_reg (regcache, tmp);
5249 record_full_arch_list_add_reg (regcache, tmp + 1);
5250 break;
5251
5252 case 49: /* Load Floating-Point Single with Update */
5253 case 51: /* Load Floating-Point Double with Update */
5254 record_full_arch_list_add_reg (regcache,
5255 tdep->ppc_gp0_regnum + PPC_RA (insn));
5256 /* FALL-THROUGH */
5257 case 48: /* Load Floating-Point Single */
5258 case 50: /* Load Floating-Point Double */
5259 record_full_arch_list_add_reg (regcache,
5260 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5261 break;
5262
5263 case 47: /* Store Multiple Word */
5264 {
5265 ULONGEST addr = 0;
5266
5267 if (PPC_RA (insn) != 0)
5268 regcache_raw_read_unsigned (regcache,
5269 tdep->ppc_gp0_regnum + PPC_RA (insn),
5270 &addr);
5271
5272 addr += PPC_D (insn);
5273 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5274 }
5275 break;
5276
5277 case 37: /* Store Word with Update */
5278 case 39: /* Store Byte with Update */
5279 case 45: /* Store Halfword with Update */
5280 case 53: /* Store Floating-Point Single with Update */
5281 case 55: /* Store Floating-Point Double with Update */
5282 record_full_arch_list_add_reg (regcache,
5283 tdep->ppc_gp0_regnum + PPC_RA (insn));
5284 /* FALL-THROUGH */
5285 case 36: /* Store Word */
5286 case 38: /* Store Byte */
5287 case 44: /* Store Halfword */
5288 case 52: /* Store Floating-Point Single */
5289 case 54: /* Store Floating-Point Double */
5290 {
5291 ULONGEST addr = 0;
5292 int size = -1;
5293
5294 if (PPC_RA (insn) != 0)
5295 regcache_raw_read_unsigned (regcache,
5296 tdep->ppc_gp0_regnum + PPC_RA (insn),
5297 &addr);
5298 addr += PPC_D (insn);
5299
5300 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5301 size = 4;
5302 else if (op6 == 54 || op6 == 55)
5303 size = 8;
5304 else if (op6 == 44 || op6 == 45)
5305 size = 2;
5306 else if (op6 == 38 || op6 == 39)
5307 size = 1;
5308 else
5309 gdb_assert (0);
5310
5311 record_full_arch_list_add_mem (addr, size);
5312 }
5313 break;
5314
5315 case 57: /* Load Floating-Point Double Pair */
5316 if (PPC_FIELD (insn, 30, 2) != 0)
5317 goto UNKNOWN_OP;
5318 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5319 record_full_arch_list_add_reg (regcache, tmp);
5320 record_full_arch_list_add_reg (regcache, tmp + 1);
5321 break;
5322
5323 case 58: /* Load Doubleword */
5324 /* Load Doubleword with Update */
5325 /* Load Word Algebraic */
5326 if (PPC_FIELD (insn, 30, 2) > 2)
5327 goto UNKNOWN_OP;
5328
5329 record_full_arch_list_add_reg (regcache,
5330 tdep->ppc_gp0_regnum + PPC_RT (insn));
5331 if (PPC_BIT (insn, 31))
5332 record_full_arch_list_add_reg (regcache,
5333 tdep->ppc_gp0_regnum + PPC_RA (insn));
5334 break;
5335
5336 case 59:
5337 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5338 return -1;
5339 break;
5340
5341 case 60:
5342 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5343 return -1;
5344 break;
5345
5346 case 61: /* Store Floating-Point Double Pair */
5347 case 62: /* Store Doubleword */
5348 /* Store Doubleword with Update */
5349 /* Store Quadword with Update */
5350 {
5351 ULONGEST addr = 0;
5352 int size;
5353 int sub2 = PPC_FIELD (insn, 30, 2);
5354
5355 if ((op6 == 61 && sub2 != 0) || (op6 == 62 && sub2 > 2))
5356 goto UNKNOWN_OP;
5357
5358 if (PPC_RA (insn) != 0)
5359 regcache_raw_read_unsigned (regcache,
5360 tdep->ppc_gp0_regnum + PPC_RA (insn),
5361 &addr);
5362
5363 size = ((op6 == 61) || sub2 == 2) ? 16 : 8;
5364
5365 addr += PPC_DS (insn) << 2;
5366 record_full_arch_list_add_mem (addr, size);
5367
5368 if (op6 == 62 && sub2 == 1)
5369 record_full_arch_list_add_reg (regcache,
5370 tdep->ppc_gp0_regnum +
5371 PPC_RA (insn));
5372
5373 break;
5374 }
5375
5376 case 63:
5377 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5378 return -1;
5379 break;
5380
5381 default:
5382UNKNOWN_OP:
810c1026
WW
5383 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5384 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
5385 return -1;
5386 }
5387
5388 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5389 return -1;
5390 if (record_full_arch_list_add_end ())
5391 return -1;
5392 return 0;
5393}
5394
7a78ae4e
ND
5395/* Initialize the current architecture based on INFO. If possible, re-use an
5396 architecture from ARCHES, which is a list of architectures already created
5397 during this debugging session.
