Add ChangeLog entries
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6ced10dd 39#include "reggroups.h"
4fc771b8 40#include "dwarf2-frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
cd453cd0 53#include "elf/ppc64.h"
7a78ae4e 54
6ded7999 55#include "solib-svr4.h"
9aa1e687 56#include "ppc-tdep.h"
debb1f09 57#include "ppc-ravenscar-thread.h"
7a78ae4e 58
a89aa300 59#include "dis-asm.h"
338ef23d 60
61a65099
KB
61#include "trad-frame.h"
62#include "frame-unwind.h"
63#include "frame-base.h"
64
a67914de
MK
65#include "ax.h"
66#include "ax-gdb.h"
325fac50 67#include <algorithm>
a67914de 68
7cc46491 69#include "features/rs6000/powerpc-32.c"
7284e1be 70#include "features/rs6000/powerpc-altivec32.c"
604c2f83 71#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-403.c"
73#include "features/rs6000/powerpc-403gc.c"
4d09ffea 74#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
75#include "features/rs6000/powerpc-505.c"
76#include "features/rs6000/powerpc-601.c"
77#include "features/rs6000/powerpc-602.c"
78#include "features/rs6000/powerpc-603.c"
79#include "features/rs6000/powerpc-604.c"
80#include "features/rs6000/powerpc-64.c"
7284e1be 81#include "features/rs6000/powerpc-altivec64.c"
604c2f83 82#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
83#include "features/rs6000/powerpc-7400.c"
84#include "features/rs6000/powerpc-750.c"
85#include "features/rs6000/powerpc-860.c"
86#include "features/rs6000/powerpc-e500.c"
87#include "features/rs6000/rs6000.c"
88
5a9e69ba
TJB
89/* Determine if regnum is an SPE pseudo-register. */
90#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
f949c649
TJB
94/* Determine if regnum is a decimal float pseudo-register. */
95#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
604c2f83
LM
99/* Determine if regnum is a POWER7 VSX register. */
100#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104/* Determine if regnum is a POWER7 Extended FP register. */
105#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 108
55eddb0f
DJ
109/* The list of available "set powerpc ..." and "show powerpc ..."
110 commands. */
111static struct cmd_list_element *setpowerpccmdlist = NULL;
112static struct cmd_list_element *showpowerpccmdlist = NULL;
113
114static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
115
116/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 117static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
118{
119 "auto",
120 "generic",
121 "altivec",
122 "spe",
123 NULL
124};
125
126/* A variable that can be configured by the user. */
127static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
128static const char *powerpc_vector_abi_string = "auto";
129
0df8b418 130/* To be used by skip_prologue. */
7a78ae4e
ND
131
132struct rs6000_framedata
133 {
134 int offset; /* total size of frame --- the distance
135 by which we decrement sp to allocate
136 the frame */
137 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 138 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 139 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 140 int saved_vr; /* smallest # of saved vr */
96ff0de4 141 int saved_ev; /* smallest # of saved ev */
7a78ae4e 142 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
143 char frameless; /* true if frameless functions. */
144 char nosavedpc; /* true if pc not saved. */
46a9b8ed 145 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
146 int gpr_offset; /* offset of saved gprs from prev sp */
147 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 148 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 149 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 150 int lr_offset; /* offset of saved lr */
46a9b8ed 151 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 152 int cr_offset; /* offset of saved cr */
6be8bc0c 153 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
154 };
155
c906108c 156
604c2f83
LM
157/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
158int
159vsx_register_p (struct gdbarch *gdbarch, int regno)
160{
161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
162 if (tdep->ppc_vsr0_regnum < 0)
163 return 0;
164 else
165 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
166 <= tdep->ppc_vsr0_upper_regnum + 31);
167}
168
64b84175
KB
169/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
170int
be8626e0 171altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 172{
be8626e0 173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
174 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
175 return 0;
176 else
177 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
178}
179
383f0f5b 180
867e2dc5
JB
181/* Return true if REGNO is an SPE register, false otherwise. */
182int
be8626e0 183spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 184{
be8626e0 185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
186
187 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 188 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
189 return 1;
190
6ced10dd
JB
191 /* Is it a reference to one of the raw upper GPR halves? */
192 if (tdep->ppc_ev0_upper_regnum >= 0
193 && tdep->ppc_ev0_upper_regnum <= regno
194 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
195 return 1;
196
867e2dc5
JB
197 /* Is it a reference to the 64-bit accumulator, and do we have that? */
198 if (tdep->ppc_acc_regnum >= 0
199 && tdep->ppc_acc_regnum == regno)
200 return 1;
201
202 /* Is it a reference to the SPE floating-point status and control register,
203 and do we have that? */
204 if (tdep->ppc_spefscr_regnum >= 0
205 && tdep->ppc_spefscr_regnum == regno)
206 return 1;
207
208 return 0;
209}
210
211
383f0f5b
JB
212/* Return non-zero if the architecture described by GDBARCH has
213 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
214int
215ppc_floating_point_unit_p (struct gdbarch *gdbarch)
216{
383f0f5b
JB
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218
219 return (tdep->ppc_fp0_regnum >= 0
220 && tdep->ppc_fpscr_regnum >= 0);
0a613259 221}
9f643768 222
604c2f83
LM
223/* Return non-zero if the architecture described by GDBARCH has
224 VSX registers (vsr0 --- vsr63). */
63807e1d 225static int
604c2f83
LM
226ppc_vsx_support_p (struct gdbarch *gdbarch)
227{
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229
230 return tdep->ppc_vsr0_regnum >= 0;
231}
232
06caf7d2
CES
233/* Return non-zero if the architecture described by GDBARCH has
234 Altivec registers (vr0 --- vr31, vrsave and vscr). */
235int
236ppc_altivec_support_p (struct gdbarch *gdbarch)
237{
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239
240 return (tdep->ppc_vr0_regnum >= 0
241 && tdep->ppc_vrsave_regnum >= 0);
242}
09991fa0
JB
243
244/* Check that TABLE[GDB_REGNO] is not already initialized, and then
245 set it to SIM_REGNO.
246
247 This is a helper function for init_sim_regno_table, constructing
248 the table mapping GDB register numbers to sim register numbers; we
249 initialize every element in that table to -1 before we start
250 filling it in. */
9f643768
JB
251static void
252set_sim_regno (int *table, int gdb_regno, int sim_regno)
253{
254 /* Make sure we don't try to assign any given GDB register a sim
255 register number more than once. */
256 gdb_assert (table[gdb_regno] == -1);
257 table[gdb_regno] = sim_regno;
258}
259
09991fa0
JB
260
261/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
262 numbers to simulator register numbers, based on the values placed
263 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
264static void
265init_sim_regno_table (struct gdbarch *arch)
266{
267 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 268 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
269 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
270 int i;
7cc46491
DJ
271 static const char *const segment_regs[] = {
272 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
273 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
274 };
9f643768
JB
275
276 /* Presume that all registers not explicitly mentioned below are
277 unavailable from the sim. */
278 for (i = 0; i < total_regs; i++)
279 sim_regno[i] = -1;
280
281 /* General-purpose registers. */
282 for (i = 0; i < ppc_num_gprs; i++)
283 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
284
285 /* Floating-point registers. */
286 if (tdep->ppc_fp0_regnum >= 0)
287 for (i = 0; i < ppc_num_fprs; i++)
288 set_sim_regno (sim_regno,
289 tdep->ppc_fp0_regnum + i,
290 sim_ppc_f0_regnum + i);
291 if (tdep->ppc_fpscr_regnum >= 0)
292 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
293
294 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
295 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
296 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
297
298 /* Segment registers. */
7cc46491
DJ
299 for (i = 0; i < ppc_num_srs; i++)
300 {
301 int gdb_regno;
302
303 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
304 if (gdb_regno >= 0)
305 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
306 }
9f643768
JB
307
308 /* Altivec registers. */
309 if (tdep->ppc_vr0_regnum >= 0)
310 {
311 for (i = 0; i < ppc_num_vrs; i++)
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + i,
314 sim_ppc_vr0_regnum + i);
315
316 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
317 we can treat this more like the other cases. */
318 set_sim_regno (sim_regno,
319 tdep->ppc_vr0_regnum + ppc_num_vrs,
320 sim_ppc_vscr_regnum);
321 }
322 /* vsave is a special-purpose register, so the code below handles it. */
323
324 /* SPE APU (E500) registers. */
6ced10dd
JB
325 if (tdep->ppc_ev0_upper_regnum >= 0)
326 for (i = 0; i < ppc_num_gprs; i++)
327 set_sim_regno (sim_regno,
328 tdep->ppc_ev0_upper_regnum + i,
329 sim_ppc_rh0_regnum + i);
9f643768
JB
330 if (tdep->ppc_acc_regnum >= 0)
331 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
332 /* spefscr is a special-purpose register, so the code below handles it. */
333
976102cd 334#ifdef WITH_PPC_SIM
9f643768
JB
335 /* Now handle all special-purpose registers. Verify that they
336 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
337 code. */
338 for (i = 0; i < sim_ppc_num_sprs; i++)
339 {
340 const char *spr_name = sim_spr_register_name (i);
341 int gdb_regno = -1;
342
343 if (spr_name != NULL)
344 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
345
346 if (gdb_regno != -1)
347 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
348 }
349#endif
9f643768
JB
350
351 /* Drop the initialized array into place. */
352 tdep->sim_regno = sim_regno;
353}
354
09991fa0
JB
355
356/* Given a GDB register number REG, return the corresponding SIM
357 register number. */
9f643768 358static int
e7faf938 359rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 360{
e7faf938 361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
362 int sim_regno;
363
7cc46491 364 if (tdep->sim_regno == NULL)
e7faf938 365 init_sim_regno_table (gdbarch);
7cc46491 366
f57d151a 367 gdb_assert (0 <= reg
e7faf938
MD
368 && reg <= gdbarch_num_regs (gdbarch)
369 + gdbarch_num_pseudo_regs (gdbarch));
9f643768
JB
370 sim_regno = tdep->sim_regno[reg];
371
372 if (sim_regno >= 0)
373 return sim_regno;
374 else
375 return LEGACY_SIM_REGNO_IGNORE;
376}
377
d195bc9f
MK
378\f
379
380/* Register set support functions. */
381
f2db237a
AM
382/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
383 Write the register to REGCACHE. */
384
7284e1be 385void
d195bc9f 386ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 387 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
388{
389 if (regnum != -1 && offset != -1)
f2db237a
AM
390 {
391 if (regsize > 4)
392 {
393 struct gdbarch *gdbarch = get_regcache_arch (regcache);
394 int gdb_regsize = register_size (gdbarch, regnum);
395 if (gdb_regsize < regsize
396 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
397 offset += regsize - gdb_regsize;
398 }
399 regcache_raw_supply (regcache, regnum, regs + offset);
400 }
d195bc9f
MK
401}
402
f2db237a
AM
403/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
404 in a field REGSIZE wide. Zero pad as necessary. */
405
7284e1be 406void
d195bc9f 407ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 408 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
409{
410 if (regnum != -1 && offset != -1)
f2db237a
AM
411 {
412 if (regsize > 4)
413 {
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 int gdb_regsize = register_size (gdbarch, regnum);
416 if (gdb_regsize < regsize)
417 {
418 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
419 {
420 memset (regs + offset, 0, regsize - gdb_regsize);
421 offset += regsize - gdb_regsize;
422 }
423 else
424 memset (regs + offset + regsize - gdb_regsize, 0,
425 regsize - gdb_regsize);
426 }
427 }
428 regcache_raw_collect (regcache, regnum, regs + offset);
429 }
d195bc9f
MK
430}
431
f2db237a
AM
432static int
433ppc_greg_offset (struct gdbarch *gdbarch,
434 struct gdbarch_tdep *tdep,
435 const struct ppc_reg_offsets *offsets,
436 int regnum,
437 int *regsize)
438{
439 *regsize = offsets->gpr_size;
440 if (regnum >= tdep->ppc_gp0_regnum
441 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
442 return (offsets->r0_offset
443 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
444
445 if (regnum == gdbarch_pc_regnum (gdbarch))
446 return offsets->pc_offset;
447
448 if (regnum == tdep->ppc_ps_regnum)
449 return offsets->ps_offset;
450
451 if (regnum == tdep->ppc_lr_regnum)
452 return offsets->lr_offset;
453
454 if (regnum == tdep->ppc_ctr_regnum)
455 return offsets->ctr_offset;
456
457 *regsize = offsets->xr_size;
458 if (regnum == tdep->ppc_cr_regnum)
459 return offsets->cr_offset;
460
461 if (regnum == tdep->ppc_xer_regnum)
462 return offsets->xer_offset;
463
464 if (regnum == tdep->ppc_mq_regnum)
465 return offsets->mq_offset;
466
467 return -1;
468}
469
470static int
471ppc_fpreg_offset (struct gdbarch_tdep *tdep,
472 const struct ppc_reg_offsets *offsets,
473 int regnum)
474{
475 if (regnum >= tdep->ppc_fp0_regnum
476 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
477 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
478
479 if (regnum == tdep->ppc_fpscr_regnum)
480 return offsets->fpscr_offset;
481
482 return -1;
483}
484
06caf7d2
CES
485static int
486ppc_vrreg_offset (struct gdbarch_tdep *tdep,
487 const struct ppc_reg_offsets *offsets,
488 int regnum)
489{
490 if (regnum >= tdep->ppc_vr0_regnum
491 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
492 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
493
494 if (regnum == tdep->ppc_vrsave_regnum - 1)
495 return offsets->vscr_offset;
496
497 if (regnum == tdep->ppc_vrsave_regnum)
498 return offsets->vrsave_offset;
499
500 return -1;
501}
502
d195bc9f
MK
503/* Supply register REGNUM in the general-purpose register set REGSET
504 from the buffer specified by GREGS and LEN to register cache
505 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
506
507void
508ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
509 int regnum, const void *gregs, size_t len)
510{
511 struct gdbarch *gdbarch = get_regcache_arch (regcache);
512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
513 const struct ppc_reg_offsets *offsets
514 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 515 size_t offset;
f2db237a 516 int regsize;
d195bc9f 517
f2db237a 518 if (regnum == -1)
d195bc9f 519 {
f2db237a
AM
520 int i;
521 int gpr_size = offsets->gpr_size;
522
523 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
524 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
525 i++, offset += gpr_size)
19ba03f4
SM
526 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
527 gpr_size);
f2db237a
AM
528
529 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 530 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 531 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 532 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 533 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 534 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 535 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 536 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 537 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
538 (const gdb_byte *) gregs, offsets->cr_offset,
539 offsets->xr_size);
f2db237a 540 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
541 (const gdb_byte *) gregs, offsets->xer_offset,
542 offsets->xr_size);
f2db237a 543 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
544 (const gdb_byte *) gregs, offsets->mq_offset,
545 offsets->xr_size);
f2db237a 546 return;
d195bc9f
MK
547 }
548
f2db237a 549 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 550 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
551}
552
553/* Supply register REGNUM in the floating-point register set REGSET
554 from the buffer specified by FPREGS and LEN to register cache
555 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
556
557void
558ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
559 int regnum, const void *fpregs, size_t len)
560{
561 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
562 struct gdbarch_tdep *tdep;
563 const struct ppc_reg_offsets *offsets;
d195bc9f 564 size_t offset;
d195bc9f 565
f2db237a
AM
566 if (!ppc_floating_point_unit_p (gdbarch))
567 return;
383f0f5b 568
f2db237a 569 tdep = gdbarch_tdep (gdbarch);
19ba03f4 570 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 571 if (regnum == -1)
d195bc9f 572 {
f2db237a
AM
573 int i;
574
575 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
576 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
577 i++, offset += 8)
19ba03f4 578 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
579
580 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
581 (const gdb_byte *) fpregs, offsets->fpscr_offset,
582 offsets->fpscr_size);
f2db237a 583 return;
d195bc9f
MK
584 }
585
f2db237a 586 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 587 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 588 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
589}
590
604c2f83
LM
591/* Supply register REGNUM in the VSX register set REGSET
592 from the buffer specified by VSXREGS and LEN to register cache
593 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
594
595void
596ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
597 int regnum, const void *vsxregs, size_t len)
598{
599 struct gdbarch *gdbarch = get_regcache_arch (regcache);
600 struct gdbarch_tdep *tdep;
601
602 if (!ppc_vsx_support_p (gdbarch))
603 return;
604
605 tdep = gdbarch_tdep (gdbarch);
606
607 if (regnum == -1)
608 {
609 int i;
610
611 for (i = tdep->ppc_vsr0_upper_regnum;
612 i < tdep->ppc_vsr0_upper_regnum + 32;
613 i++)
19ba03f4 614 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
615
616 return;
617 }
618 else
19ba03f4 619 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
620}
621
06caf7d2
CES
622/* Supply register REGNUM in the Altivec register set REGSET
623 from the buffer specified by VRREGS and LEN to register cache
624 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
625
626void
627ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
628 int regnum, const void *vrregs, size_t len)
629{
630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
631 struct gdbarch_tdep *tdep;
632 const struct ppc_reg_offsets *offsets;
633 size_t offset;
634
635 if (!ppc_altivec_support_p (gdbarch))
636 return;
637
638 tdep = gdbarch_tdep (gdbarch);
19ba03f4 639 offsets = (const struct ppc_reg_offsets *) regset->regmap;
06caf7d2
CES
640 if (regnum == -1)
641 {
642 int i;
643
644 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
645 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
646 i++, offset += 16)
19ba03f4 647 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
648
649 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
19ba03f4 650 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
06caf7d2
CES
651
652 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
19ba03f4 653 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
06caf7d2
CES
654 return;
655 }
656
657 offset = ppc_vrreg_offset (tdep, offsets, regnum);
658 if (regnum != tdep->ppc_vrsave_regnum
659 && regnum != tdep->ppc_vrsave_regnum - 1)
19ba03f4 660 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
661 else
662 ppc_supply_reg (regcache, regnum,
19ba03f4 663 (const gdb_byte *) vrregs, offset, 4);
06caf7d2
CES
664}
665
d195bc9f 666/* Collect register REGNUM in the general-purpose register set
f2db237a 667 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
668 GREGS and LEN. If REGNUM is -1, do this for all registers in
669 REGSET. */
670
671void
672ppc_collect_gregset (const struct regset *regset,
673 const struct regcache *regcache,
674 int regnum, void *gregs, size_t len)
675{
676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
677 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
678 const struct ppc_reg_offsets *offsets
679 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 680 size_t offset;
f2db237a 681 int regsize;
d195bc9f 682
f2db237a 683 if (regnum == -1)
d195bc9f 684 {
f2db237a
AM
685 int i;
686 int gpr_size = offsets->gpr_size;
687
688 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
689 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
690 i++, offset += gpr_size)
19ba03f4 691 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
692
693 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 694 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 695 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 696 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 697 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 698 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 699 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 700 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 701 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
702 (gdb_byte *) gregs, offsets->cr_offset,
703 offsets->xr_size);
f2db237a 704 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
705 (gdb_byte *) gregs, offsets->xer_offset,
706 offsets->xr_size);
f2db237a 707 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
708 (gdb_byte *) gregs, offsets->mq_offset,
709 offsets->xr_size);
f2db237a 710 return;
d195bc9f
MK
711 }
712
f2db237a 713 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 714 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
715}
716
717/* Collect register REGNUM in the floating-point register set
f2db237a 718 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
719 FPREGS and LEN. If REGNUM is -1, do this for all registers in
720 REGSET. */
721
722void
723ppc_collect_fpregset (const struct regset *regset,
724 const struct regcache *regcache,
725 int regnum, void *fpregs, size_t len)
726{
727 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
728 struct gdbarch_tdep *tdep;
729 const struct ppc_reg_offsets *offsets;
d195bc9f 730 size_t offset;
d195bc9f 731
f2db237a
AM
732 if (!ppc_floating_point_unit_p (gdbarch))
733 return;
383f0f5b 734
f2db237a 735 tdep = gdbarch_tdep (gdbarch);
19ba03f4 736 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 737 if (regnum == -1)
d195bc9f 738 {
f2db237a
AM
739 int i;
740
741 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
742 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
743 i++, offset += 8)
19ba03f4 744 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
745
746 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
747 (gdb_byte *) fpregs, offsets->fpscr_offset,
748 offsets->fpscr_size);
f2db237a 749 return;
d195bc9f
MK
750 }
751
f2db237a 752 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 753 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 754 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 755}
06caf7d2 756
604c2f83
LM
757/* Collect register REGNUM in the VSX register set
758 REGSET from register cache REGCACHE into the buffer specified by
759 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
760 REGSET. */
761
762void
763ppc_collect_vsxregset (const struct regset *regset,
764 const struct regcache *regcache,
765 int regnum, void *vsxregs, size_t len)
766{
767 struct gdbarch *gdbarch = get_regcache_arch (regcache);
768 struct gdbarch_tdep *tdep;
769
770 if (!ppc_vsx_support_p (gdbarch))
771 return;
772
773 tdep = gdbarch_tdep (gdbarch);
774
775 if (regnum == -1)
776 {
777 int i;
778
779 for (i = tdep->ppc_vsr0_upper_regnum;
780 i < tdep->ppc_vsr0_upper_regnum + 32;
781 i++)
19ba03f4 782 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
783
784 return;
785 }
786 else
19ba03f4 787 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
788}
789
790
06caf7d2
CES
791/* Collect register REGNUM in the Altivec register set
792 REGSET from register cache REGCACHE into the buffer specified by
793 VRREGS and LEN. If REGNUM is -1, do this for all registers in
794 REGSET. */
795
796void
797ppc_collect_vrregset (const struct regset *regset,
798 const struct regcache *regcache,
799 int regnum, void *vrregs, size_t len)
800{
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep;
803 const struct ppc_reg_offsets *offsets;
804 size_t offset;
805
806 if (!ppc_altivec_support_p (gdbarch))
807 return;
808
809 tdep = gdbarch_tdep (gdbarch);
19ba03f4 810 offsets = (const struct ppc_reg_offsets *) regset->regmap;
06caf7d2
CES
811 if (regnum == -1)
812 {
813 int i;
814
815 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
816 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
817 i++, offset += 16)
19ba03f4 818 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
819
820 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
19ba03f4 821 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
06caf7d2
CES
822
823 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
19ba03f4 824 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
06caf7d2
CES
825 return;
826 }
827
828 offset = ppc_vrreg_offset (tdep, offsets, regnum);
829 if (regnum != tdep->ppc_vrsave_regnum
830 && regnum != tdep->ppc_vrsave_regnum - 1)
19ba03f4 831 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
832 else
833 ppc_collect_reg (regcache, regnum,
19ba03f4 834 (gdb_byte *) vrregs, offset, 4);
06caf7d2 835}
d195bc9f 836\f
0a613259 837
0d1243d9
PG
838static int
839insn_changes_sp_or_jumps (unsigned long insn)
840{
841 int opcode = (insn >> 26) & 0x03f;
842 int sd = (insn >> 21) & 0x01f;
843 int a = (insn >> 16) & 0x01f;
844 int subcode = (insn >> 1) & 0x3ff;
845
846 /* Changes the stack pointer. */
847
848 /* NOTE: There are many ways to change the value of a given register.
849 The ways below are those used when the register is R1, the SP,
850 in a funtion's epilogue. */
851
852 if (opcode == 31 && subcode == 444 && a == 1)
853 return 1; /* mr R1,Rn */
854 if (opcode == 14 && sd == 1)
855 return 1; /* addi R1,Rn,simm */
856 if (opcode == 58 && sd == 1)
857 return 1; /* ld R1,ds(Rn) */
858
859 /* Transfers control. */
860
861 if (opcode == 18)
862 return 1; /* b */
863 if (opcode == 16)
864 return 1; /* bc */
865 if (opcode == 19 && subcode == 16)
866 return 1; /* bclr */
867 if (opcode == 19 && subcode == 528)
868 return 1; /* bcctr */
869
870 return 0;
871}
872
873/* Return true if we are in the function's epilogue, i.e. after the
874 instruction that destroyed the function's stack frame.
875
876 1) scan forward from the point of execution:
877 a) If you find an instruction that modifies the stack pointer
878 or transfers control (except a return), execution is not in
879 an epilogue, return.
880 b) Stop scanning if you find a return instruction or reach the
881 end of the function or reach the hard limit for the size of
882 an epilogue.
883 2) scan backward from the point of execution:
884 a) If you find an instruction that modifies the stack pointer,
885 execution *is* in an epilogue, return.
