gdb/
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
0b302171 3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
1c0159e0
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
c906108c 28#include "symtab.h"
c906108c
SS
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
73c1f219 34#include "inferior.h"
c906108c 35#include "gdb_string.h"
1c0159e0 36#include "gdb_assert.h"
b4a20239 37#include "arch-utils.h"
fb409745 38#include "floatformat.h"
4e052eda 39#include "regcache.h"
d16aafd8 40#include "doublest.h"
4be87837 41#include "osabi.h"
dda63807 42#include "reggroups.h"
c9ac0a72 43#include "regset.h"
cb2cf4ce 44#include "objfiles.h"
c906108c 45
ab3b8126 46#include "sh-tdep.h"
04dcf5fa 47#include "sh64-tdep.h"
ab3b8126 48
d658f924 49#include "elf-bfd.h"
1a8629c7
MS
50#include "solib-svr4.h"
51
55ff77ac 52/* sh flags */
283150cd 53#include "elf/sh.h"
fa8f86ff 54#include "dwarf2.h"
c378eb4e 55/* registers numbers shared with the simulator. */
1c922164 56#include "gdb/sim-sh.h"
283150cd 57
c055b101
CV
58/* List of "set sh ..." and "show sh ..." commands. */
59static struct cmd_list_element *setshcmdlist = NULL;
60static struct cmd_list_element *showshcmdlist = NULL;
61
62static const char sh_cc_gcc[] = "gcc";
63static const char sh_cc_renesas[] = "renesas";
40478521 64static const char *const sh_cc_enum[] = {
c055b101
CV
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68};
69
70static const char *sh_active_calling_convention = sh_cc_gcc;
71
da962468 72#define SH_NUM_REGS 67
88e04cc1 73
1c0159e0 74struct sh_frame_cache
cc17453a 75{
1c0159e0
CV
76 /* Base address. */
77 CORE_ADDR base;
78 LONGEST sp_offset;
79 CORE_ADDR pc;
80
c378eb4e 81 /* Flag showing that a frame has been created in the prologue code. */
1c0159e0
CV
82 int uses_fp;
83
84 /* Saved registers. */
85 CORE_ADDR saved_regs[SH_NUM_REGS];
86 CORE_ADDR saved_sp;
63978407 87};
c906108c 88
c055b101
CV
89static int
90sh_is_renesas_calling_convention (struct type *func_type)
91{
ca193e27
TS
92 int val = 0;
93
94 if (func_type)
95 {
96 func_type = check_typedef (func_type);
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
99 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
100
101 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
102 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
103 val = 1;
104 }
105
106 if (sh_active_calling_convention == sh_cc_renesas)
107 val = 1;
108
109 return val;
c055b101
CV
110}
111
fa88f677 112static const char *
d93859e2 113sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 114{
617daa0e
CV
115 static char *register_names[] = {
116 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
117 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
118 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
da962468 125 "", "", "", "", "", "", "", "",
cc17453a
EZ
126 };
127 if (reg_nr < 0)
128 return NULL;
129 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
130 return NULL;
131 return register_names[reg_nr];
132}
133
fa88f677 134static const char *
d93859e2 135sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 136{
617daa0e
CV
137 static char *register_names[] = {
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "",
142 "", "", "", "", "", "", "", "",
143 "", "", "", "", "", "", "", "",
144 "ssr", "spc",
cc17453a
EZ
145 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
146 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 147 "", "", "", "", "", "", "", "",
cc17453a
EZ
148 };
149 if (reg_nr < 0)
150 return NULL;
151 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
152 return NULL;
153 return register_names[reg_nr];
154}
155
fa88f677 156static const char *
d93859e2 157sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 158{
617daa0e
CV
159 static char *register_names[] = {
160 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 163 "fpul", "fpscr",
617daa0e
CV
164 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
165 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "ssr", "spc",
cc17453a
EZ
167 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
168 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 169 "", "", "", "", "", "", "", "",
cc17453a
EZ
170 };
171 if (reg_nr < 0)
172 return NULL;
173 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
174 return NULL;
175 return register_names[reg_nr];
176}
177
2d188dd3 178static const char *
d93859e2 179sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
2d188dd3 180{
617daa0e
CV
181 static char *register_names[] = {
182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
184 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 185 "fpul", "fpscr",
617daa0e
CV
186 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
187 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "",
2d188dd3
NC
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
da962468
CV
191 "", "", "", "", "", "", "", "",
192 };
193 if (reg_nr < 0)
194 return NULL;
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
196 return NULL;
197 return register_names[reg_nr];
198}
199
200static const char *
d93859e2 201sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
202{
203 static char *register_names[] = {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "", "",
216 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 217 the bank register (63). */
da962468
CV
218 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
219 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
220 "machb", "ivnb", "prb", "gbrb", "maclb",
221 /* 63: register bank number, not a real register but used to
222 communicate the register bank currently get/set. This register
223 is hidden to the user, who manipulates it using the pseudo
224 register called "bank" (67). See below. */
225 "",
226 /* 64 - 66 */
227 "ibcr", "ibnr", "tbr",
228 /* 67: register bank number, the user visible pseudo register. */
229 "bank",
230 /* double precision (pseudo) 68 - 75 */
231 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
232 };
233 if (reg_nr < 0)
234 return NULL;
235 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
236 return NULL;
237 return register_names[reg_nr];
238}
239
240static const char *
d93859e2 241sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
242{
243 static char *register_names[] = {
244 /* general registers 0-15 */
245 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 /* 16 - 22 */
248 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
249 /* 23, 24 */
250 "", "",
251 /* floating point registers 25 - 40 */
252 "", "", "", "", "", "", "", "",
253 "", "", "", "", "", "", "", "",
254 /* 41, 42 */
255 "", "",
256 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 257 the bank register (63). */
da962468
CV
258 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
259 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
260 "machb", "ivnb", "prb", "gbrb", "maclb",
261 /* 63: register bank number, not a real register but used to
262 communicate the register bank currently get/set. This register
263 is hidden to the user, who manipulates it using the pseudo
264 register called "bank" (67). See below. */
265 "",
266 /* 64 - 66 */
267 "ibcr", "ibnr", "tbr",
268 /* 67: register bank number, the user visible pseudo register. */
269 "bank",
270 /* double precision (pseudo) 68 - 75 */
271 "", "", "", "", "", "", "", "",
2d188dd3
NC
272 };
273 if (reg_nr < 0)
274 return NULL;
275 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
276 return NULL;
277 return register_names[reg_nr];
278}
279
fa88f677 280static const char *
d93859e2 281sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 282{
617daa0e
CV
283 static char *register_names[] = {
284 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
285 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
286 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "", "dsr",
288 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
289 "y0", "y1", "", "", "", "", "", "mod",
290 "", "",
291 "rs", "re", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
da962468 293 "", "", "", "", "", "", "", "",
cc17453a
EZ
294 };
295 if (reg_nr < 0)
296 return NULL;
297 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
298 return NULL;
299 return register_names[reg_nr];
300}
301
fa88f677 302static const char *
d93859e2 303sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 304{
617daa0e
CV
305 static char *register_names[] = {
306 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "", "dsr",
310 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
311 "y0", "y1", "", "", "", "", "", "mod",
312 "ssr", "spc",
313 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
314 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
315 "", "", "", "", "", "", "", "",
da962468 316 "", "", "", "", "", "", "", "",
cc17453a
EZ
317 };
318 if (reg_nr < 0)
319 return NULL;
320 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
321 return NULL;
322 return register_names[reg_nr];
323}
324
fa88f677 325static const char *
d93859e2 326sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
53116e27 327{
617daa0e 328 static char *register_names[] = {
a38d2a54 329 /* general registers 0-15 */
617daa0e
CV
330 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
331 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 332 /* 16 - 22 */
617daa0e 333 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 334 /* 23, 24 */
53116e27 335 "fpul", "fpscr",
a38d2a54 336 /* floating point registers 25 - 40 */
617daa0e
CV
337 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
338 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 339 /* 41, 42 */
617daa0e 340 "ssr", "spc",
a38d2a54 341 /* bank 0 43 - 50 */
53116e27 342 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 343 /* bank 1 51 - 58 */
53116e27 344 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 345 "", "", "", "", "", "", "", "",
c378eb4e 346 /* pseudo bank register. */
da962468 347 "",
a38d2a54 348 /* double precision (pseudo) 59 - 66 */
617daa0e 349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a38d2a54 350 /* vectors (pseudo) 67 - 70 */
617daa0e 351 "fv0", "fv4", "fv8", "fv12",
a38d2a54
EZ
352 /* FIXME: missing XF 71 - 86 */
353 /* FIXME: missing XD 87 - 94 */
53116e27
EZ
354 };
355 if (reg_nr < 0)
356 return NULL;
357 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
