gdb: rename things related to step over chains
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
b811d2c2 2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
c4d10515
KB
21#include "inferior.h"
22#include "gdbcore.h"
cb5c8c39 23#include "solib.h"
c4d10515
KB
24#include "solist.h"
25#include "frv-tdep.h"
26#include "objfiles.h"
27#include "symtab.h"
28#include "language.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "elf/frv.h"
cbb099e8 32#include "gdb_bfd.h"
c4d10515
KB
33
34/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 35static unsigned int solib_frv_debug;
c4d10515
KB
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
f5656ead 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
e2b7c966 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
e2b7c966 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
c4d10515
KB
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
e2b7c966 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
c4d10515 128
9bc7b6c6
KB
129 if (nsegs <= 0)
130 return NULL;
131
c4d10515
KB
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
224c3ddb 135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
c4d10515
KB
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
224c3ddb 154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
c4d10515
KB
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
c4d10515 165 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
c4d10515 169 int_ldmbuf->segs[seg].p_memsz
e2b7c966 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
c4d10515
KB
173 }
174
d5c560f7 175 xfree (ext_ldmbuf);
c4d10515
KB
176 return int_ldmbuf;
177}
178
179/* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
e2b7c966 181typedef gdb_byte ext_ptr[4];
c4d10515
KB
182
183struct ext_elf32_fdpic_loadaddr
184{
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187};
188
189struct ext_link_map
190{
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201};
202
c378eb4e 203/* Link map info to include in an allocated so_list entry. */
c4d10515 204
d0e449a1 205struct lm_info_frv : public lm_info_base
af43057b 206{
4023ae76
SM
207 ~lm_info_frv ()
208 {
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
212 }
af43057b
SM
213
214 /* The loadmap, digested into an easier to use form. */
4023ae76 215 int_elf32_fdpic_loadmap *map = NULL;
af43057b 216 /* The GOT address for this link map entry. */
4023ae76 217 CORE_ADDR got_value = 0;
af43057b 218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
4023ae76 219 CORE_ADDR lm_addr = 0;
af43057b
SM
220
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
223
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
4023ae76
SM
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
af43057b 234};
c4d10515
KB
235
236/* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
d0e449a1 240static lm_info_frv *main_executable_lm_info;
c4d10515
KB
241
242static void frv_relocate_main_executable (void);
243static CORE_ADDR main_got (void);
244static int enable_break2 (void);
245
7f86f058 246/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
247
248static int
bf469271 249open_symbol_file_object (int from_tty)
c4d10515
KB
250{
251 /* Unimplemented. */
252 return 0;
253}
254
255/* Cached value for lm_base(), below. */
256static CORE_ADDR lm_base_cache = 0;
257
186993b4
KB
258/* Link map address for main module. */
259static CORE_ADDR main_lm_addr = 0;
260
c4d10515
KB
261/* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
268
269static CORE_ADDR
270lm_base (void)
271{
f5656ead 272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3b7344d5 273 struct bound_minimal_symbol got_sym;
c4d10515 274 CORE_ADDR addr;
e2b7c966 275 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 276
89a7ee67
KB
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
284
c4d10515
KB
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
288
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 symfile_objfile);
3b7344d5 291 if (got_sym.minsym == 0)
c4d10515
KB
292 {
293 if (solib_frv_debug)
294 fprintf_unfiltered (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
297 }
298
77e371c0 299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
c4d10515
KB
300
301 if (solib_frv_debug)
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 304 hex_string_custom (addr, 8));
c4d10515
KB
305
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
e17a4113 308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
309
310 if (solib_frv_debug)
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
bb599908 313 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
314
315 return lm_base_cache;
316}
317
318
7f86f058 319/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
320
321static struct so_list *
322frv_current_sos (void)
323{
f5656ead 324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
328
7c699b81
KB
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
333
