windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
32d0add0 2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
c4d10515
KB
21#include "inferior.h"
22#include "gdbcore.h"
cb5c8c39 23#include "solib.h"
c4d10515
KB
24#include "solist.h"
25#include "frv-tdep.h"
26#include "objfiles.h"
27#include "symtab.h"
28#include "language.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "elf/frv.h"
cbb099e8 32#include "gdb_bfd.h"
c4d10515
KB
33
34/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 35static unsigned int solib_frv_debug;
c4d10515
KB
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
f5656ead 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
e2b7c966 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
e2b7c966 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
c4d10515
KB
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
e2b7c966 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
c4d10515 128
9bc7b6c6
KB
129 if (nsegs <= 0)
130 return NULL;
131
c4d10515
KB
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
c4d10515 165 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
c4d10515 169 int_ldmbuf->segs[seg].p_memsz
e2b7c966 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
c4d10515
KB
173 }
174
d5c560f7 175 xfree (ext_ldmbuf);
c4d10515
KB
176 return int_ldmbuf;
177}
178
179/* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
e2b7c966 181typedef gdb_byte ext_ptr[4];
c4d10515
KB
182
183struct ext_elf32_fdpic_loadaddr
184{
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187};
188
189struct ext_link_map
190{
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201};
202
c378eb4e 203/* Link map info to include in an allocated so_list entry. */
c4d10515
KB
204
205struct lm_info
206 {
207 /* The loadmap, digested into an easier to use form. */
208 struct int_elf32_fdpic_loadmap *map;
209 /* The GOT address for this link map entry. */
210 CORE_ADDR got_value;
186993b4
KB
211 /* The link map address, needed for frv_fetch_objfile_link_map(). */
212 CORE_ADDR lm_addr;
c4d10515
KB
213
214 /* Cached dynamic symbol table and dynamic relocs initialized and
215 used only by find_canonical_descriptor_in_load_object().
216
217 Note: kevinb/2004-02-26: It appears that calls to
218 bfd_canonicalize_dynamic_reloc() will use the same symbols as
219 those supplied to the first call to this function. Therefore,
220 it's important to NOT free the asymbol ** data structure
221 supplied to the first call. Thus the caching of the dynamic
222 symbols (dyn_syms) is critical for correct operation. The
223 caching of the dynamic relocations could be dispensed with. */
224 asymbol **dyn_syms;
225 arelent **dyn_relocs;
c378eb4e 226 int dyn_reloc_count; /* Number of dynamic relocs. */
c4d10515
KB
227
228 };
229
230/* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234static struct lm_info *main_executable_lm_info;
235
236static void frv_relocate_main_executable (void);
237static CORE_ADDR main_got (void);
238static int enable_break2 (void);
239
7f86f058 240/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
241
242static int
243open_symbol_file_object (void *from_ttyp)
244{
245 /* Unimplemented. */
246 return 0;
247}
248
249/* Cached value for lm_base(), below. */
250static CORE_ADDR lm_base_cache = 0;
251
186993b4
KB
252/* Link map address for main module. */
253static CORE_ADDR main_lm_addr = 0;
254
c4d10515
KB
255/* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263static CORE_ADDR
264lm_base (void)
265{
f5656ead 266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3b7344d5 267 struct bound_minimal_symbol got_sym;
c4d10515 268 CORE_ADDR addr;
e2b7c966 269 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 270
89a7ee67
KB
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
c4d10515
KB
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 symfile_objfile);
3b7344d5 285 if (got_sym.minsym == 0)
c4d10515
KB
286 {
287 if (solib_frv_debug)
288 fprintf_unfiltered (gdb_stdlog,
289 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
290 return 0;
291 }
292
77e371c0 293 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
c4d10515
KB
294
295 if (solib_frv_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 298 hex_string_custom (addr, 8));
c4d10515
KB
299
300 if (target_read_memory (addr, buf, sizeof buf) != 0)
301 return 0;
e17a4113 302 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
303
304 if (solib_frv_debug)
305 fprintf_unfiltered (gdb_stdlog,
306 "lm_base: lm_base_cache = %s\n",
bb599908 307 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
308
309 return lm_base_cache;
310}
311
312
7f86f058 313/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
314
315static struct so_list *
316frv_current_sos (void)
317{
f5656ead 318 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
319 CORE_ADDR lm_addr, mgot;
320 struct so_list *sos_head = NULL;
321 struct so_list **sos_next_ptr = &sos_head;
322
7c699b81
KB
323 /* Make sure that the main executable has been relocated. This is
324 required in order to find the address of the global offset table,
325 which in turn is used to find the link map info. (See lm_base()
326 for details.)
