Fix ChangeLog dates.
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
CommitLineData
5769d3cd 1/* Target-dependent code for GDB, the GNU debugger.
ca557f44 2
7b6bb8da
JB
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
ca557f44 5
5769d3cd
AC
6 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
7 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
5769d3cd
AC
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
5769d3cd 23
d0f54f9d 24#include "defs.h"
5769d3cd
AC
25#include "arch-utils.h"
26#include "frame.h"
27#include "inferior.h"
28#include "symtab.h"
29#include "target.h"
30#include "gdbcore.h"
31#include "gdbcmd.h"
5769d3cd 32#include "objfiles.h"
5769d3cd
AC
33#include "floatformat.h"
34#include "regcache.h"
a8c99f38
JB
35#include "trad-frame.h"
36#include "frame-base.h"
37#include "frame-unwind.h"
a431654a 38#include "dwarf2-frame.h"
d0f54f9d
JB
39#include "reggroups.h"
40#include "regset.h"
fd0407d6 41#include "value.h"
78f8b424 42#include "gdb_assert.h"
a89aa300 43#include "dis-asm.h"
76a9d10f 44#include "solib-svr4.h"
3fc46200 45#include "prologue-value.h"
70728992 46#include "linux-tdep.h"
d0f54f9d 47#include "s390-tdep.h"
5769d3cd 48
7803799a
UW
49#include "features/s390-linux32.c"
50#include "features/s390-linux64.c"
51#include "features/s390x-linux64.c"
52
60e6cc42 53
d0f54f9d
JB
54/* The tdep structure. */
55
56struct gdbarch_tdep
5769d3cd 57{
b0cf273e
JB
58 /* ABI version. */
59 enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
60
7803799a
UW
61 /* Pseudo register numbers. */
62 int gpr_full_regnum;
63 int pc_regnum;
64 int cc_regnum;
65
d0f54f9d
JB
66 /* Core file register sets. */
67 const struct regset *gregset;
68 int sizeof_gregset;
69
70 const struct regset *fpregset;
71 int sizeof_fpregset;
72};
73
74
7803799a
UW
75/* ABI call-saved register information. */
76
77static int
78s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
d0f54f9d 79{
7803799a
UW
80 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
81
82 switch (tdep->abi)
6707b003 83 {
7803799a
UW
84 case ABI_LINUX_S390:
85 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
86 || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
87 || regnum == S390_A0_REGNUM)
88 return 1;
6707b003 89
7803799a
UW
90 break;
91
92 case ABI_LINUX_ZSERIES:
93 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
94 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
95 || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
96 return 1;
97
98 break;
99 }
100
101 return 0;
5769d3cd
AC
102}
103
7803799a 104
d0f54f9d
JB
105/* DWARF Register Mapping. */
106
107static int s390_dwarf_regmap[] =
108{
109 /* General Purpose Registers. */
110 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
111 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
112 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
113 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
114
115 /* Floating Point Registers. */
116 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
117 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
118 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
119 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
120
121 /* Control Registers (not mapped). */
122 -1, -1, -1, -1, -1, -1, -1, -1,
123 -1, -1, -1, -1, -1, -1, -1, -1,
124
125 /* Access Registers. */
126 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
127 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
128 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
129 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
130
131 /* Program Status Word. */
132 S390_PSWM_REGNUM,
7803799a
UW
133 S390_PSWA_REGNUM,
134
135 /* GPR Lower Half Access. */
136 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
137 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
138 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
139 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
d0f54f9d
JB
140};
141
142/* Convert DWARF register number REG to the appropriate register
143 number used by GDB. */
a78f21af 144static int
d3f73121 145s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
d0f54f9d 146{
7803799a
UW
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
150 GPRs. Note that call frame information still refers to the 32-bit
151 lower halves, because s390_adjust_frame_regnum uses register numbers
152 66 .. 81 to access GPRs. */
153 if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
154 return tdep->gpr_full_regnum + reg;
d0f54f9d 155
16aff9a6 156 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
7803799a 157 return s390_dwarf_regmap[reg];
d0f54f9d 158
7803799a
UW
159 warning (_("Unmapped DWARF Register #%d encountered."), reg);
160 return -1;
161}
d0f54f9d 162
7803799a
UW
163/* Translate a .eh_frame register to DWARF register, or adjust a
164 .debug_frame register. */
165static int
166s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
167{
168 /* See s390_dwarf_reg_to_regnum for comments. */
169 return (num >= 0 && num < 16)? num + 66 : num;
d0f54f9d
JB
170}
171
d0f54f9d 172
7803799a
UW
173/* Pseudo registers. */
174
175static const char *
176s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
d0f54f9d 177{
7803799a 178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d0f54f9d 179
7803799a
UW
180 if (regnum == tdep->pc_regnum)
181 return "pc";
d0f54f9d 182
7803799a
UW
183 if (regnum == tdep->cc_regnum)
184 return "cc";
d0f54f9d 185
7803799a
UW
186 if (tdep->gpr_full_regnum != -1
187 && regnum >= tdep->gpr_full_regnum
188 && regnum < tdep->gpr_full_regnum + 16)
189 {
190 static const char *full_name[] = {
191 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
192 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
193 };
194 return full_name[regnum - tdep->gpr_full_regnum];
d0f54f9d 195 }
7803799a
UW
196
197 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d0f54f9d
JB
198}
199
7803799a
UW
200static struct type *
201s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
5769d3cd 202{
7803799a 203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d0f54f9d 204
7803799a
UW
205 if (regnum == tdep->pc_regnum)
206 return builtin_type (gdbarch)->builtin_func_ptr;
d0f54f9d 207
7803799a
UW
208 if (regnum == tdep->cc_regnum)
209 return builtin_type (gdbarch)->builtin_int;
d0f54f9d 210
7803799a
UW
211 if (tdep->gpr_full_regnum != -1
212 && regnum >= tdep->gpr_full_regnum
213 && regnum < tdep->gpr_full_regnum + 16)
214 return builtin_type (gdbarch)->builtin_uint64;
215
216 internal_error (__FILE__, __LINE__, _("invalid regnum"));
5769d3cd
AC
217}
218
05d1431c 219static enum register_status
7803799a
UW
220s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
221 int regnum, gdb_byte *buf)
d0f54f9d 222{
7803799a 223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7803799a 225 int regsize = register_size (gdbarch, regnum);
d0f54f9d
JB
226 ULONGEST val;
227
7803799a 228 if (regnum == tdep->pc_regnum)
d0f54f9d 229 {
05d1431c
PA
230 enum register_status status;
231
232 status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
233 if (status == REG_VALID)
234 {
235 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
236 val &= 0x7fffffff;
237 store_unsigned_integer (buf, regsize, byte_order, val);
238 }
239 return status;
7803799a 240 }
d0f54f9d 241
7803799a
UW
242 if (regnum == tdep->cc_regnum)
243 {
05d1431c
PA
244 enum register_status status;
245
246 status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
247 if (status == REG_VALID)
248 {
249 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
250 val = (val >> 12) & 3;
251 else
252 val = (val >> 44) & 3;
253 store_unsigned_integer (buf, regsize, byte_order, val);
254 }
255 return status;
7803799a 256 }
d0f54f9d 257
7803799a
UW
258 if (tdep->gpr_full_regnum != -1
259 && regnum >= tdep->gpr_full_regnum
260 && regnum < tdep->gpr_full_regnum + 16)
261 {
05d1431c 262 enum register_status status;
7803799a 263 ULONGEST val_upper;
05d1431c 264
7803799a
UW
265 regnum -= tdep->gpr_full_regnum;
266
05d1431c
PA
267 status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
268 if (status == REG_VALID)
269 status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
270 &val_upper);
271 if (status == REG_VALID)
272 {
273 val |= val_upper << 32;
274 store_unsigned_integer (buf, regsize, byte_order, val);
275 }
276 return status;
d0f54f9d 277 }
7803799a
UW
278
279 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d0f54f9d
JB
280}
281
282static void
7803799a
UW
283s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
284 int regnum, const gdb_byte *buf)
d0f54f9d 285{
7803799a 286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7803799a 288 int regsize = register_size (gdbarch, regnum);
d0f54f9d
JB
289 ULONGEST val, psw;
290
7803799a 291 if (regnum == tdep->pc_regnum)
d0f54f9d 292 {
7803799a
UW
293 val = extract_unsigned_integer (buf, regsize, byte_order);
294 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
295 {
296 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
297 val = (psw & 0x80000000) | (val & 0x7fffffff);
298 }
299 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
300 return;
301 }
d0f54f9d 302
7803799a
UW
303 if (regnum == tdep->cc_regnum)
304 {
305 val = extract_unsigned_integer (buf, regsize, byte_order);
d0f54f9d 306 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
7803799a
UW
307 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
308 val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
309 else
310 val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
311 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
312 return;
313 }
d0f54f9d 314
7803799a
UW
315 if (tdep->gpr_full_regnum != -1
316 && regnum >= tdep->gpr_full_regnum
317 && regnum < tdep->gpr_full_regnum + 16)
318 {
319 regnum -= tdep->gpr_full_regnum;
320 val = extract_unsigned_integer (buf, regsize, byte_order);
321 regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
322 val & 0xffffffff);
323 regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
324 val >> 32);
325 return;
d0f54f9d 326 }
7803799a
UW
327
328 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d0f54f9d
JB
329}
330
331/* 'float' values are stored in the upper half of floating-point
332 registers, even though we are otherwise a big-endian platform. */
333
