* read.h (s_vendor_attribute): Move to...
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
0b302171 2 Copyright (C) 2004, 2007-2012 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
21#include "gdb_string.h"
22#include "inferior.h"
23#include "gdbcore.h"
cb5c8c39 24#include "solib.h"
c4d10515
KB
25#include "solist.h"
26#include "frv-tdep.h"
27#include "objfiles.h"
28#include "symtab.h"
29#include "language.h"
30#include "command.h"
31#include "gdbcmd.h"
32#include "elf/frv.h"
f1838a98 33#include "exceptions.h"
cbb099e8 34#include "gdb_bfd.h"
c4d10515
KB
35
36/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 37static unsigned int solib_frv_debug;
c4d10515
KB
38
39/* FR-V pointers are four bytes wide. */
40enum { FRV_PTR_SIZE = 4 };
41
42/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43
44/* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
e2b7c966
KB
47typedef gdb_byte ext_Elf32_Half[2];
48typedef gdb_byte ext_Elf32_Addr[4];
49typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
50
51struct ext_elf32_fdpic_loadseg
52{
53 /* Core address to which the segment is mapped. */
54 ext_Elf32_Addr addr;
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
59};
60
61struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
65 ext_Elf32_Half nsegs;
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68};
69
70/* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73struct int_elf32_fdpic_loadseg
74{
75 /* Core address to which the segment is mapped. */
76 CORE_ADDR addr;
77 /* VMA recorded in the program header. */
78 CORE_ADDR p_vaddr;
79 /* Size of this segment in memory. */
80 long p_memsz;
81};
82
83struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
85 int version;
86 /* Number of segments in this map. */
87 int nsegs;
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90};
91
92/* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
97
98static struct int_elf32_fdpic_loadmap *
99fetch_loadmap (CORE_ADDR ldmaddr)
100{
e17a4113 101 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
102 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
103 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
104 struct int_elf32_fdpic_loadmap *int_ldmbuf;
105 int ext_ldmbuf_size, int_ldmbuf_size;
106 int version, seg, nsegs;
107
108 /* Fetch initial portion of the loadmap. */
e2b7c966 109 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
110 sizeof ext_ldmbuf_partial))
111 {
112 /* Problem reading the target's memory. */
113 return NULL;
114 }
115
116 /* Extract the version. */
e2b7c966 117 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
118 sizeof ext_ldmbuf_partial.version,
119 byte_order);
c4d10515
KB
120 if (version != 0)
121 {
122 /* We only handle version 0. */
123 return NULL;
124 }
125
126 /* Extract the number of segments. */
e2b7c966 127 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
128 sizeof ext_ldmbuf_partial.nsegs,
129 byte_order);
c4d10515 130
9bc7b6c6
KB
131 if (nsegs <= 0)
132 return NULL;
133
c4d10515
KB
134 /* Allocate space for the complete (external) loadmap. */
135 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
136 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
137 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
138
139 /* Copy over the portion of the loadmap that's already been read. */
140 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
141
142 /* Read the rest of the loadmap from the target. */
143 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 144 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
145 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
146 {
147 /* Couldn't read rest of the loadmap. */
148 xfree (ext_ldmbuf);
149 return NULL;
150 }
151
152 /* Allocate space into which to put information extract from the
153 external loadsegs. I.e, allocate the internal loadsegs. */
154 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
155 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
156 int_ldmbuf = xmalloc (int_ldmbuf_size);
157
158 /* Place extracted information in internal structs. */
159 int_ldmbuf->version = version;
160 int_ldmbuf->nsegs = nsegs;
161 for (seg = 0; seg < nsegs; seg++)
162 {
163 int_ldmbuf->segs[seg].addr
e2b7c966 164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
165 sizeof (ext_ldmbuf->segs[seg].addr),
166 byte_order);
c4d10515 167 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 168 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
169 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
170 byte_order);
c4d10515 171 int_ldmbuf->segs[seg].p_memsz
e2b7c966 172 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
173 sizeof (ext_ldmbuf->segs[seg].p_memsz),
174 byte_order);
c4d10515
KB
175 }
176
d5c560f7 177 xfree (ext_ldmbuf);
c4d10515
KB
178 return int_ldmbuf;
179}
180
181/* External link_map and elf32_fdpic_loadaddr struct definitions. */
182
e2b7c966 183typedef gdb_byte ext_ptr[4];
c4d10515
KB
184
185struct ext_elf32_fdpic_loadaddr
186{
187 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
188 ext_ptr got_value; /* void *got_value; */
189};
190
191struct ext_link_map
192{
193 struct ext_elf32_fdpic_loadaddr l_addr;
194
195 /* Absolute file name object was found in. */
196 ext_ptr l_name; /* char *l_name; */
197
198 /* Dynamic section of the shared object. */
199 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
200
201 /* Chain of loaded objects. */
202 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203};
204
c378eb4e 205/* Link map info to include in an allocated so_list entry. */
c4d10515
KB
206
207struct lm_info
208 {
209 /* The loadmap, digested into an easier to use form. */
210 struct int_elf32_fdpic_loadmap *map;
211 /* The GOT address for this link map entry. */
212 CORE_ADDR got_value;
186993b4
KB
213 /* The link map address, needed for frv_fetch_objfile_link_map(). */
214 CORE_ADDR lm_addr;
c4d10515
KB
215
216 /* Cached dynamic symbol table and dynamic relocs initialized and
217 used only by find_canonical_descriptor_in_load_object().
