gdb/testsuite: restore configure script
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
3666a048 2 Copyright (C) 2004-2021 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
c4d10515
KB
21#include "inferior.h"
22#include "gdbcore.h"
cb5c8c39 23#include "solib.h"
c4d10515
KB
24#include "solist.h"
25#include "frv-tdep.h"
26#include "objfiles.h"
27#include "symtab.h"
28#include "language.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "elf/frv.h"
cbb099e8 32#include "gdb_bfd.h"
c4d10515
KB
33
34/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 35static unsigned int solib_frv_debug;
c4d10515
KB
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
f5656ead 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
e2b7c966 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
dda83cd7 108 sizeof ext_ldmbuf_partial))
c4d10515
KB
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
e2b7c966 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
dda83cd7 116 sizeof ext_ldmbuf_partial.version,
e17a4113 117 byte_order);
c4d10515
KB
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
e2b7c966 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
dda83cd7 126 sizeof ext_ldmbuf_partial.nsegs,
e17a4113 127 byte_order);
c4d10515 128
9bc7b6c6
KB
129 if (nsegs <= 0)
130 return NULL;
131
c4d10515
KB
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
dda83cd7 134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
224c3ddb 135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
c4d10515
KB
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
dda83cd7
SM
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
c4d10515
KB
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
dda83cd7 153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
224c3ddb 154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
c4d10515
KB
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
dda83cd7 163 sizeof (ext_ldmbuf->segs[seg].addr),
e17a4113 164 byte_order);
c4d10515 165 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
dda83cd7 167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
e17a4113 168 byte_order);
c4d10515 169 int_ldmbuf->segs[seg].p_memsz
e2b7c966 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
dda83cd7 171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
e17a4113 172 byte_order);
c4d10515
KB
173 }
174
d5c560f7 175 xfree (ext_ldmbuf);
c4d10515
KB
176 return int_ldmbuf;
177}
178
179/* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
e2b7c966 181typedef gdb_byte ext_ptr[4];
c4d10515
KB
182
183struct ext_elf32_fdpic_loadaddr
184{
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187};
188
189struct ext_link_map
190{
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201};
202
c378eb4e 203/* Link map info to include in an allocated so_list entry. */
c4d10515 204
d0e449a1 205struct lm_info_frv : public lm_info_base
af43057b 206{
4023ae76
SM
207 ~lm_info_frv ()
208 {
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
212 }
af43057b
SM
213
214 /* The loadmap, digested into an easier to use form. */
4023ae76 215 int_elf32_fdpic_loadmap *map = NULL;
af43057b 216 /* The GOT address for this link map entry. */
4023ae76 217 CORE_ADDR got_value = 0;
af43057b 218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
4023ae76 219 CORE_ADDR lm_addr = 0;
af43057b
SM
220
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
223
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
4023ae76
SM
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
af43057b 234};
c4d10515
KB
235
236/* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
d0e449a1 240static lm_info_frv *main_executable_lm_info;
c4d10515
KB
241
242static void frv_relocate_main_executable (void);
243static CORE_ADDR main_got (void);
244static int enable_break2 (void);
245
7f86f058 246/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
247
248static int
bf469271 249open_symbol_file_object (int from_tty)
c4d10515
KB
250{
251 /* Unimplemented. */
252 return 0;
253}
254
255/* Cached value for lm_base(), below. */
256static CORE_ADDR lm_base_cache = 0;
257
186993b4
KB
258/* Link map address for main module. */
259static CORE_ADDR main_lm_addr = 0;
260
c4d10515
KB
261/* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
268
269static CORE_ADDR
270lm_base (void)
271{