9acbedc0
UW
334static struct value *
335s390_value_from_register (struct type *type, int regnum,
336 struct frame_info *frame)
d0f54f9d 337{
9acbedc0
UW
338 struct value *value = default_value_from_register (type, regnum, frame);
339 int len = TYPE_LENGTH (type);
d0f54f9d 340
9acbedc0
UW
341 if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
342 set_value_offset (value, 0);
d0f54f9d 343
9acbedc0 344 return value;
d0f54f9d
JB
345}
346
347/* Register groups. */
348
a78f21af 349static int
7803799a
UW
350s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
351 struct reggroup *group)
d0f54f9d
JB
352{
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
7803799a 355 /* PC and CC pseudo registers need to be saved/restored in order to
d0f54f9d
JB
356 push or pop frames. */
357 if (group == save_reggroup || group == restore_reggroup)
7803799a 358 return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
d0f54f9d
JB
359
360 return default_register_reggroup_p (gdbarch, regnum, group);
361}
362
363
364/* Core file register sets. */
365
366int s390_regmap_gregset[S390_NUM_REGS] =
367{
368 /* Program Status Word. */
369 0x00, 0x04,
370 /* General Purpose Registers. */
371 0x08, 0x0c, 0x10, 0x14,
372 0x18, 0x1c, 0x20, 0x24,
373 0x28, 0x2c, 0x30, 0x34,
374 0x38, 0x3c, 0x40, 0x44,
375 /* Access Registers. */
376 0x48, 0x4c, 0x50, 0x54,
377 0x58, 0x5c, 0x60, 0x64,
378 0x68, 0x6c, 0x70, 0x74,
379 0x78, 0x7c, 0x80, 0x84,
380 /* Floating Point Control Word. */
381 -1,
382 /* Floating Point Registers. */
383 -1, -1, -1, -1, -1, -1, -1, -1,
384 -1, -1, -1, -1, -1, -1, -1, -1,
7803799a
UW
385 /* GPR Uppper Halves. */
386 -1, -1, -1, -1, -1, -1, -1, -1,
387 -1, -1, -1, -1, -1, -1, -1, -1,
d0f54f9d
JB
388};
389
390int s390x_regmap_gregset[S390_NUM_REGS] =
391{
7803799a 392 /* Program Status Word. */
d0f54f9d
JB
393 0x00, 0x08,
394 /* General Purpose Registers. */
395 0x10, 0x18, 0x20, 0x28,
396 0x30, 0x38, 0x40, 0x48,
397 0x50, 0x58, 0x60, 0x68,
398 0x70, 0x78, 0x80, 0x88,
399 /* Access Registers. */
400 0x90, 0x94, 0x98, 0x9c,
401 0xa0, 0xa4, 0xa8, 0xac,
402 0xb0, 0xb4, 0xb8, 0xbc,
403 0xc0, 0xc4, 0xc8, 0xcc,
404 /* Floating Point Control Word. */
405 -1,
406 /* Floating Point Registers. */
407 -1, -1, -1, -1, -1, -1, -1, -1,
408 -1, -1, -1, -1, -1, -1, -1, -1,
7803799a
UW
409 /* GPR Uppper Halves. */
410 0x10, 0x18, 0x20, 0x28,
411 0x30, 0x38, 0x40, 0x48,
412 0x50, 0x58, 0x60, 0x68,
413 0x70, 0x78, 0x80, 0x88,
d0f54f9d
JB
414};
415
416int s390_regmap_fpregset[S390_NUM_REGS] =
417{
418 /* Program Status Word. */
419 -1, -1,
420 /* General Purpose Registers. */
421 -1, -1, -1, -1, -1, -1, -1, -1,
422 -1, -1, -1, -1, -1, -1, -1, -1,
423 /* Access Registers. */
424 -1, -1, -1, -1, -1, -1, -1, -1,
425 -1, -1, -1, -1, -1, -1, -1, -1,
426 /* Floating Point Control Word. */
427 0x00,
428 /* Floating Point Registers. */
429 0x08, 0x10, 0x18, 0x20,
430 0x28, 0x30, 0x38, 0x40,
431 0x48, 0x50, 0x58, 0x60,
432 0x68, 0x70, 0x78, 0x80,
7803799a
UW
433 /* GPR Uppper Halves. */
434 -1, -1, -1, -1, -1, -1, -1, -1,
435 -1, -1, -1, -1, -1, -1, -1, -1,
436};
437
438int s390_regmap_upper[S390_NUM_REGS] =
439{
440 /* Program Status Word. */
441 -1, -1,
442 /* General Purpose Registers. */
443 -1, -1, -1, -1, -1, -1, -1, -1,
444 -1, -1, -1, -1, -1, -1, -1, -1,
445 /* Access Registers. */
446 -1, -1, -1, -1, -1, -1, -1, -1,
447 -1, -1, -1, -1, -1, -1, -1, -1,
448 /* Floating Point Control Word. */
449 -1,
450 /* Floating Point Registers. */
451 -1, -1, -1, -1, -1, -1, -1, -1,
452 -1, -1, -1, -1, -1, -1, -1, -1,
453 /* GPR Uppper Halves. */
454 0x00, 0x04, 0x08, 0x0c,
455 0x10, 0x14, 0x18, 0x1c,
456 0x20, 0x24, 0x28, 0x2c,
457 0x30, 0x34, 0x38, 0x3c,
d0f54f9d
JB
458};
459
460/* Supply register REGNUM from the register set REGSET to register cache
461 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
462static void
463s390_supply_regset (const struct regset *regset, struct regcache *regcache,
464 int regnum, const void *regs, size_t len)
465{
466 const int *offset = regset->descr;
467 int i;
468
469 for (i = 0; i < S390_NUM_REGS; i++)
470 {
471 if ((regnum == i || regnum == -1) && offset[i] != -1)
472 regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
473 }
474}
475
92f38ec2
UW
476/* Collect register REGNUM from the register cache REGCACHE and store
477 it in the buffer specified by REGS and LEN as described by the
478 general-purpose register set REGSET. If REGNUM is -1, do this for
479 all registers in REGSET. */
480static void
481s390_collect_regset (const struct regset *regset,
482 const struct regcache *regcache,
483 int regnum, void *regs, size_t len)
484{
485 const int *offset = regset->descr;
486 int i;
487
488 for (i = 0; i < S390_NUM_REGS; i++)
489 {
490 if ((regnum == i || regnum == -1) && offset[i] != -1)
491 regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
492 }
493}
494
d0f54f9d
JB
495static const struct regset s390_gregset = {
496 s390_regmap_gregset,
92f38ec2
UW
497 s390_supply_regset,
498 s390_collect_regset
d0f54f9d
JB
499};
500
501static const struct regset s390x_gregset = {
502 s390x_regmap_gregset,
92f38ec2
UW
503 s390_supply_regset,
504 s390_collect_regset
d0f54f9d
JB
505};
506
507static const struct regset s390_fpregset = {
508 s390_regmap_fpregset,
92f38ec2
UW
509 s390_supply_regset,
510 s390_collect_regset
d0f54f9d
JB
511};
512
7803799a
UW
513static const struct regset s390_upper_regset = {
514 s390_regmap_upper,
515 s390_supply_regset,
516 s390_collect_regset
517};
518
519static struct core_regset_section s390_upper_regset_sections[] =
520{
521 { ".reg", s390_sizeof_gregset, "general-purpose" },
522 { ".reg2", s390_sizeof_fpregset, "floating-point" },
523 { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
524 { NULL, 0}
525};
526
d0f54f9d
JB
527/* Return the appropriate register set for the core section identified
528 by SECT_NAME and SECT_SIZE. */
63807e1d 529static const struct regset *
d0f54f9d
JB
530s390_regset_from_core_section (struct gdbarch *gdbarch,
531 const char *sect_name, size_t sect_size)
532{
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
e31dcd20 535 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
d0f54f9d
JB
536 return tdep->gregset;
537
e31dcd20 538 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
d0f54f9d
JB
539 return tdep->fpregset;
540
7803799a
UW
541 if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
542 return &s390_upper_regset;
543
d0f54f9d 544 return NULL;
5769d3cd
AC
545}
546
7803799a
UW
547static const struct target_desc *
548s390_core_read_description (struct gdbarch *gdbarch,
549 struct target_ops *target, bfd *abfd)
550{
551 asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
552 asection *section = bfd_get_section_by_name (abfd, ".reg");
553 if (!section)
554 return NULL;
555
556 switch (bfd_section_size (abfd, section))
557 {
558 case s390_sizeof_gregset:
559 return high_gprs? tdesc_s390_linux64 : tdesc_s390_linux32;
560
561 case s390x_sizeof_gregset:
562 return tdesc_s390x_linux64;
563
564 default:
565 return NULL;
566 }
567}
568
d0f54f9d 569
4bc8c588
JB
570/* Decoding S/390 instructions. */
571
572/* Named opcode values for the S/390 instructions we recognize. Some
573 instructions have their opcode split across two fields; those are the
574 op1_* and op2_* enums. */
575enum
576 {
a8c99f38
JB
577 op1_lhi = 0xa7, op2_lhi = 0x08,
578 op1_lghi = 0xa7, op2_lghi = 0x09,
00ce08ef 579 op1_lgfi = 0xc0, op2_lgfi = 0x01,
4bc8c588 580 op_lr = 0x18,
a8c99f38
JB
581 op_lgr = 0xb904,
582 op_l = 0x58,
583 op1_ly = 0xe3, op2_ly = 0x58,
584 op1_lg = 0xe3, op2_lg = 0x04,
585 op_lm = 0x98,
586 op1_lmy = 0xeb, op2_lmy = 0x98,
587 op1_lmg = 0xeb, op2_lmg = 0x04,
4bc8c588 588 op_st = 0x50,
a8c99f38 589 op1_sty = 0xe3, op2_sty = 0x50,
4bc8c588 590 op1_stg = 0xe3, op2_stg = 0x24,
a8c99f38 591 op_std = 0x60,
4bc8c588 592 op_stm = 0x90,
a8c99f38 593 op1_stmy = 0xeb, op2_stmy = 0x90,
4bc8c588 594 op1_stmg = 0xeb, op2_stmg = 0x24,
a8c99f38
JB
595 op1_aghi = 0xa7, op2_aghi = 0x0b,
596 op1_ahi = 0xa7, op2_ahi = 0x0a,
00ce08ef
UW
597 op1_agfi = 0xc2, op2_agfi = 0x08,
598 op1_afi = 0xc2, op2_afi = 0x09,
599 op1_algfi= 0xc2, op2_algfi= 0x0a,
600 op1_alfi = 0xc2, op2_alfi = 0x0b,
a8c99f38
JB
601 op_ar = 0x1a,
602 op_agr = 0xb908,
603 op_a = 0x5a,
604 op1_ay = 0xe3, op2_ay = 0x5a,
605 op1_ag = 0xe3, op2_ag = 0x08,
00ce08ef
UW
606 op1_slgfi= 0xc2, op2_slgfi= 0x04,
607 op1_slfi = 0xc2, op2_slfi = 0x05,
a8c99f38
JB
608 op_sr = 0x1b,
609 op_sgr = 0xb909,
610 op_s = 0x5b,
611 op1_sy = 0xe3, op2_sy = 0x5b,
612 op1_sg = 0xe3, op2_sg = 0x09,
613 op_nr = 0x14,
614 op_ngr = 0xb980,
615 op_la = 0x41,
616 op1_lay = 0xe3, op2_lay = 0x71,
617 op1_larl = 0xc0, op2_larl = 0x00,
618 op_basr = 0x0d,
619 op_bas = 0x4d,
620 op_bcr = 0x07,
621 op_bc = 0x0d,
1db4e8a0
UW
622 op_bctr = 0x06,
623 op_bctgr = 0xb946,
624 op_bct = 0x46,
625 op1_bctg = 0xe3, op2_bctg = 0x46,
626 op_bxh = 0x86,
627 op1_bxhg = 0xeb, op2_bxhg = 0x44,
628 op_bxle = 0x87,
629 op1_bxleg= 0xeb, op2_bxleg= 0x45,
a8c99f38
JB
630 op1_bras = 0xa7, op2_bras = 0x05,
631 op1_brasl= 0xc0, op2_brasl= 0x05,
632 op1_brc = 0xa7, op2_brc = 0x04,
633 op1_brcl = 0xc0, op2_brcl = 0x04,
1db4e8a0
UW
634 op1_brct = 0xa7, op2_brct = 0x06,
635 op1_brctg= 0xa7, op2_brctg= 0x07,
636 op_brxh = 0x84,
637 op1_brxhg= 0xec, op2_brxhg= 0x44,
638 op_brxle = 0x85,
639 op1_brxlg= 0xec, op2_brxlg= 0x45,
4bc8c588
JB
640 };
641
642
a8c99f38
JB
643/* Read a single instruction from address AT. */
644
645#define S390_MAX_INSTR_SIZE 6
646static int
647s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
648{
649 static int s390_instrlen[] = { 2, 4, 4, 6 };
650 int instrlen;
651
8defab1a 652 if (target_read_memory (at, &instr[0], 2))
a8c99f38
JB
653 return -1;
654 instrlen = s390_instrlen[instr[0] >> 6];
655 if (instrlen > 2)
656 {
8defab1a 657 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
a8c99f38
JB
658 return -1;
659 }
660 return instrlen;
661}
662
663
4bc8c588
JB
664/* The functions below are for recognizing and decoding S/390
665 instructions of various formats. Each of them checks whether INSN
666 is an instruction of the given format, with the specified opcodes.
667 If it is, it sets the remaining arguments to the values of the
668 instruction's fields, and returns a non-zero value; otherwise, it
669 returns zero.