218
219 Note: kevinb/2004-02-26: It appears that calls to
220 bfd_canonicalize_dynamic_reloc() will use the same symbols as
221 those supplied to the first call to this function. Therefore,
222 it's important to NOT free the asymbol ** data structure
223 supplied to the first call. Thus the caching of the dynamic
224 symbols (dyn_syms) is critical for correct operation. The
225 caching of the dynamic relocations could be dispensed with. */
226 asymbol **dyn_syms;
227 arelent **dyn_relocs;
c378eb4e 228 int dyn_reloc_count; /* Number of dynamic relocs. */
c4d10515
KB
229
230 };
231
232/* The load map, got value, etc. are not available from the chain
233 of loaded shared objects. ``main_executable_lm_info'' provides
234 a way to get at this information so that it doesn't need to be
235 frequently recomputed. Initialized by frv_relocate_main_executable(). */
236static struct lm_info *main_executable_lm_info;
237
238static void frv_relocate_main_executable (void);
239static CORE_ADDR main_got (void);
240static int enable_break2 (void);
241
7f86f058 242/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
243
244static int
245open_symbol_file_object (void *from_ttyp)
246{
247 /* Unimplemented. */
248 return 0;
249}
250
251/* Cached value for lm_base(), below. */
252static CORE_ADDR lm_base_cache = 0;
253
186993b4
KB
254/* Link map address for main module. */
255static CORE_ADDR main_lm_addr = 0;
256
c4d10515
KB
257/* Return the address from which the link map chain may be found. On
258 the FR-V, this may be found in a number of ways. Assuming that the
259 main executable has already been relocated, the easiest way to find
260 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
261 pointer to the start of the link map will be located at the word found
262 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
263 reserve area mandated by the ABI.) */
264
265static CORE_ADDR
266lm_base (void)
267{
e17a4113 268 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
269 struct minimal_symbol *got_sym;
270 CORE_ADDR addr;
e2b7c966 271 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 272
89a7ee67
KB
273 /* One of our assumptions is that the main executable has been relocated.
274 Bail out if this has not happened. (Note that post_create_inferior()
275 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
276 If we allow this to happen, lm_base_cache will be initialized with
277 a bogus value. */
278 if (main_executable_lm_info == 0)
279 return 0;
280
c4d10515
KB
281 /* If we already have a cached value, return it. */
282 if (lm_base_cache)
283 return lm_base_cache;
284
285 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
286 symfile_objfile);
287 if (got_sym == 0)
288 {
289 if (solib_frv_debug)
290 fprintf_unfiltered (gdb_stdlog,
291 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
292 return 0;
293 }
294
295 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
296
297 if (solib_frv_debug)
298 fprintf_unfiltered (gdb_stdlog,
299 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 300 hex_string_custom (addr, 8));
c4d10515
KB
301
302 if (target_read_memory (addr, buf, sizeof buf) != 0)
303 return 0;
e17a4113 304 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
305
306 if (solib_frv_debug)
307 fprintf_unfiltered (gdb_stdlog,
308 "lm_base: lm_base_cache = %s\n",
bb599908 309 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
310
311 return lm_base_cache;
312}
313
314
7f86f058 315/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
316
317static struct so_list *
318frv_current_sos (void)
319{
e17a4113 320 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
321 CORE_ADDR lm_addr, mgot;
322 struct so_list *sos_head = NULL;
323 struct so_list **sos_next_ptr = &sos_head;
324
7c699b81
KB
325 /* Make sure that the main executable has been relocated. This is
326 required in order to find the address of the global offset table,
327 which in turn is used to find the link map info. (See lm_base()
328 for details.)