334 Note that the relocation of the main executable is also performed
4d1eb6b4 335 by solib_create_inferior_hook(), however, in the case of core
7c699b81 336 files, this hook is called too late in order to be of benefit to
4d1eb6b4 337 solib_add. solib_add eventually calls this this function,
7c699b81 338 frv_current_sos, and also precedes the call to
4d1eb6b4 339 solib_create_inferior_hook(). (See post_create_inferior() in
7c699b81
KB
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
343
344 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
345 mgot = main_got ();
346
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
349
b021a221 350 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
351 building the solist chain. */
352 while (lm_addr)
353 {
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
356
357 if (solib_frv_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
bb599908 360 hex_string_custom (lm_addr, 8));
c4d10515 361
3e43a32a
MS
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
c4d10515 364 {
3e43a32a
MS
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
c4d10515
KB
367 break;
368 }
369
370 got_addr
e2b7c966 371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
c4d10515
KB
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
378 {
c4d10515
KB
379 struct int_elf32_fdpic_loadmap *loadmap;
380 struct so_list *sop;
381 CORE_ADDR addr;
382
383 /* Fetch the load map address. */
e2b7c966 384 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
385 sizeof lm_buf.l_addr.map,
386 byte_order);
c4d10515
KB
387 loadmap = fetch_loadmap (addr);
388 if (loadmap == NULL)
389 {
3e43a32a
MS
390 warning (_("frv_current_sos: Unable to fetch load map. "
391 "Shared object chain may be incomplete."));
c4d10515
KB
392 break;
393 }
394
8d749320 395 sop = XCNEW (struct so_list);
4023ae76 396 lm_info_frv *li = new lm_info_frv;
d0e449a1
SM
397 sop->lm_info = li;
398 li->map = loadmap;
399 li->got_value = got_addr;
400 li->lm_addr = lm_addr;
c4d10515 401 /* Fetch the name. */
e2b7c966 402 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
403 sizeof (lm_buf.l_name),
404 byte_order);
66920317
TT
405 gdb::unique_xmalloc_ptr<char> name_buf
406 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
c4d10515
KB
407
408 if (solib_frv_debug)
409 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
e83e4e24 410 name_buf.get ());
c4d10515 411
66920317
TT
412 if (name_buf == nullptr)
413 warning (_("Can't read pathname for link map entry."));
c4d10515
KB
414 else
415 {
e83e4e24
TT
416 strncpy (sop->so_name, name_buf.get (),
417 SO_NAME_MAX_PATH_SIZE - 1);
c4d10515 418 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
c4d10515
KB
419 strcpy (sop->so_original_name, sop->so_name);
420 }
421
422 *sos_next_ptr = sop;
423 sos_next_ptr = &sop->next;
424 }
186993b4
KB
425 else
426 {
427 main_lm_addr = lm_addr;
428 }
c4d10515 429
e17a4113
UW
430 lm_addr = extract_unsigned_integer (lm_buf.l_next,
431 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
432 }
433
434 enable_break2 ();
435
436 return sos_head;
437}
438
439
440/* Return 1 if PC lies in the dynamic symbol resolution code of the
441 run time loader. */
442
443static CORE_ADDR interp_text_sect_low;
444static CORE_ADDR interp_text_sect_high;
445static CORE_ADDR interp_plt_sect_low;
446static CORE_ADDR interp_plt_sect_high;
447
448static int
449frv_in_dynsym_resolve_code (CORE_ADDR pc)
450{
451 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
452 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
3e5d3a5a 453 || in_plt_section (pc));
c4d10515
KB
454}
455
456/* Given a loadmap and an address, return the displacement needed
457 to relocate the address. */
458
63807e1d 459static CORE_ADDR
c4d10515
KB
460displacement_from_map (struct int_elf32_fdpic_loadmap *map,
461 CORE_ADDR addr)
462{
463 int seg;
464
465 for (seg = 0; seg < map->nsegs; seg++)
466 {
467 if (map->segs[seg].p_vaddr <= addr
468 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
469 {
470 return map->segs[seg].addr - map->segs[seg].p_vaddr;
471 }
472 }
473
474 return 0;
475}
476
477/* Print a warning about being unable to set the dynamic linker
478 breakpoint. */
479
480static void
481enable_break_failure_warning (void)
482{
8a3fe4f8 483 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 484 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 485 "and track explicitly loaded dynamic code."));
c4d10515
KB
486}
487
cb457ae2
YQ
488/* Helper function for gdb_bfd_lookup_symbol. */
489
490static int
3953f15c 491cmp_name (const asymbol *sym, const void *data)
cb457ae2
YQ
492{
493 return (strcmp (sym->name, (const char *) data) == 0);
494}
495
7f86f058 496/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
497
498 The dynamic linkers has, as part of its debugger interface, support
499 for arranging for the inferior to hit a breakpoint after mapping in
500 the shared libraries. This function enables that breakpoint.
