Remove regcache_raw_collect
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
e2882c85 3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
1c0159e0
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
c906108c 28#include "symtab.h"
c906108c
SS
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
73c1f219 34#include "inferior.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
3b2ca824 37#include "target-float.h"
4be87837 38#include "osabi.h"
dda63807 39#include "reggroups.h"
c9ac0a72 40#include "regset.h"
cb2cf4ce 41#include "objfiles.h"
c906108c 42
ab3b8126
JT
43#include "sh-tdep.h"
44
d658f924 45#include "elf-bfd.h"
1a8629c7
MS
46#include "solib-svr4.h"
47
55ff77ac 48/* sh flags */
283150cd 49#include "elf/sh.h"
fa8f86ff 50#include "dwarf2.h"
c378eb4e 51/* registers numbers shared with the simulator. */
1c922164 52#include "gdb/sim-sh.h"
325fac50 53#include <algorithm>
283150cd 54
c055b101
CV
55/* List of "set sh ..." and "show sh ..." commands. */
56static struct cmd_list_element *setshcmdlist = NULL;
57static struct cmd_list_element *showshcmdlist = NULL;
58
59static const char sh_cc_gcc[] = "gcc";
60static const char sh_cc_renesas[] = "renesas";
40478521 61static const char *const sh_cc_enum[] = {
c055b101
CV
62 sh_cc_gcc,
63 sh_cc_renesas,
64 NULL
65};
66
67static const char *sh_active_calling_convention = sh_cc_gcc;
68
da962468 69#define SH_NUM_REGS 67
88e04cc1 70
1c0159e0 71struct sh_frame_cache
cc17453a 72{
1c0159e0
CV
73 /* Base address. */
74 CORE_ADDR base;
75 LONGEST sp_offset;
76 CORE_ADDR pc;
77
c378eb4e 78 /* Flag showing that a frame has been created in the prologue code. */
1c0159e0
CV
79 int uses_fp;
80
81 /* Saved registers. */
82 CORE_ADDR saved_regs[SH_NUM_REGS];
83 CORE_ADDR saved_sp;
63978407 84};
c906108c 85
c055b101
CV
86static int
87sh_is_renesas_calling_convention (struct type *func_type)
88{
ca193e27
TS
89 int val = 0;
90
91 if (func_type)
92 {
93 func_type = check_typedef (func_type);
94
95 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
96 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
99 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
100 val = 1;
101 }
102
103 if (sh_active_calling_convention == sh_cc_renesas)
104 val = 1;
105
106 return val;
c055b101
CV
107}
108
fa88f677 109static const char *
d93859e2 110sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 111{
a121b7c1 112 static const char *register_names[] = {
617daa0e
CV
113 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
114 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
115 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
116 "", "",
117 "", "", "", "", "", "", "", "",
118 "", "", "", "", "", "", "", "",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
da962468 122 "", "", "", "", "", "", "", "",
cc17453a
EZ
123 };
124 if (reg_nr < 0)
125 return NULL;
126 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
127 return NULL;
128 return register_names[reg_nr];
129}
130
fa88f677 131static const char *
d93859e2 132sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 133{
a121b7c1 134 static const char *register_names[] = {
617daa0e
CV
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
138 "", "",
139 "", "", "", "", "", "", "", "",
140 "", "", "", "", "", "", "", "",
141 "ssr", "spc",
cc17453a
EZ
142 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
143 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 144 "", "", "", "", "", "", "", "",
cc17453a
EZ
145 };
146 if (reg_nr < 0)
147 return NULL;
148 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
149 return NULL;
150 return register_names[reg_nr];
151}
152
fa88f677 153static const char *
d93859e2 154sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 155{
a121b7c1 156 static const char *register_names[] = {
617daa0e
CV
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 160 "fpul", "fpscr",
617daa0e
CV
161 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
162 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
163 "ssr", "spc",
cc17453a
EZ
164 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
165 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 166 "", "", "", "", "", "", "", "",
cc17453a
EZ
167 };
168 if (reg_nr < 0)
169 return NULL;
170 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
171 return NULL;
172 return register_names[reg_nr];
173}
174
2d188dd3 175static const char *
d93859e2 176sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
2d188dd3 177{
a121b7c1 178 static const char *register_names[] = {
617daa0e
CV
179 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
180 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
181 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 182 "fpul", "fpscr",
617daa0e
CV
183 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
184 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
185 "", "",
2d188dd3
NC
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
da962468
CV
188 "", "", "", "", "", "", "", "",
189 };
190 if (reg_nr < 0)
191 return NULL;
192 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
193 return NULL;
194 return register_names[reg_nr];
195}
196
197static const char *
d93859e2 198sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468 199{
a121b7c1 200 static const char *register_names[] = {
da962468
CV
201 /* general registers 0-15 */
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
204 /* 16 - 22 */
205 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
206 /* 23, 24 */
207 "fpul", "fpscr",
208 /* floating point registers 25 - 40 */
209 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
210 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
211 /* 41, 42 */
212 "", "",
213 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 214 the bank register (63). */
da962468
CV
215 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
216 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
217 "machb", "ivnb", "prb", "gbrb", "maclb",
218 /* 63: register bank number, not a real register but used to
219 communicate the register bank currently get/set. This register
220 is hidden to the user, who manipulates it using the pseudo
221 register called "bank" (67). See below. */
222 "",
223 /* 64 - 66 */
224 "ibcr", "ibnr", "tbr",
225 /* 67: register bank number, the user visible pseudo register. */
226 "bank",
227 /* double precision (pseudo) 68 - 75 */
228 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
229 };
230 if (reg_nr < 0)
231 return NULL;
232 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
233 return NULL;
234 return register_names[reg_nr];
235}
236
237static const char *
d93859e2 238sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468 239{
a121b7c1 240 static const char *register_names[] = {
da962468
CV
241 /* general registers 0-15 */
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
244 /* 16 - 22 */
245 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
246 /* 23, 24 */
247 "", "",
248 /* floating point registers 25 - 40 */
249 "", "", "", "", "", "", "", "",
250 "", "", "", "", "", "", "", "",
251 /* 41, 42 */
252 "", "",
253 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 254 the bank register (63). */
da962468
CV
255 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
256 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
257 "machb", "ivnb", "prb", "gbrb", "maclb",
258 /* 63: register bank number, not a real register but used to
259 communicate the register bank currently get/set. This register
260 is hidden to the user, who manipulates it using the pseudo
261 register called "bank" (67). See below. */
262 "",
263 /* 64 - 66 */
264 "ibcr", "ibnr", "tbr",
265 /* 67: register bank number, the user visible pseudo register. */
266 "bank",
267 /* double precision (pseudo) 68 - 75 */
268 "", "", "", "", "", "", "", "",
2d188dd3
NC
269 };
270 if (reg_nr < 0)
271 return NULL;
272 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
273 return NULL;
274 return register_names[reg_nr];
275}
276
fa88f677 277static const char *
d93859e2 278sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 279{
a121b7c1 280 static const char *register_names[] = {
617daa0e
CV
281 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
282 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
283 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
284 "", "dsr",
285 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
286 "y0", "y1", "", "", "", "", "", "mod",
287 "", "",
288 "rs", "re", "", "", "", "", "", "",
289 "", "", "", "", "", "", "", "",
da962468 290 "", "", "", "", "", "", "", "",
cc17453a
EZ
291 };
292 if (reg_nr < 0)
293 return NULL;
294 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
295 return NULL;
296 return register_names[reg_nr];
297}
298
fa88f677 299static const char *
d93859e2 300sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 301{
a121b7c1 302 static const char *register_names[] = {
617daa0e
CV
303 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
304 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
305 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
306 "", "dsr",
307 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
308 "y0", "y1", "", "", "", "", "", "mod",
309 "ssr", "spc",
310 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
311 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
312 "", "", "", "", "", "", "", "",
da962468 313 "", "", "", "", "", "", "", "",
cc17453a
EZ
314 };
315 if (reg_nr < 0)
316 return NULL;
317 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
318 return NULL;
319 return register_names[reg_nr];
320}
321
fa88f677 322static const char *
d93859e2 323sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
53116e27 324{
a121b7c1 325 static const char *register_names[] = {
a38d2a54 326 /* general registers 0-15 */
617daa0e
CV
327 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
328 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 329 /* 16 - 22 */
617daa0e 330 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 331 /* 23, 24 */
53116e27 332 "fpul", "fpscr",
a38d2a54 333 /* floating point registers 25 - 40 */
617daa0e
CV
334 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
335 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 336 /* 41, 42 */
617daa0e 337 "ssr", "spc",
a38d2a54 338 /* bank 0 43 - 50 */
53116e27 339 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 340 /* bank 1 51 - 58 */
53116e27 341 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 342 /* 59 - 66 */
da962468 343 "", "", "", "", "", "", "", "",
c378eb4e 344 /* pseudo bank register. */
da962468 345 "",
a6521d9a 346 /* double precision (pseudo) 68 - 75 */
617daa0e 347 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a6521d9a 348 /* vectors (pseudo) 76 - 79 */
617daa0e 349 "fv0", "fv4", "fv8", "fv12",
a6521d9a
TS
350 /* FIXME: missing XF */
351 /* FIXME: missing XD */
53116e27
EZ
352 };
353 if (reg_nr < 0)
354 return NULL;
355 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
356 return NULL;
357 return register_names[reg_nr];
358}
359
474e5826 360static const char *
d93859e2 361sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826 362{
a121b7c1 363 static const char *register_names[] = {