c906108c 5398
7a78ae4e 5399 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 5400 a binary file. */
c906108c 5401
7a78ae4e
ND
5402static struct gdbarch *
5403rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5404{
5405 struct gdbarch *gdbarch;
5406 struct gdbarch_tdep *tdep;
7cc46491 5407 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
5408 enum bfd_architecture arch;
5409 unsigned long mach;
5410 bfd abfd;
55eddb0f
DJ
5411 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5412 int soft_float;
5413 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 5414 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
604c2f83
LM
5415 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5416 have_vsx = 0;
7cc46491
DJ
5417 int tdesc_wordsize = -1;
5418 const struct target_desc *tdesc = info.target_desc;
5419 struct tdesc_arch_data *tdesc_data = NULL;
f949c649 5420 int num_pseudoregs = 0;
604c2f83 5421 int cur_reg;
7a78ae4e 5422
f4d9bade
UW
5423 /* INFO may refer to a binary that is not of the PowerPC architecture,
5424 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5425 In this case, we must not attempt to infer properties of the (PowerPC
5426 side) of the target system from properties of that executable. Trust
5427 the target description instead. */
5428 if (info.abfd
5429 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5430 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5431 info.abfd = NULL;
5432
9aa1e687 5433 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
5434 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5435
9aa1e687
KB
5436 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5437 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5438
e712c1cf 5439 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 5440 that, else choose a likely default. */
9aa1e687 5441 if (from_xcoff_exec)
c906108c 5442 {
11ed25ac 5443 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
5444 wordsize = 8;
5445 else
5446 wordsize = 4;
c906108c 5447 }
9aa1e687
KB
5448 else if (from_elf_exec)
5449 {
5450 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5451 wordsize = 8;
5452 else
5453 wordsize = 4;
5454 }
7cc46491
DJ
5455 else if (tdesc_has_registers (tdesc))
5456 wordsize = -1;
c906108c 5457 else
7a78ae4e 5458 {
27b15785 5459 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
5460 wordsize = (info.bfd_arch_info->bits_per_word
5461 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
5462 else
5463 wordsize = 4;
7a78ae4e 5464 }
c906108c 5465
475bbd17
JB
5466 /* Get the architecture and machine from the BFD. */
5467 arch = info.bfd_arch_info->arch;
5468 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
5469
5470 /* For e500 executables, the apuinfo section is of help here. Such
5471 section contains the identifier and revision number of each
5472 Application-specific Processing Unit that is present on the
5473 chip. The content of the section is determined by the assembler
5474 which looks at each instruction and determines which unit (and
74af9197
NF
5475 which version of it) can execute it. Grovel through the section
5476 looking for relevant e500 APUs. */
5bf1c677 5477
74af9197 5478 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 5479 {
74af9197
NF
5480 arch = info.bfd_arch_info->arch;
5481 mach = bfd_mach_ppc_e500;
5482 bfd_default_set_arch_mach (&abfd, arch, mach);
5483 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
5484 }
5485
7cc46491
DJ
5486 /* Find a default target description which describes our register
5487 layout, if we do not already have one. */
5488 if (! tdesc_has_registers (tdesc))
5489 {
5490 const struct variant *v;
5491
5492 /* Choose variant. */
5493 v = find_variant_by_arch (arch, mach);
5494 if (!v)
5495 return NULL;
5496
5497 tdesc = *v->tdesc;
5498 }
5499
5500 gdb_assert (tdesc_has_registers (tdesc));
5501
5502 /* Check any target description for validity. */
5503 if (tdesc_has_registers (tdesc))
5504 {
5505 static const char *const gprs[] = {
5506 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5507 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5508 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5509 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5510 };
7cc46491
DJ
5511 const struct tdesc_feature *feature;
5512 int i, valid_p;
5513 static const char *const msr_names[] = { "msr", "ps" };