327
328 Note that the relocation of the main executable is also performed
4d1eb6b4 329 by solib_create_inferior_hook(), however, in the case of core
7c699b81 330 files, this hook is called too late in order to be of benefit to
4d1eb6b4 331 solib_add. solib_add eventually calls this this function,
7c699b81 332 frv_current_sos, and also precedes the call to
4d1eb6b4 333 solib_create_inferior_hook(). (See post_create_inferior() in
7c699b81
KB
334 infcmd.c.) */
335 if (main_executable_lm_info == 0 && core_bfd != NULL)
336 frv_relocate_main_executable ();
337
338 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
339 mgot = main_got ();
340
341 /* Locate the address of the first link map struct. */
342 lm_addr = lm_base ();
343
b021a221 344 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
345 building the solist chain. */
346 while (lm_addr)
347 {
348 struct ext_link_map lm_buf;
349 CORE_ADDR got_addr;
350
351 if (solib_frv_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "current_sos: reading link_map entry at %s\n",
bb599908 354 hex_string_custom (lm_addr, 8));
c4d10515 355
3e43a32a
MS
356 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
357 sizeof (lm_buf)) != 0)
c4d10515 358 {
3e43a32a
MS
359 warning (_("frv_current_sos: Unable to read link map entry. "
360 "Shared object chain may be incomplete."));
c4d10515
KB
361 break;
362 }
363
364 got_addr
e2b7c966 365 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
366 sizeof (lm_buf.l_addr.got_value),
367 byte_order);
c4d10515
KB
368 /* If the got_addr is the same as mgotr, then we're looking at the
369 entry for the main executable. By convention, we don't include
370 this in the list of shared objects. */
371 if (got_addr != mgot)
372 {
373 int errcode;
374 char *name_buf;
375 struct int_elf32_fdpic_loadmap *loadmap;
376 struct so_list *sop;
377 CORE_ADDR addr;
378
379 /* Fetch the load map address. */
e2b7c966 380 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
381 sizeof lm_buf.l_addr.map,
382 byte_order);
c4d10515
KB
383 loadmap = fetch_loadmap (addr);
384 if (loadmap == NULL)
385 {
3e43a32a
MS
386 warning (_("frv_current_sos: Unable to fetch load map. "
387 "Shared object chain may be incomplete."));
c4d10515
KB
388 break;
389 }
390
391 sop = xcalloc (1, sizeof (struct so_list));
392 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
393 sop->lm_info->map = loadmap;
394 sop->lm_info->got_value = got_addr;
186993b4 395 sop->lm_info->lm_addr = lm_addr;
c4d10515 396 /* Fetch the name. */
e2b7c966 397 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
398 sizeof (lm_buf.l_name),
399 byte_order);
c4d10515
KB
400 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
401 &errcode);
402
403 if (solib_frv_debug)
404 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
405 name_buf);
406
407 if (errcode != 0)
8a3fe4f8
AC
408 warning (_("Can't read pathname for link map entry: %s."),
409 safe_strerror (errcode));
c4d10515
KB
410 else
411 {
412 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
413 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
414 xfree (name_buf);
415 strcpy (sop->so_original_name, sop->so_name);
416 }
417
418 *sos_next_ptr = sop;
419 sos_next_ptr = &sop->next;
420 }
186993b4
KB
421 else
422 {
423 main_lm_addr = lm_addr;
424 }
c4d10515 425
e17a4113
UW
426 lm_addr = extract_unsigned_integer (lm_buf.l_next,
427 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
428 }
429
430 enable_break2 ();
431
432 return sos_head;
433}
434
435
436/* Return 1 if PC lies in the dynamic symbol resolution code of the
437 run time loader. */
438
439static CORE_ADDR interp_text_sect_low;
440static CORE_ADDR interp_text_sect_high;
441static CORE_ADDR interp_plt_sect_low;
442static CORE_ADDR interp_plt_sect_high;
443
444static int