474e5826
CV
364 /* general registers 0-15 */
365 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
366 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
367 /* 16 - 22 */
368 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
369 /* 23, 24 */
370 "", "",
371 /* floating point registers 25 - 40 -- not for nofpu target */
372 "", "", "", "", "", "", "", "",
373 "", "", "", "", "", "", "", "",
374 /* 41, 42 */
375 "ssr", "spc",
376 /* bank 0 43 - 50 */
377 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
378 /* bank 1 51 - 58 */
379 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 380 /* 59 - 66 */
da962468 381 "", "", "", "", "", "", "", "",
c378eb4e 382 /* pseudo bank register. */
da962468 383 "",
a6521d9a 384 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
474e5826 385 "", "", "", "", "", "", "", "",
a6521d9a 386 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
474e5826
CV
387 "", "", "", "",
388 };
389 if (reg_nr < 0)
390 return NULL;
391 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
392 return NULL;
393 return register_names[reg_nr];
394}
395
396static const char *
d93859e2 397sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826 398{
a121b7c1 399 static const char *register_names[] = {
474e5826
CV
400 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
401 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
402 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
403 "", "dsr",
404 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
405 "y0", "y1", "", "", "", "", "", "mod",
406 "ssr", "spc",
407 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
408 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
409 "", "", "", "", "", "", "", "",
da962468 410 "", "", "", "", "", "", "", "",
474e5826
CV
411 };
412 if (reg_nr < 0)
413 return NULL;
414 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
415 return NULL;
416 return register_names[reg_nr];
417}
418
cd6c3b4f
YQ
419/* Implement the breakpoint_kind_from_pc gdbarch method. */
420
d19280ad
YQ
421static int
422sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
cc17453a 423{
d19280ad
YQ
424 return 2;
425}
426
cd6c3b4f
YQ
427/* Implement the sw_breakpoint_from_kind gdbarch method. */
428
d19280ad
YQ
429static const gdb_byte *
430sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
431{
432 *size = kind;
617daa0e 433
bac718a6
UW
434 /* For remote stub targets, trapa #20 is used. */
435 if (strcmp (target_shortname, "remote") == 0)
436 {
437 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
438 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
439
67d57894 440 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 441 return big_remote_breakpoint;
bac718a6 442 else
d19280ad 443 return little_remote_breakpoint;
bac718a6 444 }
d19280ad
YQ
445 else
446 {
447 /* 0xc3c3 is trapa #c3, and it works in big and little endian
448 modes. */
449 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
bac718a6 450
d19280ad
YQ
451 return breakpoint;
452 }
cc17453a 453}
c906108c
SS
454
455/* Prologue looks like
1c0159e0
CV
456 mov.l r14,@-r15
457 sts.l pr,@-r15
458 mov.l <regs>,@-r15
459 sub <room_for_loca_vars>,r15
460 mov r15,r14
8db62801 461
c378eb4e 462 Actually it can be more complicated than this but that's it, basically. */
c906108c 463
1c0159e0
CV
464#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
465#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
466
5f883edd
FF
467/* JSR @Rm 0100mmmm00001011 */
468#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
469
8db62801
EZ
470/* STS.L PR,@-r15 0100111100100010
471 r15-4-->r15, PR-->(r15) */
c906108c 472#define IS_STS(x) ((x) == 0x4f22)
8db62801 473
03131d99
CV
474/* STS.L MACL,@-r15 0100111100010010
475 r15-4-->r15, MACL-->(r15) */
476#define IS_MACL_STS(x) ((x) == 0x4f12)
477
8db62801
EZ
478/* MOV.L Rm,@-r15 00101111mmmm0110
479 r15-4-->r15, Rm-->(R15) */
c906108c 480#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 481
8db62801
EZ
482/* MOV r15,r14 0110111011110011
483 r15-->r14 */
c906108c 484#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
485
486/* ADD #imm,r15 01111111iiiiiiii
487 r15+imm-->r15 */
1c0159e0 488#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 489
c906108c
SS
490#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
491#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
492
493/* ADD r3,r15 0011111100111100
494 r15+r3-->r15 */
c906108c 495#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
496
497/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 498 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 499 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907 500/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
c378eb4e 501 make this entirely clear. */
1c0159e0
CV
502/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
503#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
504
505/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
506#define IS_MOV_ARG_TO_REG(x) \
507 (((x) & 0xf00f) == 0x6003 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
511#define IS_MOV_ARG_TO_IND_R14(x) \
512 (((x) & 0xff0f) == 0x2e02 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
515/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
516#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
517 (((x) & 0xff00) == 0x1e00 && \
518 ((x) & 0x00f0) >= 0x0040 && \
519 ((x) & 0x00f0) <= 0x0070)
520
521/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
522#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
523/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
524#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
525/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
526#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
527/* SUB Rn,R15 00111111nnnn1000 */
528#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 529
1c0159e0 530#define FPSCR_SZ (1 << 20)
cc17453a 531
c378eb4e 532/* The following instructions are used for epilogue testing. */
1c0159e0
CV
533#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
534#define IS_RTS(x) ((x) == 0x000b)
535#define IS_LDS(x) ((x) == 0x4f26)
03131d99 536#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
537#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
538#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
539#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 540
cc17453a 541static CORE_ADDR
e17a4113 542sh_analyze_prologue (struct gdbarch *gdbarch,
5cbb9812 543 CORE_ADDR pc, CORE_ADDR limit_pc,
d2ca4222 544 struct sh_frame_cache *cache, ULONGEST fpscr)
617daa0e 545{
e17a4113 546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0 547 ULONGEST inst;
1c0159e0
CV
548 int offset;
549 int sav_offset = 0;
c906108c 550 int r3_val = 0;
1c0159e0 551 int reg, sav_reg = -1;
cc17453a 552
1c0159e0 553 cache->uses_fp = 0;
5cbb9812 554 for (; pc < limit_pc; pc += 2)
cc17453a 555 {
e17a4113 556 inst = read_memory_unsigned_integer (pc, 2, byte_order);
c378eb4e 557 /* See where the registers will be saved to. */
f2ea0907 558 if (IS_PUSH (inst))
cc17453a 559 {
1c0159e0
CV
560 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
561 cache->sp_offset += 4;
cc17453a 562 }
f2ea0907 563 else if (IS_STS (inst))
cc17453a 564 {
1c0159e0
CV
565 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
cc17453a 567 }
03131d99
CV
568 else if (IS_MACL_STS (inst))
569 {
570 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
571 cache->sp_offset += 4;
572 }
f2ea0907 573 else if (IS_MOV_R3 (inst))
cc17453a 574 {
f2ea0907 575 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 576 }
f2ea0907 577 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
578 {
579 r3_val <<= 1;
580 }
f2ea0907 581 else if (IS_ADD_R3SP (inst))
cc17453a 582 {
1c0159e0 583 cache->sp_offset += -r3_val;
cc17453a 584 }
f2ea0907 585 else if (IS_ADD_IMM_SP (inst))
cc17453a 586 {
1c0159e0
CV
587 offset = ((inst & 0xff) ^ 0x80) - 0x80;
588 cache->sp_offset -= offset;
c906108c 589 }
1c0159e0 590 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 591 {
1c0159e0
CV
592 if (sav_reg < 0)
593 {
594 reg = GET_TARGET_REG (inst);
595 if (reg < 14)
596 {
597 sav_reg = reg;
a2b4a96c 598 offset = (inst & 0xff) << 1;
1c0159e0 599 sav_offset =
e17a4113 600 read_memory_integer ((pc + 4) + offset, 2, byte_order);
1c0159e0
CV
601 }
602 }
c906108c 603 }
1c0159e0 604 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 605 {
1c0159e0
CV
606 if (sav_reg < 0)
607 {
a2b4a96c 608 reg = GET_TARGET_REG (inst);
1c0159e0
CV
609 if (reg < 14)
610 {
611 sav_reg = reg;
a2b4a96c 612 offset = (inst & 0xff) << 2;
1c0159e0 613 sav_offset =
e17a4113
UW
614 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
615 4, byte_order);
1c0159e0
CV
616 }
617 }
c906108c 618 }
5cbb9812
TS
619 else if (IS_MOVI20 (inst)
620 && (pc + 2 < limit_pc))
03131d99
CV
621 {
622 if (sav_reg < 0)
623 {
624 reg = GET_TARGET_REG (inst);
625 if (reg < 14)
626 {
627 sav_reg = reg;
628 sav_offset = GET_SOURCE_REG (inst) << 16;
c378eb4e 629 /* MOVI20 is a 32 bit instruction! */
03131d99 630 pc += 2;
e17a4113
UW
631 sav_offset
632 |= read_memory_unsigned_integer (pc, 2, byte_order);
03131d99
CV
633 /* Now sav_offset contains an unsigned 20 bit value.
634 It must still get sign extended. */
635 if (sav_offset & 0x00080000)
636 sav_offset |= 0xfff00000;
637 }
638 }
639 }
1c0159e0 640 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 641 {
1c0159e0
CV
642 reg = GET_SOURCE_REG (inst);
643 if (sav_reg > 0 && reg == sav_reg)
644 {
645 sav_reg = -1;
646 }
647 cache->sp_offset += sav_offset;
c906108c 648 }
f2ea0907 649 else if (IS_FPUSH (inst))
c906108c 650 {
d2ca4222 651 if (fpscr & FPSCR_SZ)
c906108c 652 {
1c0159e0 653 cache->sp_offset += 8;
c906108c
SS
654 }
655 else
656 {
1c0159e0 657 cache->sp_offset += 4;
c906108c
SS
658 }
659 }
f2ea0907 660 else if (IS_MOV_SP_FP (inst))
617daa0e 661 {
5cbb9812
TS
662 pc += 2;
663 /* Don't go any further than six more instructions. */
325fac50 664 limit_pc = std::min (limit_pc, pc + (2 * 6));
5cbb9812 665
960ccd7d 666 cache->uses_fp = 1;
1c0159e0
CV
667 /* At this point, only allow argument register moves to other
668 registers or argument register moves to @(X,fp) which are
669 moving the register arguments onto the stack area allocated
670 by a former add somenumber to SP call. Don't allow moving
c378eb4e 671 to an fp indirect address above fp + cache->sp_offset. */
5cbb9812 672 for (; pc < limit_pc; pc += 2)
1c0159e0 673 {
e17a4113 674 inst = read_memory_integer (pc, 2, byte_order);
1c0159e0 675 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 676 {
1c0159e0
CV
677 reg = GET_SOURCE_REG (inst);
678 if (cache->sp_offset > 0)
617daa0e 679 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
680 }
681 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 682 {
1c0159e0
CV
683 reg = GET_SOURCE_REG (inst);
684 offset = (inst & 0xf) * 4;
685 if (cache->sp_offset > offset)
686 cache->saved_regs[reg] = cache->sp_offset - offset;
687 }
688 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 689 continue;
1c0159e0
CV
690 else
691 break;
692 }
693 break;
694 }
5f883edd
FF
695 else if (IS_JSR (inst))
696 {
697 /* We have found a jsr that has been scheduled into the prologue.