5514 static const char *const cr_names[] = { "cr", "cnd" };
5515 static const char *const ctr_names[] = { "ctr", "cnt" };
5516
5517 feature = tdesc_find_feature (tdesc,
5518 "org.gnu.gdb.power.core");
5519 if (feature == NULL)
5520 return NULL;
5521
5522 tdesc_data = tdesc_data_alloc ();
5523
5524 valid_p = 1;
5525 for (i = 0; i < ppc_num_gprs; i++)
5526 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5527 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5528 "pc");
5529 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5530 "lr");
5531 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5532 "xer");
5533
5534 /* Allow alternate names for these registers, to accomodate GDB's
5535 historic naming. */
5536 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5537 PPC_MSR_REGNUM, msr_names);
5538 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5539 PPC_CR_REGNUM, cr_names);
5540 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5541 PPC_CTR_REGNUM, ctr_names);
5542
5543 if (!valid_p)
5544 {
5545 tdesc_data_cleanup (tdesc_data);
5546 return NULL;
5547 }
5548
5549 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5550 "mq");
5551
5552 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
5553 if (wordsize == -1)
5554 wordsize = tdesc_wordsize;
5555
5556 feature = tdesc_find_feature (tdesc,
5557 "org.gnu.gdb.power.fpu");
5558 if (feature != NULL)
5559 {
5560 static const char *const fprs[] = {
5561 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5562 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5563 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5564 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5565 };
5566 valid_p = 1;
5567 for (i = 0; i < ppc_num_fprs; i++)
5568 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5569 PPC_F0_REGNUM + i, fprs[i]);
5570 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5571 PPC_FPSCR_REGNUM, "fpscr");
5572
5573 if (!valid_p)
5574 {
5575 tdesc_data_cleanup (tdesc_data);
5576 return NULL;
5577 }
5578 have_fpu = 1;
5579 }
5580 else
5581 have_fpu = 0;
5582
f949c649
TJB
5583 /* The DFP pseudo-registers will be available when there are floating
5584 point registers. */
5585 have_dfp = have_fpu;
5586
7cc46491
DJ
5587 feature = tdesc_find_feature (tdesc,
5588 "org.gnu.gdb.power.altivec");
5589 if (feature != NULL)
5590 {
5591 static const char *const vector_regs[] = {
5592 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
5593 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
5594 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
5595 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
5596 };
5597
5598 valid_p = 1;
5599 for (i = 0; i < ppc_num_gprs; i++)
5600 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5601 PPC_VR0_REGNUM + i,
5602 vector_regs[i]);
5603 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5604 PPC_VSCR_REGNUM, "vscr");
5605 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5606 PPC_VRSAVE_REGNUM, "vrsave");
5607
5608 if (have_spe || !valid_p)
5609 {
5610 tdesc_data_cleanup (tdesc_data);
5611 return NULL;
5612 }
5613 have_altivec = 1;
5614 }
5615 else
5616 have_altivec = 0;
5617
604c2f83
LM
5618 /* Check for POWER7 VSX registers support. */
5619 feature = tdesc_find_feature (tdesc,
5620 "org.gnu.gdb.power.vsx");
5621
5622 if (feature != NULL)
5623 {
5624 static const char *const vsx_regs[] = {
5625 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
5626 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
5627 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
5628 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
5629 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
5630 "vs30h", "vs31h"
5631 };
5632
5633 valid_p = 1;
5634
5635 for (i = 0; i < ppc_num_vshrs; i++)
5636 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5637 PPC_VSR0_UPPER_REGNUM + i,
5638 vsx_regs[i]);
5639 if (!valid_p)
5640 {
5641 tdesc_data_cleanup (tdesc_data);
5642 return NULL;
5643 }
5644
5645 have_vsx = 1;
5646 }
5647 else
5648 have_vsx = 0;
5649
7cc46491
DJ
5650 /* On machines supporting the SPE APU, the general-purpose registers
5651 are 64 bits long. There are SIMD vector instructions to treat them
5652 as pairs of floats, but the rest of the instruction set treats them
5653 as 32-bit registers, and only operates on their lower halves.