329
330 Note that the relocation of the main executable is also performed
331 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
332 files, this hook is called too late in order to be of benefit to
333 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
334 frv_current_sos, and also precedes the call to
335 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
336 infcmd.c.) */
337 if (main_executable_lm_info == 0 && core_bfd != NULL)
338 frv_relocate_main_executable ();
339
340 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
341 mgot = main_got ();
342
343 /* Locate the address of the first link map struct. */
344 lm_addr = lm_base ();
345
b021a221 346 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
347 building the solist chain. */
348 while (lm_addr)
349 {
350 struct ext_link_map lm_buf;
351 CORE_ADDR got_addr;
352
353 if (solib_frv_debug)
354 fprintf_unfiltered (gdb_stdlog,
355 "current_sos: reading link_map entry at %s\n",
bb599908 356 hex_string_custom (lm_addr, 8));
c4d10515 357
3e43a32a
MS
358 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
359 sizeof (lm_buf)) != 0)
c4d10515 360 {
3e43a32a
MS
361 warning (_("frv_current_sos: Unable to read link map entry. "
362 "Shared object chain may be incomplete."));
c4d10515
KB
363 break;
364 }
365
366 got_addr
e2b7c966 367 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
368 sizeof (lm_buf.l_addr.got_value),
369 byte_order);
c4d10515
KB
370 /* If the got_addr is the same as mgotr, then we're looking at the
371 entry for the main executable. By convention, we don't include
372 this in the list of shared objects. */
373 if (got_addr != mgot)
374 {
375 int errcode;
376 char *name_buf;
377 struct int_elf32_fdpic_loadmap *loadmap;
378 struct so_list *sop;
379 CORE_ADDR addr;
380
381 /* Fetch the load map address. */
e2b7c966 382 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
383 sizeof lm_buf.l_addr.map,
384 byte_order);
c4d10515
KB
385 loadmap = fetch_loadmap (addr);
386 if (loadmap == NULL)
387 {
3e43a32a
MS
388 warning (_("frv_current_sos: Unable to fetch load map. "
389 "Shared object chain may be incomplete."));
c4d10515
KB
390 break;
391 }
392
393 sop = xcalloc (1, sizeof (struct so_list));
394 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
395 sop->lm_info->map = loadmap;
396 sop->lm_info->got_value = got_addr;
186993b4 397 sop->lm_info->lm_addr = lm_addr;
c4d10515 398 /* Fetch the name. */
e2b7c966 399 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
400 sizeof (lm_buf.l_name),
401 byte_order);
c4d10515
KB
402 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
403 &errcode);
404
405 if (solib_frv_debug)
406 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
407 name_buf);
408
409 if (errcode != 0)
8a3fe4f8
AC
410 warning (_("Can't read pathname for link map entry: %s."),
411 safe_strerror (errcode));
c4d10515
KB
412 else
413 {
414 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
415 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
416 xfree (name_buf);
417 strcpy (sop->so_original_name, sop->so_name);
418 }
419
420 *sos_next_ptr = sop;
421 sos_next_ptr = &sop->next;
422 }
186993b4
KB
423 else
424 {
425 main_lm_addr = lm_addr;
426 }
c4d10515 427
e17a4113
UW
428 lm_addr = extract_unsigned_integer (lm_buf.l_next,
429 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
430 }
431
432 enable_break2 ();
433
434 return sos_head;
435}
436
437
438/* Return 1 if PC lies in the dynamic symbol resolution code of the
439 run time loader. */
440
441static CORE_ADDR interp_text_sect_low;
442static CORE_ADDR interp_text_sect_high;
443static CORE_ADDR interp_plt_sect_low;
444static CORE_ADDR interp_plt_sect_high;
445
446static int
447frv_in_dynsym_resolve_code (CORE_ADDR pc)
448{
449 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
450 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
451 || in_plt_section (pc, NULL));
452}
453
454/* Given a loadmap and an address, return the displacement needed
455 to relocate the address. */
456
63807e1d 457static CORE_ADDR
c4d10515
KB
458displacement_from_map (struct int_elf32_fdpic_loadmap *map,
459 CORE_ADDR addr)
460{
461 int seg;
462
463 for (seg = 0; seg < map->nsegs; seg++)
464 {
465 if (map->segs[seg].p_vaddr <= addr
466 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
467 {
468 return map->segs[seg].addr - map->segs[seg].p_vaddr;
469 }
470 }
471
472 return 0;
473}
474
475/* Print a warning about being unable to set the dynamic linker
476 breakpoint. */
477
478static void
479enable_break_failure_warning (void)
480{
8a3fe4f8 481 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 482 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 483 "and track explicitly loaded dynamic code."));
c4d10515
KB
484}
485
cb457ae2
YQ
486/* Helper function for gdb_bfd_lookup_symbol. */
487
488static int
489cmp_name (asymbol *sym, void *data)
490{
491 return (strcmp (sym->name, (const char *) data) == 0);
492}
493
7f86f058 494/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
495
496 The dynamic linkers has, as part of its debugger interface, support
497 for arranging for the inferior to hit a breakpoint after mapping in
498 the shared libraries. This function enables that breakpoint.