f5656ead 272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3b7344d5 273 struct bound_minimal_symbol got_sym;
c4d10515 274 CORE_ADDR addr;
e2b7c966 275 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 276
89a7ee67
KB
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
284
c4d10515
KB
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
288
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
dda83cd7 290 current_program_space->symfile_object_file);
3b7344d5 291 if (got_sym.minsym == 0)
c4d10515
KB
292 {
293 if (solib_frv_debug)
294 fprintf_unfiltered (gdb_stdlog,
dda83cd7 295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
c4d10515
KB
296 return 0;
297 }
298
77e371c0 299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
c4d10515
KB
300
301 if (solib_frv_debug)
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 304 hex_string_custom (addr, 8));
c4d10515
KB
305
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
e17a4113 308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
309
310 if (solib_frv_debug)
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
bb599908 313 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
314
315 return lm_base_cache;
316}
317
318
7f86f058 319/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
320
321static struct so_list *
322frv_current_sos (void)
323{
f5656ead 324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
328
7c699b81
KB
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
333
334 Note that the relocation of the main executable is also performed
4d1eb6b4 335 by solib_create_inferior_hook(), however, in the case of core
7c699b81 336 files, this hook is called too late in order to be of benefit to
4d1eb6b4 337 solib_add. solib_add eventually calls this this function,
7c699b81 338 frv_current_sos, and also precedes the call to
4d1eb6b4 339 solib_create_inferior_hook(). (See post_create_inferior() in
7c699b81
KB
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
343
344 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
345 mgot = main_got ();
346
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
349
b021a221 350 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
351 building the solist chain. */
352 while (lm_addr)
353 {
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
356
357 if (solib_frv_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
bb599908 360 hex_string_custom (lm_addr, 8));
c4d10515 361
3e43a32a
MS
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
c4d10515 364 {
3e43a32a
MS
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
c4d10515
KB
367 break;
368 }
369
370 got_addr
e2b7c966 371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
c4d10515
KB
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
378 {
c4d10515
KB
379 struct int_elf32_fdpic_loadmap *loadmap;
380 struct so_list *sop;
381 CORE_ADDR addr;
382
383 /* Fetch the load map address. */
e2b7c966 384 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
385 sizeof lm_buf.l_addr.map,
386 byte_order);
c4d10515
KB
387 loadmap = fetch_loadmap (addr);
388 if (loadmap == NULL)
389 {
3e43a32a
MS
390 warning (_("frv_current_sos: Unable to fetch load map. "
391 "Shared object chain may be incomplete."));
c4d10515
KB
392 break;
393 }
394
8d749320 395 sop = XCNEW (struct so_list);
4023ae76 396 lm_info_frv *li = new lm_info_frv;
d0e449a1
SM
397 sop->lm_info = li;
398 li->map = loadmap;
399 li->got_value = got_addr;
400 li->lm_addr = lm_addr;
c4d10515 401 /* Fetch the name. */
e2b7c966 402 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
403 sizeof (lm_buf.l_name),
404 byte_order);
66920317
TT
405 gdb::unique_xmalloc_ptr<char> name_buf
406 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
c4d10515
KB
407
408 if (solib_frv_debug)
409 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
dda83cd7 410 name_buf.get ());
c4d10515 411
66920317
TT
412 if (name_buf == nullptr)
413 warning (_("Can't read pathname for link map entry."));
c4d10515
KB
414 else
415 {
e83e4e24
TT
416 strncpy (sop->so_name, name_buf.get (),
417 SO_NAME_MAX_PATH_SIZE - 1);
c4d10515 418 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
c4d10515
KB
419 strcpy (sop->so_original_name, sop->so_name);
420 }
421
422 *sos_next_ptr = sop;
423 sos_next_ptr = &sop->next;
424 }
186993b4
KB
425 else
426 {
427 main_lm_addr = lm_addr;
428 }