445frv_in_dynsym_resolve_code (CORE_ADDR pc)
446{
447 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
448 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
3e5d3a5a 449 || in_plt_section (pc));
c4d10515
KB
450}
451
452/* Given a loadmap and an address, return the displacement needed
453 to relocate the address. */
454
63807e1d 455static CORE_ADDR
c4d10515
KB
456displacement_from_map (struct int_elf32_fdpic_loadmap *map,
457 CORE_ADDR addr)
458{
459 int seg;
460
461 for (seg = 0; seg < map->nsegs; seg++)
462 {
463 if (map->segs[seg].p_vaddr <= addr
464 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
465 {
466 return map->segs[seg].addr - map->segs[seg].p_vaddr;
467 }
468 }
469
470 return 0;
471}
472
473/* Print a warning about being unable to set the dynamic linker
474 breakpoint. */
475
476static void
477enable_break_failure_warning (void)
478{
8a3fe4f8 479 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 480 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 481 "and track explicitly loaded dynamic code."));
c4d10515
KB
482}
483
cb457ae2
YQ
484/* Helper function for gdb_bfd_lookup_symbol. */
485
486static int
487cmp_name (asymbol *sym, void *data)
488{
489 return (strcmp (sym->name, (const char *) data) == 0);
490}
491
7f86f058 492/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
493
494 The dynamic linkers has, as part of its debugger interface, support
495 for arranging for the inferior to hit a breakpoint after mapping in
496 the shared libraries. This function enables that breakpoint.
497
498 On the FR-V, using the shared library (FDPIC) ABI, the symbol
499 _dl_debug_addr points to the r_debug struct which contains
500 a field called r_brk. r_brk is the address of the function
501 descriptor upon which a breakpoint must be placed. Being a
502 function descriptor, we must extract the entry point in order
503 to set the breakpoint.
504
505 Our strategy will be to get the .interp section from the
506 executable. This section will provide us with the name of the
507 interpreter. We'll open the interpreter and then look up
508 the address of _dl_debug_addr. We then relocate this address
509 using the interpreter's loadmap. Once the relocated address
510 is known, we fetch the value (address) corresponding to r_brk
511 and then use that value to fetch the entry point of the function
7f86f058 512 we're interested in. */
c4d10515 513
c4d10515
KB
514static int enable_break2_done = 0;
515
516static int
517enable_break2 (void)
518{
f5656ead 519 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
520 int success = 0;
521 char **bkpt_namep;
522 asection *interp_sect;
523
cb7db0f2 524 if (enable_break2_done)
c4d10515
KB
525 return 1;
526
c4d10515
KB
527 interp_text_sect_low = interp_text_sect_high = 0;
528 interp_plt_sect_low = interp_plt_sect_high = 0;
529
530 /* Find the .interp section; if not found, warn the user and drop
531 into the old breakpoint at symbol code. */
532 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
533 if (interp_sect)
534 {
535 unsigned int interp_sect_size;
001f13d8 536 char *buf;
c4d10515 537 bfd *tmp_bfd = NULL;
c4d10515
KB
538 int status;
539 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 540 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515
KB
541 struct int_elf32_fdpic_loadmap *ldm;
542
543 /* Read the contents of the .interp section into a local buffer;
544 the contents specify the dynamic linker this program uses. */
545 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
546 buf = alloca (interp_sect_size);
547 bfd_get_section_contents (exec_bfd, interp_sect,
548 buf, 0, interp_sect_size);
549
550 /* Now we need to figure out where the dynamic linker was
551 loaded so that we can load its symbols and place a breakpoint
552 in the dynamic linker itself.