499
500 On the FR-V, using the shared library (FDPIC) ABI, the symbol
501 _dl_debug_addr points to the r_debug struct which contains
502 a field called r_brk. r_brk is the address of the function
503 descriptor upon which a breakpoint must be placed. Being a
504 function descriptor, we must extract the entry point in order
505 to set the breakpoint.
506
507 Our strategy will be to get the .interp section from the
508 executable. This section will provide us with the name of the
509 interpreter. We'll open the interpreter and then look up
510 the address of _dl_debug_addr. We then relocate this address
511 using the interpreter's loadmap. Once the relocated address
512 is known, we fetch the value (address) corresponding to r_brk
513 and then use that value to fetch the entry point of the function
7f86f058 514 we're interested in. */
c4d10515 515
c4d10515
KB
516static int enable_break2_done = 0;
517
518static int
519enable_break2 (void)
520{
e17a4113 521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
522 int success = 0;
523 char **bkpt_namep;
524 asection *interp_sect;
525
cb7db0f2 526 if (enable_break2_done)
c4d10515
KB
527 return 1;
528
c4d10515
KB
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
531
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
534 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
535 if (interp_sect)
536 {
537 unsigned int interp_sect_size;
e2b7c966 538 gdb_byte *buf;
c4d10515 539 bfd *tmp_bfd = NULL;
c4d10515
KB
540 int status;
541 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 542 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515 543 struct int_elf32_fdpic_loadmap *ldm;
f1838a98 544 volatile struct gdb_exception ex;
c4d10515
KB
545
546 /* Read the contents of the .interp section into a local buffer;
547 the contents specify the dynamic linker this program uses. */
548 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
549 buf = alloca (interp_sect_size);
550 bfd_get_section_contents (exec_bfd, interp_sect,
551 buf, 0, interp_sect_size);
552
553 /* Now we need to figure out where the dynamic linker was
554 loaded so that we can load its symbols and place a breakpoint
555 in the dynamic linker itself.
556
557 This address is stored on the stack. However, I've been unable
558 to find any magic formula to find it for Solaris (appears to
559 be trivial on GNU/Linux). Therefore, we have to try an alternate
560 mechanism to find the dynamic linker's base address. */
561
f1838a98
UW
562 TRY_CATCH (ex, RETURN_MASK_ALL)
563 {
564 tmp_bfd = solib_bfd_open (buf);
565 }
c4d10515
KB
566 if (tmp_bfd == NULL)
567 {
568 enable_break_failure_warning ();
569 return 0;
570 }
571
1cf3db46 572 status = frv_fdpic_loadmap_addresses (target_gdbarch,
c4d10515
KB
573 &interp_loadmap_addr, 0);
574 if (status < 0)
575 {
8a3fe4f8 576 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 577 enable_break_failure_warning ();
cbb099e8 578 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
579 return 0;
580 }
581
582 if (solib_frv_debug)
583 fprintf_unfiltered (gdb_stdlog,
584 "enable_break: interp_loadmap_addr = %s\n",
bb599908 585 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
586
587 ldm = fetch_loadmap (interp_loadmap_addr);
588 if (ldm == NULL)
589 {
8a3fe4f8 590 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 591 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 592 enable_break_failure_warning ();
cbb099e8 593 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
594 return 0;
595 }
596
597 /* Record the relocated start and end address of the dynamic linker
598 text and plt section for svr4_in_dynsym_resolve_code. */
599 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
600 if (interp_sect)
601 {
602 interp_text_sect_low
603 = bfd_section_vma (tmp_bfd, interp_sect);
604 interp_text_sect_low
605 += displacement_from_map (ldm, interp_text_sect_low);
606 interp_text_sect_high
607 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
608 }
609 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
610 if (interp_sect)
611 {
612 interp_plt_sect_low =
613 bfd_section_vma (tmp_bfd, interp_sect);
614 interp_plt_sect_low
615 += displacement_from_map (ldm, interp_plt_sect_low);
616 interp_plt_sect_high =
617 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
618 }
619
cb457ae2
YQ
620 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
621
c4d10515
KB
622 if (addr == 0)
623 {
3e43a32a
MS
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
c4d10515 626 enable_break_failure_warning ();
cbb099e8 627 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
