* gdb.python/py-infthread.exp: Load gdb-python.exp.
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
7b6bb8da
JB
2 Copyright (C) 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
c4d10515
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
19
20
21#include "defs.h"
22#include "gdb_string.h"
23#include "inferior.h"
24#include "gdbcore.h"
cb5c8c39 25#include "solib.h"
c4d10515
KB
26#include "solist.h"
27#include "frv-tdep.h"
28#include "objfiles.h"
29#include "symtab.h"
30#include "language.h"
31#include "command.h"
32#include "gdbcmd.h"
33#include "elf/frv.h"
f1838a98 34#include "exceptions.h"
c4d10515
KB
35
36/* Flag which indicates whether internal debug messages should be printed. */
37static int solib_frv_debug;
38
39/* FR-V pointers are four bytes wide. */
40enum { FRV_PTR_SIZE = 4 };
41
42/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43
44/* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
e2b7c966
KB
47typedef gdb_byte ext_Elf32_Half[2];
48typedef gdb_byte ext_Elf32_Addr[4];
49typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
50
51struct ext_elf32_fdpic_loadseg
52{
53 /* Core address to which the segment is mapped. */
54 ext_Elf32_Addr addr;
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
59};
60
61struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
65 ext_Elf32_Half nsegs;
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68};
69
70/* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73struct int_elf32_fdpic_loadseg
74{
75 /* Core address to which the segment is mapped. */
76 CORE_ADDR addr;
77 /* VMA recorded in the program header. */
78 CORE_ADDR p_vaddr;
79 /* Size of this segment in memory. */
80 long p_memsz;
81};
82
83struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
85 int version;
86 /* Number of segments in this map. */
87 int nsegs;
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90};
91
92/* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
97
98static struct int_elf32_fdpic_loadmap *
99fetch_loadmap (CORE_ADDR ldmaddr)
100{
e17a4113 101 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
102 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
103 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
104 struct int_elf32_fdpic_loadmap *int_ldmbuf;
105 int ext_ldmbuf_size, int_ldmbuf_size;
106 int version, seg, nsegs;
107
108 /* Fetch initial portion of the loadmap. */
e2b7c966 109 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
110 sizeof ext_ldmbuf_partial))
111 {
112 /* Problem reading the target's memory. */
113 return NULL;
114 }
115
116 /* Extract the version. */
e2b7c966 117 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
118 sizeof ext_ldmbuf_partial.version,
119 byte_order);
c4d10515
KB
120 if (version != 0)
121 {
122 /* We only handle version 0. */
123 return NULL;
124 }
125
126 /* Extract the number of segments. */
e2b7c966 127 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
128 sizeof ext_ldmbuf_partial.nsegs,
129 byte_order);
c4d10515 130
9bc7b6c6
KB
131 if (nsegs <= 0)
132 return NULL;
133
c4d10515
KB
134 /* Allocate space for the complete (external) loadmap. */
135 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
136 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
137 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
138
139 /* Copy over the portion of the loadmap that's already been read. */
140 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
141
142 /* Read the rest of the loadmap from the target. */
143 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 144 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
145 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
146 {
147 /* Couldn't read rest of the loadmap. */
148 xfree (ext_ldmbuf);
149 return NULL;
150 }
151
152 /* Allocate space into which to put information extract from the
153 external loadsegs. I.e, allocate the internal loadsegs. */
154 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
155 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
156 int_ldmbuf = xmalloc (int_ldmbuf_size);
157
158 /* Place extracted information in internal structs. */
159 int_ldmbuf->version = version;
160 int_ldmbuf->nsegs = nsegs;
161 for (seg = 0; seg < nsegs; seg++)
162 {
163 int_ldmbuf->segs[seg].addr
e2b7c966 164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
165 sizeof (ext_ldmbuf->segs[seg].addr),
166 byte_order);
c4d10515 167 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 168 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
169 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
170 byte_order);
c4d10515 171 int_ldmbuf->segs[seg].p_memsz
e2b7c966 172 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
173 sizeof (ext_ldmbuf->segs[seg].p_memsz),
174 byte_order);
c4d10515
KB
175 }
176
d5c560f7 177 xfree (ext_ldmbuf);
c4d10515
KB
178 return int_ldmbuf;
179}
180
181/* External link_map and elf32_fdpic_loadaddr struct definitions. */
182
e2b7c966 183typedef gdb_byte ext_ptr[4];
c4d10515
KB
184
185struct ext_elf32_fdpic_loadaddr
186{
187 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
188 ext_ptr got_value; /* void *got_value; */
189};
190
191struct ext_link_map
192{
193 struct ext_elf32_fdpic_loadaddr l_addr;
194
195 /* Absolute file name object was found in. */
196 ext_ptr l_name; /* char *l_name; */
197
198 /* Dynamic section of the shared object. */
199 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
200
201 /* Chain of loaded objects. */
202 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203};
204
205/* Link map info to include in an allocated so_list entry */
206
207struct lm_info
208 {
209 /* The loadmap, digested into an easier to use form. */
210 struct int_elf32_fdpic_loadmap *map;
211 /* The GOT address for this link map entry. */
212 CORE_ADDR got_value;
186993b4
KB
213 /* The link map address, needed for frv_fetch_objfile_link_map(). */
214 CORE_ADDR lm_addr;
c4d10515
KB
215
216 /* Cached dynamic symbol table and dynamic relocs initialized and
217 used only by find_canonical_descriptor_in_load_object().