553
554 This address is stored on the stack. However, I've been unable
555 to find any magic formula to find it for Solaris (appears to
556 be trivial on GNU/Linux). Therefore, we have to try an alternate
557 mechanism to find the dynamic linker's base address. */
558
492d29ea 559 TRY
f1838a98
UW
560 {
561 tmp_bfd = solib_bfd_open (buf);
562 }
492d29ea
PA
563 CATCH (ex, RETURN_MASK_ALL)
564 {
565 }
566 END_CATCH
567
c4d10515
KB
568 if (tmp_bfd == NULL)
569 {
570 enable_break_failure_warning ();
571 return 0;
572 }
573
f5656ead 574 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
c4d10515
KB
575 &interp_loadmap_addr, 0);
576 if (status < 0)
577 {
8a3fe4f8 578 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 579 enable_break_failure_warning ();
cbb099e8 580 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
581 return 0;
582 }
583
584 if (solib_frv_debug)
585 fprintf_unfiltered (gdb_stdlog,
586 "enable_break: interp_loadmap_addr = %s\n",
bb599908 587 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
588
589 ldm = fetch_loadmap (interp_loadmap_addr);
590 if (ldm == NULL)
591 {
8a3fe4f8 592 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 593 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 594 enable_break_failure_warning ();
cbb099e8 595 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
596 return 0;
597 }
598
599 /* Record the relocated start and end address of the dynamic linker
600 text and plt section for svr4_in_dynsym_resolve_code. */
601 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
602 if (interp_sect)
603 {
604 interp_text_sect_low
605 = bfd_section_vma (tmp_bfd, interp_sect);
606 interp_text_sect_low
607 += displacement_from_map (ldm, interp_text_sect_low);
608 interp_text_sect_high
609 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
610 }
611 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
612 if (interp_sect)
613 {
614 interp_plt_sect_low =
615 bfd_section_vma (tmp_bfd, interp_sect);
616 interp_plt_sect_low
617 += displacement_from_map (ldm, interp_plt_sect_low);
618 interp_plt_sect_high =
619 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
620 }
621
cb457ae2
YQ
622 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
623
c4d10515
KB
624 if (addr == 0)
625 {
3e43a32a
MS
626 warning (_("Could not find symbol _dl_debug_addr "
627 "in dynamic linker"));
c4d10515 628 enable_break_failure_warning ();
cbb099e8 629 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
630 return 0;
631 }
632
633 if (solib_frv_debug)
634 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
635 "enable_break: _dl_debug_addr "
636 "(prior to relocation) = %s\n",
bb599908 637 hex_string_custom (addr, 8));
c4d10515
KB
638
639 addr += displacement_from_map (ldm, addr);
640
641 if (solib_frv_debug)
642 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
643 "enable_break: _dl_debug_addr "
644 "(after relocation) = %s\n",
bb599908 645 hex_string_custom (addr, 8));
c4d10515
KB
646
647 /* Fetch the address of the r_debug struct. */
648 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
649 {
3e43a32a
MS
650 warning (_("Unable to fetch contents of _dl_debug_addr "
651 "(at address %s) from dynamic linker"),
bb599908 652 hex_string_custom (addr, 8));
c4d10515 653 }
e17a4113 654 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 655
cb7db0f2
MF
656 if (solib_frv_debug)
657 fprintf_unfiltered (gdb_stdlog,
658 "enable_break: _dl_debug_addr[0..3] = %s\n",
659 hex_string_custom (addr, 8));
660
661 /* If it's zero, then the ldso hasn't initialized yet, and so
662 there are no shared libs yet loaded. */
663 if (addr == 0)
664 {
665 if (solib_frv_debug)
666 fprintf_unfiltered (gdb_stdlog,
667 "enable_break: ldso not yet initialized\n");
668 /* Do not warn, but mark to run again. */
669 return 0;
670 }
671
c4d10515
KB
672 /* Fetch the r_brk field. It's 8 bytes from the start of
673 _dl_debug_addr. */
674 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
675 {
3e43a32a
MS
676 warning (_("Unable to fetch _dl_debug_addr->r_brk "
677 "(at address %s) from dynamic linker"),