5654
5655 In the GDB regcache, we treat their high and low halves as separate
5656 registers. The low halves we present as the general-purpose
5657 registers, and then we have pseudo-registers that stitch together
5658 the upper and lower halves and present them as pseudo-registers.
5659
5660 Thus, the target description is expected to supply the upper
5661 halves separately. */
5662
5663 feature = tdesc_find_feature (tdesc,
5664 "org.gnu.gdb.power.spe");
5665 if (feature != NULL)
5666 {
5667 static const char *const upper_spe[] = {
5668 "ev0h", "ev1h", "ev2h", "ev3h",
5669 "ev4h", "ev5h", "ev6h", "ev7h",
5670 "ev8h", "ev9h", "ev10h", "ev11h",
5671 "ev12h", "ev13h", "ev14h", "ev15h",
5672 "ev16h", "ev17h", "ev18h", "ev19h",
5673 "ev20h", "ev21h", "ev22h", "ev23h",
5674 "ev24h", "ev25h", "ev26h", "ev27h",
5675 "ev28h", "ev29h", "ev30h", "ev31h"
5676 };
5677
5678 valid_p = 1;
5679 for (i = 0; i < ppc_num_gprs; i++)
5680 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5681 PPC_SPE_UPPER_GP0_REGNUM + i,
5682 upper_spe[i]);
5683 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5684 PPC_SPE_ACC_REGNUM, "acc");
5685 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5686 PPC_SPE_FSCR_REGNUM, "spefscr");
5687
5688 if (have_mq || have_fpu || !valid_p)
5689 {
5690 tdesc_data_cleanup (tdesc_data);
5691 return NULL;
5692 }
5693 have_spe = 1;
5694 }
5695 else
5696 have_spe = 0;
5697 }
5698
5699 /* If we have a 64-bit binary on a 32-bit target, complain. Also
5700 complain for a 32-bit binary on a 64-bit target; we do not yet
5701 support that. For instance, the 32-bit ABI routines expect
5702 32-bit GPRs.
5703
5704 As long as there isn't an explicit target description, we'll
5705 choose one based on the BFD architecture and get a word size
5706 matching the binary (probably powerpc:common or
5707 powerpc:common64). So there is only trouble if a 64-bit target
5708 supplies a 64-bit description while debugging a 32-bit
5709 binary. */
5710 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
5711 {
5712 tdesc_data_cleanup (tdesc_data);
5713 return NULL;
5714 }
5715
55eddb0f 5716#ifdef HAVE_ELF
cd453cd0
UW
5717 if (from_elf_exec)
5718 {
5719 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
5720 {
5721 case 1:
5722 elf_abi = POWERPC_ELF_V1;
5723 break;
5724 case 2:
5725 elf_abi = POWERPC_ELF_V2;
5726 break;
5727 default:
5728 break;
5729 }
5730 }
5731
55eddb0f
DJ
5732 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
5733 {
5734 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5735 Tag_GNU_Power_ABI_FP))
5736 {
5737 case 1:
5738 soft_float_flag = AUTO_BOOLEAN_FALSE;
5739 break;
5740 case 2:
5741 soft_float_flag = AUTO_BOOLEAN_TRUE;
5742 break;
5743 default:
5744 break;
5745 }
5746 }
5747
5748 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
5749 {
5750 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5751 Tag_GNU_Power_ABI_Vector))
5752 {
5753 case 1:
5754 vector_abi = POWERPC_VEC_GENERIC;
5755 break;
5756 case 2:
5757 vector_abi = POWERPC_VEC_ALTIVEC;
5758 break;
5759 case 3:
5760 vector_abi = POWERPC_VEC_SPE;
5761 break;
5762 default:
5763 break;
5764 }
5765 }
5766#endif
5767
cd453cd0
UW
5768 /* At this point, the only supported ELF-based 64-bit little-endian
5769 operating system is GNU/Linux, and this uses the ELFv2 ABI by
5770 default. All other supported ELF-based operating systems use the
5771 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
5772 e.g. because we run a legacy binary, or have attached to a process
5773 and have not found any associated binary file, set the default
5774 according to this heuristic. */
5775 if (elf_abi == POWERPC_ELF_AUTO)
5776 {
5777 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
5778 elf_abi = POWERPC_ELF_V2;
5779 else
5780 elf_abi = POWERPC_ELF_V1;
5781 }
5782