670
671 These functions' arguments appear in the order they appear in the
672 instruction, not in the machine-language form. So, opcodes always
673 come first, even though they're sometimes scattered around the
674 instructions. And displacements appear before base and extension
675 registers, as they do in the assembly syntax, not at the end, as
676 they do in the machine language. */
a78f21af 677static int
4bc8c588
JB
678is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
679{
680 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
681 {
682 *r1 = (insn[1] >> 4) & 0xf;
683 /* i2 is a 16-bit signed quantity. */
684 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
685 return 1;
686 }
687 else
688 return 0;
689}
8ac0e65a 690
5769d3cd 691
4bc8c588
JB
692static int
693is_ril (bfd_byte *insn, int op1, int op2,
694 unsigned int *r1, int *i2)
695{
696 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
697 {
698 *r1 = (insn[1] >> 4) & 0xf;
699 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
700 no sign extension is necessary, but we don't want to assume
701 that. */
702 *i2 = (((insn[2] << 24)
703 | (insn[3] << 16)
704 | (insn[4] << 8)
705 | (insn[5])) ^ 0x80000000) - 0x80000000;
706 return 1;
707 }
708 else
709 return 0;
710}
711
712
713static int
714is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
715{
716 if (insn[0] == op)
717 {
718 *r1 = (insn[1] >> 4) & 0xf;
719 *r2 = insn[1] & 0xf;
720 return 1;
721 }
722 else
723 return 0;
724}
725
726
727static int
728is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
729{
730 if (((insn[0] << 8) | insn[1]) == op)
731 {
732 /* Yes, insn[3]. insn[2] is unused in RRE format. */
733 *r1 = (insn[3] >> 4) & 0xf;
734 *r2 = insn[3] & 0xf;
735 return 1;
736 }
737 else
738 return 0;
739}
740
741
742static int
743is_rs (bfd_byte *insn, int op,
744 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
745{
746 if (insn[0] == op)
747 {
748 *r1 = (insn[1] >> 4) & 0xf;
749 *r3 = insn[1] & 0xf;
750 *b2 = (insn[2] >> 4) & 0xf;
751 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
752 return 1;
753 }
754 else
755 return 0;
756}
757
758
759static int
a8c99f38 760is_rsy (bfd_byte *insn, int op1, int op2,
4bc8c588
JB
761 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
762{
763 if (insn[0] == op1
4bc8c588
JB
764 && insn[5] == op2)
765 {
766 *r1 = (insn[1] >> 4) & 0xf;
767 *r3 = insn[1] & 0xf;
768 *b2 = (insn[2] >> 4) & 0xf;
a8c99f38
JB
769 /* The 'long displacement' is a 20-bit signed integer. */
770 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
771 ^ 0x80000) - 0x80000;
4bc8c588
JB
772 return 1;
773 }
774 else
775 return 0;
776}
777
778
1db4e8a0
UW
779static int
780is_rsi (bfd_byte *insn, int op,
781 unsigned int *r1, unsigned int *r3, int *i2)
782{
783 if (insn[0] == op)
784 {
785 *r1 = (insn[1] >> 4) & 0xf;
786 *r3 = insn[1] & 0xf;
787 /* i2 is a 16-bit signed quantity. */
788 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
789 return 1;
790 }
791 else
792 return 0;
793}
794
795
796static int
797is_rie (bfd_byte *insn, int op1, int op2,
798 unsigned int *r1, unsigned int *r3, int *i2)
799{
800 if (insn[0] == op1
801 && insn[5] == op2)
802 {
803 *r1 = (insn[1] >> 4) & 0xf;
804 *r3 = insn[1] & 0xf;
805 /* i2 is a 16-bit signed quantity. */
806 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
807 return 1;
808 }
809 else
810 return 0;
811}
812
813
4bc8c588
JB
814static int
815is_rx (bfd_byte *insn, int op,
816 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
817{
818 if (insn[0] == op)
819 {
820 *r1 = (insn[1] >> 4) & 0xf;
821 *x2 = insn[1] & 0xf;
822 *b2 = (insn[2] >> 4) & 0xf;
823 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
824 return 1;
825 }
826 else
827 return 0;
828}
829
830
831static int
a8c99f38 832is_rxy (bfd_byte *insn, int op1, int op2,
4bc8c588
JB
833 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
834{
835 if (insn[0] == op1
4bc8c588
JB
836 && insn[5] == op2)
837 {
838 *r1 = (insn[1] >> 4) & 0xf;
839 *x2 = insn[1] & 0xf;
840 *b2 = (insn[2] >> 4) & 0xf;
a8c99f38
JB
841 /* The 'long displacement' is a 20-bit signed integer. */
842 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
843 ^ 0x80000) - 0x80000;
4bc8c588
JB
844 return 1;
845 }
846 else
847 return 0;
848}
849
850
3fc46200 851/* Prologue analysis. */
4bc8c588 852
d0f54f9d
JB
853#define S390_NUM_GPRS 16
854#define S390_NUM_FPRS 16
4bc8c588 855
a8c99f38
JB
856struct s390_prologue_data {
857
ee1b3323
UW
858 /* The stack. */
859 struct pv_area *stack;
860
e17a4113 861 /* The size and byte-order of a GPR or FPR. */
a8c99f38
JB
862 int gpr_size;
863 int fpr_size;
e17a4113 864 enum bfd_endian byte_order;
a8c99f38
JB
865
866 /* The general-purpose registers. */
3fc46200 867 pv_t gpr[S390_NUM_GPRS];
a8c99f38
JB
868
869 /* The floating-point registers. */
3fc46200 870 pv_t fpr[S390_NUM_FPRS];
a8c99f38 871
121d8485
UW
872 /* The offset relative to the CFA where the incoming GPR N was saved
873 by the function prologue. 0 if not saved or unknown. */
874 int gpr_slot[S390_NUM_GPRS];
4bc8c588 875
121d8485
UW
876 /* Likewise for FPRs. */
877 int fpr_slot[S390_NUM_FPRS];
4bc8c588 878
121d8485
UW
879 /* Nonzero if the backchain was saved. This is assumed to be the
880 case when the incoming SP is saved at the current SP location. */
881 int back_chain_saved_p;
882};
4bc8c588 883
3fc46200
UW
884/* Return the effective address for an X-style instruction, like:
885
886 L R1, D2(X2, B2)
887
888 Here, X2 and B2 are registers, and D2 is a signed 20-bit
889 constant; the effective address is the sum of all three. If either
890 X2 or B2 are zero, then it doesn't contribute to the sum --- this
891 means that r0 can't be used as either X2 or B2. */
892static pv_t
893s390_addr (struct s390_prologue_data *data,
894 int d2, unsigned int x2, unsigned int b2)
895{
896 pv_t result;
897
898 result = pv_constant (d2);
899 if (x2)
900 result = pv_add (result, data->gpr[x2]);
901 if (b2)
902 result = pv_add (result, data->gpr[b2]);
903
904 return result;
905}
906
907/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
a8c99f38 908static void
3fc46200
UW
909s390_store (struct s390_prologue_data *data,
910 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
911 pv_t value)
4bc8c588 912{
3fc46200 913 pv_t addr = s390_addr (data, d2, x2, b2);
ee1b3323 914 pv_t offset;
121d8485
UW
915
916 /* Check whether we are storing the backchain. */
3fc46200 917 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
121d8485 918
3fc46200 919 if (pv_is_constant (offset) && offset.k == 0)
121d8485 920 if (size == data->gpr_size
3fc46200 921 && pv_is_register_k (value, S390_SP_REGNUM, 0))
121d8485
UW
922 {
923 data->back_chain_saved_p = 1;
924 return;
925 }
926
927
928 /* Check whether we are storing a register into the stack. */
ee1b3323
UW
929 if (!pv_area_store_would_trash (data->stack, addr))
930 pv_area_store (data->stack, addr, size, value);
4bc8c588 931
a8c99f38 932
121d8485
UW
933 /* Note: If this is some store we cannot identify, you might think we
934 should forget our cached values, as any of those might have been hit.
935
936 However, we make the assumption that the register save areas are only
937 ever stored to once in any given function, and we do recognize these
938 stores. Thus every store we cannot recognize does not hit our data. */
4bc8c588 939}
4bc8c588 940
3fc46200
UW
941/* Do a SIZE-byte load from D2(X2,B2). */
942static pv_t
943s390_load (struct s390_prologue_data *data,
944 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
945
4bc8c588 946{
3fc46200 947 pv_t addr = s390_addr (data, d2, x2, b2);
ee1b3323 948 pv_t offset;
4bc8c588 949
a8c99f38
JB
950 /* If it's a load from an in-line constant pool, then we can
951 simulate that, under the assumption that the code isn't
952 going to change between the time the processor actually
953 executed it creating the current frame, and the time when
954 we're analyzing the code to unwind past that frame. */
3fc46200 955 if (pv_is_constant (addr))
4bc8c588 956 {
0542c86d 957 struct target_section *secp;
3fc46200 958 secp = target_section_by_addr (&current_target, addr.k);
a8c99f38
JB
959 if (secp != NULL
960 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
961 & SEC_READONLY))
e17a4113
UW
962 return pv_constant (read_memory_integer (addr.k, size,
963 data->byte_order));
a8c99f38 964 }
7666f43c 965
121d8485 966 /* Check whether we are accessing one of our save slots. */
ee1b3323
UW
967 return pv_area_fetch (data->stack, addr, size);
968}
121d8485 969
ee1b3323
UW
970/* Function for finding saved registers in a 'struct pv_area'; we pass
971 this to pv_area_scan.
121d8485 972
ee1b3323
UW
973 If VALUE is a saved register, ADDR says it was saved at a constant
974 offset from the frame base, and SIZE indicates that the whole
975 register was saved, record its offset in the reg_offset table in
976 PROLOGUE_UNTYPED. */
977static void
c378eb4e
MS
978s390_check_for_saved (void *data_untyped, pv_t addr,
979 CORE_ADDR size, pv_t value)
ee1b3323
UW
980{
981 struct s390_prologue_data *data = data_untyped;
982 int i, offset;
983
984 if (!pv_is_register (addr, S390_SP_REGNUM))
985 return;
986
987 offset = 16 * data->gpr_size + 32 - addr.k;
4bc8c588 988
ee1b3323
UW
989 /* If we are storing the original value of a register, we want to
990 record the CFA offset. If the same register is stored multiple
991 times, the stack slot with the highest address counts. */
992
993 for (i = 0; i < S390_NUM_GPRS; i++)
994 if (size == data->gpr_size
995 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
996 if (data->gpr_slot[i] == 0
997 || data->gpr_slot[i] > offset)
998 {
999 data->gpr_slot[i] = offset;
1000 return;
1001 }
1002
1003 for (i = 0; i < S390_NUM_FPRS; i++)
1004 if (size == data->fpr_size
1005 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
1006 if (data->fpr_slot[i] == 0
1007 || data->fpr_slot[i] > offset)
1008 {
1009 data->fpr_slot[i] = offset;
1010 return;
1011 }
a8c99f38 1012}
4bc8c588 1013
a8c99f38
JB
1014/* Analyze the prologue of the function starting at START_PC,
1015 continuing at most until CURRENT_PC. Initialize DATA to
1016 hold all information we find out about the state of the registers
1017 and stack slots. Return the address of the instruction after
1018 the last one that changed the SP, FP, or back chain; or zero
1019 on error. */
1020static CORE_ADDR
1021s390_analyze_prologue (struct gdbarch *gdbarch,
1022 CORE_ADDR start_pc,
1023 CORE_ADDR current_pc,
1024 struct s390_prologue_data *data)
4bc8c588 1025{
a8c99f38
JB
1026 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1027
4bc8c588 1028 /* Our return value:
a8c99f38
JB
1029 The address of the instruction after the last one that changed
1030 the SP, FP, or back chain; zero if we got an error trying to
1031 read memory. */
1032 CORE_ADDR result = start_pc;
4bc8c588 1033
4bc8c588
JB
1034 /* The current PC for our abstract interpretation. */
1035 CORE_ADDR pc;
1036
1037 /* The address of the next instruction after that. */
1038 CORE_ADDR next_pc;
1039
4bc8c588
JB
1040 /* Set up everything's initial value. */
1041 {
1042 int i;
1043
55f960e1 1044 data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
ee1b3323 1045
a8c99f38
JB
1046 /* For the purpose of prologue tracking, we consider the GPR size to
1047 be equal to the ABI word size, even if it is actually larger
1048 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1049 data->gpr_size = word_size;
1050 data->fpr_size = 8;
e17a4113 1051 data->byte_order = gdbarch_byte_order (gdbarch);
a8c99f38 1052
4bc8c588 1053 for (i = 0; i < S390_NUM_GPRS; i++)
3fc46200 1054 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
4bc8c588
JB
1055
1056 for (i = 0; i < S390_NUM_FPRS; i++)
3fc46200 1057 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
4bc8c588 1058
121d8485
UW
1059 for (i = 0; i < S390_NUM_GPRS; i++)
1060 data->gpr_slot[i] = 0;
1061
1062 for (i = 0; i < S390_NUM_FPRS; i++)
1063 data->fpr_slot[i] = 0;
4bc8c588 1064
121d8485 1065 data->back_chain_saved_p = 0;
4bc8c588
JB
1066 }
1067
a8c99f38
JB
1068 /* Start interpreting instructions, until we hit the frame's
1069 current PC or the first branch instruction. */
1070 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
5769d3cd 1071 {
4bc8c588 1072 bfd_byte insn[S390_MAX_INSTR_SIZE];
a788de9b 1073 int insn_len = s390_readinstruction (insn, pc);
4bc8c588 1074
3fc46200
UW
1075 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
1076 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
1077 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
1078
4bc8c588 1079 /* Fields for various kinds of instructions. */
a8c99f38
JB
1080 unsigned int b2, r1, r2, x2, r3;
1081 int i2, d2;
4bc8c588 1082
121d8485 1083 /* The values of SP and FP before this instruction,
4bc8c588 1084 for detecting instructions that change them. */
3fc46200 1085 pv_t pre_insn_sp, pre_insn_fp;
121d8485
UW
1086 /* Likewise for the flag whether the back chain was saved. */
1087 int pre_insn_back_chain_saved_p;
4bc8c588
JB
1088
1089 /* If we got an error trying to read the instruction, report it. */
1090 if (insn_len < 0)
8ac0e65a 1091 {
a8c99f38 1092 result = 0;
4bc8c588
JB
1093 break;
1094 }
1095
1096 next_pc = pc + insn_len;
1097
a8c99f38
JB
1098 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1099 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
121d8485 1100 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
4bc8c588 1101
4bc8c588 1102
3fc46200
UW
1103 /* LHI r1, i2 --- load halfword immediate. */
1104 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
1105 /* LGFI r1, i2 --- load fullword immediate. */
1106 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
1107 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
1108 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1109 data->gpr[r1] = pv_constant (i2);
1110
1111 /* LR r1, r2 --- load from register. */
1112 /* LGR r1, r2 --- load from register (64-bit version). */
1113 else if (is_rr (insn32, op_lr, &r1, &r2)
1114 || is_rre (insn64, op_lgr, &r1, &r2))
1115 data->gpr[r1] = data->gpr[r2];
1116
1117 /* L r1, d2(x2, b2) --- load. */
1118 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
1119 /* LG r1, d2(x2, b2) --- load (64-bit version). */
1120 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
1121 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
1122 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1123 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
1124
1125 /* ST r1, d2(x2, b2) --- store. */
1126 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
1127 /* STG r1, d2(x2, b2) --- store (64-bit version). */
1128 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
1129 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
1130 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1131 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
1132
1133 /* STD r1, d2(x2,b2) --- store floating-point register. */
4bc8c588 1134 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
3fc46200
UW
1135 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
1136
1137 /* STM r1, r3, d2(b2) --- store multiple. */
c378eb4e
MS
1138 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
1139 version). */
3fc46200
UW
1140 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
1141 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
1142 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
1143 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
4bc8c588 1144 {
3fc46200
UW
1145 for (; r1 <= r3; r1++, d2 += data->gpr_size)
1146 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
4bc8c588
JB
1147 }
1148
3fc46200
UW
1149 /* AHI r1, i2 --- add halfword immediate. */
1150 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
1151 /* AFI r1, i2 --- add fullword immediate. */
1152 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
1153 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
1154 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
1155 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
1156 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
1157 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
1158
1159 /* ALFI r1, i2 --- add logical immediate. */
1160 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
1161 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
1162 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
1163 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1164 (CORE_ADDR)i2 & 0xffffffff);
1165
1166 /* AR r1, r2 -- add register. */
1167 /* AGR r1, r2 -- add register (64-bit version). */
1168 else if (is_rr (insn32, op_ar, &r1, &r2)
1169 || is_rre (insn64, op_agr, &r1, &r2))
1170 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
1171
1172 /* A r1, d2(x2, b2) -- add. */
1173 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
1174 /* AG r1, d2(x2, b2) -- add (64-bit version). */
1175 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
1176 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
1177 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1178 data->gpr[r1] = pv_add (data->gpr[r1],
1179 s390_load (data, d2, x2, b2, data->gpr_size));
1180
1181 /* SLFI r1, i2 --- subtract logical immediate. */
1182 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
1183 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
1184 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
1185 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1186 -((CORE_ADDR)i2 & 0xffffffff));
1187
1188 /* SR r1, r2 -- subtract register. */
1189 /* SGR r1, r2 -- subtract register (64-bit version). */
1190 else if (is_rr (insn32, op_sr, &r1, &r2)
1191 || is_rre (insn64, op_sgr, &r1, &r2))
1192 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1193
1194 /* S r1, d2(x2, b2) -- subtract. */
1195 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1196 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1197 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1198 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1199 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1200 data->gpr[r1] = pv_subtract (data->gpr[r1],
1201 s390_load (data, d2, x2, b2, data->gpr_size));
1202
1203 /* LA r1, d2(x2, b2) --- load address. */
1204 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1205 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1206 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1207 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1208
1209 /* LARL r1, i2 --- load address relative long. */
a8c99f38 1210 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
3fc46200 1211 data->gpr[r1] = pv_constant (pc + i2 * 2);
a8c99f38 1212
3fc46200 1213 /* BASR r1, 0 --- branch and save.