bb599908 678 hex_string_custom (addr + 8, 8));
c4d10515 679 enable_break_failure_warning ();
cbb099e8 680 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
681 return 0;
682 }
e17a4113 683 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
684
685 /* Now fetch the function entry point. */
686 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
687 {
3e43a32a
MS
688 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
689 "(at address %s) from dynamic linker"),
bb599908 690 hex_string_custom (addr, 8));
c4d10515 691 enable_break_failure_warning ();
cbb099e8 692 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
693 return 0;
694 }
e17a4113 695 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
696
697 /* We're done with the temporary bfd. */
cbb099e8 698 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
699
700 /* We're also done with the loadmap. */
701 xfree (ldm);
702
cb7db0f2
MF
703 /* Remove all the solib event breakpoints. Their addresses
704 may have changed since the last time we ran the program. */
705 remove_solib_event_breakpoints ();
706
c4d10515 707 /* Now (finally!) create the solib breakpoint. */
f5656ead 708 create_solib_event_breakpoint (target_gdbarch (), addr);
c4d10515 709
cb7db0f2
MF
710 enable_break2_done = 1;
711
c4d10515
KB
712 return 1;
713 }
714
715 /* Tell the user we couldn't set a dynamic linker breakpoint. */
716 enable_break_failure_warning ();
717
718 /* Failure return. */
719 return 0;
720}
721
722static int
723enable_break (void)
724{
725 asection *interp_sect;
d56e56aa 726 CORE_ADDR entry_point;
c4d10515 727
abd0a5fa 728 if (symfile_objfile == NULL)
c4d10515 729 {
abd0a5fa
JK
730 if (solib_frv_debug)
731 fprintf_unfiltered (gdb_stdlog,
732 "enable_break: No symbol file found.\n");
733 return 0;
734 }
c4d10515 735
d56e56aa 736 if (!entry_point_address_query (&entry_point))
abd0a5fa 737 {
c4d10515
KB
738 if (solib_frv_debug)
739 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
740 "enable_break: Symbol file has no entry point.\n");
741 return 0;
c4d10515 742 }
abd0a5fa
JK
743
744 /* Check for the presence of a .interp section. If there is no
745 such section, the executable is statically linked. */
746
747 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
748
749 if (interp_sect == NULL)
c4d10515
KB
750 {
751 if (solib_frv_debug)
752 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
753 "enable_break: No .interp section found.\n");
754 return 0;
c4d10515
KB
755 }
756
d56e56aa 757 create_solib_event_breakpoint (target_gdbarch (), entry_point);
abd0a5fa
JK
758
759 if (solib_frv_debug)
760 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
761 "enable_break: solib event breakpoint "
762 "placed at entry point: %s\n",
d56e56aa 763 hex_string_custom (entry_point, 8));
c4d10515
KB
764 return 1;
765}
766
7f86f058 767/* Implement the "special_symbol_handling" target_so_ops method. */
c4d10515
KB
768
769static void
770frv_special_symbol_handling (void)
771{
7f86f058 772 /* Nothing needed for FRV. */
c4d10515
KB
773}
774
775static void
776frv_relocate_main_executable (void)
777{
778 int status;
9bc7b6c6 779 CORE_ADDR exec_addr, interp_addr;
c4d10515
KB
780 struct int_elf32_fdpic_loadmap *ldm;
781 struct cleanup *old_chain;
782 struct section_offsets *new_offsets;
783 int changed;
784 struct obj_section *osect;
785
f5656ead 786 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
9bc7b6c6 787 &interp_addr, &exec_addr);
c4d10515 788
9bc7b6c6 789 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
790 {
791 /* Not using FDPIC ABI, so do nothing. */
792 return;
793 }
794
795 /* Fetch the loadmap located at ``exec_addr''. */
796 ldm = fetch_loadmap (exec_addr);
797 if (ldm == NULL)
8a3fe4f8 798 error (_("Unable to load the executable's loadmap."));
c4d10515
KB
799
800 if (main_executable_lm_info)
801 xfree (main_executable_lm_info);
802 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
803 main_executable_lm_info->map = ldm;
804
805 new_offsets = xcalloc (symfile_objfile->num_sections,
806 sizeof (struct section_offsets));