501
502 On the FR-V, using the shared library (FDPIC) ABI, the symbol
503 _dl_debug_addr points to the r_debug struct which contains
504 a field called r_brk. r_brk is the address of the function
505 descriptor upon which a breakpoint must be placed. Being a
506 function descriptor, we must extract the entry point in order
507 to set the breakpoint.
508
509 Our strategy will be to get the .interp section from the
510 executable. This section will provide us with the name of the
511 interpreter. We'll open the interpreter and then look up
512 the address of _dl_debug_addr. We then relocate this address
513 using the interpreter's loadmap. Once the relocated address
514 is known, we fetch the value (address) corresponding to r_brk
515 and then use that value to fetch the entry point of the function
7f86f058 516 we're interested in. */
c4d10515 517
c4d10515
KB
518static int enable_break2_done = 0;
519
520static int
521enable_break2 (void)
522{
f5656ead 523 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
524 asection *interp_sect;
525
cb7db0f2 526 if (enable_break2_done)
c4d10515
KB
527 return 1;
528
c4d10515
KB
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
531
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
534 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
535 if (interp_sect)
536 {
537 unsigned int interp_sect_size;
001f13d8 538 char *buf;
c4d10515
KB
539 int status;
540 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 541 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515
KB
542 struct int_elf32_fdpic_loadmap *ldm;
543
544 /* Read the contents of the .interp section into a local buffer;
545 the contents specify the dynamic linker this program uses. */
fd361982 546 interp_sect_size = bfd_section_size (interp_sect);
224c3ddb 547 buf = (char *) alloca (interp_sect_size);
c4d10515
KB
548 bfd_get_section_contents (exec_bfd, interp_sect,
549 buf, 0, interp_sect_size);
550
551 /* Now we need to figure out where the dynamic linker was
552 loaded so that we can load its symbols and place a breakpoint
553 in the dynamic linker itself.
554
555 This address is stored on the stack. However, I've been unable
556 to find any magic formula to find it for Solaris (appears to
557 be trivial on GNU/Linux). Therefore, we have to try an alternate
558 mechanism to find the dynamic linker's base address. */
559
192b62ce 560 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 561 try
f1838a98
UW
562 {
563 tmp_bfd = solib_bfd_open (buf);
564 }
230d2906 565 catch (const gdb_exception &ex)
492d29ea
PA
566 {
567 }
492d29ea 568
c4d10515
KB
569 if (tmp_bfd == NULL)
570 {
571 enable_break_failure_warning ();
572 return 0;
573 }
574
f5656ead 575 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
c4d10515
KB
576 &interp_loadmap_addr, 0);
577 if (status < 0)
578 {
8a3fe4f8 579 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 580 enable_break_failure_warning ();
c4d10515
KB
581 return 0;
582 }
583
584 if (solib_frv_debug)
585 fprintf_unfiltered (gdb_stdlog,
586 "enable_break: interp_loadmap_addr = %s\n",
bb599908 587 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
588
589 ldm = fetch_loadmap (interp_loadmap_addr);
590 if (ldm == NULL)
591 {
8a3fe4f8 592 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 593 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 594 enable_break_failure_warning ();
c4d10515
KB
595 return 0;
596 }
597
598 /* Record the relocated start and end address of the dynamic linker
599 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 600 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
c4d10515
KB
601 if (interp_sect)
602 {
fd361982 603 interp_text_sect_low = bfd_section_vma (interp_sect);
c4d10515
KB
604 interp_text_sect_low
605 += displacement_from_map (ldm, interp_text_sect_low);
606 interp_text_sect_high
fd361982 607 = interp_text_sect_low + bfd_section_size (interp_sect);
c4d10515 608 }
192b62ce 609 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
c4d10515
KB
610 if (interp_sect)
611 {
fd361982 612 interp_plt_sect_low = bfd_section_vma (interp_sect);
c4d10515
KB
613 interp_plt_sect_low
614 += displacement_from_map (ldm, interp_plt_sect_low);
615 interp_plt_sect_high =
fd361982 616 interp_plt_sect_low + bfd_section_size (interp_sect);
c4d10515
KB
617 }
618
192b62ce 619 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
cb457ae2 620
c4d10515
KB
621 if (addr == 0)
622 {
3e43a32a
MS