c4d10515 429
e17a4113
UW
430 lm_addr = extract_unsigned_integer (lm_buf.l_next,
431 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
432 }
433
434 enable_break2 ();
435
436 return sos_head;
437}
438
439
440/* Return 1 if PC lies in the dynamic symbol resolution code of the
441 run time loader. */
442
443static CORE_ADDR interp_text_sect_low;
444static CORE_ADDR interp_text_sect_high;
445static CORE_ADDR interp_plt_sect_low;
446static CORE_ADDR interp_plt_sect_high;
447
448static int
449frv_in_dynsym_resolve_code (CORE_ADDR pc)
450{
451 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
452 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
3e5d3a5a 453 || in_plt_section (pc));
c4d10515
KB
454}
455
456/* Given a loadmap and an address, return the displacement needed
457 to relocate the address. */
458
63807e1d 459static CORE_ADDR
c4d10515 460displacement_from_map (struct int_elf32_fdpic_loadmap *map,
dda83cd7 461 CORE_ADDR addr)
c4d10515
KB
462{
463 int seg;
464
465 for (seg = 0; seg < map->nsegs; seg++)
466 {
467 if (map->segs[seg].p_vaddr <= addr
dda83cd7 468 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
c4d10515
KB
469 {
470 return map->segs[seg].addr - map->segs[seg].p_vaddr;
471 }
472 }
473
474 return 0;
475}
476
477/* Print a warning about being unable to set the dynamic linker
478 breakpoint. */
479
480static void
481enable_break_failure_warning (void)
482{
8a3fe4f8 483 warning (_("Unable to find dynamic linker breakpoint function.\n"
dda83cd7 484 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 485 "and track explicitly loaded dynamic code."));
c4d10515
KB
486}
487
cb457ae2
YQ
488/* Helper function for gdb_bfd_lookup_symbol. */
489
490static int
3953f15c 491cmp_name (const asymbol *sym, const void *data)
cb457ae2
YQ
492{
493 return (strcmp (sym->name, (const char *) data) == 0);
494}
495
7f86f058 496/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
497
498 The dynamic linkers has, as part of its debugger interface, support
499 for arranging for the inferior to hit a breakpoint after mapping in
500 the shared libraries. This function enables that breakpoint.
501
502 On the FR-V, using the shared library (FDPIC) ABI, the symbol
503 _dl_debug_addr points to the r_debug struct which contains
504 a field called r_brk. r_brk is the address of the function
505 descriptor upon which a breakpoint must be placed. Being a
506 function descriptor, we must extract the entry point in order
507 to set the breakpoint.
508
509 Our strategy will be to get the .interp section from the
510 executable. This section will provide us with the name of the
511 interpreter. We'll open the interpreter and then look up
512 the address of _dl_debug_addr. We then relocate this address
513 using the interpreter's loadmap. Once the relocated address
514 is known, we fetch the value (address) corresponding to r_brk
515 and then use that value to fetch the entry point of the function
7f86f058 516 we're interested in. */
c4d10515 517
c4d10515
KB
518static int enable_break2_done = 0;
519
520static int
521enable_break2 (void)
522{
f5656ead 523 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
524 asection *interp_sect;
525
cb7db0f2 526 if (enable_break2_done)
c4d10515
KB
527 return 1;
528
c4d10515
KB
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
531
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
7e10abd1
TT
534 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
535 ".interp");
c4d10515
KB
536 if (interp_sect)
537 {
538 unsigned int interp_sect_size;
001f13d8 539 char *buf;
c4d10515
KB
540 int status;
541 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 542 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515
KB
543 struct int_elf32_fdpic_loadmap *ldm;
544
545 /* Read the contents of the .interp section into a local buffer;
dda83cd7 546 the contents specify the dynamic linker this program uses. */
fd361982 547 interp_sect_size = bfd_section_size (interp_sect);
224c3ddb 548 buf = (char *) alloca (interp_sect_size);
7e10abd1
TT
549 bfd_get_section_contents (current_program_space->exec_bfd (),
550 interp_sect, buf, 0, interp_sect_size);
c4d10515
KB
551
552 /* Now we need to figure out where the dynamic linker was
dda83cd7
SM
553 loaded so that we can load its symbols and place a breakpoint
554 in the dynamic linker itself.