886 b) Stop scanning if you reach an instruction that transfers
887 control or the beginning of the function or reach the hard
888 limit for the size of an epilogue. */
889
890static int
2608dbf8
WW
891rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
892 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 893{
46a9b8ed 894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
896 bfd_byte insn_buf[PPC_INSN_SIZE];
897 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
898 unsigned long insn;
0d1243d9
PG
899
900 /* Find the search limits based on function boundaries and hard limit. */
901
902 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
903 return 0;
904
905 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_start < func_start) epilogue_start = func_start;
907
908 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_end > func_end) epilogue_end = func_end;
910
0d1243d9
PG
911 /* Scan forward until next 'blr'. */
912
913 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
914 {
915 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
916 return 0;
e17a4113 917 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
918 if (insn == 0x4e800020)
919 break;
46a9b8ed
DJ
920 /* Assume a bctr is a tail call unless it points strictly within
921 this function. */
922 if (insn == 0x4e800420)
923 {
924 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
925 tdep->ppc_ctr_regnum);
926 if (ctr > func_start && ctr < func_end)
927 return 0;
928 else
929 break;
930 }
0d1243d9
PG
931 if (insn_changes_sp_or_jumps (insn))
932 return 0;
933 }
934
935 /* Scan backward until adjustment to stack pointer (R1). */
936
937 for (scan_pc = pc - PPC_INSN_SIZE;
938 scan_pc >= epilogue_start;
939 scan_pc -= PPC_INSN_SIZE)
940 {
941 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
942 return 0;
e17a4113 943 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
944 if (insn_changes_sp_or_jumps (insn))
945 return 1;
946 }
947
948 return 0;
949}
950
c9cf6e20 951/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
952
953static int
c9cf6e20 954rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
955{
956 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
957 gdbarch, pc);
958}
959
143985b7 960/* Get the ith function argument for the current function. */
b9362cc7 961static CORE_ADDR
143985b7
AF
962rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
963 struct type *type)
964{
50fd1280 965 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
966}
967
c906108c
SS
968/* Sequence of bytes for breakpoint instruction. */
969
04180708
YQ
970constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
971constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
d19280ad 972
04180708
YQ
973typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
974 rs6000_breakpoint;
c906108c 975
f74c6cad
LM
976/* Instruction masks for displaced stepping. */
977#define BRANCH_MASK 0xfc000000
978#define BP_MASK 0xFC0007FE
979#define B_INSN 0x48000000
980#define BC_INSN 0x40000000
981#define BXL_INSN 0x4c000000
982#define BP_INSN 0x7C000008
983
7f03bd92
PA
984/* Instruction masks used during single-stepping of atomic
985 sequences. */
986#define LWARX_MASK 0xfc0007fe
987#define LWARX_INSTRUCTION 0x7c000028
988#define LDARX_INSTRUCTION 0x7c0000A8
989#define STWCX_MASK 0xfc0007ff
990#define STWCX_INSTRUCTION 0x7c00012d
991#define STDCX_INSTRUCTION 0x7c0001ad
992
993/* We can't displaced step atomic sequences. Otherwise this is just
994 like simple_displaced_step_copy_insn. */
995
996static struct displaced_step_closure *
997ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
998 CORE_ADDR from, CORE_ADDR to,
999 struct regcache *regs)
1000{
1001 size_t len = gdbarch_max_insn_length (gdbarch);
224c3ddb 1002 gdb_byte *buf = (gdb_byte *) xmalloc (len);
7f03bd92
PA
1003 struct cleanup *old_chain = make_cleanup (xfree, buf);
1004 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1005 int insn;
1006
1007 read_memory (from, buf, len);
1008
1009 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1010
1011 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1012 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1013 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1014 {
1015 if (debug_displaced)
1016 {
1017 fprintf_unfiltered (gdb_stdlog,
1018 "displaced: can't displaced step "
1019 "atomic sequence at %s\n",
1020 paddress (gdbarch, from));
1021 }
1022 do_cleanups (old_chain);
1023 return NULL;
1024 }
1025
1026 write_memory (to, buf, len);
1027
1028 if (debug_displaced)
1029 {
1030 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1031 paddress (gdbarch, from), paddress (gdbarch, to));
1032 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1033 }
1034
1035 discard_cleanups (old_chain);
1036 return (struct displaced_step_closure *) buf;
1037}
1038
f74c6cad
LM
1039/* Fix up the state of registers and memory after having single-stepped
1040 a displaced instruction. */
63807e1d 1041static void
f74c6cad 1042ppc_displaced_step_fixup (struct gdbarch *gdbarch,
63807e1d
PA
1043 struct displaced_step_closure *closure,
1044 CORE_ADDR from, CORE_ADDR to,
1045 struct regcache *regs)
f74c6cad 1046{
e17a4113 1047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 1048 /* Our closure is a copy of the instruction. */
f74c6cad 1049 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
e17a4113 1050 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
1051 ULONGEST opcode = 0;
1052 /* Offset for non PC-relative instructions. */
1053 LONGEST offset = PPC_INSN_SIZE;
1054
1055 opcode = insn & BRANCH_MASK;
1056
1057 if (debug_displaced)
1058 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1059 "displaced: (ppc) fixup (%s, %s)\n",
1060 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
1061
1062
1063 /* Handle PC-relative branch instructions. */
1064 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1065 {
a4fafde3 1066 ULONGEST current_pc;
f74c6cad
LM
1067
1068 /* Read the current PC value after the instruction has been executed
1069 in a displaced location. Calculate the offset to be applied to the
1070 original PC value before the displaced stepping. */
1071 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1072 &current_pc);
1073 offset = current_pc - to;
1074
1075 if (opcode != BXL_INSN)
1076 {
1077 /* Check for AA bit indicating whether this is an absolute
1078 addressing or PC-relative (1: absolute, 0: relative). */
1079 if (!(insn & 0x2))
1080 {
1081 /* PC-relative addressing is being used in the branch. */
1082 if (debug_displaced)
1083 fprintf_unfiltered
1084 (gdb_stdlog,
5af949e3
UW
1085 "displaced: (ppc) branch instruction: %s\n"
1086 "displaced: (ppc) adjusted PC from %s to %s\n",
1087 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1088 paddress (gdbarch, from + offset));
f74c6cad 1089
0df8b418
MS
1090 regcache_cooked_write_unsigned (regs,
1091 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
1092 from + offset);
1093 }
1094 }
1095 else
1096 {
1097 /* If we're here, it means we have a branch to LR or CTR. If the
1098 branch was taken, the offset is probably greater than 4 (the next
1099 instruction), so it's safe to assume that an offset of 4 means we
1100 did not take the branch. */
1101 if (offset == PPC_INSN_SIZE)
1102 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1103 from + PPC_INSN_SIZE);
1104 }
1105
1106 /* Check for LK bit indicating whether we should set the link
1107 register to point to the next instruction
1108 (1: Set, 0: Don't set). */
1109 if (insn & 0x1)
1110 {
1111 /* Link register needs to be set to the next instruction's PC. */
1112 regcache_cooked_write_unsigned (regs,
1113 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1114 from + PPC_INSN_SIZE);
1115 if (debug_displaced)
1116 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1117 "displaced: (ppc) adjusted LR to %s\n",
1118 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
1119
1120 }
1121 }
1122 /* Check for breakpoints in the inferior. If we've found one, place the PC
1123 right at the breakpoint instruction. */
1124 else if ((insn & BP_MASK) == BP_INSN)
1125 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1126 else
1127 /* Handle any other instructions that do not fit in the categories above. */
1128 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1129 from + offset);
1130}
c906108c 1131
99e40580
UW
1132/* Always use hardware single-stepping to execute the
1133 displaced instruction. */
1134static int
1135ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1136 struct displaced_step_closure *closure)
1137{
1138 return 1;
1139}
1140
ce5eab59
UW
1141/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1142 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1143 is found, attempt to step through it. A breakpoint is placed at the end of
1144 the sequence. */
1145
93f9a11f 1146VEC (CORE_ADDR) *
f5ea389a 1147ppc_deal_with_atomic_sequence (struct regcache *regcache)
ce5eab59 1148{
41e26ad3 1149 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 1150 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
41e26ad3 1151 CORE_ADDR pc = regcache_read_pc (regcache);
ce5eab59
UW
1152 CORE_ADDR breaks[2] = {-1, -1};
1153 CORE_ADDR loc = pc;
24d45690 1154 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 1155 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1156 int insn_count;
1157 int index;
1158 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1159 const int atomic_sequence_length = 16; /* Instruction sequence length. */
ce5eab59 1160 int bc_insn_count = 0; /* Conditional branch instruction count. */
93f9a11f 1161 VEC (CORE_ADDR) *next_pcs = NULL;
ce5eab59
UW
1162
1163 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1164 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1165 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
93f9a11f 1166 return NULL;
ce5eab59
UW
1167
1168 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1169 instructions. */
1170 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1171 {
1172 loc += PPC_INSN_SIZE;
e17a4113 1173 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1174
1175 /* Assume that there is at most one conditional branch in the atomic
1176 sequence. If a conditional branch is found, put a breakpoint in
1177 its destination address. */
f74c6cad 1178 if ((insn & BRANCH_MASK) == BC_INSN)
ce5eab59 1179 {
a3769e0c
AM
1180 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1181 int absolute = insn & 2;
4a7622d1 1182
ce5eab59
UW
1183 if (bc_insn_count >= 1)
1184 return 0; /* More than one conditional branch found, fallback
1185 to the standard single-step code. */
4a7622d1
UW
1186
1187 if (absolute)
1188 breaks[1] = immediate;
1189 else
a3769e0c 1190 breaks[1] = loc + immediate;
4a7622d1
UW
1191
1192 bc_insn_count++;
1193 last_breakpoint++;
ce5eab59
UW
1194 }
1195
1196 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1197 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1198 break;
1199 }
1200
1201 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1202 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1203 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
93f9a11f 1204 return NULL;
ce5eab59 1205
24d45690 1206 closing_insn = loc;
ce5eab59 1207 loc += PPC_INSN_SIZE;
e17a4113 1208 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1209
1210 /* Insert a breakpoint right after the end of the atomic sequence. */
1211 breaks[0] = loc;
1212
24d45690 1213 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1214 placed (branch instruction's destination) anywhere in sequence. */
1215 if (last_breakpoint
1216 && (breaks[1] == breaks[0]
1217 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1218 last_breakpoint = 0;
1219
ce5eab59 1220 for (index = 0; index <= last_breakpoint; index++)
93f9a11f 1221 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
ce5eab59 1222
93f9a11f 1223 return next_pcs;
ce5eab59
UW
1224}
1225
c906108c 1226
c906108c
SS
1227#define SIGNED_SHORT(x) \
1228 ((sizeof (short) == 2) \
1229 ? ((int)(short)(x)) \
1230 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1231
1232#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1233
55d05f3b
KB
1234/* Limit the number of skipped non-prologue instructions, as the examining
1235 of the prologue is expensive. */
1236static int max_skip_non_prologue_insns = 10;
1237
773df3e5
JB
1238/* Return nonzero if the given instruction OP can be part of the prologue
1239 of a function and saves a parameter on the stack. FRAMEP should be
1240 set if one of the previous instructions in the function has set the
1241 Frame Pointer. */
1242
1243static int
1244store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1245{
1246 /* Move parameters from argument registers to temporary register. */
1247 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1248 {
1249 /* Rx must be scratch register r0. */
1250 const int rx_regno = (op >> 16) & 31;
1251 /* Ry: Only r3 - r10 are used for parameter passing. */
1252 const int ry_regno = GET_SRC_REG (op);
1253
1254 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1255 {
1256 *r0_contains_arg = 1;
1257 return 1;
1258 }
1259 else
1260 return 0;
1261 }
1262
1263 /* Save a General Purpose Register on stack. */
1264
1265 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1266 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1267 {
1268 /* Rx: Only r3 - r10 are used for parameter passing. */
1269 const int rx_regno = GET_SRC_REG (op);
1270
1271 return (rx_regno >= 3 && rx_regno <= 10);
1272 }
1273
1274 /* Save a General Purpose Register on stack via the Frame Pointer. */
1275
1276 if (framep &&
1277 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1278 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1279 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1280 {
1281 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1282 However, the compiler sometimes uses r0 to hold an argument. */
1283 const int rx_regno = GET_SRC_REG (op);
1284
1285 return ((rx_regno >= 3 && rx_regno <= 10)
1286 || (rx_regno == 0 && *r0_contains_arg));
1287 }
1288
1289 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1290 {
1291 /* Only f2 - f8 are used for parameter passing. */
1292 const int src_regno = GET_SRC_REG (op);
1293
1294 return (src_regno >= 2 && src_regno <= 8);
1295 }
1296
1297 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1298 {
1299 /* Only f2 - f8 are used for parameter passing. */
1300 const int src_regno = GET_SRC_REG (op);
1301
1302 return (src_regno >= 2 && src_regno <= 8);
1303 }
1304
1305 /* Not an insn that saves a parameter on stack. */
1306 return 0;
1307}
55d05f3b 1308
3c77c82a
DJ
1309/* Assuming that INSN is a "bl" instruction located at PC, return
1310 nonzero if the destination of the branch is a "blrl" instruction.
1311
1312 This sequence is sometimes found in certain function prologues.
1313 It allows the function to load the LR register with a value that
1314 they can use to access PIC data using PC-relative offsets. */
1315
1316static int
e17a4113 1317bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1318{
0b1b3e42
UW
1319 CORE_ADDR dest;
1320 int immediate;
1321 int absolute;
3c77c82a
DJ
1322 int dest_insn;
1323
0b1b3e42
UW
1324 absolute = (int) ((insn >> 1) & 1);
1325 immediate = ((insn & ~3) << 6) >> 6;
1326 if (absolute)
1327 dest = immediate;
1328 else
1329 dest = pc + immediate;
1330
e17a4113 1331 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1332 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1333 return 1;
1334
1335 return 0;
1336}
1337
0df8b418 1338/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1339
1340 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1341 The former is anded with the opcode in question; if the result of
1342 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1343 question is a ``bl'' instruction.
1344
1345 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1346 the branch displacement. */
1347
1348#define BL_MASK 0xfc000001
1349#define BL_INSTRUCTION 0x48000001
1350#define BL_DISPLACEMENT_MASK 0x03fffffc
1351
de9f48f0 1352static unsigned long
e17a4113 1353rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1354{
e17a4113 1355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1356 gdb_byte buf[4];
1357 unsigned long op;
1358
1359 /* Fetch the instruction and convert it to an integer. */
1360 if (target_read_memory (pc, buf, 4))
1361 return 0;
e17a4113 1362 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1363
1364 return op;
1365}
1366
1367/* GCC generates several well-known sequences of instructions at the begining
1368 of each function prologue when compiling with -fstack-check. If one of
1369 such sequences starts at START_PC, then return the address of the
1370 instruction immediately past this sequence. Otherwise, return START_PC. */
1371
1372static CORE_ADDR
e17a4113 1373rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1374{
1375 CORE_ADDR pc = start_pc;
e17a4113 1376 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1377
1378 /* First possible sequence: A small number of probes.
1379 stw 0, -<some immediate>(1)
0df8b418 1380 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1381
1382 if ((op & 0xffff0000) == 0x90010000)
1383 {
1384 while ((op & 0xffff0000) == 0x90010000)
1385 {
1386 pc = pc + 4;
e17a4113 1387 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1388 }
1389 return pc;
1390 }
1391
1392 /* Second sequence: A probing loop.
1393 addi 12,1,-<some immediate>
1394 lis 0,-<some immediate>
1395 [possibly ori 0,0,<some immediate>]
1396 add 0,12,0
1397 cmpw 0,12,0
1398 beq 0,<disp>
1399 addi 12,12,-<some immediate>
1400 stw 0,0(12)
1401 b <disp>
0df8b418 1402 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1403
1404 while (1)
1405 {
1406 /* addi 12,1,-<some immediate> */
1407 if ((op & 0xffff0000) != 0x39810000)
1408 break;
1409
1410 /* lis 0,-<some immediate> */
1411 pc = pc + 4;
e17a4113 1412 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1413 if ((op & 0xffff0000) != 0x3c000000)
1414 break;
1415
1416 pc = pc + 4;
e17a4113 1417 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1418 /* [possibly ori 0,0,<some immediate>] */
1419 if ((op & 0xffff0000) == 0x60000000)
1420 {
1421 pc = pc + 4;
e17a4113 1422 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1423 }
1424 /* add 0,12,0 */
1425 if (op != 0x7c0c0214)
1426 break;
1427
1428 /* cmpw 0,12,0 */
1429 pc = pc + 4;
e17a4113 1430 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1431 if (op != 0x7c0c0000)
1432 break;
1433
1434 /* beq 0,<disp> */
1435 pc = pc + 4;
e17a4113 1436 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1437 if ((op & 0xff9f0001) != 0x41820000)
1438 break;
1439
1440 /* addi 12,12,-<some immediate> */
1441 pc = pc + 4;
e17a4113 1442 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1443 if ((op & 0xffff0000) != 0x398c0000)
1444 break;
1445
1446 /* stw 0,0(12) */
1447 pc = pc + 4;
e17a4113 1448 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1449 if (op != 0x900c0000)
1450 break;
1451
1452 /* b <disp> */
1453 pc = pc + 4;
e17a4113 1454 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1455 if ((op & 0xfc000001) != 0x48000000)
1456 break;
1457
0df8b418 1458 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1459 pc = pc + 4;
e17a4113 1460 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1461 if ((op & 0xffff0000) == 0x900c0000)
1462 {
1463 pc = pc + 4;
e17a4113 1464 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1465 }
1466
1467 /* We found a valid stack-check sequence, return the new PC. */
1468 return pc;
1469 }
1470
1471 /* Third sequence: No probe; instead, a comparizon between the stack size
1472 limit (saved in a run-time global variable) and the current stack
1473 pointer:
1474
1475 addi 0,1,-<some immediate>
1476 lis 12,__gnat_stack_limit@ha
1477 lwz 12,__gnat_stack_limit@l(12)
1478 twllt 0,12
1479
1480 or, with a small variant in the case of a bigger stack frame:
1481 addis 0,1,<some immediate>
1482 addic 0,0,-<some immediate>
1483 lis 12,__gnat_stack_limit@ha
1484 lwz 12,__gnat_stack_limit@l(12)
1485 twllt 0,12
1486 */
1487 while (1)
1488 {
1489 /* addi 0,1,-<some immediate> */
1490 if ((op & 0xffff0000) != 0x38010000)
1491 {
1492 /* small stack frame variant not recognized; try the
1493 big stack frame variant: */
1494
1495 /* addis 0,1,<some immediate> */
1496 if ((op & 0xffff0000) != 0x3c010000)
1497 break;
1498
1499 /* addic 0,0,-<some immediate> */
1500 pc = pc + 4;
e17a4113 1501 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1502 if ((op & 0xffff0000) != 0x30000000)
1503 break;
1504 }
1505
1506 /* lis 12,<some immediate> */
1507 pc = pc + 4;
e17a4113 1508 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1509 if ((op & 0xffff0000) != 0x3d800000)
1510 break;
1511
1512 /* lwz 12,<some immediate>(12) */
1513 pc = pc + 4;
e17a4113 1514 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1515 if ((op & 0xffff0000) != 0x818c0000)
1516 break;
1517
1518 /* twllt 0,12 */
1519 pc = pc + 4;
e17a4113 1520 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1521 if ((op & 0xfffffffe) != 0x7c406008)
1522 break;
1523
1524 /* We found a valid stack-check sequence, return the new PC. */
1525 return pc;
1526 }
1527
1528 /* No stack check code in our prologue, return the start_pc. */
1529 return start_pc;
1530}
1531
6a16c029
TJB
1532/* return pc value after skipping a function prologue and also return
1533 information about a function frame.
1534
1535 in struct rs6000_framedata fdata:
1536 - frameless is TRUE, if function does not have a frame.
1537 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1538 - offset is the initial size of this stack frame --- the amount by
1539 which we decrement the sp to allocate the frame.
1540 - saved_gpr is the number of the first saved gpr.
1541 - saved_fpr is the number of the first saved fpr.
1542 - saved_vr is the number of the first saved vr.
1543 - saved_ev is the number of the first saved ev.
1544 - alloca_reg is the number of the register used for alloca() handling.
1545 Otherwise -1.
1546 - gpr_offset is the offset of the first saved gpr from the previous frame.
1547 - fpr_offset is the offset of the first saved fpr from the previous frame.
1548 - vr_offset is the offset of the first saved vr from the previous frame.
1549 - ev_offset is the offset of the first saved ev from the previous frame.
1550 - lr_offset is the offset of the saved lr
1551 - cr_offset is the offset of the saved cr
0df8b418 1552 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1553
7a78ae4e 1554static CORE_ADDR
be8626e0
MD
1555skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1556 struct rs6000_framedata *fdata)
c906108c
SS
1557{
1558 CORE_ADDR orig_pc = pc;
55d05f3b 1559 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1560 CORE_ADDR li_found_pc = 0;
50fd1280 1561 gdb_byte buf[4];
c906108c
SS
1562 unsigned long op;
1563 long offset = 0;
6be8bc0c 1564 long vr_saved_offset = 0;
482ca3f5
KB
1565 int lr_reg = -1;
1566 int cr_reg = -1;
6be8bc0c 1567 int vr_reg = -1;
96ff0de4
EZ
1568 int ev_reg = -1;
1569 long ev_offset = 0;
6be8bc0c 1570 int vrsave_reg = -1;
c906108c
SS
1571 int reg;
1572 int framep = 0;
1573 int minimal_toc_loaded = 0;
ddb20c56 1574 int prev_insn_was_prologue_insn = 1;
55d05f3b 1575 int num_skip_non_prologue_insns = 0;
773df3e5 1576 int r0_contains_arg = 0;
be8626e0
MD
1577 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1578 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1580
ddb20c56 1581 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1582 fdata->saved_gpr = -1;
1583 fdata->saved_fpr = -1;
6be8bc0c 1584 fdata->saved_vr = -1;
96ff0de4 1585 fdata->saved_ev = -1;
c906108c
SS
1586 fdata->alloca_reg = -1;
1587 fdata->frameless = 1;
1588 fdata->nosavedpc = 1;
46a9b8ed 1589 fdata->lr_register = -1;
c906108c 1590
e17a4113 1591 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1592 if (pc >= lim_pc)
1593 pc = lim_pc;
1594
55d05f3b 1595 for (;; pc += 4)
c906108c 1596 {
ddb20c56
KB
1597 /* Sometimes it isn't clear if an instruction is a prologue
1598 instruction or not. When we encounter one of these ambiguous
1599 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1600 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1601 if (prev_insn_was_prologue_insn)
1602 last_prologue_pc = pc;
55d05f3b
KB
1603
1604 /* Stop scanning if we've hit the limit. */
4e463ff5 1605 if (pc >= lim_pc)
55d05f3b
KB
1606 break;
1607
ddb20c56
KB
1608 prev_insn_was_prologue_insn = 1;
1609
55d05f3b 1610 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1611 if (target_read_memory (pc, buf, 4))
1612 break;
e17a4113 1613 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1614
c5aa993b
JM
1615 if ((op & 0xfc1fffff) == 0x7c0802a6)
1616 { /* mflr Rx */
43b1ab88
AC
1617 /* Since shared library / PIC code, which needs to get its
1618 address at runtime, can appear to save more than one link
1619 register vis:
1620
1621 *INDENT-OFF*
1622 stwu r1,-304(r1)
1623 mflr r3
1624 bl 0xff570d0 (blrl)
1625 stw r30,296(r1)
1626 mflr r30
1627 stw r31,300(r1)
1628 stw r3,308(r1);
1629 ...
1630 *INDENT-ON*
1631
1632 remember just the first one, but skip over additional
1633 ones. */
721d14ba 1634 if (lr_reg == -1)
46a9b8ed 1635 lr_reg = (op & 0x03e00000) >> 21;
773df3e5
JB
1636 if (lr_reg == 0)
1637 r0_contains_arg = 0;
c5aa993b 1638 continue;
c5aa993b
JM
1639 }
1640 else if ((op & 0xfc1fffff) == 0x7c000026)
1641 { /* mfcr Rx */
98f08d3d 1642 cr_reg = (op & 0x03e00000);
773df3e5
JB
1643 if (cr_reg == 0)
1644 r0_contains_arg = 0;
c5aa993b 1645 continue;
c906108c 1646
c906108c 1647 }
c5aa993b
JM
1648 else if ((op & 0xfc1f0000) == 0xd8010000)
1649 { /* stfd Rx,NUM(r1) */
1650 reg = GET_SRC_REG (op);
1651 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1652 {
1653 fdata->saved_fpr = reg;
1654 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1655 }
1656 continue;
c906108c 1657
c5aa993b
JM
1658 }
1659 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1660 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1661 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1662 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1663 {
1664
1665 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1666 if ((op & 0xfc1f0000) == 0xbc010000)
1667 fdata->gpr_mask |= ~((1U << reg) - 1);
1668 else
1669 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1670 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1671 {
1672 fdata->saved_gpr = reg;
7a78ae4e 1673 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1674 op &= ~3UL;
c5aa993b
JM
1675 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1676 }
1677 continue;
c906108c 1678
ddb20c56 1679 }
ef1bc9e7
AM
1680 else if ((op & 0xffff0000) == 0x3c4c0000
1681 || (op & 0xffff0000) == 0x3c400000
1682 || (op & 0xffff0000) == 0x38420000)
1683 {
1684 /* . 0: addis 2,12,.TOC.-0b@ha
1685 . addi 2,2,.TOC.-0b@l
1686 or
1687 . lis 2,.TOC.@ha
1688 . addi 2,2,.TOC.@l
1689 used by ELFv2 global entry points to set up r2. */
1690 continue;
1691 }
1692 else if (op == 0x60000000)
ddb20c56 1693 {
96ff0de4 1694 /* nop */
ddb20c56
KB
1695 /* Allow nops in the prologue, but do not consider them to
1696 be part of the prologue unless followed by other prologue
0df8b418 1697 instructions. */
ddb20c56
KB
1698 prev_insn_was_prologue_insn = 0;
1699 continue;
1700
c906108c 1701 }
c5aa993b 1702 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1703 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1704 fdata->offset = (op & 0x0000ffff) << 16;
1705 fdata->frameless = 0;
773df3e5 1706 r0_contains_arg = 0;
c5aa993b
JM
1707 continue;
1708
1709 }
1710 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1711 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1712 fdata->offset |= (op & 0x0000ffff);
1713 fdata->frameless = 0;
773df3e5 1714 r0_contains_arg = 0;
c5aa993b
JM
1715 continue;
1716
1717 }
be723e22 1718 else if (lr_reg >= 0 &&
98f08d3d
KB
1719 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1720 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1721 /* stw Rx, NUM(r1) */
1722 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1723 /* stwu Rx, NUM(r1) */
1724 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1725 { /* where Rx == lr */
1726 fdata->lr_offset = offset;
c5aa993b 1727 fdata->nosavedpc = 0;
be723e22
MS
1728 /* Invalidate lr_reg, but don't set it to -1.
1729 That would mean that it had never been set. */
1730 lr_reg = -2;
98f08d3d
KB
1731 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1732 (op & 0xfc000000) == 0x90000000) /* stw */
1733 {
1734 /* Does not update r1, so add displacement to lr_offset. */
1735 fdata->lr_offset += SIGNED_SHORT (op);
1736 }
c5aa993b
JM
1737 continue;
1738
1739 }
be723e22 1740 else if (cr_reg >= 0 &&
98f08d3d
KB
1741 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1742 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1743 /* stw Rx, NUM(r1) */
1744 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1745 /* stwu Rx, NUM(r1) */
1746 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1747 { /* where Rx == cr */
1748 fdata->cr_offset = offset;
be723e22
MS
1749 /* Invalidate cr_reg, but don't set it to -1.