628 return 0;
629 }
630
631 if (solib_frv_debug)
632 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
633 "enable_break: _dl_debug_addr "
634 "(prior to relocation) = %s\n",
bb599908 635 hex_string_custom (addr, 8));
c4d10515
KB
636
637 addr += displacement_from_map (ldm, addr);
638
639 if (solib_frv_debug)
640 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
641 "enable_break: _dl_debug_addr "
642 "(after relocation) = %s\n",
bb599908 643 hex_string_custom (addr, 8));
c4d10515
KB
644
645 /* Fetch the address of the r_debug struct. */
646 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
647 {
3e43a32a
MS
648 warning (_("Unable to fetch contents of _dl_debug_addr "
649 "(at address %s) from dynamic linker"),
bb599908 650 hex_string_custom (addr, 8));
c4d10515 651 }
e17a4113 652 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 653
cb7db0f2
MF
654 if (solib_frv_debug)
655 fprintf_unfiltered (gdb_stdlog,
656 "enable_break: _dl_debug_addr[0..3] = %s\n",
657 hex_string_custom (addr, 8));
658
659 /* If it's zero, then the ldso hasn't initialized yet, and so
660 there are no shared libs yet loaded. */
661 if (addr == 0)
662 {
663 if (solib_frv_debug)
664 fprintf_unfiltered (gdb_stdlog,
665 "enable_break: ldso not yet initialized\n");
666 /* Do not warn, but mark to run again. */
667 return 0;
668 }
669
c4d10515
KB
670 /* Fetch the r_brk field. It's 8 bytes from the start of
671 _dl_debug_addr. */
672 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
673 {
3e43a32a
MS
674 warning (_("Unable to fetch _dl_debug_addr->r_brk "
675 "(at address %s) from dynamic linker"),
bb599908 676 hex_string_custom (addr + 8, 8));
c4d10515 677 enable_break_failure_warning ();
cbb099e8 678 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
679 return 0;
680 }
e17a4113 681 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
682
683 /* Now fetch the function entry point. */
684 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
685 {
3e43a32a
MS
686 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
687 "(at address %s) from dynamic linker"),
bb599908 688 hex_string_custom (addr, 8));
c4d10515 689 enable_break_failure_warning ();
cbb099e8 690 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
691 return 0;
692 }
e17a4113 693 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
694
695 /* We're done with the temporary bfd. */
cbb099e8 696 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
697
698 /* We're also done with the loadmap. */
699 xfree (ldm);
700
cb7db0f2
MF
701 /* Remove all the solib event breakpoints. Their addresses
702 may have changed since the last time we ran the program. */
703 remove_solib_event_breakpoints ();
704
c4d10515 705 /* Now (finally!) create the solib breakpoint. */
a6d9a66e 706 create_solib_event_breakpoint (target_gdbarch, addr);
c4d10515 707
cb7db0f2
MF
708 enable_break2_done = 1;
709
c4d10515
KB
710 return 1;
711 }
712
713 /* Tell the user we couldn't set a dynamic linker breakpoint. */
714 enable_break_failure_warning ();
715
716 /* Failure return. */
717 return 0;
718}
719
720static int
721enable_break (void)
722{
723 asection *interp_sect;
724
abd0a5fa 725 if (symfile_objfile == NULL)
c4d10515 726 {
abd0a5fa
JK
727 if (solib_frv_debug)
728 fprintf_unfiltered (gdb_stdlog,
729 "enable_break: No symbol file found.\n");
730 return 0;
731 }
c4d10515 732
abd0a5fa
JK
733 if (!symfile_objfile->ei.entry_point_p)
734 {
c4d10515
KB
735 if (solib_frv_debug)
736 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
737 "enable_break: Symbol file has no entry point.\n");
738 return 0;
c4d10515 739 }
abd0a5fa
JK
740
741 /* Check for the presence of a .interp section. If there is no
742 such section, the executable is statically linked. */
743
744 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
745
746 if (interp_sect == NULL)
c4d10515
KB
747 {
748 if (solib_frv_debug)
749 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
750 "enable_break: No .interp section found.\n");
751 return 0;
c4d10515
KB
752 }
753
abd0a5fa
JK
754 create_solib_event_breakpoint (target_gdbarch,
755 symfile_objfile->ei.entry_point);
756
757 if (solib_frv_debug)
758 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
759 "enable_break: solib event breakpoint "
760 "placed at entry point: %s\n",
761 hex_string_custom (symfile_objfile->ei.entry_point,
762 8));
c4d10515
KB
763 return 1;
764}
765
7f86f058 766/* Implement the "special_symbol_handling" target_so_ops method. */
c4d10515
KB
767
768static void
769frv_special_symbol_handling (void)
770{