218
219 Note: kevinb/2004-02-26: It appears that calls to
220 bfd_canonicalize_dynamic_reloc() will use the same symbols as
221 those supplied to the first call to this function. Therefore,
222 it's important to NOT free the asymbol ** data structure
223 supplied to the first call. Thus the caching of the dynamic
224 symbols (dyn_syms) is critical for correct operation. The
225 caching of the dynamic relocations could be dispensed with. */
226 asymbol **dyn_syms;
227 arelent **dyn_relocs;
228 int dyn_reloc_count; /* number of dynamic relocs. */
229
230 };
231
232/* The load map, got value, etc. are not available from the chain
233 of loaded shared objects. ``main_executable_lm_info'' provides
234 a way to get at this information so that it doesn't need to be
235 frequently recomputed. Initialized by frv_relocate_main_executable(). */
236static struct lm_info *main_executable_lm_info;
237
238static void frv_relocate_main_executable (void);
239static CORE_ADDR main_got (void);
240static int enable_break2 (void);
241
242/*
243
244 LOCAL FUNCTION
245
246 bfd_lookup_symbol -- lookup the value for a specific symbol
247
248 SYNOPSIS
249
250 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
251
252 DESCRIPTION
253
254 An expensive way to lookup the value of a single symbol for
255 bfd's that are only temporary anyway. This is used by the
256 shared library support to find the address of the debugger
257 interface structures in the shared library.
258
259 Note that 0 is specifically allowed as an error return (no
260 such symbol).
261 */
262
263static CORE_ADDR
264bfd_lookup_symbol (bfd *abfd, char *symname)
265{
266 long storage_needed;
267 asymbol *sym;
268 asymbol **symbol_table;
269 unsigned int number_of_symbols;
270 unsigned int i;
271 struct cleanup *back_to;
272 CORE_ADDR symaddr = 0;
273
274 storage_needed = bfd_get_symtab_upper_bound (abfd);
275
276 if (storage_needed > 0)
277 {
278 symbol_table = (asymbol **) xmalloc (storage_needed);
279 back_to = make_cleanup (xfree, symbol_table);
280 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
281
282 for (i = 0; i < number_of_symbols; i++)
283 {
284 sym = *symbol_table++;
285 if (strcmp (sym->name, symname) == 0)
286 {
287 /* Bfd symbols are section relative. */
288 symaddr = sym->value + sym->section->vma;
289 break;
290 }
291 }
292 do_cleanups (back_to);
293 }
294
295 if (symaddr)
296 return symaddr;
297
298 /* Look for the symbol in the dynamic string table too. */
299
300 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
301
302 if (storage_needed > 0)
303 {
304 symbol_table = (asymbol **) xmalloc (storage_needed);
305 back_to = make_cleanup (xfree, symbol_table);
306 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
307
308 for (i = 0; i < number_of_symbols; i++)
309 {
310 sym = *symbol_table++;
311 if (strcmp (sym->name, symname) == 0)
312 {
313 /* Bfd symbols are section relative. */
314 symaddr = sym->value + sym->section->vma;
315 break;
316 }
317 }
318 do_cleanups (back_to);
319 }
320
321 return symaddr;
322}
323
324
325/*
326
327 LOCAL FUNCTION
328
329 open_symbol_file_object
330
331 SYNOPSIS
332
333 void open_symbol_file_object (void *from_tty)
334
335 DESCRIPTION
336
337 If no open symbol file, attempt to locate and open the main symbol
338 file.