358 return NULL;
359 return register_names[reg_nr];
360}
361
474e5826 362static const char *
d93859e2 363sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
364{
365 static char *register_names[] = {
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 /* 16 - 22 */
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
371 /* 23, 24 */
372 "", "",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
376 /* 41, 42 */
377 "ssr", "spc",
378 /* bank 0 43 - 50 */
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
380 /* bank 1 51 - 58 */
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 382 "", "", "", "", "", "", "", "",
c378eb4e 383 /* pseudo bank register. */
da962468 384 "",
474e5826
CV
385 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
386 "", "", "", "", "", "", "", "",
387 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395}
396
397static const char *
d93859e2 398sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
399{
400 static char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
da962468 411 "", "", "", "", "", "", "", "",
474e5826
CV
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418}
419
3117ed25 420static const unsigned char *
67d57894 421sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
cc17453a 422{
c378eb4e 423 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
617daa0e
CV
424 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
425
bac718a6
UW
426 /* For remote stub targets, trapa #20 is used. */
427 if (strcmp (target_shortname, "remote") == 0)
428 {
429 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
430 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
431
67d57894 432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
bac718a6
UW
433 {
434 *lenptr = sizeof (big_remote_breakpoint);
435 return big_remote_breakpoint;
436 }
437 else
438 {
439 *lenptr = sizeof (little_remote_breakpoint);
440 return little_remote_breakpoint;
441 }
442 }
443
cc17453a
EZ
444 *lenptr = sizeof (breakpoint);
445 return breakpoint;
446}
c906108c
SS
447
448/* Prologue looks like
1c0159e0
CV
449 mov.l r14,@-r15
450 sts.l pr,@-r15
451 mov.l <regs>,@-r15
452 sub <room_for_loca_vars>,r15
453 mov r15,r14
8db62801 454
c378eb4e 455 Actually it can be more complicated than this but that's it, basically. */
c906108c 456
1c0159e0
CV
457#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
458#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
459
5f883edd
FF
460/* JSR @Rm 0100mmmm00001011 */
461#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
462
8db62801
EZ
463/* STS.L PR,@-r15 0100111100100010
464 r15-4-->r15, PR-->(r15) */
c906108c 465#define IS_STS(x) ((x) == 0x4f22)
8db62801 466
03131d99
CV
467/* STS.L MACL,@-r15 0100111100010010
468 r15-4-->r15, MACL-->(r15) */
469#define IS_MACL_STS(x) ((x) == 0x4f12)
470
8db62801
EZ
471/* MOV.L Rm,@-r15 00101111mmmm0110
472 r15-4-->r15, Rm-->(R15) */
c906108c 473#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 474
8db62801
EZ
475/* MOV r15,r14 0110111011110011
476 r15-->r14 */
c906108c 477#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
478
479/* ADD #imm,r15 01111111iiiiiiii
480 r15+imm-->r15 */
1c0159e0 481#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 482
c906108c
SS
483#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
484#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
485
486/* ADD r3,r15 0011111100111100
487 r15+r3-->r15 */
c906108c 488#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
489
490/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 491 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 492 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907 493/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
c378eb4e 494 make this entirely clear. */
1c0159e0
CV
495/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
496#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
497
498/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
499#define IS_MOV_ARG_TO_REG(x) \
500 (((x) & 0xf00f) == 0x6003 && \
501 ((x) & 0x00f0) >= 0x0040 && \
502 ((x) & 0x00f0) <= 0x0070)
503/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
504#define IS_MOV_ARG_TO_IND_R14(x) \
505 (((x) & 0xff0f) == 0x2e02 && \
506 ((x) & 0x00f0) >= 0x0040 && \
507 ((x) & 0x00f0) <= 0x0070)
508/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
509#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
510 (((x) & 0xff00) == 0x1e00 && \
511 ((x) & 0x00f0) >= 0x0040 && \
512 ((x) & 0x00f0) <= 0x0070)
513
514/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
515#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
516/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
517#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
518/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
519#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
520/* SUB Rn,R15 00111111nnnn1000 */
521#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 522
1c0159e0 523#define FPSCR_SZ (1 << 20)
cc17453a 524
c378eb4e 525/* The following instructions are used for epilogue testing. */
1c0159e0
CV
526#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
527#define IS_RTS(x) ((x) == 0x000b)
528#define IS_LDS(x) ((x) == 0x4f26)
03131d99 529#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
530#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
531#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
532#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 533
cc17453a 534static CORE_ADDR
e17a4113 535sh_analyze_prologue (struct gdbarch *gdbarch,
5cbb9812 536 CORE_ADDR pc, CORE_ADDR limit_pc,
d2ca4222 537 struct sh_frame_cache *cache, ULONGEST fpscr)
617daa0e 538{
e17a4113 539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0 540 ULONGEST inst;
1c0159e0
CV
541 int offset;
542 int sav_offset = 0;
c906108c 543 int r3_val = 0;
1c0159e0 544 int reg, sav_reg = -1;
cc17453a 545
1c0159e0 546 cache->uses_fp = 0;
5cbb9812 547 for (; pc < limit_pc; pc += 2)
cc17453a 548 {
e17a4113 549 inst = read_memory_unsigned_integer (pc, 2, byte_order);
c378eb4e 550 /* See where the registers will be saved to. */
f2ea0907 551 if (IS_PUSH (inst))
cc17453a 552 {
1c0159e0
CV
553 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
554 cache->sp_offset += 4;
cc17453a 555 }
f2ea0907 556 else if (IS_STS (inst))
cc17453a 557 {
1c0159e0
CV
558 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
559 cache->sp_offset += 4;
cc17453a 560 }
03131d99
CV
561 else if (IS_MACL_STS (inst))
562 {
563 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
564 cache->sp_offset += 4;
565 }
f2ea0907 566 else if (IS_MOV_R3 (inst))
cc17453a 567 {
f2ea0907 568 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 569 }
f2ea0907 570 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
571 {
572 r3_val <<= 1;
573 }
f2ea0907 574 else if (IS_ADD_R3SP (inst))
cc17453a 575 {
1c0159e0 576 cache->sp_offset += -r3_val;
cc17453a 577 }
f2ea0907 578 else if (IS_ADD_IMM_SP (inst))
cc17453a 579 {
1c0159e0
CV
580 offset = ((inst & 0xff) ^ 0x80) - 0x80;
581 cache->sp_offset -= offset;
c906108c 582 }
1c0159e0 583 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 584 {
1c0159e0
CV
585 if (sav_reg < 0)
586 {
587 reg = GET_TARGET_REG (inst);
588 if (reg < 14)
589 {
590 sav_reg = reg;
a2b4a96c 591 offset = (inst & 0xff) << 1;
1c0159e0 592 sav_offset =
e17a4113 593 read_memory_integer ((pc + 4) + offset, 2, byte_order);
1c0159e0
CV
594 }
595 }
c906108c 596 }
1c0159e0 597 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 598 {
1c0159e0
CV
599 if (sav_reg < 0)
600 {
a2b4a96c 601 reg = GET_TARGET_REG (inst);
1c0159e0
CV
602 if (reg < 14)
603 {
604 sav_reg = reg;
a2b4a96c 605 offset = (inst & 0xff) << 2;
1c0159e0 606 sav_offset =
e17a4113
UW
607 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
608 4, byte_order);
1c0159e0
CV
609 }
610 }
c906108c 611 }
5cbb9812
TS
612 else if (IS_MOVI20 (inst)
613 && (pc + 2 < limit_pc))
03131d99
CV
614 {
615 if (sav_reg < 0)
616 {
617 reg = GET_TARGET_REG (inst);
618 if (reg < 14)
619 {
620 sav_reg = reg;
621 sav_offset = GET_SOURCE_REG (inst) << 16;
c378eb4e 622 /* MOVI20 is a 32 bit instruction! */
03131d99 623 pc += 2;
e17a4113
UW
624 sav_offset
625 |= read_memory_unsigned_integer (pc, 2, byte_order);
03131d99
CV
626 /* Now sav_offset contains an unsigned 20 bit value.
627 It must still get sign extended. */
628 if (sav_offset & 0x00080000)
629 sav_offset |= 0xfff00000;
630 }
631 }
632 }
1c0159e0 633 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 634 {
1c0159e0
CV
635 reg = GET_SOURCE_REG (inst);
636 if (sav_reg > 0 && reg == sav_reg)
637 {
638 sav_reg = -1;
639 }
640 cache->sp_offset += sav_offset;
c906108c 641 }
f2ea0907 642 else if (IS_FPUSH (inst))
c906108c 643 {
d2ca4222 644 if (fpscr & FPSCR_SZ)
c906108c 645 {
1c0159e0 646 cache->sp_offset += 8;
c906108c
SS
647 }
648 else
649 {
1c0159e0 650 cache->sp_offset += 4;
c906108c
SS
651 }
652 }
f2ea0907 653 else if (IS_MOV_SP_FP (inst))
617daa0e 654 {
5cbb9812
TS
655 pc += 2;
656 /* Don't go any further than six more instructions. */
657 limit_pc = min (limit_pc, pc + (2 * 6));
658
960ccd7d 659 cache->uses_fp = 1;
1c0159e0
CV
660 /* At this point, only allow argument register moves to other
661 registers or argument register moves to @(X,fp) which are
662 moving the register arguments onto the stack area allocated
663 by a former add somenumber to SP call. Don't allow moving
c378eb4e 664 to an fp indirect address above fp + cache->sp_offset. */
5cbb9812 665 for (; pc < limit_pc; pc += 2)
1c0159e0 666 {
e17a4113 667 inst = read_memory_integer (pc, 2, byte_order);
1c0159e0 668 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 669 {
1c0159e0
CV
670 reg = GET_SOURCE_REG (inst);
671 if (cache->sp_offset > 0)
617daa0e 672 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
673 }
674 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 675 {
1c0159e0
CV
676 reg = GET_SOURCE_REG (inst);
677 offset = (inst & 0xf) * 4;
678 if (cache->sp_offset > offset)
679 cache->saved_regs[reg] = cache->sp_offset - offset;
680 }
681 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 682 continue;
1c0159e0
CV
683 else
684 break;
685 }
686 break;
687 }
5f883edd
FF
688 else if (IS_JSR (inst))
689 {
690 /* We have found a jsr that has been scheduled into the prologue.