a8c99f38
JB
1214 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1215 else if (is_rr (insn, op_basr, &r1, &r2)
1216 && r2 == 0)
3fc46200 1217 data->gpr[r1] = pv_constant (next_pc);
a8c99f38 1218
3fc46200 1219 /* BRAS r1, i2 --- branch relative and save. */
a8c99f38
JB
1220 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1221 {
3fc46200 1222 data->gpr[r1] = pv_constant (next_pc);
a8c99f38 1223 next_pc = pc + i2 * 2;
4bc8c588 1224
a8c99f38
JB
1225 /* We'd better not interpret any backward branches. We'll
1226 never terminate. */
1227 if (next_pc <= pc)
4bc8c588
JB
1228 break;
1229 }
1230
a8c99f38
JB
1231 /* Terminate search when hitting any other branch instruction. */
1232 else if (is_rr (insn, op_basr, &r1, &r2)
1233 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1234 || is_rr (insn, op_bcr, &r1, &r2)
1235 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1236 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1237 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1238 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1239 break;
1240
4bc8c588
JB
1241 else
1242 /* An instruction we don't know how to simulate. The only
1243 safe thing to do would be to set every value we're tracking
a8c99f38
JB
1244 to 'unknown'. Instead, we'll be optimistic: we assume that
1245 we *can* interpret every instruction that the compiler uses
1246 to manipulate any of the data we're interested in here --
1247 then we can just ignore anything else. */
1248 ;
4bc8c588
JB
1249
1250 /* Record the address after the last instruction that changed
1251 the FP, SP, or backlink. Ignore instructions that changed
1252 them back to their original values --- those are probably
1253 restore instructions. (The back chain is never restored,
1254 just popped.) */
1255 {
3fc46200
UW
1256 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1257 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
4bc8c588 1258
3fc46200
UW
1259 if ((! pv_is_identical (pre_insn_sp, sp)
1260 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1261 && sp.kind != pvk_unknown)
1262 || (! pv_is_identical (pre_insn_fp, fp)
1263 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1264 && fp.kind != pvk_unknown)
121d8485 1265 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
a8c99f38 1266 result = next_pc;
4bc8c588 1267 }
5769d3cd 1268 }
4bc8c588 1269
ee1b3323
UW
1270 /* Record where all the registers were saved. */
1271 pv_area_scan (data->stack, s390_check_for_saved, data);
1272
1273 free_pv_area (data->stack);
1274 data->stack = NULL;
1275
4bc8c588 1276 return result;
5769d3cd
AC
1277}
1278
a8c99f38
JB
1279/* Advance PC across any function entry prologue instructions to reach
1280 some "real" code. */
1281static CORE_ADDR
6093d2eb 1282s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
a8c99f38
JB
1283{
1284 struct s390_prologue_data data;
1285 CORE_ADDR skip_pc;
6093d2eb 1286 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
a8c99f38
JB
1287 return skip_pc ? skip_pc : pc;
1288}
1289
d0f54f9d
JB
1290/* Return true if we are in the functin's epilogue, i.e. after the
1291 instruction that destroyed the function's stack frame. */
1292static int
1293s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1294{
1295 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1296
1297 /* In frameless functions, there's not frame to destroy and thus
1298 we don't care about the epilogue.
1299
1300 In functions with frame, the epilogue sequence is a pair of
1301 a LM-type instruction that restores (amongst others) the
1302 return register %r14 and the stack pointer %r15, followed
1303 by a branch 'br %r14' --or equivalent-- that effects the
1304 actual return.
1305
1306 In that situation, this function needs to return 'true' in
1307 exactly one case: when pc points to that branch instruction.
1308
1309 Thus we try to disassemble the one instructions immediately
177b42fe 1310 preceding pc and check whether it is an LM-type instruction
d0f54f9d
JB
1311 modifying the stack pointer.
1312
1313 Note that disassembling backwards is not reliable, so there
1314 is a slight chance of false positives here ... */
1315
1316 bfd_byte insn[6];
1317 unsigned int r1, r3, b2;
1318 int d2;
1319
1320 if (word_size == 4
8defab1a 1321 && !target_read_memory (pc - 4, insn, 4)
d0f54f9d
JB
1322 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1323 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1324 return 1;
1325
a8c99f38 1326 if (word_size == 4
8defab1a 1327 && !target_read_memory (pc - 6, insn, 6)
a8c99f38
JB
1328 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1329 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1330 return 1;
1331
d0f54f9d 1332 if (word_size == 8
8defab1a 1333 && !target_read_memory (pc - 6, insn, 6)
a8c99f38 1334 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
d0f54f9d
JB
1335 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1336 return 1;
1337
1338 return 0;
1339}
5769d3cd 1340
1db4e8a0
UW
1341/* Displaced stepping. */
1342
1343/* Fix up the state of registers and memory after having single-stepped
1344 a displaced instruction. */
1345static void
1346s390_displaced_step_fixup (struct gdbarch *gdbarch,
1347 struct displaced_step_closure *closure,
1348 CORE_ADDR from, CORE_ADDR to,
1349 struct regcache *regs)
1350{
1351 /* Since we use simple_displaced_step_copy_insn, our closure is a
1352 copy of the instruction. */
1353 gdb_byte *insn = (gdb_byte *) closure;
1354 static int s390_instrlen[] = { 2, 4, 4, 6 };
1355 int insnlen = s390_instrlen[insn[0] >> 6];
1356
1357 /* Fields for various kinds of instructions. */
1358 unsigned int b2, r1, r2, x2, r3;
1359 int i2, d2;
1360
1361 /* Get current PC and addressing mode bit. */
1362 CORE_ADDR pc = regcache_read_pc (regs);
beaabab2 1363 ULONGEST amode = 0;
1db4e8a0
UW
1364
1365 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
1366 {
1367 regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
1368 amode &= 0x80000000;
1369 }
1370
1371 if (debug_displaced)
1372 fprintf_unfiltered (gdb_stdlog,
1373 "displaced: (s390) fixup (%s, %s) pc %s amode 0x%x\n",
1374 paddress (gdbarch, from), paddress (gdbarch, to),
1375 paddress (gdbarch, pc), (int) amode);
1376
1377 /* Handle absolute branch and save instructions. */
1378 if (is_rr (insn, op_basr, &r1, &r2)
1379 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
1380 {
1381 /* Recompute saved return address in R1. */
1382 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1383 amode | (from + insnlen));
1384 }
1385
1386 /* Handle absolute branch instructions. */
1387 else if (is_rr (insn, op_bcr, &r1, &r2)
1388 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1389 || is_rr (insn, op_bctr, &r1, &r2)
1390 || is_rre (insn, op_bctgr, &r1, &r2)
1391 || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
1392 || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
1393 || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
1394 || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
1395 || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
1396 || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
1397 {
1398 /* Update PC iff branch was *not* taken. */
1399 if (pc == to + insnlen)
1400 regcache_write_pc (regs, from + insnlen);
1401 }
1402
1403 /* Handle PC-relative branch and save instructions. */
1404 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
1405 || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
1406 {
1407 /* Update PC. */
1408 regcache_write_pc (regs, pc - to + from);
1409 /* Recompute saved return address in R1. */
1410 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1411 amode | (from + insnlen));
1412 }
1413
1414 /* Handle PC-relative branch instructions. */
1415 else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1416 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1417 || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
1418 || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
1419 || is_rsi (insn, op_brxh, &r1, &r3, &i2)
1420 || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
1421 || is_rsi (insn, op_brxle, &r1, &r3, &i2)
1422 || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
1423 {
1424 /* Update PC. */
1425 regcache_write_pc (regs, pc - to + from);
1426 }
1427
1428 /* Handle LOAD ADDRESS RELATIVE LONG. */
1429 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1430 {
1431 /* Recompute output address in R1. */
1432 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1433 amode | (from + insnlen + i2*2));
1434 }
1435
1436 /* If we executed a breakpoint instruction, point PC right back at it. */
1437 else if (insn[0] == 0x0 && insn[1] == 0x1)
1438 regcache_write_pc (regs, from);
1439
1440 /* For any other insn, PC points right after the original instruction. */
1441 else
1442 regcache_write_pc (regs, from + insnlen);
1443}
a8c99f38
JB
1444
1445/* Normal stack frames. */
1446
1447struct s390_unwind_cache {
1448
1449 CORE_ADDR func;
1450 CORE_ADDR frame_base;
1451 CORE_ADDR local_base;
1452
1453 struct trad_frame_saved_reg *saved_regs;
1454};
1455
a78f21af 1456static int
f089c433 1457s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38 1458 struct s390_unwind_cache *info)
5769d3cd 1459{
f089c433 1460 struct gdbarch *gdbarch = get_frame_arch (this_frame);
121d8485 1461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38
JB
1462 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1463 struct s390_prologue_data data;
3fc46200
UW
1464 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1465 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
121d8485
UW
1466 int i;
1467 CORE_ADDR cfa;
a8c99f38
JB
1468 CORE_ADDR func;
1469 CORE_ADDR result;
1470 ULONGEST reg;
1471 CORE_ADDR prev_sp;
1472 int frame_pointer;
1473 int size;
edb3359d 1474 struct frame_info *next_frame;
a8c99f38
JB
1475
1476 /* Try to find the function start address. If we can't find it, we don't
1477 bother searching for it -- with modern compilers this would be mostly
1478 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1479 or else a valid backchain ... */
f089c433 1480 func = get_frame_func (this_frame);
a8c99f38
JB
1481 if (!func)
1482 return 0;
5769d3cd 1483
a8c99f38
JB
1484 /* Try to analyze the prologue. */
1485 result = s390_analyze_prologue (gdbarch, func,
f089c433 1486 get_frame_pc (this_frame), &data);
a8c99f38 1487 if (!result)
5769d3cd 1488 return 0;
5769d3cd 1489
a8c99f38
JB
1490 /* If this was successful, we should have found the instruction that
1491 sets the stack pointer register to the previous value of the stack
1492 pointer minus the frame size. */
3fc46200 1493 if (!pv_is_register (*sp, S390_SP_REGNUM))
5769d3cd 1494 return 0;
a8c99f38
JB
1495
1496 /* A frame size of zero at this point can mean either a real
1497 frameless function, or else a failure to find the prologue.
1498 Perform some sanity checks to verify we really have a
1499 frameless function. */
1500 if (sp->k == 0)
5769d3cd 1501 {
a8c99f38
JB
1502 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1503 size zero. This is only possible if the next frame is a sentinel
1504 frame, a dummy frame, or a signal trampoline frame. */
0e100dab
AC
1505 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1506 needed, instead the code should simpliy rely on its
1507 analysis. */
edb3359d
DJ
1508 next_frame = get_next_frame (this_frame);
1509 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1510 next_frame = get_next_frame (next_frame);
1511 if (next_frame
f089c433 1512 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
5769d3cd 1513 return 0;
5769d3cd 1514
a8c99f38
JB
1515 /* If we really have a frameless function, %r14 must be valid
1516 -- in particular, it must point to a different function. */
f089c433 1517 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
a8c99f38
JB
1518 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1519 if (get_pc_function_start (reg) == func)
5769d3cd 1520 {
a8c99f38
JB
1521 /* However, there is one case where it *is* valid for %r14
1522 to point to the same function -- if this is a recursive
1523 call, and we have stopped in the prologue *before* the
1524 stack frame was allocated.