55eddb0f
DJ
5783 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
5784 soft_float = 1;
5785 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
5786 soft_float = 0;
5787 else
5788 soft_float = !have_fpu;
5789
5790 /* If we have a hard float binary or setting but no floating point
5791 registers, downgrade to soft float anyway. We're still somewhat
5792 useful in this scenario. */
5793 if (!soft_float && !have_fpu)
5794 soft_float = 1;
5795
5796 /* Similarly for vector registers. */
5797 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
5798 vector_abi = POWERPC_VEC_GENERIC;
5799
5800 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
5801 vector_abi = POWERPC_VEC_GENERIC;
5802
5803 if (vector_abi == POWERPC_VEC_AUTO)
5804 {
5805 if (have_altivec)
5806 vector_abi = POWERPC_VEC_ALTIVEC;
5807 else if (have_spe)
5808 vector_abi = POWERPC_VEC_SPE;
5809 else
5810 vector_abi = POWERPC_VEC_GENERIC;
5811 }
5812
5813 /* Do not limit the vector ABI based on available hardware, since we
5814 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
5815
7cc46491
DJ
5816 /* Find a candidate among extant architectures. */
5817 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5818 arches != NULL;
5819 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5820 {
5821 /* Word size in the various PowerPC bfd_arch_info structs isn't
5822 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
5823 separate word size check. */
5824 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
5825 if (tdep && tdep->elf_abi != elf_abi)
5826 continue;
55eddb0f
DJ
5827 if (tdep && tdep->soft_float != soft_float)
5828 continue;
5829 if (tdep && tdep->vector_abi != vector_abi)
5830 continue;
7cc46491
DJ
5831 if (tdep && tdep->wordsize == wordsize)
5832 {
5833 if (tdesc_data != NULL)
5834 tdesc_data_cleanup (tdesc_data);
5835 return arches->gdbarch;
5836 }
5837 }
5838
5839 /* None found, create a new architecture from INFO, whose bfd_arch_info
5840 validity depends on the source:
5841 - executable useless
5842 - rs6000_host_arch() good
5843 - core file good
5844 - "set arch" trust blindly
5845 - GDB startup useless but harmless */
5846
fc270c35 5847 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 5848 tdep->wordsize = wordsize;
cd453cd0 5849 tdep->elf_abi = elf_abi;
55eddb0f
DJ
5850 tdep->soft_float = soft_float;
5851 tdep->vector_abi = vector_abi;
7cc46491 5852
7a78ae4e 5853 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 5854
7cc46491
DJ
5855 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
5856 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
5857 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
5858 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
5859 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
5860 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
5861 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
5862 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
5863
5864 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
5865 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 5866 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
5867 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
5868 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
5869 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
5870 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
5871 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
5872
5873 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
5874 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5875 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5876 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 5877 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
5878
5879 /* The XML specification for PowerPC sensibly calls the MSR "msr".