698 If we continue the scan and return a pc someplace after this,
699 then setting a breakpoint on this function will cause it to
700 appear to be called after the function it is calling via the
701 jsr, which will be very confusing. Most likely the next
702 instruction is going to be IS_MOV_SP_FP in the delay slot. If
c378eb4e 703 so, note that before returning the current pc. */
5cbb9812
TS
704 if (pc + 2 < limit_pc)
705 {
706 inst = read_memory_integer (pc + 2, 2, byte_order);
707 if (IS_MOV_SP_FP (inst))
708 cache->uses_fp = 1;
709 }
5f883edd
FF
710 break;
711 }
c378eb4e
MS
712#if 0 /* This used to just stop when it found an instruction
713 that was not considered part of the prologue. Now,
714 we just keep going looking for likely
715 instructions. */
c906108c
SS
716 else
717 break;
2bfa91ee 718#endif
c906108c
SS
719 }
720
1c0159e0
CV
721 return pc;
722}
c906108c 723
c378eb4e 724/* Skip any prologue before the guts of a function. */
1c0159e0 725static CORE_ADDR
8a8bc27f 726sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 727{
5cbb9812 728 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
1c0159e0
CV
729 struct sh_frame_cache cache;
730
731 /* See if we can determine the end of the prologue via the symbol table.
732 If so, then return either PC, or the PC after the prologue, whichever
733 is greater. */
5cbb9812 734 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
8a8bc27f
TS
735 {
736 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
737 if (post_prologue_pc != 0)
325fac50 738 return std::max (pc, post_prologue_pc);
8a8bc27f 739 }
cc17453a 740
8a8bc27f
TS
741 /* Can't determine prologue from the symbol table, need to examine
742 instructions. */
c906108c 743
5cbb9812
TS
744 /* Find an upper limit on the function prologue using the debug
745 information. If the debug information could not be used to provide
746 that bound, then use an arbitrary large number as the upper bound. */
747 limit_pc = skip_prologue_using_sal (gdbarch, pc);
748 if (limit_pc == 0)
749 /* Don't go any further than 28 instructions. */
750 limit_pc = pc + (2 * 28);
751
752 /* Do not allow limit_pc to be past the function end, if we know
753 where that end is... */
754 if (func_end_addr != 0)
325fac50 755 limit_pc = std::min (limit_pc, func_end_addr);
5cbb9812 756
1c0159e0 757 cache.sp_offset = -4;
5cbb9812 758 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
8a8bc27f
TS
759 if (cache.uses_fp)
760 pc = post_prologue_pc;
c906108c 761
1c0159e0
CV
762 return pc;
763}
764
2e952408 765/* The ABI says:
9a5cef92
EZ
766
767 Aggregate types not bigger than 8 bytes that have the same size and
768 alignment as one of the integer scalar types are returned in the
769 same registers as the integer type they match.
770
771 For example, a 2-byte aligned structure with size 2 bytes has the
772 same size and alignment as a short int, and will be returned in R0.
773 A 4-byte aligned structure with size 8 bytes has the same size and
774 alignment as a long long int, and will be returned in R0 and R1.
775
776 When an aggregate type is returned in R0 and R1, R0 contains the
777 first four bytes of the aggregate, and R1 contains the
c378eb4e 778 remainder. If the size of the aggregate type is not a multiple of 4
9a5cef92 779 bytes, the aggregate is tail-padded up to a multiple of 4
c378eb4e 780 bytes. The value of the padding is undefined. For little-endian
9a5cef92
EZ
781 targets the padding will appear at the most significant end of the
782 last element, for big-endian targets the padding appears at the
783 least significant end of the last element.
784
c378eb4e 785 All other aggregate types are returned by address. The caller
9a5cef92 786 function passes the address of an area large enough to hold the
c378eb4e 787 aggregate value in R2. The called function stores the result in
7fe958be 788 this location.
9a5cef92
EZ
789
790 To reiterate, structs smaller than 8 bytes could also be returned
791 in memory, if they don't pass the "same size and alignment as an
792 integer type" rule.
793
794 For example, in
795
796 struct s { char c[3]; } wibble;
797 struct s foo(void) { return wibble; }
798
799 the return value from foo() will be in memory, not
800 in R0, because there is no 3-byte integer type.
801
7fe958be
EZ
802 Similarly, in
803
804 struct s { char c[2]; } wibble;
805 struct s foo(void) { return wibble; }
806
807 because a struct containing two chars has alignment 1, that matches
808 type char, but size 2, that matches type short. There's no integer
809 type that has alignment 1 and size 2, so the struct is returned in
c378eb4e 810 memory. */
9a5cef92 811
1c0159e0 812static int
c055b101 813sh_use_struct_convention (int renesas_abi, struct type *type)
1c0159e0
CV
814{
815 int len = TYPE_LENGTH (type);
816 int nelem = TYPE_NFIELDS (type);
3f997a97 817
c055b101
CV
818 /* The Renesas ABI returns aggregate types always on stack. */
819 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
820 || TYPE_CODE (type) == TYPE_CODE_UNION))
821 return 1;
822
3f997a97
CV
823 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
824 fit in two registers anyway) use struct convention. */
825 if (len != 1 && len != 2 && len != 4 && len != 8)
826 return 1;
827
828 /* Scalar types and aggregate types with exactly one field are aligned
829 by definition. They are returned in registers. */
830 if (nelem <= 1)
831 return 0;
832
833 /* If the first field in the aggregate has the same length as the entire
834 aggregate type, the type is returned in registers. */
835 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
836 return 0;
837
838 /* If the size of the aggregate is 8 bytes and the first field is
839 of size 4 bytes its alignment is equal to long long's alignment,
840 so it's returned in registers. */
841 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
842 return 0;
843
844 /* Otherwise use struct convention. */
845 return 1;
283150cd
EZ
846}
847
c055b101
CV
848static int
849sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
850{
851 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
852 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
853 return 1;
854 return sh_use_struct_convention (renesas_abi, type);
855}
856
19f59343
MS
857static CORE_ADDR
858sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
859{
860 return sp & ~3;
861}
862
55ff77ac 863/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
864 Setup the function arguments for calling a function in the inferior.
865
85a453d5 866 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
867 which are dedicated for passing function arguments. Up to the first
868 four arguments (depending on size) may go into these registers.
869 The rest go on the stack.
870
6df2bf50
MS
871 MVS: Except on SH variants that have floating point registers.
872 In that case, float and double arguments are passed in the same
873 manner, but using FP registers instead of GP registers.
874
c906108c
SS
875 Arguments that are smaller than 4 bytes will still take up a whole
876 register or a whole 32-bit word on the stack, and will be
877 right-justified in the register or the stack word. This includes
878 chars, shorts, and small aggregate types.
879
880 Arguments that are larger than 4 bytes may be split between two or
881 more registers. If there are not enough registers free, an argument
882 may be passed partly in a register (or registers), and partly on the
c378eb4e 883 stack. This includes doubles, long longs, and larger aggregates.
c906108c
SS
884 As far as I know, there is no upper limit to the size of aggregates
885 that will be passed in this way; in other words, the convention of
886 passing a pointer to a large aggregate instead of a copy is not used.
887
6df2bf50 888 MVS: The above appears to be true for the SH variants that do not
55ff77ac 889 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
890 aggregate argument onto the stack (and not place it in registers)
891 if it is larger than 16 bytes (four GP registers).
892
c906108c
SS
893 An exceptional case exists for struct arguments (and possibly other
894 aggregates such as arrays) if the size is larger than 4 bytes but
895 not a multiple of 4 bytes. In this case the argument is never split
896 between the registers and the stack, but instead is copied in its
897 entirety onto the stack, AND also copied into as many registers as
898 there is room for. In other words, space in registers permitting,
899 two copies of the same argument are passed in. As far as I can tell,
900 only the one on the stack is used, although that may be a function
901 of the level of compiler optimization. I suspect this is a compiler
902 bug. Arguments of these odd sizes are left-justified within the
903 word (as opposed to arguments smaller than 4 bytes, which are
904 right-justified).
c5aa993b 905
c906108c
SS
906 If the function is to return an aggregate type such as a struct, it
907 is either returned in the normal return value register R0 (if its
908 size is no greater than one byte), or else the caller must allocate
909 space into which the callee will copy the return value (if the size
910 is greater than one byte). In this case, a pointer to the return
911 value location is passed into the callee in register R2, which does
912 not displace any of the other arguments passed in via registers R4
c378eb4e 913 to R7. */
c906108c 914
c378eb4e 915/* Helper function to justify value in register according to endianess. */
948f8e3d 916static const gdb_byte *
d93859e2 917sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
e5e33cd9 918{
948f8e3d 919 static gdb_byte valbuf[4];
e5e33cd9 920
617daa0e 921 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
922 if (len < 4)
923 {
c378eb4e 924 /* value gets right-justified in the register or stack word. */
d93859e2 925 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
948f8e3d 926 memcpy (valbuf + (4 - len), value_contents (val), len);
e5e33cd9 927 else
948f8e3d 928 memcpy (valbuf, value_contents (val), len);
e5e33cd9
CV
929 return valbuf;
930 }
948f8e3d 931 return value_contents (val);
617daa0e 932}
e5e33cd9 933
c378eb4e 934/* Helper function to eval number of bytes to allocate on stack. */
e5e33cd9
CV
935static CORE_ADDR
936sh_stack_allocsize (int nargs, struct value **args)
937{
938 int stack_alloc = 0;
939 while (nargs-- > 0)
4991999e 940 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
941 return stack_alloc;
942}
943
944/* Helper functions for getting the float arguments right. Registers usage
945 depends on the ABI and the endianess. The comments should enlighten how
c378eb4e 946 it's intended to work. */
e5e33cd9 947
c378eb4e 948/* This array stores which of the float arg registers are already in use. */
e5e33cd9
CV
949static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
950
c378eb4e 951/* This function just resets the above array to "no reg used so far". */
e5e33cd9
CV
952static void
953sh_init_flt_argreg (void)
954{
955 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
956}
957
958/* This function returns the next register to use for float arg passing.