807 old_chain = make_cleanup (xfree, new_offsets);
808 changed = 0;
809
810 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
811 {
812 CORE_ADDR orig_addr, addr, offset;
813 int osect_idx;
814 int seg;
815
65cf3563 816 osect_idx = osect - symfile_objfile->sections;
c4d10515
KB
817
818 /* Current address of section. */
aded6f54 819 addr = obj_section_addr (osect);
c4d10515
KB
820 /* Offset from where this section started. */
821 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
822 /* Original address prior to any past relocations. */
823 orig_addr = addr - offset;
824
825 for (seg = 0; seg < ldm->nsegs; seg++)
826 {
827 if (ldm->segs[seg].p_vaddr <= orig_addr
828 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
829 {
830 new_offsets->offsets[osect_idx]
831 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
832
833 if (new_offsets->offsets[osect_idx] != offset)
834 changed = 1;
835 break;
836 }
837 }
838 }
839
840 if (changed)
841 objfile_relocate (symfile_objfile, new_offsets);
842
843 do_cleanups (old_chain);
844
845 /* Now that symfile_objfile has been relocated, we can compute the
846 GOT value and stash it away. */
847 main_executable_lm_info->got_value = main_got ();
848}
849
7f86f058 850/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 851
7f86f058
PA
852 For the FR-V shared library ABI (FDPIC), the main executable needs
853 to be relocated. The shared library breakpoints also need to be
854 enabled. */
c4d10515
KB
855
856static void
268a4a75 857frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
858{
859 /* Relocate main executable. */
860 frv_relocate_main_executable ();
861
862 /* Enable shared library breakpoints. */
863 if (!enable_break ())
864 {
8a3fe4f8 865 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
866 return;
867 }
868}
869
870static void
871frv_clear_solib (void)
872{
873 lm_base_cache = 0;
c4d10515 874 enable_break2_done = 0;
186993b4 875 main_lm_addr = 0;
7c699b81
KB
876 if (main_executable_lm_info != 0)
877 {
878 xfree (main_executable_lm_info->map);
879 xfree (main_executable_lm_info->dyn_syms);
880 xfree (main_executable_lm_info->dyn_relocs);
881 xfree (main_executable_lm_info);
882 main_executable_lm_info = 0;
883 }
c4d10515
KB
884}
885
886static void
887frv_free_so (struct so_list *so)
888{
889 xfree (so->lm_info->map);
890 xfree (so->lm_info->dyn_syms);
891 xfree (so->lm_info->dyn_relocs);
892 xfree (so->lm_info);
893}
894
895static void
896frv_relocate_section_addresses (struct so_list *so,
0542c86d 897 struct target_section *sec)
c4d10515
KB
898{
899 int seg;
900 struct int_elf32_fdpic_loadmap *map;
901
902 map = so->lm_info->map;
903
904 for (seg = 0; seg < map->nsegs; seg++)
905 {
906 if (map->segs[seg].p_vaddr <= sec->addr
907 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
908 {
909 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 910
c4d10515
KB
911 sec->addr += displ;
912 sec->endaddr += displ;
913 break;
914 }
915 }
916}
917
918/* Return the GOT address associated with the main executable. Return
919 0 if it can't be found. */
920
921static CORE_ADDR
922main_got (void)
923{
3b7344d5 924 struct bound_minimal_symbol got_sym;
c4d10515 925
3e43a32a
MS
926 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
927 NULL, symfile_objfile);
3b7344d5 928 if (got_sym.minsym == 0)
c4d10515
KB
929 return 0;
930
77e371c0 931 return BMSYMBOL_VALUE_ADDRESS (got_sym);
c4d10515
KB
932}
933
934/* Find the global pointer for the given function address ADDR. */
935
936CORE_ADDR
937frv_fdpic_find_global_pointer (CORE_ADDR addr)
938{
939 struct so_list *so;
940
941 so = master_so_list ();
942 while (so)
943 {
944 int seg;
945 struct int_elf32_fdpic_loadmap *map;
946
947 map = so->lm_info->map;
948
949 for (seg = 0; seg < map->nsegs; seg++)
950 {
951 if (map->segs[seg].addr <= addr
952 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
953 return so->lm_info->got_value;
954 }
955
956 so = so->next;
957 }
958
7a9dd1b2 959 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
960 main executable. */
961 return main_got ();
962}
963