5880 GDB traditionally called it "ps", though, so let GDB add an
5881 alias. */
5882 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
5883
4a7622d1 5884 if (wordsize == 8)
05580c65 5885 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 5886 else
4a7622d1 5887 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 5888
baffbae0
JB
5889 /* Set lr_frame_offset. */
5890 if (wordsize == 8)
5891 tdep->lr_frame_offset = 16;
baffbae0 5892 else
4a7622d1 5893 tdep->lr_frame_offset = 4;
baffbae0 5894
604c2f83 5895 if (have_spe || have_dfp || have_vsx)
7cc46491 5896 {
f949c649 5897 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
5898 set_gdbarch_pseudo_register_write (gdbarch,
5899 rs6000_pseudo_register_write);
7cc46491 5900 }
1fcc0bb8 5901
e0d24f8d
WZ
5902 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5903
56a6dfb9 5904 /* Select instruction printer. */
708ff411 5905 if (arch == bfd_arch_rs6000)
9364a0ef 5906 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 5907 else
9364a0ef 5908 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 5909
5a9e69ba 5910 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
5911
5912 if (have_spe)
5913 num_pseudoregs += 32;
5914 if (have_dfp)
5915 num_pseudoregs += 16;
604c2f83
LM
5916 if (have_vsx)
5917 /* Include both VSX and Extended FP registers. */
5918 num_pseudoregs += 96;
f949c649
TJB
5919
5920 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
5921
5922 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5923 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
5924 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
5925 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5926 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
5927 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
5928 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 5929 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 5930 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 5931
11269d7e 5932 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 5933 if (wordsize == 8)
8b148df9
AC
5934 /* PPC64 SYSV. */
5935 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 5936
691d145a
JB
5937 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
5938 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
5939 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
5940
18ed0c4e
JB
5941 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
5942 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 5943
4a7622d1 5944 if (wordsize == 4)
77b2b6d4 5945 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 5946 else if (wordsize == 8)
8be9034a 5947 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 5948
7a78ae4e 5949 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 5950 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 5951 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 5952
7a78ae4e 5953 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
5954 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
5955
203c3895 5956 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 5957 it shouldn't be. */
203c3895
UW
5958 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
5959
ce5eab59 5960 /* Handles single stepping of atomic sequences. */
4a7622d1 5961 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 5962
0df8b418 5963 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
5964 set_gdbarch_frame_args_skip (gdbarch, 8);
5965
143985b7
AF
5966 /* Helpers for function argument information. */
5967 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
5968
6f7f3f0d
UW
5969 /* Trampoline. */
5970 set_gdbarch_in_solib_return_trampoline
5971 (gdbarch, rs6000_in_solib_return_trampoline);
5972 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
5973
4fc771b8 5974 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 5975 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
5976 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
5977
9274a07c
LM
5978 /* Frame handling. */
5979 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
5980
2454a024
UW
5981 /* Setup displaced stepping. */
5982 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 5983 ppc_displaced_step_copy_insn);
99e40580
UW
5984 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
5985 ppc_displaced_step_hw_singlestep);
2454a024
UW
5986 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
5987 set_gdbarch_displaced_step_free_closure (gdbarch,
5988 simple_displaced_step_free_closure);
5989 set_gdbarch_displaced_step_location (gdbarch,
5990 displaced_step_at_entry_point);
5991
5992 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
5993
7b112f9c 5994 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 5995 info.target_desc = tdesc;
ede5f151 5996 info.tdep_info = tdesc_data;
4be87837 5997 gdbarch_init_osabi (info, gdbarch);
7b112f9c 5998
61a65099
KB
5999 switch (info.osabi)
6000 {
f5aecab8 6001 case GDB_OSABI_LINUX:
61a65099
KB