623 warning (_("Could not find symbol _dl_debug_addr "
624 "in dynamic linker"));
c4d10515 625 enable_break_failure_warning ();
c4d10515
KB
626 return 0;
627 }
628
629 if (solib_frv_debug)
630 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
631 "enable_break: _dl_debug_addr "
632 "(prior to relocation) = %s\n",
bb599908 633 hex_string_custom (addr, 8));
c4d10515
KB
634
635 addr += displacement_from_map (ldm, addr);
636
637 if (solib_frv_debug)
638 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
639 "enable_break: _dl_debug_addr "
640 "(after relocation) = %s\n",
bb599908 641 hex_string_custom (addr, 8));
c4d10515
KB
642
643 /* Fetch the address of the r_debug struct. */
644 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
645 {
3e43a32a
MS
646 warning (_("Unable to fetch contents of _dl_debug_addr "
647 "(at address %s) from dynamic linker"),
bb599908 648 hex_string_custom (addr, 8));
c4d10515 649 }
e17a4113 650 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 651
cb7db0f2
MF
652 if (solib_frv_debug)
653 fprintf_unfiltered (gdb_stdlog,
654 "enable_break: _dl_debug_addr[0..3] = %s\n",
655 hex_string_custom (addr, 8));
656
657 /* If it's zero, then the ldso hasn't initialized yet, and so
658 there are no shared libs yet loaded. */
659 if (addr == 0)
660 {
661 if (solib_frv_debug)
662 fprintf_unfiltered (gdb_stdlog,
663 "enable_break: ldso not yet initialized\n");
664 /* Do not warn, but mark to run again. */
665 return 0;
666 }
667
c4d10515
KB
668 /* Fetch the r_brk field. It's 8 bytes from the start of
669 _dl_debug_addr. */
670 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
671 {
3e43a32a
MS
672 warning (_("Unable to fetch _dl_debug_addr->r_brk "
673 "(at address %s) from dynamic linker"),
bb599908 674 hex_string_custom (addr + 8, 8));
c4d10515 675 enable_break_failure_warning ();
c4d10515
KB
676 return 0;
677 }
e17a4113 678 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
679
680 /* Now fetch the function entry point. */
681 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
682 {
3e43a32a
MS
683 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
684 "(at address %s) from dynamic linker"),
bb599908 685 hex_string_custom (addr, 8));
c4d10515 686 enable_break_failure_warning ();
c4d10515
KB
687 return 0;
688 }
e17a4113 689 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 690
192b62ce 691 /* We're done with the loadmap. */
c4d10515
KB
692 xfree (ldm);
693
cb7db0f2
MF
694 /* Remove all the solib event breakpoints. Their addresses
695 may have changed since the last time we ran the program. */
696 remove_solib_event_breakpoints ();
697
c4d10515 698 /* Now (finally!) create the solib breakpoint. */
f5656ead 699 create_solib_event_breakpoint (target_gdbarch (), addr);
c4d10515 700
cb7db0f2
MF
701 enable_break2_done = 1;
702
c4d10515
KB
703 return 1;
704 }
705
706 /* Tell the user we couldn't set a dynamic linker breakpoint. */
707 enable_break_failure_warning ();
708
709 /* Failure return. */
710 return 0;
711}
712
713static int
714enable_break (void)
715{
716 asection *interp_sect;
d56e56aa 717 CORE_ADDR entry_point;
c4d10515 718
abd0a5fa 719 if (symfile_objfile == NULL)
c4d10515 720 {
abd0a5fa
JK
721 if (solib_frv_debug)
722 fprintf_unfiltered (gdb_stdlog,
723 "enable_break: No symbol file found.\n");
724 return 0;
725 }
c4d10515 726
d56e56aa 727 if (!entry_point_address_query (&entry_point))
abd0a5fa 728 {
c4d10515
KB
729 if (solib_frv_debug)
730 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
731 "enable_break: Symbol file has no entry point.\n");
732 return 0;
c4d10515 733 }
abd0a5fa
JK
734
735 /* Check for the presence of a .interp section. If there is no
736 such section, the executable is statically linked. */
737
738 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
739
740 if (interp_sect == NULL)
c4d10515
KB
741 {
742 if (solib_frv_debug)
743 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
744 "enable_break: No .interp section found.\n");
745 return 0;
c4d10515
KB
746 }
747
d56e56aa 748 create_solib_event_breakpoint (target_gdbarch (), entry_point);
abd0a5fa
JK
749
750 if (solib_frv_debug)
751 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
752 "enable_break: solib event breakpoint "
753 "placed at entry point: %s\n",
d56e56aa 754 hex_string_custom (entry_point, 8));
c4d10515
KB
755 return 1;
756}
757
c4d10515
KB
758static void
759frv_relocate_main_executable (void)
760{
761 int status;
9bc7b6c6 762 CORE_ADDR exec_addr, interp_addr;