1750 That would mean that it had never been set. */
1751 cr_reg = -2;
98f08d3d
KB
1752 if ((op & 0xfc000003) == 0xf8000000 ||
1753 (op & 0xfc000000) == 0x90000000)
1754 {
1755 /* Does not update r1, so add displacement to cr_offset. */
1756 fdata->cr_offset += SIGNED_SHORT (op);
1757 }
c5aa993b
JM
1758 continue;
1759
1760 }
721d14ba
DJ
1761 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1762 {
1763 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1764 prediction bits. If the LR has already been saved, we can
1765 skip it. */
1766 continue;
1767 }
c5aa993b
JM
1768 else if (op == 0x48000005)
1769 { /* bl .+4 used in
1770 -mrelocatable */
46a9b8ed 1771 fdata->used_bl = 1;
c5aa993b
JM
1772 continue;
1773
1774 }
1775 else if (op == 0x48000004)
1776 { /* b .+4 (xlc) */
1777 break;
1778
c5aa993b 1779 }
6be8bc0c
EZ
1780 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1781 in V.4 -mminimal-toc */
c5aa993b
JM
1782 (op & 0xffff0000) == 0x3bde0000)
1783 { /* addi 30,30,foo@l */
1784 continue;
c906108c 1785
c5aa993b
JM
1786 }
1787 else if ((op & 0xfc000001) == 0x48000001)
1788 { /* bl foo,
0df8b418 1789 to save fprs??? */
c906108c 1790
c5aa993b 1791 fdata->frameless = 0;
3c77c82a
DJ
1792
1793 /* If the return address has already been saved, we can skip
1794 calls to blrl (for PIC). */
e17a4113 1795 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1796 {
1797 fdata->used_bl = 1;
1798 continue;
1799 }
3c77c82a 1800
6be8bc0c 1801 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1802 the first three instructions of the prologue and either
1803 we have no line table information or the line info tells
1804 us that the subroutine call is not part of the line
1805 associated with the prologue. */
c5aa993b 1806 if ((pc - orig_pc) > 8)
ebd98106
FF
1807 {
1808 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1809 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1810
0df8b418
MS
1811 if ((prologue_sal.line == 0)
1812 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1813 break;
1814 }
c5aa993b 1815
e17a4113 1816 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1817
6be8bc0c
EZ
1818 /* At this point, make sure this is not a trampoline
1819 function (a function that simply calls another functions,
1820 and nothing else). If the next is not a nop, this branch
0df8b418 1821 was part of the function prologue. */
c5aa993b
JM
1822
1823 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1824 break; /* Don't skip over
1825 this branch. */
c5aa993b 1826
46a9b8ed
DJ
1827 fdata->used_bl = 1;
1828 continue;
c5aa993b 1829 }
98f08d3d
KB
1830 /* update stack pointer */
1831 else if ((op & 0xfc1f0000) == 0x94010000)
1832 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1833 fdata->frameless = 0;
1834 fdata->offset = SIGNED_SHORT (op);
1835 offset = fdata->offset;
1836 continue;
c5aa993b 1837 }
98f08d3d
KB
1838 else if ((op & 0xfc1f016a) == 0x7c01016e)
1839 { /* stwux rX,r1,rY */
0df8b418 1840 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1841 fdata->frameless = 0;
1842 offset = fdata->offset;
1843 continue;
1844 }
1845 else if ((op & 0xfc1f0003) == 0xf8010001)
1846 { /* stdu rX,NUM(r1) */
1847 fdata->frameless = 0;
1848 fdata->offset = SIGNED_SHORT (op & ~3UL);
1849 offset = fdata->offset;
1850 continue;
1851 }
1852 else if ((op & 0xfc1f016a) == 0x7c01016a)
1853 { /* stdux rX,r1,rY */
0df8b418 1854 /* No way to figure out what r1 is going to be. */
c5aa993b
JM
1855 fdata->frameless = 0;
1856 offset = fdata->offset;
1857 continue;
c5aa993b 1858 }
7313566f
FF
1859 else if ((op & 0xffff0000) == 0x38210000)
1860 { /* addi r1,r1,SIMM */
1861 fdata->frameless = 0;
1862 fdata->offset += SIGNED_SHORT (op);
1863 offset = fdata->offset;
1864 continue;
1865 }
4e463ff5
DJ
1866 /* Load up minimal toc pointer. Do not treat an epilogue restore
1867 of r31 as a minimal TOC load. */
0df8b418
MS
1868 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1869 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1870 && !framep
c5aa993b 1871 && !minimal_toc_loaded)
98f08d3d 1872 {
c5aa993b
JM
1873 minimal_toc_loaded = 1;
1874 continue;
1875
f6077098
KB
1876 /* move parameters from argument registers to local variable
1877 registers */
1878 }
1879 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1880 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1881 (((op >> 21) & 31) <= 10) &&
0df8b418
MS
1882 ((long) ((op >> 16) & 31)
1883 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1884 {
1885 continue;
1886
c5aa993b
JM
1887 /* store parameters in stack */
1888 }
e802b915 1889 /* Move parameters from argument registers to temporary register. */
773df3e5 1890 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1891 {
c5aa993b
JM
1892 continue;
1893
1894 /* Set up frame pointer */
1895 }
76219d77
JB
1896 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1897 {
1898 fdata->frameless = 0;
1899 framep = 1;
1900 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1901 continue;
1902
1903 /* Another way to set up the frame pointer. */
1904 }
c5aa993b
JM
1905 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1906 || op == 0x7c3f0b78)
1907 { /* mr r31, r1 */
1908 fdata->frameless = 0;
1909 framep = 1;
6f99cb26 1910 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1911 continue;
1912
1913 /* Another way to set up the frame pointer. */
1914 }
1915 else if ((op & 0xfc1fffff) == 0x38010000)
1916 { /* addi rX, r1, 0x0 */
1917 fdata->frameless = 0;
1918 framep = 1;
6f99cb26
AC
1919 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1920 + ((op & ~0x38010000) >> 21));
c5aa993b 1921 continue;
c5aa993b 1922 }
6be8bc0c
EZ
1923 /* AltiVec related instructions. */
1924 /* Store the vrsave register (spr 256) in another register for
1925 later manipulation, or load a register into the vrsave
1926 register. 2 instructions are used: mfvrsave and
1927 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1928 and mtspr SPR256, Rn. */
1929 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1930 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1931 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1932 {
1933 vrsave_reg = GET_SRC_REG (op);
1934 continue;
1935 }
1936 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1937 {
1938 continue;
1939 }
1940 /* Store the register where vrsave was saved to onto the stack:
1941 rS is the register where vrsave was stored in a previous
1942 instruction. */
1943 /* 100100 sssss 00001 dddddddd dddddddd */
1944 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1945 {
1946 if (vrsave_reg == GET_SRC_REG (op))
1947 {
1948 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1949 vrsave_reg = -1;
1950 }
1951 continue;
1952 }
1953 /* Compute the new value of vrsave, by modifying the register
1954 where vrsave was saved to. */
1955 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1956 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1957 {
1958 continue;
1959 }
1960 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1961 in a pair of insns to save the vector registers on the
1962 stack. */
1963 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1964 /* 001110 01110 00000 iiii iiii iiii iiii */
1965 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1966 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1967 {
773df3e5
JB
1968 if ((op & 0xffff0000) == 0x38000000)
1969 r0_contains_arg = 0;
6be8bc0c
EZ
1970 li_found_pc = pc;
1971 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1972
1973 /* This insn by itself is not part of the prologue, unless
0df8b418 1974 if part of the pair of insns mentioned above. So do not
773df3e5
JB
1975 record this insn as part of the prologue yet. */
1976 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1977 }
1978 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1979 /* 011111 sssss 11111 00000 00111001110 */
1980 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1981 {
1982 if (pc == (li_found_pc + 4))
1983 {
1984 vr_reg = GET_SRC_REG (op);
1985 /* If this is the first vector reg to be saved, or if
1986 it has a lower number than others previously seen,
1987 reupdate the frame info. */
1988 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1989 {
1990 fdata->saved_vr = vr_reg;
1991 fdata->vr_offset = vr_saved_offset + offset;
1992 }
1993 vr_saved_offset = -1;
1994 vr_reg = -1;
1995 li_found_pc = 0;
1996 }
1997 }
1998 /* End AltiVec related instructions. */
96ff0de4
EZ
1999
2000 /* Start BookE related instructions. */
2001 /* Store gen register S at (r31+uimm).
2002 Any register less than r13 is volatile, so we don't care. */
2003 /* 000100 sssss 11111 iiiii 01100100001 */
2004 else if (arch_info->mach == bfd_mach_ppc_e500
2005 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2006 {
2007 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2008 {
2009 unsigned int imm;
2010 ev_reg = GET_SRC_REG (op);
2011 imm = (op >> 11) & 0x1f;
2012 ev_offset = imm * 8;
2013 /* If this is the first vector reg to be saved, or if
2014 it has a lower number than others previously seen,
2015 reupdate the frame info. */
2016 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2017 {
2018 fdata->saved_ev = ev_reg;
2019 fdata->ev_offset = ev_offset + offset;
2020 }
2021 }
2022 continue;
2023 }
2024 /* Store gen register rS at (r1+rB). */
2025 /* 000100 sssss 00001 bbbbb 01100100000 */
2026 else if (arch_info->mach == bfd_mach_ppc_e500
2027 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2028 {
2029 if (pc == (li_found_pc + 4))
2030 {
2031 ev_reg = GET_SRC_REG (op);
2032 /* If this is the first vector reg to be saved, or if
2033 it has a lower number than others previously seen,
2034 reupdate the frame info. */
2035 /* We know the contents of rB from the previous instruction. */
2036 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2037 {
2038 fdata->saved_ev = ev_reg;
2039 fdata->ev_offset = vr_saved_offset + offset;
2040 }
2041 vr_saved_offset = -1;
2042 ev_reg = -1;
2043 li_found_pc = 0;
2044 }
2045 continue;
2046 }
2047 /* Store gen register r31 at (rA+uimm). */
2048 /* 000100 11111 aaaaa iiiii 01100100001 */
2049 else if (arch_info->mach == bfd_mach_ppc_e500
2050 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2051 {
2052 /* Wwe know that the source register is 31 already, but
2053 it can't hurt to compute it. */
2054 ev_reg = GET_SRC_REG (op);
2055 ev_offset = ((op >> 11) & 0x1f) * 8;
2056 /* If this is the first vector reg to be saved, or if
2057 it has a lower number than others previously seen,
2058 reupdate the frame info. */
2059 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2060 {
2061 fdata->saved_ev = ev_reg;
2062 fdata->ev_offset = ev_offset + offset;
2063 }
2064
2065 continue;
2066 }
2067 /* Store gen register S at (r31+r0).
2068 Store param on stack when offset from SP bigger than 4 bytes. */
2069 /* 000100 sssss 11111 00000 01100100000 */
2070 else if (arch_info->mach == bfd_mach_ppc_e500
2071 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2072 {
2073 if (pc == (li_found_pc + 4))
2074 {
2075 if ((op & 0x03e00000) >= 0x01a00000)
2076 {
2077 ev_reg = GET_SRC_REG (op);
2078 /* If this is the first vector reg to be saved, or if
2079 it has a lower number than others previously seen,
2080 reupdate the frame info. */
2081 /* We know the contents of r0 from the previous
2082 instruction. */
2083 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2084 {
2085 fdata->saved_ev = ev_reg;
2086 fdata->ev_offset = vr_saved_offset + offset;
2087 }
2088 ev_reg = -1;
2089 }
2090 vr_saved_offset = -1;
2091 li_found_pc = 0;
2092 continue;
2093 }
2094 }
2095 /* End BookE related instructions. */
2096
c5aa993b
JM
2097 else
2098 {
46a9b8ed
DJ
2099 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2100
55d05f3b
KB
2101 /* Not a recognized prologue instruction.
2102 Handle optimizer code motions into the prologue by continuing
2103 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
2104 address is not yet saved in the frame. Also skip instructions
2105 if some of the GPRs expected to be saved are not yet saved. */
2106 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2107 && (fdata->gpr_mask & all_mask) == all_mask)
55d05f3b
KB
2108 break;
2109
2110 if (op == 0x4e800020 /* blr */
2111 || op == 0x4e800420) /* bctr */
2112 /* Do not scan past epilogue in frameless functions or
2113 trampolines. */
2114 break;
2115 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 2116 /* Never skip branches. */
55d05f3b
KB
2117 break;
2118
2119 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2120 /* Do not scan too many insns, scanning insns is expensive with
2121 remote targets. */
2122 break;
2123
2124 /* Continue scanning. */
2125 prev_insn_was_prologue_insn = 0;
2126 continue;
c5aa993b 2127 }
c906108c
SS
2128 }
2129
2130#if 0
2131/* I have problems with skipping over __main() that I need to address
0df8b418 2132 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
2133 * didn't work as well as I wanted to be. -MGO */
2134
2135 /* If the first thing after skipping a prolog is a branch to a function,
2136 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2137 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2138 work before calling a function right after a prologue, thus we can
64366f1c 2139 single out such gcc2 behaviour. */
c906108c 2140
c906108c 2141
c5aa993b 2142 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2143 { /* bl foo, an initializer function? */
e17a4113 2144 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2145
2146 if (op == 0x4def7b82)
2147 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2148
64366f1c
EZ
2149 /* Check and see if we are in main. If so, skip over this
2150 initializer function as well. */
c906108c 2151
c5aa993b 2152 tmp = find_pc_misc_function (pc);
6314a349
AC
2153 if (tmp >= 0
2154 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2155 return pc + 8;
2156 }
c906108c 2157 }
c906108c 2158#endif /* 0 */
c5aa993b 2159
46a9b8ed
DJ
2160 if (pc == lim_pc && lr_reg >= 0)
2161 fdata->lr_register = lr_reg;
2162
c5aa993b 2163 fdata->offset = -fdata->offset;
ddb20c56 2164 return last_prologue_pc;
c906108c
SS
2165}
2166
7a78ae4e 2167static CORE_ADDR
4a7622d1 2168rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2169{
4a7622d1 2170 struct rs6000_framedata frame;
e3acb115 2171 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2172
4a7622d1
UW
2173 /* See if we can determine the end of the prologue via the symbol table.
2174 If so, then return either PC, or the PC after the prologue, whichever
2175 is greater. */
e3acb115 2176 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2177 {
d80b854b
UW
2178 CORE_ADDR post_prologue_pc
2179 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1 2180 if (post_prologue_pc != 0)
325fac50 2181 return std::max (pc, post_prologue_pc);
c906108c 2182 }
c906108c 2183
4a7622d1
UW
2184 /* Can't determine prologue from the symbol table, need to examine
2185 instructions. */
c906108c 2186
4a7622d1
UW
2187 /* Find an upper limit on the function prologue using the debug
2188 information. If the debug information could not be used to provide
2189 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2190 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2191 if (limit_pc == 0)
2192 limit_pc = pc + 100; /* Magic. */
794a477a 2193
e3acb115
JB
2194 /* Do not allow limit_pc to be past the function end, if we know
2195 where that end is... */
2196 if (func_end_addr && limit_pc > func_end_addr)
2197 limit_pc = func_end_addr;
2198
4a7622d1
UW
2199 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2200 return pc;
c906108c 2201}
c906108c 2202
8ab3d180
KB
2203/* When compiling for EABI, some versions of GCC emit a call to __eabi
2204 in the prologue of main().
2205
2206 The function below examines the code pointed at by PC and checks to
2207 see if it corresponds to a call to __eabi. If so, it returns the
2208 address of the instruction following that call. Otherwise, it simply
2209 returns PC. */
2210
63807e1d 2211static CORE_ADDR
8ab3d180
KB
2212rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2213{
e17a4113 2214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2215 gdb_byte buf[4];
2216 unsigned long op;
2217
2218 if (target_read_memory (pc, buf, 4))
2219 return pc;
e17a4113 2220 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2221
2222 if ((op & BL_MASK) == BL_INSTRUCTION)
2223 {
2224 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2225 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2226 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2227
2228 /* We check for ___eabi (three leading underscores) in addition
2229 to __eabi in case the GCC option "-fleading-underscore" was
2230 used to compile the program. */
7cbd4a93 2231 if (s.minsym != NULL
efd66ac6
TT
2232 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2233 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2234 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
8ab3d180
KB
2235 pc += 4;
2236 }
2237 return pc;
2238}
383f0f5b 2239
4a7622d1
UW
2240/* All the ABI's require 16 byte alignment. */
2241static CORE_ADDR
2242rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2243{
2244 return (addr & -16);
c906108c
SS
2245}
2246
977adac5
ND
2247/* Return whether handle_inferior_event() should proceed through code
2248 starting at PC in function NAME when stepping.
2249
2250 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2251 handle memory references that are too distant to fit in instructions
2252 generated by the compiler. For example, if 'foo' in the following
2253 instruction:
2254
2255 lwz r9,foo(r2)
2256
2257 is greater than 32767, the linker might replace the lwz with a branch to
2258 somewhere in @FIX1 that does the load in 2 instructions and then branches
2259 back to where execution should continue.
2260
2261 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2262 Unfortunately, the linker uses the "b" instruction for the
2263 branches, meaning that the link register doesn't get set.
2264 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2265
e76f05fa
UW
2266 Instead, use the gdbarch_skip_trampoline_code and
2267 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2268 @FIX code. */
977adac5 2269
63807e1d 2270static int
e17a4113 2271rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2272 CORE_ADDR pc, const char *name)
977adac5 2273{
61012eef 2274 return name && startswith (name, "@FIX");
977adac5
ND
2275}
2276
2277/* Skip code that the user doesn't want to see when stepping:
2278
2279 1. Indirect function calls use a piece of trampoline code to do context
2280 switching, i.e. to set the new TOC table. Skip such code if we are on
2281 its first instruction (as when we have single-stepped to here).
2282
2283 2. Skip shared library trampoline code (which is different from
c906108c 2284 indirect function call trampolines).
977adac5
ND
2285
2286 3. Skip bigtoc fixup code.
2287
c906108c 2288 Result is desired PC to step until, or NULL if we are not in
977adac5 2289 code that should be skipped. */
c906108c 2290
63807e1d 2291static CORE_ADDR
52f729a7 2292rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2293{
e17a4113
UW
2294 struct gdbarch *gdbarch = get_frame_arch (frame);
2295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2297 unsigned int ii, op;
977adac5 2298 int rel;
c906108c 2299 CORE_ADDR solib_target_pc;
7cbd4a93 2300 struct bound_minimal_symbol msymbol;
c906108c 2301
c5aa993b
JM
2302 static unsigned trampoline_code[] =
2303 {
2304 0x800b0000, /* l r0,0x0(r11) */
2305 0x90410014, /* st r2,0x14(r1) */
2306 0x7c0903a6, /* mtctr r0 */
2307 0x804b0004, /* l r2,0x4(r11) */
2308 0x816b0008, /* l r11,0x8(r11) */
2309 0x4e800420, /* bctr */
2310 0x4e800020, /* br */
2311 0
c906108c
SS
2312 };
2313
977adac5
ND
2314 /* Check for bigtoc fixup code. */
2315 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2316 if (msymbol.minsym
e17a4113 2317 && rs6000_in_solib_return_trampoline (gdbarch, pc,
efd66ac6 2318 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
977adac5
ND
2319 {
2320 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2321 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2322 if ((op & 0xfc000003) == 0x48000000)
2323 {
2324 /* Extract bits 6-29 as a signed 24-bit relative word address and
2325 add it to the containing PC. */
2326 rel = ((int)(op << 6) >> 6);
2327 return pc + 8 + rel;
2328 }
2329 }
2330
c906108c 2331 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2332 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2333 if (solib_target_pc)
2334 return solib_target_pc;
2335
c5aa993b
JM
2336 for (ii = 0; trampoline_code[ii]; ++ii)
2337 {
e17a4113 2338 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2339 if (op != trampoline_code[ii])
2340 return 0;
2341 }
0df8b418
MS
2342 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2343 addr. */
e17a4113 2344 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2345 return pc;
2346}
2347
794ac428
UW
2348/* ISA-specific vector types. */
2349
2350static struct type *
2351rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2352{
2353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2354
2355 if (!tdep->ppc_builtin_type_vec64)
2356 {
df4df182
UW
2357 const struct builtin_type *bt = builtin_type (gdbarch);
2358
794ac428
UW
2359 /* The type we're building is this: */
2360#if 0
2361 union __gdb_builtin_type_vec64
2362 {
2363 int64_t uint64;
2364 float v2_float[2];
2365 int32_t v2_int32[2];
2366 int16_t v4_int16[4];
2367 int8_t v8_int8[8];
2368 };
2369#endif
2370
2371 struct type *t;
2372
e9bb382b
UW
2373 t = arch_composite_type (gdbarch,
2374 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2375 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2376 append_composite_type_field (t, "v2_float",
df4df182 2377 init_vector_type (bt->builtin_float, 2));
794ac428 2378 append_composite_type_field (t, "v2_int32",
df4df182 2379 init_vector_type (bt->builtin_int32, 2));
794ac428 2380 append_composite_type_field (t, "v4_int16",
df4df182 2381 init_vector_type (bt->builtin_int16, 4));
794ac428 2382 append_composite_type_field (t, "v8_int8",
df4df182 2383 init_vector_type (bt->builtin_int8, 8));
794ac428 2384
876cecd0 2385 TYPE_VECTOR (t) = 1;
794ac428
UW
2386 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2387 tdep->ppc_builtin_type_vec64 = t;
2388 }
2389
2390 return tdep->ppc_builtin_type_vec64;
2391}
2392
604c2f83
LM
2393/* Vector 128 type. */
2394
2395static struct type *
2396rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2397{
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399
2400 if (!tdep->ppc_builtin_type_vec128)
2401 {
df4df182
UW
2402 const struct builtin_type *bt = builtin_type (gdbarch);
2403
604c2f83
LM
2404 /* The type we're building is this
2405
2406 type = union __ppc_builtin_type_vec128 {
2407 uint128_t uint128;
db9f5df8 2408 double v2_double[2];
604c2f83
LM
2409 float v4_float[4];
2410 int32_t v4_int32[4];
2411 int16_t v8_int16[8];
2412 int8_t v16_int8[16];
2413 }
2414 */
2415
2416 struct type *t;
2417
e9bb382b
UW
2418 t = arch_composite_type (gdbarch,
2419 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 2420 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2421 append_composite_type_field (t, "v2_double",
2422 init_vector_type (bt->builtin_double, 2));
604c2f83 2423 append_composite_type_field (t, "v4_float",
df4df182 2424 init_vector_type (bt->builtin_float, 4));
604c2f83 2425 append_composite_type_field (t, "v4_int32",
df4df182 2426 init_vector_type (bt->builtin_int32, 4));
604c2f83 2427 append_composite_type_field (t, "v8_int16",
df4df182 2428 init_vector_type (bt->builtin_int16, 8));
604c2f83 2429 append_composite_type_field (t, "v16_int8",
df4df182 2430 init_vector_type (bt->builtin_int8, 16));
604c2f83 2431
803e1097 2432 TYPE_VECTOR (t) = 1;
604c2f83
LM
2433 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2434 tdep->ppc_builtin_type_vec128 = t;
2435 }
2436
2437 return tdep->ppc_builtin_type_vec128;
2438}
2439
7cc46491
DJ
2440/* Return the name of register number REGNO, or the empty string if it
2441 is an anonymous register. */
7a78ae4e 2442
fa88f677 2443static const char *
d93859e2 2444rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2445{
d93859e2 2446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2447
7cc46491
DJ
2448 /* The upper half "registers" have names in the XML description,
2449 but we present only the low GPRs and the full 64-bit registers
2450 to the user. */
2451 if (tdep->ppc_ev0_upper_regnum >= 0
2452 && tdep->ppc_ev0_upper_regnum <= regno
2453 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2454 return "";
2455
604c2f83
LM
2456 /* Hide the upper halves of the vs0~vs31 registers. */
2457 if (tdep->ppc_vsr0_regnum >= 0
2458 && tdep->ppc_vsr0_upper_regnum <= regno
2459 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2460 return "";
2461
7cc46491 2462 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2463 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2464 {
2465 static const char *const spe_regnames[] = {
2466 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2467 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2468 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2469 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2470 };
2471 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2472 }
2473
f949c649
TJB
2474 /* Check if the decimal128 pseudo-registers are available. */
2475 if (IS_DFP_PSEUDOREG (tdep, regno))
2476 {
2477 static const char *const dfp128_regnames[] = {
2478 "dl0", "dl1", "dl2", "dl3",
2479 "dl4", "dl5", "dl6", "dl7",
2480 "dl8", "dl9", "dl10", "dl11",
2481 "dl12", "dl13", "dl14", "dl15"
2482 };
2483 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2484 }
2485
604c2f83
LM
2486 /* Check if this is a VSX pseudo-register. */
2487 if (IS_VSX_PSEUDOREG (tdep, regno))
2488 {
2489 static const char *const vsx_regnames[] = {
2490 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2491 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2492 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2493 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2494 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2495 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2496 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2497 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2498 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2499 };
2500 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2501 }
2502
2503 /* Check if the this is a Extended FP pseudo-register. */
2504 if (IS_EFP_PSEUDOREG (tdep, regno))
2505 {
2506 static const char *const efpr_regnames[] = {
2507 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2508 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2509 "f46", "f47", "f48", "f49", "f50", "f51",
2510 "f52", "f53", "f54", "f55", "f56", "f57",
2511 "f58", "f59", "f60", "f61", "f62", "f63"
2512 };
2513 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2514 }
2515
d93859e2 2516 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2517}
2518
7cc46491
DJ
2519/* Return the GDB type object for the "standard" data type of data in
2520 register N. */
7a78ae4e
ND
2521
2522static struct type *
7cc46491 2523rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2524{
691d145a 2525 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2526
7cc46491 2527 /* These are the only pseudo-registers we support. */
f949c649 2528 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2529 || IS_DFP_PSEUDOREG (tdep, regnum)
2530 || IS_VSX_PSEUDOREG (tdep, regnum)
2531 || IS_EFP_PSEUDOREG (tdep, regnum));
7cc46491 2532
f949c649
TJB
2533 /* These are the e500 pseudo-registers. */
2534 if (IS_SPE_PSEUDOREG (tdep, regnum))
2535 return rs6000_builtin_type_vec64 (gdbarch);
604c2f83
LM
2536 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2537 /* PPC decimal128 pseudo-registers. */
f949c649 2538 return builtin_type (gdbarch)->builtin_declong;
604c2f83
LM
2539 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2540 /* POWER7 VSX pseudo-registers. */
2541 return rs6000_builtin_type_vec128 (gdbarch);
2542 else
2543 /* POWER7 Extended FP pseudo-registers. */
2544 return builtin_type (gdbarch)->builtin_double;
7a78ae4e
ND
2545}
2546
c44ca51c
AC
2547/* Is REGNUM a member of REGGROUP? */
2548static int
7cc46491
DJ
2549rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2550 struct reggroup *group)
c44ca51c
AC
2551{
2552 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c44ca51c 2553
7cc46491 2554 /* These are the only pseudo-registers we support. */
f949c649 2555 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2556 || IS_DFP_PSEUDOREG (tdep, regnum)
2557 || IS_VSX_PSEUDOREG (tdep, regnum)
2558 || IS_EFP_PSEUDOREG (tdep, regnum));
c44ca51c 2559
604c2f83
LM
2560 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2561 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
f949c649 2562 return group == all_reggroup || group == vector_reggroup;
7cc46491 2563 else
604c2f83 2564 /* PPC decimal128 or Extended FP pseudo-registers. */
f949c649 2565 return group == all_reggroup || group == float_reggroup;
c44ca51c
AC
2566}
2567
691d145a 2568/* The register format for RS/6000 floating point registers is always
64366f1c 2569 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2570
2571static int
0abe36f5
MD
2572rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2573 struct type *type)
7a78ae4e 2574{
0abe36f5 2575 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2576
2577 return (tdep->ppc_fp0_regnum >= 0
2578 && regnum >= tdep->ppc_fp0_regnum
2579 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2580 && TYPE_CODE (type) == TYPE_CODE_FLT
0dfff4cb
UW
2581 && TYPE_LENGTH (type)
2582 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2583}
2584
8dccd430 2585static int
691d145a
JB
2586rs6000_register_to_value (struct frame_info *frame,
2587 int regnum,
2588 struct type *type,
8dccd430
PA
2589 gdb_byte *to,
2590 int *optimizedp, int *unavailablep)
7a78ae4e 2591{
0dfff4cb 2592 struct gdbarch *gdbarch = get_frame_arch (frame);
50fd1280 2593 gdb_byte from[MAX_REGISTER_SIZE];
691d145a 2594
691d145a 2595 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2596
8dccd430
PA
2597 if (!get_frame_register_bytes (frame, regnum, 0,
2598 register_size (gdbarch, regnum),
2599 from, optimizedp, unavailablep))
2600 return 0;
2601
0dfff4cb
UW
2602 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2603 to, type);
8dccd430
PA
2604 *optimizedp = *unavailablep = 0;
2605 return 1;
691d145a 2606}
7a292a7a 2607
7a78ae4e 2608static void
691d145a
JB
2609rs6000_value_to_register (struct frame_info *frame,
2610 int regnum,
2611 struct type *type,
50fd1280 2612 const gdb_byte *from)
7a78ae4e 2613{
0dfff4cb 2614 struct gdbarch *gdbarch = get_frame_arch (frame);
50fd1280 2615 gdb_byte to[MAX_REGISTER_SIZE];
691d145a 2616
691d145a
JB
2617 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2618
0dfff4cb
UW
2619 convert_typed_floating (from, type,
2620 to, builtin_type (gdbarch)->builtin_double);
691d145a 2621 put_frame_register (frame, regnum, to);
7a78ae4e 2622}
c906108c 2623
05d1431c
PA
2624 /* The type of a function that moves the value of REG between CACHE
2625 or BUF --- in either direction. */
2626typedef enum register_status (*move_ev_register_func) (struct regcache *,
2627 int, void *);
2628
6ced10dd
JB
2629/* Move SPE vector register values between a 64-bit buffer and the two
2630 32-bit raw register halves in a regcache. This function handles
2631 both splitting a 64-bit value into two 32-bit halves, and joining
2632 two halves into a whole 64-bit value, depending on the function
2633 passed as the MOVE argument.
2634
2635 EV_REG must be the number of an SPE evN vector register --- a
2636 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2637 64-bit buffer.
2638
2639 Call MOVE once for each 32-bit half of that register, passing
2640 REGCACHE, the number of the raw register corresponding to that
2641 half, and the address of the appropriate half of BUFFER.
2642
2643 For example, passing 'regcache_raw_read' as the MOVE function will
2644 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2645 'regcache_raw_supply' will supply the contents of BUFFER to the
2646 appropriate pair of raw registers in REGCACHE.