959 It returns either a valid value between FLOAT_ARG0_REGNUM and
960 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
961 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
962
963 Note that register number 0 in flt_argreg_array corresponds with the
964 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
965 29) the parity of the register number is preserved, which is important
c378eb4e 966 for the double register passing test (see the "argreg & 1" test below). */
e5e33cd9 967static int
c055b101 968sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
e5e33cd9
CV
969{
970 int argreg;
971
c378eb4e 972 /* First search for the next free register. */
617daa0e
CV
973 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
974 ++argreg)
e5e33cd9
CV
975 if (!flt_argreg_array[argreg])
976 break;
977
c378eb4e 978 /* No register left? */
e5e33cd9
CV
979 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
980 return FLOAT_ARGLAST_REGNUM + 1;
981
982 if (len == 8)
983 {
c378eb4e 984 /* Doubles are always starting in a even register number. */
e5e33cd9 985 if (argreg & 1)
617daa0e 986 {
c055b101
CV
987 /* In gcc ABI, the skipped register is lost for further argument
988 passing now. Not so in Renesas ABI. */
989 if (!sh_is_renesas_calling_convention (func_type))
990 flt_argreg_array[argreg] = 1;
e5e33cd9
CV
991
992 ++argreg;
993
c378eb4e 994 /* No register left? */
e5e33cd9
CV
995 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
996 return FLOAT_ARGLAST_REGNUM + 1;
997 }
c378eb4e 998 /* Also mark the next register as used. */
e5e33cd9
CV
999 flt_argreg_array[argreg + 1] = 1;
1000 }
c055b101
CV
1001 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1002 && !sh_is_renesas_calling_convention (func_type))
e5e33cd9 1003 {
c378eb4e 1004 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
e5e33cd9
CV
1005 if (!flt_argreg_array[argreg + 1])
1006 ++argreg;
1007 }
1008 flt_argreg_array[argreg] = 1;
1009 return FLOAT_ARG0_REGNUM + argreg;
1010}
1011
afce3d2a
CV
1012/* Helper function which figures out, if a type is treated like a float type.
1013
2e952408 1014 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
1015 Structures with exactly one member, which is of type float or double, are
1016 treated exactly as the base types float or double:
1017
1018 struct sf {
1019 float f;
1020 };
1021
1022 struct sd {
1023 double d;
1024 };
1025
1026 are handled the same way as just
1027
1028 float f;
1029
1030 double d;
1031
1032 As a result, arguments of these struct types are pushed into floating point
1033 registers exactly as floats or doubles, using the same decision algorithm.
1034
1035 The same is valid if these types are used as function return types. The
1036 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1037 or even using struct convention as it is for other structs. */
1038
1039static int
1040sh_treat_as_flt_p (struct type *type)
1041{
afce3d2a
CV
1042 /* Ordinary float types are obviously treated as float. */
1043 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1044 return 1;
1045 /* Otherwise non-struct types are not treated as float. */
1046 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1047 return 0;
1048 /* Otherwise structs with more than one memeber are not treated as float. */
1049 if (TYPE_NFIELDS (type) != 1)
1050 return 0;
1051 /* Otherwise if the type of that member is float, the whole type is
1052 treated as float. */
1053 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1054 return 1;
1055 /* Otherwise it's not treated as float. */
1056 return 0;
1057}
1058
cc17453a 1059static CORE_ADDR
617daa0e 1060sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1061 struct value *function,
617daa0e 1062 struct regcache *regcache,
6df2bf50 1063 CORE_ADDR bp_addr, int nargs,
617daa0e 1064 struct value **args,
6df2bf50
MS
1065 CORE_ADDR sp, int struct_return,
1066 CORE_ADDR struct_addr)
1067{
e17a4113 1068 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1069 int stack_offset = 0;
1070 int argreg = ARG0_REGNUM;
8748518b 1071 int flt_argreg = 0;
6df2bf50 1072 int argnum;
c055b101 1073 struct type *func_type = value_type (function);
6df2bf50
MS
1074 struct type *type;
1075 CORE_ADDR regval;
948f8e3d 1076 const gdb_byte *val;
8748518b 1077 int len, reg_size = 0;
afce3d2a
CV
1078 int pass_on_stack = 0;
1079 int treat_as_flt;
c055b101
CV
1080 int last_reg_arg = INT_MAX;
1081
1082 /* The Renesas ABI expects all varargs arguments, plus the last
1083 non-vararg argument to be on the stack, no matter how many
1084 registers have been used so far. */
1085 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1086 && TYPE_VARARGS (func_type))
c055b101 1087 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
6df2bf50 1088
c378eb4e 1089 /* First force sp to a 4-byte alignment. */
6df2bf50
MS
1090 sp = sh_frame_align (gdbarch, sp);
1091
c378eb4e 1092 /* Make room on stack for args. */
e5e33cd9
CV
1093 sp -= sh_stack_allocsize (nargs, args);
1094
c378eb4e 1095 /* Initialize float argument mechanism. */
e5e33cd9 1096 sh_init_flt_argreg ();
6df2bf50
MS
1097
1098 /* Now load as many as possible of the first arguments into
1099 registers, and push the rest onto the stack. There are 16 bytes
1100 in four registers available. Loop thru args from first to last. */
e5e33cd9 1101 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1102 {
4991999e 1103 type = value_type (args[argnum]);
6df2bf50 1104 len = TYPE_LENGTH (type);
d93859e2 1105 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
e5e33cd9
CV
1106
1107 /* Some decisions have to be made how various types are handled.
c378eb4e 1108 This also differs in different ABIs. */
e5e33cd9 1109 pass_on_stack = 0;
e5e33cd9 1110
c378eb4e 1111 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1112 treat_as_flt = sh_treat_as_flt_p (type);
1113 if (treat_as_flt)
c055b101
CV
1114 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1115 /* In Renesas ABI, long longs and aggregate types are always passed
1116 on stack. */
1117 else if (sh_is_renesas_calling_convention (func_type)
1118 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1119 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1120 || TYPE_CODE (type) == TYPE_CODE_UNION))
1121 pass_on_stack = 1;
afce3d2a
CV
1122 /* In contrast to non-FPU CPUs, arguments are never split between
1123 registers and stack. If an argument doesn't fit in the remaining
1124 registers it's always pushed entirely on the stack. */
1125 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1126 pass_on_stack = 1;
48db5a3c 1127
6df2bf50
MS
1128 while (len > 0)
1129 {
afce3d2a
CV
1130 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1131 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
c055b101
CV
1132 || pass_on_stack))
1133 || argnum > last_reg_arg)
617daa0e 1134 {
c378eb4e 1135 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1136 reg_size = (len + 3) & ~3;
1137 write_memory (sp + stack_offset, val, reg_size);
1138 stack_offset += reg_size;
6df2bf50 1139 }
afce3d2a 1140 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1141 {
e5e33cd9
CV
1142 /* Argument goes in a float argument register. */
1143 reg_size = register_size (gdbarch, flt_argreg);
e17a4113 1144 regval = extract_unsigned_integer (val, reg_size, byte_order);
2e952408
CV
1145 /* In little endian mode, float types taking two registers
1146 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1147 be stored swapped in the argument registers. The below
1148 code first writes the first 32 bits in the next but one
1149 register, increments the val and len values accordingly
1150 and then proceeds as normal by writing the second 32 bits
c378eb4e 1151 into the next register. */
b47193f7 1152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2e952408
CV
1153 && TYPE_LENGTH (type) == 2 * reg_size)
1154 {
1155 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1156 regval);
1157 val += reg_size;
1158 len -= reg_size;
c378eb4e
MS
1159 regval = extract_unsigned_integer (val, reg_size,
1160 byte_order);
2e952408 1161 }
6df2bf50
MS
1162 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1163 }
afce3d2a 1164 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1165 {
6df2bf50 1166 /* there's room in a register */
e5e33cd9 1167 reg_size = register_size (gdbarch, argreg);
e17a4113 1168 regval = extract_unsigned_integer (val, reg_size, byte_order);
6df2bf50
MS
1169 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1170 }
c378eb4e
MS
1171 /* Store the value one register at a time or in one step on
1172 stack. */
e5e33cd9
CV
1173 len -= reg_size;
1174 val += reg_size;
6df2bf50
MS
1175 }
1176 }
1177
c055b101
CV
1178 if (struct_return)
1179 {
1180 if (sh_is_renesas_calling_convention (func_type))
1181 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1182 the stack and store the struct return address there. */
e17a4113 1183 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1184 else
1185 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1186 its own dedicated register. */
1187 regcache_cooked_write_unsigned (regcache,
1188 STRUCT_RETURN_REGNUM, struct_addr);
1189 }
1190
c378eb4e 1191 /* Store return address. */
55ff77ac 1192 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1193
1194 /* Update stack pointer. */
3e8c568d 1195 regcache_cooked_write_unsigned (regcache,
b47193f7 1196 gdbarch_sp_regnum (gdbarch), sp);
6df2bf50
MS
1197
1198 return sp;
1199}
1200
1201static CORE_ADDR
617daa0e 1202sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1203 struct value *function,
617daa0e
CV
1204 struct regcache *regcache,
1205 CORE_ADDR bp_addr,
1206 int nargs, struct value **args,
1207 CORE_ADDR sp, int struct_return,
6df2bf50 1208 CORE_ADDR struct_addr)
c906108c 1209{
e17a4113 1210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1211 int stack_offset = 0;
1212 int argreg = ARG0_REGNUM;
c906108c 1213 int argnum;
c055b101 1214 struct type *func_type = value_type (function);
c906108c
SS
1215 struct type *type;
1216 CORE_ADDR regval;
948f8e3d 1217 const gdb_byte *val;
c055b101
CV
1218 int len, reg_size = 0;
1219 int pass_on_stack = 0;
1220 int last_reg_arg = INT_MAX;
1221
1222 /* The Renesas ABI expects all varargs arguments, plus the last
1223 non-vararg argument to be on the stack, no matter how many
1224 registers have been used so far. */
1225 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1226 && TYPE_VARARGS (func_type))
c055b101 1227 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
c906108c 1228
c378eb4e 1229 /* First force sp to a 4-byte alignment. */
19f59343 1230 sp = sh_frame_align (gdbarch, sp);
c906108c 1231
c378eb4e 1232 /* Make room on stack for args. */
e5e33cd9 1233 sp -= sh_stack_allocsize (nargs, args);
c906108c 1234
c906108c
SS
1235 /* Now load as many as possible of the first arguments into
1236 registers, and push the rest onto the stack. There are 16 bytes
1237 in four registers available. Loop thru args from first to last. */
e5e33cd9 1238 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1239 {
4991999e 1240 type = value_type (args[argnum]);
c5aa993b 1241 len = TYPE_LENGTH (type);
d93859e2 1242 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
c906108c 1243
c055b101 1244 /* Some decisions have to be made how various types are handled.
c378eb4e 1245 This also differs in different ABIs. */
c055b101
CV
1246 pass_on_stack = 0;
1247 /* Renesas ABI pushes doubles and long longs entirely on stack.