c4d10515 763 struct int_elf32_fdpic_loadmap *ldm;
c4d10515
KB
764 int changed;
765 struct obj_section *osect;
766
f5656ead 767 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
9bc7b6c6 768 &interp_addr, &exec_addr);
c4d10515 769
9bc7b6c6 770 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
771 {
772 /* Not using FDPIC ABI, so do nothing. */
773 return;
774 }
775
776 /* Fetch the loadmap located at ``exec_addr''. */
777 ldm = fetch_loadmap (exec_addr);
778 if (ldm == NULL)
8a3fe4f8 779 error (_("Unable to load the executable's loadmap."));
c4d10515 780
4023ae76
SM
781 delete main_executable_lm_info;
782 main_executable_lm_info = new lm_info_frv;
c4d10515
KB
783 main_executable_lm_info->map = ldm;
784
6a053cb1 785 section_offsets new_offsets (symfile_objfile->section_offsets.size ());
c4d10515
KB
786 changed = 0;
787
788 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
789 {
790 CORE_ADDR orig_addr, addr, offset;
791 int osect_idx;
792 int seg;
793
65cf3563 794 osect_idx = osect - symfile_objfile->sections;
c4d10515
KB
795
796 /* Current address of section. */
aded6f54 797 addr = obj_section_addr (osect);
c4d10515 798 /* Offset from where this section started. */
6a053cb1 799 offset = symfile_objfile->section_offsets[osect_idx];
c4d10515
KB
800 /* Original address prior to any past relocations. */
801 orig_addr = addr - offset;
802
803 for (seg = 0; seg < ldm->nsegs; seg++)
804 {
805 if (ldm->segs[seg].p_vaddr <= orig_addr
806 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
807 {
6a053cb1 808 new_offsets[osect_idx]
c4d10515
KB
809 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
810
6a053cb1 811 if (new_offsets[osect_idx] != offset)
c4d10515
KB
812 changed = 1;
813 break;
814 }
815 }
816 }
817
818 if (changed)
6a053cb1 819 objfile_relocate (symfile_objfile, new_offsets);
c4d10515
KB
820
821 /* Now that symfile_objfile has been relocated, we can compute the
822 GOT value and stash it away. */
823 main_executable_lm_info->got_value = main_got ();
824}
825
7f86f058 826/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 827
7f86f058
PA
828 For the FR-V shared library ABI (FDPIC), the main executable needs
829 to be relocated. The shared library breakpoints also need to be
830 enabled. */
c4d10515
KB
831
832static void
268a4a75 833frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
834{
835 /* Relocate main executable. */
836 frv_relocate_main_executable ();
837
838 /* Enable shared library breakpoints. */
839 if (!enable_break ())
840 {
8a3fe4f8 841 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
842 return;
843 }
844}
845
846static void
847frv_clear_solib (void)
848{
849 lm_base_cache = 0;
c4d10515 850 enable_break2_done = 0;
186993b4 851 main_lm_addr = 0;
4023ae76
SM
852
853 delete main_executable_lm_info;
854 main_executable_lm_info = NULL;
c4d10515
KB
855}
856
857static void
858frv_free_so (struct so_list *so)
859{
d0e449a1
SM
860 lm_info_frv *li = (lm_info_frv *) so->lm_info;
861
4023ae76 862 delete li;
c4d10515
KB
863}
864
865static void
866frv_relocate_section_addresses (struct so_list *so,
0542c86d 867 struct target_section *sec)
c4d10515
KB
868{
869 int seg;
d0e449a1
SM
870 lm_info_frv *li = (lm_info_frv *) so->lm_info;
871 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
872
873 for (seg = 0; seg < map->nsegs; seg++)
874 {
875 if (map->segs[seg].p_vaddr <= sec->addr
876 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
877 {
878 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 879
c4d10515
KB
880 sec->addr += displ;
881 sec->endaddr += displ;
882 break;
883 }
884 }
885}
886
887/* Return the GOT address associated with the main executable. Return
888 0 if it can't be found. */
889
890static CORE_ADDR
891main_got (void)
892{
3b7344d5 893 struct bound_minimal_symbol got_sym;
c4d10515 894
3e43a32a
MS
895 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
896 NULL, symfile_objfile);
3b7344d5 897 if (got_sym.minsym == 0)
c4d10515
KB
898 return 0;
899
77e371c0 900 return BMSYMBOL_VALUE_ADDRESS (got_sym);
c4d10515
KB
901}
902
903/* Find the global pointer for the given function address ADDR. */
904
905CORE_ADDR
906frv_fdpic_find_global_pointer (CORE_ADDR addr)
907{
a1fd1ac9 908 for (struct so_list *so : current_program_space->solibs ())
c4d10515
KB
909 {
910 int seg;
d0e449a1
SM
911 lm_info_frv *li = (lm_info_frv *) so->lm_info;
912 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
913