2647
2648 You may need to cast away some 'const' qualifiers when passing
2649 MOVE, since this function can't tell at compile-time which of
2650 REGCACHE or BUFFER is acting as the source of the data. If C had
2651 co-variant type qualifiers, ... */
05d1431c
PA
2652
2653static enum register_status
2654e500_move_ev_register (move_ev_register_func move,
2655 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd
JB
2656{
2657 struct gdbarch *arch = get_regcache_arch (regcache);
2658 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2659 int reg_index;
19ba03f4 2660 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2661 enum register_status status;
6ced10dd 2662
5a9e69ba 2663 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2664
2665 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2666
8b164abb 2667 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2668 {
05d1431c
PA
2669 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2670 byte_buffer);
2671 if (status == REG_VALID)
2672 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2673 byte_buffer + 4);
6ced10dd
JB
2674 }
2675 else
2676 {
05d1431c
PA
2677 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2678 if (status == REG_VALID)
2679 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2680 byte_buffer + 4);
6ced10dd 2681 }
05d1431c
PA
2682
2683 return status;
6ced10dd
JB
2684}
2685
05d1431c
PA
2686static enum register_status
2687do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2688{
19ba03f4 2689 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
05d1431c
PA
2690}
2691
2692static enum register_status
2693do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2694{
19ba03f4 2695 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
05d1431c
PA
2696
2697 return REG_VALID;
2698}
2699
2700static enum register_status
c8001721 2701e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2702 int reg_nr, gdb_byte *buffer)
f949c649 2703{
05d1431c 2704 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
f949c649
TJB
2705}
2706
2707static void
2708e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2709 int reg_nr, const gdb_byte *buffer)
2710{
05d1431c
PA
2711 e500_move_ev_register (do_regcache_raw_write, regcache,
2712 reg_nr, (void *) buffer);
f949c649
TJB
2713}
2714
604c2f83 2715/* Read method for DFP pseudo-registers. */
05d1431c 2716static enum register_status
604c2f83 2717dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2718 int reg_nr, gdb_byte *buffer)
2719{
2720 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2721 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
05d1431c 2722 enum register_status status;
f949c649
TJB
2723
2724 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2725 {
2726 /* Read two FP registers to form a whole dl register. */
05d1431c
PA
2727 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2728 2 * reg_index, buffer);
2729 if (status == REG_VALID)
2730 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2731 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2732 }
2733 else
2734 {
05d1431c 2735 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2736 2 * reg_index + 1, buffer);
05d1431c
PA
2737 if (status == REG_VALID)
2738 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2739 2 * reg_index, buffer + 8);
f949c649 2740 }
05d1431c
PA
2741
2742 return status;
f949c649
TJB
2743}
2744
604c2f83 2745/* Write method for DFP pseudo-registers. */
f949c649 2746static void
604c2f83 2747dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2748 int reg_nr, const gdb_byte *buffer)
2749{
2750 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2751 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2752
2753 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2754 {
2755 /* Write each half of the dl register into a separate
2756 FP register. */
2757 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2758 2 * reg_index, buffer);
2759 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2760 2 * reg_index + 1, buffer + 8);
2761 }
2762 else
2763 {
2764 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2765 2 * reg_index + 1, buffer);
f949c649 2766 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2767 2 * reg_index, buffer + 8);
f949c649
TJB
2768 }
2769}
2770
604c2f83 2771/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2772static enum register_status
604c2f83
LM
2773vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2774 int reg_nr, gdb_byte *buffer)
2775{
2776 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2777 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
05d1431c 2778 enum register_status status;
604c2f83
LM
2779
2780 /* Read the portion that overlaps the VMX registers. */
2781 if (reg_index > 31)
05d1431c
PA
2782 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2783 reg_index - 32, buffer);
604c2f83
LM
2784 else
2785 /* Read the portion that overlaps the FPR registers. */
2786 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2787 {
05d1431c
PA
2788 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2789 reg_index, buffer);
2790 if (status == REG_VALID)
2791 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2792 reg_index, buffer + 8);
604c2f83
LM
2793 }
2794 else
2795 {
05d1431c
PA
2796 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2797 reg_index, buffer + 8);
2798 if (status == REG_VALID)
2799 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2800 reg_index, buffer);
604c2f83 2801 }
05d1431c
PA
2802
2803 return status;
604c2f83
LM
2804}
2805
2806/* Write method for POWER7 VSX pseudo-registers. */
2807static void
2808vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2809 int reg_nr, const gdb_byte *buffer)
2810{
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2813
2814 /* Write the portion that overlaps the VMX registers. */
2815 if (reg_index > 31)
2816 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2817 reg_index - 32, buffer);
2818 else
2819 /* Write the portion that overlaps the FPR registers. */
2820 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2821 {
2822 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2823 reg_index, buffer);
2824 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2825 reg_index, buffer + 8);
2826 }
2827 else
2828 {
2829 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2830 reg_index, buffer + 8);
2831 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2832 reg_index, buffer);
2833 }
2834}
2835
2836/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2837static enum register_status
604c2f83
LM
2838efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2839 int reg_nr, gdb_byte *buffer)
2840{
2841 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2842 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2843 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2844
d9492458 2845 /* Read the portion that overlaps the VMX register. */
084ee545
UW
2846 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2847 offset, register_size (gdbarch, reg_nr),
2848 buffer);
604c2f83
LM
2849}
2850
2851/* Write method for POWER7 Extended FP pseudo-registers. */
2852static void
2853efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2854 int reg_nr, const gdb_byte *buffer)
2855{
2856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2857 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2858 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2859
d9492458 2860 /* Write the portion that overlaps the VMX register. */
084ee545
UW
2861 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2862 offset, register_size (gdbarch, reg_nr),
2863 buffer);
604c2f83
LM
2864}
2865
05d1431c 2866static enum register_status
0df8b418
MS
2867rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2868 struct regcache *regcache,
f949c649 2869 int reg_nr, gdb_byte *buffer)
c8001721 2870{
6ced10dd 2871 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2873
6ced10dd 2874 gdb_assert (regcache_arch == gdbarch);
f949c649 2875
5a9e69ba 2876 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 2877 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
f949c649 2878 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2879 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2880 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
05d1431c 2881 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2882 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2883 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2884 else
a44bddec 2885 internal_error (__FILE__, __LINE__,
f949c649
TJB
2886 _("rs6000_pseudo_register_read: "
2887 "called on unexpected register '%s' (%d)"),
2888 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2889}
2890
2891static void
f949c649
TJB
2892rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2893 struct regcache *regcache,
2894 int reg_nr, const gdb_byte *buffer)
c8001721 2895{
6ced10dd 2896 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2898
6ced10dd 2899 gdb_assert (regcache_arch == gdbarch);
f949c649 2900
5a9e69ba 2901 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649
TJB
2902 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2903 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
604c2f83
LM
2904 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2905 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2906 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2907 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2908 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2909 else
a44bddec 2910 internal_error (__FILE__, __LINE__,
f949c649
TJB
2911 _("rs6000_pseudo_register_write: "
2912 "called on unexpected register '%s' (%d)"),
2913 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2914}
2915
2a2fa07b
MK
2916static int
2917rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2918 struct agent_expr *ax, int reg_nr)
2919{
2920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2921 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2922 {
2923 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2924 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2925 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2926 }
2927 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2928 {
2929 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2930 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2931 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2932 }
2933 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2934 {
2935 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2936 if (reg_index > 31)
2937 {
2938 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2939 }
2940 else
2941 {
2942 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2943 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2944 }
2945 }
2946 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2947 {
2948 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2949 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2950 }
2951 else
2952 internal_error (__FILE__, __LINE__,
2953 _("rs6000_pseudo_register_collect: "
2954 "called on unexpected register '%s' (%d)"),
2955 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2956 return 0;
2957}
2958
2959
a67914de
MK
2960static void
2961rs6000_gen_return_address (struct gdbarch *gdbarch,
2962 struct agent_expr *ax, struct axs_value *value,
2963 CORE_ADDR scope)
2964{
2965 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2966 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2967 value->kind = axs_lvalue_register;
2968 value->u.reg = tdep->ppc_lr_regnum;
2969}
2970
2971
18ed0c4e 2972/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2973static int
d3f73121 2974rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 2975{
d3f73121 2976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 2977
9f744501
JB
2978 if (0 <= num && num <= 31)
2979 return tdep->ppc_gp0_regnum + num;
2980 else if (32 <= num && num <= 63)
383f0f5b
JB
2981 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2982 specifies registers the architecture doesn't have? Our
2983 callers don't check the value we return. */
366f009f 2984 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2985 else if (77 <= num && num <= 108)
2986 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 2987 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 2988 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
2989 else
2990 switch (num)
2991 {
2992 case 64:
2993 return tdep->ppc_mq_regnum;
2994 case 65:
2995 return tdep->ppc_lr_regnum;
2996 case 66:
2997 return tdep->ppc_ctr_regnum;
2998 case 76:
2999 return tdep->ppc_xer_regnum;
3000 case 109:
3001 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
3002 case 110:
3003 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 3004 case 111:
18ed0c4e 3005 return tdep->ppc_acc_regnum;
867e2dc5 3006 case 112:
18ed0c4e 3007 return tdep->ppc_spefscr_regnum;
9f744501
JB
3008 default:
3009 return num;
3010 }
18ed0c4e 3011}
9f744501 3012
9f744501 3013
18ed0c4e
JB
3014/* Convert a Dwarf 2 register number to a GDB register number. */
3015static int
d3f73121 3016rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 3017{
d3f73121 3018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 3019
18ed0c4e
JB
3020 if (0 <= num && num <= 31)
3021 return tdep->ppc_gp0_regnum + num;
3022 else if (32 <= num && num <= 63)
3023 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3024 specifies registers the architecture doesn't have? Our
3025 callers don't check the value we return. */
3026 return tdep->ppc_fp0_regnum + (num - 32);
3027 else if (1124 <= num && num < 1124 + 32)
3028 return tdep->ppc_vr0_regnum + (num - 1124);
3029 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3030 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
3031 else
3032 switch (num)
3033 {
a489f789
AS
3034 case 64:
3035 return tdep->ppc_cr_regnum;
18ed0c4e
JB
3036 case 67:
3037 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3038 case 99:
3039 return tdep->ppc_acc_regnum;
3040 case 100:
3041 return tdep->ppc_mq_regnum;
3042 case 101:
3043 return tdep->ppc_xer_regnum;
3044 case 108:
3045 return tdep->ppc_lr_regnum;
3046 case 109:
3047 return tdep->ppc_ctr_regnum;
3048 case 356:
3049 return tdep->ppc_vrsave_regnum;
3050 case 612:
3051 return tdep->ppc_spefscr_regnum;
3052 default:
3053 return num;
3054 }
2188cbdd
EZ
3055}
3056
4fc771b8
DJ
3057/* Translate a .eh_frame register to DWARF register, or adjust a
3058 .debug_frame register. */
3059
3060static int
3061rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3062{
3063 /* GCC releases before 3.4 use GCC internal register numbering in
3064 .debug_frame (and .debug_info, et cetera). The numbering is
3065 different from the standard SysV numbering for everything except
3066 for GPRs and FPRs. We can not detect this problem in most cases
3067 - to get accurate debug info for variables living in lr, ctr, v0,
3068 et cetera, use a newer version of GCC. But we must detect
3069 one important case - lr is in column 65 in .debug_frame output,
3070 instead of 108.
3071
3072 GCC 3.4, and the "hammer" branch, have a related problem. They
3073 record lr register saves in .debug_frame as 108, but still record
3074 the return column as 65. We fix that up too.
3075
3076 We can do this because 65 is assigned to fpsr, and GCC never
3077 generates debug info referring to it. To add support for
3078 handwritten debug info that restores fpsr, we would need to add a
3079 producer version check to this. */
3080 if (!eh_frame_p)
3081 {
3082 if (num == 65)
3083 return 108;
3084 else
3085 return num;
3086 }
3087
3088 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3089 internal register numbering; translate that to the standard DWARF2
3090 register numbering. */
3091 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3092 return num;
3093 else if (68 <= num && num <= 75) /* cr0-cr8 */
3094 return num - 68 + 86;
3095 else if (77 <= num && num <= 108) /* vr0-vr31 */
3096 return num - 77 + 1124;
3097 else
3098 switch (num)
3099 {
3100 case 64: /* mq */
3101 return 100;
3102 case 65: /* lr */
3103 return 108;
3104 case 66: /* ctr */
3105 return 109;
3106 case 76: /* xer */
3107 return 101;
3108 case 109: /* vrsave */
3109 return 356;
3110 case 110: /* vscr */
3111 return 67;
3112 case 111: /* spe_acc */
3113 return 99;
3114 case 112: /* spefscr */
3115 return 612;
3116 default:
3117 return num;
3118 }
3119}
c906108c 3120\f
c5aa993b 3121
7a78ae4e 3122/* Handling the various POWER/PowerPC variants. */
c906108c 3123
c906108c 3124/* Information about a particular processor variant. */
7a78ae4e 3125
c906108c 3126struct variant
c5aa993b
JM
3127 {
3128 /* Name of this variant. */
3129 char *name;
c906108c 3130
c5aa993b
JM
3131 /* English description of the variant. */
3132 char *description;
c906108c 3133
64366f1c 3134 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3135 enum bfd_architecture arch;
3136
64366f1c 3137 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3138 unsigned long mach;
3139
7cc46491
DJ
3140 /* Target description for this variant. */
3141 struct target_desc **tdesc;
c5aa993b 3142 };
c906108c 3143
489461e2 3144static struct variant variants[] =
c906108c 3145{
7a78ae4e 3146 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3147 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3148 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3149 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3150 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3151 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3152 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3153 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3154 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3155 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3156 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3157 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3158 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3159 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3160 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3161 604, &tdesc_powerpc_604},
7a78ae4e 3162 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3163 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3164 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3165 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3166 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3167 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3168 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3169 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3170 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3171 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3172 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3173 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3174
5d57ee30
KB
3175 /* 64-bit */
3176 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3177 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3178 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3179 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3180 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3181 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3182 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3183 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3184 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3185 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3186 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3187 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3188
64366f1c 3189 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3190 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3191 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3192 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3193 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3194 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3195 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3196
3e45d68b 3197 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3198};
3199
7a78ae4e 3200/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3201 MACH. If no such variant exists, return null. */
c906108c 3202
7a78ae4e
ND
3203static const struct variant *
3204find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3205{
7a78ae4e 3206 const struct variant *v;
c5aa993b 3207
7a78ae4e
ND
3208 for (v = variants; v->name; v++)
3209 if (arch == v->arch && mach == v->mach)
3210 return v;
c906108c 3211
7a78ae4e 3212 return NULL;
c906108c 3213}
9364a0ef
EZ
3214
3215static int
3216gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3217{
40887e1a 3218 if (info->endian == BFD_ENDIAN_BIG)
9364a0ef
EZ
3219 return print_insn_big_powerpc (memaddr, info);
3220 else
3221 return print_insn_little_powerpc (memaddr, info);
3222}
7a78ae4e 3223\f
61a65099
KB
3224static CORE_ADDR
3225rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3226{
3e8c568d 3227 return frame_unwind_register_unsigned (next_frame,
8b164abb 3228 gdbarch_pc_regnum (gdbarch));
61a65099
KB
3229}
3230
3231static struct frame_id
1af5d7ce 3232rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61a65099 3233{
1af5d7ce
UW
3234 return frame_id_build (get_frame_register_unsigned
3235 (this_frame, gdbarch_sp_regnum (gdbarch)),
3236 get_frame_pc (this_frame));
61a65099
KB
3237}
3238
3239struct rs6000_frame_cache
3240{
3241 CORE_ADDR base;
3242 CORE_ADDR initial_sp;
3243 struct trad_frame_saved_reg *saved_regs;
50ae56ec
WW
3244
3245 /* Set BASE_P to true if this frame cache is properly initialized.
3246 Otherwise set to false because some registers or memory cannot
3247 collected. */
3248 int base_p;
3249 /* Cache PC for building unavailable frame. */
3250 CORE_ADDR pc;
61a65099
KB
3251};
3252
3253static struct rs6000_frame_cache *
1af5d7ce 3254rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3255{
3256 struct rs6000_frame_cache *cache;
1af5d7ce 3257 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3259 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3260 struct rs6000_framedata fdata;
3261 int wordsize = tdep->wordsize;
338435ef 3262 CORE_ADDR func = 0, pc = 0;
61a65099
KB
3263
3264 if ((*this_cache) != NULL)
19ba03f4 3265 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3266 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3267 (*this_cache) = cache;
50ae56ec 3268 cache->pc = 0;
1af5d7ce 3269 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3270
50ae56ec
WW
3271 TRY
3272 {
3273 func = get_frame_func (this_frame);
3274 cache->pc = func;
3275 pc = get_frame_pc (this_frame);
3276 skip_prologue (gdbarch, func, pc, &fdata);
3277
3278 /* Figure out the parent's stack pointer. */
3279
3280 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3281 address of the current frame. Things might be easier if the
3282 ->frame pointed to the outer-most address of the frame. In
3283 the mean time, the address of the prev frame is used as the
3284 base address of this frame. */
3285 cache->base = get_frame_register_unsigned
3286 (this_frame, gdbarch_sp_regnum (gdbarch));
3287 }
3288 CATCH (ex, RETURN_MASK_ERROR)
3289 {
3290 if (ex.error != NOT_AVAILABLE_ERROR)
3291 throw_exception (ex);
1ed0c2a4 3292 return (struct rs6000_frame_cache *) (*this_cache);
50ae56ec
WW
3293 }
3294 END_CATCH
e10b1c4c
DJ
3295
3296 /* If the function appears to be frameless, check a couple of likely
3297 indicators that we have simply failed to find the frame setup.
3298 Two common cases of this are missing symbols (i.e.
ef02daa9 3299 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3300 stubs which have a fast exit path but set up a frame on the slow
3301 path.
3302
3303 If the LR appears to return to this function, then presume that
3304 we have an ABI compliant frame that we failed to find. */
3305 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3306 {
e10b1c4c
DJ
3307 CORE_ADDR saved_lr;
3308 int make_frame = 0;
3309
1af5d7ce 3310 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3311 if (func == 0 && saved_lr == pc)
3312 make_frame = 1;
3313 else if (func != 0)
3314 {
3315 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3316 if (func == saved_func)
3317 make_frame = 1;
3318 }
3319
3320 if (make_frame)
3321 {
3322 fdata.frameless = 0;
de6a76fd 3323 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3324 }
61a65099 3325 }
e10b1c4c
DJ
3326
3327 if (!fdata.frameless)
9d9bf2df
EBM
3328 {
3329 /* Frameless really means stackless. */
cc2c4da8 3330 ULONGEST backchain;
9d9bf2df 3331
cc2c4da8
MK
3332 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3333 byte_order, &backchain))
9d9bf2df
EBM
3334 cache->base = (CORE_ADDR) backchain;
3335 }
e10b1c4c 3336
3e8c568d 3337 trad_frame_set_value (cache->saved_regs,
8b164abb 3338 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
3339
3340 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3341 All fpr's from saved_fpr to fp31 are saved. */
3342
3343 if (fdata.saved_fpr >= 0)
3344 {
3345 int i;
3346 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3347
3348 /* If skip_prologue says floating-point registers were saved,
3349 but the current architecture has no floating-point registers,
3350 then that's strange. But we have no indices to even record
3351 the addresses under, so we just ignore it. */
3352 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3353 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3354 {
3355 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3356 fpr_addr += 8;
3357 }
61a65099
KB
3358 }
3359
3360 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3361 All gpr's from saved_gpr to gpr31 are saved (except during the
3362 prologue). */
61a65099
KB
3363
3364 if (fdata.saved_gpr >= 0)
3365 {
3366 int i;
3367 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3368 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3369 {
46a9b8ed
DJ
3370 if (fdata.gpr_mask & (1U << i))
3371 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
61a65099
KB
3372 gpr_addr += wordsize;
3373 }
3374 }
3375
3376 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3377 All vr's from saved_vr to vr31 are saved. */
3378 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3379 {
3380 if (fdata.saved_vr >= 0)
3381 {
3382 int i;
3383 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3384 for (i = fdata.saved_vr; i < 32; i++)
3385 {
3386 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3387 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3388 }
3389 }
3390 }
3391
3392 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3393 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3394 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3395 {
3396 if (fdata.saved_ev >= 0)
3397 {
3398 int i;
3399 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3400 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3401
063715bf 3402 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3403 {
3404 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
dea80df0 3405 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
61a65099 3406 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3407 }
61a65099
KB
3408 }
3409 }
3410
3411 /* If != 0, fdata.cr_offset is the offset from the frame that
3412 holds the CR. */
3413 if (fdata.cr_offset != 0)
0df8b418
MS
3414 cache->saved_regs[tdep->ppc_cr_regnum].addr
3415 = cache->base + fdata.cr_offset;
61a65099
KB
3416
3417 /* If != 0, fdata.lr_offset is the offset from the frame that
3418 holds the LR. */
3419 if (fdata.lr_offset != 0)
0df8b418
MS
3420 cache->saved_regs[tdep->ppc_lr_regnum].addr
3421 = cache->base + fdata.lr_offset;
46a9b8ed
DJ
3422 else if (fdata.lr_register != -1)
3423 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
61a65099 3424 /* The PC is found in the link register. */
8b164abb 3425 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3426 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3427
3428 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3429 holds the VRSAVE. */
3430 if (fdata.vrsave_offset != 0)
0df8b418
MS
3431 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3432 = cache->base + fdata.vrsave_offset;
61a65099
KB
3433
3434 if (fdata.alloca_reg < 0)
3435 /* If no alloca register used, then fi->frame is the value of the
3436 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3437 cache->initial_sp
3438 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3439 else
1af5d7ce
UW
3440 cache->initial_sp
3441 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099 3442
50ae56ec 3443 cache->base_p = 1;
61a65099
KB
3444 return cache;
3445}
3446
3447static void
1af5d7ce 3448rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3449 struct frame_id *this_id)
3450{
1af5d7ce 3451 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3452 this_cache);
50ae56ec
WW
3453
3454 if (!info->base_p)
3455 {
3456 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3457 return;
3458 }
3459
5b197912
UW
3460 /* This marks the outermost frame. */
3461 if (info->base == 0)
3462 return;
3463
1af5d7ce 3464 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3465}
3466
1af5d7ce
UW
3467static struct value *
3468rs6000_frame_prev_register (struct frame_info *this_frame,
3469 void **this_cache, int regnum)
61a65099 3470{
1af5d7ce 3471 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3472 this_cache);
1af5d7ce 3473 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3474}
3475
3476static const struct frame_unwind rs6000_frame_unwind =
3477{
3478 NORMAL_FRAME,
8fbca658 3479 default_frame_unwind_stop_reason,
61a65099 3480 rs6000_frame_this_id,
1af5d7ce
UW
3481 rs6000_frame_prev_register,
3482 NULL,
3483 default_frame_sniffer
61a65099 3484};
2608dbf8 3485
ddeca1df
WW
3486/* Allocate and initialize a frame cache for an epilogue frame.
3487 SP is restored and prev-PC is stored in LR. */
3488
2608dbf8
WW
3489static struct rs6000_frame_cache *
3490rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3491{
2608dbf8
WW
3492 struct rs6000_frame_cache *cache;
3493 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3495
3496 if (*this_cache)
19ba03f4 3497 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3498
3499 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3500 (*this_cache) = cache;
3501 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3502
492d29ea 3503 TRY
2608dbf8
WW
3504 {
3505 /* At this point the stack looks as if we just entered the
3506 function, and the return address is stored in LR. */
3507 CORE_ADDR sp, lr;
3508
3509 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3510 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3511
3512 cache->base = sp;
3513 cache->initial_sp = sp;
3514
3515 trad_frame_set_value (cache->saved_regs,
3516 gdbarch_pc_regnum (gdbarch), lr);
3517 }
492d29ea 3518 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
3519 {
3520 if (ex.error != NOT_AVAILABLE_ERROR)
3521 throw_exception (ex);
3522 }
492d29ea 3523 END_CATCH
2608dbf8
WW
3524
3525 return cache;
3526}
3527
ddeca1df
WW
3528/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3529 Return the frame ID of an epilogue frame. */
3530
2608dbf8
WW
3531static void
3532rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3533 void **this_cache, struct frame_id *this_id)
3534{
3535 CORE_ADDR pc;
3536 struct rs6000_frame_cache *info =
3537 rs6000_epilogue_frame_cache (this_frame, this_cache);
3538
3539 pc = get_frame_func (this_frame);
3540 if (info->base == 0)
3541 (*this_id) = frame_id_build_unavailable_stack (pc);
3542 else
3543 (*this_id) = frame_id_build (info->base, pc);
3544}
3545
ddeca1df
WW
3546/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3547 Return the register value of REGNUM in previous frame. */
3548
2608dbf8
WW
3549static struct value *
3550rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3551 void **this_cache, int regnum)
3552{
3553 struct rs6000_frame_cache *info =
3554 rs6000_epilogue_frame_cache (this_frame, this_cache);
3555 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3556}
3557
ddeca1df
WW
3558/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3559 Check whether this an epilogue frame. */
3560
2608dbf8
WW
3561static int
3562rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3563 struct frame_info *this_frame,
3564 void **this_prologue_cache)
3565{
3566 if (frame_relative_level (this_frame) == 0)
3567 return rs6000_in_function_epilogue_frame_p (this_frame,
3568 get_frame_arch (this_frame),
3569 get_frame_pc (this_frame));
3570 else
3571 return 0;
3572}
3573
ddeca1df
WW
3574/* Frame unwinder for epilogue frame. This is required for reverse step-over
3575 a function without debug information. */
3576
2608dbf8
WW
3577static const struct frame_unwind rs6000_epilogue_frame_unwind =
3578{
3579 NORMAL_FRAME,
3580 default_frame_unwind_stop_reason,
3581 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3582 NULL,
3583 rs6000_epilogue_frame_sniffer
3584};
61a65099
KB
3585\f
3586
3587static CORE_ADDR
1af5d7ce 3588rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3589{
1af5d7ce 3590 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3591 this_cache);
3592 return info->initial_sp;
3593}
3594
3595static const struct frame_base rs6000_frame_base = {
3596 &rs6000_frame_unwind,
3597 rs6000_frame_base_address,
3598 rs6000_frame_base_address,
3599 rs6000_frame_base_address
3600};
3601
3602static const struct frame_base *
1af5d7ce 3603rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3604{
3605 return &rs6000_frame_base;
3606}
3607
9274a07c
LM
3608/* DWARF-2 frame support. Used to handle the detection of
3609 clobbered registers during function calls. */
3610
3611static void
3612ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3613 struct dwarf2_frame_state_reg *reg,
4a4e5149 3614 struct frame_info *this_frame)
9274a07c
LM
3615{
3616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3617
3618 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3619 non-volatile registers. We will use the same code for both. */
3620
3621 /* Call-saved GP registers. */
3622 if ((regnum >= tdep->ppc_gp0_regnum + 14
3623 && regnum <= tdep->ppc_gp0_regnum + 31)
3624 || (regnum == tdep->ppc_gp0_regnum + 1))
3625 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3626
3627 /* Call-clobbered GP registers. */
3628 if ((regnum >= tdep->ppc_gp0_regnum + 3
3629 && regnum <= tdep->ppc_gp0_regnum + 12)
3630 || (regnum == tdep->ppc_gp0_regnum))
3631 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3632
3633 /* Deal with FP registers, if supported. */
3634 if (tdep->ppc_fp0_regnum >= 0)
3635 {
3636 /* Call-saved FP registers. */
3637 if ((regnum >= tdep->ppc_fp0_regnum + 14
3638 && regnum <= tdep->ppc_fp0_regnum + 31))
3639 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3640
3641 /* Call-clobbered FP registers. */
3642 if ((regnum >= tdep->ppc_fp0_regnum
3643 && regnum <= tdep->ppc_fp0_regnum + 13))
3644 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3645 }
3646
3647 /* Deal with ALTIVEC registers, if supported. */
3648 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3649 {
3650 /* Call-saved Altivec registers. */
3651 if ((regnum >= tdep->ppc_vr0_regnum + 20
3652 && regnum <= tdep->ppc_vr0_regnum + 31)
3653 || regnum == tdep->ppc_vrsave_regnum)
3654 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3655
3656 /* Call-clobbered Altivec registers. */
3657 if ((regnum >= tdep->ppc_vr0_regnum
3658 && regnum <= tdep->ppc_vr0_regnum + 19))
3659 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3660 }
3661
3662 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3663 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3664 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3665 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3666 reg->how = DWARF2_FRAME_REG_CFA;
3667}
3668
3669
74af9197
NF
3670/* Return true if a .gnu_attributes section exists in BFD and it
3671 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3672 section exists in BFD and it indicates that SPE extensions are in
3673 use. Check the .gnu.attributes section first, as the binary might be
3674 compiled for SPE, but not actually using SPE instructions. */
3675
3676static int
3677bfd_uses_spe_extensions (bfd *abfd)
3678{
3679 asection *sect;
3680 gdb_byte *contents = NULL;
3681 bfd_size_type size;
3682 gdb_byte *ptr;
3683 int success = 0;
3684 int vector_abi;
3685
3686 if (!abfd)
3687 return 0;
3688
50a99728 3689#ifdef HAVE_ELF
74af9197
NF
3690 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3691 could be using the SPE vector abi without actually using any spe
3692 bits whatsoever. But it's close enough for now. */
3693 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3694 Tag_GNU_Power_ABI_Vector);
3695 if (vector_abi == 3)
3696 return 1;
50a99728 3697#endif
74af9197
NF
3698
3699 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3700 if (!sect)
3701 return 0;
3702
3703 size = bfd_get_section_size (sect);
224c3ddb 3704 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3705 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3706 {
3707 xfree (contents);
3708 return 0;
3709 }
3710
3711 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3712
3713 struct {
3714 uint32 name_len;
3715 uint32 data_len;
3716 uint32 type;
3717 char name[name_len rounded up to 4-byte alignment];
3718 char data[data_len];
3719 };
3720
3721 Technically, there's only supposed to be one such structure in a
3722 given apuinfo section, but the linker is not always vigilant about
3723 merging apuinfo sections from input files. Just go ahead and parse
3724 them all, exiting early when we discover the binary uses SPE
3725 insns.