1248 Same goes for aggregate types. */
1249 if (sh_is_renesas_calling_convention (func_type)
1250 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1251 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1252 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1253 || TYPE_CODE (type) == TYPE_CODE_UNION))
1254 pass_on_stack = 1;
c906108c
SS
1255 while (len > 0)
1256 {
c055b101
CV
1257 if (argreg > ARGLAST_REGNUM || pass_on_stack
1258 || argnum > last_reg_arg)
617daa0e 1259 {
e5e33cd9 1260 /* The remainder of the data goes entirely on the stack,
c378eb4e 1261 4-byte aligned. */
e5e33cd9
CV
1262 reg_size = (len + 3) & ~3;
1263 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1264 stack_offset += reg_size;
c906108c 1265 }
e5e33cd9 1266 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1267 {
c378eb4e 1268 /* There's room in a register. */
e5e33cd9 1269 reg_size = register_size (gdbarch, argreg);
e17a4113 1270 regval = extract_unsigned_integer (val, reg_size, byte_order);
48db5a3c 1271 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1272 }
e5e33cd9
CV
1273 /* Store the value reg_size bytes at a time. This means that things
1274 larger than reg_size bytes may go partly in registers and partly
c906108c 1275 on the stack. */
e5e33cd9
CV
1276 len -= reg_size;
1277 val += reg_size;
c906108c
SS
1278 }
1279 }
48db5a3c 1280
c055b101
CV
1281 if (struct_return)
1282 {
1283 if (sh_is_renesas_calling_convention (func_type))
1284 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1285 the stack and store the struct return address there. */
e17a4113 1286 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1287 else
1288 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1289 its own dedicated register. */
1290 regcache_cooked_write_unsigned (regcache,
1291 STRUCT_RETURN_REGNUM, struct_addr);
1292 }
1293
c378eb4e 1294 /* Store return address. */
55ff77ac 1295 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1296
1297 /* Update stack pointer. */
3e8c568d 1298 regcache_cooked_write_unsigned (regcache,
b47193f7 1299 gdbarch_sp_regnum (gdbarch), sp);
48db5a3c 1300
c906108c
SS
1301 return sp;
1302}
1303
cc17453a
EZ
1304/* Find a function's return value in the appropriate registers (in
1305 regbuf), and copy it into valbuf. Extract from an array REGBUF
1306 containing the (raw) register state a function return value of type
1307 TYPE, and copy that, in virtual format, into VALBUF. */
1308static void
3ffc5b9b 1309sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1310 gdb_byte *valbuf)
c906108c 1311{
ac7936df 1312 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1313 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cc17453a 1314 int len = TYPE_LENGTH (type);
617daa0e 1315
cc17453a 1316 if (len <= 4)
3116c80a 1317 {
48db5a3c
CV
1318 ULONGEST c;
1319
1320 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
e17a4113 1321 store_unsigned_integer (valbuf, len, byte_order, c);
3116c80a 1322 }
48db5a3c 1323 else if (len == 8)
3116c80a 1324 {
48db5a3c
CV
1325 int i, regnum = R0_REGNUM;
1326 for (i = 0; i < len; i += 4)
0b883586 1327 regcache->raw_read (regnum++, valbuf + i);
3116c80a
EZ
1328 }
1329 else
8a3fe4f8 1330 error (_("bad size for return value"));
3116c80a
EZ
1331}
1332
1333static void
3ffc5b9b 1334sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1335 gdb_byte *valbuf)
3116c80a 1336{
ac7936df 1337 struct gdbarch *gdbarch = regcache->arch ();
afce3d2a 1338 if (sh_treat_as_flt_p (type))
3116c80a 1339 {
48db5a3c 1340 int len = TYPE_LENGTH (type);
d93859e2 1341 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1342 for (i = 0; i < len; i += 4)
d93859e2 1343 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
0b883586 1344 regcache->raw_read (regnum++,
948f8e3d 1345 valbuf + len - 4 - i);
2e952408 1346 else
0b883586 1347 regcache->raw_read (regnum++, valbuf + i);
3116c80a 1348 }
cc17453a 1349 else
3ffc5b9b 1350 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1351}
c906108c 1352
cc17453a
EZ
1353/* Write into appropriate registers a function return value
1354 of type TYPE, given in virtual format.
1355 If the architecture is sh4 or sh3e, store a function's return value
1356 in the R0 general register or in the FP0 floating point register,
c378eb4e
MS
1357 depending on the type of the return value. In all the other cases
1358 the result is stored in r0, left-justified. */
cc17453a 1359static void
3ffc5b9b 1360sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1361 const gdb_byte *valbuf)
cc17453a 1362{
ac7936df 1363 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48db5a3c
CV
1365 ULONGEST val;
1366 int len = TYPE_LENGTH (type);
d19b71be 1367
48db5a3c 1368 if (len <= 4)
d19b71be 1369 {
e17a4113 1370 val = extract_unsigned_integer (valbuf, len, byte_order);
48db5a3c 1371 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1372 }
1373 else
48db5a3c
CV
1374 {
1375 int i, regnum = R0_REGNUM;
1376 for (i = 0; i < len; i += 4)
10eaee5f 1377 regcache->raw_write (regnum++, valbuf + i);
48db5a3c 1378 }
cc17453a 1379}
c906108c 1380
cc17453a 1381static void
3ffc5b9b 1382sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1383 const gdb_byte *valbuf)
cc17453a 1384{
ac7936df 1385 struct gdbarch *gdbarch = regcache->arch ();
afce3d2a 1386 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1387 {
1388 int len = TYPE_LENGTH (type);
d93859e2 1389 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1390 for (i = 0; i < len; i += 4)
d93859e2 1391 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
10eaee5f 1392 regcache->raw_write (regnum++,
948f8e3d 1393 valbuf + len - 4 - i);
c8a3b559 1394 else
10eaee5f 1395 regcache->raw_write (regnum++, valbuf + i);
48db5a3c 1396 }
cc17453a 1397 else
3ffc5b9b 1398 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1399}
1400
c0409442 1401static enum return_value_convention
6a3a010b 1402sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1403 struct type *type, struct regcache *regcache,
18cf8b5b 1404 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1405{
6a3a010b
MR
1406 struct type *func_type = function ? value_type (function) : NULL;
1407
c055b101
CV
1408 if (sh_use_struct_convention_nofpu (
1409 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1410 return RETURN_VALUE_STRUCT_CONVENTION;
1411 if (writebuf)
3ffc5b9b 1412 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1413 else if (readbuf)
3ffc5b9b 1414 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1415 return RETURN_VALUE_REGISTER_CONVENTION;
1416}
1417
1418static enum return_value_convention
6a3a010b 1419sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1420 struct type *type, struct regcache *regcache,
18cf8b5b 1421 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1422{
6a3a010b
MR
1423 struct type *func_type = function ? value_type (function) : NULL;
1424
c055b101
CV
1425 if (sh_use_struct_convention (
1426 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1427 return RETURN_VALUE_STRUCT_CONVENTION;
1428 if (writebuf)
3ffc5b9b 1429 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1430 else if (readbuf)
3ffc5b9b 1431 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1432 return RETURN_VALUE_REGISTER_CONVENTION;
1433}
1434
da962468
CV
1435static struct type *
1436sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1437{
b47193f7 1438 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
da962468 1439 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1440 return builtin_type (gdbarch)->builtin_float;
da962468 1441 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1442 return builtin_type (gdbarch)->builtin_double;
da962468 1443 else
0dfff4cb 1444 return builtin_type (gdbarch)->builtin_int;
da962468
CV
1445}
1446
cc17453a
EZ
1447/* Return the GDB type object for the "standard" data type
1448 of data in register N. */
cc17453a 1449static struct type *
48db5a3c 1450sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1451{
b47193f7 1452 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1453 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1454 return builtin_type (gdbarch)->builtin_float;
8db62801 1455 else
0dfff4cb 1456 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1457}
1458
7f4dbe94 1459static struct type *
0dfff4cb 1460sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
7f4dbe94 1461{
e3506a9f
UW
1462 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1463 0, high);
7f4dbe94
EZ
1464}
1465
53116e27 1466static struct type *
48db5a3c 1467sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27 1468{
b47193f7 1469 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1470 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1471 return builtin_type (gdbarch)->builtin_float;
617daa0e 1472 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1473 return builtin_type (gdbarch)->builtin_double;
617daa0e 1474 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
0dfff4cb 1475 return sh_sh4_build_float_register_type (gdbarch, 3);
53116e27 1476 else
0dfff4cb 1477 return builtin_type (gdbarch)->builtin_int;
53116e27
EZ
1478}
1479
cc17453a 1480static struct type *
48db5a3c 1481sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1482{
0dfff4cb 1483 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1484}
1485
dda63807
AS
1486/* Is a register in a reggroup?
1487 The default code in reggroup.c doesn't identify system registers, some
1488 float registers or any of the vector registers.
1489 TODO: sh2a and dsp registers. */
63807e1d 1490static int
dda63807
AS
1491sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1492 struct reggroup *reggroup)
1493{
b47193f7
UW
1494 if (gdbarch_register_name (gdbarch, regnum) == NULL
1495 || *gdbarch_register_name (gdbarch, regnum) == '\0')
dda63807
AS
1496 return 0;
1497
1498 if (reggroup == float_reggroup
1499 && (regnum == FPUL_REGNUM
1500 || regnum == FPSCR_REGNUM))
1501 return 1;
1502
1503 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1504 {
1505 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1506 return 1;
1507 if (reggroup == general_reggroup)
1508 return 0;
1509 }
1510
1511 if (regnum == VBR_REGNUM
1512 || regnum == SR_REGNUM
1513 || regnum == FPSCR_REGNUM
1514 || regnum == SSR_REGNUM
1515 || regnum == SPC_REGNUM)
1516 {
1517 if (reggroup == system_reggroup)
1518 return 1;
1519 if (reggroup == general_reggroup)
1520 return 0;
1521 }
1522
1523 /* The default code can cope with any other registers. */
1524 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1525}
1526
fb409745 1527/* On the sh4, the DRi pseudo registers are problematic if the target
c378eb4e 1528 is little endian. When the user writes one of those registers, for
a6521d9a 1529 instance with 'set var $dr0=1', we want the double to be stored
fb409745 1530 like this:
a6521d9a
TS
1531 fr0 = 0x00 0x00 0xf0 0x3f
1532 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1533
1534 This corresponds to little endian byte order & big endian word
1535 order. However if we let gdb write the register w/o conversion, it
1536 will write fr0 and fr1 this way:
a6521d9a
TS
1537 fr0 = 0x00 0x00 0x00 0x00
1538 fr1 = 0x00 0x00 0xf0 0x3f
fb409745
EZ
1539 because it will consider fr0 and fr1 as a single LE stretch of memory.
