2002-08-22 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
2a873819 3 1998, 1999, 2000, 2001, 2002
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
7a78ae4e 37
2fccf04a 38#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 39#include "coff/internal.h" /* for libcoff.h */
2fccf04a 40#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
41#include "coff/xcoff.h"
42#include "libxcoff.h"
7a78ae4e 43
9aa1e687 44#include "elf-bfd.h"
7a78ae4e 45
6ded7999 46#include "solib-svr4.h"
9aa1e687 47#include "ppc-tdep.h"
7a78ae4e
ND
48
49/* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56#define SIG_FRAME_PC_OFFSET 96
57#define SIG_FRAME_LR_OFFSET 108
58#define SIG_FRAME_FP_OFFSET 284
59
7a78ae4e
ND
60/* To be used by skip_prologue. */
61
62struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 69 int saved_vr; /* smallest # of saved vr */
7a78ae4e
ND
70 int alloca_reg; /* alloca register number (frame ptr) */
71 char frameless; /* true if frameless functions. */
72 char nosavedpc; /* true if pc not saved. */
73 int gpr_offset; /* offset of saved gprs from prev sp */
74 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 75 int vr_offset; /* offset of saved vrs from prev sp */
7a78ae4e
ND
76 int lr_offset; /* offset of saved lr */
77 int cr_offset; /* offset of saved cr */
6be8bc0c 78 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
79 };
80
81/* Description of a single register. */
82
83struct reg
84 {
85 char *name; /* name of register */
86 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
87 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
88 unsigned char fpr; /* whether register is floating-point */
489461e2 89 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
90 };
91
c906108c
SS
92/* Breakpoint shadows for the single step instructions will be kept here. */
93
c5aa993b
JM
94static struct sstep_breaks
95 {
96 /* Address, or 0 if this is not in use. */
97 CORE_ADDR address;
98 /* Shadow contents. */
99 char data[4];
100 }
101stepBreaks[2];
c906108c
SS
102
103/* Hook for determining the TOC address when calling functions in the
104 inferior under AIX. The initialization code in rs6000-nat.c sets
105 this hook to point to find_toc_address. */
106
7a78ae4e
ND
107CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
108
109/* Hook to set the current architecture when starting a child process.
110 rs6000-nat.c sets this. */
111
112void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
113
114/* Static function prototypes */
115
a14ed312
KB
116static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
117 CORE_ADDR safety);
077276e8
KB
118static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
119 struct rs6000_framedata *);
7a78ae4e
ND
120static void frame_get_saved_regs (struct frame_info * fi,
121 struct rs6000_framedata * fdatap);
122static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 123
7a78ae4e 124/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 125
7a78ae4e
ND
126static CORE_ADDR
127read_memory_addr (CORE_ADDR memaddr, int len)
128{
129 return read_memory_unsigned_integer (memaddr, len);
130}
c906108c 131
7a78ae4e
ND
132static CORE_ADDR
133rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
134{
135 struct rs6000_framedata frame;
077276e8 136 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
137 return pc;
138}
139
140
c906108c
SS
141/* Fill in fi->saved_regs */
142
143struct frame_extra_info
144{
145 /* Functions calling alloca() change the value of the stack
146 pointer. We need to use initial stack pointer (which is saved in
147 r31 by gcc) in such cases. If a compiler emits traceback table,
148 then we should use the alloca register specified in traceback
149 table. FIXME. */
c5aa993b 150 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
151};
152
9aa1e687 153void
7a78ae4e 154rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 155{
c5aa993b 156 fi->extra_info = (struct frame_extra_info *)
c906108c
SS
157 frame_obstack_alloc (sizeof (struct frame_extra_info));
158 fi->extra_info->initial_sp = 0;
159 if (fi->next != (CORE_ADDR) 0
160 && fi->pc < TEXT_SEGMENT_BASE)
7a292a7a 161 /* We're in get_prev_frame */
c906108c
SS
162 /* and this is a special signal frame. */
163 /* (fi->pc will be some low address in the kernel, */
164 /* to which the signal handler returns). */
165 fi->signal_handler_caller = 1;
166}
167
7a78ae4e
ND
168/* Put here the code to store, into a struct frame_saved_regs,
169 the addresses of the saved registers of frame described by FRAME_INFO.
170 This includes special registers such as pc and fp saved in special
171 ways in the stack frame. sp is even more special:
172 the address we return for it IS the sp for the next frame. */
c906108c 173
7a78ae4e
ND
174/* In this implementation for RS/6000, we do *not* save sp. I am
175 not sure if it will be needed. The following function takes care of gpr's
176 and fpr's only. */
177
9aa1e687 178void
7a78ae4e 179rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
180{
181 frame_get_saved_regs (fi, NULL);
182}
183
7a78ae4e
ND
184static CORE_ADDR
185rs6000_frame_args_address (struct frame_info *fi)
c906108c
SS
186{
187 if (fi->extra_info->initial_sp != 0)
188 return fi->extra_info->initial_sp;
189 else
190 return frame_initial_stack_address (fi);
191}
192
7a78ae4e
ND
193/* Immediately after a function call, return the saved pc.
194 Can't go through the frames for this because on some machines
195 the new frame is not set up until the new function executes
196 some instructions. */
197
198static CORE_ADDR
199rs6000_saved_pc_after_call (struct frame_info *fi)
200{
2188cbdd 201 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 202}
c906108c
SS
203
204/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
205
206static CORE_ADDR
7a78ae4e 207branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
208{
209 CORE_ADDR dest;
210 int immediate;
211 int absolute;
212 int ext_op;
213
214 absolute = (int) ((instr >> 1) & 1);
215
c5aa993b
JM
216 switch (opcode)
217 {
218 case 18:
219 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
220 if (absolute)
221 dest = immediate;
222 else
223 dest = pc + immediate;
224 break;
225
226 case 16:
227 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
228 if (absolute)
229 dest = immediate;
230 else
231 dest = pc + immediate;
232 break;
233
234 case 19:
235 ext_op = (instr >> 1) & 0x3ff;
236
237 if (ext_op == 16) /* br conditional register */
238 {
2188cbdd 239 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
240
241 /* If we are about to return from a signal handler, dest is
242 something like 0x3c90. The current frame is a signal handler
243 caller frame, upon completion of the sigreturn system call
244 execution will return to the saved PC in the frame. */
245 if (dest < TEXT_SEGMENT_BASE)
246 {
247 struct frame_info *fi;
248
249 fi = get_current_frame ();
250 if (fi != NULL)
7a78ae4e 251 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
21283beb 252 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
253 }
254 }
255
256 else if (ext_op == 528) /* br cond to count reg */
257 {
2188cbdd 258 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
259
260 /* If we are about to execute a system call, dest is something
261 like 0x22fc or 0x3b00. Upon completion the system call
262 will return to the address in the link register. */
263 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 264 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
265 }
266 else
267 return -1;
268 break;
c906108c 269
c5aa993b
JM
270 default:
271 return -1;
272 }
c906108c
SS
273 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
274}
275
276
277/* Sequence of bytes for breakpoint instruction. */
278
279#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
280#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
281
f4f9705a 282const static unsigned char *
7a78ae4e 283rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
284{
285 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
286 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
287 *bp_size = 4;
d7449b42 288 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
289 return big_breakpoint;
290 else
291 return little_breakpoint;
292}
293
294
295/* AIX does not support PT_STEP. Simulate it. */
296
297void
379d08a1
AC
298rs6000_software_single_step (enum target_signal signal,
299 int insert_breakpoints_p)
c906108c 300{
7c40d541
KB
301 CORE_ADDR dummy;
302 int breakp_sz;
f4f9705a 303 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
304 int ii, insn;
305 CORE_ADDR loc;
306 CORE_ADDR breaks[2];
307 int opcode;
308
c5aa993b
JM
309 if (insert_breakpoints_p)
310 {
c906108c 311
c5aa993b 312 loc = read_pc ();
c906108c 313
c5aa993b 314 insn = read_memory_integer (loc, 4);
c906108c 315
7c40d541 316 breaks[0] = loc + breakp_sz;
c5aa993b
JM
317 opcode = insn >> 26;
318 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 319
c5aa993b
JM
320 /* Don't put two breakpoints on the same address. */
321 if (breaks[1] == breaks[0])
322 breaks[1] = -1;
c906108c 323
c5aa993b 324 stepBreaks[1].address = 0;
c906108c 325
c5aa993b
JM
326 for (ii = 0; ii < 2; ++ii)
327 {
c906108c 328
c5aa993b
JM
329 /* ignore invalid breakpoint. */
330 if (breaks[ii] == -1)
331 continue;
7c40d541 332 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
333 stepBreaks[ii].address = breaks[ii];
334 }
c906108c 335
c5aa993b
JM
336 }
337 else
338 {
c906108c 339
c5aa993b
JM
340 /* remove step breakpoints. */
341 for (ii = 0; ii < 2; ++ii)
342 if (stepBreaks[ii].address != 0)
7c40d541
KB
343 target_remove_breakpoint (stepBreaks[ii].address,
344 stepBreaks[ii].data);
c5aa993b 345 }
c906108c 346 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 347 /* What errors? {read,write}_memory call error(). */
c906108c
SS
348}
349
350
351/* return pc value after skipping a function prologue and also return
352 information about a function frame.
353
354 in struct rs6000_framedata fdata:
c5aa993b
JM
355 - frameless is TRUE, if function does not have a frame.
356 - nosavedpc is TRUE, if function does not save %pc value in its frame.
357 - offset is the initial size of this stack frame --- the amount by
358 which we decrement the sp to allocate the frame.
359 - saved_gpr is the number of the first saved gpr.
360 - saved_fpr is the number of the first saved fpr.
6be8bc0c 361 - saved_vr is the number of the first saved vr.
c5aa993b
JM
362 - alloca_reg is the number of the register used for alloca() handling.
363 Otherwise -1.
364 - gpr_offset is the offset of the first saved gpr from the previous frame.