3726
3727 It's not specified in what endianness the information in this
3728 section is stored. Assume that it's the endianness of the BFD. */
3729 ptr = contents;
3730 while (1)
3731 {
3732 unsigned int name_len;
3733 unsigned int data_len;
3734 unsigned int type;
3735
3736 /* If we can't read the first three fields, we're done. */
3737 if (size < 12)
3738 break;
3739
3740 name_len = bfd_get_32 (abfd, ptr);
3741 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3742 data_len = bfd_get_32 (abfd, ptr + 4);
3743 type = bfd_get_32 (abfd, ptr + 8);
3744 ptr += 12;
3745
3746 /* The name must be "APUinfo\0". */
3747 if (name_len != 8
3748 && strcmp ((const char *) ptr, "APUinfo") != 0)
3749 break;
3750 ptr += name_len;
3751
3752 /* The type must be 2. */
3753 if (type != 2)
3754 break;
3755
3756 /* The data is stored as a series of uint32. The upper half of
3757 each uint32 indicates the particular APU used and the lower
3758 half indicates the revision of that APU. We just care about
3759 the upper half. */
3760
3761 /* Not 4-byte quantities. */
3762 if (data_len & 3U)
3763 break;
3764
3765 while (data_len)
3766 {
3767 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3768 unsigned int apu = apuinfo >> 16;
3769 ptr += 4;
3770 data_len -= 4;
3771
3772 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3773 either. */
3774 if (apu == 0x100 || apu == 0x101)
3775 {
3776 success = 1;
3777 data_len = 0;
3778 }
3779 }
3780
3781 if (success)
3782 break;
3783 }
3784
3785 xfree (contents);
3786 return success;
3787}
3788
b4cdae6f
WW
3789/* These are macros for parsing instruction fields (I.1.6.28) */
3790
3791#define PPC_FIELD(value, from, len) \
3792 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3793#define PPC_SEXT(v, bs) \
3794 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3795 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3796 - ((CORE_ADDR) 1 << ((bs) - 1)))
3797#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3798#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3799#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3800#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3801#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3802#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3803#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3804#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3805#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3806#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3807 | (PPC_FIELD (insn, 16, 5) << 5))
3808#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3809#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3810#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3811#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
6ec2b213 3812#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
b4cdae6f
WW
3813#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3814#define PPC_OE(insn) PPC_BIT (insn, 21)
3815#define PPC_RC(insn) PPC_BIT (insn, 31)
3816#define PPC_Rc(insn) PPC_BIT (insn, 21)
3817#define PPC_LK(insn) PPC_BIT (insn, 31)
3818#define PPC_TX(insn) PPC_BIT (insn, 31)
3819#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3820
3821#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3822#define PPC_XER_NB(xer) (xer & 0x7f)
3823
ddeca1df
WW
3824/* Record Vector-Scalar Registers.
3825 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3826 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
3827
3828static int
3829ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3830{
3831 if (vsr < 0 || vsr >= 64)
3832 return -1;
3833
3834 if (vsr >= 32)
3835 {
3836 if (tdep->ppc_vr0_regnum >= 0)
3837 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3838 }
3839 else
3840 {
3841 if (tdep->ppc_fp0_regnum >= 0)
3842 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3843 if (tdep->ppc_vsr0_upper_regnum >= 0)
3844 record_full_arch_list_add_reg (regcache,
3845 tdep->ppc_vsr0_upper_regnum + vsr);
3846 }
3847
3848 return 0;
3849}
3850
ddeca1df
WW
3851/* Parse and record instructions primary opcode-4 at ADDR.
3852 Return 0 if successful. */
b4cdae6f
WW
3853
3854static int
3855ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 3856 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
3857{
3858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3859 int ext = PPC_FIELD (insn, 21, 11);
6ec2b213 3860 int vra = PPC_FIELD (insn, 11, 5);
b4cdae6f
WW
3861
3862 switch (ext & 0x3f)
3863 {
3864 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3865 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3866 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3867 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3868 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3869 /* FALL-THROUGH */
3870 case 42: /* Vector Select */
3871 case 43: /* Vector Permute */
6ec2b213 3872 case 59: /* Vector Permute Right-indexed */
b4cdae6f
WW
3873 case 44: /* Vector Shift Left Double by Octet Immediate */
3874 case 45: /* Vector Permute and Exclusive-OR */
3875 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3876 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3877 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3878 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3879 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
6ec2b213 3880 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
b4cdae6f
WW
3881 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3882 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3883 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3884 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3885 case 46: /* Vector Multiply-Add Single-Precision */
3886 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3887 record_full_arch_list_add_reg (regcache,
3888 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3889 return 0;
6ec2b213
EBM
3890
3891 case 48: /* Multiply-Add High Doubleword */
3892 case 49: /* Multiply-Add High Doubleword Unsigned */
3893 case 51: /* Multiply-Add Low Doubleword */
3894 record_full_arch_list_add_reg (regcache,
3895 tdep->ppc_gp0_regnum + PPC_RT (insn));
3896 return 0;
b4cdae6f
WW
3897 }
3898
3899 switch ((ext & 0x1ff))
3900 {
6ec2b213
EBM
3901 case 385:
3902 if (vra != 0 /* Decimal Convert To Signed Quadword */
3903 && vra != 2 /* Decimal Convert From Signed Quadword */
3904 && vra != 4 /* Decimal Convert To Zoned */
3905 && vra != 5 /* Decimal Convert To National */
3906 && vra != 6 /* Decimal Convert From Zoned */
3907 && vra != 7 /* Decimal Convert From National */
3908 && vra != 31) /* Decimal Set Sign */
3909 break;
b4cdae6f
WW
3910 /* 5.16 Decimal Integer Arithmetic Instructions */
3911 case 1: /* Decimal Add Modulo */
3912 case 65: /* Decimal Subtract Modulo */
3913
6ec2b213
EBM
3914 case 193: /* Decimal Shift */
3915 case 129: /* Decimal Unsigned Shift */
3916 case 449: /* Decimal Shift and Round */
3917
3918 case 257: /* Decimal Truncate */
3919 case 321: /* Decimal Unsigned Truncate */
3920
b4cdae6f
WW
3921 /* Bit-21 should be set. */
3922 if (!PPC_BIT (insn, 21))
3923 break;
3924
3925 record_full_arch_list_add_reg (regcache,
3926 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3927 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3928 return 0;
3929 }
3930
3931 /* Bit-21 is used for RC */
3932 switch (ext & 0x3ff)
3933 {
3934 case 6: /* Vector Compare Equal To Unsigned Byte */
3935 case 70: /* Vector Compare Equal To Unsigned Halfword */
3936 case 134: /* Vector Compare Equal To Unsigned Word */
3937 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3938 case 774: /* Vector Compare Greater Than Signed Byte */
3939 case 838: /* Vector Compare Greater Than Signed Halfword */
3940 case 902: /* Vector Compare Greater Than Signed Word */
3941 case 967: /* Vector Compare Greater Than Signed Doubleword */
3942 case 518: /* Vector Compare Greater Than Unsigned Byte */
3943 case 646: /* Vector Compare Greater Than Unsigned Word */
3944 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3945 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3946 case 966: /* Vector Compare Bounds Single-Precision */
3947 case 198: /* Vector Compare Equal To Single-Precision */
3948 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3949 case 710: /* Vector Compare Greater Than Single-Precision */
6ec2b213
EBM
3950 case 7: /* Vector Compare Not Equal Byte */
3951 case 71: /* Vector Compare Not Equal Halfword */
3952 case 135: /* Vector Compare Not Equal Word */
3953 case 263: /* Vector Compare Not Equal or Zero Byte */
3954 case 327: /* Vector Compare Not Equal or Zero Halfword */
3955 case 391: /* Vector Compare Not Equal or Zero Word */
b4cdae6f
WW
3956 if (PPC_Rc (insn))
3957 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3958 record_full_arch_list_add_reg (regcache,
3959 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3960 return 0;
3961 }
3962
6ec2b213
EBM
3963 if (ext == 1538)
3964 {
3965 switch (vra)
3966 {
3967 case 0: /* Vector Count Leading Zero Least-Significant Bits
3968 Byte */
3969 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3970 Byte */
3971 record_full_arch_list_add_reg (regcache,
3972 tdep->ppc_gp0_regnum + PPC_RT (insn));
3973 return 0;
3974
3975 case 6: /* Vector Negate Word */
3976 case 7: /* Vector Negate Doubleword */
3977 case 8: /* Vector Parity Byte Word */
3978 case 9: /* Vector Parity Byte Doubleword */
3979 case 10: /* Vector Parity Byte Quadword */
3980 case 16: /* Vector Extend Sign Byte To Word */
3981 case 17: /* Vector Extend Sign Halfword To Word */
3982 case 24: /* Vector Extend Sign Byte To Doubleword */
3983 case 25: /* Vector Extend Sign Halfword To Doubleword */
3984 case 26: /* Vector Extend Sign Word To Doubleword */
3985 case 28: /* Vector Count Trailing Zeros Byte */
3986 case 29: /* Vector Count Trailing Zeros Halfword */
3987 case 30: /* Vector Count Trailing Zeros Word */
3988 case 31: /* Vector Count Trailing Zeros Doubleword */
3989 record_full_arch_list_add_reg (regcache,
3990 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3991 return 0;
3992 }
3993 }
3994
b4cdae6f
WW
3995 switch (ext)
3996 {
3997 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3998 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3999 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4000 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4001 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4002 case 462: /* Vector Pack Signed Word Signed Saturate */
4003 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4004 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4005 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4006 case 512: /* Vector Add Unsigned Byte Saturate */
4007 case 576: /* Vector Add Unsigned Halfword Saturate */
4008 case 640: /* Vector Add Unsigned Word Saturate */
4009 case 768: /* Vector Add Signed Byte Saturate */
4010 case 832: /* Vector Add Signed Halfword Saturate */
4011 case 896: /* Vector Add Signed Word Saturate */
4012 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4013 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4014 case 1664: /* Vector Subtract Unsigned Word Saturate */
4015 case 1792: /* Vector Subtract Signed Byte Saturate */
4016 case 1856: /* Vector Subtract Signed Halfword Saturate */
4017 case 1920: /* Vector Subtract Signed Word Saturate */
4018
4019 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4020 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4021 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4022 case 1672: /* Vector Sum across Half Signed Word Saturate */
4023 case 1928: /* Vector Sum across Signed Word Saturate */
4024 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4025 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4026 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4027 /* FALL-THROUGH */
4028 case 12: /* Vector Merge High Byte */
4029 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4030 case 76: /* Vector Merge High Halfword */
4031 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4032 case 140: /* Vector Merge High Word */
4033 case 268: /* Vector Merge Low Byte */
4034 case 332: /* Vector Merge Low Halfword */
4035 case 396: /* Vector Merge Low Word */
4036 case 526: /* Vector Unpack High Signed Byte */
4037 case 590: /* Vector Unpack High Signed Halfword */
4038 case 654: /* Vector Unpack Low Signed Byte */
4039 case 718: /* Vector Unpack Low Signed Halfword */
4040 case 782: /* Vector Pack Pixel */
4041 case 846: /* Vector Unpack High Pixel */
4042 case 974: /* Vector Unpack Low Pixel */
4043 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4044 case 1614: /* Vector Unpack High Signed Word */
4045 case 1676: /* Vector Merge Odd Word */
4046 case 1742: /* Vector Unpack Low Signed Word */
4047 case 1932: /* Vector Merge Even Word */
4048 case 524: /* Vector Splat Byte */
4049 case 588: /* Vector Splat Halfword */
4050 case 652: /* Vector Splat Word */
4051 case 780: /* Vector Splat Immediate Signed Byte */
4052 case 844: /* Vector Splat Immediate Signed Halfword */
4053 case 908: /* Vector Splat Immediate Signed Word */
4054 case 452: /* Vector Shift Left */
4055 case 708: /* Vector Shift Right */
4056 case 1036: /* Vector Shift Left by Octet */
4057 case 1100: /* Vector Shift Right by Octet */
4058 case 0: /* Vector Add Unsigned Byte Modulo */
4059 case 64: /* Vector Add Unsigned Halfword Modulo */
4060 case 128: /* Vector Add Unsigned Word Modulo */
4061 case 192: /* Vector Add Unsigned Doubleword Modulo */
4062 case 256: /* Vector Add Unsigned Quadword Modulo */
4063 case 320: /* Vector Add & write Carry Unsigned Quadword */
4064 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4065 case 8: /* Vector Multiply Odd Unsigned Byte */
4066 case 72: /* Vector Multiply Odd Unsigned Halfword */
4067 case 136: /* Vector Multiply Odd Unsigned Word */
4068 case 264: /* Vector Multiply Odd Signed Byte */
4069 case 328: /* Vector Multiply Odd Signed Halfword */
4070 case 392: /* Vector Multiply Odd Signed Word */
4071 case 520: /* Vector Multiply Even Unsigned Byte */
4072 case 584: /* Vector Multiply Even Unsigned Halfword */
4073 case 648: /* Vector Multiply Even Unsigned Word */
4074 case 776: /* Vector Multiply Even Signed Byte */
4075 case 840: /* Vector Multiply Even Signed Halfword */
4076 case 904: /* Vector Multiply Even Signed Word */
4077 case 137: /* Vector Multiply Unsigned Word Modulo */
4078 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4079 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4080 case 1152: /* Vector Subtract Unsigned Word Modulo */
4081 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4082 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4083 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4084 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4085 case 1282: /* Vector Average Signed Byte */
4086 case 1346: /* Vector Average Signed Halfword */
4087 case 1410: /* Vector Average Signed Word */
4088 case 1026: /* Vector Average Unsigned Byte */
4089 case 1090: /* Vector Average Unsigned Halfword */
4090 case 1154: /* Vector Average Unsigned Word */
4091 case 258: /* Vector Maximum Signed Byte */
4092 case 322: /* Vector Maximum Signed Halfword */
4093 case 386: /* Vector Maximum Signed Word */
4094 case 450: /* Vector Maximum Signed Doubleword */
4095 case 2: /* Vector Maximum Unsigned Byte */
4096 case 66: /* Vector Maximum Unsigned Halfword */
4097 case 130: /* Vector Maximum Unsigned Word */
4098 case 194: /* Vector Maximum Unsigned Doubleword */
4099 case 770: /* Vector Minimum Signed Byte */
4100 case 834: /* Vector Minimum Signed Halfword */
4101 case 898: /* Vector Minimum Signed Word */
4102 case 962: /* Vector Minimum Signed Doubleword */
4103 case 514: /* Vector Minimum Unsigned Byte */
4104 case 578: /* Vector Minimum Unsigned Halfword */
4105 case 642: /* Vector Minimum Unsigned Word */
4106 case 706: /* Vector Minimum Unsigned Doubleword */
4107 case 1028: /* Vector Logical AND */
4108 case 1668: /* Vector Logical Equivalent */
4109 case 1092: /* Vector Logical AND with Complement */
4110 case 1412: /* Vector Logical NAND */
4111 case 1348: /* Vector Logical OR with Complement */
4112 case 1156: /* Vector Logical OR */
4113 case 1284: /* Vector Logical NOR */
4114 case 1220: /* Vector Logical XOR */
4115 case 4: /* Vector Rotate Left Byte */
4116 case 132: /* Vector Rotate Left Word VX-form */
4117 case 68: /* Vector Rotate Left Halfword */
4118 case 196: /* Vector Rotate Left Doubleword */
4119 case 260: /* Vector Shift Left Byte */
4120 case 388: /* Vector Shift Left Word */
4121 case 324: /* Vector Shift Left Halfword */
4122 case 1476: /* Vector Shift Left Doubleword */
4123 case 516: /* Vector Shift Right Byte */
4124 case 644: /* Vector Shift Right Word */
4125 case 580: /* Vector Shift Right Halfword */
4126 case 1732: /* Vector Shift Right Doubleword */
4127 case 772: /* Vector Shift Right Algebraic Byte */
4128 case 900: /* Vector Shift Right Algebraic Word */
4129 case 836: /* Vector Shift Right Algebraic Halfword */
4130 case 964: /* Vector Shift Right Algebraic Doubleword */
4131 case 10: /* Vector Add Single-Precision */
4132 case 74: /* Vector Subtract Single-Precision */
4133 case 1034: /* Vector Maximum Single-Precision */
4134 case 1098: /* Vector Minimum Single-Precision */
4135 case 842: /* Vector Convert From Signed Fixed-Point Word */
4136 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4137 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4138 case 522: /* Vector Round to Single-Precision Integer Nearest */
4139 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4140 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4141 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4142 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4143 case 266: /* Vector Reciprocal Estimate Single-Precision */
4144 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4145 case 1288: /* Vector AES Cipher */
4146 case 1289: /* Vector AES Cipher Last */
4147 case 1352: /* Vector AES Inverse Cipher */
4148 case 1353: /* Vector AES Inverse Cipher Last */
4149 case 1480: /* Vector AES SubBytes */
4150 case 1730: /* Vector SHA-512 Sigma Doubleword */
4151 case 1666: /* Vector SHA-256 Sigma Word */
4152 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4153 case 1160: /* Vector Polynomial Multiply-Sum Word */
4154 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4155 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4156 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4157 case 1794: /* Vector Count Leading Zeros Byte */
4158 case 1858: /* Vector Count Leading Zeros Halfword */
4159 case 1922: /* Vector Count Leading Zeros Word */
4160 case 1986: /* Vector Count Leading Zeros Doubleword */
4161 case 1795: /* Vector Population Count Byte */
4162 case 1859: /* Vector Population Count Halfword */
4163 case 1923: /* Vector Population Count Word */
4164 case 1987: /* Vector Population Count Doubleword */
4165 case 1356: /* Vector Bit Permute Quadword */
6ec2b213
EBM
4166 case 1484: /* Vector Bit Permute Doubleword */
4167 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4168 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4169 Quadword */
4170 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4171 case 65: /* Vector Multiply-by-10 Extended & write Carry
4172 Unsigned Quadword */
4173 case 1027: /* Vector Absolute Difference Unsigned Byte */
4174 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4175 case 1155: /* Vector Absolute Difference Unsigned Word */
4176 case 1796: /* Vector Shift Right Variable */
4177 case 1860: /* Vector Shift Left Variable */
4178 case 133: /* Vector Rotate Left Word then Mask Insert */
4179 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4180 case 389: /* Vector Rotate Left Word then AND with Mask */
4181 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4182 case 525: /* Vector Extract Unsigned Byte */
4183 case 589: /* Vector Extract Unsigned Halfword */
4184 case 653: /* Vector Extract Unsigned Word */
4185 case 717: /* Vector Extract Doubleword */
4186 case 781: /* Vector Insert Byte */
4187 case 845: /* Vector Insert Halfword */
4188 case 909: /* Vector Insert Word */
4189 case 973: /* Vector Insert Doubleword */
b4cdae6f
WW
4190 record_full_arch_list_add_reg (regcache,
4191 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4192 return 0;
4193
6ec2b213
EBM
4194 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4195 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4196 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4197 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4198 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4199 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4200 record_full_arch_list_add_reg (regcache,
4201 tdep->ppc_gp0_regnum + PPC_RT (insn));
4202 return 0;
4203
b4cdae6f
WW
4204 case 1604: /* Move To Vector Status and Control Register */
4205 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4206 return 0;
4207 case 1540: /* Move From Vector Status and Control Register */
4208 record_full_arch_list_add_reg (regcache,
4209 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4210 return 0;
6ec2b213
EBM
4211 case 833: /* Decimal Copy Sign */
4212 record_full_arch_list_add_reg (regcache,
4213 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4214 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4215 return 0;
b4cdae6f
WW
4216 }
4217
810c1026
WW
4218 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4219 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4220 return -1;
4221}
4222
ddeca1df
WW
4223/* Parse and record instructions of primary opcode-19 at ADDR.
4224 Return 0 if successful. */
b4cdae6f
WW
4225
4226static int
4227ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4228 CORE_ADDR addr, uint32_t insn)
4229{
4230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4231 int ext = PPC_EXTOP (insn);
4232
6ec2b213
EBM
4233 switch (ext & 0x01f)
4234 {
4235 case 2: /* Add PC Immediate Shifted */
4236 record_full_arch_list_add_reg (regcache,
4237 tdep->ppc_gp0_regnum + PPC_RT (insn));
4238 return 0;
4239 }
4240
b4cdae6f
WW
4241 switch (ext)
4242 {
4243 case 0: /* Move Condition Register Field */
4244 case 33: /* Condition Register NOR */
4245 case 129: /* Condition Register AND with Complement */
4246 case 193: /* Condition Register XOR */
4247 case 225: /* Condition Register NAND */
4248 case 257: /* Condition Register AND */
4249 case 289: /* Condition Register Equivalent */
4250 case 417: /* Condition Register OR with Complement */
4251 case 449: /* Condition Register OR */
4252 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4253 return 0;
4254
4255 case 16: /* Branch Conditional */
4256 case 560: /* Branch Conditional to Branch Target Address Register */
4257 if ((PPC_BO (insn) & 0x4) == 0)
4258 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4259 /* FALL-THROUGH */
4260 case 528: /* Branch Conditional to Count Register */
4261 if (PPC_LK (insn))
4262 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4263 return 0;
4264
4265 case 150: /* Instruction Synchronize */
4266 /* Do nothing. */
4267 return 0;
4268 }
4269
810c1026
WW
4270 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4271 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4272 return -1;
4273}
4274
ddeca1df
WW
4275/* Parse and record instructions of primary opcode-31 at ADDR.
4276 Return 0 if successful. */
b4cdae6f
WW
4277
4278static int
4279ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4280 CORE_ADDR addr, uint32_t insn)
4281{
4282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4283 int ext = PPC_EXTOP (insn);
4284 int tmp, nr, nb, i;
4285 CORE_ADDR at_dcsz, ea = 0;
4286 ULONGEST rb, ra, xer;
4287 int size = 0;
4288
4289 /* These instructions have OE bit. */
4290 switch (ext & 0x1ff)
4291 {
4292 /* These write RT and XER. Update CR if RC is set. */
4293 case 8: /* Subtract from carrying */
4294 case 10: /* Add carrying */
4295 case 136: /* Subtract from extended */
4296 case 138: /* Add extended */
4297 case 200: /* Subtract from zero extended */
4298 case 202: /* Add to zero extended */
4299 case 232: /* Subtract from minus one extended */
4300 case 234: /* Add to minus one extended */
4301 /* CA is always altered, but SO/OV are only altered when OE=1.