1540
1541 To achieve what we want we must force gdb to store things in
1542 floatformat_ieee_double_littlebyte_bigword (which is defined in
1543 include/floatformat.h and libiberty/floatformat.c.
1544
1545 In case the target is big endian, there is no problem, the
1546 raw bytes will look like:
a6521d9a
TS
1547 fr0 = 0x3f 0xf0 0x00 0x00
1548 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1549
1550 The other pseudo registers (the FVs) also don't pose a problem
c378eb4e 1551 because they are stored as 4 individual FP elements. */
fb409745 1552
96a5a1d3
UW
1553static struct type *
1554sh_littlebyte_bigword_type (struct gdbarch *gdbarch)
1555{
1556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1557
1558 if (tdep->sh_littlebyte_bigword_type == NULL)
1559 tdep->sh_littlebyte_bigword_type
1560 = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
1561 floatformats_ieee_double_littlebyte_bigword);
1562
1563 return tdep->sh_littlebyte_bigword_type;
1564}
1565
7bd872fe 1566static void
a6521d9a 1567sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1568 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1569{
a6521d9a
TS
1570 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1571 {
1572 /* It is a no-op. */
1573 memcpy (to, from, register_size (gdbarch, regnum));
1574 return;
1575 }
1576
617daa0e 1577 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
3b2ca824
UW
1578 target_float_convert (from, sh_littlebyte_bigword_type (gdbarch),
1579 to, type);
283150cd 1580 else
617daa0e
CV
1581 error
1582 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1583}
1584
1585static void
a6521d9a 1586sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
948f8e3d 1587 int regnum, const gdb_byte *from, gdb_byte *to)
283150cd 1588{
a6521d9a
TS
1589 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1590 {
1591 /* It is a no-op. */
1592 memcpy (to, from, register_size (gdbarch, regnum));
1593 return;
1594 }
1595
617daa0e 1596 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
3b2ca824
UW
1597 target_float_convert (from, type,
1598 to, sh_littlebyte_bigword_type (gdbarch));
283150cd 1599 else
8a3fe4f8 1600 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1601}
1602
c378eb4e 1603/* For vectors of 4 floating point registers. */
1c0159e0 1604static int
d93859e2 1605fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1c0159e0
CV
1606{
1607 int fp_regnum;
1608
d93859e2 1609 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1610 + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1611 return fp_regnum;
1612}
1613
c378eb4e 1614/* For double precision floating point registers, i.e 2 fp regs. */
1c0159e0 1615static int
d93859e2 1616dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1c0159e0
CV
1617{
1618 int fp_regnum;
1619
d93859e2 1620 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1621 + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1622 return fp_regnum;
1623}
1624
05d1431c
PA
1625/* Concatenate PORTIONS contiguous raw registers starting at
1626 BASE_REGNUM into BUFFER. */
1627
1628static enum register_status
1629pseudo_register_read_portions (struct gdbarch *gdbarch,
849d0ba8 1630 readable_regcache *regcache,
05d1431c
PA
1631 int portions,
1632 int base_regnum, gdb_byte *buffer)
1633{
1634 int portion;
1635
1636 for (portion = 0; portion < portions; portion++)
1637 {
1638 enum register_status status;
1639 gdb_byte *b;
1640
1641 b = buffer + register_size (gdbarch, base_regnum) * portion;
03f50fc8 1642 status = regcache->raw_read (base_regnum + portion, b);
05d1431c
PA
1643 if (status != REG_VALID)
1644 return status;
1645 }
1646
1647 return REG_VALID;
1648}
1649
1650static enum register_status
849d0ba8 1651sh_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
18cf8b5b 1652 int reg_nr, gdb_byte *buffer)
53116e27 1653{
05d1431c 1654 int base_regnum;
05d1431c 1655 enum register_status status;
53116e27 1656
9bed62d7 1657 if (reg_nr == PSEUDO_BANK_REGNUM)
03f50fc8 1658 return regcache->raw_read (BANK_REGNUM, buffer);
05d1431c 1659 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe 1660 {
4a8a33c8
AH
1661 /* Enough space for two float registers. */
1662 gdb_byte temp_buffer[4 * 2];
d93859e2 1663 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
7bd872fe 1664
c378eb4e 1665 /* Build the value in the provided buffer. */
7bd872fe 1666 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1667 status = pseudo_register_read_portions (gdbarch, regcache,
1668 2, base_regnum, temp_buffer);
1669 if (status == REG_VALID)
1670 {
1671 /* We must pay attention to the endiannes. */
a6521d9a 1672 sh_register_convert_to_virtual (gdbarch, reg_nr,
05d1431c
PA
1673 register_type (gdbarch, reg_nr),
1674 temp_buffer, buffer);
1675 }
1676 return status;
7bd872fe 1677 }
617daa0e 1678 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1679 {
d93859e2 1680 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
7bd872fe
EZ
1681
1682 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1683 return pseudo_register_read_portions (gdbarch, regcache,
1684 4, base_regnum, buffer);
53116e27 1685 }
05d1431c
PA
1686 else
1687 gdb_assert_not_reached ("invalid pseudo register number");
53116e27
EZ
1688}
1689
a78f21af 1690static void
d8124050 1691sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1692 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
1693{
1694 int base_regnum, portion;
1695
9bed62d7
CV
1696 if (reg_nr == PSEUDO_BANK_REGNUM)
1697 {
1698 /* When the bank register is written to, the whole register bank
1699 is switched and all values in the bank registers must be read
c378eb4e 1700 from the target/sim again. We're just invalidating the regcache
9bed62d7
CV
1701 so that a re-read happens next time it's necessary. */
1702 int bregnum;
1703
10eaee5f 1704 regcache->raw_write (BANK_REGNUM, buffer);
9bed62d7 1705 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
6aa7d724 1706 regcache->invalidate (bregnum);
9bed62d7
CV
1707 }
1708 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1709 {
4a8a33c8
AH
1710 /* Enough space for two float registers. */
1711 gdb_byte temp_buffer[4 * 2];
d93859e2 1712 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
53116e27 1713
c378eb4e 1714 /* We must pay attention to the endiannes. */
a6521d9a 1715 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
b66ba949 1716 reg_nr, buffer, temp_buffer);
7bd872fe 1717
53116e27
EZ
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 2; portion++)
10eaee5f 1720 regcache->raw_write (base_regnum + portion,
0818c12a 1721 (temp_buffer
617daa0e
CV
1722 + register_size (gdbarch,
1723 base_regnum) * portion));
53116e27 1724 }
617daa0e 1725 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1726 {
d93859e2 1727 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
53116e27
EZ
1728
1729 /* Write the real regs for which this one is an alias. */
1730 for (portion = 0; portion < 4; portion++)
10eaee5f 1731 regcache->raw_write (base_regnum + portion,
948f8e3d 1732 (buffer
617daa0e
CV
1733 + register_size (gdbarch,
1734 base_regnum) * portion));
53116e27
EZ
1735 }
1736}
1737
2f14585c 1738static int
e7faf938 1739sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2f14585c 1740{
e7faf938
MD
1741 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1742 return legacy_register_sim_regno (gdbarch, nr);
f2ea0907
CV
1743 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1744 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1745 if (nr == MOD_REGNUM)
2f14585c 1746 return SIM_SH_MOD_REGNUM;
f2ea0907 1747 if (nr == RS_REGNUM)
2f14585c 1748 return SIM_SH_RS_REGNUM;
f2ea0907 1749 if (nr == RE_REGNUM)
2f14585c 1750 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1751 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1752 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1753 return nr;
1754}
1c0159e0 1755
da962468 1756static int
e7faf938 1757sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
da962468
CV
1758{
1759 switch (nr)
1760 {
1761 case TBR_REGNUM:
1762 return SIM_SH_TBR_REGNUM;
1763 case IBNR_REGNUM:
1764 return SIM_SH_IBNR_REGNUM;
1765 case IBCR_REGNUM:
1766 return SIM_SH_IBCR_REGNUM;
1767 case BANK_REGNUM:
1768 return SIM_SH_BANK_REGNUM;
1769 case MACLB_REGNUM:
1770 return SIM_SH_BANK_MACL_REGNUM;
1771 case GBRB_REGNUM:
1772 return SIM_SH_BANK_GBR_REGNUM;
1773 case PRB_REGNUM:
1774 return SIM_SH_BANK_PR_REGNUM;
1775 case IVNB_REGNUM:
1776 return SIM_SH_BANK_IVN_REGNUM;
1777 case MACHB_REGNUM:
1778 return SIM_SH_BANK_MACH_REGNUM;
1779 default:
1780 break;
1781 }
e7faf938 1782 return legacy_register_sim_regno (gdbarch, nr);
da962468
CV
1783}
1784
357d3800
AS
1785/* Set up the register unwinding such that call-clobbered registers are
1786 not displayed in frames >0 because the true value is not certain.