c4d10515 555
dda83cd7
SM
556 This address is stored on the stack. However, I've been unable
557 to find any magic formula to find it for Solaris (appears to
558 be trivial on GNU/Linux). Therefore, we have to try an alternate
559 mechanism to find the dynamic linker's base address. */
c4d10515 560
192b62ce 561 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 562 try
dda83cd7
SM
563 {
564 tmp_bfd = solib_bfd_open (buf);
565 }
230d2906 566 catch (const gdb_exception &ex)
492d29ea
PA
567 {
568 }
492d29ea 569
c4d10515
KB
570 if (tmp_bfd == NULL)
571 {
572 enable_break_failure_warning ();
573 return 0;
574 }
575
f5656ead 576 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
dda83cd7 577 &interp_loadmap_addr, 0);
c4d10515
KB
578 if (status < 0)
579 {
8a3fe4f8 580 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 581 enable_break_failure_warning ();
c4d10515
KB
582 return 0;
583 }
584
585 if (solib_frv_debug)
586 fprintf_unfiltered (gdb_stdlog,
dda83cd7 587 "enable_break: interp_loadmap_addr = %s\n",
bb599908 588 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
589
590 ldm = fetch_loadmap (interp_loadmap_addr);
591 if (ldm == NULL)
592 {
8a3fe4f8 593 warning (_("Unable to load dynamic linker loadmap at address %s."),
dda83cd7 594 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 595 enable_break_failure_warning ();
c4d10515
KB
596 return 0;
597 }
598
599 /* Record the relocated start and end address of the dynamic linker
dda83cd7 600 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 601 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
c4d10515
KB
602 if (interp_sect)
603 {
fd361982 604 interp_text_sect_low = bfd_section_vma (interp_sect);
c4d10515
KB
605 interp_text_sect_low
606 += displacement_from_map (ldm, interp_text_sect_low);
607 interp_text_sect_high
fd361982 608 = interp_text_sect_low + bfd_section_size (interp_sect);
c4d10515 609 }
192b62ce 610 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
c4d10515
KB
611 if (interp_sect)
612 {
fd361982 613 interp_plt_sect_low = bfd_section_vma (interp_sect);
c4d10515
KB
614 interp_plt_sect_low
615 += displacement_from_map (ldm, interp_plt_sect_low);
616 interp_plt_sect_high =
fd361982 617 interp_plt_sect_low + bfd_section_size (interp_sect);
c4d10515
KB
618 }
619
192b62ce 620 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
cb457ae2 621
c4d10515
KB
622 if (addr == 0)
623 {
3e43a32a
MS
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
c4d10515 626 enable_break_failure_warning ();
c4d10515
KB
627 return 0;
628 }
629
630 if (solib_frv_debug)
631 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
632 "enable_break: _dl_debug_addr "
633 "(prior to relocation) = %s\n",
bb599908 634 hex_string_custom (addr, 8));
c4d10515
KB
635
636 addr += displacement_from_map (ldm, addr);
637
638 if (solib_frv_debug)
639 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
640 "enable_break: _dl_debug_addr "
641 "(after relocation) = %s\n",
bb599908 642 hex_string_custom (addr, 8));
c4d10515
KB
643
644 /* Fetch the address of the r_debug struct. */
645 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
646 {
3e43a32a
MS
647 warning (_("Unable to fetch contents of _dl_debug_addr "
648 "(at address %s) from dynamic linker"),
dda83cd7 649 hex_string_custom (addr, 8));
c4d10515 650 }
e17a4113 651 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 652
cb7db0f2
MF
653 if (solib_frv_debug)
654 fprintf_unfiltered (gdb_stdlog,
dda83cd7
SM
655 "enable_break: _dl_debug_addr[0..3] = %s\n",
656 hex_string_custom (addr, 8));
cb7db0f2
MF
657
658 /* If it's zero, then the ldso hasn't initialized yet, and so
dda83cd7 659 there are no shared libs yet loaded. */
cb7db0f2
MF
660 if (addr == 0)
661 {
662 if (solib_frv_debug)
663 fprintf_unfiltered (gdb_stdlog,
dda83cd7 664 "enable_break: ldso not yet initialized\n");
cb7db0f2
MF
665 /* Do not warn, but mark to run again. */
666 return 0;
667 }
668
c4d10515 669 /* Fetch the r_brk field. It's 8 bytes from the start of
dda83cd7 670 _dl_debug_addr. */
c4d10515