365 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 366 - vr_offset is the offset of the first saved vr from the previous frame.
c5aa993b
JM
367 - lr_offset is the offset of the saved lr
368 - cr_offset is the offset of the saved cr
6be8bc0c 369 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 370 */
c906108c
SS
371
372#define SIGNED_SHORT(x) \
373 ((sizeof (short) == 2) \
374 ? ((int)(short)(x)) \
375 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
376
377#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
378
55d05f3b
KB
379/* Limit the number of skipped non-prologue instructions, as the examining
380 of the prologue is expensive. */
381static int max_skip_non_prologue_insns = 10;
382
383/* Given PC representing the starting address of a function, and
384 LIM_PC which is the (sloppy) limit to which to scan when looking
385 for a prologue, attempt to further refine this limit by using
386 the line data in the symbol table. If successful, a better guess
387 on where the prologue ends is returned, otherwise the previous
388 value of lim_pc is returned. */
389static CORE_ADDR
390refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
391{
392 struct symtab_and_line prologue_sal;
393
394 prologue_sal = find_pc_line (pc, 0);
395 if (prologue_sal.line != 0)
396 {
397 int i;
398 CORE_ADDR addr = prologue_sal.end;
399
400 /* Handle the case in which compiler's optimizer/scheduler
401 has moved instructions into the prologue. We scan ahead
402 in the function looking for address ranges whose corresponding
403 line number is less than or equal to the first one that we
404 found for the function. (It can be less than when the
405 scheduler puts a body instruction before the first prologue
406 instruction.) */
407 for (i = 2 * max_skip_non_prologue_insns;
408 i > 0 && (lim_pc == 0 || addr < lim_pc);
409 i--)
410 {
411 struct symtab_and_line sal;
412
413 sal = find_pc_line (addr, 0);
414 if (sal.line == 0)
415 break;
416 if (sal.line <= prologue_sal.line
417 && sal.symtab == prologue_sal.symtab)
418 {
419 prologue_sal = sal;
420 }
421 addr = sal.end;
422 }
423
424 if (lim_pc == 0 || prologue_sal.end < lim_pc)
425 lim_pc = prologue_sal.end;
426 }
427 return lim_pc;
428}
429
430
7a78ae4e 431static CORE_ADDR
077276e8 432skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
433{
434 CORE_ADDR orig_pc = pc;
55d05f3b 435 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 436 CORE_ADDR li_found_pc = 0;
c906108c
SS
437 char buf[4];
438 unsigned long op;
439 long offset = 0;
6be8bc0c 440 long vr_saved_offset = 0;
482ca3f5
KB
441 int lr_reg = -1;
442 int cr_reg = -1;
6be8bc0c
EZ
443 int vr_reg = -1;
444 int vrsave_reg = -1;
c906108c
SS
445 int reg;
446 int framep = 0;
447 int minimal_toc_loaded = 0;
ddb20c56 448 int prev_insn_was_prologue_insn = 1;
55d05f3b
KB
449 int num_skip_non_prologue_insns = 0;
450
451 /* Attempt to find the end of the prologue when no limit is specified.
452 Note that refine_prologue_limit() has been written so that it may
453 be used to "refine" the limits of non-zero PC values too, but this
454 is only safe if we 1) trust the line information provided by the
455 compiler and 2) iterate enough to actually find the end of the
456 prologue.
457
458 It may become a good idea at some point (for both performance and
459 accuracy) to unconditionally call refine_prologue_limit(). But,
460 until we can make a clear determination that this is beneficial,
461 we'll play it safe and only use it to obtain a limit when none
462 has been specified. */
463 if (lim_pc == 0)
464 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 465
ddb20c56 466 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
467 fdata->saved_gpr = -1;
468 fdata->saved_fpr = -1;
6be8bc0c 469 fdata->saved_vr = -1;
c906108c
SS
470 fdata->alloca_reg = -1;
471 fdata->frameless = 1;
472 fdata->nosavedpc = 1;
473
55d05f3b 474 for (;; pc += 4)
c906108c 475 {
ddb20c56
KB
476 /* Sometimes it isn't clear if an instruction is a prologue
477 instruction or not. When we encounter one of these ambiguous
478 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
479 Otherwise, we'll assume that it really is a prologue instruction. */
480 if (prev_insn_was_prologue_insn)
481 last_prologue_pc = pc;
55d05f3b
KB
482
483 /* Stop scanning if we've hit the limit. */
484 if (lim_pc != 0 && pc >= lim_pc)
485 break;
486
ddb20c56
KB
487 prev_insn_was_prologue_insn = 1;
488
55d05f3b 489 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
490 if (target_read_memory (pc, buf, 4))
491 break;
492 op = extract_signed_integer (buf, 4);
c906108c 493
c5aa993b
JM
494 if ((op & 0xfc1fffff) == 0x7c0802a6)
495 { /* mflr Rx */
496 lr_reg = (op & 0x03e00000) | 0x90010000;
497 continue;
c906108c 498
c5aa993b
JM
499 }
500 else if ((op & 0xfc1fffff) == 0x7c000026)
501 { /* mfcr Rx */
502 cr_reg = (op & 0x03e00000) | 0x90010000;
503 continue;
c906108c 504
c906108c 505 }
c5aa993b
JM
506 else if ((op & 0xfc1f0000) == 0xd8010000)
507 { /* stfd Rx,NUM(r1) */
508 reg = GET_SRC_REG (op);
509 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
510 {
511 fdata->saved_fpr = reg;
512 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
513 }
514 continue;
c906108c 515
c5aa993b
JM
516 }
517 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
518 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
519 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
520 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
521 {
522
523 reg = GET_SRC_REG (op);
524 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
525 {
526 fdata->saved_gpr = reg;
7a78ae4e
ND
527 if ((op & 0xfc1f0003) == 0xf8010000)
528 op = (op >> 1) << 1;
c5aa993b
JM
529 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
530 }
531 continue;
c906108c 532
ddb20c56
KB
533 }
534 else if ((op & 0xffff0000) == 0x60000000)
535 {
536 /* nop */
537 /* Allow nops in the prologue, but do not consider them to
538 be part of the prologue unless followed by other prologue
539 instructions. */
540 prev_insn_was_prologue_insn = 0;
541 continue;
542
c906108c 543 }
c5aa993b
JM
544 else if ((op & 0xffff0000) == 0x3c000000)
545 { /* addis 0,0,NUM, used
546 for >= 32k frames */
547 fdata->offset = (op & 0x0000ffff) << 16;
548 fdata->frameless = 0;
549 continue;
550
551 }
552 else if ((op & 0xffff0000) == 0x60000000)
553 { /* ori 0,0,NUM, 2nd ha
554 lf of >= 32k frames */
555 fdata->offset |= (op & 0x0000ffff);
556 fdata->frameless = 0;
557 continue;
558
559 }
482ca3f5 560 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
561 { /* st Rx,NUM(r1)
562 where Rx == lr */
563 fdata->lr_offset = SIGNED_SHORT (op) + offset;
564 fdata->nosavedpc = 0;
565 lr_reg = 0;
566 continue;
567
568 }
482ca3f5 569 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
570 { /* st Rx,NUM(r1)
571 where Rx == cr */
572 fdata->cr_offset = SIGNED_SHORT (op) + offset;
573 cr_reg = 0;
574 continue;
575
576 }
577 else if (op == 0x48000005)
578 { /* bl .+4 used in
579 -mrelocatable */
580 continue;
581
582 }
583 else if (op == 0x48000004)
584 { /* b .+4 (xlc) */
585 break;
586
c5aa993b 587 }
6be8bc0c
EZ
588 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
589 in V.4 -mminimal-toc */
c5aa993b
JM
590 (op & 0xffff0000) == 0x3bde0000)
591 { /* addi 30,30,foo@l */
592 continue;
c906108c 593
c5aa993b
JM
594 }
595 else if ((op & 0xfc000001) == 0x48000001)
596 { /* bl foo,
597 to save fprs??? */
c906108c 598
c5aa993b 599 fdata->frameless = 0;
6be8bc0c
EZ
600 /* Don't skip over the subroutine call if it is not within
601 the first three instructions of the prologue. */
c5aa993b
JM
602 if ((pc - orig_pc) > 8)
603 break;
604
605 op = read_memory_integer (pc + 4, 4);
606
6be8bc0c
EZ
607 /* At this point, make sure this is not a trampoline
608 function (a function that simply calls another functions,
609 and nothing else). If the next is not a nop, this branch
610 was part of the function prologue. */
c5aa993b
JM
611
612 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
613 break; /* don't skip over
614 this branch */
615 continue;
616
617 /* update stack pointer */
618 }
7a78ae4e
ND
619 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
620 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
621 {
c5aa993b 622 fdata->frameless = 0;
7a78ae4e
ND
623 if ((op & 0xffff0003) == 0xf8210001)
624 op = (op >> 1) << 1;
c5aa993b
JM
625 fdata->offset = SIGNED_SHORT (op);
626 offset = fdata->offset;
627 continue;
628
629 }
630 else if (op == 0x7c21016e)
631 { /* stwux 1,1,0 */
632 fdata->frameless = 0;
633 offset = fdata->offset;
634 continue;
635
636 /* Load up minimal toc pointer */
637 }
638 else if ((op >> 22) == 0x20f
639 && !minimal_toc_loaded)
640 { /* l r31,... or l r30,... */
641 minimal_toc_loaded = 1;
642 continue;
643
f6077098
KB
644 /* move parameters from argument registers to local variable
645 registers */
646 }
647 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
648 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
649 (((op >> 21) & 31) <= 10) &&
650 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
651 {
652 continue;
653
c5aa993b
JM
654 /* store parameters in stack */
655 }
6be8bc0c 656 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 657 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
658 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
659 {
c5aa993b 660 continue;
c906108c 661
c5aa993b
JM
662 /* store parameters in stack via frame pointer */
663 }
664 else if (framep &&
665 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
666 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0xfc1f0000))
668 { /* frsp, fp?,NUM(r1) */
669 continue;
670
671 /* Set up frame pointer */
672 }
673 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
674 || op == 0x7c3f0b78)
675 { /* mr r31, r1 */
676 fdata->frameless = 0;
677 framep = 1;
678 fdata->alloca_reg = 31;
679 continue;
680
681 /* Another way to set up the frame pointer. */
682 }
683 else if ((op & 0xfc1fffff) == 0x38010000)
684 { /* addi rX, r1, 0x0 */
685 fdata->frameless = 0;
686 framep = 1;
687 fdata->alloca_reg = (op & ~0x38010000) >> 21;
688 continue;
c5aa993b 689 }
6be8bc0c
EZ
690 /* AltiVec related instructions. */
691 /* Store the vrsave register (spr 256) in another register for
692 later manipulation, or load a register into the vrsave
693 register. 2 instructions are used: mfvrsave and
694 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
695 and mtspr SPR256, Rn. */
696 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
697 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
698 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
699 {
700 vrsave_reg = GET_SRC_REG (op);
701 continue;
702 }
703 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
704 {
705 continue;
706 }
707 /* Store the register where vrsave was saved to onto the stack:
708 rS is the register where vrsave was stored in a previous
709 instruction. */
710 /* 100100 sssss 00001 dddddddd dddddddd */
711 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
712 {
713 if (vrsave_reg == GET_SRC_REG (op))
714 {
715 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
716 vrsave_reg = -1;
717 }
718 continue;
719 }
720 /* Compute the new value of vrsave, by modifying the register
721 where vrsave was saved to. */
722 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
723 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
724 {
725 continue;
726 }
727 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
728 in a pair of insns to save the vector registers on the
729 stack. */
730 /* 001110 00000 00000 iiii iiii iiii iiii */
731 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
732 {
733 li_found_pc = pc;
734 vr_saved_offset = SIGNED_SHORT (op);
735 }
736 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
737 /* 011111 sssss 11111 00000 00111001110 */
738 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
739 {
740 if (pc == (li_found_pc + 4))
741 {
742 vr_reg = GET_SRC_REG (op);
743 /* If this is the first vector reg to be saved, or if
744 it has a lower number than others previously seen,
745 reupdate the frame info. */
746 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
747 {
748 fdata->saved_vr = vr_reg;
749 fdata->vr_offset = vr_saved_offset + offset;
750 }
751 vr_saved_offset = -1;
752 vr_reg = -1;
753 li_found_pc = 0;
754 }
755 }
756 /* End AltiVec related instructions. */
c5aa993b
JM
757 else
758 {
55d05f3b
KB
759 /* Not a recognized prologue instruction.