691 If we continue the scan and return a pc someplace after this,
692 then setting a breakpoint on this function will cause it to
693 appear to be called after the function it is calling via the
694 jsr, which will be very confusing. Most likely the next
695 instruction is going to be IS_MOV_SP_FP in the delay slot. If
c378eb4e 696 so, note that before returning the current pc. */
5cbb9812
TS
697 if (pc + 2 < limit_pc)
698 {
699 inst = read_memory_integer (pc + 2, 2, byte_order);
700 if (IS_MOV_SP_FP (inst))
701 cache->uses_fp = 1;
702 }
5f883edd
FF
703 break;
704 }
c378eb4e
MS
705#if 0 /* This used to just stop when it found an instruction
706 that was not considered part of the prologue. Now,
707 we just keep going looking for likely
708 instructions. */
c906108c
SS
709 else
710 break;
2bfa91ee 711#endif
c906108c
SS
712 }
713
1c0159e0
CV
714 return pc;
715}
c906108c 716
c378eb4e 717/* Skip any prologue before the guts of a function. */
1c0159e0 718static CORE_ADDR
8a8bc27f 719sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 720{
5cbb9812 721 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
1c0159e0
CV
722 struct sh_frame_cache cache;
723
724 /* See if we can determine the end of the prologue via the symbol table.
725 If so, then return either PC, or the PC after the prologue, whichever
726 is greater. */
5cbb9812 727 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
8a8bc27f
TS
728 {
729 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
730 if (post_prologue_pc != 0)
731 return max (pc, post_prologue_pc);
732 }
cc17453a 733
8a8bc27f
TS
734 /* Can't determine prologue from the symbol table, need to examine
735 instructions. */
c906108c 736
5cbb9812
TS
737 /* Find an upper limit on the function prologue using the debug
738 information. If the debug information could not be used to provide
739 that bound, then use an arbitrary large number as the upper bound. */
740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
741 if (limit_pc == 0)
742 /* Don't go any further than 28 instructions. */
743 limit_pc = pc + (2 * 28);
744
745 /* Do not allow limit_pc to be past the function end, if we know
746 where that end is... */
747 if (func_end_addr != 0)
748 limit_pc = min (limit_pc, func_end_addr);
749
1c0159e0 750 cache.sp_offset = -4;
5cbb9812 751 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
8a8bc27f
TS
752 if (cache.uses_fp)
753 pc = post_prologue_pc;
c906108c 754
1c0159e0
CV
755 return pc;
756}
757
2e952408 758/* The ABI says:
9a5cef92
EZ
759
760 Aggregate types not bigger than 8 bytes that have the same size and
761 alignment as one of the integer scalar types are returned in the
762 same registers as the integer type they match.
763
764 For example, a 2-byte aligned structure with size 2 bytes has the
765 same size and alignment as a short int, and will be returned in R0.
766 A 4-byte aligned structure with size 8 bytes has the same size and
767 alignment as a long long int, and will be returned in R0 and R1.
768
769 When an aggregate type is returned in R0 and R1, R0 contains the
770 first four bytes of the aggregate, and R1 contains the
c378eb4e 771 remainder. If the size of the aggregate type is not a multiple of 4
9a5cef92 772 bytes, the aggregate is tail-padded up to a multiple of 4
c378eb4e 773 bytes. The value of the padding is undefined. For little-endian
9a5cef92
EZ
774 targets the padding will appear at the most significant end of the
775 last element, for big-endian targets the padding appears at the
776 least significant end of the last element.
777
c378eb4e 778 All other aggregate types are returned by address. The caller
9a5cef92 779 function passes the address of an area large enough to hold the
c378eb4e 780 aggregate value in R2. The called function stores the result in
7fe958be 781 this location.
9a5cef92
EZ
782
783 To reiterate, structs smaller than 8 bytes could also be returned
784 in memory, if they don't pass the "same size and alignment as an
785 integer type" rule.
786
787 For example, in
788
789 struct s { char c[3]; } wibble;
790 struct s foo(void) { return wibble; }
791
792 the return value from foo() will be in memory, not
793 in R0, because there is no 3-byte integer type.
794
7fe958be
EZ
795 Similarly, in
796
797 struct s { char c[2]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 because a struct containing two chars has alignment 1, that matches
801 type char, but size 2, that matches type short. There's no integer
802 type that has alignment 1 and size 2, so the struct is returned in
c378eb4e 803 memory. */
9a5cef92 804
1c0159e0 805static int
c055b101 806sh_use_struct_convention (int renesas_abi, struct type *type)
1c0159e0
CV
807{
808 int len = TYPE_LENGTH (type);
809 int nelem = TYPE_NFIELDS (type);
3f997a97 810
c055b101
CV
811 /* The Renesas ABI returns aggregate types always on stack. */
812 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
813 || TYPE_CODE (type) == TYPE_CODE_UNION))
814 return 1;
815
3f997a97
CV
816 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
817 fit in two registers anyway) use struct convention. */
818 if (len != 1 && len != 2 && len != 4 && len != 8)
819 return 1;
820
821 /* Scalar types and aggregate types with exactly one field are aligned
822 by definition. They are returned in registers. */
823 if (nelem <= 1)
824 return 0;
825
826 /* If the first field in the aggregate has the same length as the entire
827 aggregate type, the type is returned in registers. */
828 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
829 return 0;
830
831 /* If the size of the aggregate is 8 bytes and the first field is
832 of size 4 bytes its alignment is equal to long long's alignment,
833 so it's returned in registers. */
834 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
835 return 0;
836
837 /* Otherwise use struct convention. */
838 return 1;
283150cd
EZ
839}
840
c055b101
CV
841static int
842sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
843{
844 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
845 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
846 return 1;
847 return sh_use_struct_convention (renesas_abi, type);
848}
849
19f59343
MS
850static CORE_ADDR
851sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
852{
853 return sp & ~3;
854}
855
55ff77ac 856/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
857 Setup the function arguments for calling a function in the inferior.
858
85a453d5 859 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
860 which are dedicated for passing function arguments. Up to the first
861 four arguments (depending on size) may go into these registers.
862 The rest go on the stack.
863
6df2bf50
MS
864 MVS: Except on SH variants that have floating point registers.
865 In that case, float and double arguments are passed in the same
866 manner, but using FP registers instead of GP registers.
867
c906108c
SS
868 Arguments that are smaller than 4 bytes will still take up a whole
869 register or a whole 32-bit word on the stack, and will be
870 right-justified in the register or the stack word. This includes
871 chars, shorts, and small aggregate types.
872
873 Arguments that are larger than 4 bytes may be split between two or
874 more registers. If there are not enough registers free, an argument
875 may be passed partly in a register (or registers), and partly on the
c378eb4e 876 stack. This includes doubles, long longs, and larger aggregates.
c906108c
SS
877 As far as I know, there is no upper limit to the size of aggregates
878 that will be passed in this way; in other words, the convention of
879 passing a pointer to a large aggregate instead of a copy is not used.
880
6df2bf50 881 MVS: The above appears to be true for the SH variants that do not
55ff77ac 882 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
883 aggregate argument onto the stack (and not place it in registers)
884 if it is larger than 16 bytes (four GP registers).
885
c906108c
SS
886 An exceptional case exists for struct arguments (and possibly other
887 aggregates such as arrays) if the size is larger than 4 bytes but
888 not a multiple of 4 bytes. In this case the argument is never split
889 between the registers and the stack, but instead is copied in its
890 entirety onto the stack, AND also copied into as many registers as
891 there is room for. In other words, space in registers permitting,
892 two copies of the same argument are passed in. As far as I can tell,
893 only the one on the stack is used, although that may be a function
894 of the level of compiler optimization. I suspect this is a compiler
895 bug. Arguments of these odd sizes are left-justified within the
896 word (as opposed to arguments smaller than 4 bytes, which are
897 right-justified).
c5aa993b 898
c906108c
SS
899 If the function is to return an aggregate type such as a struct, it
900 is either returned in the normal return value register R0 (if its
901 size is no greater than one byte), or else the caller must allocate
902 space into which the callee will copy the return value (if the size
903 is greater than one byte). In this case, a pointer to the return
904 value location is passed into the callee in register R2, which does
905 not displace any of the other arguments passed in via registers R4
c378eb4e 906 to R7. */
c906108c 907
c378eb4e 908/* Helper function to justify value in register according to endianess. */
e5e33cd9 909static char *
d93859e2 910sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
e5e33cd9
CV
911{
912 static char valbuf[4];
913
617daa0e 914 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
915 if (len < 4)
916 {
c378eb4e 917 /* value gets right-justified in the register or stack word. */
d93859e2 918 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
0fd88904 919 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
e5e33cd9 920 else
0fd88904 921 memcpy (valbuf, (char *) value_contents (val), len);
e5e33cd9
CV
922 return valbuf;
923 }
0fd88904 924 return (char *) value_contents (val);
617daa0e 925}
e5e33cd9 926
c378eb4e 927/* Helper function to eval number of bytes to allocate on stack. */
e5e33cd9
CV
928static CORE_ADDR
929sh_stack_allocsize (int nargs, struct value **args)
930{
931 int stack_alloc = 0;
932 while (nargs-- > 0)
4991999e 933 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
934 return stack_alloc;
935}
936
937/* Helper functions for getting the float arguments right. Registers usage
938 depends on the ABI and the endianess. The comments should enlighten how
c378eb4e 939 it's intended to work. */
e5e33cd9 940
c378eb4e 941/* This array stores which of the float arg registers are already in use. */
e5e33cd9
CV
942static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
943
c378eb4e 944/* This function just resets the above array to "no reg used so far". */
e5e33cd9
CV
945static void
946sh_init_flt_argreg (void)
947{
948 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
949}
950
951/* This function returns the next register to use for float arg passing.