7f86f058 771 /* Nothing needed for FRV. */
c4d10515
KB
772}
773
774static void
775frv_relocate_main_executable (void)
776{
777 int status;
9bc7b6c6 778 CORE_ADDR exec_addr, interp_addr;
c4d10515
KB
779 struct int_elf32_fdpic_loadmap *ldm;
780 struct cleanup *old_chain;
781 struct section_offsets *new_offsets;
782 int changed;
783 struct obj_section *osect;
784
9bc7b6c6
KB
785 status = frv_fdpic_loadmap_addresses (target_gdbarch,
786 &interp_addr, &exec_addr);
c4d10515 787
9bc7b6c6 788 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
789 {
790 /* Not using FDPIC ABI, so do nothing. */
791 return;
792 }
793
794 /* Fetch the loadmap located at ``exec_addr''. */
795 ldm = fetch_loadmap (exec_addr);
796 if (ldm == NULL)
8a3fe4f8 797 error (_("Unable to load the executable's loadmap."));
c4d10515
KB
798
799 if (main_executable_lm_info)
800 xfree (main_executable_lm_info);
801 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
802 main_executable_lm_info->map = ldm;
803
804 new_offsets = xcalloc (symfile_objfile->num_sections,
805 sizeof (struct section_offsets));
806 old_chain = make_cleanup (xfree, new_offsets);
807 changed = 0;
808
809 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
810 {
811 CORE_ADDR orig_addr, addr, offset;
812 int osect_idx;
813 int seg;
814
815 osect_idx = osect->the_bfd_section->index;
816
817 /* Current address of section. */
aded6f54 818 addr = obj_section_addr (osect);
c4d10515
KB
819 /* Offset from where this section started. */
820 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
821 /* Original address prior to any past relocations. */
822 orig_addr = addr - offset;
823
824 for (seg = 0; seg < ldm->nsegs; seg++)
825 {
826 if (ldm->segs[seg].p_vaddr <= orig_addr
827 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
828 {
829 new_offsets->offsets[osect_idx]
830 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
831
832 if (new_offsets->offsets[osect_idx] != offset)
833 changed = 1;
834 break;
835 }
836 }
837 }
838
839 if (changed)
840 objfile_relocate (symfile_objfile, new_offsets);
841
842 do_cleanups (old_chain);
843
844 /* Now that symfile_objfile has been relocated, we can compute the
845 GOT value and stash it away. */
846 main_executable_lm_info->got_value = main_got ();
847}
848
7f86f058 849/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 850
7f86f058
PA
851 For the FR-V shared library ABI (FDPIC), the main executable needs
852 to be relocated. The shared library breakpoints also need to be
853 enabled. */
c4d10515
KB
854
855static void
268a4a75 856frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
857{
858 /* Relocate main executable. */
859 frv_relocate_main_executable ();
860
861 /* Enable shared library breakpoints. */
862 if (!enable_break ())
863 {
8a3fe4f8 864 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
865 return;
866 }
867}
868
869static void
870frv_clear_solib (void)
871{
872 lm_base_cache = 0;
c4d10515 873 enable_break2_done = 0;
186993b4 874 main_lm_addr = 0;
7c699b81
KB
875 if (main_executable_lm_info != 0)
876 {
877 xfree (main_executable_lm_info->map);
878 xfree (main_executable_lm_info->dyn_syms);
879 xfree (main_executable_lm_info->dyn_relocs);
880 xfree (main_executable_lm_info);
881 main_executable_lm_info = 0;
882 }
c4d10515
KB
883}
884
885static void
886frv_free_so (struct so_list *so)
887{
888 xfree (so->lm_info->map);
889 xfree (so->lm_info->dyn_syms);
890 xfree (so->lm_info->dyn_relocs);
891 xfree (so->lm_info);
892}
893
894static void
895frv_relocate_section_addresses (struct so_list *so,
0542c86d 896 struct target_section *sec)
c4d10515
KB
897{
898 int seg;
899 struct int_elf32_fdpic_loadmap *map;
900
901 map = so->lm_info->map;
902
903 for (seg = 0; seg < map->nsegs; seg++)
904 {
905 if (map->segs[seg].p_vaddr <= sec->addr
906 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
907 {
908 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 909
c4d10515
KB
910 sec->addr += displ;
911 sec->endaddr += displ;
912 break;
913 }
914 }
915}
916
917/* Return the GOT address associated with the main executable. Return
918 0 if it can't be found. */
919
920static CORE_ADDR
921main_got (void)
922{
923 struct minimal_symbol *got_sym;
924
3e43a32a
MS
925 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
926 NULL, symfile_objfile);
c4d10515
KB
927 if (got_sym == 0)
928 return 0;
929
930 return SYMBOL_VALUE_ADDRESS (got_sym);
931}
932
933/* Find the global pointer for the given function address ADDR. */
934
935CORE_ADDR
936frv_fdpic_find_global_pointer (CORE_ADDR addr)
937{
938 struct so_list *so;
939