760 Handle optimizer code motions into the prologue by continuing
761 the search if we have no valid frame yet or if the return
762 address is not yet saved in the frame. */
763 if (fdata->frameless == 0
764 && (lr_reg == -1 || fdata->nosavedpc == 0))
765 break;
766
767 if (op == 0x4e800020 /* blr */
768 || op == 0x4e800420) /* bctr */
769 /* Do not scan past epilogue in frameless functions or
770 trampolines. */
771 break;
772 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 773 /* Never skip branches. */
55d05f3b
KB
774 break;
775
776 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
777 /* Do not scan too many insns, scanning insns is expensive with
778 remote targets. */
779 break;
780
781 /* Continue scanning. */
782 prev_insn_was_prologue_insn = 0;
783 continue;
c5aa993b 784 }
c906108c
SS
785 }
786
787#if 0
788/* I have problems with skipping over __main() that I need to address
789 * sometime. Previously, I used to use misc_function_vector which
790 * didn't work as well as I wanted to be. -MGO */
791
792 /* If the first thing after skipping a prolog is a branch to a function,
793 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 794 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 795 work before calling a function right after a prologue, thus we can
64366f1c 796 single out such gcc2 behaviour. */
c906108c 797
c906108c 798
c5aa993b
JM
799 if ((op & 0xfc000001) == 0x48000001)
800 { /* bl foo, an initializer function? */
801 op = read_memory_integer (pc + 4, 4);
802
803 if (op == 0x4def7b82)
804 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 805
64366f1c
EZ
806 /* Check and see if we are in main. If so, skip over this
807 initializer function as well. */
c906108c 808
c5aa993b 809 tmp = find_pc_misc_function (pc);
51cc5b07 810 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
811 return pc + 8;
812 }
c906108c 813 }
c906108c 814#endif /* 0 */
c5aa993b
JM
815
816 fdata->offset = -fdata->offset;
ddb20c56 817 return last_prologue_pc;
c906108c
SS
818}
819
820
821/*************************************************************************
f6077098 822 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
823 frames, etc.
824*************************************************************************/
825
c906108c 826
64366f1c 827/* Pop the innermost frame, go back to the caller. */
c5aa993b 828
c906108c 829static void
7a78ae4e 830rs6000_pop_frame (void)
c906108c 831{
470d5666 832 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
833 struct rs6000_framedata fdata;
834 struct frame_info *frame = get_current_frame ();
470d5666 835 int ii, wordsize;
c906108c
SS
836
837 pc = read_pc ();
838 sp = FRAME_FP (frame);
839
58223630 840 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 841 {
7a78ae4e
ND
842 generic_pop_dummy_frame ();
843 flush_cached_frames ();
844 return;
c906108c
SS
845 }
846
847 /* Make sure that all registers are valid. */
848 read_register_bytes (0, NULL, REGISTER_BYTES);
849
64366f1c 850 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 851 still in the link register, otherwise walk the frames and retrieve the
64366f1c 852 saved %pc value in the previous frame. */
c906108c
SS
853
854 addr = get_pc_function_start (frame->pc);
077276e8 855 (void) skip_prologue (addr, frame->pc, &fdata);
c906108c 856
21283beb 857 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
858 if (fdata.frameless)
859 prev_sp = sp;
860 else
7a78ae4e 861 prev_sp = read_memory_addr (sp, wordsize);
c906108c 862 if (fdata.lr_offset == 0)
2188cbdd 863 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 864 else
7a78ae4e 865 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
866
867 /* reset %pc value. */
868 write_register (PC_REGNUM, lr);
869
64366f1c 870 /* reset register values if any was saved earlier. */
c906108c
SS
871
872 if (fdata.saved_gpr != -1)
873 {
874 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
875 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
876 {
7a78ae4e
ND
877 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
878 addr += wordsize;
c5aa993b 879 }
c906108c
SS
880 }
881
882 if (fdata.saved_fpr != -1)
883 {
884 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
885 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
886 {
887 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
888 addr += 8;
889 }
c906108c
SS
890 }
891
892 write_register (SP_REGNUM, prev_sp);
893 target_store_registers (-1);
894 flush_cached_frames ();
895}
896
7a78ae4e 897/* Fixup the call sequence of a dummy function, with the real function
64366f1c 898 address. Its arguments will be passed by gdb. */
c906108c 899
7a78ae4e
ND
900static void
901rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 902 int nargs, struct value **args, struct type *type,
7a78ae4e 903 int gcc_p)
c906108c 904{
c906108c
SS
905 int ii;
906 CORE_ADDR target_addr;
907
7a78ae4e 908 if (rs6000_find_toc_address_hook != NULL)
f6077098 909 {
7a78ae4e 910 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
911 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
912 tocvalue);
f6077098 913 }
c906108c
SS
914}
915
7a78ae4e 916/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
917 the first eight words of the argument list (that might be less than
918 eight parameters if some parameters occupy more than one word) are
7a78ae4e 919 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
920 passed in fpr's, in addition to that. Rest of the parameters if any
921 are passed in user stack. There might be cases in which half of the
c906108c
SS
922 parameter is copied into registers, the other half is pushed into
923 stack.
924
7a78ae4e
ND
925 Stack must be aligned on 64-bit boundaries when synthesizing
926 function calls.
927
c906108c
SS
928 If the function is returning a structure, then the return address is passed
929 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 930 starting from r4. */
c906108c 931
7a78ae4e 932static CORE_ADDR
ea7c478f 933rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 934 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
935{
936 int ii;
937 int len = 0;
c5aa993b
JM
938 int argno; /* current argument number */
939 int argbytes; /* current argument byte */
940 char tmp_buffer[50];
941 int f_argno = 0; /* current floating point argno */
21283beb 942 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 943
ea7c478f 944 struct value *arg = 0;
c906108c
SS
945 struct type *type;
946
947 CORE_ADDR saved_sp;
948
64366f1c
EZ
949 /* The first eight words of ther arguments are passed in registers.
950 Copy them appropriately.
c906108c
SS
951
952 If the function is returning a `struct', then the first word (which
64366f1c 953 will be passed in r3) is used for struct return address. In that
c906108c 954 case we should advance one word and start from r4 register to copy
64366f1c 955 parameters. */
c906108c 956
c5aa993b 957 ii = struct_return ? 1 : 0;
c906108c
SS
958
959/*
c5aa993b
JM
960 effectively indirect call... gcc does...
961
962 return_val example( float, int);
963
964 eabi:
965 float in fp0, int in r3
966 offset of stack on overflow 8/16
967 for varargs, must go by type.
968 power open:
969 float in r3&r4, int in r5
970 offset of stack on overflow different
971 both:
972 return in r3 or f0. If no float, must study how gcc emulates floats;
973 pay attention to arg promotion.
974 User may have to cast\args to handle promotion correctly
975 since gdb won't know if prototype supplied or not.