4302 In any case, XER is always altered. */
4303 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4304 if (PPC_RC (insn))
4305 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4306 record_full_arch_list_add_reg (regcache,
4307 tdep->ppc_gp0_regnum + PPC_RT (insn));
4308 return 0;
4309
4310 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4311 case 40: /* Subtract from */
4312 case 104: /* Negate */
4313 case 233: /* Multiply low doubleword */
4314 case 235: /* Multiply low word */
4315 case 266: /* Add */
4316 case 393: /* Divide Doubleword Extended Unsigned */
4317 case 395: /* Divide Word Extended Unsigned */
4318 case 425: /* Divide Doubleword Extended */
4319 case 427: /* Divide Word Extended */
4320 case 457: /* Divide Doubleword Unsigned */
4321 case 459: /* Divide Word Unsigned */
4322 case 489: /* Divide Doubleword */
4323 case 491: /* Divide Word */
4324 if (PPC_OE (insn))
4325 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4326 /* FALL-THROUGH */
4327 case 9: /* Multiply High Doubleword Unsigned */
4328 case 11: /* Multiply High Word Unsigned */
4329 case 73: /* Multiply High Doubleword */
4330 case 75: /* Multiply High Word */
4331 if (PPC_RC (insn))
4332 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4333 record_full_arch_list_add_reg (regcache,
4334 tdep->ppc_gp0_regnum + PPC_RT (insn));
4335 return 0;
4336 }
4337
4338 if ((ext & 0x1f) == 15)
4339 {
4340 /* Integer Select. bit[16:20] is used for BC. */
4341 record_full_arch_list_add_reg (regcache,
4342 tdep->ppc_gp0_regnum + PPC_RT (insn));
4343 return 0;
4344 }
4345
6ec2b213
EBM
4346 if ((ext & 0xff) == 170)
4347 {
4348 /* Add Extended using alternate carry bits */
4349 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4350 record_full_arch_list_add_reg (regcache,
4351 tdep->ppc_gp0_regnum + PPC_RT (insn));
4352 return 0;
4353 }
4354
b4cdae6f
WW
4355 switch (ext)
4356 {
4357 case 78: /* Determine Leftmost Zero Byte */
4358 if (PPC_RC (insn))
4359 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4360 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4361 record_full_arch_list_add_reg (regcache,
4362 tdep->ppc_gp0_regnum + PPC_RT (insn));
4363 return 0;
4364
4365 /* These only write RT. */
4366 case 19: /* Move from condition register */
4367 /* Move From One Condition Register Field */
4368 case 74: /* Add and Generate Sixes */
4369 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4370 case 302: /* Move From Branch History Rolling Buffer */
4371 case 339: /* Move From Special Purpose Register */
4372 case 371: /* Move From Time Base [Phased-Out] */
6ec2b213
EBM
4373 case 309: /* Load Doubleword Monitored Indexed */
4374 case 128: /* Set Boolean */
4375 case 755: /* Deliver A Random Number */
b4cdae6f
WW
4376 record_full_arch_list_add_reg (regcache,
4377 tdep->ppc_gp0_regnum + PPC_RT (insn));
4378 return 0;
4379
4380 /* These only write to RA. */
4381 case 51: /* Move From VSR Doubleword */
4382 case 115: /* Move From VSR Word and Zero */
4383 case 122: /* Population count bytes */
4384 case 378: /* Population count words */
4385 case 506: /* Population count doublewords */
4386 case 154: /* Parity Word */
4387 case 186: /* Parity Doubleword */
4388 case 252: /* Bit Permute Doubleword */
4389 case 282: /* Convert Declets To Binary Coded Decimal */
4390 case 314: /* Convert Binary Coded Decimal To Declets */
4391 case 508: /* Compare bytes */
6ec2b213 4392 case 307: /* Move From VSR Lower Doubleword */
b4cdae6f
WW
4393 record_full_arch_list_add_reg (regcache,
4394 tdep->ppc_gp0_regnum + PPC_RA (insn));
4395 return 0;
4396
4397 /* These write CR and optional RA. */
4398 case 792: /* Shift Right Algebraic Word */
4399 case 794: /* Shift Right Algebraic Doubleword */
4400 case 824: /* Shift Right Algebraic Word Immediate */
4401 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4402 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4403 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4404 record_full_arch_list_add_reg (regcache,
4405 tdep->ppc_gp0_regnum + PPC_RA (insn));
4406 /* FALL-THROUGH */
4407 case 0: /* Compare */
4408 case 32: /* Compare logical */
4409 case 144: /* Move To Condition Register Fields */
4410 /* Move To One Condition Register Field */
6ec2b213
EBM
4411 case 192: /* Compare Ranged Byte */
4412 case 224: /* Compare Equal Byte */
4413 case 576: /* Move XER to CR Extended */
4414 case 902: /* Paste (should always fail due to single-stepping and
4415 the memory location might not be accessible, so
4416 record only CR) */
b4cdae6f
WW
4417 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4418 return 0;
4419
4420 /* These write to RT. Update RA if 'update indexed.' */
4421 case 53: /* Load Doubleword with Update Indexed */
4422 case 119: /* Load Byte and Zero with Update Indexed */
4423 case 311: /* Load Halfword and Zero with Update Indexed */
4424 case 55: /* Load Word and Zero with Update Indexed */
4425 case 375: /* Load Halfword Algebraic with Update Indexed */
4426 case 373: /* Load Word Algebraic with Update Indexed */
4427 record_full_arch_list_add_reg (regcache,
4428 tdep->ppc_gp0_regnum + PPC_RA (insn));
4429 /* FALL-THROUGH */
4430 case 21: /* Load Doubleword Indexed */
4431 case 52: /* Load Byte And Reserve Indexed */
4432 case 116: /* Load Halfword And Reserve Indexed */
4433 case 20: /* Load Word And Reserve Indexed */
4434 case 84: /* Load Doubleword And Reserve Indexed */
4435 case 87: /* Load Byte and Zero Indexed */
4436 case 279: /* Load Halfword and Zero Indexed */
4437 case 23: /* Load Word and Zero Indexed */
4438 case 343: /* Load Halfword Algebraic Indexed */
4439 case 341: /* Load Word Algebraic Indexed */
4440 case 790: /* Load Halfword Byte-Reverse Indexed */
4441 case 534: /* Load Word Byte-Reverse Indexed */
4442 case 532: /* Load Doubleword Byte-Reverse Indexed */
6ec2b213
EBM
4443 case 582: /* Load Word Atomic */
4444 case 614: /* Load Doubleword Atomic */
4445 case 265: /* Modulo Unsigned Doubleword */
4446 case 777: /* Modulo Signed Doubleword */
4447 case 267: /* Modulo Unsigned Word */
4448 case 779: /* Modulo Signed Word */
b4cdae6f
WW
4449 record_full_arch_list_add_reg (regcache,
4450 tdep->ppc_gp0_regnum + PPC_RT (insn));
4451 return 0;
4452
4453 case 597: /* Load String Word Immediate */
4454 case 533: /* Load String Word Indexed */
4455 if (ext == 597)
4456 {
4457 nr = PPC_NB (insn);
4458 if (nr == 0)
4459 nr = 32;
4460 }
4461 else
4462 {
4463 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4464 nr = PPC_XER_NB (xer);
4465 }
4466
4467 nr = (nr + 3) >> 2;
4468
4469 /* If n=0, the contents of register RT are undefined. */
4470 if (nr == 0)
4471 nr = 1;
4472
4473 for (i = 0; i < nr; i++)
4474 record_full_arch_list_add_reg (regcache,
4475 tdep->ppc_gp0_regnum
4476 + ((PPC_RT (insn) + i) & 0x1f));
4477 return 0;
4478
4479 case 276: /* Load Quadword And Reserve Indexed */
4480 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4481 record_full_arch_list_add_reg (regcache, tmp);
4482 record_full_arch_list_add_reg (regcache, tmp + 1);
4483 return 0;
4484
4485 /* These write VRT. */
4486 case 6: /* Load Vector for Shift Left Indexed */
4487 case 38: /* Load Vector for Shift Right Indexed */
4488 case 7: /* Load Vector Element Byte Indexed */
4489 case 39: /* Load Vector Element Halfword Indexed */
4490 case 71: /* Load Vector Element Word Indexed */
4491 case 103: /* Load Vector Indexed */
4492 case 359: /* Load Vector Indexed LRU */
4493 record_full_arch_list_add_reg (regcache,
4494 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4495 return 0;
4496
4497 /* These write FRT. Update RA if 'update indexed.' */
4498 case 567: /* Load Floating-Point Single with Update Indexed */
4499 case 631: /* Load Floating-Point Double with Update Indexed */
4500 record_full_arch_list_add_reg (regcache,
4501 tdep->ppc_gp0_regnum + PPC_RA (insn));
4502 /* FALL-THROUGH */
4503 case 535: /* Load Floating-Point Single Indexed */
4504 case 599: /* Load Floating-Point Double Indexed */
4505 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4506 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4507 record_full_arch_list_add_reg (regcache,
4508 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4509 return 0;
4510
4511 case 791: /* Load Floating-Point Double Pair Indexed */
4512 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4513 record_full_arch_list_add_reg (regcache, tmp);
4514 record_full_arch_list_add_reg (regcache, tmp + 1);
4515 return 0;
4516
4517 case 179: /* Move To VSR Doubleword */
4518 case 211: /* Move To VSR Word Algebraic */
4519 case 243: /* Move To VSR Word and Zero */
4520 case 588: /* Load VSX Scalar Doubleword Indexed */
4521 case 524: /* Load VSX Scalar Single-Precision Indexed */
4522 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4523 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4524 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4525 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4526 case 780: /* Load VSX Vector Word*4 Indexed */
6ec2b213
EBM
4527 case 268: /* Load VSX Vector Indexed */
4528 case 364: /* Load VSX Vector Word & Splat Indexed */
4529 case 812: /* Load VSX Vector Halfword*8 Indexed */
4530 case 876: /* Load VSX Vector Byte*16 Indexed */
4531 case 269: /* Load VSX Vector with Length */
4532 case 301: /* Load VSX Vector Left-justified with Length */
4533 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4534 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4535 case 403: /* Move To VSR Word & Splat */
4536 case 435: /* Move To VSR Double Doubleword */
b4cdae6f
WW
4537 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4538 return 0;
4539
4540 /* These write RA. Update CR if RC is set. */
4541 case 24: /* Shift Left Word */
4542 case 26: /* Count Leading Zeros Word */
4543 case 27: /* Shift Left Doubleword */
4544 case 28: /* AND */
4545 case 58: /* Count Leading Zeros Doubleword */
4546 case 60: /* AND with Complement */
4547 case 124: /* NOR */
4548 case 284: /* Equivalent */
4549 case 316: /* XOR */
4550 case 476: /* NAND */
4551 case 412: /* OR with Complement */
4552 case 444: /* OR */
4553 case 536: /* Shift Right Word */
4554 case 539: /* Shift Right Doubleword */
4555 case 922: /* Extend Sign Halfword */
4556 case 954: /* Extend Sign Byte */
4557 case 986: /* Extend Sign Word */
6ec2b213
EBM
4558 case 538: /* Count Trailing Zeros Word */
4559 case 570: /* Count Trailing Zeros Doubleword */
4560 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4561 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
b4cdae6f
WW
4562 if (PPC_RC (insn))
4563 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4564 record_full_arch_list_add_reg (regcache,
4565 tdep->ppc_gp0_regnum + PPC_RA (insn));
4566 return 0;
4567
4568 /* Store memory. */
4569 case 181: /* Store Doubleword with Update Indexed */
4570 case 183: /* Store Word with Update Indexed */
4571 case 247: /* Store Byte with Update Indexed */
4572 case 439: /* Store Half Word with Update Indexed */
4573 case 695: /* Store Floating-Point Single with Update Indexed */
4574 case 759: /* Store Floating-Point Double with Update Indexed */
4575 record_full_arch_list_add_reg (regcache,
4576 tdep->ppc_gp0_regnum + PPC_RA (insn));
4577 /* FALL-THROUGH */
4578 case 135: /* Store Vector Element Byte Indexed */
4579 case 167: /* Store Vector Element Halfword Indexed */
4580 case 199: /* Store Vector Element Word Indexed */
4581 case 231: /* Store Vector Indexed */
4582 case 487: /* Store Vector Indexed LRU */
4583 case 716: /* Store VSX Scalar Doubleword Indexed */
4584 case 140: /* Store VSX Scalar as Integer Word Indexed */
4585 case 652: /* Store VSX Scalar Single-Precision Indexed */
4586 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4587 case 908: /* Store VSX Vector Word*4 Indexed */
4588 case 149: /* Store Doubleword Indexed */
4589 case 151: /* Store Word Indexed */
4590 case 215: /* Store Byte Indexed */
4591 case 407: /* Store Half Word Indexed */
4592 case 694: /* Store Byte Conditional Indexed */
4593 case 726: /* Store Halfword Conditional Indexed */
4594 case 150: /* Store Word Conditional Indexed */
4595 case 214: /* Store Doubleword Conditional Indexed */
4596 case 182: /* Store Quadword Conditional Indexed */
4597 case 662: /* Store Word Byte-Reverse Indexed */
4598 case 918: /* Store Halfword Byte-Reverse Indexed */
4599 case 660: /* Store Doubleword Byte-Reverse Indexed */
4600 case 663: /* Store Floating-Point Single Indexed */
4601 case 727: /* Store Floating-Point Double Indexed */
4602 case 919: /* Store Floating-Point Double Pair Indexed */
4603 case 983: /* Store Floating-Point as Integer Word Indexed */
6ec2b213
EBM
4604 case 396: /* Store VSX Vector Indexed */
4605 case 940: /* Store VSX Vector Halfword*8 Indexed */
4606 case 1004: /* Store VSX Vector Byte*16 Indexed */
4607 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4608 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4609 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4610 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4611
4612 ra = 0;
4613 if (PPC_RA (insn) != 0)
4614 regcache_raw_read_unsigned (regcache,
4615 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4616 regcache_raw_read_unsigned (regcache,
4617 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4618 ea = ra + rb;
4619
4620 switch (ext)
4621 {
4622 case 183: /* Store Word with Update Indexed */
4623 case 199: /* Store Vector Element Word Indexed */
4624 case 140: /* Store VSX Scalar as Integer Word Indexed */
4625 case 652: /* Store VSX Scalar Single-Precision Indexed */
4626 case 151: /* Store Word Indexed */
4627 case 150: /* Store Word Conditional Indexed */
4628 case 662: /* Store Word Byte-Reverse Indexed */
4629 case 663: /* Store Floating-Point Single Indexed */
4630 case 695: /* Store Floating-Point Single with Update Indexed */
4631 case 983: /* Store Floating-Point as Integer Word Indexed */
4632 size = 4;
4633 break;
4634 case 247: /* Store Byte with Update Indexed */
4635 case 135: /* Store Vector Element Byte Indexed */
4636 case 215: /* Store Byte Indexed */
4637 case 694: /* Store Byte Conditional Indexed */
6ec2b213 4638 case 909: /* Store VSX Scalar as Integer Byte Indexed */
b4cdae6f
WW
4639 size = 1;
4640 break;
4641 case 439: /* Store Halfword with Update Indexed */
4642 case 167: /* Store Vector Element Halfword Indexed */
4643 case 407: /* Store Halfword Indexed */
4644 case 726: /* Store Halfword Conditional Indexed */
4645 case 918: /* Store Halfword Byte-Reverse Indexed */
6ec2b213 4646 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4647 size = 2;
4648 break;
4649 case 181: /* Store Doubleword with Update Indexed */
4650 case 716: /* Store VSX Scalar Doubleword Indexed */
4651 case 149: /* Store Doubleword Indexed */
4652 case 214: /* Store Doubleword Conditional Indexed */
4653 case 660: /* Store Doubleword Byte-Reverse Indexed */
4654 case 727: /* Store Floating-Point Double Indexed */
4655 case 759: /* Store Floating-Point Double with Update Indexed */
4656 size = 8;
4657 break;
4658 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4659 case 908: /* Store VSX Vector Word*4 Indexed */
4660 case 182: /* Store Quadword Conditional Indexed */
4661 case 231: /* Store Vector Indexed */
4662 case 487: /* Store Vector Indexed LRU */
4663 case 919: /* Store Floating-Point Double Pair Indexed */
6ec2b213
EBM
4664 case 396: /* Store VSX Vector Indexed */
4665 case 940: /* Store VSX Vector Halfword*8 Indexed */
4666 case 1004: /* Store VSX Vector Byte*16 Indexed */
b4cdae6f
WW
4667 size = 16;
4668 break;
4669 default:
4670 gdb_assert (0);
4671 }
4672
4673 /* Align address for Store Vector instructions. */
4674 switch (ext)
4675 {
4676 case 167: /* Store Vector Element Halfword Indexed */
4677 addr = addr & ~0x1ULL;
4678 break;
4679
4680 case 199: /* Store Vector Element Word Indexed */
4681 addr = addr & ~0x3ULL;
4682 break;
4683
4684 case 231: /* Store Vector Indexed */
4685 case 487: /* Store Vector Indexed LRU */
4686 addr = addr & ~0xfULL;
4687 break;
4688 }
4689
4690 record_full_arch_list_add_mem (addr, size);
4691 return 0;
4692
6ec2b213
EBM
4693 case 397: /* Store VSX Vector with Length */
4694 case 429: /* Store VSX Vector Left-justified with Length */
de678454 4695 ra = 0;
6ec2b213
EBM
4696 if (PPC_RA (insn) != 0)
4697 regcache_raw_read_unsigned (regcache,
de678454
EBM
4698 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4699 ea = ra;
6ec2b213
EBM
4700 regcache_raw_read_unsigned (regcache,
4701 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4702 /* Store up to 16 bytes. */
4703 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4704 if (nb > 0)
4705 record_full_arch_list_add_mem (ea, nb);
4706 return 0;
4707
4708 case 710: /* Store Word Atomic */
4709 case 742: /* Store Doubleword Atomic */
de678454 4710 ra = 0;
6ec2b213
EBM
4711 if (PPC_RA (insn) != 0)
4712 regcache_raw_read_unsigned (regcache,
de678454
EBM
4713 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4714 ea = ra;
6ec2b213
EBM
4715 switch (ext)
4716 {
4717 case 710: /* Store Word Atomic */
4718 size = 8;
4719 break;
4720 case 742: /* Store Doubleword Atomic */
4721 size = 16;
4722 break;
4723 default:
4724 gdb_assert (0);
4725 }
4726 record_full_arch_list_add_mem (ea, size);
4727 return 0;
4728
b4cdae6f
WW
4729 case 725: /* Store String Word Immediate */
4730 ra = 0;
4731 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4732 regcache_raw_read_unsigned (regcache,
4733 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4734 ea += ra;
4735
4736 nb = PPC_NB (insn);
4737 if (nb == 0)
4738 nb = 32;
4739
4740 record_full_arch_list_add_mem (ea, nb);
4741
4742 return 0;
4743
4744 case 661: /* Store String Word Indexed */
4745 ra = 0;
4746 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4747 regcache_raw_read_unsigned (regcache,
4748 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4749 ea += ra;
4750
4751 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4752 nb = PPC_XER_NB (xer);
4753
4754 if (nb != 0)
4755 {
9f7efd5b
EBM
4756 regcache_raw_read_unsigned (regcache,
4757 tdep->ppc_gp0_regnum + PPC_RB (insn),
4758 &rb);
b4cdae6f
WW
4759 ea += rb;
4760 record_full_arch_list_add_mem (ea, nb);
4761 }
4762
4763 return 0;
4764
4765 case 467: /* Move To Special Purpose Register */
4766 switch (PPC_SPR (insn))
4767 {
4768 case 1: /* XER */
4769 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4770 return 0;
4771 case 8: /* LR */
4772 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4773 return 0;
4774 case 9: /* CTR */
4775 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4776 return 0;
4777 case 256: /* VRSAVE */
4778 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4779 return 0;
4780 }
4781
4782 goto UNKNOWN_OP;
4783
4784 case 147: /* Move To Split Little Endian */
4785 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4786 return 0;
4787
4788 case 512: /* Move to Condition Register from XER */
4789 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4790 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4791 return 0;
4792
4793 case 4: /* Trap Word */
4794 case 68: /* Trap Doubleword */
4795 case 430: /* Clear BHRB */
4796 case 598: /* Synchronize */
4797 case 62: /* Wait for Interrupt */
6ec2b213 4798 case 30: /* Wait */
b4cdae6f
WW
4799 case 22: /* Instruction Cache Block Touch */
4800 case 854: /* Enforce In-order Execution of I/O */
4801 case 246: /* Data Cache Block Touch for Store */
4802 case 54: /* Data Cache Block Store */
4803 case 86: /* Data Cache Block Flush */
4804 case 278: /* Data Cache Block Touch */
4805 case 758: /* Data Cache Block Allocate */
4806 case 982: /* Instruction Cache Block Invalidate */
6ec2b213
EBM
4807 case 774: /* Copy */
4808 case 838: /* CP_Abort */
b4cdae6f
WW
4809 return 0;
4810
4811 case 654: /* Transaction Begin */
4812 case 686: /* Transaction End */
b4cdae6f
WW
4813 case 750: /* Transaction Suspend or Resume */
4814 case 782: /* Transaction Abort Word Conditional */
4815 case 814: /* Transaction Abort Doubleword Conditional */
4816 case 846: /* Transaction Abort Word Conditional Immediate */
4817 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4818 case 910: /* Transaction Abort */
d44c67f3
EBM
4819 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4820 /* FALL-THROUGH */
4821 case 718: /* Transaction Check */
4822 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4823 return 0;
b4cdae6f
WW
4824
4825 case 1014: /* Data Cache Block set to Zero */
4826 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4827 || at_dcsz == 0)
4828 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4829
bec734b2 4830 ra = 0;
b4cdae6f
WW
4831 if (PPC_RA (insn) != 0)
4832 regcache_raw_read_unsigned (regcache,
4833 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4834 regcache_raw_read_unsigned (regcache,
4835 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4836 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4837 record_full_arch_list_add_mem (ea, at_dcsz);
4838 return 0;
4839 }
4840
4841UNKNOWN_OP:
810c1026
WW
4842 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4843 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4844 return -1;
4845}
4846
ddeca1df
WW
4847/* Parse and record instructions of primary opcode-59 at ADDR.
4848 Return 0 if successful. */
b4cdae6f
WW
4849
4850static int
4851ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4852 CORE_ADDR addr, uint32_t insn)
4853{
4854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4855 int ext = PPC_EXTOP (insn);
4856
4857 switch (ext & 0x1f)
4858 {
4859 case 18: /* Floating Divide */
4860 case 20: /* Floating Subtract */
4861 case 21: /* Floating Add */
4862 case 22: /* Floating Square Root */
4863 case 24: /* Floating Reciprocal Estimate */
4864 case 25: /* Floating Multiply */
4865 case 26: /* Floating Reciprocal Square Root Estimate */
4866 case 28: /* Floating Multiply-Subtract */
4867 case 29: /* Floating Multiply-Add */
4868 case 30: /* Floating Negative Multiply-Subtract */
4869 case 31: /* Floating Negative Multiply-Add */
4870 record_full_arch_list_add_reg (regcache,
4871 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4872 if (PPC_RC (insn))
4873 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4874 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4875
4876 return 0;
4877 }
4878
4879 switch (ext)
4880 {
4881 case 2: /* DFP Add */
4882 case 3: /* DFP Quantize */
4883 case 34: /* DFP Multiply */
4884 case 35: /* DFP Reround */
4885 case 67: /* DFP Quantize Immediate */
4886 case 99: /* DFP Round To FP Integer With Inexact */
4887 case 227: /* DFP Round To FP Integer Without Inexact */
4888 case 258: /* DFP Convert To DFP Long! */
4889 case 290: /* DFP Convert To Fixed */
4890 case 514: /* DFP Subtract */
4891 case 546: /* DFP Divide */
4892 case 770: /* DFP Round To DFP Short! */
4893 case 802: /* DFP Convert From Fixed */
4894 case 834: /* DFP Encode BCD To DPD */
4895 if (PPC_RC (insn))
4896 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4897 record_full_arch_list_add_reg (regcache,
4898 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4899 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4900 return 0;
4901
4902 case 130: /* DFP Compare Ordered */
4903 case 162: /* DFP Test Exponent */
4904 case 194: /* DFP Test Data Class */
4905 case 226: /* DFP Test Data Group */
4906 case 642: /* DFP Compare Unordered */
4907 case 674: /* DFP Test Significance */
6ec2b213 4908 case 675: /* DFP Test Significance Immediate */
b4cdae6f
WW
4909 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4910 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4911 return 0;
4912
4913 case 66: /* DFP Shift Significand Left Immediate */
4914 case 98: /* DFP Shift Significand Right Immediate */
4915 case 322: /* DFP Decode DPD To BCD */
4916 case 354: /* DFP Extract Biased Exponent */
4917 case 866: /* DFP Insert Biased Exponent */
4918 record_full_arch_list_add_reg (regcache,
4919 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4920 if (PPC_RC (insn))
4921 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4922 return 0;
4923
4924 case 846: /* Floating Convert From Integer Doubleword Single */
4925 case 974: /* Floating Convert From Integer Doubleword Unsigned
4926 Single */
4927 record_full_arch_list_add_reg (regcache,
4928 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4929 if (PPC_RC (insn))
4930 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4931 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4932
4933 return 0;
4934 }
4935
810c1026
WW
4936 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4937 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4938 return -1;
4939}
4940
ddeca1df
WW
4941/* Parse and record instructions of primary opcode-60 at ADDR.