964/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
965static CORE_ADDR find_canonical_descriptor_in_load_object
0d5cff50 966 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
c4d10515
KB
967
968/* Given a function entry point, attempt to find the canonical descriptor
969 associated with that entry point. Return 0 if no canonical descriptor
970 could be found. */
971
972CORE_ADDR
973frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
974{
0d5cff50 975 const char *name;
c4d10515
KB
976 CORE_ADDR addr;
977 CORE_ADDR got_value;
978 struct int_elf32_fdpic_loadmap *ldm = 0;
979 struct symbol *sym;
c4d10515
KB
980
981 /* Fetch the corresponding global pointer for the entry point. */
982 got_value = frv_fdpic_find_global_pointer (entry_point);
983
984 /* Attempt to find the name of the function. If the name is available,
985 it'll be used as an aid in finding matching functions in the dynamic
986 symbol table. */
987 sym = find_pc_function (entry_point);
988 if (sym == 0)
989 name = 0;
990 else
991 name = SYMBOL_LINKAGE_NAME (sym);
992
993 /* Check the main executable. */
994 addr = find_canonical_descriptor_in_load_object
995 (entry_point, got_value, name, symfile_objfile->obfd,
996 main_executable_lm_info);
997
998 /* If descriptor not found via main executable, check each load object
999 in list of shared objects. */
1000 if (addr == 0)
1001 {
1002 struct so_list *so;
1003
1004 so = master_so_list ();
1005 while (so)
1006 {
1007 addr = find_canonical_descriptor_in_load_object
1008 (entry_point, got_value, name, so->abfd, so->lm_info);
1009
1010 if (addr != 0)
1011 break;
1012
1013 so = so->next;
1014 }
1015 }
1016
1017 return addr;
1018}
1019
1020static CORE_ADDR
1021find_canonical_descriptor_in_load_object
0d5cff50 1022 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
c4d10515
KB
1023 struct lm_info *lm)
1024{
f5656ead 1025 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
1026 arelent *rel;
1027 unsigned int i;
1028 CORE_ADDR addr = 0;
1029
1030 /* Nothing to do if no bfd. */
1031 if (abfd == 0)
1032 return 0;
1033
35e08e03
KB
1034 /* Nothing to do if no link map. */
1035 if (lm == 0)
1036 return 0;
1037
c4d10515
KB
1038 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1039 (More about this later.) But in order to fetch the relocs, we
1040 need to first fetch the dynamic symbols. These symbols need to
1041 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1042 works. (See the comments in the declaration of struct lm_info
1043 for more information.) */
1044 if (lm->dyn_syms == NULL)
1045 {
1046 long storage_needed;
1047 unsigned int number_of_symbols;
1048
1049 /* Determine amount of space needed to hold the dynamic symbol table. */
1050 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1051
1052 /* If there are no dynamic symbols, there's nothing to do. */
1053 if (storage_needed <= 0)
1054 return 0;
1055
1056 /* Allocate space for the dynamic symbol table. */
1057 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1058
1059 /* Fetch the dynamic symbol table. */
1060 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1061
1062 if (number_of_symbols == 0)
1063 return 0;
1064 }
1065
1066 /* Fetch the dynamic relocations if not already cached. */
1067 if (lm->dyn_relocs == NULL)
1068 {
1069 long storage_needed;
1070
1071 /* Determine amount of space needed to hold the dynamic relocs. */
1072 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1073
1074 /* Bail out if there are no dynamic relocs. */
1075 if (storage_needed <= 0)
1076 return 0;
1077
1078 /* Allocate space for the relocs. */
1079 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1080
1081 /* Fetch the dynamic relocs. */
1082 lm->dyn_reloc_count
1083 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1084 }
1085
1086 /* Search the dynamic relocs. */
1087 for (i = 0; i < lm->dyn_reloc_count; i++)
1088 {
1089 rel = lm->dyn_relocs[i];
1090
1091 /* Relocs of interest are those which meet the following
1092 criteria:
1093
1094 - the names match (assuming the caller could provide
1095 a name which matches ``entry_point'').