952 It returns either a valid value between FLOAT_ARG0_REGNUM and
953 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
954 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
955
956 Note that register number 0 in flt_argreg_array corresponds with the
957 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
958 29) the parity of the register number is preserved, which is important
c378eb4e 959 for the double register passing test (see the "argreg & 1" test below). */
e5e33cd9 960static int
c055b101 961sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
e5e33cd9
CV
962{
963 int argreg;
964
c378eb4e 965 /* First search for the next free register. */
617daa0e
CV
966 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
967 ++argreg)
e5e33cd9
CV
968 if (!flt_argreg_array[argreg])
969 break;
970
c378eb4e 971 /* No register left? */
e5e33cd9
CV
972 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
973 return FLOAT_ARGLAST_REGNUM + 1;
974
975 if (len == 8)
976 {
c378eb4e 977 /* Doubles are always starting in a even register number. */
e5e33cd9 978 if (argreg & 1)
617daa0e 979 {
c055b101
CV
980 /* In gcc ABI, the skipped register is lost for further argument
981 passing now. Not so in Renesas ABI. */
982 if (!sh_is_renesas_calling_convention (func_type))
983 flt_argreg_array[argreg] = 1;
e5e33cd9
CV
984
985 ++argreg;
986
c378eb4e 987 /* No register left? */
e5e33cd9
CV
988 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
989 return FLOAT_ARGLAST_REGNUM + 1;
990 }
c378eb4e 991 /* Also mark the next register as used. */
e5e33cd9
CV
992 flt_argreg_array[argreg + 1] = 1;
993 }
c055b101
CV
994 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
995 && !sh_is_renesas_calling_convention (func_type))
e5e33cd9 996 {
c378eb4e 997 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
e5e33cd9
CV
998 if (!flt_argreg_array[argreg + 1])
999 ++argreg;
1000 }
1001 flt_argreg_array[argreg] = 1;
1002 return FLOAT_ARG0_REGNUM + argreg;
1003}
1004
afce3d2a
CV
1005/* Helper function which figures out, if a type is treated like a float type.
1006
2e952408 1007 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
1008 Structures with exactly one member, which is of type float or double, are
1009 treated exactly as the base types float or double:
1010
1011 struct sf {
1012 float f;
1013 };
1014
1015 struct sd {
1016 double d;
1017 };
1018
1019 are handled the same way as just
1020
1021 float f;
1022
1023 double d;
1024
1025 As a result, arguments of these struct types are pushed into floating point
1026 registers exactly as floats or doubles, using the same decision algorithm.
1027
1028 The same is valid if these types are used as function return types. The
1029 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1030 or even using struct convention as it is for other structs. */
1031
1032static int
1033sh_treat_as_flt_p (struct type *type)
1034{
afce3d2a
CV
1035 /* Ordinary float types are obviously treated as float. */
1036 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1037 return 1;
1038 /* Otherwise non-struct types are not treated as float. */
1039 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1040 return 0;
1041 /* Otherwise structs with more than one memeber are not treated as float. */
1042 if (TYPE_NFIELDS (type) != 1)
1043 return 0;
1044 /* Otherwise if the type of that member is float, the whole type is
1045 treated as float. */
1046 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1047 return 1;
1048 /* Otherwise it's not treated as float. */
1049 return 0;
1050}
1051
cc17453a 1052static CORE_ADDR
617daa0e 1053sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1054 struct value *function,
617daa0e 1055 struct regcache *regcache,
6df2bf50 1056 CORE_ADDR bp_addr, int nargs,
617daa0e 1057 struct value **args,
6df2bf50
MS
1058 CORE_ADDR sp, int struct_return,
1059 CORE_ADDR struct_addr)
1060{
e17a4113 1061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1062 int stack_offset = 0;
1063 int argreg = ARG0_REGNUM;
8748518b 1064 int flt_argreg = 0;
6df2bf50 1065 int argnum;
c055b101 1066 struct type *func_type = value_type (function);
6df2bf50
MS
1067 struct type *type;
1068 CORE_ADDR regval;
1069 char *val;
8748518b 1070 int len, reg_size = 0;
afce3d2a
CV
1071 int pass_on_stack = 0;
1072 int treat_as_flt;
c055b101
CV
1073 int last_reg_arg = INT_MAX;
1074
1075 /* The Renesas ABI expects all varargs arguments, plus the last
1076 non-vararg argument to be on the stack, no matter how many
1077 registers have been used so far. */
1078 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1079 && TYPE_VARARGS (func_type))
c055b101 1080 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
6df2bf50 1081
c378eb4e 1082 /* First force sp to a 4-byte alignment. */
6df2bf50
MS
1083 sp = sh_frame_align (gdbarch, sp);
1084
c378eb4e 1085 /* Make room on stack for args. */
e5e33cd9
CV
1086 sp -= sh_stack_allocsize (nargs, args);
1087
c378eb4e 1088 /* Initialize float argument mechanism. */
e5e33cd9 1089 sh_init_flt_argreg ();
6df2bf50
MS
1090
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 16 bytes
1093 in four registers available. Loop thru args from first to last. */
e5e33cd9 1094 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1095 {
4991999e 1096 type = value_type (args[argnum]);
6df2bf50 1097 len = TYPE_LENGTH (type);
d93859e2 1098 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
e5e33cd9
CV
1099
1100 /* Some decisions have to be made how various types are handled.
c378eb4e 1101 This also differs in different ABIs. */
e5e33cd9 1102 pass_on_stack = 0;
e5e33cd9 1103
c378eb4e 1104 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1105 treat_as_flt = sh_treat_as_flt_p (type);
1106 if (treat_as_flt)
c055b101
CV
1107 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1108 /* In Renesas ABI, long longs and aggregate types are always passed
1109 on stack. */
1110 else if (sh_is_renesas_calling_convention (func_type)
1111 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1112 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1113 || TYPE_CODE (type) == TYPE_CODE_UNION))
1114 pass_on_stack = 1;
afce3d2a
CV
1115 /* In contrast to non-FPU CPUs, arguments are never split between
1116 registers and stack. If an argument doesn't fit in the remaining
1117 registers it's always pushed entirely on the stack. */
1118 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1119 pass_on_stack = 1;
48db5a3c 1120
6df2bf50
MS
1121 while (len > 0)
1122 {
afce3d2a
CV
1123 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1124 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
c055b101
CV
1125 || pass_on_stack))
1126 || argnum > last_reg_arg)
617daa0e 1127 {
c378eb4e 1128 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1129 reg_size = (len + 3) & ~3;
1130 write_memory (sp + stack_offset, val, reg_size);
1131 stack_offset += reg_size;
6df2bf50 1132 }
afce3d2a 1133 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1134 {
e5e33cd9
CV
1135 /* Argument goes in a float argument register. */
1136 reg_size = register_size (gdbarch, flt_argreg);
e17a4113 1137 regval = extract_unsigned_integer (val, reg_size, byte_order);
2e952408
CV
1138 /* In little endian mode, float types taking two registers
1139 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1140 be stored swapped in the argument registers. The below
1141 code first writes the first 32 bits in the next but one
1142 register, increments the val and len values accordingly
1143 and then proceeds as normal by writing the second 32 bits
c378eb4e 1144 into the next register. */
b47193f7 1145 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2e952408
CV
1146 && TYPE_LENGTH (type) == 2 * reg_size)
1147 {
1148 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1149 regval);
1150 val += reg_size;
1151 len -= reg_size;
c378eb4e
MS
1152 regval = extract_unsigned_integer (val, reg_size,
1153 byte_order);
2e952408 1154 }
6df2bf50
MS
1155 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1156 }
afce3d2a 1157 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1158 {
6df2bf50 1159 /* there's room in a register */
e5e33cd9 1160 reg_size = register_size (gdbarch, argreg);
e17a4113 1161 regval = extract_unsigned_integer (val, reg_size, byte_order);
6df2bf50
MS
1162 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1163 }
c378eb4e
MS
1164 /* Store the value one register at a time or in one step on
1165 stack. */
e5e33cd9
CV
1166 len -= reg_size;
1167 val += reg_size;
6df2bf50
MS
1168 }
1169 }
1170
c055b101
CV
1171 if (struct_return)
1172 {
1173 if (sh_is_renesas_calling_convention (func_type))
1174 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1175 the stack and store the struct return address there. */
e17a4113 1176 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1177 else
1178 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1179 its own dedicated register. */
1180 regcache_cooked_write_unsigned (regcache,
1181 STRUCT_RETURN_REGNUM, struct_addr);
1182 }
1183
c378eb4e 1184 /* Store return address. */
55ff77ac 1185 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1186
1187 /* Update stack pointer. */
3e8c568d 1188 regcache_cooked_write_unsigned (regcache,
b47193f7 1189 gdbarch_sp_regnum (gdbarch), sp);
6df2bf50
MS
1190
1191 return sp;
1192}
1193
1194static CORE_ADDR
617daa0e 1195sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1196 struct value *function,
617daa0e
CV
1197 struct regcache *regcache,
1198 CORE_ADDR bp_addr,
1199 int nargs, struct value **args,
1200 CORE_ADDR sp, int struct_return,
6df2bf50 1201 CORE_ADDR struct_addr)
c906108c 1202{
e17a4113 1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1204 int stack_offset = 0;
1205 int argreg = ARG0_REGNUM;
c906108c 1206 int argnum;
c055b101 1207 struct type *func_type = value_type (function);
c906108c
SS
1208 struct type *type;
1209 CORE_ADDR regval;
1210 char *val;
c055b101
CV
1211 int len, reg_size = 0;
1212 int pass_on_stack = 0;
1213 int last_reg_arg = INT_MAX;
1214
1215 /* The Renesas ABI expects all varargs arguments, plus the last
1216 non-vararg argument to be on the stack, no matter how many
1217 registers have been used so far. */
1218 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1219 && TYPE_VARARGS (func_type))
c055b101 1220 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
c906108c 1221
c378eb4e 1222 /* First force sp to a 4-byte alignment. */
19f59343 1223 sp = sh_frame_align (gdbarch, sp);
c906108c 1224
c378eb4e 1225 /* Make room on stack for args. */
e5e33cd9 1226 sp -= sh_stack_allocsize (nargs, args);
c906108c 1227
c906108c
SS
1228 /* Now load as many as possible of the first arguments into
1229 registers, and push the rest onto the stack. There are 16 bytes
1230 in four registers available. Loop thru args from first to last. */
e5e33cd9 1231 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1232 {
4991999e 1233 type = value_type (args[argnum]);
c5aa993b 1234 len = TYPE_LENGTH (type);
d93859e2 1235 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
c906108c 1236
c055b101 1237 /* Some decisions have to be made how various types are handled.
c378eb4e 1238 This also differs in different ABIs. */
c055b101
CV
1239 pass_on_stack = 0;
1240 /* Renesas ABI pushes doubles and long longs entirely on stack.