4942 Return 0 if successful. */
b4cdae6f
WW
4943
4944static int
4945ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4946 CORE_ADDR addr, uint32_t insn)
4947{
4948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4949 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
4950
4951 switch (ext >> 2)
4952 {
4953 case 0: /* VSX Scalar Add Single-Precision */
4954 case 32: /* VSX Scalar Add Double-Precision */
4955 case 24: /* VSX Scalar Divide Single-Precision */
4956 case 56: /* VSX Scalar Divide Double-Precision */
4957 case 176: /* VSX Scalar Copy Sign Double-Precision */
4958 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4959 case 41: /* ditto */
4960 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4961 case 9: /* ditto */
4962 case 160: /* VSX Scalar Maximum Double-Precision */
4963 case 168: /* VSX Scalar Minimum Double-Precision */
4964 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4965 case 57: /* ditto */
4966 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4967 case 25: /* ditto */
4968 case 48: /* VSX Scalar Multiply Double-Precision */
4969 case 16: /* VSX Scalar Multiply Single-Precision */
4970 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4971 case 169: /* ditto */
4972 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4973 case 137: /* ditto */
4974 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4975 case 185: /* ditto */
4976 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4977 case 153: /* ditto */
4978 case 40: /* VSX Scalar Subtract Double-Precision */
4979 case 8: /* VSX Scalar Subtract Single-Precision */
4980 case 96: /* VSX Vector Add Double-Precision */
4981 case 64: /* VSX Vector Add Single-Precision */
4982 case 120: /* VSX Vector Divide Double-Precision */
4983 case 88: /* VSX Vector Divide Single-Precision */
4984 case 97: /* VSX Vector Multiply-Add Double-Precision */
4985 case 105: /* ditto */
4986 case 65: /* VSX Vector Multiply-Add Single-Precision */
4987 case 73: /* ditto */
4988 case 224: /* VSX Vector Maximum Double-Precision */
4989 case 192: /* VSX Vector Maximum Single-Precision */
4990 case 232: /* VSX Vector Minimum Double-Precision */
4991 case 200: /* VSX Vector Minimum Single-Precision */
4992 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4993 case 121: /* ditto */
4994 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4995 case 89: /* ditto */
4996 case 112: /* VSX Vector Multiply Double-Precision */
4997 case 80: /* VSX Vector Multiply Single-Precision */
4998 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4999 case 233: /* ditto */
5000 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5001 case 201: /* ditto */
5002 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5003 case 249: /* ditto */
5004 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5005 case 217: /* ditto */
5006 case 104: /* VSX Vector Subtract Double-Precision */
5007 case 72: /* VSX Vector Subtract Single-Precision */
6ec2b213
EBM
5008 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5009 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5010 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5011 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5012 case 3: /* VSX Scalar Compare Equal Double-Precision */
5013 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5014 case 19: /* VSX Scalar Compare Greater Than or Equal
5015 Double-Precision */
b4cdae6f 5016 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5017 /* FALL-THROUGH */
b4cdae6f
WW
5018 case 240: /* VSX Vector Copy Sign Double-Precision */
5019 case 208: /* VSX Vector Copy Sign Single-Precision */
5020 case 130: /* VSX Logical AND */
5021 case 138: /* VSX Logical AND with Complement */
5022 case 186: /* VSX Logical Equivalence */
5023 case 178: /* VSX Logical NAND */
5024 case 170: /* VSX Logical OR with Complement */
5025 case 162: /* VSX Logical NOR */
5026 case 146: /* VSX Logical OR */
5027 case 154: /* VSX Logical XOR */
5028 case 18: /* VSX Merge High Word */
5029 case 50: /* VSX Merge Low Word */
5030 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5031 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5032 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5033 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5034 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5035 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5036 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5037 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
6ec2b213
EBM
5038 case 216: /* VSX Vector Insert Exponent Single-Precision */
5039 case 248: /* VSX Vector Insert Exponent Double-Precision */
5040 case 26: /* VSX Vector Permute */
5041 case 58: /* VSX Vector Permute Right-indexed */
5042 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5043 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5044 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5045 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
b4cdae6f
WW
5046 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5047 return 0;
5048
5049 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5050 case 125: /* VSX Vector Test for software Divide Double-Precision */
5051 case 93: /* VSX Vector Test for software Divide Single-Precision */
5052 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5053 return 0;
5054
5055 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5056 case 43: /* VSX Scalar Compare Ordered Double-Precision */
6ec2b213 5057 case 59: /* VSX Scalar Compare Exponents Double-Precision */
b4cdae6f
WW
5058 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5059 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5060 return 0;
5061 }
5062
5063 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5064 {
5065 case 99: /* VSX Vector Compare Equal To Double-Precision */
5066 case 67: /* VSX Vector Compare Equal To Single-Precision */
5067 case 115: /* VSX Vector Compare Greater Than or
5068 Equal To Double-Precision */
5069 case 83: /* VSX Vector Compare Greater Than or
5070 Equal To Single-Precision */
5071 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5072 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5073 if (PPC_Rc (insn))
5074 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5075 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5076 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5077 return 0;
5078 }
5079
5080 switch (ext >> 1)
5081 {
5082 case 265: /* VSX Scalar round Double-Precision to
5083 Single-Precision and Convert to
5084 Single-Precision format */
5085 case 344: /* VSX Scalar truncate Double-Precision to
5086 Integer and Convert to Signed Integer
5087 Doubleword format with Saturate */
5088 case 88: /* VSX Scalar truncate Double-Precision to
5089 Integer and Convert to Signed Integer Word
5090 Format with Saturate */
5091 case 328: /* VSX Scalar truncate Double-Precision integer
5092 and Convert to Unsigned Integer Doubleword
5093 Format with Saturate */
5094 case 72: /* VSX Scalar truncate Double-Precision to
5095 Integer and Convert to Unsigned Integer Word
5096 Format with Saturate */
5097 case 329: /* VSX Scalar Convert Single-Precision to
5098 Double-Precision format */
5099 case 376: /* VSX Scalar Convert Signed Integer
5100 Doubleword to floating-point format and
5101 Round to Double-Precision format */
5102 case 312: /* VSX Scalar Convert Signed Integer
5103 Doubleword to floating-point format and
5104 round to Single-Precision */
5105 case 360: /* VSX Scalar Convert Unsigned Integer
5106 Doubleword to floating-point format and
5107 Round to Double-Precision format */
5108 case 296: /* VSX Scalar Convert Unsigned Integer
5109 Doubleword to floating-point format and
5110 Round to Single-Precision */
5111 case 73: /* VSX Scalar Round to Double-Precision Integer
5112 Using Round to Nearest Away */
5113 case 107: /* VSX Scalar Round to Double-Precision Integer
5114 Exact using Current rounding mode */
5115 case 121: /* VSX Scalar Round to Double-Precision Integer
5116 Using Round toward -Infinity */
5117 case 105: /* VSX Scalar Round to Double-Precision Integer
5118 Using Round toward +Infinity */
5119 case 89: /* VSX Scalar Round to Double-Precision Integer
5120 Using Round toward Zero */
5121 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5122 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5123 case 281: /* VSX Scalar Round to Single-Precision */
5124 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5125 Double-Precision */
5126 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5127 Single-Precision */
5128 case 75: /* VSX Scalar Square Root Double-Precision */
5129 case 11: /* VSX Scalar Square Root Single-Precision */
5130 case 393: /* VSX Vector round Double-Precision to
5131 Single-Precision and Convert to
5132 Single-Precision format */
5133 case 472: /* VSX Vector truncate Double-Precision to
5134 Integer and Convert to Signed Integer
5135 Doubleword format with Saturate */
5136 case 216: /* VSX Vector truncate Double-Precision to
5137 Integer and Convert to Signed Integer Word
5138 Format with Saturate */
5139 case 456: /* VSX Vector truncate Double-Precision to
5140 Integer and Convert to Unsigned Integer
5141 Doubleword format with Saturate */
5142 case 200: /* VSX Vector truncate Double-Precision to
5143 Integer and Convert to Unsigned Integer Word
5144 Format with Saturate */
5145 case 457: /* VSX Vector Convert Single-Precision to
5146 Double-Precision format */
5147 case 408: /* VSX Vector truncate Single-Precision to
5148 Integer and Convert to Signed Integer
5149 Doubleword format with Saturate */
5150 case 152: /* VSX Vector truncate Single-Precision to
5151 Integer and Convert to Signed Integer Word
5152 Format with Saturate */
5153 case 392: /* VSX Vector truncate Single-Precision to
5154 Integer and Convert to Unsigned Integer
5155 Doubleword format with Saturate */
5156 case 136: /* VSX Vector truncate Single-Precision to
5157 Integer and Convert to Unsigned Integer Word
5158 Format with Saturate */
5159 case 504: /* VSX Vector Convert and round Signed Integer
5160 Doubleword to Double-Precision format */
5161 case 440: /* VSX Vector Convert and round Signed Integer
5162 Doubleword to Single-Precision format */
5163 case 248: /* VSX Vector Convert Signed Integer Word to
5164 Double-Precision format */
5165 case 184: /* VSX Vector Convert and round Signed Integer
5166 Word to Single-Precision format */
5167 case 488: /* VSX Vector Convert and round Unsigned
5168 Integer Doubleword to Double-Precision format */
5169 case 424: /* VSX Vector Convert and round Unsigned
5170 Integer Doubleword to Single-Precision format */
5171 case 232: /* VSX Vector Convert and round Unsigned
5172 Integer Word to Double-Precision format */
5173 case 168: /* VSX Vector Convert and round Unsigned
5174 Integer Word to Single-Precision format */
5175 case 201: /* VSX Vector Round to Double-Precision
5176 Integer using round to Nearest Away */
5177 case 235: /* VSX Vector Round to Double-Precision
5178 Integer Exact using Current rounding mode */
5179 case 249: /* VSX Vector Round to Double-Precision
5180 Integer using round toward -Infinity */
5181 case 233: /* VSX Vector Round to Double-Precision
5182 Integer using round toward +Infinity */
5183 case 217: /* VSX Vector Round to Double-Precision
5184 Integer using round toward Zero */
5185 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5186 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5187 case 137: /* VSX Vector Round to Single-Precision Integer
5188 Using Round to Nearest Away */
5189 case 171: /* VSX Vector Round to Single-Precision Integer
5190 Exact Using Current rounding mode */
5191 case 185: /* VSX Vector Round to Single-Precision Integer
5192 Using Round toward -Infinity */
5193 case 169: /* VSX Vector Round to Single-Precision Integer
5194 Using Round toward +Infinity */
5195 case 153: /* VSX Vector Round to Single-Precision Integer
5196 Using round toward Zero */
5197 case 202: /* VSX Vector Reciprocal Square Root Estimate
5198 Double-Precision */
5199 case 138: /* VSX Vector Reciprocal Square Root Estimate
5200 Single-Precision */
5201 case 203: /* VSX Vector Square Root Double-Precision */
5202 case 139: /* VSX Vector Square Root Single-Precision */
5203 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5204 /* FALL-THROUGH */
b4cdae6f
WW
5205 case 345: /* VSX Scalar Absolute Value Double-Precision */
5206 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5207 Vector Single-Precision format Non-signalling */
5208 case 331: /* VSX Scalar Convert Single-Precision to
5209 Double-Precision format Non-signalling */
5210 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5211 case 377: /* VSX Scalar Negate Double-Precision */
5212 case 473: /* VSX Vector Absolute Value Double-Precision */
5213 case 409: /* VSX Vector Absolute Value Single-Precision */
5214 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5215 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5216 case 505: /* VSX Vector Negate Double-Precision */
5217 case 441: /* VSX Vector Negate Single-Precision */
5218 case 164: /* VSX Splat Word */
6ec2b213
EBM
5219 case 165: /* VSX Vector Extract Unsigned Word */
5220 case 181: /* VSX Vector Insert Word */
b4cdae6f
WW
5221 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5222 return 0;
5223
6ec2b213
EBM
5224 case 298: /* VSX Scalar Test Data Class Single-Precision */
5225 case 362: /* VSX Scalar Test Data Class Double-Precision */
5226 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5227 /* FALL-THROUGH */
b4cdae6f
WW
5228 case 106: /* VSX Scalar Test for software Square Root
5229 Double-Precision */
5230 case 234: /* VSX Vector Test for software Square Root
5231 Double-Precision */
5232 case 170: /* VSX Vector Test for software Square Root
5233 Single-Precision */
5234 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5235 return 0;
6ec2b213
EBM
5236
5237 case 347:
5238 switch (PPC_FIELD (insn, 11, 5))
5239 {
5240 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5241 case 1: /* VSX Scalar Extract Significand Double-Precision */
5242 record_full_arch_list_add_reg (regcache,
5243 tdep->ppc_gp0_regnum + PPC_RT (insn));
5244 return 0;
5245 case 16: /* VSX Scalar Convert Half-Precision format to
5246 Double-Precision format */
5247 case 17: /* VSX Scalar round & Convert Double-Precision format
5248 to Half-Precision format */
5249 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5250 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5251 return 0;
5252 }
5253 break;
5254
5255 case 475:
5256 switch (PPC_FIELD (insn, 11, 5))
5257 {
5258 case 24: /* VSX Vector Convert Half-Precision format to
5259 Single-Precision format */
5260 case 25: /* VSX Vector round and Convert Single-Precision format
5261 to Half-Precision format */
5262 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5263 /* FALL-THROUGH */
5264 case 0: /* VSX Vector Extract Exponent Double-Precision */
5265 case 1: /* VSX Vector Extract Significand Double-Precision */
5266 case 7: /* VSX Vector Byte-Reverse Halfword */
5267 case 8: /* VSX Vector Extract Exponent Single-Precision */
5268 case 9: /* VSX Vector Extract Significand Single-Precision */
5269 case 15: /* VSX Vector Byte-Reverse Word */
5270 case 23: /* VSX Vector Byte-Reverse Doubleword */
5271 case 31: /* VSX Vector Byte-Reverse Quadword */
5272 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5273 return 0;
5274 }
5275 break;
5276 }
5277
5278 switch (ext)
5279 {
5280 case 360: /* VSX Vector Splat Immediate Byte */
5281 if (PPC_FIELD (insn, 11, 2) == 0)
5282 {
5283 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5284 return 0;
5285 }
5286 break;
5287 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5288 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5289 return 0;
b4cdae6f
WW
5290 }
5291
5292 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5293 {
5294 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5295 return 0;
5296 }
5297
810c1026
WW
5298 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5299 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5300 return -1;
5301}
5302
6ec2b213
EBM
5303/* Parse and record instructions of primary opcode-61 at ADDR.
5304 Return 0 if successful. */
5305
5306static int
5307ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5308 CORE_ADDR addr, uint32_t insn)
5309{
5310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5311 ULONGEST ea = 0;
5312 int size;
5313
5314 switch (insn & 0x3)
5315 {
5316 case 0: /* Store Floating-Point Double Pair */
5317 case 2: /* Store VSX Scalar Doubleword */
5318 case 3: /* Store VSX Scalar Single */
5319 if (PPC_RA (insn) != 0)
5320 regcache_raw_read_unsigned (regcache,
5321 tdep->ppc_gp0_regnum + PPC_RA (insn),
5322 &ea);
5323 ea += PPC_DS (insn) << 2;
5324 switch (insn & 0x3)
5325 {
5326 case 0: /* Store Floating-Point Double Pair */
5327 size = 16;
5328 break;
5329 case 2: /* Store VSX Scalar Doubleword */
5330 size = 8;
5331 break;
5332 case 3: /* Store VSX Scalar Single */
5333 size = 4;
5334 break;
5335 default:
5336 gdb_assert (0);
5337 }
5338 record_full_arch_list_add_mem (ea, size);
5339 return 0;
5340 }
5341
5342 switch (insn & 0x7)
5343 {
5344 case 1: /* Load VSX Vector */
5345 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5346 return 0;
5347 case 5: /* Store VSX Vector */
5348 if (PPC_RA (insn) != 0)
5349 regcache_raw_read_unsigned (regcache,
5350 tdep->ppc_gp0_regnum + PPC_RA (insn),
5351 &ea);
5352 ea += PPC_DQ (insn) << 4;
5353 record_full_arch_list_add_mem (ea, 16);
5354 return 0;
5355 }
5356
5357 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5358 "at %s.\n", insn, paddress (gdbarch, addr));
5359 return -1;
5360}
5361
ddeca1df
WW
5362/* Parse and record instructions of primary opcode-63 at ADDR.
5363 Return 0 if successful. */
b4cdae6f
WW
5364
5365static int
5366ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5367 CORE_ADDR addr, uint32_t insn)
5368{
5369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5370 int ext = PPC_EXTOP (insn);
5371 int tmp;
5372
5373 switch (ext & 0x1f)
5374 {
5375 case 18: /* Floating Divide */
5376 case 20: /* Floating Subtract */
5377 case 21: /* Floating Add */
5378 case 22: /* Floating Square Root */
5379 case 24: /* Floating Reciprocal Estimate */
5380 case 25: /* Floating Multiply */
5381 case 26: /* Floating Reciprocal Square Root Estimate */
5382 case 28: /* Floating Multiply-Subtract */
5383 case 29: /* Floating Multiply-Add */
5384 case 30: /* Floating Negative Multiply-Subtract */
5385 case 31: /* Floating Negative Multiply-Add */
5386 record_full_arch_list_add_reg (regcache,
5387 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5388 if (PPC_RC (insn))
5389 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5390 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5391 return 0;
5392
5393 case 23: /* Floating Select */
5394 record_full_arch_list_add_reg (regcache,
5395 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5396 if (PPC_RC (insn))
5397 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
8aabe2e2 5398 return 0;
b4cdae6f
WW
5399 }
5400
6ec2b213
EBM
5401 switch (ext & 0xff)
5402 {
5403 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5404 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5405 Precision */
5406 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5407 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5408 return 0;
5409 }
5410
b4cdae6f
WW
5411 switch (ext)
5412 {
5413 case 2: /* DFP Add Quad */
5414 case 3: /* DFP Quantize Quad */
5415 case 34: /* DFP Multiply Quad */
5416 case 35: /* DFP Reround Quad */
5417 case 67: /* DFP Quantize Immediate Quad */
5418 case 99: /* DFP Round To FP Integer With Inexact Quad */
5419 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5420 case 258: /* DFP Convert To DFP Extended Quad */
5421 case 514: /* DFP Subtract Quad */
5422 case 546: /* DFP Divide Quad */
5423 case 770: /* DFP Round To DFP Long Quad */
5424 case 802: /* DFP Convert From Fixed Quad */
5425 case 834: /* DFP Encode BCD To DPD Quad */
5426 if (PPC_RC (insn))
5427 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5428 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5429 record_full_arch_list_add_reg (regcache, tmp);
5430 record_full_arch_list_add_reg (regcache, tmp + 1);
5431 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5432 return 0;
5433
5434 case 130: /* DFP Compare Ordered Quad */
5435 case 162: /* DFP Test Exponent Quad */
5436 case 194: /* DFP Test Data Class Quad */
5437 case 226: /* DFP Test Data Group Quad */
5438 case 642: /* DFP Compare Unordered Quad */
5439 case 674: /* DFP Test Significance Quad */
6ec2b213 5440 case 675: /* DFP Test Significance Immediate Quad */
b4cdae6f
WW
5441 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5442 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5443 return 0;
5444
5445 case 66: /* DFP Shift Significand Left Immediate Quad */
5446 case 98: /* DFP Shift Significand Right Immediate Quad */
5447 case 322: /* DFP Decode DPD To BCD Quad */
5448 case 866: /* DFP Insert Biased Exponent Quad */
5449 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5450 record_full_arch_list_add_reg (regcache, tmp);
5451 record_full_arch_list_add_reg (regcache, tmp + 1);
5452 if (PPC_RC (insn))
5453 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5454 return 0;
5455
5456 case 290: /* DFP Convert To Fixed Quad */
5457 record_full_arch_list_add_reg (regcache,
5458 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5459 if (PPC_RC (insn))
5460 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5461 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5462 return 0;
b4cdae6f
WW
5463
5464 case 354: /* DFP Extract Biased Exponent Quad */
5465 record_full_arch_list_add_reg (regcache,
5466 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5467 if (PPC_RC (insn))
5468 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5469 return 0;
5470
5471 case 12: /* Floating Round to Single-Precision */
5472 case 14: /* Floating Convert To Integer Word */
5473 case 15: /* Floating Convert To Integer Word
5474 with round toward Zero */
5475 case 142: /* Floating Convert To Integer Word Unsigned */
5476 case 143: /* Floating Convert To Integer Word Unsigned
5477 with round toward Zero */
5478 case 392: /* Floating Round to Integer Nearest */
5479 case 424: /* Floating Round to Integer Toward Zero */
5480 case 456: /* Floating Round to Integer Plus */
5481 case 488: /* Floating Round to Integer Minus */
5482 case 814: /* Floating Convert To Integer Doubleword */
5483 case 815: /* Floating Convert To Integer Doubleword
5484 with round toward Zero */
5485 case 846: /* Floating Convert From Integer Doubleword */
5486 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5487 case 943: /* Floating Convert To Integer Doubleword Unsigned
5488 with round toward Zero */
5489 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5490 record_full_arch_list_add_reg (regcache,
5491 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5492 if (PPC_RC (insn))
5493 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5494 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5495 return 0;
5496
6ec2b213
EBM
5497 case 583:
5498 switch (PPC_FIELD (insn, 11, 5))
5499 {
5500 case 1: /* Move From FPSCR & Clear Enables */
5501 case 20: /* Move From FPSCR Control & set DRN */
5502 case 21: /* Move From FPSCR Control & set DRN Immediate */
5503 case 22: /* Move From FPSCR Control & set RN */
5504 case 23: /* Move From FPSCR Control & set RN Immediate */
5505 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5506 case 0: /* Move From FPSCR */
5507 case 24: /* Move From FPSCR Lightweight */
5508 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5509 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5510 record_full_arch_list_add_reg (regcache,
5511 tdep->ppc_fp0_regnum
5512 + PPC_FRT (insn));
5513 return 0;
5514 }
5515 break;
5516
b4cdae6f
WW
5517 case 8: /* Floating Copy Sign */
5518 case 40: /* Floating Negate */
5519 case 72: /* Floating Move Register */
5520 case 136: /* Floating Negative Absolute Value */
5521 case 264: /* Floating Absolute Value */
5522 record_full_arch_list_add_reg (regcache,
5523 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5524 if (PPC_RC (insn))
5525 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5526 return 0;
5527
5528 case 838: /* Floating Merge Odd Word */
5529 case 966: /* Floating Merge Even Word */
5530 record_full_arch_list_add_reg (regcache,
5531 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5532 return 0;
5533
5534 case 38: /* Move To FPSCR Bit 1 */
5535 case 70: /* Move To FPSCR Bit 0 */
5536 case 134: /* Move To FPSCR Field Immediate */
5537 case 711: /* Move To FPSCR Fields */
5538 if (PPC_RC (insn))
5539 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5540 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5541 return 0;
b4cdae6f
WW
5542
5543 case 0: /* Floating Compare Unordered */
5544 case 32: /* Floating Compare Ordered */
5545 case 64: /* Move to Condition Register from FPSCR */
6ec2b213
EBM
5546 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5547 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5548 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5549 case 708: /* VSX Scalar Test Data Class Quad-Precision */
b4cdae6f
WW
5550 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5551 /* FALL-THROUGH */
5552 case 128: /* Floating Test for software Divide */
5553 case 160: /* Floating Test for software Square Root */
5554 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5555 return 0;
5556
6ec2b213
EBM
5557 case 4: /* VSX Scalar Add Quad-Precision */
5558 case 36: /* VSX Scalar Multiply Quad-Precision */
5559 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5560 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5561 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5562 case 484: /* VSX Scalar Negative Multiply-Subtract
5563 Quad-Precision */
5564 case 516: /* VSX Scalar Subtract Quad-Precision */
5565 case 548: /* VSX Scalar Divide Quad-Precision */
5566 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5567 /* FALL-THROUGH */
5568 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5569 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5570 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5571 return 0;
5572
5573 case 804:
5574 switch (PPC_FIELD (insn, 11, 5))
5575 {
5576 case 27: /* VSX Scalar Square Root Quad-Precision */
5577 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5578 /* FALL-THROUGH */
5579 case 0: /* VSX Scalar Absolute Quad-Precision */
5580 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5581 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5582 case 16: /* VSX Scalar Negate Quad-Precision */
5583 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5584 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5585 return 0;
5586 }
5587 break;
5588
5589 case 836:
5590 switch (PPC_FIELD (insn, 11, 5))
5591 {
5592 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5593 to Unsigned Word format */
5594 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5595 Quad-Precision format */
5596 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5597 to Signed Word format */
5598 case 10: /* VSX Scalar Convert Signed Doubleword format to
5599 Quad-Precision format */
5600 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5601 to Unsigned Doubleword format */
5602 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5603 Double-Precision format */
5604 case 22: /* VSX Scalar Convert Double-Precision format to
5605 Quad-Precision format */
5606 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5607 to Signed Doubleword format */
5608 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5609 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5610 return 0;
5611 }
b4cdae6f
WW
5612 }
5613
810c1026 5614 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6ec2b213 5615 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5616 return -1;
5617}
5618
5619/* Parse the current instruction and record the values of the registers and
5620 memory that will be changed in current instruction to "record_arch_list".
5621 Return -1 if something wrong. */
5622
5623int
5624ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5625 CORE_ADDR addr)
5626{
5627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5629 uint32_t insn;
5630 int op6, tmp, i;
5631
5632 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5633 op6 = PPC_OP6 (insn);
5634
5635 switch (op6)
5636 {
5637 case 2: /* Trap Doubleword Immediate */
5638 case 3: /* Trap Word Immediate */
5639 /* Do nothing. */
5640 break;
5641
5642 case 4:
5643 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5644 return -1;
5645 break;
5646
5647 case 17: /* System call */
5648 if (PPC_LEV (insn) != 0)
5649 goto UNKNOWN_OP;
5650
5651 if (tdep->ppc_syscall_record != NULL)
5652 {
5653 if (tdep->ppc_syscall_record (regcache) != 0)
5654 return -1;
5655 }
5656 else
5657 {
5658 printf_unfiltered (_("no syscall record support\n"));
5659 return -1;
5660 }
5661 break;
5662
5663 case 7: /* Multiply Low Immediate */
5664 record_full_arch_list_add_reg (regcache,
5665 tdep->ppc_gp0_regnum + PPC_RT (insn));
5666 break;
5667
5668 case 8: /* Subtract From Immediate Carrying */
5669 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5670 record_full_arch_list_add_reg (regcache,
5671 tdep->ppc_gp0_regnum + PPC_RT (insn));
5672 break;
5673
5674 case 10: /* Compare Logical Immediate */
5675 case 11: /* Compare Immediate */
5676 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5677 break;
5678
5679 case 13: /* Add Immediate Carrying and Record */
5680 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5681 /* FALL-THROUGH */
5682 case 12: /* Add Immediate Carrying */
5683 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5684 /* FALL-THROUGH */
5685 case 14: /* Add Immediate */
5686 case 15: /* Add Immediate Shifted */
5687 record_full_arch_list_add_reg (regcache,
5688 tdep->ppc_gp0_regnum + PPC_RT (insn));
5689 break;
5690
5691 case 16: /* Branch Conditional */
5692 if ((PPC_BO (insn) & 0x4) == 0)
5693 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5694 /* FALL-THROUGH */
5695 case 18: /* Branch */
5696 if (PPC_LK (insn))
5697 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5698 break;
5699
5700 case 19:
5701 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5702 return -1;
5703 break;
5704
5705 case 20: /* Rotate Left Word Immediate then Mask Insert */
5706 case 21: /* Rotate Left Word Immediate then AND with Mask */
5707 case 23: /* Rotate Left Word then AND with Mask */
5708 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5709 /* Rotate Left Doubleword Immediate then Clear Right */
5710 /* Rotate Left Doubleword Immediate then Clear */
5711 /* Rotate Left Doubleword then Clear Left */
5712 /* Rotate Left Doubleword then Clear Right */
5713 /* Rotate Left Doubleword Immediate then Mask Insert */
5714 if (PPC_RC (insn))
5715 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5716 record_full_arch_list_add_reg (regcache,
5717 tdep->ppc_gp0_regnum + PPC_RA (insn));
5718 break;
5719
5720 case 28: /* AND Immediate */
5721 case 29: /* AND Immediate Shifted */
5722 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5723 /* FALL-THROUGH */
5724 case 24: /* OR Immediate */
5725 case 25: /* OR Immediate Shifted */
5726 case 26: /* XOR Immediate */
5727 case 27: /* XOR Immediate Shifted */
5728 record_full_arch_list_add_reg (regcache,
5729 tdep->ppc_gp0_regnum + PPC_RA (insn));
5730 break;
5731
5732 case 31:
5733 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5734 return -1;
5735 break;
5736
5737 case 33: /* Load Word and Zero with Update */
5738 case 35: /* Load Byte and Zero with Update */
5739 case 41: /* Load Halfword and Zero with Update */
5740 case 43: /* Load Halfword Algebraic with Update */
5741 record_full_arch_list_add_reg (regcache,
5742 tdep->ppc_gp0_regnum + PPC_RA (insn));
5743 /* FALL-THROUGH */
5744 case 32: /* Load Word and Zero */
5745 case 34: /* Load Byte and Zero */
5746 case 40: /* Load Halfword and Zero */
5747 case 42: /* Load Halfword Algebraic */
5748 record_full_arch_list_add_reg (regcache,
5749 tdep->ppc_gp0_regnum + PPC_RT (insn));
5750 break;
5751
5752 case 46: /* Load Multiple Word */
5753 for (i = PPC_RT (insn); i < 32; i++)
5754 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5755 break;
5756
5757 case 56: /* Load Quadword */
5758 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5759 record_full_arch_list_add_reg (regcache, tmp);
5760 record_full_arch_list_add_reg (regcache, tmp + 1);
5761 break;
5762
5763 case 49: /* Load Floating-Point Single with Update */
5764 case 51: /* Load Floating-Point Double with Update */
5765 record_full_arch_list_add_reg (regcache,
5766 tdep->ppc_gp0_regnum + PPC_RA (insn));
5767 /* FALL-THROUGH */
5768 case 48: /* Load Floating-Point Single */
5769 case 50: /* Load Floating-Point Double */
5770 record_full_arch_list_add_reg (regcache,
5771 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5772 break;
5773
5774 case 47: /* Store Multiple Word */
5775 {
5776 ULONGEST addr = 0;
5777
5778 if (PPC_RA (insn) != 0)
5779 regcache_raw_read_unsigned (regcache,
5780 tdep->ppc_gp0_regnum + PPC_RA (insn),
5781 &addr);
5782
5783 addr += PPC_D (insn);
5784 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5785 }
5786 break;
5787
5788 case 37: /* Store Word with Update */
5789 case 39: /* Store Byte with Update */
5790 case 45: /* Store Halfword with Update */
5791 case 53: /* Store Floating-Point Single with Update */
5792 case 55: /* Store Floating-Point Double with Update */
5793 record_full_arch_list_add_reg (regcache,
5794 tdep->ppc_gp0_regnum + PPC_RA (insn));
5795 /* FALL-THROUGH */
5796 case 36: /* Store Word */
5797 case 38: /* Store Byte */
5798 case 44: /* Store Halfword */
5799 case 52: /* Store Floating-Point Single */
5800 case 54: /* Store Floating-Point Double */
5801 {
5802 ULONGEST addr = 0;
5803 int size = -1;
5804
5805 if (PPC_RA (insn) != 0)
5806 regcache_raw_read_unsigned (regcache,
5807 tdep->ppc_gp0_regnum + PPC_RA (insn),
5808 &addr);
5809 addr += PPC_D (insn);
5810
5811 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5812 size = 4;
5813 else if (op6 == 54 || op6 == 55)
5814 size = 8;
5815 else if (op6 == 44 || op6 == 45)
5816 size = 2;
5817 else if (op6 == 38 || op6 == 39)
5818 size = 1;
5819 else
5820 gdb_assert (0);
5821
5822 record_full_arch_list_add_mem (addr, size);
5823 }
5824 break;
5825
6ec2b213
EBM
5826 case 57:
5827 switch (insn & 0x3)
5828 {
5829 case 0: /* Load Floating-Point Double Pair */
5830 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5831 record_full_arch_list_add_reg (regcache, tmp);
5832 record_full_arch_list_add_reg (regcache, tmp + 1);
5833 break;
5834 case 2: /* Load VSX Scalar Doubleword */
5835 case 3: /* Load VSX Scalar Single */
5836 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5837 break;
5838 default:
5839 goto UNKNOWN_OP;
5840 }
b4cdae6f
WW
5841 break;
5842
5843 case 58: /* Load Doubleword */
5844 /* Load Doubleword with Update */
5845 /* Load Word Algebraic */
5846 if (PPC_FIELD (insn, 30, 2) > 2)
5847 goto UNKNOWN_OP;
5848
5849 record_full_arch_list_add_reg (regcache,
5850 tdep->ppc_gp0_regnum + PPC_RT (insn));
5851 if (PPC_BIT (insn, 31))
5852 record_full_arch_list_add_reg (regcache,
5853 tdep->ppc_gp0_regnum + PPC_RA (insn));
5854 break;
5855
5856 case 59:
5857 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5858 return -1;
5859 break;
5860
5861 case 60:
5862 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5863 return -1;
5864 break;
5865
6ec2b213
EBM
5866 case 61:
5867 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5868 return -1;
5869 break;
5870
b4cdae6f
WW
5871 case 62: /* Store Doubleword */
5872 /* Store Doubleword with Update */
5873 /* Store Quadword with Update */
5874 {
5875 ULONGEST addr = 0;
5876 int size;
5877 int sub2 = PPC_FIELD (insn, 30, 2);
5878
6ec2b213 5879 if (sub2 > 2)
b4cdae6f
WW
5880 goto UNKNOWN_OP;
5881
5882 if (PPC_RA (insn) != 0)
5883 regcache_raw_read_unsigned (regcache,
5884 tdep->ppc_gp0_regnum + PPC_RA (insn),
5885 &addr);
5886
6ec2b213 5887 size = (sub2 == 2) ? 16 : 8;
b4cdae6f
WW
5888
5889 addr += PPC_DS (insn) << 2;
5890 record_full_arch_list_add_mem (addr, size);
5891
5892 if (op6 == 62 && sub2 == 1)
5893 record_full_arch_list_add_reg (regcache,
5894 tdep->ppc_gp0_regnum +
5895 PPC_RA (insn));
5896
5897 break;
5898 }
5899
5900 case 63:
5901 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5902 return -1;
5903 break;
5904
5905 default:
5906UNKNOWN_OP:
810c1026
WW
5907 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5908 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
5909 return -1;
5910 }
5911
5912 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5913 return -1;
5914 if (record_full_arch_list_add_end ())
5915 return -1;
5916 return 0;
5917}
5918
7a78ae4e
ND
5919/* Initialize the current architecture based on INFO. If possible, re-use an
5920 architecture from ARCHES, which is a list of architectures already created
5921 during this debugging session.