976 */
c906108c 977
c5aa993b
JM
978 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
979 {
f6077098 980 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
981
982 arg = args[argno];
983 type = check_typedef (VALUE_TYPE (arg));
984 len = TYPE_LENGTH (type);
985
986 if (TYPE_CODE (type) == TYPE_CODE_FLT)
987 {
988
64366f1c 989 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 990 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 991 there is no way we would run out of them. */
c5aa993b
JM
992
993 if (len > 8)
994 printf_unfiltered (
995 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
996
997 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
998 VALUE_CONTENTS (arg),
999 len);
1000 ++f_argno;
1001 }
1002
f6077098 1003 if (len > reg_size)
c5aa993b
JM
1004 {
1005
64366f1c 1006 /* Argument takes more than one register. */
c5aa993b
JM
1007 while (argbytes < len)
1008 {
f6077098 1009 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
c5aa993b
JM
1010 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1011 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1012 (len - argbytes) > reg_size
1013 ? reg_size : len - argbytes);
1014 ++ii, argbytes += reg_size;
c5aa993b
JM
1015
1016 if (ii >= 8)
1017 goto ran_out_of_registers_for_arguments;
1018 }
1019 argbytes = 0;
1020 --ii;
1021 }
1022 else
64366f1c
EZ
1023 {
1024 /* Argument can fit in one register. No problem. */
d7449b42 1025 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
f6077098
KB
1026 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1027 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1028 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1029 }
1030 ++argno;
c906108c 1031 }
c906108c
SS
1032
1033ran_out_of_registers_for_arguments:
1034
7a78ae4e 1035 saved_sp = read_sp ();
cc9836a8 1036
64366f1c 1037 /* Location for 8 parameters are always reserved. */
7a78ae4e 1038 sp -= wordsize * 8;
f6077098 1039
64366f1c 1040 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1041 sp -= wordsize * 6;
f6077098 1042
64366f1c 1043 /* Stack pointer must be quadword aligned. */
7a78ae4e 1044 sp &= -16;
c906108c 1045
64366f1c
EZ
1046 /* If there are more arguments, allocate space for them in
1047 the stack, then push them starting from the ninth one. */
c906108c 1048
c5aa993b
JM
1049 if ((argno < nargs) || argbytes)
1050 {
1051 int space = 0, jj;
c906108c 1052
c5aa993b
JM
1053 if (argbytes)
1054 {
1055 space += ((len - argbytes + 3) & -4);
1056 jj = argno + 1;
1057 }
1058 else
1059 jj = argno;
c906108c 1060
c5aa993b
JM
1061 for (; jj < nargs; ++jj)
1062 {
ea7c478f 1063 struct value *val = args[jj];
c5aa993b
JM
1064 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1065 }
c906108c 1066
64366f1c 1067 /* Add location required for the rest of the parameters. */
f6077098 1068 space = (space + 15) & -16;
c5aa993b 1069 sp -= space;
c906108c 1070
64366f1c
EZ
1071 /* This is another instance we need to be concerned about
1072 securing our stack space. If we write anything underneath %sp
1073 (r1), we might conflict with the kernel who thinks he is free
1074 to use this area. So, update %sp first before doing anything
1075 else. */
c906108c 1076
c5aa993b 1077 write_register (SP_REGNUM, sp);
c906108c 1078
64366f1c
EZ
1079 /* If the last argument copied into the registers didn't fit there
1080 completely, push the rest of it into stack. */
c906108c 1081
c5aa993b
JM
1082 if (argbytes)
1083 {
1084 write_memory (sp + 24 + (ii * 4),
1085 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1086 len - argbytes);
1087 ++argno;
1088 ii += ((len - argbytes + 3) & -4) / 4;
1089 }
c906108c 1090
64366f1c 1091 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1092 for (; argno < nargs; ++argno)
1093 {
c906108c 1094
c5aa993b
JM
1095 arg = args[argno];
1096 type = check_typedef (VALUE_TYPE (arg));
1097 len = TYPE_LENGTH (type);
c906108c
SS
1098
1099
64366f1c
EZ
1100 /* Float types should be passed in fpr's, as well as in the
1101 stack. */
c5aa993b
JM
1102 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1103 {
c906108c 1104
c5aa993b
JM
1105 if (len > 8)
1106 printf_unfiltered (
1107 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1108
c5aa993b
JM
1109 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1110 VALUE_CONTENTS (arg),
1111 len);
1112 ++f_argno;
1113 }
c906108c 1114
c5aa993b
JM
1115 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1116 ii += ((len + 3) & -4) / 4;
1117 }
c906108c 1118 }
c906108c 1119 else
64366f1c 1120 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1121 write_register (SP_REGNUM, sp);
1122
c906108c
SS
1123 /* set back chain properly */
1124 store_address (tmp_buffer, 4, saved_sp);
1125 write_memory (sp, tmp_buffer, 4);
1126
1127 target_store_registers (-1);
1128 return sp;
1129}
c906108c
SS
1130
1131/* Function: ppc_push_return_address (pc, sp)
64366f1c 1132 Set up the return address for the inferior function call. */
c906108c 1133
7a78ae4e
ND
1134static CORE_ADDR
1135ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1136{
2188cbdd
EZ
1137 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1138 CALL_DUMMY_ADDRESS ());
c906108c
SS
1139 return sp;
1140}
1141
7a78ae4e 1142/* Extract a function return value of type TYPE from raw register array
64366f1c 1143 REGBUF, and copy that return value into VALBUF in virtual format. */
c906108c 1144
7a78ae4e
ND
1145static void
1146rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1147{
1148 int offset = 0;
ace1378a 1149 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1150
c5aa993b
JM
1151 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1152 {
c906108c 1153
c5aa993b
JM
1154 double dd;
1155 float ff;
1156 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1157 We need to truncate the return value into float size (4 byte) if
64366f1c 1158 necessary. */
c906108c 1159
c5aa993b
JM
1160 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1161 memcpy (valbuf,
1162 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1163 TYPE_LENGTH (valtype));
1164 else
1165 { /* float */
1166 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1167 ff = (float) dd;
1168 memcpy (valbuf, &ff, sizeof (float));
1169 }
1170 }
ace1378a
EZ
1171 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1172 && TYPE_LENGTH (valtype) == 16
1173 && TYPE_VECTOR (valtype))
1174 {
1175 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1176 TYPE_LENGTH (valtype));
1177 }
c5aa993b
JM
1178 else
1179 {
1180 /* return value is copied starting from r3. */
d7449b42 1181 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1182 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1183 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1184
1185 memcpy (valbuf,
1186 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1187 TYPE_LENGTH (valtype));
c906108c 1188 }
c906108c
SS
1189}
1190
7a78ae4e 1191/* Keep structure return address in this variable.
c906108c
SS
1192 FIXME: This is a horrid kludge which should not be allowed to continue
1193 living. This only allows a single nested call to a structure-returning
1194 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1195
7a78ae4e 1196static CORE_ADDR rs6000_struct_return_address;
c906108c 1197
977adac5
ND
1198/* Return whether handle_inferior_event() should proceed through code
1199 starting at PC in function NAME when stepping.
1200
1201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1202 handle memory references that are too distant to fit in instructions
1203 generated by the compiler. For example, if 'foo' in the following
1204 instruction:
1205
1206 lwz r9,foo(r2)
1207
1208 is greater than 32767, the linker might replace the lwz with a branch to
1209 somewhere in @FIX1 that does the load in 2 instructions and then branches
1210 back to where execution should continue.
1211
1212 GDB should silently step over @FIX code, just like AIX dbx does.
1213 Unfortunately, the linker uses the "b" instruction for the branches,
1214 meaning that the link register doesn't get set. Therefore, GDB's usual
1215 step_over_function() mechanism won't work.
1216
1217 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1218 in handle_inferior_event() to skip past @FIX code. */
1219
1220int
1221rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1222{
1223 return name && !strncmp (name, "@FIX", 4);
1224}
1225
1226/* Skip code that the user doesn't want to see when stepping:
1227
1228 1. Indirect function calls use a piece of trampoline code to do context
1229 switching, i.e. to set the new TOC table. Skip such code if we are on
1230 its first instruction (as when we have single-stepped to here).
1231
1232 2. Skip shared library trampoline code (which is different from
c906108c 1233 indirect function call trampolines).
977adac5
ND
1234
1235 3. Skip bigtoc fixup code.
1236
c906108c 1237 Result is desired PC to step until, or NULL if we are not in
977adac5 1238 code that should be skipped. */
c906108c
SS
1239
1240CORE_ADDR
7a78ae4e 1241rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1242{
1243 register unsigned int ii, op;
977adac5 1244 int rel;
c906108c 1245 CORE_ADDR solib_target_pc;
977adac5 1246 struct minimal_symbol *msymbol;
c906108c 1247
c5aa993b
JM
1248 static unsigned trampoline_code[] =
1249 {
1250 0x800b0000, /* l r0,0x0(r11) */
1251 0x90410014, /* st r2,0x14(r1) */
1252 0x7c0903a6, /* mtctr r0 */
1253 0x804b0004, /* l r2,0x4(r11) */
1254 0x816b0008, /* l r11,0x8(r11) */
1255 0x4e800420, /* bctr */
1256 0x4e800020, /* br */
1257 0
c906108c
SS
1258 };
1259
977adac5
ND
1260 /* Check for bigtoc fixup code. */
1261 msymbol = lookup_minimal_symbol_by_pc (pc);
1262 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1263 {
1264 /* Double-check that the third instruction from PC is relative "b". */
1265 op = read_memory_integer (pc + 8, 4);
1266 if ((op & 0xfc000003) == 0x48000000)
1267 {
1268 /* Extract bits 6-29 as a signed 24-bit relative word address and
1269 add it to the containing PC. */
1270 rel = ((int)(op << 6) >> 6);
1271 return pc + 8 + rel;
1272 }
1273 }
1274
c906108c
SS
1275 /* If pc is in a shared library trampoline, return its target. */
1276 solib_target_pc = find_solib_trampoline_target (pc);
1277 if (solib_target_pc)
1278 return solib_target_pc;
1279
c5aa993b
JM
1280 for (ii = 0; trampoline_code[ii]; ++ii)
1281 {
1282 op = read_memory_integer (pc + (ii * 4), 4);
1283 if (op != trampoline_code[ii])
1284 return 0;
1285 }
1286 ii = read_register (11); /* r11 holds destination addr */
21283beb 1287 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1288 return pc;
1289}
1290
1291/* Determines whether the function FI has a frame on the stack or not. */
1292
9aa1e687 1293int
c877c8e6 1294rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1295{
1296 CORE_ADDR func_start;
1297 struct rs6000_framedata fdata;
1298
1299 /* Don't even think about framelessness except on the innermost frame
1300 or if the function was interrupted by a signal. */
1301 if (fi->next != NULL && !fi->next->signal_handler_caller)
1302 return 0;
c5aa993b 1303
c906108c
SS
1304 func_start = get_pc_function_start (fi->pc);
1305
1306 /* If we failed to find the start of the function, it is a mistake
64366f1c 1307 to inspect the instructions. */
c906108c
SS
1308
1309 if (!func_start)
1310 {
1311 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1312 function pointer, normally causing an immediate core dump of the
64366f1c 1313 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1314 of setting up a stack frame. */
c906108c
SS
1315 if (fi->pc == 0)
1316 return 1;
1317 else
1318 return 0;
1319 }
1320
077276e8 1321 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1322 return fdata.frameless;
1323}
1324
64366f1c 1325/* Return the PC saved in a frame. */
c906108c 1326
9aa1e687 1327CORE_ADDR
c877c8e6 1328rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1329{
1330 CORE_ADDR func_start;
1331 struct rs6000_framedata fdata;
21283beb 1332 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1333 int wordsize = tdep->wordsize;
c906108c
SS
1334
1335 if (fi->signal_handler_caller)
7a78ae4e 1336 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
c906108c 1337
7a78ae4e
ND
1338 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1339 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
c906108c
SS
1340
1341 func_start = get_pc_function_start (fi->pc);
1342
1343 /* If we failed to find the start of the function, it is a mistake
64366f1c 1344 to inspect the instructions. */
c906108c
SS
1345 if (!func_start)
1346 return 0;
1347
077276e8 1348 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1349
1350 if (fdata.lr_offset == 0 && fi->next != NULL)
1351 {
1352 if (fi->next->signal_handler_caller)
7a78ae4e
ND
1353 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1354 wordsize);
c906108c 1355 else
a88376a3 1356 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
7a78ae4e 1357 wordsize);
c906108c
SS
1358 }
1359
1360 if (fdata.lr_offset == 0)
2188cbdd 1361 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1362
7a78ae4e 1363 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1364}
1365
1366/* If saved registers of frame FI are not known yet, read and cache them.