1525
1526 Recognize this case by looking ahead a bit ... */
5769d3cd 1527
a8c99f38 1528 struct s390_prologue_data data2;
3fc46200 1529 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
a8c99f38
JB
1530
1531 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
3fc46200 1532 && pv_is_register (*sp, S390_SP_REGNUM)
a8c99f38
JB
1533 && sp->k != 0))
1534 return 0;
5769d3cd 1535 }
5769d3cd 1536 }
5769d3cd
AC
1537
1538
a8c99f38
JB
1539 /* OK, we've found valid prologue data. */
1540 size = -sp->k;
5769d3cd 1541
a8c99f38
JB
1542 /* If the frame pointer originally also holds the same value
1543 as the stack pointer, we're probably using it. If it holds
1544 some other value -- even a constant offset -- it is most
1545 likely used as temp register. */
3fc46200 1546 if (pv_is_identical (*sp, *fp))
a8c99f38
JB
1547 frame_pointer = S390_FRAME_REGNUM;
1548 else
1549 frame_pointer = S390_SP_REGNUM;
1550
1551 /* If we've detected a function with stack frame, we'll still have to
1552 treat it as frameless if we're currently within the function epilog
c378eb4e 1553 code at a point where the frame pointer has already been restored.
a8c99f38 1554 This can only happen in an innermost frame. */
0e100dab
AC
1555 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1556 instead the code should simpliy rely on its analysis. */
edb3359d
DJ
1557 next_frame = get_next_frame (this_frame);
1558 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1559 next_frame = get_next_frame (next_frame);
f089c433 1560 if (size > 0
edb3359d 1561 && (next_frame == NULL
f089c433 1562 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
5769d3cd 1563 {
a8c99f38
JB
1564 /* See the comment in s390_in_function_epilogue_p on why this is
1565 not completely reliable ... */
f089c433 1566 if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
5769d3cd 1567 {
a8c99f38
JB
1568 memset (&data, 0, sizeof (data));
1569 size = 0;
1570 frame_pointer = S390_SP_REGNUM;
5769d3cd 1571 }
5769d3cd 1572 }
5769d3cd 1573
a8c99f38
JB
1574 /* Once we know the frame register and the frame size, we can unwind
1575 the current value of the frame register from the next frame, and
1576 add back the frame size to arrive that the previous frame's
1577 stack pointer value. */
f089c433 1578 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
121d8485 1579 cfa = prev_sp + 16*word_size + 32;
5769d3cd 1580
7803799a
UW
1581 /* Set up ABI call-saved/call-clobbered registers. */
1582 for (i = 0; i < S390_NUM_REGS; i++)
1583 if (!s390_register_call_saved (gdbarch, i))
1584 trad_frame_set_unknown (info->saved_regs, i);
1585
1586 /* CC is always call-clobbered. */
1587 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1588
121d8485
UW
1589 /* Record the addresses of all register spill slots the prologue parser
1590 has recognized. Consider only registers defined as call-saved by the
1591 ABI; for call-clobbered registers the parser may have recognized
1592 spurious stores. */
5769d3cd 1593
7803799a
UW
1594 for (i = 0; i < 16; i++)
1595 if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
1596 && data.gpr_slot[i] != 0)
121d8485 1597 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
a8c99f38 1598
7803799a
UW
1599 for (i = 0; i < 16; i++)
1600 if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
1601 && data.fpr_slot[i] != 0)
1602 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
a8c99f38
JB
1603
1604 /* Function return will set PC to %r14. */
7803799a 1605 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_RETADDR_REGNUM];
a8c99f38
JB
1606
1607 /* In frameless functions, we unwind simply by moving the return
1608 address to the PC. However, if we actually stored to the
1609 save area, use that -- we might only think the function frameless
1610 because we're in the middle of the prologue ... */
1611 if (size == 0
7803799a 1612 && !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
a8c99f38 1613 {
7803799a 1614 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
5769d3cd 1615 }
a8c99f38
JB
1616
1617 /* Another sanity check: unless this is a frameless function,
1618 we should have found spill slots for SP and PC.
1619 If not, we cannot unwind further -- this happens e.g. in
1620 libc's thread_start routine. */
1621 if (size > 0)
5769d3cd 1622 {
a8c99f38 1623 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
7803799a 1624 || !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
a8c99f38 1625 prev_sp = -1;
5769d3cd 1626 }
a8c99f38
JB
1627
1628 /* We use the current value of the frame register as local_base,
1629 and the top of the register save area as frame_base. */
1630 if (prev_sp != -1)
1631 {
1632 info->frame_base = prev_sp + 16*word_size + 32;
1633 info->local_base = prev_sp - size;
1634 }
1635
1636 info->func = func;
1637 return 1;
5769d3cd
AC
1638}
1639
a78f21af 1640static void
f089c433 1641s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38 1642 struct s390_unwind_cache *info)
5769d3cd 1643{
f089c433 1644 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7803799a 1645 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1646 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
e17a4113 1647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a8c99f38
JB
1648 CORE_ADDR backchain;
1649 ULONGEST reg;
1650 LONGEST sp;
7803799a
UW
1651 int i;
1652
1653 /* Set up ABI call-saved/call-clobbered registers. */
1654 for (i = 0; i < S390_NUM_REGS; i++)
1655 if (!s390_register_call_saved (gdbarch, i))
1656 trad_frame_set_unknown (info->saved_regs, i);
1657
1658 /* CC is always call-clobbered. */
1659 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
a8c99f38
JB
1660
1661 /* Get the backchain. */
f089c433 1662 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
e17a4113 1663 backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
a8c99f38
JB
1664
1665 /* A zero backchain terminates the frame chain. As additional
1666 sanity check, let's verify that the spill slot for SP in the
1667 save area pointed to by the backchain in fact links back to
1668 the save area. */
1669 if (backchain != 0
e17a4113
UW
1670 && safe_read_memory_integer (backchain + 15*word_size,
1671 word_size, byte_order, &sp)
a8c99f38
JB
1672 && (CORE_ADDR)sp == backchain)
1673 {
1674 /* We don't know which registers were saved, but it will have
1675 to be at least %r14 and %r15. This will allow us to continue
1676 unwinding, but other prev-frame registers may be incorrect ... */
1677 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1678 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1679
1680 /* Function return will set PC to %r14. */
7803799a
UW
1681 info->saved_regs[tdep->pc_regnum]
1682 = info->saved_regs[S390_RETADDR_REGNUM];
a8c99f38
JB
1683
1684 /* We use the current value of the frame register as local_base,
1685 and the top of the register save area as frame_base. */
1686 info->frame_base = backchain + 16*word_size + 32;
1687 info->local_base = reg;
1688 }
1689
f089c433 1690 info->func = get_frame_pc (this_frame);
5769d3cd
AC
1691}
1692
a8c99f38 1693static struct s390_unwind_cache *
f089c433 1694s390_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38
JB
1695 void **this_prologue_cache)
1696{
1697 struct s390_unwind_cache *info;
1698 if (*this_prologue_cache)
1699 return *this_prologue_cache;
1700
1701 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1702 *this_prologue_cache = info;
f089c433 1703 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a8c99f38
JB
1704 info->func = -1;
1705 info->frame_base = -1;
1706 info->local_base = -1;
1707
1708 /* Try to use prologue analysis to fill the unwind cache.
1709 If this fails, fall back to reading the stack backchain. */
f089c433
UW
1710 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1711 s390_backchain_frame_unwind_cache (this_frame, info);
a8c99f38
JB
1712
1713 return info;
1714}
5769d3cd 1715
a78f21af 1716static void
f089c433 1717s390_frame_this_id (struct frame_info *this_frame,
a8c99f38
JB
1718 void **this_prologue_cache,
1719 struct frame_id *this_id)
5769d3cd 1720{
a8c99f38 1721 struct s390_unwind_cache *info
f089c433 1722 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
5769d3cd 1723
a8c99f38
JB
1724 if (info->frame_base == -1)
1725 return;
5769d3cd 1726
a8c99f38 1727 *this_id = frame_id_build (info->frame_base, info->func);
5769d3cd
AC
1728}
1729
f089c433
UW
1730static struct value *
1731s390_frame_prev_register (struct frame_info *this_frame,
1732 void **this_prologue_cache, int regnum)
a8c99f38 1733{
7803799a
UW
1734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1735 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1736 struct s390_unwind_cache *info
f089c433 1737 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
7803799a
UW
1738
1739 /* Unwind full GPRs to show at least the lower halves (as the
1740 upper halves are undefined). */
1741 if (tdep->gpr_full_regnum != -1
1742 && regnum >= tdep->gpr_full_regnum
1743 && regnum < tdep->gpr_full_regnum + 16)
1744 {
1745 int reg = regnum - tdep->gpr_full_regnum + S390_R0_REGNUM;
1746 struct value *val, *newval;
1747
1748 val = trad_frame_get_prev_register (this_frame, info->saved_regs, reg);
1749 newval = value_cast (register_type (gdbarch, regnum), val);
1750 if (value_optimized_out (val))
1751 set_value_optimized_out (newval, 1);
1752
1753 return newval;
1754 }
1755
f089c433 1756 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
a8c99f38
JB
1757}
1758
1759static const struct frame_unwind s390_frame_unwind = {
1760 NORMAL_FRAME,
8fbca658 1761 default_frame_unwind_stop_reason,
a8c99f38 1762 s390_frame_this_id,
f089c433
UW
1763 s390_frame_prev_register,
1764 NULL,
1765 default_frame_sniffer
a8c99f38
JB
1766};
1767
5769d3cd 1768
8e645ae7
AC
1769/* Code stubs and their stack frames. For things like PLTs and NULL
1770 function calls (where there is no true frame and the return address
1771 is in the RETADDR register). */
a8c99f38 1772
8e645ae7
AC
1773struct s390_stub_unwind_cache
1774{
a8c99f38
JB
1775 CORE_ADDR frame_base;
1776 struct trad_frame_saved_reg *saved_regs;
1777};
1778
8e645ae7 1779static struct s390_stub_unwind_cache *
f089c433 1780s390_stub_frame_unwind_cache (struct frame_info *this_frame,
8e645ae7 1781 void **this_prologue_cache)
5769d3cd 1782{
f089c433 1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7803799a 1784 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1785 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
8e645ae7 1786 struct s390_stub_unwind_cache *info;
a8c99f38 1787 ULONGEST reg;
5c3cf190 1788
a8c99f38
JB
1789 if (*this_prologue_cache)
1790 return *this_prologue_cache;
5c3cf190 1791
8e645ae7 1792 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
a8c99f38 1793 *this_prologue_cache = info;
f089c433 1794 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a8c99f38
JB
1795
1796 /* The return address is in register %r14. */
7803799a 1797 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
a8c99f38
JB
1798
1799 /* Retrieve stack pointer and determine our frame base. */
f089c433 1800 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
a8c99f38
JB
1801 info->frame_base = reg + 16*word_size + 32;
1802
1803 return info;
5769d3cd
AC
1804}
1805
a8c99f38 1806static void
f089c433 1807s390_stub_frame_this_id (struct frame_info *this_frame,
8e645ae7
AC
1808 void **this_prologue_cache,
1809 struct frame_id *this_id)
5769d3cd 1810{
8e645ae7 1811 struct s390_stub_unwind_cache *info
f089c433
UW
1812 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1813 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
a8c99f38 1814}
5769d3cd 1815
f089c433
UW
1816static struct value *
1817s390_stub_frame_prev_register (struct frame_info *this_frame,
1818 void **this_prologue_cache, int regnum)
8e645ae7
AC
1819{
1820 struct s390_stub_unwind_cache *info
f089c433
UW
1821 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1822 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
a8c99f38
JB
1823}
1824
f089c433
UW
1825static int
1826s390_stub_frame_sniffer (const struct frame_unwind *self,
1827 struct frame_info *this_frame,
1828 void **this_prologue_cache)
a8c99f38 1829{
93d42b30 1830 CORE_ADDR addr_in_block;
8e645ae7
AC
1831 bfd_byte insn[S390_MAX_INSTR_SIZE];
1832
1833 /* If the current PC points to non-readable memory, we assume we
1834 have trapped due to an invalid function pointer call. We handle
1835 the non-existing current function like a PLT stub. */
f089c433 1836 addr_in_block = get_frame_address_in_block (this_frame);
93d42b30 1837 if (in_plt_section (addr_in_block, NULL)
f089c433
UW
1838 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
1839 return 1;
1840 return 0;
a8c99f38 1841}
5769d3cd 1842
f089c433
UW
1843static const struct frame_unwind s390_stub_frame_unwind = {
1844 NORMAL_FRAME,
8fbca658 1845 default_frame_unwind_stop_reason,