6002 case GDB_OSABI_NETBSD_AOUT:
6003 case GDB_OSABI_NETBSD_ELF:
6004 case GDB_OSABI_UNKNOWN:
61a65099 6005 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6006 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6007 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6008 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
61a65099
KB
6009 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6010 break;
6011 default:
61a65099 6012 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
6013
6014 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6015 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6016 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6017 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
81332287 6018 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
6019 }
6020
7cc46491
DJ
6021 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6022 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6023 rs6000_pseudo_register_reggroup_p);
6024 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6025
6026 /* Override the normal target description method to make the SPE upper
6027 halves anonymous. */
6028 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6029
604c2f83
LM
6030 /* Choose register numbers for all supported pseudo-registers. */
6031 tdep->ppc_ev0_regnum = -1;
6032 tdep->ppc_dl0_regnum = -1;
6033 tdep->ppc_vsr0_regnum = -1;
6034 tdep->ppc_efpr0_regnum = -1;
9f643768 6035
604c2f83
LM
6036 cur_reg = gdbarch_num_regs (gdbarch);
6037
6038 if (have_spe)
6039 {
6040 tdep->ppc_ev0_regnum = cur_reg;
6041 cur_reg += 32;
6042 }
6043 if (have_dfp)
6044 {
6045 tdep->ppc_dl0_regnum = cur_reg;
6046 cur_reg += 16;
6047 }
6048 if (have_vsx)
6049 {
6050 tdep->ppc_vsr0_regnum = cur_reg;
6051 cur_reg += 64;
6052 tdep->ppc_efpr0_regnum = cur_reg;
6053 cur_reg += 32;
6054 }
f949c649 6055
604c2f83
LM
6056 gdb_assert (gdbarch_num_regs (gdbarch)
6057 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
f949c649 6058
debb1f09
JB
6059 /* Register the ravenscar_arch_ops. */
6060 if (mach == bfd_mach_ppc_e500)
6061 register_e500_ravenscar_ops (gdbarch);
6062 else
6063 register_ppc_ravenscar_ops (gdbarch);
6064
7a78ae4e 6065 return gdbarch;
c906108c
SS
6066}
6067
7b112f9c 6068static void
8b164abb 6069rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 6070{
8b164abb 6071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
6072
6073 if (tdep == NULL)
6074 return;
6075
4be87837 6076 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
6077}
6078
55eddb0f
DJ
6079/* PowerPC-specific commands. */
6080
6081static void
6082set_powerpc_command (char *args, int from_tty)
6083{
6084 printf_unfiltered (_("\
6085\"set powerpc\" must be followed by an appropriate subcommand.\n"));
6086 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6087}
6088
6089static void
6090show_powerpc_command (char *args, int from_tty)
6091{
6092 cmd_show_list (showpowerpccmdlist, from_tty, "");
6093}
6094
6095static void
6096powerpc_set_soft_float (char *args, int from_tty,
6097 struct cmd_list_element *c)
6098{
6099 struct gdbarch_info info;
6100
6101 /* Update the architecture. */
6102 gdbarch_info_init (&info);
6103 if (!gdbarch_update_p (info))
9b20d036 6104 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6105}
6106
6107static void
6108powerpc_set_vector_abi (char *args, int from_tty,
6109 struct cmd_list_element *c)
6110{
6111 struct gdbarch_info info;
570dc176 6112 int vector_abi;
55eddb0f
DJ
6113
6114 for (vector_abi = POWERPC_VEC_AUTO;
6115 vector_abi != POWERPC_VEC_LAST;
6116 vector_abi++)
6117 if (strcmp (powerpc_vector_abi_string,
6118 powerpc_vector_strings[vector_abi]) == 0)
6119 {
aead7601 6120 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
6121 break;
6122 }
6123
6124 if (vector_abi == POWERPC_VEC_LAST)
6125 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6126 powerpc_vector_abi_string);
6127
6128 /* Update the architecture. */
6129 gdbarch_info_init (&info);
6130 if (!gdbarch_update_p (info))
9b20d036 6131 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6132}
6133
e09342b5
TJB
6134/* Show the current setting of the exact watchpoints flag. */
6135
6136static void
6137show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6138 struct cmd_list_element *c,
6139 const char *value)
6140{
6141 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6142}
6143
845d4708 6144/* Read a PPC instruction from memory. */
d78489bf
AT
6145
6146static unsigned int
845d4708 6147read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 6148{
845d4708
AM
6149 struct gdbarch *gdbarch = get_frame_arch (frame);
6150 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6151
6152 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
6153}
6154
6155/* Return non-zero if the instructions at PC match the series
6156 described in PATTERN, or zero otherwise. PATTERN is an array of
6157 'struct ppc_insn_pattern' objects, terminated by an entry whose
6158 mask is zero.