1367 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1368 in which case the framedata are read. */
1369
1370static void
7a78ae4e 1371frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1372{
c5aa993b 1373 CORE_ADDR frame_addr;
c906108c 1374 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1375 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1376 int wordsize = tdep->wordsize;
c906108c
SS
1377
1378 if (fi->saved_regs)
1379 return;
c5aa993b 1380
c906108c
SS
1381 if (fdatap == NULL)
1382 {
1383 fdatap = &work_fdata;
077276e8 1384 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
c906108c
SS
1385 }
1386
1387 frame_saved_regs_zalloc (fi);
1388
1389 /* If there were any saved registers, figure out parent's stack
64366f1c 1390 pointer. */
c906108c 1391 /* The following is true only if the frame doesn't have a call to
64366f1c 1392 alloca(), FIXME. */
c906108c 1393
6be8bc0c
EZ
1394 if (fdatap->saved_fpr == 0
1395 && fdatap->saved_gpr == 0
1396 && fdatap->saved_vr == 0
1397 && fdatap->lr_offset == 0
1398 && fdatap->cr_offset == 0
1399 && fdatap->vr_offset == 0)
c906108c 1400 frame_addr = 0;
c906108c 1401 else
bf75c8c1
AC
1402 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1403 address of the current frame. Things might be easier if the
1404 ->frame pointed to the outer-most address of the frame. In the
1405 mean time, the address of the prev frame is used as the base
1406 address of this frame. */
1407 frame_addr = FRAME_CHAIN (fi);
c5aa993b 1408
c906108c
SS
1409 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1410 All fpr's from saved_fpr to fp31 are saved. */
1411
1412 if (fdatap->saved_fpr >= 0)
1413 {
1414 int i;
7a78ae4e 1415 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1416 for (i = fdatap->saved_fpr; i < 32; i++)
1417 {
7a78ae4e
ND
1418 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1419 fpr_addr += 8;
c906108c
SS
1420 }
1421 }
1422
1423 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1424 All gpr's from saved_gpr to gpr31 are saved. */
1425
1426 if (fdatap->saved_gpr >= 0)
1427 {
1428 int i;
7a78ae4e 1429 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1430 for (i = fdatap->saved_gpr; i < 32; i++)
1431 {
7a78ae4e
ND
1432 fi->saved_regs[i] = gpr_addr;
1433 gpr_addr += wordsize;
c906108c
SS
1434 }
1435 }
1436
6be8bc0c
EZ
1437 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1438 All vr's from saved_vr to vr31 are saved. */
1439 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1440 {
1441 if (fdatap->saved_vr >= 0)
1442 {
1443 int i;
1444 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1445 for (i = fdatap->saved_vr; i < 32; i++)
1446 {
1447 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1448 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1449 }
1450 }
1451 }
1452
c906108c
SS
1453 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1454 the CR. */
1455 if (fdatap->cr_offset != 0)
6be8bc0c 1456 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1457
1458 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1459 the LR. */
1460 if (fdatap->lr_offset != 0)
6be8bc0c
EZ
1461 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1462
1463 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1464 the VRSAVE. */
1465 if (fdatap->vrsave_offset != 0)
1466 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1467}
1468
1469/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1470 was first allocated. For functions calling alloca(), it might be saved in
1471 an alloca register. */
c906108c
SS
1472
1473static CORE_ADDR
7a78ae4e 1474frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1475{
1476 CORE_ADDR tmpaddr;
1477 struct rs6000_framedata fdata;
1478 struct frame_info *callee_fi;
1479
64366f1c
EZ
1480 /* If the initial stack pointer (frame address) of this frame is known,
1481 just return it. */
c906108c
SS
1482
1483 if (fi->extra_info->initial_sp)
1484 return fi->extra_info->initial_sp;
1485
64366f1c 1486 /* Find out if this function is using an alloca register. */
c906108c 1487
077276e8 1488 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
c906108c 1489
64366f1c
EZ
1490 /* If saved registers of this frame are not known yet, read and
1491 cache them. */
c906108c
SS
1492
1493 if (!fi->saved_regs)
1494 frame_get_saved_regs (fi, &fdata);
1495
1496 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1497 this frame, and it is good enough. */
c906108c
SS
1498
1499 if (fdata.alloca_reg < 0)
1500 {
1501 fi->extra_info->initial_sp = fi->frame;
1502 return fi->extra_info->initial_sp;
1503 }
1504
953836b2
AC
1505 /* There is an alloca register, use its value, in the current frame,
1506 as the initial stack pointer. */
1507 {
1508 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1509 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1510 {
1511 fi->extra_info->initial_sp
1512 = extract_unsigned_integer (tmpbuf,
1513 REGISTER_RAW_SIZE (fdata.alloca_reg));
1514 }
1515 else
1516 /* NOTE: cagney/2002-04-17: At present the only time
1517 frame_register_read will fail is when the register isn't
1518 available. If that does happen, use the frame. */
1519 fi->extra_info->initial_sp = fi->frame;
1520 }
c906108c
SS
1521 return fi->extra_info->initial_sp;
1522}
1523
7a78ae4e
ND
1524/* Describe the pointer in each stack frame to the previous stack frame
1525 (its caller). */
1526
1527/* FRAME_CHAIN takes a frame's nominal address
64366f1c 1528 and produces the frame's chain-pointer. */
7a78ae4e
ND
1529
1530/* In the case of the RS/6000, the frame's nominal address
1531 is the address of a 4-byte word containing the calling frame's address. */
1532
9aa1e687 1533CORE_ADDR
7a78ae4e 1534rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1535{
7a78ae4e 1536 CORE_ADDR fp, fpp, lr;
21283beb 1537 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1538
7a78ae4e
ND
1539 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1540 return thisframe->frame; /* dummy frame same as caller's frame */
c906108c 1541
c5aa993b 1542 if (inside_entry_file (thisframe->pc) ||
c906108c
SS
1543 thisframe->pc == entry_point_address ())
1544 return 0;
1545
1546 if (thisframe->signal_handler_caller)
7a78ae4e
ND
1547 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1548 wordsize);
c906108c
SS
1549 else if (thisframe->next != NULL
1550 && thisframe->next->signal_handler_caller
c877c8e6 1551 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1552 /* A frameless function interrupted by a signal did not change the
1553 frame pointer. */
1554 fp = FRAME_FP (thisframe);
1555 else
7a78ae4e 1556 fp = read_memory_addr ((thisframe)->frame, wordsize);
c906108c 1557
2188cbdd 1558 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e
ND
1559 if (lr == entry_point_address ())
1560 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1561 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1562 return fpp;
1563
1564 return fp;
1565}
1566
1567/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1568 isn't available with that word size, return 0. */
7a78ae4e
ND
1569
1570static int
1571regsize (const struct reg *reg, int wordsize)
1572{
1573 return wordsize == 8 ? reg->sz64 : reg->sz32;
1574}
1575
1576/* Return the name of register number N, or null if no such register exists
64366f1c 1577 in the current architecture. */
7a78ae4e 1578
fa88f677 1579static const char *
7a78ae4e
ND
1580rs6000_register_name (int n)
1581{
21283beb 1582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1583 const struct reg *reg = tdep->regs + n;
1584
1585 if (!regsize (reg, tdep->wordsize))
1586 return NULL;
1587 return reg->name;
1588}
1589
1590/* Index within `registers' of the first byte of the space for
1591 register N. */
1592
1593static int
1594rs6000_register_byte (int n)
1595{
21283beb 1596 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1597}
1598
1599/* Return the number of bytes of storage in the actual machine representation
64366f1c 1600 for register N if that register is available, else return 0. */
7a78ae4e
ND
1601
1602static int
1603rs6000_register_raw_size (int n)
1604{
21283beb 1605 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1606 const struct reg *reg = tdep->regs + n;
1607 return regsize (reg, tdep->wordsize);
1608}
1609
7a78ae4e
ND
1610/* Return the GDB type object for the "standard" data type
1611 of data in register N. */
1612
1613static struct type *
fba45db2 1614rs6000_register_virtual_type (int n)
7a78ae4e 1615{
21283beb 1616 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1617 const struct reg *reg = tdep->regs + n;
1618
1fcc0bb8
EZ
1619 if (reg->fpr)
1620 return builtin_type_double;
1621 else
1622 {
1623 int size = regsize (reg, tdep->wordsize);
1624 switch (size)
1625 {
1626 case 8:
c8001721
EZ
1627 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1628 return builtin_type_vec64;
1629 else
1630 return builtin_type_int64;
1fcc0bb8
EZ
1631 break;
1632 case 16:
08cf96df 1633 return builtin_type_vec128;
1fcc0bb8
EZ
1634 break;
1635 default:
1636 return builtin_type_int32;
1637 break;
1638 }
1639 }
7a78ae4e
ND
1640}
1641
1642/* For the PowerPC, it appears that the debug info marks float parameters as
1643 floats regardless of whether the function is prototyped, but the actual
1644 values are always passed in as doubles. Tell gdb to always assume that
64366f1c 1645 floats are passed as doubles and then converted in the callee. */
7a78ae4e
ND
1646
1647static int
1648rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1649{
1650 return 1;
1651}
1652
1653/* Return whether register N requires conversion when moving from raw format
1654 to virtual format.