f089c433
UW
1846 s390_stub_frame_this_id,
1847 s390_stub_frame_prev_register,
1848 NULL,
1849 s390_stub_frame_sniffer
1850};
1851
5769d3cd 1852
a8c99f38 1853/* Signal trampoline stack frames. */
5769d3cd 1854
a8c99f38
JB
1855struct s390_sigtramp_unwind_cache {
1856 CORE_ADDR frame_base;
1857 struct trad_frame_saved_reg *saved_regs;
1858};
5769d3cd 1859
a8c99f38 1860static struct s390_sigtramp_unwind_cache *
f089c433 1861s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38 1862 void **this_prologue_cache)
5769d3cd 1863{
f089c433 1864 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7803799a 1865 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1866 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
e17a4113 1867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a8c99f38
JB
1868 struct s390_sigtramp_unwind_cache *info;
1869 ULONGEST this_sp, prev_sp;
7803799a
UW
1870 CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
1871 ULONGEST pswm;
a8c99f38
JB
1872 int i;
1873
1874 if (*this_prologue_cache)
1875 return *this_prologue_cache;
5769d3cd 1876
a8c99f38
JB
1877 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
1878 *this_prologue_cache = info;
f089c433 1879 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a8c99f38 1880
f089c433
UW
1881 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1882 next_ra = get_frame_pc (this_frame);
a8c99f38
JB
1883 next_cfa = this_sp + 16*word_size + 32;
1884
1885 /* New-style RT frame:
1886 retcode + alignment (8 bytes)
1887 siginfo (128 bytes)
c378eb4e 1888 ucontext (contains sigregs at offset 5 words). */
a8c99f38
JB
1889 if (next_ra == next_cfa)
1890 {
f0f63663 1891 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
7803799a
UW
1892 /* sigregs are followed by uc_sigmask (8 bytes), then by the
1893 upper GPR halves if present. */
1894 sigreg_high_off = 8;
a8c99f38
JB
1895 }
1896
1897 /* Old-style RT frame and all non-RT frames:
1898 old signal mask (8 bytes)
c378eb4e 1899 pointer to sigregs. */
5769d3cd
AC
1900 else
1901 {
e17a4113
UW
1902 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
1903 word_size, byte_order);
7803799a
UW
1904 /* sigregs are followed by signo (4 bytes), then by the
1905 upper GPR halves if present. */
1906 sigreg_high_off = 4;
a8c99f38 1907 }
5769d3cd 1908
a8c99f38
JB
1909 /* The sigregs structure looks like this:
1910 long psw_mask;
1911 long psw_addr;
1912 long gprs[16];
1913 int acrs[16];
1914 int fpc;
1915 int __pad;
1916 double fprs[16]; */
5769d3cd 1917
7803799a
UW
1918 /* PSW mask and address. */
1919 info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
a8c99f38 1920 sigreg_ptr += word_size;
7803799a 1921 info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
a8c99f38
JB
1922 sigreg_ptr += word_size;
1923
7803799a
UW
1924 /* Point PC to PSWA as well. */
1925 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_PSWA_REGNUM];
1926
1927 /* Extract CC from PSWM. */
1928 pswm = read_memory_unsigned_integer (
1929 info->saved_regs[S390_PSWM_REGNUM].addr,
1930 word_size, byte_order);
1931 trad_frame_set_value (info->saved_regs, tdep->cc_regnum,
1932 (pswm >> (8 * word_size - 20)) & 3);
1933
a8c99f38
JB
1934 /* Then the GPRs. */
1935 for (i = 0; i < 16; i++)
1936 {
1937 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
1938 sigreg_ptr += word_size;
1939 }
1940
1941 /* Then the ACRs. */
1942 for (i = 0; i < 16; i++)
1943 {
1944 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
1945 sigreg_ptr += 4;
5769d3cd 1946 }
5769d3cd 1947
a8c99f38
JB
1948 /* The floating-point control word. */
1949 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
1950 sigreg_ptr += 8;
5769d3cd 1951
a8c99f38
JB
1952 /* And finally the FPRs. */
1953 for (i = 0; i < 16; i++)
1954 {
1955 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
1956 sigreg_ptr += 8;
1957 }
1958
7803799a
UW
1959 /* If we have them, the GPR upper halves are appended at the end. */
1960 sigreg_ptr += sigreg_high_off;
1961 if (tdep->gpr_full_regnum != -1)
1962 for (i = 0; i < 16; i++)
1963 {
1964 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
1965 sigreg_ptr += 4;
1966 }
1967
1968 /* Provide read-only copies of the full registers. */
1969 if (tdep->gpr_full_regnum != -1)
1970 for (i = 0; i < 16; i++)
1971 {
1972 ULONGEST low, high;
1973 low = read_memory_unsigned_integer (
1974 info->saved_regs[S390_R0_REGNUM + i].addr,
1975 4, byte_order);
1976 high = read_memory_unsigned_integer (
1977 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr,
1978 4, byte_order);
1979
1980 trad_frame_set_value (info->saved_regs, tdep->gpr_full_regnum + i,
1981 (high << 32) | low);
1982 }
1983
a8c99f38
JB
1984 /* Restore the previous frame's SP. */
1985 prev_sp = read_memory_unsigned_integer (
1986 info->saved_regs[S390_SP_REGNUM].addr,
e17a4113 1987 word_size, byte_order);
5769d3cd 1988
a8c99f38
JB
1989 /* Determine our frame base. */
1990 info->frame_base = prev_sp + 16*word_size + 32;
5769d3cd 1991
a8c99f38 1992 return info;
5769d3cd
AC
1993}
1994
a8c99f38 1995static void
f089c433 1996s390_sigtramp_frame_this_id (struct frame_info *this_frame,
a8c99f38
JB
1997 void **this_prologue_cache,
1998 struct frame_id *this_id)
5769d3cd 1999{
a8c99f38 2000 struct s390_sigtramp_unwind_cache *info
f089c433
UW
2001 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2002 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
5769d3cd
AC
2003}
2004
f089c433
UW
2005static struct value *
2006s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
2007 void **this_prologue_cache, int regnum)
a8c99f38
JB
2008{
2009 struct s390_sigtramp_unwind_cache *info
f089c433
UW
2010 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2011 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
a8c99f38
JB
2012}
2013
f089c433
UW
2014static int
2015s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
2016 struct frame_info *this_frame,
2017 void **this_prologue_cache)
5769d3cd 2018{
f089c433 2019 CORE_ADDR pc = get_frame_pc (this_frame);
a8c99f38 2020 bfd_byte sigreturn[2];
4c8287ac 2021
8defab1a 2022 if (target_read_memory (pc, sigreturn, 2))
f089c433 2023 return 0;
4c8287ac 2024
a8c99f38 2025 if (sigreturn[0] != 0x0a /* svc */)
f089c433 2026 return 0;
5769d3cd 2027
a8c99f38
JB
2028 if (sigreturn[1] != 119 /* sigreturn */
2029 && sigreturn[1] != 173 /* rt_sigreturn */)
f089c433 2030 return 0;
a8c99f38 2031
f089c433 2032 return 1;
5769d3cd
AC
2033}
2034
f089c433
UW
2035static const struct frame_unwind s390_sigtramp_frame_unwind = {
2036 SIGTRAMP_FRAME,
8fbca658 2037 default_frame_unwind_stop_reason,
f089c433
UW
2038 s390_sigtramp_frame_this_id,
2039 s390_sigtramp_frame_prev_register,
2040 NULL,
2041 s390_sigtramp_frame_sniffer
2042};
2043
4c8287ac 2044
a8c99f38
JB
2045/* Frame base handling. */
2046
2047static CORE_ADDR
f089c433 2048s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
4c8287ac 2049{
a8c99f38 2050 struct s390_unwind_cache *info
f089c433 2051 = s390_frame_unwind_cache (this_frame, this_cache);
a8c99f38
JB
2052 return info->frame_base;
2053}
2054
2055static CORE_ADDR
f089c433 2056s390_local_base_address (struct frame_info *this_frame, void **this_cache)
a8c99f38
JB
2057{
2058 struct s390_unwind_cache *info
f089c433 2059 = s390_frame_unwind_cache (this_frame, this_cache);
a8c99f38
JB
2060 return info->local_base;
2061}
2062
2063static const struct frame_base s390_frame_base = {
2064 &s390_frame_unwind,
2065 s390_frame_base_address,
2066 s390_local_base_address,
2067 s390_local_base_address
2068};
2069
2070static CORE_ADDR
2071s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2072{
7803799a 2073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 2074 ULONGEST pc;
7803799a 2075 pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
a8c99f38
JB
2076 return gdbarch_addr_bits_remove (gdbarch, pc);
2077}
2078
2079static CORE_ADDR
2080s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2081{
2082 ULONGEST sp;
2083 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2084 return gdbarch_addr_bits_remove (gdbarch, sp);
4c8287ac
JB
2085}
2086
2087
a431654a
AC
2088/* DWARF-2 frame support. */
2089
7803799a
UW
2090static struct value *
2091s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2092 int regnum)
2093{
2094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2095 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2096 int reg = regnum - tdep->gpr_full_regnum;
2097 struct value *val, *newval;
2098
2099 val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
2100 newval = value_cast (register_type (gdbarch, regnum), val);
2101 if (value_optimized_out (val))
2102 set_value_optimized_out (newval, 1);
2103
2104 return newval;
2105}
2106
a431654a
AC
2107static void
2108s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 2109 struct dwarf2_frame_state_reg *reg,
4a4e5149 2110 struct frame_info *this_frame)
a431654a
AC
2111{
2112 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2113
7803799a
UW
2114 /* Fixed registers are call-saved or call-clobbered
2115 depending on the ABI in use. */
2116 if (regnum >= 0 && regnum < S390_NUM_REGS)
a431654a 2117 {
7803799a 2118 if (s390_register_call_saved (gdbarch, regnum))
a431654a 2119 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
7803799a 2120 else
a431654a 2121 reg->how = DWARF2_FRAME_REG_UNDEFINED;
7803799a 2122 }
a431654a 2123
7803799a
UW
2124 /* The CC pseudo register is call-clobbered. */
2125 else if (regnum == tdep->cc_regnum)
2126 reg->how = DWARF2_FRAME_REG_UNDEFINED;
a431654a 2127
7803799a
UW
2128 /* The PC register unwinds to the return address. */
2129 else if (regnum == tdep->pc_regnum)
2130 reg->how = DWARF2_FRAME_REG_RA;
a431654a 2131
7803799a
UW
2132 /* We install a special function to unwind full GPRs to show at
2133 least the lower halves (as the upper halves are undefined). */
2134 else if (tdep->gpr_full_regnum != -1
2135 && regnum >= tdep->gpr_full_regnum
2136 && regnum < tdep->gpr_full_regnum + 16)
2137 {
2138 reg->how = DWARF2_FRAME_REG_FN;
2139 reg->loc.fn = s390_dwarf2_prev_register;
a431654a
AC
2140 }
2141}
2142
2143
b0cf273e
JB
2144/* Dummy function calls. */
2145
78f8b424
JB
2146/* Return non-zero if TYPE is an integer-like type, zero otherwise.
2147 "Integer-like" types are those that should be passed the way
2148 integers are: integers, enums, ranges, characters, and booleans. */
2149static int
2150is_integer_like (struct type *type)
2151{
2152 enum type_code code = TYPE_CODE (type);
2153
2154 return (code == TYPE_CODE_INT
2155 || code == TYPE_CODE_ENUM
2156 || code == TYPE_CODE_RANGE
2157 || code == TYPE_CODE_CHAR
2158 || code == TYPE_CODE_BOOL);
2159}
2160
78f8b424
JB
2161/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2162 "Pointer-like" types are those that should be passed the way
2163 pointers are: pointers and references. */
2164static int
2165is_pointer_like (struct type *type)
2166{
2167 enum type_code code = TYPE_CODE (type);
2168
2169 return (code == TYPE_CODE_PTR
2170 || code == TYPE_CODE_REF);
2171}
2172
2173
20a940cc
JB
2174/* Return non-zero if TYPE is a `float singleton' or `double
2175 singleton', zero otherwise.
2176
2177 A `T singleton' is a struct type with one member, whose type is
2178 either T or a `T singleton'. So, the following are all float
2179 singletons:
2180
2181 struct { float x };
2182 struct { struct { float x; } x; };
2183 struct { struct { struct { float x; } x; } x; };
2184
2185 ... and so on.
2186
b0cf273e
JB
2187 All such structures are passed as if they were floats or doubles,
2188 as the (revised) ABI says. */
20a940cc
JB
2189static int
2190is_float_singleton (struct type *type)
2191{
b0cf273e
JB
2192 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2193 {
2194 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
2195 CHECK_TYPEDEF (singleton_type);
2196
2197 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
a16b8bcd 2198 || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
b0cf273e
JB
2199 || is_float_singleton (singleton_type));
2200 }
2201
2202 return 0;
20a940cc
JB
2203}
2204
2205
2206/* Return non-zero if TYPE is a struct-like type, zero otherwise.
2207 "Struct-like" types are those that should be passed as structs are:
2208 structs and unions.
2209
2210 As an odd quirk, not mentioned in the ABI, GCC passes float and
2211 double singletons as if they were a plain float, double, etc. (The
2212 corresponding union types are handled normally.) So we exclude
2213 those types here. *shrug* */
2214static int
2215is_struct_like (struct type *type)
2216{
2217 enum type_code code = TYPE_CODE (type);
2218
2219 return (code == TYPE_CODE_UNION
2220 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2221}
2222
2223
2224/* Return non-zero if TYPE is a float-like type, zero otherwise.
2225 "Float-like" types are those that should be passed as
2226 floating-point values are.