KB
671 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
672 {
3e43a32a
MS
673 warning (_("Unable to fetch _dl_debug_addr->r_brk "
674 "(at address %s) from dynamic linker"),
dda83cd7 675 hex_string_custom (addr + 8, 8));
c4d10515 676 enable_break_failure_warning ();
c4d10515
KB
677 return 0;
678 }
e17a4113 679 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
680
681 /* Now fetch the function entry point. */
682 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
683 {
3e43a32a
MS
684 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
685 "(at address %s) from dynamic linker"),
dda83cd7 686 hex_string_custom (addr, 8));
c4d10515 687 enable_break_failure_warning ();
c4d10515
KB
688 return 0;
689 }
e17a4113 690 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 691
192b62ce 692 /* We're done with the loadmap. */
c4d10515
KB
693 xfree (ldm);
694
cb7db0f2 695 /* Remove all the solib event breakpoints. Their addresses
dda83cd7 696 may have changed since the last time we ran the program. */
cb7db0f2
MF
697 remove_solib_event_breakpoints ();
698
c4d10515 699 /* Now (finally!) create the solib breakpoint. */
f5656ead 700 create_solib_event_breakpoint (target_gdbarch (), addr);
c4d10515 701
cb7db0f2
MF
702 enable_break2_done = 1;
703
c4d10515
KB
704 return 1;
705 }
706
707 /* Tell the user we couldn't set a dynamic linker breakpoint. */
708 enable_break_failure_warning ();
709
710 /* Failure return. */
711 return 0;
712}
713
714static int
715enable_break (void)
716{
717 asection *interp_sect;
d56e56aa 718 CORE_ADDR entry_point;
c4d10515 719
a42d7dd8 720 if (current_program_space->symfile_object_file == NULL)
c4d10515 721 {
abd0a5fa
JK
722 if (solib_frv_debug)
723 fprintf_unfiltered (gdb_stdlog,
724 "enable_break: No symbol file found.\n");
725 return 0;
726 }
c4d10515 727
d56e56aa 728 if (!entry_point_address_query (&entry_point))
abd0a5fa 729 {
c4d10515
KB
730 if (solib_frv_debug)
731 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
732 "enable_break: Symbol file has no entry point.\n");
733 return 0;
c4d10515 734 }
abd0a5fa
JK
735
736 /* Check for the presence of a .interp section. If there is no
737 such section, the executable is statically linked. */
738
7e10abd1
TT
739 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
740 ".interp");
abd0a5fa
JK
741
742 if (interp_sect == NULL)
c4d10515
KB
743 {
744 if (solib_frv_debug)
745 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
746 "enable_break: No .interp section found.\n");
747 return 0;
c4d10515
KB
748 }
749
d56e56aa 750 create_solib_event_breakpoint (target_gdbarch (), entry_point);
abd0a5fa
JK
751
752 if (solib_frv_debug)
753 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
754 "enable_break: solib event breakpoint "
755 "placed at entry point: %s\n",
d56e56aa 756 hex_string_custom (entry_point, 8));
c4d10515
KB
757 return 1;
758}
759
c4d10515
KB
760static void
761frv_relocate_main_executable (void)
762{
763 int status;
9bc7b6c6 764 CORE_ADDR exec_addr, interp_addr;
c4d10515 765 struct int_elf32_fdpic_loadmap *ldm;
c4d10515
KB
766 int changed;
767 struct obj_section *osect;
768
f5656ead 769 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
dda83cd7 770 &interp_addr, &exec_addr);
c4d10515 771
9bc7b6c6 772 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
773 {
774 /* Not using FDPIC ABI, so do nothing. */
775 return;
776 }
777
778 /* Fetch the loadmap located at ``exec_addr''. */
779 ldm = fetch_loadmap (exec_addr);
780 if (ldm == NULL)
8a3fe4f8 781 error (_("Unable to load the executable's loadmap."));
c4d10515 782
4023ae76
SM
783 delete main_executable_lm_info;
784 main_executable_lm_info = new lm_info_frv;
c4d10515
KB
785 main_executable_lm_info->map = ldm;
786
a42d7dd8
TT
787 objfile *objf = current_program_space->symfile_object_file;
788 section_offsets new_offsets (objf->section_offsets.size ());
c4d10515
KB
789 changed = 0;
790
a42d7dd8 791 ALL_OBJFILE_OSECTIONS (objf, osect)
c4d10515
KB
792 {
793 CORE_ADDR orig_addr, addr, offset;
794 int osect_idx;
795 int seg;