c906108c 5922
7a78ae4e 5923 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 5924 a binary file. */
c906108c 5925
7a78ae4e
ND
5926static struct gdbarch *
5927rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5928{
5929 struct gdbarch *gdbarch;
5930 struct gdbarch_tdep *tdep;
7cc46491 5931 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
5932 enum bfd_architecture arch;
5933 unsigned long mach;
5934 bfd abfd;
55eddb0f
DJ
5935 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5936 int soft_float;
5937 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 5938 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
604c2f83
LM
5939 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5940 have_vsx = 0;
7cc46491
DJ
5941 int tdesc_wordsize = -1;
5942 const struct target_desc *tdesc = info.target_desc;
5943 struct tdesc_arch_data *tdesc_data = NULL;
f949c649 5944 int num_pseudoregs = 0;
604c2f83 5945 int cur_reg;
7a78ae4e 5946
f4d9bade
UW
5947 /* INFO may refer to a binary that is not of the PowerPC architecture,
5948 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5949 In this case, we must not attempt to infer properties of the (PowerPC
5950 side) of the target system from properties of that executable. Trust
5951 the target description instead. */
5952 if (info.abfd
5953 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5954 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5955 info.abfd = NULL;
5956
9aa1e687 5957 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
5958 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5959
9aa1e687
KB
5960 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5961 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5962
e712c1cf 5963 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 5964 that, else choose a likely default. */
9aa1e687 5965 if (from_xcoff_exec)
c906108c 5966 {
11ed25ac 5967 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
5968 wordsize = 8;
5969 else
5970 wordsize = 4;
c906108c 5971 }
9aa1e687
KB
5972 else if (from_elf_exec)
5973 {
5974 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5975 wordsize = 8;
5976 else
5977 wordsize = 4;
5978 }
7cc46491
DJ
5979 else if (tdesc_has_registers (tdesc))
5980 wordsize = -1;
c906108c 5981 else
7a78ae4e 5982 {
27b15785 5983 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
5984 wordsize = (info.bfd_arch_info->bits_per_word
5985 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
5986 else
5987 wordsize = 4;
7a78ae4e 5988 }
c906108c 5989
475bbd17
JB
5990 /* Get the architecture and machine from the BFD. */
5991 arch = info.bfd_arch_info->arch;
5992 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
5993
5994 /* For e500 executables, the apuinfo section is of help here. Such
5995 section contains the identifier and revision number of each
5996 Application-specific Processing Unit that is present on the
5997 chip. The content of the section is determined by the assembler
5998 which looks at each instruction and determines which unit (and
74af9197
NF
5999 which version of it) can execute it. Grovel through the section
6000 looking for relevant e500 APUs. */
5bf1c677 6001
74af9197 6002 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 6003 {
74af9197
NF
6004 arch = info.bfd_arch_info->arch;
6005 mach = bfd_mach_ppc_e500;
6006 bfd_default_set_arch_mach (&abfd, arch, mach);
6007 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
6008 }
6009
7cc46491
DJ
6010 /* Find a default target description which describes our register
6011 layout, if we do not already have one. */
6012 if (! tdesc_has_registers (tdesc))
6013 {
6014 const struct variant *v;
6015
6016 /* Choose variant. */
6017 v = find_variant_by_arch (arch, mach);
6018 if (!v)
6019 return NULL;
6020
6021 tdesc = *v->tdesc;
6022 }
6023
6024 gdb_assert (tdesc_has_registers (tdesc));
6025
6026 /* Check any target description for validity. */
6027 if (tdesc_has_registers (tdesc))
6028 {
6029 static const char *const gprs[] = {
6030 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6031 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6032 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6033 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6034 };
7cc46491
DJ
6035 const struct tdesc_feature *feature;
6036 int i, valid_p;
6037 static const char *const msr_names[] = { "msr", "ps" };
6038 static const char *const cr_names[] = { "cr", "cnd" };
6039 static const char *const ctr_names[] = { "ctr", "cnt" };
6040
6041 feature = tdesc_find_feature (tdesc,
6042 "org.gnu.gdb.power.core");
6043 if (feature == NULL)
6044 return NULL;
6045
6046 tdesc_data = tdesc_data_alloc ();
6047
6048 valid_p = 1;
6049 for (i = 0; i < ppc_num_gprs; i++)
6050 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6051 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6052 "pc");
6053 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6054 "lr");
6055 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6056 "xer");
6057
6058 /* Allow alternate names for these registers, to accomodate GDB's
6059 historic naming. */
6060 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6061 PPC_MSR_REGNUM, msr_names);
6062 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6063 PPC_CR_REGNUM, cr_names);
6064 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6065 PPC_CTR_REGNUM, ctr_names);
6066
6067 if (!valid_p)
6068 {
6069 tdesc_data_cleanup (tdesc_data);
6070 return NULL;
6071 }
6072
6073 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6074 "mq");
6075
6076 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
6077 if (wordsize == -1)
6078 wordsize = tdesc_wordsize;
6079
6080 feature = tdesc_find_feature (tdesc,
6081 "org.gnu.gdb.power.fpu");
6082 if (feature != NULL)
6083 {
6084 static const char *const fprs[] = {
6085 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6086 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6087 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6088 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6089 };
6090 valid_p = 1;
6091 for (i = 0; i < ppc_num_fprs; i++)
6092 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6093 PPC_F0_REGNUM + i, fprs[i]);
6094 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6095 PPC_FPSCR_REGNUM, "fpscr");
6096
6097 if (!valid_p)
6098 {
6099 tdesc_data_cleanup (tdesc_data);
6100 return NULL;
6101 }
6102 have_fpu = 1;
6103 }
6104 else
6105 have_fpu = 0;
6106
f949c649
TJB
6107 /* The DFP pseudo-registers will be available when there are floating
6108 point registers. */
6109 have_dfp = have_fpu;
6110
7cc46491
DJ
6111 feature = tdesc_find_feature (tdesc,
6112 "org.gnu.gdb.power.altivec");
6113 if (feature != NULL)
6114 {
6115 static const char *const vector_regs[] = {
6116 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6117 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6118 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6119 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6120 };
6121
6122 valid_p = 1;
6123 for (i = 0; i < ppc_num_gprs; i++)
6124 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6125 PPC_VR0_REGNUM + i,
6126 vector_regs[i]);
6127 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6128 PPC_VSCR_REGNUM, "vscr");
6129 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6130 PPC_VRSAVE_REGNUM, "vrsave");
6131
6132 if (have_spe || !valid_p)
6133 {
6134 tdesc_data_cleanup (tdesc_data);
6135 return NULL;
6136 }
6137 have_altivec = 1;
6138 }
6139 else
6140 have_altivec = 0;
6141
604c2f83
LM
6142 /* Check for POWER7 VSX registers support. */
6143 feature = tdesc_find_feature (tdesc,
6144 "org.gnu.gdb.power.vsx");
6145
6146 if (feature != NULL)
6147 {
6148 static const char *const vsx_regs[] = {
6149 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6150 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6151 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6152 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6153 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6154 "vs30h", "vs31h"
6155 };
6156
6157 valid_p = 1;
6158
6159 for (i = 0; i < ppc_num_vshrs; i++)
6160 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6161 PPC_VSR0_UPPER_REGNUM + i,
6162 vsx_regs[i]);
6163 if (!valid_p)
6164 {
6165 tdesc_data_cleanup (tdesc_data);
6166 return NULL;
6167 }
6168
6169 have_vsx = 1;
6170 }
6171 else
6172 have_vsx = 0;
6173
7cc46491
DJ
6174 /* On machines supporting the SPE APU, the general-purpose registers
6175 are 64 bits long. There are SIMD vector instructions to treat them
6176 as pairs of floats, but the rest of the instruction set treats them
6177 as 32-bit registers, and only operates on their lower halves.
6178
6179 In the GDB regcache, we treat their high and low halves as separate
6180 registers. The low halves we present as the general-purpose
6181 registers, and then we have pseudo-registers that stitch together
6182 the upper and lower halves and present them as pseudo-registers.
6183
6184 Thus, the target description is expected to supply the upper
6185 halves separately. */
6186
6187 feature = tdesc_find_feature (tdesc,
6188 "org.gnu.gdb.power.spe");
6189 if (feature != NULL)
6190 {
6191 static const char *const upper_spe[] = {
6192 "ev0h", "ev1h", "ev2h", "ev3h",
6193 "ev4h", "ev5h", "ev6h", "ev7h",
6194 "ev8h", "ev9h", "ev10h", "ev11h",
6195 "ev12h", "ev13h", "ev14h", "ev15h",
6196 "ev16h", "ev17h", "ev18h", "ev19h",
6197 "ev20h", "ev21h", "ev22h", "ev23h",
6198 "ev24h", "ev25h", "ev26h", "ev27h",
6199 "ev28h", "ev29h", "ev30h", "ev31h"
6200 };
6201
6202 valid_p = 1;
6203 for (i = 0; i < ppc_num_gprs; i++)
6204 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6205 PPC_SPE_UPPER_GP0_REGNUM + i,
6206 upper_spe[i]);
6207 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6208 PPC_SPE_ACC_REGNUM, "acc");
6209 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6210 PPC_SPE_FSCR_REGNUM, "spefscr");
6211
6212 if (have_mq || have_fpu || !valid_p)
6213 {
6214 tdesc_data_cleanup (tdesc_data);
6215 return NULL;
6216 }
6217 have_spe = 1;
6218 }
6219 else
6220 have_spe = 0;
6221 }
6222
6223 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6224 complain for a 32-bit binary on a 64-bit target; we do not yet
6225 support that. For instance, the 32-bit ABI routines expect
6226 32-bit GPRs.
6227
6228 As long as there isn't an explicit target description, we'll
6229 choose one based on the BFD architecture and get a word size
6230 matching the binary (probably powerpc:common or
6231 powerpc:common64). So there is only trouble if a 64-bit target
6232 supplies a 64-bit description while debugging a 32-bit
6233 binary. */
6234 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6235 {
6236 tdesc_data_cleanup (tdesc_data);
6237 return NULL;
6238 }
6239
55eddb0f 6240#ifdef HAVE_ELF
cd453cd0
UW
6241 if (from_elf_exec)
6242 {
6243 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6244 {
6245 case 1:
6246 elf_abi = POWERPC_ELF_V1;
6247 break;
6248 case 2:
6249 elf_abi = POWERPC_ELF_V2;
6250 break;
6251 default:
6252 break;
6253 }
6254 }
6255
55eddb0f
DJ
6256 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6257 {
6258 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6259 Tag_GNU_Power_ABI_FP))
6260 {
6261 case 1:
6262 soft_float_flag = AUTO_BOOLEAN_FALSE;
6263 break;
6264 case 2:
6265 soft_float_flag = AUTO_BOOLEAN_TRUE;
6266 break;
6267 default:
6268 break;
6269 }
6270 }
6271
6272 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6273 {
6274 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6275 Tag_GNU_Power_ABI_Vector))
6276 {
6277 case 1:
6278 vector_abi = POWERPC_VEC_GENERIC;
6279 break;
6280 case 2:
6281 vector_abi = POWERPC_VEC_ALTIVEC;
6282 break;
6283 case 3:
6284 vector_abi = POWERPC_VEC_SPE;
6285 break;
6286 default:
6287 break;
6288 }
6289 }
6290#endif
6291
cd453cd0
UW
6292 /* At this point, the only supported ELF-based 64-bit little-endian
6293 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6294 default. All other supported ELF-based operating systems use the
6295 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6296 e.g. because we run a legacy binary, or have attached to a process
6297 and have not found any associated binary file, set the default
6298 according to this heuristic. */
6299 if (elf_abi == POWERPC_ELF_AUTO)
6300 {
6301 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6302 elf_abi = POWERPC_ELF_V2;
6303 else
6304 elf_abi = POWERPC_ELF_V1;
6305 }
6306
55eddb0f
DJ
6307 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6308 soft_float = 1;
6309 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6310 soft_float = 0;
6311 else
6312 soft_float = !have_fpu;
6313
6314 /* If we have a hard float binary or setting but no floating point
6315 registers, downgrade to soft float anyway. We're still somewhat
6316 useful in this scenario. */
6317 if (!soft_float && !have_fpu)
6318 soft_float = 1;
6319
6320 /* Similarly for vector registers. */
6321 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6322 vector_abi = POWERPC_VEC_GENERIC;
6323
6324 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6325 vector_abi = POWERPC_VEC_GENERIC;
6326
6327 if (vector_abi == POWERPC_VEC_AUTO)
6328 {
6329 if (have_altivec)
6330 vector_abi = POWERPC_VEC_ALTIVEC;
6331 else if (have_spe)
6332 vector_abi = POWERPC_VEC_SPE;
6333 else
6334 vector_abi = POWERPC_VEC_GENERIC;
6335 }
6336
6337 /* Do not limit the vector ABI based on available hardware, since we
6338 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6339
7cc46491
DJ
6340 /* Find a candidate among extant architectures. */
6341 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6342 arches != NULL;
6343 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6344 {
6345 /* Word size in the various PowerPC bfd_arch_info structs isn't
6346 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6347 separate word size check. */
6348 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
6349 if (tdep && tdep->elf_abi != elf_abi)
6350 continue;
55eddb0f
DJ
6351 if (tdep && tdep->soft_float != soft_float)
6352 continue;
6353 if (tdep && tdep->vector_abi != vector_abi)
6354 continue;
7cc46491
DJ
6355 if (tdep && tdep->wordsize == wordsize)
6356 {
6357 if (tdesc_data != NULL)
6358 tdesc_data_cleanup (tdesc_data);
6359 return arches->gdbarch;
6360 }
6361 }
6362
6363 /* None found, create a new architecture from INFO, whose bfd_arch_info
6364 validity depends on the source:
6365 - executable useless
6366 - rs6000_host_arch() good
6367 - core file good
6368 - "set arch" trust blindly
6369 - GDB startup useless but harmless */
6370
fc270c35 6371 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 6372 tdep->wordsize = wordsize;
cd453cd0 6373 tdep->elf_abi = elf_abi;
55eddb0f
DJ
6374 tdep->soft_float = soft_float;
6375 tdep->vector_abi = vector_abi;
7cc46491 6376
7a78ae4e 6377 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 6378
7cc46491
DJ
6379 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6380 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6381 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6382 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6383 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6384 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6385 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6386 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6387
6388 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6389 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 6390 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
6391 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6392 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6393 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6394 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6395 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6396
6397 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6398 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7cc46491 6399 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 6400 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
6401
6402 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6403 GDB traditionally called it "ps", though, so let GDB add an
6404 alias. */
6405 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6406
4a7622d1 6407 if (wordsize == 8)
05580c65 6408 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 6409 else
4a7622d1 6410 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 6411
baffbae0
JB
6412 /* Set lr_frame_offset. */
6413 if (wordsize == 8)
6414 tdep->lr_frame_offset = 16;
baffbae0 6415 else
4a7622d1 6416 tdep->lr_frame_offset = 4;
baffbae0 6417
604c2f83 6418 if (have_spe || have_dfp || have_vsx)
7cc46491 6419 {
f949c649 6420 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
6421 set_gdbarch_pseudo_register_write (gdbarch,
6422 rs6000_pseudo_register_write);
2a2fa07b
MK
6423 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6424 rs6000_ax_pseudo_register_collect);
7cc46491 6425 }
1fcc0bb8 6426
a67914de
MK
6427 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6428
e0d24f8d
WZ
6429 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6430
56a6dfb9 6431 /* Select instruction printer. */
708ff411 6432 if (arch == bfd_arch_rs6000)
9364a0ef 6433 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 6434 else
9364a0ef 6435 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 6436
5a9e69ba 6437 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
6438
6439 if (have_spe)
6440 num_pseudoregs += 32;
6441 if (have_dfp)
6442 num_pseudoregs += 16;
604c2f83
LM
6443 if (have_vsx)
6444 /* Include both VSX and Extended FP registers. */
6445 num_pseudoregs += 96;
f949c649
TJB
6446
6447 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
6448
6449 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6450 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6451 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6452 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6453 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6454 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6455 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 6456 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 6457 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 6458
11269d7e 6459 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 6460 if (wordsize == 8)
8b148df9
AC
6461 /* PPC64 SYSV. */
6462 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 6463
691d145a
JB
6464 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6465 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6466 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6467
18ed0c4e
JB
6468 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6469 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 6470
4a7622d1 6471 if (wordsize == 4)
77b2b6d4 6472 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 6473 else if (wordsize == 8)
8be9034a 6474 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 6475
7a78ae4e 6476 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 6477 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 6478 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 6479
7a78ae4e 6480 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
6481
6482 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6483 rs6000_breakpoint::kind_from_pc);
6484 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6485 rs6000_breakpoint::bp_from_kind);
7a78ae4e 6486
203c3895 6487 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 6488 it shouldn't be. */
203c3895
UW
6489 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6490
ce5eab59 6491 /* Handles single stepping of atomic sequences. */
4a7622d1 6492 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 6493
0df8b418 6494 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
6495 set_gdbarch_frame_args_skip (gdbarch, 8);
6496
143985b7
AF
6497 /* Helpers for function argument information. */
6498 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6499
6f7f3f0d
UW
6500 /* Trampoline. */
6501 set_gdbarch_in_solib_return_trampoline
6502 (gdbarch, rs6000_in_solib_return_trampoline);
6503 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6504
4fc771b8 6505 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 6506 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
6507 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6508
9274a07c
LM
6509 /* Frame handling. */
6510 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6511
2454a024
UW
6512 /* Setup displaced stepping. */
6513 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 6514 ppc_displaced_step_copy_insn);
99e40580
UW
6515 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6516 ppc_displaced_step_hw_singlestep);
2454a024
UW
6517 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6518 set_gdbarch_displaced_step_free_closure (gdbarch,
6519 simple_displaced_step_free_closure);
6520 set_gdbarch_displaced_step_location (gdbarch,
6521 displaced_step_at_entry_point);
6522
6523 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6524
7b112f9c 6525 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 6526 info.target_desc = tdesc;
ede5f151 6527 info.tdep_info = tdesc_data;
4be87837 6528 gdbarch_init_osabi (info, gdbarch);
7b112f9c 6529
61a65099
KB
6530 switch (info.osabi)
6531 {
f5aecab8 6532 case GDB_OSABI_LINUX:
61a65099
KB
6533 case GDB_OSABI_NETBSD_AOUT:
6534 case GDB_OSABI_NETBSD_ELF:
6535 case GDB_OSABI_UNKNOWN:
61a65099 6536 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6537 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6538 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6539 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
61a65099
KB
6540 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6541 break;
6542 default:
61a65099 6543 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
6544
6545 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6546 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6547 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6548 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
81332287 6549 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
6550 }
6551
7cc46491
DJ
6552 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6553 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6554 rs6000_pseudo_register_reggroup_p);
6555 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6556
6557 /* Override the normal target description method to make the SPE upper
6558 halves anonymous. */
6559 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6560
604c2f83
LM
6561 /* Choose register numbers for all supported pseudo-registers. */
6562 tdep->ppc_ev0_regnum = -1;
6563 tdep->ppc_dl0_regnum = -1;
6564 tdep->ppc_vsr0_regnum = -1;
6565 tdep->ppc_efpr0_regnum = -1;
9f643768 6566
604c2f83
LM
6567 cur_reg = gdbarch_num_regs (gdbarch);
6568
6569 if (have_spe)
6570 {
6571 tdep->ppc_ev0_regnum = cur_reg;
6572 cur_reg += 32;
6573 }
6574 if (have_dfp)
6575 {
6576 tdep->ppc_dl0_regnum = cur_reg;
6577 cur_reg += 16;
6578 }
6579 if (have_vsx)
6580 {
6581 tdep->ppc_vsr0_regnum = cur_reg;
6582 cur_reg += 64;
6583 tdep->ppc_efpr0_regnum = cur_reg;
6584 cur_reg += 32;
6585 }
f949c649 6586
604c2f83
LM
6587 gdb_assert (gdbarch_num_regs (gdbarch)
6588 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
f949c649 6589
debb1f09
JB
6590 /* Register the ravenscar_arch_ops. */
6591 if (mach == bfd_mach_ppc_e500)
6592 register_e500_ravenscar_ops (gdbarch);
6593 else
6594 register_ppc_ravenscar_ops (gdbarch);
6595
7a78ae4e 6596 return gdbarch;
c906108c
SS
6597}
6598
7b112f9c 6599static void
8b164abb 6600rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 6601{
8b164abb 6602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
6603
6604 if (tdep == NULL)
6605 return;
6606
4be87837 6607 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
6608}
6609
55eddb0f
DJ
6610/* PowerPC-specific commands. */
6611
6612static void
6613set_powerpc_command (char *args, int from_tty)
6614{
6615 printf_unfiltered (_("\
6616\"set powerpc\" must be followed by an appropriate subcommand.\n"));
6617 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6618}
6619
6620static void
6621show_powerpc_command (char *args, int from_tty)
6622{
6623 cmd_show_list (showpowerpccmdlist, from_tty, "");
6624}
6625
6626static void
6627powerpc_set_soft_float (char *args, int from_tty,
6628 struct cmd_list_element *c)
6629{
6630 struct gdbarch_info info;
6631
6632 /* Update the architecture. */
6633 gdbarch_info_init (&info);
6634 if (!gdbarch_update_p (info))
9b20d036 6635 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6636}
6637
6638static void
6639powerpc_set_vector_abi (char *args, int from_tty,
6640 struct cmd_list_element *c)
6641{
6642 struct gdbarch_info info;
570dc176 6643 int vector_abi;
55eddb0f
DJ
6644
6645 for (vector_abi = POWERPC_VEC_AUTO;
6646 vector_abi != POWERPC_VEC_LAST;
6647 vector_abi++)
6648 if (strcmp (powerpc_vector_abi_string,
6649 powerpc_vector_strings[vector_abi]) == 0)
6650 {
aead7601 6651 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
6652 break;
6653 }
6654
6655 if (vector_abi == POWERPC_VEC_LAST)
6656 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6657 powerpc_vector_abi_string);
6658
6659 /* Update the architecture. */
6660 gdbarch_info_init (&info);
6661 if (!gdbarch_update_p (info))
9b20d036 6662 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6663}
6664
e09342b5
TJB
6665/* Show the current setting of the exact watchpoints flag. */
6666
6667static void
6668show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6669 struct cmd_list_element *c,
6670 const char *value)
6671{
6672 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6673}
6674
845d4708 6675/* Read a PPC instruction from memory. */
d78489bf
AT
6676
6677static unsigned int
845d4708 6678read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 6679{
845d4708
AM
6680 struct gdbarch *gdbarch = get_frame_arch (frame);
6681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6682
6683 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
6684}
6685
6686/* Return non-zero if the instructions at PC match the series
6687 described in PATTERN, or zero otherwise. PATTERN is an array of
6688 'struct ppc_insn_pattern' objects, terminated by an entry whose
6689 mask is zero.
6690
6691 When the match is successful, fill INSN[i] with what PATTERN[i]
6692 matched. If PATTERN[i] is optional, and the instruction wasn't
6693 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6694 INSN should have as many elements as PATTERN. Note that, if
6695 PATTERN contains optional instructions which aren't present in
6696 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6697 i'th instruction in memory. */
6698
6699int
845d4708
AM
6700ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6701 struct ppc_insn_pattern *pattern,
6702 unsigned int *insns)
d78489bf
AT
6703{
6704 int i;
845d4708 6705 unsigned int insn;
d78489bf 6706
845d4708 6707 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 6708 {
845d4708
AM
6709 if (insn == 0)
6710 insn = read_insn (frame, pc);
6711 insns[i] = 0;
6712 if ((insn & pattern[i].mask) == pattern[i].data)
6713 {
6714 insns[i] = insn;
6715 pc += 4;
6716 insn = 0;
6717 }
6718 else if (!pattern[i].optional)
d78489bf
AT
6719 return 0;
6720 }
6721
6722 return 1;
6723}
6724
6725/* Return the 'd' field of the d-form instruction INSN, properly
6726 sign-extended. */
6727
6728CORE_ADDR
6729ppc_insn_d_field (unsigned int insn)
6730{
6731 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6732}
6733
6734/* Return the 'ds' field of the ds-form instruction INSN, with the two
6735 zero bits concatenated at the right, and properly
6736 sign-extended. */
6737
6738CORE_ADDR
6739ppc_insn_ds_field (unsigned int insn)
6740{
6741 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6742}
6743
c906108c
SS
6744/* Initialization code. */
6745
0df8b418
MS
6746/* -Wmissing-prototypes */
6747extern initialize_file_ftype _initialize_rs6000_tdep;
b9362cc7 6748
c906108c 6749void
fba45db2 6750_initialize_rs6000_tdep (void)
c906108c 6751{
7b112f9c
JT
6752 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6753 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
6754
6755 /* Initialize the standard target descriptions. */
6756 initialize_tdesc_powerpc_32 ();
7284e1be 6757 initialize_tdesc_powerpc_altivec32 ();
604c2f83 6758 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
6759 initialize_tdesc_powerpc_403 ();
6760 initialize_tdesc_powerpc_403gc ();
4d09ffea 6761 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
6762 initialize_tdesc_powerpc_505 ();
6763 initialize_tdesc_powerpc_601 ();
6764 initialize_tdesc_powerpc_602 ();
6765 initialize_tdesc_powerpc_603 ();
6766 initialize_tdesc_powerpc_604 ();
6767 initialize_tdesc_powerpc_64 ();
7284e1be 6768 initialize_tdesc_powerpc_altivec64 ();
604c2f83 6769 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
6770 initialize_tdesc_powerpc_7400 ();
6771 initialize_tdesc_powerpc_750 ();
6772 initialize_tdesc_powerpc_860 ();
6773 initialize_tdesc_powerpc_e500 ();
6774 initialize_tdesc_rs6000 ();
55eddb0f
DJ
6775
6776 /* Add root prefix command for all "set powerpc"/"show powerpc"
6777 commands. */
6778 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6779 _("Various PowerPC-specific commands."),
6780 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6781
6782 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6783 _("Various PowerPC-specific commands."),
6784 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6785
6786 /* Add a command to allow the user to force the ABI. */
6787 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6788 &powerpc_soft_float_global,
6789 _("Set whether to use a soft-float ABI."),
6790 _("Show whether to use a soft-float ABI."),
6791 NULL,
6792 powerpc_set_soft_float, NULL,
6793 &setpowerpccmdlist, &showpowerpccmdlist);
6794
6795 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6796 &powerpc_vector_abi_string,
6797 _("Set the vector ABI."),
6798 _("Show the vector ABI."),
6799 NULL, powerpc_set_vector_abi, NULL,
6800 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
6801
6802 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6803 &target_exact_watchpoints,
6804 _("\
6805Set whether to use just one debug register for watchpoints on scalars."),
6806 _("\
6807Show whether to use just one debug register for watchpoints on scalars."),
6808 _("\
6809If true, GDB will use only one debug register when watching a variable of\n\
6810scalar type, thus assuming that the variable is accessed through the address\n\
6811of its first byte."),
6812 NULL, show_powerpc_exact_watchpoints,
6813 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 6814}
This page took 2.084376 seconds and 4 git commands to generate.