1241 Same goes for aggregate types. */
1242 if (sh_is_renesas_calling_convention (func_type)
1243 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1244 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1245 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1246 || TYPE_CODE (type) == TYPE_CODE_UNION))
1247 pass_on_stack = 1;
c906108c
SS
1248 while (len > 0)
1249 {
c055b101
CV
1250 if (argreg > ARGLAST_REGNUM || pass_on_stack
1251 || argnum > last_reg_arg)
617daa0e 1252 {
e5e33cd9 1253 /* The remainder of the data goes entirely on the stack,
c378eb4e 1254 4-byte aligned. */
e5e33cd9
CV
1255 reg_size = (len + 3) & ~3;
1256 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1257 stack_offset += reg_size;
c906108c 1258 }
e5e33cd9 1259 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1260 {
c378eb4e 1261 /* There's room in a register. */
e5e33cd9 1262 reg_size = register_size (gdbarch, argreg);
e17a4113 1263 regval = extract_unsigned_integer (val, reg_size, byte_order);
48db5a3c 1264 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1265 }
e5e33cd9
CV
1266 /* Store the value reg_size bytes at a time. This means that things
1267 larger than reg_size bytes may go partly in registers and partly
c906108c 1268 on the stack. */
e5e33cd9
CV
1269 len -= reg_size;
1270 val += reg_size;
c906108c
SS
1271 }
1272 }
48db5a3c 1273
c055b101
CV
1274 if (struct_return)
1275 {
1276 if (sh_is_renesas_calling_convention (func_type))
1277 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1278 the stack and store the struct return address there. */
e17a4113 1279 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1280 else
1281 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1282 its own dedicated register. */
1283 regcache_cooked_write_unsigned (regcache,
1284 STRUCT_RETURN_REGNUM, struct_addr);
1285 }
1286
c378eb4e 1287 /* Store return address. */
55ff77ac 1288 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1289
1290 /* Update stack pointer. */
3e8c568d 1291 regcache_cooked_write_unsigned (regcache,
b47193f7 1292 gdbarch_sp_regnum (gdbarch), sp);
48db5a3c 1293
c906108c
SS
1294 return sp;
1295}
1296
cc17453a
EZ
1297/* Find a function's return value in the appropriate registers (in
1298 regbuf), and copy it into valbuf. Extract from an array REGBUF
1299 containing the (raw) register state a function return value of type
1300 TYPE, and copy that, in virtual format, into VALBUF. */
1301static void
3ffc5b9b
CV
1302sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1303 void *valbuf)
c906108c 1304{
e17a4113
UW
1305 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cc17453a 1307 int len = TYPE_LENGTH (type);
3116c80a
EZ
1308 int return_register = R0_REGNUM;
1309 int offset;
617daa0e 1310
cc17453a 1311 if (len <= 4)
3116c80a 1312 {
48db5a3c
CV
1313 ULONGEST c;
1314
1315 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
e17a4113 1316 store_unsigned_integer (valbuf, len, byte_order, c);
3116c80a 1317 }
48db5a3c 1318 else if (len == 8)
3116c80a 1319 {
48db5a3c
CV
1320 int i, regnum = R0_REGNUM;
1321 for (i = 0; i < len; i += 4)
617daa0e 1322 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a
EZ
1323 }
1324 else
8a3fe4f8 1325 error (_("bad size for return value"));
3116c80a
EZ
1326}
1327
1328static void
3ffc5b9b
CV
1329sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1330 void *valbuf)
3116c80a 1331{
d93859e2 1332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1333 if (sh_treat_as_flt_p (type))
3116c80a 1334 {
48db5a3c 1335 int len = TYPE_LENGTH (type);
d93859e2 1336 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1337 for (i = 0; i < len; i += 4)
d93859e2 1338 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c378eb4e
MS
1339 regcache_raw_read (regcache, regnum++,
1340 (char *) valbuf + len - 4 - i);
2e952408
CV
1341 else
1342 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a 1343 }
cc17453a 1344 else
3ffc5b9b 1345 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1346}
c906108c 1347
cc17453a
EZ
1348/* Write into appropriate registers a function return value
1349 of type TYPE, given in virtual format.
1350 If the architecture is sh4 or sh3e, store a function's return value
1351 in the R0 general register or in the FP0 floating point register,
c378eb4e
MS
1352 depending on the type of the return value. In all the other cases
1353 the result is stored in r0, left-justified. */
cc17453a 1354static void
3ffc5b9b
CV
1355sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1356 const void *valbuf)
cc17453a 1357{
e17a4113
UW
1358 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48db5a3c
CV
1360 ULONGEST val;
1361 int len = TYPE_LENGTH (type);
d19b71be 1362
48db5a3c 1363 if (len <= 4)
d19b71be 1364 {
e17a4113 1365 val = extract_unsigned_integer (valbuf, len, byte_order);
48db5a3c 1366 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1367 }
1368 else
48db5a3c
CV
1369 {
1370 int i, regnum = R0_REGNUM;
1371 for (i = 0; i < len; i += 4)
617daa0e 1372 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1373 }
cc17453a 1374}
c906108c 1375
cc17453a 1376static void
3ffc5b9b
CV
1377sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1378 const void *valbuf)
cc17453a 1379{
d93859e2 1380 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1381 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1382 {
1383 int len = TYPE_LENGTH (type);
d93859e2 1384 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1385 for (i = 0; i < len; i += 4)
d93859e2 1386 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c8a3b559
CV
1387 regcache_raw_write (regcache, regnum++,
1388 (char *) valbuf + len - 4 - i);
1389 else
1390 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1391 }
cc17453a 1392 else
3ffc5b9b 1393 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1394}
1395
c0409442 1396static enum return_value_convention
6a3a010b 1397sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1398 struct type *type, struct regcache *regcache,
18cf8b5b 1399 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1400{
6a3a010b
MR
1401 struct type *func_type = function ? value_type (function) : NULL;
1402
c055b101
CV
1403 if (sh_use_struct_convention_nofpu (
1404 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1405 return RETURN_VALUE_STRUCT_CONVENTION;
1406 if (writebuf)
3ffc5b9b 1407 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1408 else if (readbuf)
3ffc5b9b 1409 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1410 return RETURN_VALUE_REGISTER_CONVENTION;
1411}
1412
1413static enum return_value_convention
6a3a010b 1414sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1415 struct type *type, struct regcache *regcache,
18cf8b5b 1416 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1417{
6a3a010b
MR
1418 struct type *func_type = function ? value_type (function) : NULL;
1419
c055b101
CV
1420 if (sh_use_struct_convention (
1421 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1422 return RETURN_VALUE_STRUCT_CONVENTION;
1423 if (writebuf)
3ffc5b9b 1424 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1425 else if (readbuf)
3ffc5b9b 1426 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1427 return RETURN_VALUE_REGISTER_CONVENTION;
1428}
1429
da962468
CV
1430static struct type *
1431sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1432{
b47193f7 1433 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
da962468 1434 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1435 return builtin_type (gdbarch)->builtin_float;
da962468 1436 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1437 return builtin_type (gdbarch)->builtin_double;
da962468 1438 else
0dfff4cb 1439 return builtin_type (gdbarch)->builtin_int;
da962468
CV
1440}
1441
cc17453a
EZ
1442/* Return the GDB type object for the "standard" data type
1443 of data in register N. */
cc17453a 1444static struct type *
48db5a3c 1445sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1446{
b47193f7 1447 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1448 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1449 return builtin_type (gdbarch)->builtin_float;
8db62801 1450 else
0dfff4cb 1451 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1452}
1453
7f4dbe94 1454static struct type *
0dfff4cb 1455sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
7f4dbe94 1456{
e3506a9f
UW
1457 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1458 0, high);
7f4dbe94
EZ
1459}
1460
53116e27 1461static struct type *
48db5a3c 1462sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27 1463{
b47193f7 1464 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1465 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1466 return builtin_type (gdbarch)->builtin_float;
617daa0e 1467 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1468 return builtin_type (gdbarch)->builtin_double;
617daa0e 1469 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
0dfff4cb 1470 return sh_sh4_build_float_register_type (gdbarch, 3);
53116e27 1471 else
0dfff4cb 1472 return builtin_type (gdbarch)->builtin_int;
53116e27
EZ
1473}
1474
cc17453a 1475static struct type *
48db5a3c 1476sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1477{
0dfff4cb 1478 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1479}
1480
dda63807
AS
1481/* Is a register in a reggroup?
1482 The default code in reggroup.c doesn't identify system registers, some
1483 float registers or any of the vector registers.