796
a42d7dd8 797 osect_idx = osect - objf->sections;
c4d10515
KB
798
799 /* Current address of section. */
0c1bcd23 800 addr = osect->addr ();
c4d10515 801 /* Offset from where this section started. */
a42d7dd8 802 offset = objf->section_offsets[osect_idx];
c4d10515
KB
803 /* Original address prior to any past relocations. */
804 orig_addr = addr - offset;
805
806 for (seg = 0; seg < ldm->nsegs; seg++)
807 {
808 if (ldm->segs[seg].p_vaddr <= orig_addr
809 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
810 {
6a053cb1 811 new_offsets[osect_idx]
c4d10515
KB
812 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
813
6a053cb1 814 if (new_offsets[osect_idx] != offset)
c4d10515
KB
815 changed = 1;
816 break;
817 }
818 }
819 }
820
821 if (changed)
a42d7dd8 822 objfile_relocate (objf, new_offsets);
c4d10515 823
a42d7dd8
TT
824 /* Now that OBJF has been relocated, we can compute the GOT value
825 and stash it away. */
c4d10515
KB
826 main_executable_lm_info->got_value = main_got ();
827}
828
7f86f058 829/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 830
7f86f058
PA
831 For the FR-V shared library ABI (FDPIC), the main executable needs
832 to be relocated. The shared library breakpoints also need to be
833 enabled. */
c4d10515
KB
834
835static void
268a4a75 836frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
837{
838 /* Relocate main executable. */
839 frv_relocate_main_executable ();
840
841 /* Enable shared library breakpoints. */
842 if (!enable_break ())
843 {
8a3fe4f8 844 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
845 return;
846 }
847}
848
849static void
850frv_clear_solib (void)
851{
852 lm_base_cache = 0;
c4d10515 853 enable_break2_done = 0;
186993b4 854 main_lm_addr = 0;
4023ae76
SM
855
856 delete main_executable_lm_info;
857 main_executable_lm_info = NULL;
c4d10515
KB
858}
859
860static void
861frv_free_so (struct so_list *so)
862{
d0e449a1
SM
863 lm_info_frv *li = (lm_info_frv *) so->lm_info;
864
4023ae76 865 delete li;
c4d10515
KB
866}
867
868static void
869frv_relocate_section_addresses (struct so_list *so,
dda83cd7 870 struct target_section *sec)
c4d10515
KB
871{
872 int seg;
d0e449a1
SM
873 lm_info_frv *li = (lm_info_frv *) so->lm_info;
874 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
875
876 for (seg = 0; seg < map->nsegs; seg++)
877 {
878 if (map->segs[seg].p_vaddr <= sec->addr
dda83cd7 879 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
c4d10515
KB
880 {
881 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 882
c4d10515
KB
883 sec->addr += displ;
884 sec->endaddr += displ;
885 break;
886 }
887 }
888}
889
890/* Return the GOT address associated with the main executable. Return
891 0 if it can't be found. */
892
893static CORE_ADDR
894main_got (void)
895{
3b7344d5 896 struct bound_minimal_symbol got_sym;
c4d10515 897
a42d7dd8
TT
898 objfile *objf = current_program_space->symfile_object_file;
899 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, objf);
3b7344d5 900 if (got_sym.minsym == 0)
c4d10515
KB
901 return 0;
902
77e371c0 903 return BMSYMBOL_VALUE_ADDRESS (got_sym);
c4d10515
KB
904}
905
906/* Find the global pointer for the given function address ADDR. */
907
908CORE_ADDR
909frv_fdpic_find_global_pointer (CORE_ADDR addr)
910{
a1fd1ac9 911 for (struct so_list *so : current_program_space->solibs ())
c4d10515
KB
912 {
913 int seg;
d0e449a1
SM
914 lm_info_frv *li = (lm_info_frv *) so->lm_info;
915 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
916
917 for (seg = 0; seg < map->nsegs; seg++)
918 {
919 if (map->segs[seg].addr <= addr
920 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
d0e449a1 921 return li->got_value;
c4d10515 922 }
c4d10515
KB
923 }
924
7a9dd1b2 925 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
926 main executable. */
927 return main_got ();
928}
929
930/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
931static CORE_ADDR find_canonical_descriptor_in_load_object
d0e449a1 932 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
c4d10515
KB
933