914 for (seg = 0; seg < map->nsegs; seg++)
915 {
916 if (map->segs[seg].addr <= addr
917 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
d0e449a1 918 return li->got_value;
c4d10515 919 }
c4d10515
KB
920 }
921
7a9dd1b2 922 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
923 main executable. */
924 return main_got ();
925}
926
927/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
928static CORE_ADDR find_canonical_descriptor_in_load_object
d0e449a1 929 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
c4d10515
KB
930
931/* Given a function entry point, attempt to find the canonical descriptor
932 associated with that entry point. Return 0 if no canonical descriptor
933 could be found. */
934
935CORE_ADDR
936frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
937{
0d5cff50 938 const char *name;
c4d10515
KB
939 CORE_ADDR addr;
940 CORE_ADDR got_value;
c4d10515 941 struct symbol *sym;
c4d10515
KB
942
943 /* Fetch the corresponding global pointer for the entry point. */
944 got_value = frv_fdpic_find_global_pointer (entry_point);
945
946 /* Attempt to find the name of the function. If the name is available,
947 it'll be used as an aid in finding matching functions in the dynamic
948 symbol table. */
949 sym = find_pc_function (entry_point);
950 if (sym == 0)
951 name = 0;
952 else
987012b8 953 name = sym->linkage_name ();
c4d10515
KB
954
955 /* Check the main executable. */
956 addr = find_canonical_descriptor_in_load_object
957 (entry_point, got_value, name, symfile_objfile->obfd,
958 main_executable_lm_info);
959
960 /* If descriptor not found via main executable, check each load object
961 in list of shared objects. */
962 if (addr == 0)
963 {
a1fd1ac9 964 for (struct so_list *so : current_program_space->solibs ())
c4d10515 965 {
d0e449a1
SM
966 lm_info_frv *li = (lm_info_frv *) so->lm_info;
967
c4d10515 968 addr = find_canonical_descriptor_in_load_object
d0e449a1 969 (entry_point, got_value, name, so->abfd, li);
c4d10515
KB
970
971 if (addr != 0)
972 break;
c4d10515
KB
973 }
974 }
975
976 return addr;
977}
978
979static CORE_ADDR
980find_canonical_descriptor_in_load_object
0d5cff50 981 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
d0e449a1 982 lm_info_frv *lm)
c4d10515 983{
f5656ead 984 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
985 arelent *rel;
986 unsigned int i;
987 CORE_ADDR addr = 0;
988
989 /* Nothing to do if no bfd. */
990 if (abfd == 0)
991 return 0;
992
35e08e03
KB
993 /* Nothing to do if no link map. */
994 if (lm == 0)
995 return 0;
996
c4d10515
KB
997 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
998 (More about this later.) But in order to fetch the relocs, we
999 need to first fetch the dynamic symbols. These symbols need to
1000 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1001 works. (See the comments in the declaration of struct lm_info
1002 for more information.) */
1003 if (lm->dyn_syms == NULL)
1004 {
1005 long storage_needed;
1006 unsigned int number_of_symbols;
1007
1008 /* Determine amount of space needed to hold the dynamic symbol table. */
1009 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1010
1011 /* If there are no dynamic symbols, there's nothing to do. */
1012 if (storage_needed <= 0)
1013 return 0;
1014
1015 /* Allocate space for the dynamic symbol table. */
1016 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1017
1018 /* Fetch the dynamic symbol table. */
1019 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1020
1021 if (number_of_symbols == 0)
1022 return 0;
1023 }
1024
1025 /* Fetch the dynamic relocations if not already cached. */
1026 if (lm->dyn_relocs == NULL)
1027 {
1028 long storage_needed;
1029
1030 /* Determine amount of space needed to hold the dynamic relocs. */
1031 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1032
1033 /* Bail out if there are no dynamic relocs. */
1034 if (storage_needed <= 0)
1035 return 0;
1036
1037 /* Allocate space for the relocs. */
1038 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1039
1040 /* Fetch the dynamic relocs. */
1041 lm->dyn_reloc_count
1042 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1043 }
1044
1045 /* Search the dynamic relocs. */
1046 for (i = 0; i < lm->dyn_reloc_count; i++)
1047 {
1048 rel = lm->dyn_relocs[i];
1049
1050 /* Relocs of interest are those which meet the following
1051 criteria:
1052
1053 - the names match (assuming the caller could provide
1054 a name which matches ``entry_point'').