1655
1656 The register format for RS/6000 floating point registers is always
64366f1c 1657 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1658
1659static int
1660rs6000_register_convertible (int n)
1661{
21283beb 1662 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1663 return reg->fpr;
1664}
1665
1666/* Convert data from raw format for register N in buffer FROM
64366f1c 1667 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1668
1669static void
1670rs6000_register_convert_to_virtual (int n, struct type *type,
1671 char *from, char *to)
1672{
1673 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1674 {
7a78ae4e
ND
1675 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1676 store_floating (to, TYPE_LENGTH (type), val);
1677 }
1678 else
1679 memcpy (to, from, REGISTER_RAW_SIZE (n));
1680}
1681
1682/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1683 to raw format for register N in buffer TO. */
7a292a7a 1684
7a78ae4e
ND
1685static void
1686rs6000_register_convert_to_raw (struct type *type, int n,
1687 char *from, char *to)
1688{
1689 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1690 {
1691 double val = extract_floating (from, TYPE_LENGTH (type));
1692 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1693 }
7a78ae4e
ND
1694 else
1695 memcpy (to, from, REGISTER_RAW_SIZE (n));
1696}
c906108c 1697
c8001721
EZ
1698static void
1699e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1700 int reg_nr, void *buffer)
1701{
1702 int base_regnum;
1703 int offset = 0;
1704 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1705 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1706
1707 if (reg_nr >= tdep->ppc_gp0_regnum
1708 && reg_nr <= tdep->ppc_gplast_regnum)
1709 {
1710 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1711
1712 /* Build the value in the provided buffer. */
1713 /* Read the raw register of which this one is the lower portion. */
1714 regcache_raw_read (regcache, base_regnum, temp_buffer);
1715 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1716 offset = 4;
1717 memcpy ((char *) buffer, temp_buffer + offset, 4);
1718 }
1719}
1720
1721static void
1722e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1723 int reg_nr, const void *buffer)
1724{
1725 int base_regnum;
1726 int offset = 0;
1727 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1728 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1729
1730 if (reg_nr >= tdep->ppc_gp0_regnum
1731 && reg_nr <= tdep->ppc_gplast_regnum)
1732 {
1733 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1734 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1735 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1736 offset = 4;
1737
1738 /* Let's read the value of the base register into a temporary
1739 buffer, so that overwriting the last four bytes with the new
1740 value of the pseudo will leave the upper 4 bytes unchanged. */
1741 regcache_raw_read (regcache, base_regnum, temp_buffer);
1742
1743 /* Write as an 8 byte quantity. */
1744 memcpy (temp_buffer + offset, (char *) buffer, 4);
1745 regcache_raw_write (regcache, base_regnum, temp_buffer);
1746 }
1747}
1748
1749/* Convert a dwarf2 register number to a gdb REGNUM. */
1750static int
1751e500_dwarf2_reg_to_regnum (int num)
1752{
1753 int regnum;
1754 if (0 <= num && num <= 31)
1755 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1756 else
1757 return num;
1758}
1759
2188cbdd 1760/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1761 REGNUM. */
2188cbdd
EZ
1762static int
1763rs6000_stab_reg_to_regnum (int num)
1764{
1765 int regnum;
1766 switch (num)
1767 {
1768 case 64:
1769 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1770 break;
1771 case 65:
1772 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1773 break;
1774 case 66:
1775 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1776 break;
1777 case 76:
1778 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1779 break;
1780 default:
1781 regnum = num;
1782 break;
1783 }
1784 return regnum;
1785}
1786
7a78ae4e
ND
1787/* Store the address of the place in which to copy the structure the
1788 subroutine will return. This is called from call_function.
1789
1790 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1791 In function return, callee is not responsible of returning this address
1792 back. Since gdb needs to find it, we will store in a designated variable
64366f1c 1793 `rs6000_struct_return_address'. */
7a78ae4e
ND
1794
1795static void
1796rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1797{
1798 write_register (3, addr);
1799 rs6000_struct_return_address = addr;
1800}
1801
1802/* Write into appropriate registers a function return value
1803 of type TYPE, given in virtual format. */
1804
1805static void
1806rs6000_store_return_value (struct type *type, char *valbuf)
1807{
ace1378a
EZ
1808 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1809
7a78ae4e
ND
1810 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1811
1812 /* Floating point values are returned starting from FPR1 and up.
1813 Say a double_double_double type could be returned in
64366f1c 1814 FPR1/FPR2/FPR3 triple. */
7a78ae4e
ND
1815
1816 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1817 TYPE_LENGTH (type));
ace1378a
EZ
1818 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1819 {
1820 if (TYPE_LENGTH (type) == 16
1821 && TYPE_VECTOR (type))
1822 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1823 valbuf, TYPE_LENGTH (type));
1824 }
7a78ae4e 1825 else
64366f1c 1826 /* Everything else is returned in GPR3 and up. */
2188cbdd
EZ
1827 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1828 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
1829}
1830
1831/* Extract from an array REGBUF containing the (raw) register state
1832 the address in which a function should return its structure value,
1833 as a CORE_ADDR (or an expression that can be used as one). */
1834
1835static CORE_ADDR
1836rs6000_extract_struct_value_address (char *regbuf)
1837{
1838 return rs6000_struct_return_address;
1839}
1840
1841/* Return whether PC is in a dummy function call.
1842
1843 FIXME: This just checks for the end of the stack, which is broken
64366f1c 1844 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
1845
1846static int
1847rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1848{
1849 return sp < pc && pc < fp;
1850}
1851
64366f1c 1852/* Hook called when a new child process is started. */
7a78ae4e
ND
1853
1854void
1855rs6000_create_inferior (int pid)
1856{
1857 if (rs6000_set_host_arch_hook)
1858 rs6000_set_host_arch_hook (pid);
c906108c
SS
1859}
1860\f
7a78ae4e
ND
1861/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1862
1863 Usually a function pointer's representation is simply the address
1864 of the function. On the RS/6000 however, a function pointer is
1865 represented by a pointer to a TOC entry. This TOC entry contains
1866 three words, the first word is the address of the function, the
1867 second word is the TOC pointer (r2), and the third word is the
1868 static chain value. Throughout GDB it is currently assumed that a
1869 function pointer contains the address of the function, which is not
1870 easy to fix. In addition, the conversion of a function address to
1871 a function pointer would require allocation of a TOC entry in the
1872 inferior's memory space, with all its drawbacks. To be able to
1873 call C++ virtual methods in the inferior (which are called via
f517ea4e 1874 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
1875 function address from a function pointer. */
1876
f517ea4e
PS
1877/* Return real function address if ADDR (a function pointer) is in the data
1878 space and is therefore a special function pointer. */
c906108c 1879
7a78ae4e
ND
1880CORE_ADDR
1881rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
1882{
1883 struct obj_section *s;
1884
1885 s = find_pc_section (addr);
1886 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 1887 return addr;
c906108c 1888
7a78ae4e 1889 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 1890 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 1891}
c906108c 1892\f
c5aa993b 1893
7a78ae4e 1894/* Handling the various POWER/PowerPC variants. */
c906108c
SS
1895
1896
7a78ae4e
ND
1897/* The arrays here called registers_MUMBLE hold information about available
1898 registers.
c906108c
SS
1899
1900 For each family of PPC variants, I've tried to isolate out the
1901 common registers and put them up front, so that as long as you get
1902 the general family right, GDB will correctly identify the registers
1903 common to that family. The common register sets are:
1904
1905 For the 60x family: hid0 hid1 iabr dabr pir
1906
1907 For the 505 and 860 family: eie eid nri
1908
1909 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
1910 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1911 pbu1 pbl2 pbu2
c906108c
SS
1912
1913 Most of these register groups aren't anything formal. I arrived at
1914 them by looking at the registers that occurred in more than one
6f5987a6
KB
1915 processor.
1916
1917 Note: kevinb/2002-04-30: Support for the fpscr register was added
1918 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1919 for Power. For PowerPC, slot 70 was unused and was already in the
1920 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1921 slot 70 was being used for "mq", so the next available slot (71)
1922 was chosen. It would have been nice to be able to make the
1923 register numbers the same across processor cores, but this wasn't
1924 possible without either 1) renumbering some registers for some
1925 processors or 2) assigning fpscr to a really high slot that's
1926 larger than any current register number. Doing (1) is bad because
1927 existing stubs would break. Doing (2) is undesirable because it
1928 would introduce a really large gap between fpscr and the rest of
1929 the registers for most processors. */
7a78ae4e 1930
64366f1c 1931/* Convenience macros for populating register arrays. */
7a78ae4e 1932
64366f1c 1933/* Within another macro, convert S to a string. */
7a78ae4e
ND
1934
1935#define STR(s) #s
1936
1937/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 1938 and 64 bits on 64-bit systems. */
489461e2 1939#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
1940
1941/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 1942 systems. */
489461e2 1943#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
1944
1945/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 1946 systems. */
489461e2 1947#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 1948
1fcc0bb8 1949/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 1950 systems. */
489461e2 1951#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 1952
64366f1c 1953/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
1954#define F(name) { STR(name), 8, 8, 1, 0 }
1955
64366f1c 1956/* Return a struct reg defining a pseudo register NAME. */
489461e2 1957#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
1958
1959/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 1960 systems and that doesn't exist on 64-bit systems. */
489461e2 1961#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
1962
1963/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 1964 systems and that doesn't exist on 32-bit systems. */
489461e2 1965#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 1966
64366f1c 1967/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 1968#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
1969
1970/* UISA registers common across all architectures, including POWER. */
1971
1972#define COMMON_UISA_REGS \
1973 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1974 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1975 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1976 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1977 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1978 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1979 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1980 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1981 /* 64 */ R(pc), R(ps)
1982
ebeac11a
EZ
1983#define COMMON_UISA_NOFP_REGS \
1984 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1985 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1986 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1987 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1988 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1989 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1990 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1991 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1992 /* 64 */ R(pc), R(ps)
1993
7a78ae4e
ND
1994/* UISA-level SPRs for PowerPC. */
1995#define PPC_UISA_SPRS \
e3f36dbd 1996 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 1997
c8001721
EZ
1998/* UISA-level SPRs for PowerPC without floating point support. */
1999#define PPC_UISA_NOFP_SPRS \
2000 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2001
7a78ae4e
ND
2002/* Segment registers, for PowerPC. */
2003#define PPC_SEGMENT_REGS \
2004 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2005 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2006 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2007 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2008
2009/* OEA SPRs for PowerPC. */
2010#define PPC_OEA_SPRS \
2011 /* 87 */ R4(pvr), \
2012 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2013 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2014 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2015 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2016 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2017 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2018 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2019 /* 116 */ R4(dec), R(dabr), R4(ear)
2020
64366f1c 2021/* AltiVec registers. */
1fcc0bb8
EZ
2022#define PPC_ALTIVEC_REGS \