1787 The 'undefined' registers will show up as 'not available' unless the
1788 CFI says otherwise.
1789
1790 This function is currently set up for SH4 and compatible only. */
1791
1792static void
1793sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1794 struct dwarf2_frame_state_reg *reg,
4a4e5149 1795 struct frame_info *this_frame)
357d3800
AS
1796{
1797 /* Mark the PC as the destination for the return address. */
b47193f7 1798 if (regnum == gdbarch_pc_regnum (gdbarch))
357d3800
AS
1799 reg->how = DWARF2_FRAME_REG_RA;
1800
1801 /* Mark the stack pointer as the call frame address. */
b47193f7 1802 else if (regnum == gdbarch_sp_regnum (gdbarch))
357d3800
AS
1803 reg->how = DWARF2_FRAME_REG_CFA;
1804
1805 /* The above was taken from the default init_reg in dwarf2-frame.c
1806 while the below is SH specific. */
1807
1808 /* Caller save registers. */
1809 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1810 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1811 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1812 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1813 || (regnum == MACH_REGNUM)
1814 || (regnum == MACL_REGNUM)
1815 || (regnum == FPUL_REGNUM)
1816 || (regnum == SR_REGNUM))
1817 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1818
1819 /* Callee save registers. */
1820 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1821 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1822 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1823 || (regnum == FV0_REGNUM+3))
1824 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1825
1826 /* Other registers. These are not in the ABI and may or may not
1827 mean anything in frames >0 so don't show them. */
1828 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1829 || (regnum == GBR_REGNUM)
1830 || (regnum == VBR_REGNUM)
1831 || (regnum == FPSCR_REGNUM)
1832 || (regnum == SSR_REGNUM)
1833 || (regnum == SPC_REGNUM))
1834 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1835}
1836
1c0159e0
CV
1837static struct sh_frame_cache *
1838sh_alloc_frame_cache (void)
1839{
1840 struct sh_frame_cache *cache;
1841 int i;
1842
1843 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1844
1845 /* Base address. */
1846 cache->base = 0;
1847 cache->saved_sp = 0;
1848 cache->sp_offset = 0;
1849 cache->pc = 0;
1850
1851 /* Frameless until proven otherwise. */
1852 cache->uses_fp = 0;
617daa0e 1853
1c0159e0
CV
1854 /* Saved registers. We initialize these to -1 since zero is a valid
1855 offset (that's where fp is supposed to be stored). */
1856 for (i = 0; i < SH_NUM_REGS; i++)
1857 {
1858 cache->saved_regs[i] = -1;
1859 }
617daa0e 1860
1c0159e0 1861 return cache;
617daa0e 1862}
1c0159e0
CV
1863
1864static struct sh_frame_cache *
94afd7a6 1865sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1c0159e0 1866{
e17a4113 1867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c0159e0
CV
1868 struct sh_frame_cache *cache;
1869 CORE_ADDR current_pc;
1870 int i;
1871
1872 if (*this_cache)
19ba03f4 1873 return (struct sh_frame_cache *) *this_cache;
1c0159e0
CV
1874
1875 cache = sh_alloc_frame_cache ();
1876 *this_cache = cache;
1877
1878 /* In principle, for normal frames, fp holds the frame pointer,
1879 which holds the base address for the current stack frame.
1880 However, for functions that don't need it, the frame pointer is
1881 optional. For these "frameless" functions the frame pointer is
c378eb4e 1882 actually the frame pointer of the calling frame. */
94afd7a6 1883 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1c0159e0
CV
1884 if (cache->base == 0)
1885 return cache;
1886
94afd7a6
UW
1887 cache->pc = get_frame_func (this_frame);
1888 current_pc = get_frame_pc (this_frame);
1c0159e0 1889 if (cache->pc != 0)
d2ca4222
UW
1890 {
1891 ULONGEST fpscr;
9fc05685
KB
1892
1893 /* Check for the existence of the FPSCR register. If it exists,
1894 fetch its value for use in prologue analysis. Passing a zero
1895 value is the best choice for architecture variants upon which
1896 there's no FPSCR register. */
1897 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1898 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1899 else
1900 fpscr = 0;
1901
e17a4113 1902 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
d2ca4222 1903 }
617daa0e 1904
1c0159e0
CV
1905 if (!cache->uses_fp)
1906 {
1907 /* We didn't find a valid frame, which means that CACHE->base
1908 currently holds the frame pointer for our calling frame. If
1909 we're at the start of a function, or somewhere half-way its
1910 prologue, the function's frame probably hasn't been fully
1911 setup yet. Try to reconstruct the base address for the stack
1912 frame by looking at the stack pointer. For truly "frameless"
1913 functions this might work too. */
94afd7a6 1914 cache->base = get_frame_register_unsigned
e17a4113 1915 (this_frame, gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1916 }
1917
1918 /* Now that we have the base address for the stack frame we can
1919 calculate the value of sp in the calling frame. */
1920 cache->saved_sp = cache->base + cache->sp_offset;
1921
1922 /* Adjust all the saved registers such that they contain addresses
1923 instead of offsets. */
1924 for (i = 0; i < SH_NUM_REGS; i++)
1925 if (cache->saved_regs[i] != -1)
1926 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1927
1928 return cache;
1929}
1930
94afd7a6
UW
1931static struct value *
1932sh_frame_prev_register (struct frame_info *this_frame,
1933 void **this_cache, int regnum)
1c0159e0 1934{
94afd7a6
UW
1935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1936 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1937
1938 gdb_assert (regnum >= 0);
1939
b47193f7 1940 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 1941 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1c0159e0
CV
1942
1943 /* The PC of the previous frame is stored in the PR register of
1944 the current frame. Frob regnum so that we pull the value from
1945 the correct place. */
b47193f7 1946 if (regnum == gdbarch_pc_regnum (gdbarch))
1c0159e0
CV
1947 regnum = PR_REGNUM;
1948
1949 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
94afd7a6
UW
1950 return frame_unwind_got_memory (this_frame, regnum,
1951 cache->saved_regs[regnum]);
1c0159e0 1952
94afd7a6 1953 return frame_unwind_got_register (this_frame, regnum, regnum);
1c0159e0
CV
1954}
1955
1956static void
94afd7a6 1957sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
617daa0e
CV
1958 struct frame_id *this_id)
1959{
94afd7a6 1960 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1961
1962 /* This marks the outermost frame. */
1963 if (cache->base == 0)
1964 return;
1965
1966 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 1967}
1c0159e0 1968
617daa0e 1969static const struct frame_unwind sh_frame_unwind = {
1c0159e0 1970 NORMAL_FRAME,
8fbca658 1971 default_frame_unwind_stop_reason,
1c0159e0 1972 sh_frame_this_id,
94afd7a6
UW
1973 sh_frame_prev_register,
1974 NULL,
1975 default_frame_sniffer
1c0159e0
CV
1976};
1977
1c0159e0
CV
1978static CORE_ADDR
1979sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1980{
3e8c568d 1981 return frame_unwind_register_unsigned (next_frame,
b47193f7 1982 gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1983}
1984
1985static CORE_ADDR
1986sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1987{
3e8c568d 1988 return frame_unwind_register_unsigned (next_frame,
b47193f7 1989 gdbarch_pc_regnum (gdbarch));
1c0159e0
CV
1990}
1991
1992static struct frame_id
94afd7a6 1993sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1c0159e0 1994{
94afd7a6
UW
1995 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1996 gdbarch_sp_regnum (gdbarch));
1997 return frame_id_build (sp, get_frame_pc (this_frame));
1c0159e0
CV
1998}
1999
2000static CORE_ADDR
94afd7a6 2001sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
617daa0e 2002{
94afd7a6 2003 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
617daa0e 2004
1c0159e0
CV
2005 return cache->base;
2006}
617daa0e
CV
2007
2008static const struct frame_base sh_frame_base = {
1c0159e0
CV
2009 &sh_frame_unwind,
2010 sh_frame_base_address,
2011 sh_frame_base_address,
2012 sh_frame_base_address
617daa0e 2013};
1c0159e0 2014
cb2cf4ce
TS
2015static struct sh_frame_cache *
2016sh_make_stub_cache (struct frame_info *this_frame)
2017{
2018 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2019 struct sh_frame_cache *cache;
2020
2021 cache = sh_alloc_frame_cache ();
2022
2023 cache->saved_sp
2024 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2025
2026 return cache;
2027}
2028
2029static void
2030sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2031 struct frame_id *this_id)
2032{
2033 struct sh_frame_cache *cache;
2034
2035 if (*this_cache == NULL)
2036 *this_cache = sh_make_stub_cache (this_frame);
19ba03f4 2037 cache = (struct sh_frame_cache *) *this_cache;
cb2cf4ce
TS
2038
2039 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2040}
2041
2042static int
2043sh_stub_unwind_sniffer (const struct frame_unwind *self,
2044 struct frame_info *this_frame,
2045 void **this_prologue_cache)
2046{
2047 CORE_ADDR addr_in_block;
2048
2049 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 2050 if (in_plt_section (addr_in_block))
cb2cf4ce
TS
2051 return 1;
2052
2053 return 0;
2054}
2055
2056static const struct frame_unwind sh_stub_unwind =
2057{
2058 NORMAL_FRAME,
2059 default_frame_unwind_stop_reason,
2060 sh_stub_this_id,
2061 sh_frame_prev_register,
2062 NULL,
2063 sh_stub_unwind_sniffer
2064};
2065
c9cf6e20
MG
2066/* Implement the stack_frame_destroyed_p gdbarch method.
2067
2068 The epilogue is defined here as the area at the end of a function,
1c0159e0 2069 either on the `ret' instruction itself or after an instruction which
c378eb4e 2070 destroys the function's stack frame. */
c9cf6e20 2071
1c0159e0 2072static int
c9cf6e20 2073sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1c0159e0 2074{
e17a4113 2075 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0
CV
2076 CORE_ADDR func_addr = 0, func_end = 0;
2077
2078 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2079 {
2080 ULONGEST inst;
2081 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2082 for a nop and some fixed data (e.g. big offsets) which are
617daa0e 2083 unfortunately also treated as part of the function (which
c378eb4e 2084 means, they are below func_end. */
1c0159e0
CV
2085 CORE_ADDR addr = func_end - 28;
2086 if (addr < func_addr + 4)
617daa0e 2087 addr = func_addr + 4;
1c0159e0
CV
2088 if (pc < addr)
2089 return 0;
2090
c378eb4e 2091 /* First search forward until hitting an rts. */
1c0159e0 2092 while (addr < func_end
e17a4113 2093 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
1c0159e0
CV
2094 addr += 2;
2095 if (addr >= func_end)
617daa0e 2096 return 0;
1c0159e0
CV
2097
2098 /* At this point we should find a mov.l @r15+,r14 instruction,
2099 either before or after the rts. If not, then the function has
c378eb4e 2100 probably no "normal" epilogue and we bail out here. */
e17a4113
UW
2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2102 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2103 byte_order)))
617daa0e 2104 addr -= 2;
e17a4113
UW
2105 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2106 byte_order)))
1c0159e0
CV
2107 return 0;
2108
e17a4113 2109 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99 2110
c378eb4e 2111 /* Step over possible lds.l @r15+,macl. */
03131d99
CV
2112 if (IS_MACL_LDS (inst))
2113 {
2114 addr -= 2;
e17a4113 2115 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99
CV
2116 }
2117
c378eb4e 2118 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2119 if (IS_LDS (inst))
617daa0e 2120 {
1c0159e0 2121 addr -= 2;
e17a4113 2122 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2123 }
2124
c378eb4e 2125 /* Step over possible mov r14,r15. */
1c0159e0 2126 if (IS_MOV_FP_SP (inst))
617daa0e 2127 {
1c0159e0 2128 addr -= 2;
e17a4113 2129 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2130 }
2131
2132 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
c378eb4e 2133 instructions. */
1c0159e0 2134 while (addr > func_addr + 4
617daa0e 2135 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2136 {
2137 addr -= 2;
e17a4113 2138 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2139 }
2140
03131d99
CV
2141 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2142 That's allowed for the epilogue. */
2143 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2144 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2145 && addr > func_addr + 6
e17a4113
UW
2146 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2147 byte_order)))
03131d99
CV
2148 addr -= 4;
2149
1c0159e0
CV
2150 if (pc >= addr)
2151 return 1;
2152 }
2153 return 0;
2154}
c9ac0a72
AS
2155
2156
2157/* Supply register REGNUM from the buffer specified by REGS and LEN
2158 in the register set REGSET to register cache REGCACHE.