2227
2228 You'd think this would just be floats, doubles, long doubles, etc.
2229 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2230 double singletons as if they were a plain float, double, etc. (The
4d819d0e 2231 corresponding union types are handled normally.) So we include
20a940cc
JB
2232 those types here. *shrug* */
2233static int
2234is_float_like (struct type *type)
2235{
2236 return (TYPE_CODE (type) == TYPE_CODE_FLT
a16b8bcd 2237 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
20a940cc
JB
2238 || is_float_singleton (type));
2239}
2240
2241
78f8b424 2242static int
b0cf273e 2243is_power_of_two (unsigned int n)
78f8b424 2244{
b0cf273e 2245 return ((n & (n - 1)) == 0);
78f8b424
JB
2246}
2247
b0cf273e
JB
2248/* Return non-zero if TYPE should be passed as a pointer to a copy,
2249 zero otherwise. */
4d819d0e 2250static int
b0cf273e 2251s390_function_arg_pass_by_reference (struct type *type)
4d819d0e
JB
2252{
2253 unsigned length = TYPE_LENGTH (type);
b0cf273e
JB
2254 if (length > 8)
2255 return 1;
4d819d0e 2256
b0cf273e
JB
2257 /* FIXME: All complex and vector types are also returned by reference. */
2258 return is_struct_like (type) && !is_power_of_two (length);
4d819d0e
JB
2259}
2260
b0cf273e
JB
2261/* Return non-zero if TYPE should be passed in a float register
2262 if possible. */
78f8b424 2263static int
b0cf273e 2264s390_function_arg_float (struct type *type)
78f8b424 2265{
78f8b424 2266 unsigned length = TYPE_LENGTH (type);
b0cf273e
JB
2267 if (length > 8)
2268 return 0;
78f8b424 2269
b0cf273e 2270 return is_float_like (type);
4d819d0e
JB
2271}
2272
b0cf273e
JB
2273/* Return non-zero if TYPE should be passed in an integer register
2274 (or a pair of integer registers) if possible. */
78f8b424 2275static int
b0cf273e 2276s390_function_arg_integer (struct type *type)
78f8b424 2277{
78f8b424 2278 unsigned length = TYPE_LENGTH (type);
b0cf273e
JB
2279 if (length > 8)
2280 return 0;
78f8b424 2281
b0cf273e
JB
2282 return is_integer_like (type)
2283 || is_pointer_like (type)
2284 || (is_struct_like (type) && is_power_of_two (length));
78f8b424
JB
2285}
2286
78f8b424
JB
2287/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2288 word as required for the ABI. */
2289static LONGEST
e17a4113 2290extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
78f8b424 2291{
e17a4113 2292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4991999e 2293 struct type *type = value_type (arg);
78f8b424
JB
2294
2295 /* Even structs get passed in the least significant bits of the
2296 register / memory word. It's not really right to extract them as
2297 an integer, but it does take care of the extension. */
2298 if (TYPE_UNSIGNED (type))
0fd88904 2299 return extract_unsigned_integer (value_contents (arg),
e17a4113 2300 TYPE_LENGTH (type), byte_order);
78f8b424 2301 else
0fd88904 2302 return extract_signed_integer (value_contents (arg),
e17a4113 2303 TYPE_LENGTH (type), byte_order);
78f8b424
JB
2304}
2305
2306
78f8b424
JB
2307/* Return the alignment required by TYPE. */
2308static int
2309alignment_of (struct type *type)
2310{
2311 int alignment;
2312
2313 if (is_integer_like (type)
2314 || is_pointer_like (type)
a16b8bcd
UW
2315 || TYPE_CODE (type) == TYPE_CODE_FLT
2316 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78f8b424
JB
2317 alignment = TYPE_LENGTH (type);
2318 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2319 || TYPE_CODE (type) == TYPE_CODE_UNION)
2320 {
2321 int i;
2322
2323 alignment = 1;
2324 for (i = 0; i < TYPE_NFIELDS (type); i++)
2325 {
2326 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
2327
2328 if (field_alignment > alignment)
2329 alignment = field_alignment;
2330 }
2331 }
2332 else
2333 alignment = 1;
2334
2335 /* Check that everything we ever return is a power of two. Lots of
2336 code doesn't want to deal with aligning things to arbitrary
2337 boundaries. */
2338 gdb_assert ((alignment & (alignment - 1)) == 0);
2339
2340 return alignment;
2341}
2342
2343
2344/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
ca557f44
AC
2345 place to be passed to a function, as specified by the "GNU/Linux
2346 for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
2347
2348 SP is the current stack pointer. We must put arguments, links,
2349 padding, etc. whereever they belong, and return the new stack
2350 pointer value.
2351
2352 If STRUCT_RETURN is non-zero, then the function we're calling is
2353 going to return a structure by value; STRUCT_ADDR is the address of
2354 a block we've allocated for it on the stack.
2355
2356 Our caller has taken care of any type promotions needed to satisfy
2357 prototypes or the old K&R argument-passing rules. */
a78f21af 2358static CORE_ADDR
7d9b040b 2359s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
b0cf273e
JB
2360 struct regcache *regcache, CORE_ADDR bp_addr,
2361 int nargs, struct value **args, CORE_ADDR sp,
2362 int struct_return, CORE_ADDR struct_addr)
5769d3cd 2363{
b0cf273e
JB
2364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2365 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
e17a4113 2366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
78f8b424 2367 int i;
5769d3cd 2368
78f8b424
JB
2369 /* If the i'th argument is passed as a reference to a copy, then
2370 copy_addr[i] is the address of the copy we made. */
2371 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
5769d3cd 2372
c0cc4c83 2373 /* Reserve space for the reference-to-copy area. */
78f8b424
JB
2374 for (i = 0; i < nargs; i++)
2375 {
2376 struct value *arg = args[i];
4991999e 2377 struct type *type = value_type (arg);
78f8b424 2378 unsigned length = TYPE_LENGTH (type);
5769d3cd 2379
b0cf273e 2380 if (s390_function_arg_pass_by_reference (type))
01c464e9 2381 {
78f8b424 2382 sp -= length;
5b03f266 2383 sp = align_down (sp, alignment_of (type));
78f8b424 2384 copy_addr[i] = sp;
01c464e9 2385 }
5769d3cd 2386 }
5769d3cd 2387
78f8b424
JB
2388 /* Reserve space for the parameter area. As a conservative
2389 simplification, we assume that everything will be passed on the
b0cf273e
JB
2390 stack. Since every argument larger than 8 bytes will be
2391 passed by reference, we use this simple upper bound. */
2392 sp -= nargs * 8;
78f8b424 2393
78f8b424
JB
2394 /* After all that, make sure it's still aligned on an eight-byte
2395 boundary. */
5b03f266 2396 sp = align_down (sp, 8);
78f8b424 2397
c0cc4c83
UW
2398 /* Allocate the standard frame areas: the register save area, the
2399 word reserved for the compiler (which seems kind of meaningless),
2400 and the back chain pointer. */
2401 sp -= 16*word_size + 32;
2402
2403 /* Now we have the final SP value. Make sure we didn't underflow;
2404 on 31-bit, this would result in addresses with the high bit set,
2405 which causes confusion elsewhere. Note that if we error out
2406 here, stack and registers remain untouched. */
2407 if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
2408 error (_("Stack overflow"));
2409
2410
78f8b424
JB
2411 /* Finally, place the actual parameters, working from SP towards
2412 higher addresses. The code above is supposed to reserve enough
2413 space for this. */
2414 {
2415 int fr = 0;
2416 int gr = 2;
c0cc4c83 2417 CORE_ADDR starg = sp + 16*word_size + 32;
78f8b424 2418
b0cf273e 2419 /* A struct is returned using general register 2. */
4d819d0e 2420 if (struct_return)
b0cf273e
JB
2421 {
2422 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2423 struct_addr);
2424 gr++;
2425 }
4d819d0e 2426
78f8b424
JB
2427 for (i = 0; i < nargs; i++)
2428 {
2429 struct value *arg = args[i];
4991999e 2430 struct type *type = value_type (arg);
b0cf273e
JB
2431 unsigned length = TYPE_LENGTH (type);
2432
2433 if (s390_function_arg_pass_by_reference (type))
2434 {
c0cc4c83
UW
2435 /* Actually copy the argument contents to the stack slot
2436 that was reserved above. */
2437 write_memory (copy_addr[i], value_contents (arg), length);
2438
b0cf273e
JB
2439 if (gr <= 6)
2440 {
2441 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2442 copy_addr[i]);
2443 gr++;
2444 }
2445 else
2446 {
e17a4113
UW
2447 write_memory_unsigned_integer (starg, word_size, byte_order,
2448 copy_addr[i]);
b0cf273e
JB
2449 starg += word_size;
2450 }
2451 }
2452 else if (s390_function_arg_float (type))
2453 {
2454 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2455 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2456 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2457 {
2458 /* When we store a single-precision value in an FP register,
2459 it occupies the leftmost bits. */
2460 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
0fd88904 2461 0, length, value_contents (arg));
b0cf273e
JB
2462 fr += 2;
2463 }
2464 else
2465 {
2466 /* When we store a single-precision value in a stack slot,
2467 it occupies the rightmost bits. */
2468 starg = align_up (starg + length, word_size);
0fd88904 2469 write_memory (starg - length, value_contents (arg), length);
b0cf273e
JB
2470 }
2471 }
2472 else if (s390_function_arg_integer (type) && length <= word_size)
2473 {
2474 if (gr <= 6)
2475 {
2476 /* Integer arguments are always extended to word size. */
2477 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
c378eb4e
MS
2478 extend_simple_arg (gdbarch,
2479 arg));
b0cf273e
JB
2480 gr++;
2481 }
2482 else
2483 {
2484 /* Integer arguments are always extended to word size. */
e17a4113
UW
2485 write_memory_signed_integer (starg, word_size, byte_order,
2486 extend_simple_arg (gdbarch, arg));
b0cf273e
JB
2487 starg += word_size;
2488 }
2489 }
2490 else if (s390_function_arg_integer (type) && length == 2*word_size)
2491 {
2492 if (gr <= 5)
2493 {
2494 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
0fd88904 2495 value_contents (arg));
b0cf273e 2496 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
0fd88904 2497 value_contents (arg) + word_size);
b0cf273e
JB
2498 gr += 2;
2499 }
2500 else
2501 {
2502 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2503 in it, then don't go back and use it again later. */
2504 gr = 7;
2505
0fd88904 2506 write_memory (starg, value_contents (arg), length);
b0cf273e
JB
2507 starg += length;
2508 }
2509 }
2510 else
e2e0b3e5 2511 internal_error (__FILE__, __LINE__, _("unknown argument type"));
78f8b424
JB
2512 }
2513 }
2514
b0cf273e
JB
2515 /* Store return address. */
2516 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2517
2518 /* Store updated stack pointer. */
2519 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
78f8b424 2520
a8c99f38 2521 /* We need to return the 'stack part' of the frame ID,
121d8485
UW
2522 which is actually the top of the register save area. */
2523 return sp + 16*word_size + 32;
5769d3cd
AC
2524}
2525
f089c433 2526/* Assuming THIS_FRAME is a dummy, return the frame ID of that
b0cf273e
JB
2527 dummy frame. The frame ID's base needs to match the TOS value
2528 returned by push_dummy_call, and the PC match the dummy frame's
2529 breakpoint. */
2530static struct frame_id
f089c433 2531s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
b0cf273e 2532{
a8c99f38 2533 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
f089c433
UW
2534 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2535 sp = gdbarch_addr_bits_remove (gdbarch, sp);
a8c99f38 2536
121d8485 2537 return frame_id_build (sp + 16*word_size + 32,
f089c433 2538 get_frame_pc (this_frame));
b0cf273e 2539}
c8f9d51c 2540
4074e13c
JB
2541static CORE_ADDR
2542s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2543{
2544 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2545 always be aligned on an eight-byte boundary. */
2546 return (addr & -8);
2547}
2548
2549
b0cf273e
JB
2550/* Function return value access. */
2551
2552static enum return_value_convention
2553s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
c8f9d51c 2554{
b0cf273e
JB
2555 int length = TYPE_LENGTH (type);
2556 if (length > 8)
2557 return RETURN_VALUE_STRUCT_CONVENTION;
2558
2559 switch (TYPE_CODE (type))
2560 {
2561 case TYPE_CODE_STRUCT:
2562 case TYPE_CODE_UNION:
2563 case TYPE_CODE_ARRAY:
2564 return RETURN_VALUE_STRUCT_CONVENTION;
c8f9d51c 2565
b0cf273e
JB
2566 default:
2567 return RETURN_VALUE_REGISTER_CONVENTION;
2568 }
c8f9d51c
JB
2569}
2570
b0cf273e 2571static enum return_value_convention
c055b101
CV
2572s390_return_value (struct gdbarch *gdbarch, struct type *func_type,
2573 struct type *type, struct regcache *regcache,
2574 gdb_byte *out, const gdb_byte *in)
5769d3cd 2575{
e17a4113 2576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
b0cf273e
JB
2577 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2578 int length = TYPE_LENGTH (type);
2579 enum return_value_convention rvc =
2580 s390_return_value_convention (gdbarch, type);
2581 if (in)
2582 {
2583 switch (rvc)
2584 {
2585 case RETURN_VALUE_REGISTER_CONVENTION:
a16b8bcd
UW
2586 if (TYPE_CODE (type) == TYPE_CODE_FLT
2587 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
b0cf273e
JB
2588 {
2589 /* When we store a single-precision value in an FP register,
2590 it occupies the leftmost bits. */
2591 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2592 0, length, in);
2593 }
2594 else if (length <= word_size)
2595 {
2596 /* Integer arguments are always extended to word size. */
2597 if (TYPE_UNSIGNED (type))
2598 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
e17a4113 2599 extract_unsigned_integer (in, length, byte_order));
b0cf273e
JB
2600 else
2601 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
e17a4113 2602 extract_signed_integer (in, length, byte_order));
b0cf273e
JB
2603 }
2604 else if (length == 2*word_size)
2605 {
2606 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