2023 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2024 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2025 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2026 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2027 /*151*/R4(vscr), R4(vrsave)
2028
c8001721
EZ
2029/* Vectors of hi-lo general purpose registers. */
2030#define PPC_EV_REGS \
2031 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2032 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2033 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2034 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2035
2036/* Lower half of the EV registers. */
2037#define PPC_GPRS_PSEUDO_REGS \
2038 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2039 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2040 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2041 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2042
7a78ae4e 2043/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2044 user-level SPR's. */
7a78ae4e 2045static const struct reg registers_power[] =
c906108c 2046{
7a78ae4e 2047 COMMON_UISA_REGS,
e3f36dbd
KB
2048 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2049 /* 71 */ R4(fpscr)
c906108c
SS
2050};
2051
7a78ae4e 2052/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2053 view of the PowerPC. */
7a78ae4e 2054static const struct reg registers_powerpc[] =
c906108c 2055{
7a78ae4e 2056 COMMON_UISA_REGS,
1fcc0bb8
EZ
2057 PPC_UISA_SPRS,
2058 PPC_ALTIVEC_REGS
c906108c
SS
2059};
2060
ebeac11a
EZ
2061/* PowerPC UISA - a PPC processor as viewed by user-level
2062 code, but without floating point registers. */
2063static const struct reg registers_powerpc_nofp[] =
2064{
2065 COMMON_UISA_NOFP_REGS,
2066 PPC_UISA_SPRS
2067};
2068
64366f1c 2069/* IBM PowerPC 403. */
7a78ae4e 2070static const struct reg registers_403[] =
c5aa993b 2071{
7a78ae4e
ND
2072 COMMON_UISA_REGS,
2073 PPC_UISA_SPRS,
2074 PPC_SEGMENT_REGS,
2075 PPC_OEA_SPRS,
2076 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2077 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2078 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2079 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2080 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2081 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2082};
2083
64366f1c 2084/* IBM PowerPC 403GC. */
7a78ae4e 2085static const struct reg registers_403GC[] =
c5aa993b 2086{
7a78ae4e
ND
2087 COMMON_UISA_REGS,
2088 PPC_UISA_SPRS,
2089 PPC_SEGMENT_REGS,
2090 PPC_OEA_SPRS,
2091 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2092 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2093 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2094 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2095 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2096 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2097 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2098 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2099};
2100
64366f1c 2101/* Motorola PowerPC 505. */
7a78ae4e 2102static const struct reg registers_505[] =
c5aa993b 2103{
7a78ae4e
ND
2104 COMMON_UISA_REGS,
2105 PPC_UISA_SPRS,
2106 PPC_SEGMENT_REGS,
2107 PPC_OEA_SPRS,
2108 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2109};
2110
64366f1c 2111/* Motorola PowerPC 860 or 850. */
7a78ae4e 2112static const struct reg registers_860[] =
c5aa993b 2113{
7a78ae4e
ND
2114 COMMON_UISA_REGS,
2115 PPC_UISA_SPRS,
2116 PPC_SEGMENT_REGS,
2117 PPC_OEA_SPRS,
2118 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2119 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2120 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2121 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2122 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2123 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2124 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2125 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2126 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2127 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2128 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2129 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2130};
2131
7a78ae4e
ND
2132/* Motorola PowerPC 601. Note that the 601 has different register numbers
2133 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2134 register is the stub's problem. */
7a78ae4e 2135static const struct reg registers_601[] =
c5aa993b 2136{
7a78ae4e
ND
2137 COMMON_UISA_REGS,
2138 PPC_UISA_SPRS,
2139 PPC_SEGMENT_REGS,
2140 PPC_OEA_SPRS,
2141 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2142 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2143};
2144
64366f1c 2145/* Motorola PowerPC 602. */
7a78ae4e 2146static const struct reg registers_602[] =
c5aa993b 2147{
7a78ae4e
ND
2148 COMMON_UISA_REGS,
2149 PPC_UISA_SPRS,
2150 PPC_SEGMENT_REGS,
2151 PPC_OEA_SPRS,
2152 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2153 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2154 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2155};
2156
64366f1c 2157/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2158static const struct reg registers_603[] =
c5aa993b 2159{
7a78ae4e
ND
2160 COMMON_UISA_REGS,
2161 PPC_UISA_SPRS,
2162 PPC_SEGMENT_REGS,
2163 PPC_OEA_SPRS,
2164 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2165 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2166 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2167};
2168
64366f1c 2169/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2170static const struct reg registers_604[] =
c5aa993b 2171{
7a78ae4e
ND
2172 COMMON_UISA_REGS,
2173 PPC_UISA_SPRS,
2174 PPC_SEGMENT_REGS,
2175 PPC_OEA_SPRS,
2176 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2177 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2178 /* 127 */ R(sia), R(sda)
c906108c
SS
2179};
2180
64366f1c 2181/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2182static const struct reg registers_750[] =
c5aa993b 2183{
7a78ae4e
ND
2184 COMMON_UISA_REGS,
2185 PPC_UISA_SPRS,
2186 PPC_SEGMENT_REGS,
2187 PPC_OEA_SPRS,
2188 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2189 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2190 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2191 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2192 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2193 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2194};
2195
2196
64366f1c 2197/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2198static const struct reg registers_7400[] =
2199{
2200 /* gpr0-gpr31, fpr0-fpr31 */
2201 COMMON_UISA_REGS,
2202 /* ctr, xre, lr, cr */
2203 PPC_UISA_SPRS,
2204 /* sr0-sr15 */
2205 PPC_SEGMENT_REGS,
2206 PPC_OEA_SPRS,
2207 /* vr0-vr31, vrsave, vscr */
2208 PPC_ALTIVEC_REGS
2209 /* FIXME? Add more registers? */
2210};
2211
c8001721
EZ
2212/* Motorola e500. */
2213static const struct reg registers_e500[] =
2214{
2215 R(pc), R(ps),
2216 /* cr, lr, ctr, xer, "" */
2217 PPC_UISA_NOFP_SPRS,
2218 /* 7...38 */
2219 PPC_EV_REGS,
2220 /* 39...70 */
2221 PPC_GPRS_PSEUDO_REGS
2222};
2223
c906108c 2224/* Information about a particular processor variant. */
7a78ae4e 2225
c906108c 2226struct variant
c5aa993b
JM
2227 {
2228 /* Name of this variant. */
2229 char *name;
c906108c 2230
c5aa993b
JM
2231 /* English description of the variant. */
2232 char *description;
c906108c 2233
64366f1c 2234 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2235 enum bfd_architecture arch;
2236
64366f1c 2237 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2238 unsigned long mach;
2239
489461e2
EZ
2240 /* Number of real registers. */
2241 int nregs;
2242
2243 /* Number of pseudo registers. */
2244 int npregs;
2245
2246 /* Number of total registers (the sum of nregs and npregs). */
2247 int num_tot_regs;
2248
c5aa993b
JM
2249 /* Table of register names; registers[R] is the name of the register
2250 number R. */
7a78ae4e 2251 const struct reg *regs;
c5aa993b 2252 };
c906108c 2253
489461e2
EZ
2254#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2255
2256static int
2257num_registers (const struct reg *reg_list, int num_tot_regs)
2258{
2259 int i;
2260 int nregs = 0;
2261
2262 for (i = 0; i < num_tot_regs; i++)
2263 if (!reg_list[i].pseudo)
2264 nregs++;
2265
2266 return nregs;
2267}
2268
2269static int
2270num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2271{
2272 int i;
2273 int npregs = 0;
2274
2275 for (i = 0; i < num_tot_regs; i++)
2276 if (reg_list[i].pseudo)
2277 npregs ++;
2278
2279 return npregs;
2280}
c906108c 2281
c906108c
SS
2282/* Information in this table comes from the following web sites:
2283 IBM: http://www.chips.ibm.com:80/products/embedded/
2284 Motorola: http://www.mot.com/SPS/PowerPC/
2285
2286 I'm sure I've got some of the variant descriptions not quite right.
2287 Please report any inaccuracies you find to GDB's maintainer.
2288
2289 If you add entries to this table, please be sure to allow the new
2290 value as an argument to the --with-cpu flag, in configure.in. */
2291
489461e2 2292static struct variant variants[] =
c906108c 2293{
489461e2 2294
7a78ae4e 2295 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2296 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2297 registers_powerpc},
7a78ae4e 2298 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2299 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2300 registers_power},
7a78ae4e 2301 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2302 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2303 registers_403},
7a78ae4e 2304 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2305 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2306 registers_601},
7a78ae4e 2307 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2308 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2309 registers_602},
7a78ae4e 2310 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2311 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2312 registers_603},
7a78ae4e 2313 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2314 604, -1, -1, tot_num_registers (registers_604),
2315 registers_604},
7a78ae4e 2316 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2317 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2318 registers_403GC},
7a78ae4e 2319 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2320 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2321 registers_505},
7a78ae4e 2322 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2323 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2324 registers_860},
7a78ae4e 2325 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2326 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2327 registers_750},
1fcc0bb8 2328 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2329 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2330 registers_7400},
c8001721
EZ
2331 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2332 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2333 registers_e500},
7a78ae4e 2334
5d57ee30
KB
2335 /* 64-bit */
2336 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2337 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2338 registers_powerpc},
7a78ae4e 2339 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2340 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2341 registers_powerpc},
5d57ee30 2342 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2343 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2344 registers_powerpc},
7a78ae4e 2345 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2346 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2347 registers_powerpc},
5d57ee30 2348 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2349 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2350 registers_powerpc},
5d57ee30 2351 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2352 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2353 registers_powerpc},
5d57ee30 2354
64366f1c 2355 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2356 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2357 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2358 registers_power},
7a78ae4e 2359 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2360 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2361 registers_power},
7a78ae4e 2362 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2363 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2364 registers_power},
7a78ae4e 2365
489461e2 2366 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2367};
2368
64366f1c 2369/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2370
2371static void
2372init_variants (void)
2373{
2374 struct variant *v;
2375
2376 for (v = variants; v->name; v++)
2377 {
2378 if (v->nregs == -1)
2379 v->nregs = num_registers (v->regs, v->num_tot_regs);
2380 if (v->npregs == -1)
2381 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2382 }
2383}
c906108c 2384
7a78ae4e 2385/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2386 MACH. If no such variant exists, return null. */
c906108c 2387
7a78ae4e
ND
2388static const struct variant *
2389find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2390{
7a78ae4e 2391 const struct variant *v;
c5aa993b 2392
7a78ae4e
ND
2393 for (v = variants; v->name; v++)
2394 if (arch == v->arch && mach == v->mach)
2395 return v;
c906108c 2396
7a78ae4e 2397 return NULL;
c906108c 2398}
9364a0ef
EZ
2399
2400static int
2401gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2402{
2403 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2404 return print_insn_big_powerpc (memaddr, info);
2405 else
2406 return print_insn_little_powerpc (memaddr, info);
2407}
7a78ae4e 2408\f
7a78ae4e
ND
2409/* Initialize the current architecture based on INFO. If possible, re-use an
2410 architecture from ARCHES, which is a list of architectures already created
2411 during this debugging session.