934/* Given a function entry point, attempt to find the canonical descriptor
935 associated with that entry point. Return 0 if no canonical descriptor
936 could be found. */
937
938CORE_ADDR
939frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
940{
0d5cff50 941 const char *name;
c4d10515
KB
942 CORE_ADDR addr;
943 CORE_ADDR got_value;
c4d10515 944 struct symbol *sym;
c4d10515
KB
945
946 /* Fetch the corresponding global pointer for the entry point. */
947 got_value = frv_fdpic_find_global_pointer (entry_point);
948
949 /* Attempt to find the name of the function. If the name is available,
950 it'll be used as an aid in finding matching functions in the dynamic
951 symbol table. */
952 sym = find_pc_function (entry_point);
953 if (sym == 0)
954 name = 0;
955 else
987012b8 956 name = sym->linkage_name ();
c4d10515
KB
957
958 /* Check the main executable. */
a42d7dd8 959 objfile *objf = current_program_space->symfile_object_file;
c4d10515 960 addr = find_canonical_descriptor_in_load_object
dda83cd7 961 (entry_point, got_value, name, objf->obfd,
c4d10515
KB
962 main_executable_lm_info);
963
964 /* If descriptor not found via main executable, check each load object
965 in list of shared objects. */
966 if (addr == 0)
967 {
a1fd1ac9 968 for (struct so_list *so : current_program_space->solibs ())
c4d10515 969 {
d0e449a1
SM
970 lm_info_frv *li = (lm_info_frv *) so->lm_info;
971
c4d10515 972 addr = find_canonical_descriptor_in_load_object
d0e449a1 973 (entry_point, got_value, name, so->abfd, li);
c4d10515
KB
974
975 if (addr != 0)
976 break;
c4d10515
KB
977 }
978 }
979
980 return addr;
981}
982
983static CORE_ADDR
984find_canonical_descriptor_in_load_object
0d5cff50 985 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
d0e449a1 986 lm_info_frv *lm)
c4d10515 987{
f5656ead 988 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
989 arelent *rel;
990 unsigned int i;
991 CORE_ADDR addr = 0;
992
993 /* Nothing to do if no bfd. */
994 if (abfd == 0)
995 return 0;
996
35e08e03
KB
997 /* Nothing to do if no link map. */
998 if (lm == 0)
999 return 0;
1000
c4d10515
KB
1001 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1002 (More about this later.) But in order to fetch the relocs, we
1003 need to first fetch the dynamic symbols. These symbols need to
1004 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1005 works. (See the comments in the declaration of struct lm_info
1006 for more information.) */
1007 if (lm->dyn_syms == NULL)
1008 {
1009 long storage_needed;
1010 unsigned int number_of_symbols;
1011
1012 /* Determine amount of space needed to hold the dynamic symbol table. */
1013 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1014
1015 /* If there are no dynamic symbols, there's nothing to do. */
1016 if (storage_needed <= 0)
1017 return 0;
1018
1019 /* Allocate space for the dynamic symbol table. */
1020 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1021
1022 /* Fetch the dynamic symbol table. */
1023 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1024
1025 if (number_of_symbols == 0)
1026 return 0;
1027 }
1028
1029 /* Fetch the dynamic relocations if not already cached. */
1030 if (lm->dyn_relocs == NULL)
1031 {
1032 long storage_needed;
1033
1034 /* Determine amount of space needed to hold the dynamic relocs. */
1035 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1036
1037 /* Bail out if there are no dynamic relocs. */
1038 if (storage_needed <= 0)
1039 return 0;
1040
1041 /* Allocate space for the relocs. */
1042 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1043
1044 /* Fetch the dynamic relocs. */
1045 lm->dyn_reloc_count
1046 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1047 }
1048
1049 /* Search the dynamic relocs. */
1050 for (i = 0; i < lm->dyn_reloc_count; i++)
1051 {
1052 rel = lm->dyn_relocs[i];
1053
1054 /* Relocs of interest are those which meet the following
dda83cd7 1055 criteria:
c4d10515
KB
1056
1057 - the names match (assuming the caller could provide
1058 a name which matches ``entry_point'').