1484 TODO: sh2a and dsp registers. */
63807e1d 1485static int
dda63807
AS
1486sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1487 struct reggroup *reggroup)
1488{
b47193f7
UW
1489 if (gdbarch_register_name (gdbarch, regnum) == NULL
1490 || *gdbarch_register_name (gdbarch, regnum) == '\0')
dda63807
AS
1491 return 0;
1492
1493 if (reggroup == float_reggroup
1494 && (regnum == FPUL_REGNUM
1495 || regnum == FPSCR_REGNUM))
1496 return 1;
1497
1498 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1499 {
1500 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1501 return 1;
1502 if (reggroup == general_reggroup)
1503 return 0;
1504 }
1505
1506 if (regnum == VBR_REGNUM
1507 || regnum == SR_REGNUM
1508 || regnum == FPSCR_REGNUM
1509 || regnum == SSR_REGNUM
1510 || regnum == SPC_REGNUM)
1511 {
1512 if (reggroup == system_reggroup)
1513 return 1;
1514 if (reggroup == general_reggroup)
1515 return 0;
1516 }
1517
1518 /* The default code can cope with any other registers. */
1519 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1520}
1521
fb409745 1522/* On the sh4, the DRi pseudo registers are problematic if the target
c378eb4e 1523 is little endian. When the user writes one of those registers, for
fb409745
EZ
1524 instance with 'ser var $dr0=1', we want the double to be stored
1525 like this:
1526 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1527 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1528
1529 This corresponds to little endian byte order & big endian word
1530 order. However if we let gdb write the register w/o conversion, it
1531 will write fr0 and fr1 this way:
1532 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1533 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1534 because it will consider fr0 and fr1 as a single LE stretch of memory.
1535
1536 To achieve what we want we must force gdb to store things in
1537 floatformat_ieee_double_littlebyte_bigword (which is defined in
1538 include/floatformat.h and libiberty/floatformat.c.
1539
1540 In case the target is big endian, there is no problem, the
1541 raw bytes will look like:
1542 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1543 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1544
1545 The other pseudo registers (the FVs) also don't pose a problem
c378eb4e 1546 because they are stored as 4 individual FP elements. */
fb409745 1547
7bd872fe 1548static void
b66ba949
CV
1549sh_register_convert_to_virtual (int regnum, struct type *type,
1550 char *from, char *to)
55ff77ac 1551{
617daa0e 1552 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1553 {
1554 DOUBLEST val;
617daa0e
CV
1555 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1556 from, &val);
55ff77ac 1557 store_typed_floating (to, type, val);
283150cd
EZ
1558 }
1559 else
617daa0e
CV
1560 error
1561 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1562}
1563
1564static void
b66ba949
CV
1565sh_register_convert_to_raw (struct type *type, int regnum,
1566 const void *from, void *to)
283150cd 1567{
617daa0e 1568 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1569 {
48db5a3c 1570 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1571 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1572 &val, to);
283150cd
EZ
1573 }
1574 else
8a3fe4f8 1575 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1576}
1577
c378eb4e 1578/* For vectors of 4 floating point registers. */
1c0159e0 1579static int
d93859e2 1580fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1c0159e0
CV
1581{
1582 int fp_regnum;
1583
d93859e2 1584 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1585 + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1586 return fp_regnum;
1587}
1588
c378eb4e 1589/* For double precision floating point registers, i.e 2 fp regs. */
1c0159e0 1590static int
d93859e2 1591dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1c0159e0
CV
1592{
1593 int fp_regnum;
1594
d93859e2 1595 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1596 + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1597 return fp_regnum;
1598}
1599
05d1431c
PA
1600/* Concatenate PORTIONS contiguous raw registers starting at
1601 BASE_REGNUM into BUFFER. */
1602
1603static enum register_status
1604pseudo_register_read_portions (struct gdbarch *gdbarch,
1605 struct regcache *regcache,
1606 int portions,
1607 int base_regnum, gdb_byte *buffer)
1608{
1609 int portion;
1610
1611 for (portion = 0; portion < portions; portion++)
1612 {
1613 enum register_status status;
1614 gdb_byte *b;
1615
1616 b = buffer + register_size (gdbarch, base_regnum) * portion;
1617 status = regcache_raw_read (regcache, base_regnum + portion, b);
1618 if (status != REG_VALID)
1619 return status;
1620 }
1621
1622 return REG_VALID;
1623}
1624
1625static enum register_status
d8124050 1626sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1627 int reg_nr, gdb_byte *buffer)
53116e27 1628{
05d1431c 1629 int base_regnum;
d9d9c31f 1630 char temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1631 enum register_status status;
53116e27 1632
9bed62d7 1633 if (reg_nr == PSEUDO_BANK_REGNUM)
05d1431c
PA
1634 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1635 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe 1636 {
d93859e2 1637 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
7bd872fe 1638
c378eb4e 1639 /* Build the value in the provided buffer. */
7bd872fe 1640 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1641 status = pseudo_register_read_portions (gdbarch, regcache,
1642 2, base_regnum, temp_buffer);
1643 if (status == REG_VALID)
1644 {
1645 /* We must pay attention to the endiannes. */
1646 sh_register_convert_to_virtual (reg_nr,
1647 register_type (gdbarch, reg_nr),
1648 temp_buffer, buffer);
1649 }
1650 return status;
7bd872fe 1651 }
617daa0e 1652 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1653 {
d93859e2 1654 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
7bd872fe
EZ
1655
1656 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1657 return pseudo_register_read_portions (gdbarch, regcache,
1658 4, base_regnum, buffer);
53116e27 1659 }
05d1431c
PA
1660 else
1661 gdb_assert_not_reached ("invalid pseudo register number");
53116e27
EZ
1662}
1663
a78f21af 1664static void
d8124050 1665sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1666 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
1667{
1668 int base_regnum, portion;
d9d9c31f 1669 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 1670
9bed62d7
CV
1671 if (reg_nr == PSEUDO_BANK_REGNUM)
1672 {
1673 /* When the bank register is written to, the whole register bank
1674 is switched and all values in the bank registers must be read
c378eb4e 1675 from the target/sim again. We're just invalidating the regcache
9bed62d7
CV
1676 so that a re-read happens next time it's necessary. */
1677 int bregnum;
1678
1679 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1680 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
9c5ea4d9 1681 regcache_invalidate (regcache, bregnum);
9bed62d7
CV
1682 }
1683 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1684 {
d93859e2 1685 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
53116e27 1686
c378eb4e 1687 /* We must pay attention to the endiannes. */
7b9ee6a8 1688 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
b66ba949 1689 reg_nr, buffer, temp_buffer);
7bd872fe 1690
53116e27
EZ
1691 /* Write the real regs for which this one is an alias. */
1692 for (portion = 0; portion < 2; portion++)
617daa0e 1693 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 1694 (temp_buffer
617daa0e
CV
1695 + register_size (gdbarch,
1696 base_regnum) * portion));
53116e27 1697 }
617daa0e 1698 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1699 {
d93859e2 1700 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
53116e27
EZ
1701
1702 /* Write the real regs for which this one is an alias. */
1703 for (portion = 0; portion < 4; portion++)
d8124050
AC
1704 regcache_raw_write (regcache, base_regnum + portion,
1705 ((char *) buffer
617daa0e
CV
1706 + register_size (gdbarch,
1707 base_regnum) * portion));
53116e27
EZ
1708 }
1709}
1710
2f14585c 1711static int
e7faf938 1712sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2f14585c 1713{
e7faf938
MD
1714 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1715 return legacy_register_sim_regno (gdbarch, nr);
f2ea0907
CV
1716 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1717 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1718 if (nr == MOD_REGNUM)
2f14585c 1719 return SIM_SH_MOD_REGNUM;
f2ea0907 1720 if (nr == RS_REGNUM)
2f14585c 1721 return SIM_SH_RS_REGNUM;
f2ea0907 1722 if (nr == RE_REGNUM)
2f14585c 1723 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1724 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1725 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1726 return nr;
1727}
1c0159e0 1728
da962468 1729static int
e7faf938 1730sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
da962468
CV
1731{
1732 switch (nr)
1733 {
1734 case TBR_REGNUM:
1735 return SIM_SH_TBR_REGNUM;
1736 case IBNR_REGNUM:
1737 return SIM_SH_IBNR_REGNUM;
1738 case IBCR_REGNUM:
1739 return SIM_SH_IBCR_REGNUM;
1740 case BANK_REGNUM:
1741 return SIM_SH_BANK_REGNUM;
1742 case MACLB_REGNUM:
1743 return SIM_SH_BANK_MACL_REGNUM;
1744 case GBRB_REGNUM:
1745 return SIM_SH_BANK_GBR_REGNUM;
1746 case PRB_REGNUM:
1747 return SIM_SH_BANK_PR_REGNUM;
1748 case IVNB_REGNUM:
1749 return SIM_SH_BANK_IVN_REGNUM;
1750 case MACHB_REGNUM:
1751 return SIM_SH_BANK_MACH_REGNUM;
1752 default:
1753 break;
1754 }
e7faf938 1755 return legacy_register_sim_regno (gdbarch, nr);
da962468
CV
1756}
1757
357d3800
AS
1758/* Set up the register unwinding such that call-clobbered registers are
1759 not displayed in frames >0 because the true value is not certain.