1096 - the relocation type must be R_FRV_FUNCDESC. Relocs
1097 of this type are used (by the dynamic linker) to
1098 look up the address of a canonical descriptor (allocating
1099 it if need be) and initializing the GOT entry referred
1100 to by the offset to the address of the descriptor.
1101
1102 These relocs of interest may be used to obtain a
1103 candidate descriptor by first adjusting the reloc's
1104 address according to the link map and then dereferencing
1105 this address (which is a GOT entry) to obtain a descriptor
1106 address. */
1107 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1108 && rel->howto->type == R_FRV_FUNCDESC)
1109 {
e2b7c966 1110 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1111
1112 /* Compute address of address of candidate descriptor. */
1113 addr = rel->address + displacement_from_map (lm->map, rel->address);
1114
1115 /* Fetch address of candidate descriptor. */
1116 if (target_read_memory (addr, buf, sizeof buf) != 0)
1117 continue;
e17a4113 1118 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1119
1120 /* Check for matching entry point. */
1121 if (target_read_memory (addr, buf, sizeof buf) != 0)
1122 continue;
e17a4113
UW
1123 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1124 != entry_point)
c4d10515
KB
1125 continue;
1126
1127 /* Check for matching got value. */
1128 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1129 continue;
e17a4113
UW
1130 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1131 != got_value)
c4d10515
KB
1132 continue;
1133
1134 /* Match was successful! Exit loop. */
1135 break;
1136 }
1137 }
1138
1139 return addr;
1140}
1141
186993b4
KB
1142/* Given an objfile, return the address of its link map. This value is
1143 needed for TLS support. */
1144CORE_ADDR
1145frv_fetch_objfile_link_map (struct objfile *objfile)
1146{
1147 struct so_list *so;
1148
1149 /* Cause frv_current_sos() to be run if it hasn't been already. */
1150 if (main_lm_addr == 0)
1151 solib_add (0, 0, 0, 1);
1152
1153 /* frv_current_sos() will set main_lm_addr for the main executable. */
1154 if (objfile == symfile_objfile)
1155 return main_lm_addr;
1156
1157 /* The other link map addresses may be found by examining the list
1158 of shared libraries. */
1159 for (so = master_so_list (); so; so = so->next)
1160 {
1161 if (so->objfile == objfile)
1162 return so->lm_info->lm_addr;
1163 }
1164
1165 /* Not found! */
1166 return 0;
1167}
1168
917630e4 1169struct target_so_ops frv_so_ops;
c4d10515 1170
63807e1d
PA
1171/* Provide a prototype to silence -Wmissing-prototypes. */
1172extern initialize_file_ftype _initialize_frv_solib;
1173
c4d10515
KB
1174void
1175_initialize_frv_solib (void)
1176{
1177 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1178 frv_so_ops.free_so = frv_free_so;
1179 frv_so_ops.clear_solib = frv_clear_solib;
1180 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1181 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1182 frv_so_ops.current_sos = frv_current_sos;
1183 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1184 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1185 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1186
c4d10515 1187 /* Debug this file's internals. */
ccce17b0
YQ
1188 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1189 &solib_frv_debug, _("\
85c07804
AC
1190Set internal debugging of shared library code for FR-V."), _("\
1191Show internal debugging of shared library code for FR-V."), _("\
1192When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1193 NULL,
1194 NULL, /* FIXME: i18n: */
1195 &setdebuglist, &showdebuglist);
c4d10515 1196}
This page took 1.338019 seconds and 4 git commands to generate.