1055 - the relocation type must be R_FRV_FUNCDESC. Relocs
1056 of this type are used (by the dynamic linker) to
1057 look up the address of a canonical descriptor (allocating
1058 it if need be) and initializing the GOT entry referred
1059 to by the offset to the address of the descriptor.
1060
1061 These relocs of interest may be used to obtain a
1062 candidate descriptor by first adjusting the reloc's
1063 address according to the link map and then dereferencing
1064 this address (which is a GOT entry) to obtain a descriptor
1065 address. */
1066 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1067 && rel->howto->type == R_FRV_FUNCDESC)
1068 {
e2b7c966 1069 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1070
1071 /* Compute address of address of candidate descriptor. */
1072 addr = rel->address + displacement_from_map (lm->map, rel->address);
1073
1074 /* Fetch address of candidate descriptor. */
1075 if (target_read_memory (addr, buf, sizeof buf) != 0)
1076 continue;
e17a4113 1077 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1078
1079 /* Check for matching entry point. */
1080 if (target_read_memory (addr, buf, sizeof buf) != 0)
1081 continue;
e17a4113
UW
1082 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1083 != entry_point)
c4d10515
KB
1084 continue;
1085
1086 /* Check for matching got value. */
1087 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1088 continue;
e17a4113
UW
1089 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1090 != got_value)
c4d10515
KB
1091 continue;
1092
1093 /* Match was successful! Exit loop. */
1094 break;
1095 }
1096 }
1097
1098 return addr;
1099}
1100
186993b4
KB
1101/* Given an objfile, return the address of its link map. This value is
1102 needed for TLS support. */
1103CORE_ADDR
1104frv_fetch_objfile_link_map (struct objfile *objfile)
1105{
186993b4
KB
1106 /* Cause frv_current_sos() to be run if it hasn't been already. */
1107 if (main_lm_addr == 0)
e696b3ad 1108 solib_add (0, 0, 1);
186993b4
KB
1109
1110 /* frv_current_sos() will set main_lm_addr for the main executable. */
1111 if (objfile == symfile_objfile)
1112 return main_lm_addr;
1113
1114 /* The other link map addresses may be found by examining the list
1115 of shared libraries. */
a1fd1ac9 1116 for (struct so_list *so : current_program_space->solibs ())
186993b4 1117 {
d0e449a1
SM
1118 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1119
186993b4 1120 if (so->objfile == objfile)
d0e449a1 1121 return li->lm_addr;
186993b4
KB
1122 }
1123
1124 /* Not found! */
1125 return 0;
1126}
1127
917630e4 1128struct target_so_ops frv_so_ops;
c4d10515 1129
6c265988 1130void _initialize_frv_solib ();
c4d10515 1131void
6c265988 1132_initialize_frv_solib ()
c4d10515
KB
1133{
1134 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1135 frv_so_ops.free_so = frv_free_so;
1136 frv_so_ops.clear_solib = frv_clear_solib;
1137 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
c4d10515
KB
1138 frv_so_ops.current_sos = frv_current_sos;
1139 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1140 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1141 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1142
c4d10515 1143 /* Debug this file's internals. */
ccce17b0
YQ
1144 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1145 &solib_frv_debug, _("\
85c07804
AC
1146Set internal debugging of shared library code for FR-V."), _("\
1147Show internal debugging of shared library code for FR-V."), _("\
1148When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1149 NULL,
1150 NULL, /* FIXME: i18n: */
1151 &setdebuglist, &showdebuglist);
c4d10515 1152}
This page took 1.742549 seconds and 4 git commands to generate.