6159
6160 When the match is successful, fill INSN[i] with what PATTERN[i]
6161 matched. If PATTERN[i] is optional, and the instruction wasn't
6162 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6163 INSN should have as many elements as PATTERN. Note that, if
6164 PATTERN contains optional instructions which aren't present in
6165 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6166 i'th instruction in memory. */
6167
6168int
845d4708
AM
6169ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6170 struct ppc_insn_pattern *pattern,
6171 unsigned int *insns)
d78489bf
AT
6172{
6173 int i;
845d4708 6174 unsigned int insn;
d78489bf 6175
845d4708 6176 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 6177 {
845d4708
AM
6178 if (insn == 0)
6179 insn = read_insn (frame, pc);
6180 insns[i] = 0;
6181 if ((insn & pattern[i].mask) == pattern[i].data)
6182 {
6183 insns[i] = insn;
6184 pc += 4;
6185 insn = 0;
6186 }
6187 else if (!pattern[i].optional)
d78489bf
AT
6188 return 0;
6189 }
6190
6191 return 1;
6192}
6193
6194/* Return the 'd' field of the d-form instruction INSN, properly
6195 sign-extended. */
6196
6197CORE_ADDR
6198ppc_insn_d_field (unsigned int insn)
6199{
6200 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6201}
6202
6203/* Return the 'ds' field of the ds-form instruction INSN, with the two
6204 zero bits concatenated at the right, and properly
6205 sign-extended. */
6206
6207CORE_ADDR
6208ppc_insn_ds_field (unsigned int insn)
6209{
6210 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6211}
6212
c906108c
SS
6213/* Initialization code. */
6214
0df8b418
MS
6215/* -Wmissing-prototypes */
6216extern initialize_file_ftype _initialize_rs6000_tdep;
b9362cc7 6217
c906108c 6218void
fba45db2 6219_initialize_rs6000_tdep (void)
c906108c 6220{
7b112f9c
JT
6221 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6222 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
6223
6224 /* Initialize the standard target descriptions. */
6225 initialize_tdesc_powerpc_32 ();
7284e1be 6226 initialize_tdesc_powerpc_altivec32 ();
604c2f83 6227 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
6228 initialize_tdesc_powerpc_403 ();
6229 initialize_tdesc_powerpc_403gc ();
4d09ffea 6230 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
6231 initialize_tdesc_powerpc_505 ();
6232 initialize_tdesc_powerpc_601 ();
6233 initialize_tdesc_powerpc_602 ();
6234 initialize_tdesc_powerpc_603 ();
6235 initialize_tdesc_powerpc_604 ();
6236 initialize_tdesc_powerpc_64 ();
7284e1be 6237 initialize_tdesc_powerpc_altivec64 ();
604c2f83 6238 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
6239 initialize_tdesc_powerpc_7400 ();
6240 initialize_tdesc_powerpc_750 ();
6241 initialize_tdesc_powerpc_860 ();
6242 initialize_tdesc_powerpc_e500 ();
6243 initialize_tdesc_rs6000 ();
55eddb0f
DJ
6244
6245 /* Add root prefix command for all "set powerpc"/"show powerpc"
6246 commands. */
6247 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6248 _("Various PowerPC-specific commands."),
6249 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6250
6251 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6252 _("Various PowerPC-specific commands."),
6253 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6254
6255 /* Add a command to allow the user to force the ABI. */
6256 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6257 &powerpc_soft_float_global,
6258 _("Set whether to use a soft-float ABI."),
6259 _("Show whether to use a soft-float ABI."),
6260 NULL,
6261 powerpc_set_soft_float, NULL,
6262 &setpowerpccmdlist, &showpowerpccmdlist);
6263
6264 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6265 &powerpc_vector_abi_string,
6266 _("Set the vector ABI."),
6267 _("Show the vector ABI."),
6268 NULL, powerpc_set_vector_abi, NULL,
6269 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
6270
6271 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6272 &target_exact_watchpoints,
6273 _("\
6274Set whether to use just one debug register for watchpoints on scalars."),
6275 _("\
6276Show whether to use just one debug register for watchpoints on scalars."),
6277 _("\
6278If true, GDB will use only one debug register when watching a variable of\n\
6279scalar type, thus assuming that the variable is accessed through the address\n\
6280of its first byte."),
6281 NULL, show_powerpc_exact_watchpoints,
6282 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 6283}
This page took 1.921014 seconds and 4 git commands to generate.