1760 The 'undefined' registers will show up as 'not available' unless the
1761 CFI says otherwise.
1762
1763 This function is currently set up for SH4 and compatible only. */
1764
1765static void
1766sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1767 struct dwarf2_frame_state_reg *reg,
4a4e5149 1768 struct frame_info *this_frame)
357d3800
AS
1769{
1770 /* Mark the PC as the destination for the return address. */
b47193f7 1771 if (regnum == gdbarch_pc_regnum (gdbarch))
357d3800
AS
1772 reg->how = DWARF2_FRAME_REG_RA;
1773
1774 /* Mark the stack pointer as the call frame address. */
b47193f7 1775 else if (regnum == gdbarch_sp_regnum (gdbarch))
357d3800
AS
1776 reg->how = DWARF2_FRAME_REG_CFA;
1777
1778 /* The above was taken from the default init_reg in dwarf2-frame.c
1779 while the below is SH specific. */
1780
1781 /* Caller save registers. */
1782 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1783 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1784 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1785 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1786 || (regnum == MACH_REGNUM)
1787 || (regnum == MACL_REGNUM)
1788 || (regnum == FPUL_REGNUM)
1789 || (regnum == SR_REGNUM))
1790 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1791
1792 /* Callee save registers. */
1793 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1794 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1795 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1796 || (regnum == FV0_REGNUM+3))
1797 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1798
1799 /* Other registers. These are not in the ABI and may or may not
1800 mean anything in frames >0 so don't show them. */
1801 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1802 || (regnum == GBR_REGNUM)
1803 || (regnum == VBR_REGNUM)
1804 || (regnum == FPSCR_REGNUM)
1805 || (regnum == SSR_REGNUM)
1806 || (regnum == SPC_REGNUM))
1807 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1808}
1809
1c0159e0
CV
1810static struct sh_frame_cache *
1811sh_alloc_frame_cache (void)
1812{
1813 struct sh_frame_cache *cache;
1814 int i;
1815
1816 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1817
1818 /* Base address. */
1819 cache->base = 0;
1820 cache->saved_sp = 0;
1821 cache->sp_offset = 0;
1822 cache->pc = 0;
1823
1824 /* Frameless until proven otherwise. */
1825 cache->uses_fp = 0;
617daa0e 1826
1c0159e0
CV
1827 /* Saved registers. We initialize these to -1 since zero is a valid
1828 offset (that's where fp is supposed to be stored). */
1829 for (i = 0; i < SH_NUM_REGS; i++)
1830 {
1831 cache->saved_regs[i] = -1;
1832 }
617daa0e 1833
1c0159e0 1834 return cache;
617daa0e 1835}
1c0159e0
CV
1836
1837static struct sh_frame_cache *
94afd7a6 1838sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1c0159e0 1839{
e17a4113 1840 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c0159e0
CV
1841 struct sh_frame_cache *cache;
1842 CORE_ADDR current_pc;
1843 int i;
1844
1845 if (*this_cache)
1846 return *this_cache;
1847
1848 cache = sh_alloc_frame_cache ();
1849 *this_cache = cache;
1850
1851 /* In principle, for normal frames, fp holds the frame pointer,
1852 which holds the base address for the current stack frame.
1853 However, for functions that don't need it, the frame pointer is
1854 optional. For these "frameless" functions the frame pointer is
c378eb4e 1855 actually the frame pointer of the calling frame. */
94afd7a6 1856 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1c0159e0
CV
1857 if (cache->base == 0)
1858 return cache;
1859
94afd7a6
UW
1860 cache->pc = get_frame_func (this_frame);
1861 current_pc = get_frame_pc (this_frame);
1c0159e0 1862 if (cache->pc != 0)
d2ca4222
UW
1863 {
1864 ULONGEST fpscr;
9fc05685
KB
1865
1866 /* Check for the existence of the FPSCR register. If it exists,
1867 fetch its value for use in prologue analysis. Passing a zero
1868 value is the best choice for architecture variants upon which
1869 there's no FPSCR register. */
1870 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1871 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1872 else
1873 fpscr = 0;
1874
e17a4113 1875 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
d2ca4222 1876 }
617daa0e 1877
1c0159e0
CV
1878 if (!cache->uses_fp)
1879 {
1880 /* We didn't find a valid frame, which means that CACHE->base
1881 currently holds the frame pointer for our calling frame. If
1882 we're at the start of a function, or somewhere half-way its
1883 prologue, the function's frame probably hasn't been fully
1884 setup yet. Try to reconstruct the base address for the stack
1885 frame by looking at the stack pointer. For truly "frameless"
1886 functions this might work too. */
94afd7a6 1887 cache->base = get_frame_register_unsigned
e17a4113 1888 (this_frame, gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1889 }
1890
1891 /* Now that we have the base address for the stack frame we can
1892 calculate the value of sp in the calling frame. */
1893 cache->saved_sp = cache->base + cache->sp_offset;
1894
1895 /* Adjust all the saved registers such that they contain addresses
1896 instead of offsets. */
1897 for (i = 0; i < SH_NUM_REGS; i++)
1898 if (cache->saved_regs[i] != -1)
1899 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1900
1901 return cache;
1902}
1903
94afd7a6
UW
1904static struct value *
1905sh_frame_prev_register (struct frame_info *this_frame,
1906 void **this_cache, int regnum)
1c0159e0 1907{
94afd7a6
UW
1908 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1909 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1910
1911 gdb_assert (regnum >= 0);
1912
b47193f7 1913 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 1914 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1c0159e0
CV
1915
1916 /* The PC of the previous frame is stored in the PR register of
1917 the current frame. Frob regnum so that we pull the value from
1918 the correct place. */
b47193f7 1919 if (regnum == gdbarch_pc_regnum (gdbarch))
1c0159e0
CV
1920 regnum = PR_REGNUM;
1921
1922 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
94afd7a6
UW
1923 return frame_unwind_got_memory (this_frame, regnum,
1924 cache->saved_regs[regnum]);
1c0159e0 1925
94afd7a6 1926 return frame_unwind_got_register (this_frame, regnum, regnum);
1c0159e0
CV
1927}
1928
1929static void
94afd7a6 1930sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
617daa0e
CV
1931 struct frame_id *this_id)
1932{
94afd7a6 1933 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1934
1935 /* This marks the outermost frame. */
1936 if (cache->base == 0)
1937 return;
1938
1939 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 1940}
1c0159e0 1941
617daa0e 1942static const struct frame_unwind sh_frame_unwind = {
1c0159e0 1943 NORMAL_FRAME,
8fbca658 1944 default_frame_unwind_stop_reason,
1c0159e0 1945 sh_frame_this_id,
94afd7a6
UW
1946 sh_frame_prev_register,
1947 NULL,
1948 default_frame_sniffer
1c0159e0
CV
1949};
1950
1c0159e0
CV
1951static CORE_ADDR
1952sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1953{
3e8c568d 1954 return frame_unwind_register_unsigned (next_frame,
b47193f7 1955 gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1956}
1957
1958static CORE_ADDR
1959sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1960{
3e8c568d 1961 return frame_unwind_register_unsigned (next_frame,
b47193f7 1962 gdbarch_pc_regnum (gdbarch));
1c0159e0
CV
1963}
1964
1965static struct frame_id
94afd7a6 1966sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1c0159e0 1967{
94afd7a6
UW
1968 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1969 gdbarch_sp_regnum (gdbarch));
1970 return frame_id_build (sp, get_frame_pc (this_frame));
1c0159e0
CV
1971}
1972
1973static CORE_ADDR
94afd7a6 1974sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
617daa0e 1975{
94afd7a6 1976 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
617daa0e 1977
1c0159e0
CV
1978 return cache->base;
1979}
617daa0e
CV
1980
1981static const struct frame_base sh_frame_base = {
1c0159e0
CV
1982 &sh_frame_unwind,
1983 sh_frame_base_address,
1984 sh_frame_base_address,
1985 sh_frame_base_address
617daa0e 1986};
1c0159e0 1987
cb2cf4ce
TS
1988static struct sh_frame_cache *
1989sh_make_stub_cache (struct frame_info *this_frame)
1990{
1991 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1992 struct sh_frame_cache *cache;
1993
1994 cache = sh_alloc_frame_cache ();
1995
1996 cache->saved_sp
1997 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
1998
1999 return cache;
2000}
2001
2002static void
2003sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2004 struct frame_id *this_id)
2005{
2006 struct sh_frame_cache *cache;
2007
2008 if (*this_cache == NULL)
2009 *this_cache = sh_make_stub_cache (this_frame);
2010 cache = *this_cache;
2011
2012 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2013}
2014
2015static int
2016sh_stub_unwind_sniffer (const struct frame_unwind *self,
2017 struct frame_info *this_frame,
2018 void **this_prologue_cache)
2019{
2020 CORE_ADDR addr_in_block;
2021
2022 addr_in_block = get_frame_address_in_block (this_frame);
2023 if (in_plt_section (addr_in_block, NULL))
2024 return 1;
2025
2026 return 0;
2027}
2028
2029static const struct frame_unwind sh_stub_unwind =
2030{
2031 NORMAL_FRAME,
2032 default_frame_unwind_stop_reason,
2033 sh_stub_this_id,
2034 sh_frame_prev_register,
2035 NULL,
2036 sh_stub_unwind_sniffer
2037};
2038
1c0159e0
CV
2039/* The epilogue is defined here as the area at the end of a function,
2040 either on the `ret' instruction itself or after an instruction which
c378eb4e 2041 destroys the function's stack frame. */
1c0159e0
CV
2042static int
2043sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2044{
e17a4113 2045 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0
CV
2046 CORE_ADDR func_addr = 0, func_end = 0;
2047
2048 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2049 {
2050 ULONGEST inst;
2051 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2052 for a nop and some fixed data (e.g. big offsets) which are
617daa0e 2053 unfortunately also treated as part of the function (which
c378eb4e 2054 means, they are below func_end. */
1c0159e0
CV
2055 CORE_ADDR addr = func_end - 28;
2056 if (addr < func_addr + 4)
617daa0e 2057 addr = func_addr + 4;
1c0159e0
CV
2058 if (pc < addr)
2059 return 0;
2060
c378eb4e 2061 /* First search forward until hitting an rts. */
1c0159e0 2062 while (addr < func_end
e17a4113 2063 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
1c0159e0
CV
2064 addr += 2;
2065 if (addr >= func_end)
617daa0e 2066 return 0;
1c0159e0
CV
2067
2068 /* At this point we should find a mov.l @r15+,r14 instruction,
2069 either before or after the rts. If not, then the function has
c378eb4e 2070 probably no "normal" epilogue and we bail out here. */
e17a4113
UW
2071 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2072 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2073 byte_order)))
617daa0e 2074 addr -= 2;
e17a4113
UW
2075 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2076 byte_order)))
1c0159e0
CV
2077 return 0;
2078
e17a4113 2079 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99 2080
c378eb4e 2081 /* Step over possible lds.l @r15+,macl. */
03131d99
CV
2082 if (IS_MACL_LDS (inst))
2083 {
2084 addr -= 2;
e17a4113 2085 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99
CV
2086 }
2087
c378eb4e 2088 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2089 if (IS_LDS (inst))
617daa0e 2090 {
1c0159e0 2091 addr -= 2;
e17a4113 2092 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2093 }
2094
c378eb4e 2095 /* Step over possible mov r14,r15. */
1c0159e0 2096 if (IS_MOV_FP_SP (inst))
617daa0e 2097 {
1c0159e0 2098 addr -= 2;
e17a4113 2099 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2100 }
2101
2102 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
c378eb4e 2103 instructions. */
1c0159e0 2104 while (addr > func_addr + 4
617daa0e 2105 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2106 {
2107 addr -= 2;
e17a4113 2108 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2109 }
2110
03131d99
CV
2111 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2112 That's allowed for the epilogue. */
2113 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2114 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2115 && addr > func_addr + 6
e17a4113
UW
2116 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2117 byte_order)))
03131d99
CV
2118 addr -= 4;
2119
1c0159e0
CV
2120 if (pc >= addr)
2121 return 1;
2122 }
2123 return 0;
2124}
c9ac0a72
AS
2125
2126
2127/* Supply register REGNUM from the buffer specified by REGS and LEN
2128 in the register set REGSET to register cache REGCACHE.