940 so = master_so_list ();
941 while (so)
942 {
943 int seg;
944 struct int_elf32_fdpic_loadmap *map;
945
946 map = so->lm_info->map;
947
948 for (seg = 0; seg < map->nsegs; seg++)
949 {
950 if (map->segs[seg].addr <= addr
951 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
952 return so->lm_info->got_value;
953 }
954
955 so = so->next;
956 }
957
7a9dd1b2 958 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
959 main executable. */
960 return main_got ();
961}
962
963/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
964static CORE_ADDR find_canonical_descriptor_in_load_object
0d5cff50 965 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
c4d10515
KB
966
967/* Given a function entry point, attempt to find the canonical descriptor
968 associated with that entry point. Return 0 if no canonical descriptor
969 could be found. */
970
971CORE_ADDR
972frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
973{
0d5cff50 974 const char *name;
c4d10515
KB
975 CORE_ADDR addr;
976 CORE_ADDR got_value;
977 struct int_elf32_fdpic_loadmap *ldm = 0;
978 struct symbol *sym;
c4d10515
KB
979
980 /* Fetch the corresponding global pointer for the entry point. */
981 got_value = frv_fdpic_find_global_pointer (entry_point);
982
983 /* Attempt to find the name of the function. If the name is available,
984 it'll be used as an aid in finding matching functions in the dynamic
985 symbol table. */
986 sym = find_pc_function (entry_point);
987 if (sym == 0)
988 name = 0;
989 else
990 name = SYMBOL_LINKAGE_NAME (sym);
991
992 /* Check the main executable. */
993 addr = find_canonical_descriptor_in_load_object
994 (entry_point, got_value, name, symfile_objfile->obfd,
995 main_executable_lm_info);
996
997 /* If descriptor not found via main executable, check each load object
998 in list of shared objects. */
999 if (addr == 0)
1000 {
1001 struct so_list *so;
1002
1003 so = master_so_list ();
1004 while (so)
1005 {
1006 addr = find_canonical_descriptor_in_load_object
1007 (entry_point, got_value, name, so->abfd, so->lm_info);
1008
1009 if (addr != 0)
1010 break;
1011
1012 so = so->next;
1013 }
1014 }
1015
1016 return addr;
1017}
1018
1019static CORE_ADDR
1020find_canonical_descriptor_in_load_object
0d5cff50 1021 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
c4d10515
KB
1022 struct lm_info *lm)
1023{
e17a4113 1024 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
1025 arelent *rel;
1026 unsigned int i;
1027 CORE_ADDR addr = 0;
1028
1029 /* Nothing to do if no bfd. */
1030 if (abfd == 0)
1031 return 0;
1032
35e08e03
KB
1033 /* Nothing to do if no link map. */
1034 if (lm == 0)
1035 return 0;
1036
c4d10515
KB
1037 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1038 (More about this later.) But in order to fetch the relocs, we
1039 need to first fetch the dynamic symbols. These symbols need to
1040 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1041 works. (See the comments in the declaration of struct lm_info
1042 for more information.) */
1043 if (lm->dyn_syms == NULL)
1044 {
1045 long storage_needed;
1046 unsigned int number_of_symbols;
1047
1048 /* Determine amount of space needed to hold the dynamic symbol table. */
1049 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1050
1051 /* If there are no dynamic symbols, there's nothing to do. */
1052 if (storage_needed <= 0)
1053 return 0;
1054
1055 /* Allocate space for the dynamic symbol table. */
1056 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1057
1058 /* Fetch the dynamic symbol table. */
1059 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1060
1061 if (number_of_symbols == 0)
1062 return 0;
1063 }
1064
1065 /* Fetch the dynamic relocations if not already cached. */
1066 if (lm->dyn_relocs == NULL)
1067 {
1068 long storage_needed;
1069
1070 /* Determine amount of space needed to hold the dynamic relocs. */
1071 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1072
1073 /* Bail out if there are no dynamic relocs. */
1074 if (storage_needed <= 0)
1075 return 0;
1076
1077 /* Allocate space for the relocs. */
1078 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1079
1080 /* Fetch the dynamic relocs. */
1081 lm->dyn_reloc_count
1082 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1083 }
1084
1085 /* Search the dynamic relocs. */
1086 for (i = 0; i < lm->dyn_reloc_count; i++)
1087 {
1088 rel = lm->dyn_relocs[i];
1089
1090 /* Relocs of interest are those which meet the following
1091 criteria:
1092
1093 - the names match (assuming the caller could provide
1094 a name which matches ``entry_point'').