43af2100 2607 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
b0cf273e
JB
2608 }
2609 else
e2e0b3e5 2610 internal_error (__FILE__, __LINE__, _("invalid return type"));
b0cf273e
JB
2611 break;
2612
2613 case RETURN_VALUE_STRUCT_CONVENTION:
8a3fe4f8 2614 error (_("Cannot set function return value."));
b0cf273e
JB
2615 break;
2616 }
2617 }
2618 else if (out)
2619 {
2620 switch (rvc)
2621 {
2622 case RETURN_VALUE_REGISTER_CONVENTION:
a16b8bcd
UW
2623 if (TYPE_CODE (type) == TYPE_CODE_FLT
2624 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
b0cf273e
JB
2625 {
2626 /* When we store a single-precision value in an FP register,
2627 it occupies the leftmost bits. */
2628 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2629 0, length, out);
2630 }
2631 else if (length <= word_size)
2632 {
2633 /* Integer arguments occupy the rightmost bits. */
2634 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2635 word_size - length, length, out);
2636 }
2637 else if (length == 2*word_size)
2638 {
2639 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
43af2100 2640 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
b0cf273e
JB
2641 }
2642 else
e2e0b3e5 2643 internal_error (__FILE__, __LINE__, _("invalid return type"));
b0cf273e 2644 break;
5769d3cd 2645
b0cf273e 2646 case RETURN_VALUE_STRUCT_CONVENTION:
8a3fe4f8 2647 error (_("Function return value unknown."));
b0cf273e
JB
2648 break;
2649 }
2650 }
2651
2652 return rvc;
2653}
5769d3cd
AC
2654
2655
a8c99f38
JB
2656/* Breakpoints. */
2657
43af2100 2658static const gdb_byte *
c378eb4e
MS
2659s390_breakpoint_from_pc (struct gdbarch *gdbarch,
2660 CORE_ADDR *pcptr, int *lenptr)
5769d3cd 2661{
43af2100 2662 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
5769d3cd
AC
2663
2664 *lenptr = sizeof (breakpoint);
2665 return breakpoint;
2666}
2667
5769d3cd 2668
a8c99f38 2669/* Address handling. */
5769d3cd
AC
2670
2671static CORE_ADDR
24568a2c 2672s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
5769d3cd 2673{
a8c99f38 2674 return addr & 0x7fffffff;
5769d3cd
AC
2675}
2676
ffc65945
KB
2677static int
2678s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2679{
2680 if (byte_size == 4)
119ac181 2681 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
ffc65945
KB
2682 else
2683 return 0;
2684}
2685
2686static const char *
2687s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2688{
119ac181 2689 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
ffc65945
KB
2690 return "mode32";
2691 else
2692 return NULL;
2693}
2694
a78f21af 2695static int
c378eb4e
MS
2696s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
2697 const char *name,
ffc65945
KB
2698 int *type_flags_ptr)
2699{
2700 if (strcmp (name, "mode32") == 0)
2701 {
119ac181 2702 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
ffc65945
KB
2703 return 1;
2704 }
2705 else
2706 return 0;
2707}
2708
a8c99f38
JB
2709/* Set up gdbarch struct. */
2710
a78f21af 2711static struct gdbarch *
5769d3cd
AC
2712s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2713{
7803799a
UW
2714 const struct target_desc *tdesc = info.target_desc;
2715 struct tdesc_arch_data *tdesc_data = NULL;
5769d3cd
AC
2716 struct gdbarch *gdbarch;
2717 struct gdbarch_tdep *tdep;
7803799a
UW
2718 int tdep_abi;
2719 int have_upper = 0;
2720 int first_pseudo_reg, last_pseudo_reg;
2721
2722 /* Default ABI and register size. */
2723 switch (info.bfd_arch_info->mach)
2724 {
2725 case bfd_mach_s390_31:
2726 tdep_abi = ABI_LINUX_S390;
2727 break;
2728
2729 case bfd_mach_s390_64:
2730 tdep_abi = ABI_LINUX_ZSERIES;
2731 break;
2732
2733 default:
2734 return NULL;
2735 }
2736
2737 /* Use default target description if none provided by the target. */
2738 if (!tdesc_has_registers (tdesc))
2739 {
2740 if (tdep_abi == ABI_LINUX_S390)
2741 tdesc = tdesc_s390_linux32;
2742 else
2743 tdesc = tdesc_s390x_linux64;
2744 }
2745
2746 /* Check any target description for validity. */
2747 if (tdesc_has_registers (tdesc))
2748 {
2749 static const char *const gprs[] = {
2750 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2751 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2752 };
2753 static const char *const fprs[] = {
2754 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2755 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
2756 };
2757 static const char *const acrs[] = {
2758 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
2759 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
2760 };
2761 static const char *const gprs_lower[] = {
2762 "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
2763 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
2764 };
2765 static const char *const gprs_upper[] = {
2766 "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
2767 "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
2768 };
2769 const struct tdesc_feature *feature;
2770 int i, valid_p = 1;
2771
2772 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
2773 if (feature == NULL)
2774 return NULL;
2775
2776 tdesc_data = tdesc_data_alloc ();
2777
2778 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2779 S390_PSWM_REGNUM, "pswm");
2780 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2781 S390_PSWA_REGNUM, "pswa");
2782
2783 if (tdesc_unnumbered_register (feature, "r0"))
2784 {
2785 for (i = 0; i < 16; i++)
2786 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2787 S390_R0_REGNUM + i, gprs[i]);
2788 }
2789 else
2790 {
2791 have_upper = 1;
2792
2793 for (i = 0; i < 16; i++)
2794 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2795 S390_R0_REGNUM + i,
2796 gprs_lower[i]);
2797 for (i = 0; i < 16; i++)
2798 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2799 S390_R0_UPPER_REGNUM + i,
2800 gprs_upper[i]);
2801 }
2802
2803 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
2804 if (feature == NULL)
2805 {
2806 tdesc_data_cleanup (tdesc_data);
2807 return NULL;
2808 }
2809
2810 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2811 S390_FPC_REGNUM, "fpc");
2812 for (i = 0; i < 16; i++)
2813 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2814 S390_F0_REGNUM + i, fprs[i]);
5769d3cd 2815
7803799a
UW
2816 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
2817 if (feature == NULL)
2818 {
2819 tdesc_data_cleanup (tdesc_data);
2820 return NULL;
2821 }
2822
2823 for (i = 0; i < 16; i++)
2824 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2825 S390_A0_REGNUM + i, acrs[i]);
2826
2827 if (!valid_p)
2828 {
2829 tdesc_data_cleanup (tdesc_data);
2830 return NULL;
2831 }
2832 }
5769d3cd 2833
7803799a
UW
2834 /* Find a candidate among extant architectures. */
2835 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2836 arches != NULL;
2837 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2838 {
2839 tdep = gdbarch_tdep (arches->gdbarch);
2840 if (!tdep)
2841 continue;
2842 if (tdep->abi != tdep_abi)
2843 continue;
2844 if ((tdep->gpr_full_regnum != -1) != have_upper)
2845 continue;
2846 if (tdesc_data != NULL)
2847 tdesc_data_cleanup (tdesc_data);
2848 return arches->gdbarch;
2849 }
5769d3cd 2850
7803799a 2851 /* Otherwise create a new gdbarch for the specified machine type. */
d0f54f9d 2852 tdep = XCALLOC (1, struct gdbarch_tdep);
7803799a 2853 tdep->abi = tdep_abi;
d0f54f9d 2854 gdbarch = gdbarch_alloc (&info, tdep);
5769d3cd
AC
2855
2856 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
4e409299 2857 set_gdbarch_char_signed (gdbarch, 0);
5769d3cd 2858
1de90795
UW
2859 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
2860 We can safely let them default to 128-bit, since the debug info
2861 will give the size of type actually used in each case. */
2862 set_gdbarch_long_double_bit (gdbarch, 128);
2863 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2864
aaab4dba 2865 /* Amount PC must be decremented by after a breakpoint. This is
3b3b875c 2866 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
aaab4dba 2867 always. */
5769d3cd 2868 set_gdbarch_decr_pc_after_break (gdbarch, 2);
5769d3cd
AC
2869 /* Stack grows downward. */
2870 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5769d3cd
AC
2871 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2872 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
d0f54f9d 2873 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
a8c99f38 2874
7803799a 2875 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
5769d3cd 2876 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
d0f54f9d 2877 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
d0f54f9d 2878 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
d0f54f9d 2879 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
9acbedc0 2880 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
d0f54f9d
JB
2881 set_gdbarch_regset_from_core_section (gdbarch,
2882 s390_regset_from_core_section);
7803799a
UW
2883 set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
2884 if (have_upper)
2885 set_gdbarch_core_regset_sections (gdbarch, s390_upper_regset_sections);
2886 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
2887 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
2888 set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
2889 set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
2890 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2891 s390_pseudo_register_reggroup_p);
2892 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2893
2894 /* Assign pseudo register numbers. */
2895 first_pseudo_reg = gdbarch_num_regs (gdbarch);
2896 last_pseudo_reg = first_pseudo_reg;
2897 tdep->gpr_full_regnum = -1;
2898 if (have_upper)
2899 {
2900 tdep->gpr_full_regnum = last_pseudo_reg;
2901 last_pseudo_reg += 16;
2902 }
2903 tdep->pc_regnum = last_pseudo_reg++;
2904 tdep->cc_regnum = last_pseudo_reg++;
2905 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2906 set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
5769d3cd 2907
b0cf273e
JB
2908 /* Inferior function calls. */
2909 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
f089c433 2910 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
4074e13c 2911 set_gdbarch_frame_align (gdbarch, s390_frame_align);
b0cf273e 2912 set_gdbarch_return_value (gdbarch, s390_return_value);
5769d3cd 2913
a8c99f38 2914 /* Frame handling. */
a431654a 2915 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
7803799a 2916 dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
f089c433 2917 dwarf2_append_unwinders (gdbarch);
a431654a 2918 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
f089c433
UW
2919 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
2920 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
2921 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
a8c99f38
JB
2922 frame_base_set_default (gdbarch, &s390_frame_base);
2923 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
2924 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
2925
1db4e8a0
UW
2926 /* Displaced stepping. */
2927 set_gdbarch_displaced_step_copy_insn (gdbarch,
2928 simple_displaced_step_copy_insn);
2929 set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
2930 set_gdbarch_displaced_step_free_closure (gdbarch,
2931 simple_displaced_step_free_closure);
2932 set_gdbarch_displaced_step_location (gdbarch,
2933 displaced_step_at_entry_point);
2934 set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
2935
70728992
PA
2936 /* Note that GNU/Linux is the only OS supported on this
2937 platform. */
2938 linux_init_abi (info, gdbarch);
2939
7803799a 2940 switch (tdep->abi)
5769d3cd 2941 {
7803799a 2942 case ABI_LINUX_S390:
d0f54f9d
JB
2943 tdep->gregset = &s390_gregset;
2944 tdep->sizeof_gregset = s390_sizeof_gregset;
2945 tdep->fpregset = &s390_fpregset;
2946 tdep->sizeof_fpregset = s390_sizeof_fpregset;
5769d3cd
AC
2947
2948 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
76a9d10f
MK
2949 set_solib_svr4_fetch_link_map_offsets
2950 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
5769d3cd 2951 break;
b0cf273e 2952
7803799a 2953 case ABI_LINUX_ZSERIES:
d0f54f9d
JB
2954 tdep->gregset = &s390x_gregset;
2955 tdep->sizeof_gregset = s390x_sizeof_gregset;
2956 tdep->fpregset = &s390_fpregset;
2957 tdep->sizeof_fpregset = s390_sizeof_fpregset;
5769d3cd
AC
2958
2959 set_gdbarch_long_bit (gdbarch, 64);
2960 set_gdbarch_long_long_bit (gdbarch, 64);
2961 set_gdbarch_ptr_bit (gdbarch, 64);
76a9d10f
MK
2962 set_solib_svr4_fetch_link_map_offsets
2963 (gdbarch, svr4_lp64_fetch_link_map_offsets);
ffc65945
KB
2964 set_gdbarch_address_class_type_flags (gdbarch,
2965 s390_address_class_type_flags);
2966 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2967 s390_address_class_type_flags_to_name);
2968 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2969 s390_address_class_name_to_type_flags);
5769d3cd
AC
2970 break;
2971 }
2972
36482093
AC
2973 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2974
982e9687
UW
2975 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2976
b2756930
KB
2977 /* Enable TLS support. */
2978 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2979 svr4_fetch_objfile_link_map);
2980
5769d3cd
AC
2981 return gdbarch;
2982}
2983
2984
a78f21af
AC
2985extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2986
5769d3cd 2987void
5ae5f592 2988_initialize_s390_tdep (void)
5769d3cd 2989{
5769d3cd
AC
2990 /* Hook us into the gdbarch mechanism. */
2991 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
7803799a
UW
2992
2993 /* Initialize the Linux target descriptions. */
2994 initialize_tdesc_s390_linux32 ();
2995 initialize_tdesc_s390_linux64 ();
2996 initialize_tdesc_s390x_linux64 ();
5769d3cd 2997}
This page took 1.190833 seconds and 4 git commands to generate.