2129 REGTABLE specifies where each register can be found in REGS.
2130 If REGNUM is -1, do this for all registers in REGSET. */
2131
2132void
2133sh_corefile_supply_regset (const struct regset *regset,
2134 struct regcache *regcache,
2135 int regnum, const void *regs, size_t len)
2136{
2137 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2139 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2140 ? tdep->core_gregmap
2141 : tdep->core_fpregmap);
2142 int i;
2143
2144 for (i = 0; regmap[i].regnum != -1; i++)
2145 {
2146 if ((regnum == -1 || regnum == regmap[i].regnum)
2147 && regmap[i].offset + 4 <= len)
2148 regcache_raw_supply (regcache, regmap[i].regnum,
2149 (char *)regs + regmap[i].offset);
2150 }
2151}
2152
2153/* Collect register REGNUM in the register set REGSET from register cache
2154 REGCACHE into the buffer specified by REGS and LEN.
2155 REGTABLE specifies where each register can be found in REGS.
2156 If REGNUM is -1, do this for all registers in REGSET. */
2157
2158void
2159sh_corefile_collect_regset (const struct regset *regset,
2160 const struct regcache *regcache,
2161 int regnum, void *regs, size_t len)
2162{
2163 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2166 ? tdep->core_gregmap
2167 : tdep->core_fpregmap);
2168 int i;
2169
2170 for (i = 0; regmap[i].regnum != -1; i++)
2171 {
2172 if ((regnum == -1 || regnum == regmap[i].regnum)
2173 && regmap[i].offset + 4 <= len)
2174 regcache_raw_collect (regcache, regmap[i].regnum,
2175 (char *)regs + regmap[i].offset);
2176 }
2177}
2178
2179/* The following two regsets have the same contents, so it is tempting to
2180 unify them, but they are distiguished by their address, so don't. */
2181
2182struct regset sh_corefile_gregset =
2183{
2184 NULL,
2185 sh_corefile_supply_regset,
2186 sh_corefile_collect_regset
2187};
2188
2189static struct regset sh_corefile_fpregset =
2190{
2191 NULL,
2192 sh_corefile_supply_regset,
2193 sh_corefile_collect_regset
2194};
2195
2196static const struct regset *
2197sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2198 size_t sect_size)
2199{
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2201
2202 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2203 return &sh_corefile_gregset;
2204
2205 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2206 return &sh_corefile_fpregset;
2207
2208 return NULL;
2209}
18648a37
YQ
2210
2211/* This is the implementation of gdbarch method
2212 return_in_first_hidden_param_p. */
2213
2214static int
2215sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2216 struct type *type)
2217{
2218 return 0;
2219}
2220
ccf00f21 2221\f
cc17453a
EZ
2222
2223static struct gdbarch *
fba45db2 2224sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2225{
cc17453a 2226 struct gdbarch *gdbarch;
c9ac0a72 2227 struct gdbarch_tdep *tdep;
d658f924 2228
2d4c29c5
TS
2229 /* SH5 is handled entirely in sh64-tdep.c. */
2230 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2231 return sh64_gdbarch_init (info, arches);
55ff77ac 2232
4be87837
DJ
2233 /* If there is already a candidate, use it. */
2234 arches = gdbarch_list_lookup_by_info (arches, &info);
2235 if (arches != NULL)
2236 return arches->gdbarch;
cc17453a
EZ
2237
2238 /* None found, create a new architecture from the information
c378eb4e 2239 provided. */
c9ac0a72
AS
2240 tdep = XZALLOC (struct gdbarch_tdep);
2241 gdbarch = gdbarch_alloc (&info, tdep);
cc17453a 2242
48db5a3c
CV
2243 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2244 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2245 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c
CV
2246 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2247 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2248 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2249 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2250 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2251
f2ea0907 2252 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2253 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2254 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2255 set_gdbarch_fp0_regnum (gdbarch, -1);
2256 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2257
1c0159e0 2258 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2259 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2260
eaf90c5d 2261 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
48db5a3c 2262
9dae60cc 2263 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2f14585c 2264 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c 2265
c0409442 2266 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
1c0159e0 2267
48db5a3c
CV
2268 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2269 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2270
1c0159e0 2271 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
18648a37
YQ
2272 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2273 sh_return_in_first_hidden_param_p);
1c0159e0 2274
48db5a3c
CV
2275 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2276
19f59343 2277 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2278 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2279 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
94afd7a6 2280 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
1c0159e0
CV
2281 frame_base_set_default (gdbarch, &sh_frame_base);
2282
617daa0e 2283 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
cc17453a 2284
357d3800
AS
2285 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2286
c9ac0a72
AS
2287 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2288
cc17453a 2289 switch (info.bfd_arch_info->mach)
8db62801 2290 {
cc17453a 2291 case bfd_mach_sh:
48db5a3c 2292 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2293 break;
1c0159e0 2294
cc17453a 2295 case bfd_mach_sh2:
48db5a3c 2296 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2297 break;
1c0159e0 2298
2d188dd3 2299 case bfd_mach_sh2e:
c378eb4e 2300 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2301 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2302 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2303
2304 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2305 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2306 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2307 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2308 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2309 break;
1c0159e0 2310
da962468
CV
2311 case bfd_mach_sh2a:
2312 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2313 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2314 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2315
2316 set_gdbarch_fp0_regnum (gdbarch, 25);
2317 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2318 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2319 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2320 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2321 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2322 break;
2323
2324 case bfd_mach_sh2a_nofpu:
2325 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2326 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2327
2328 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2329 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2330 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2331 break;
2332
cc17453a 2333 case bfd_mach_sh_dsp:
48db5a3c 2334 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2335 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2336 break;
1c0159e0 2337
cc17453a 2338 case bfd_mach_sh3:
4e6cbc38
AS
2339 case bfd_mach_sh3_nommu:
2340 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2341 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2342 break;
1c0159e0 2343
cc17453a 2344 case bfd_mach_sh3e:
4e6cbc38 2345 case bfd_mach_sh2a_or_sh3e:
c378eb4e 2346 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2347 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2348 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2349
2350 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2351 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2352 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2353 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2354 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2355 break;
1c0159e0 2356
cc17453a 2357 case bfd_mach_sh3_dsp:
48db5a3c 2358 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2359 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2360 break;
1c0159e0 2361
cc17453a 2362 case bfd_mach_sh4:
474e5826 2363 case bfd_mach_sh4a:
46e8a76b 2364 case bfd_mach_sh2a_or_sh4:
48db5a3c 2365 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2366 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2367 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2368 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2369 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2370 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2371 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2372 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2373 break;
1c0159e0 2374
474e5826
CV
2375 case bfd_mach_sh4_nofpu:
2376 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2377 case bfd_mach_sh4_nommu_nofpu:
2378 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
474e5826
CV
2379 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2380 break;
2381
2382 case bfd_mach_sh4al_dsp:
2383 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2384 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2385 break;
2386
cc17453a 2387 default:
b58cbbf2 2388 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2389 break;
8db62801 2390 }
cc17453a 2391
4be87837
DJ
2392 /* Hook in ABI-specific overrides, if they have been registered. */
2393 gdbarch_init_osabi (info, gdbarch);
d658f924 2394
94afd7a6 2395 dwarf2_append_unwinders (gdbarch);
cb2cf4ce 2396 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
94afd7a6 2397 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
1c0159e0 2398
cc17453a 2399 return gdbarch;
8db62801
EZ
2400}
2401
c055b101
CV
2402static void
2403show_sh_command (char *args, int from_tty)
2404{
2405 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2406}
2407
2408static void
2409set_sh_command (char *args, int from_tty)
2410{
2411 printf_unfiltered
2412 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2413 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2414}
2415
c378eb4e 2416extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2417
c906108c 2418void
fba45db2 2419_initialize_sh_tdep (void)
c906108c 2420{
f2ea0907 2421 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2422
c055b101
CV
2423 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2424 &setshcmdlist, "set sh ", 0, &setlist);
2425 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2426 &showshcmdlist, "show sh ", 0, &showlist);
2427
2428 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2429 &sh_active_calling_convention,
2430 _("Set calling convention used when calling target "
2431 "functions from GDB."),
2432 _("Show calling convention used when calling target "
2433 "functions from GDB."),
2434 _("gcc - Use GCC calling convention (default).\n"
2435 "renesas - Enforce Renesas calling convention."),
2436 NULL, NULL,
2437 &setshcmdlist, &showshcmdlist);
c906108c 2438}
This page took 1.447132 seconds and 4 git commands to generate.