1095 - the relocation type must be R_FRV_FUNCDESC. Relocs
1096 of this type are used (by the dynamic linker) to
1097 look up the address of a canonical descriptor (allocating
1098 it if need be) and initializing the GOT entry referred
1099 to by the offset to the address of the descriptor.
1100
1101 These relocs of interest may be used to obtain a
1102 candidate descriptor by first adjusting the reloc's
1103 address according to the link map and then dereferencing
1104 this address (which is a GOT entry) to obtain a descriptor
1105 address. */
1106 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1107 && rel->howto->type == R_FRV_FUNCDESC)
1108 {
e2b7c966 1109 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1110
1111 /* Compute address of address of candidate descriptor. */
1112 addr = rel->address + displacement_from_map (lm->map, rel->address);
1113
1114 /* Fetch address of candidate descriptor. */
1115 if (target_read_memory (addr, buf, sizeof buf) != 0)
1116 continue;
e17a4113 1117 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1118
1119 /* Check for matching entry point. */
1120 if (target_read_memory (addr, buf, sizeof buf) != 0)
1121 continue;
e17a4113
UW
1122 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1123 != entry_point)
c4d10515
KB
1124 continue;
1125
1126 /* Check for matching got value. */
1127 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1128 continue;
e17a4113
UW
1129 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1130 != got_value)
c4d10515
KB
1131 continue;
1132
1133 /* Match was successful! Exit loop. */
1134 break;
1135 }
1136 }
1137
1138 return addr;
1139}
1140
186993b4
KB
1141/* Given an objfile, return the address of its link map. This value is
1142 needed for TLS support. */
1143CORE_ADDR
1144frv_fetch_objfile_link_map (struct objfile *objfile)
1145{
1146 struct so_list *so;
1147
1148 /* Cause frv_current_sos() to be run if it hasn't been already. */
1149 if (main_lm_addr == 0)
1150 solib_add (0, 0, 0, 1);
1151
1152 /* frv_current_sos() will set main_lm_addr for the main executable. */
1153 if (objfile == symfile_objfile)
1154 return main_lm_addr;
1155
1156 /* The other link map addresses may be found by examining the list
1157 of shared libraries. */
1158 for (so = master_so_list (); so; so = so->next)
1159 {
1160 if (so->objfile == objfile)
1161 return so->lm_info->lm_addr;
1162 }
1163
1164 /* Not found! */
1165 return 0;
1166}
1167
917630e4 1168struct target_so_ops frv_so_ops;
c4d10515 1169
63807e1d
PA
1170/* Provide a prototype to silence -Wmissing-prototypes. */
1171extern initialize_file_ftype _initialize_frv_solib;
1172
c4d10515
KB
1173void
1174_initialize_frv_solib (void)
1175{
1176 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1177 frv_so_ops.free_so = frv_free_so;
1178 frv_so_ops.clear_solib = frv_clear_solib;
1179 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1180 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1181 frv_so_ops.current_sos = frv_current_sos;
1182 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1183 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1184 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1185
c4d10515 1186 /* Debug this file's internals. */
ccce17b0
YQ
1187 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1188 &solib_frv_debug, _("\
85c07804
AC
1189Set internal debugging of shared library code for FR-V."), _("\
1190Show internal debugging of shared library code for FR-V."), _("\
1191When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1192 NULL,
1193 NULL, /* FIXME: i18n: */
1194 &setdebuglist, &showdebuglist);
c4d10515 1195}
This page took 0.903802 seconds and 4 git commands to generate.