1059 - the relocation type must be R_FRV_FUNCDESC. Relocs
1060 of this type are used (by the dynamic linker) to
1061 look up the address of a canonical descriptor (allocating
1062 it if need be) and initializing the GOT entry referred
1063 to by the offset to the address of the descriptor.
1064
1065 These relocs of interest may be used to obtain a
1066 candidate descriptor by first adjusting the reloc's
1067 address according to the link map and then dereferencing
1068 this address (which is a GOT entry) to obtain a descriptor
1069 address. */
1070 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
dda83cd7 1071 && rel->howto->type == R_FRV_FUNCDESC)
c4d10515 1072 {
e2b7c966 1073 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1074
1075 /* Compute address of address of candidate descriptor. */
1076 addr = rel->address + displacement_from_map (lm->map, rel->address);
1077
1078 /* Fetch address of candidate descriptor. */
1079 if (target_read_memory (addr, buf, sizeof buf) != 0)
1080 continue;
e17a4113 1081 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1082
1083 /* Check for matching entry point. */
1084 if (target_read_memory (addr, buf, sizeof buf) != 0)
1085 continue;
e17a4113
UW
1086 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1087 != entry_point)
c4d10515
KB
1088 continue;
1089
1090 /* Check for matching got value. */
1091 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1092 continue;
e17a4113
UW
1093 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1094 != got_value)
c4d10515
KB
1095 continue;
1096
1097 /* Match was successful! Exit loop. */
1098 break;
1099 }
1100 }
1101
1102 return addr;
1103}
1104
186993b4
KB
1105/* Given an objfile, return the address of its link map. This value is
1106 needed for TLS support. */
1107CORE_ADDR
1108frv_fetch_objfile_link_map (struct objfile *objfile)
1109{
186993b4
KB
1110 /* Cause frv_current_sos() to be run if it hasn't been already. */
1111 if (main_lm_addr == 0)
e696b3ad 1112 solib_add (0, 0, 1);
186993b4
KB
1113
1114 /* frv_current_sos() will set main_lm_addr for the main executable. */
a42d7dd8 1115 if (objfile == current_program_space->symfile_object_file)
186993b4
KB
1116 return main_lm_addr;
1117
1118 /* The other link map addresses may be found by examining the list
1119 of shared libraries. */
a1fd1ac9 1120 for (struct so_list *so : current_program_space->solibs ())
186993b4 1121 {
d0e449a1
SM
1122 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1123
186993b4 1124 if (so->objfile == objfile)
d0e449a1 1125 return li->lm_addr;
186993b4
KB
1126 }
1127
1128 /* Not found! */
1129 return 0;
1130}
1131
917630e4 1132struct target_so_ops frv_so_ops;
c4d10515 1133
6c265988 1134void _initialize_frv_solib ();
c4d10515 1135void
6c265988 1136_initialize_frv_solib ()
c4d10515
KB
1137{
1138 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1139 frv_so_ops.free_so = frv_free_so;
1140 frv_so_ops.clear_solib = frv_clear_solib;
1141 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
c4d10515
KB
1142 frv_so_ops.current_sos = frv_current_sos;
1143 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1144 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1145 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1146
c4d10515 1147 /* Debug this file's internals. */
ccce17b0
YQ
1148 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1149 &solib_frv_debug, _("\
85c07804
AC
1150Set internal debugging of shared library code for FR-V."), _("\
1151Show internal debugging of shared library code for FR-V."), _("\
1152When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1153 NULL,
1154 NULL, /* FIXME: i18n: */
1155 &setdebuglist, &showdebuglist);
c4d10515 1156}
This page took 1.844158 seconds and 4 git commands to generate.