2159 REGTABLE specifies where each register can be found in REGS.
2160 If REGNUM is -1, do this for all registers in REGSET. */
2161
2162void
2163sh_corefile_supply_regset (const struct regset *regset,
2164 struct regcache *regcache,
2165 int regnum, const void *regs, size_t len)
2166{
ac7936df 2167 struct gdbarch *gdbarch = regcache->arch ();
c9ac0a72
AS
2168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2169 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2170 ? tdep->core_gregmap
2171 : tdep->core_fpregmap);
2172 int i;
2173
2174 for (i = 0; regmap[i].regnum != -1; i++)
2175 {
2176 if ((regnum == -1 || regnum == regmap[i].regnum)
2177 && regmap[i].offset + 4 <= len)
73e1c03f
SM
2178 regcache->raw_supply
2179 (regmap[i].regnum, (char *) regs + regmap[i].offset);
c9ac0a72
AS
2180 }
2181}
2182
2183/* Collect register REGNUM in the register set REGSET from register cache
2184 REGCACHE into the buffer specified by REGS and LEN.
2185 REGTABLE specifies where each register can be found in REGS.
2186 If REGNUM is -1, do this for all registers in REGSET. */
2187
2188void
2189sh_corefile_collect_regset (const struct regset *regset,
2190 const struct regcache *regcache,
2191 int regnum, void *regs, size_t len)
2192{
ac7936df 2193 struct gdbarch *gdbarch = regcache->arch ();
c9ac0a72
AS
2194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2195 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2196 ? tdep->core_gregmap
2197 : tdep->core_fpregmap);
2198 int i;
2199
2200 for (i = 0; regmap[i].regnum != -1; i++)
2201 {
2202 if ((regnum == -1 || regnum == regmap[i].regnum)
2203 && regmap[i].offset + 4 <= len)
34a79281 2204 regcache->raw_collect (regmap[i].regnum,
c9ac0a72
AS
2205 (char *)regs + regmap[i].offset);
2206 }
2207}
2208
2209/* The following two regsets have the same contents, so it is tempting to
2210 unify them, but they are distiguished by their address, so don't. */
2211
3ca7dae4 2212const struct regset sh_corefile_gregset =
c9ac0a72
AS
2213{
2214 NULL,
2215 sh_corefile_supply_regset,
2216 sh_corefile_collect_regset
2217};
2218
3ca7dae4 2219static const struct regset sh_corefile_fpregset =
c9ac0a72
AS
2220{
2221 NULL,
2222 sh_corefile_supply_regset,
2223 sh_corefile_collect_regset
2224};
2225
c6d41a6f
AA
2226static void
2227sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2228 iterate_over_regset_sections_cb *cb,
2229 void *cb_data,
2230 const struct regcache *regcache)
c9ac0a72
AS
2231{
2232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2233
c6d41a6f
AA
2234 if (tdep->core_gregmap != NULL)
2235 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
c9ac0a72 2236
c6d41a6f
AA
2237 if (tdep->core_fpregmap != NULL)
2238 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
c9ac0a72 2239}
18648a37
YQ
2240
2241/* This is the implementation of gdbarch method
2242 return_in_first_hidden_param_p. */
2243
2244static int
2245sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2246 struct type *type)
2247{
2248 return 0;
2249}
2250
ccf00f21 2251\f
cc17453a
EZ
2252
2253static struct gdbarch *
fba45db2 2254sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2255{
cc17453a 2256 struct gdbarch *gdbarch;
c9ac0a72 2257 struct gdbarch_tdep *tdep;
d658f924 2258
4be87837
DJ
2259 /* If there is already a candidate, use it. */
2260 arches = gdbarch_list_lookup_by_info (arches, &info);
2261 if (arches != NULL)
2262 return arches->gdbarch;
cc17453a
EZ
2263
2264 /* None found, create a new architecture from the information
c378eb4e 2265 provided. */
41bf6aca 2266 tdep = XCNEW (struct gdbarch_tdep);
c9ac0a72 2267 gdbarch = gdbarch_alloc (&info, tdep);
cc17453a 2268
48db5a3c
CV
2269 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2270 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2271 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2272 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
53375380
PA
2273
2274 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2275 set_gdbarch_wchar_signed (gdbarch, 0);
2276
48db5a3c
CV
2277 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2278 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2279 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2280 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2281
f2ea0907 2282 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2283 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2284 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2285 set_gdbarch_fp0_regnum (gdbarch, -1);
2286 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2287
1c0159e0 2288 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2289 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2290
04180708
YQ
2291 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2292 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
48db5a3c 2293
2f14585c 2294 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c 2295
c0409442 2296 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
1c0159e0 2297
48db5a3c
CV
2298 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2299 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2300
1c0159e0 2301 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
18648a37
YQ
2302 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2303 sh_return_in_first_hidden_param_p);
1c0159e0 2304
48db5a3c
CV
2305 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2306
19f59343 2307 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2308 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2309 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
94afd7a6 2310 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
1c0159e0
CV
2311 frame_base_set_default (gdbarch, &sh_frame_base);
2312
c9cf6e20 2313 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
cc17453a 2314
357d3800
AS
2315 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2316
c6d41a6f
AA
2317 set_gdbarch_iterate_over_regset_sections
2318 (gdbarch, sh_iterate_over_regset_sections);
c9ac0a72 2319
cc17453a 2320 switch (info.bfd_arch_info->mach)
8db62801 2321 {
cc17453a 2322 case bfd_mach_sh:
48db5a3c 2323 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2324 break;
1c0159e0 2325
cc17453a 2326 case bfd_mach_sh2:
48db5a3c 2327 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2328 break;
1c0159e0 2329
2d188dd3 2330 case bfd_mach_sh2e:
c378eb4e 2331 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2332 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2333 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2334
2335 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2336 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2337 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2338 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2339 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2340 break;
1c0159e0 2341
da962468
CV
2342 case bfd_mach_sh2a:
2343 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2344 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2345 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2346
2347 set_gdbarch_fp0_regnum (gdbarch, 25);
2348 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2349 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2350 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2351 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2352 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2353 break;
2354
2355 case bfd_mach_sh2a_nofpu:
2356 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2357 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2358
2359 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2360 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2361 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2362 break;
2363
cc17453a 2364 case bfd_mach_sh_dsp:
48db5a3c 2365 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2366 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2367 break;
1c0159e0 2368
cc17453a 2369 case bfd_mach_sh3:
4e6cbc38
AS
2370 case bfd_mach_sh3_nommu:
2371 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2372 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2373 break;
1c0159e0 2374
cc17453a 2375 case bfd_mach_sh3e:
4e6cbc38 2376 case bfd_mach_sh2a_or_sh3e:
c378eb4e 2377 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2378 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2379 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2380
2381 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2382 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2383 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2384 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2385 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2386 break;
1c0159e0 2387
cc17453a 2388 case bfd_mach_sh3_dsp:
48db5a3c 2389 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2390 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2391 break;
1c0159e0 2392
cc17453a 2393 case bfd_mach_sh4:
474e5826 2394 case bfd_mach_sh4a:
46e8a76b 2395 case bfd_mach_sh2a_or_sh4:
48db5a3c 2396 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2397 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2398 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2399 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2400 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2401 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2402 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2403 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2404 break;
1c0159e0 2405
474e5826
CV
2406 case bfd_mach_sh4_nofpu:
2407 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2408 case bfd_mach_sh4_nommu_nofpu:
2409 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
474e5826
CV
2410 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2411 break;
2412
2413 case bfd_mach_sh4al_dsp:
2414 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2415 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2416 break;
2417
cc17453a 2418 default:
b58cbbf2 2419 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2420 break;
8db62801 2421 }
cc17453a 2422
4be87837
DJ
2423 /* Hook in ABI-specific overrides, if they have been registered. */
2424 gdbarch_init_osabi (info, gdbarch);
d658f924 2425
94afd7a6 2426 dwarf2_append_unwinders (gdbarch);
cb2cf4ce 2427 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
94afd7a6 2428 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
1c0159e0 2429
cc17453a 2430 return gdbarch;
8db62801
EZ
2431}
2432
c055b101 2433static void
981a3fb3 2434show_sh_command (const char *args, int from_tty)
c055b101
CV
2435{
2436 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2437}
2438
2439static void
981a3fb3 2440set_sh_command (const char *args, int from_tty)
c055b101
CV
2441{
2442 printf_unfiltered
2443 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2444 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2445}
2446
c906108c 2447void
fba45db2 2448_initialize_sh_tdep (void)
c906108c 2449{
f2ea0907 2450 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2451
c055b101
CV
2452 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2453 &setshcmdlist, "set sh ", 0, &setlist);
2454 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2455 &showshcmdlist, "show sh ", 0, &showlist);
2456
2457 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2458 &sh_active_calling_convention,
2459 _("Set calling convention used when calling target "
2460 "functions from GDB."),
2461 _("Show calling convention used when calling target "
2462 "functions from GDB."),
2463 _("gcc - Use GCC calling convention (default).\n"
2464 "renesas - Enforce Renesas calling convention."),
2465 NULL, NULL,
2466 &setshcmdlist, &showshcmdlist);
c906108c 2467}
This page took 2.221825 seconds and 4 git commands to generate.