c906108c 2412
7a78ae4e 2413 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2414 a binary file. */
c906108c 2415
7a78ae4e
ND
2416static struct gdbarch *
2417rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2418{
2419 struct gdbarch *gdbarch;
2420 struct gdbarch_tdep *tdep;
9aa1e687 2421 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2422 struct reg *regs;
2423 const struct variant *v;
2424 enum bfd_architecture arch;
2425 unsigned long mach;
2426 bfd abfd;
7b112f9c
JT
2427 int sysv_abi;
2428 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5bf1c677 2429 asection *sect;
7a78ae4e 2430
9aa1e687 2431 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2432 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2433
9aa1e687
KB
2434 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2435 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2436
2437 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2438
7b112f9c
JT
2439 if (info.abfd)
2440 osabi = gdbarch_lookup_osabi (info.abfd);
9aa1e687 2441
e712c1cf 2442 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2443 that, else choose a likely default. */
9aa1e687 2444 if (from_xcoff_exec)
c906108c 2445 {
11ed25ac 2446 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2447 wordsize = 8;
2448 else
2449 wordsize = 4;
c906108c 2450 }
9aa1e687
KB
2451 else if (from_elf_exec)
2452 {
2453 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2454 wordsize = 8;
2455 else
2456 wordsize = 4;
2457 }
c906108c 2458 else
7a78ae4e 2459 {
27b15785
KB
2460 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2461 wordsize = info.bfd_arch_info->bits_per_word /
2462 info.bfd_arch_info->bits_per_byte;
2463 else
2464 wordsize = 4;
7a78ae4e 2465 }
c906108c 2466
64366f1c 2467 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2468 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2469 arches != NULL;
2470 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2471 {
2472 /* Word size in the various PowerPC bfd_arch_info structs isn't
2473 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2474 separate word size check. */
7a78ae4e 2475 tdep = gdbarch_tdep (arches->gdbarch);
9aa1e687 2476 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
7a78ae4e
ND
2477 return arches->gdbarch;
2478 }
c906108c 2479
7a78ae4e
ND
2480 /* None found, create a new architecture from INFO, whose bfd_arch_info
2481 validity depends on the source:
2482 - executable useless
2483 - rs6000_host_arch() good
2484 - core file good
2485 - "set arch" trust blindly
2486 - GDB startup useless but harmless */
c906108c 2487
9aa1e687 2488 if (!from_xcoff_exec)
c906108c 2489 {
b732d07d 2490 arch = info.bfd_arch_info->arch;
7a78ae4e 2491 mach = info.bfd_arch_info->mach;
c906108c 2492 }
7a78ae4e 2493 else
c906108c 2494 {
7a78ae4e
ND
2495 arch = bfd_arch_powerpc;
2496 mach = 0;
2497 bfd_default_set_arch_mach (&abfd, arch, mach);
2498 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2499 }
2500 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2501 tdep->wordsize = wordsize;
9aa1e687 2502 tdep->osabi = osabi;
5bf1c677
EZ
2503
2504 /* For e500 executables, the apuinfo section is of help here. Such
2505 section contains the identifier and revision number of each
2506 Application-specific Processing Unit that is present on the
2507 chip. The content of the section is determined by the assembler
2508 which looks at each instruction and determines which unit (and
2509 which version of it) can execute it. In our case we just look for
2510 the existance of the section. */
2511
2512 if (info.abfd)
2513 {
2514 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2515 if (sect)
2516 {
2517 arch = info.bfd_arch_info->arch;
2518 mach = bfd_mach_ppc_e500;
2519 bfd_default_set_arch_mach (&abfd, arch, mach);
2520 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2521 }
2522 }
2523
7a78ae4e
ND
2524 gdbarch = gdbarch_alloc (&info, tdep);
2525 power = arch == bfd_arch_rs6000;
2526
489461e2
EZ
2527 /* Initialize the number of real and pseudo registers in each variant. */
2528 init_variants ();
2529
64366f1c 2530 /* Choose variant. */
7a78ae4e
ND
2531 v = find_variant_by_arch (arch, mach);
2532 if (!v)
dd47e6fd
EZ
2533 return NULL;
2534
7a78ae4e
ND
2535 tdep->regs = v->regs;
2536
2188cbdd
EZ
2537 tdep->ppc_gp0_regnum = 0;
2538 tdep->ppc_gplast_regnum = 31;
2539 tdep->ppc_toc_regnum = 2;
2540 tdep->ppc_ps_regnum = 65;
2541 tdep->ppc_cr_regnum = 66;
2542 tdep->ppc_lr_regnum = 67;
2543 tdep->ppc_ctr_regnum = 68;
2544 tdep->ppc_xer_regnum = 69;
2545 if (v->mach == bfd_mach_ppc_601)
2546 tdep->ppc_mq_regnum = 124;
e3f36dbd 2547 else if (power)
2188cbdd 2548 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2549 else
2550 tdep->ppc_mq_regnum = -1;
2551 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2552
c8001721
EZ
2553 set_gdbarch_pc_regnum (gdbarch, 64);
2554 set_gdbarch_sp_regnum (gdbarch, 1);
2555 set_gdbarch_fp_regnum (gdbarch, 1);
2556
1fcc0bb8
EZ
2557 if (v->arch == bfd_arch_powerpc)
2558 switch (v->mach)
2559 {
2560 case bfd_mach_ppc:
2561 tdep->ppc_vr0_regnum = 71;
2562 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2563 tdep->ppc_ev0_regnum = -1;
2564 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2565 break;
2566 case bfd_mach_ppc_7400:
2567 tdep->ppc_vr0_regnum = 119;
2568 tdep->ppc_vrsave_regnum = 153;
c8001721
EZ
2569 tdep->ppc_ev0_regnum = -1;
2570 tdep->ppc_ev31_regnum = -1;
2571 break;
2572 case bfd_mach_ppc_e500:
2573 tdep->ppc_gp0_regnum = 39;
2574 tdep->ppc_gplast_regnum = 70;
2575 tdep->ppc_toc_regnum = -1;
2576 tdep->ppc_ps_regnum = 1;
2577 tdep->ppc_cr_regnum = 2;
2578 tdep->ppc_lr_regnum = 3;
2579 tdep->ppc_ctr_regnum = 4;
2580 tdep->ppc_xer_regnum = 5;
2581 tdep->ppc_ev0_regnum = 7;
2582 tdep->ppc_ev31_regnum = 38;
2583 set_gdbarch_pc_regnum (gdbarch, 0);
2584 set_gdbarch_sp_regnum (gdbarch, 40);
2585 set_gdbarch_fp_regnum (gdbarch, 40);
2586 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2587 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2588 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2589 break;
2590 default:
2591 tdep->ppc_vr0_regnum = -1;
2592 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2593 tdep->ppc_ev0_regnum = -1;
2594 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2595 break;
2596 }
2597
a88376a3
KB
2598 /* Set lr_frame_offset. */
2599 if (wordsize == 8)
2600 tdep->lr_frame_offset = 16;
2601 else if (sysv_abi)
2602 tdep->lr_frame_offset = 4;
2603 else
2604 tdep->lr_frame_offset = 8;
2605
2606 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2607 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2608 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2609 {
2610 tdep->regoff[i] = off;
2611 off += regsize (v->regs + i, wordsize);
c906108c
SS
2612 }
2613
56a6dfb9
KB
2614 /* Select instruction printer. */
2615 if (arch == power)
9364a0ef 2616 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2617 else
9364a0ef 2618 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2619
7a78ae4e
ND
2620 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2621 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2622 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2623 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2624 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2625
2626 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2627 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2628 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2629 set_gdbarch_register_size (gdbarch, wordsize);
2630 set_gdbarch_register_bytes (gdbarch, off);
2631 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2632 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2a873819 2633 set_gdbarch_max_register_raw_size (gdbarch, 16);
b2e75d78 2634 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2a873819 2635 set_gdbarch_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2636 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2637
2638 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2639 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2640 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2641 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2642 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2643 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2644 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2645 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2646 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e
ND
2647
2648 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2649 set_gdbarch_call_dummy_length (gdbarch, 0);
2650 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2651 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2652 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2653 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2654 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
fe794dc6 2655 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
7a78ae4e
ND
2656 set_gdbarch_call_dummy_p (gdbarch, 1);
2657 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
dd486634 2658 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
7a78ae4e
ND
2659 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2660 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2661 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2662 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2663 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2664 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2665
2666 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2667 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2668 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2669 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7a78ae4e 2670
26e9b323 2671 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
9aa1e687 2672
2ea5f656
KB
2673 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2674 is correct for the SysV ABI when the wordsize is 8, but I'm also
2675 fairly certain that ppc_sysv_abi_push_arguments() will give even
2676 worse results since it only works for 32-bit code. So, for the moment,
2677 we're better off calling rs6000_push_arguments() since it works for
2678 64-bit code. At some point in the future, this matter needs to be
2679 revisited. */
2680 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2681 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2682 else
2683 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e
ND
2684
2685 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2686 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
26e9b323 2687 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2688 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2689
2690 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2691 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2692 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2693 set_gdbarch_function_start_offset (gdbarch, 0);
2694 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2695
2696 /* Not sure on this. FIXMEmgo */
2697 set_gdbarch_frame_args_skip (gdbarch, 8);
2698
8e0662df 2699 if (sysv_abi)
7b112f9c
JT
2700 set_gdbarch_use_struct_convention (gdbarch,
2701 ppc_sysv_abi_use_struct_convention);
8e0662df 2702 else
7b112f9c
JT
2703 set_gdbarch_use_struct_convention (gdbarch,
2704 generic_use_struct_convention);
8e0662df 2705
7a78ae4e 2706 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
9aa1e687 2707
7b112f9c
JT
2708 set_gdbarch_frameless_function_invocation (gdbarch,
2709 rs6000_frameless_function_invocation);
2710 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2711 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2712
2713 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2714 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2715
15813d3f
AC
2716 if (!sysv_abi)
2717 {
2718 /* Handle RS/6000 function pointers (which are really function
2719 descriptors). */
f517ea4e
PS
2720 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2721 rs6000_convert_from_func_ptr_addr);
9aa1e687 2722 }
7a78ae4e
ND
2723 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2724 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2725 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2726
2727 /* We can't tell how many args there are
2728 now that the C compiler delays popping them. */
2729 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2730
7b112f9c
JT
2731 /* Hook in ABI-specific overrides, if they have been registered. */
2732 gdbarch_init_osabi (info, gdbarch, osabi);
2733
7a78ae4e 2734 return gdbarch;
c906108c
SS
2735}
2736
7b112f9c
JT
2737static void
2738rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2739{
2740 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2741
2742 if (tdep == NULL)
2743 return;
2744
2745 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2746 gdbarch_osabi_name (tdep->osabi));
2747}
2748
1fcc0bb8
EZ
2749static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2750
2751static void
2752rs6000_info_powerpc_command (char *args, int from_tty)
2753{
2754 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2755}
2756
c906108c
SS
2757/* Initialization code. */
2758
2759void
fba45db2 2760_initialize_rs6000_tdep (void)
c906108c 2761{
7b112f9c
JT
2762 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2763 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2764
2765 /* Add root prefix command for "info powerpc" commands */
2766 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2767 "Various POWERPC info specific commands.",
2768 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2769}
This page took 0.397637 seconds and 4 git commands to generate.