339
340 If FROM_TTYP dereferences to a non-zero integer, allow messages to
341 be printed. This parameter is a pointer rather than an int because
342 open_symbol_file_object() is called via catch_errors() and
343 catch_errors() requires a pointer argument. */
344
345static int
346open_symbol_file_object (void *from_ttyp)
347{
348 /* Unimplemented. */
349 return 0;
350}
351
352/* Cached value for lm_base(), below. */
353static CORE_ADDR lm_base_cache = 0;
354
186993b4
KB
355/* Link map address for main module. */
356static CORE_ADDR main_lm_addr = 0;
357
c4d10515
KB
358/* Return the address from which the link map chain may be found. On
359 the FR-V, this may be found in a number of ways. Assuming that the
360 main executable has already been relocated, the easiest way to find
361 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
362 pointer to the start of the link map will be located at the word found
363 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
364 reserve area mandated by the ABI.) */
365
366static CORE_ADDR
367lm_base (void)
368{
e17a4113 369 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
370 struct minimal_symbol *got_sym;
371 CORE_ADDR addr;
e2b7c966 372 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 373
89a7ee67
KB
374 /* One of our assumptions is that the main executable has been relocated.
375 Bail out if this has not happened. (Note that post_create_inferior()
376 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
377 If we allow this to happen, lm_base_cache will be initialized with
378 a bogus value. */
379 if (main_executable_lm_info == 0)
380 return 0;
381
c4d10515
KB
382 /* If we already have a cached value, return it. */
383 if (lm_base_cache)
384 return lm_base_cache;
385
386 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
387 symfile_objfile);
388 if (got_sym == 0)
389 {
390 if (solib_frv_debug)
391 fprintf_unfiltered (gdb_stdlog,
392 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
393 return 0;
394 }
395
396 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
397
398 if (solib_frv_debug)
399 fprintf_unfiltered (gdb_stdlog,
400 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 401 hex_string_custom (addr, 8));
c4d10515
KB
402
403 if (target_read_memory (addr, buf, sizeof buf) != 0)
404 return 0;
e17a4113 405 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
406
407 if (solib_frv_debug)
408 fprintf_unfiltered (gdb_stdlog,
409 "lm_base: lm_base_cache = %s\n",
bb599908 410 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
411
412 return lm_base_cache;
413}
414
415
416/* LOCAL FUNCTION
417
418 frv_current_sos -- build a list of currently loaded shared objects
419
420 SYNOPSIS
421
422 struct so_list *frv_current_sos ()
423
424 DESCRIPTION
425
426 Build a list of `struct so_list' objects describing the shared
427 objects currently loaded in the inferior. This list does not
428 include an entry for the main executable file.
429
430 Note that we only gather information directly available from the
431 inferior --- we don't examine any of the shared library files
432 themselves. The declaration of `struct so_list' says which fields
433 we provide values for. */
434
435static struct so_list *
436frv_current_sos (void)
437{
e17a4113 438 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
439 CORE_ADDR lm_addr, mgot;
440 struct so_list *sos_head = NULL;
441 struct so_list **sos_next_ptr = &sos_head;
442
7c699b81
KB
443 /* Make sure that the main executable has been relocated. This is
444 required in order to find the address of the global offset table,
445 which in turn is used to find the link map info. (See lm_base()
446 for details.)
447
448 Note that the relocation of the main executable is also performed
449 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
450 files, this hook is called too late in order to be of benefit to
451 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
452 frv_current_sos, and also precedes the call to
453 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
454 infcmd.c.) */
455 if (main_executable_lm_info == 0 && core_bfd != NULL)
456 frv_relocate_main_executable ();
457
458 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
459 mgot = main_got ();
460
461 /* Locate the address of the first link map struct. */
462 lm_addr = lm_base ();
463
464 /* We have at least one link map entry. Fetch the the lot of them,
465 building the solist chain. */
466 while (lm_addr)
467 {
468 struct ext_link_map lm_buf;
469 CORE_ADDR got_addr;
470
471 if (solib_frv_debug)
472 fprintf_unfiltered (gdb_stdlog,
473 "current_sos: reading link_map entry at %s\n",
bb599908 474 hex_string_custom (lm_addr, 8));
c4d10515 475
3e43a32a
MS
476 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
477 sizeof (lm_buf)) != 0)
c4d10515 478 {
3e43a32a
MS
479 warning (_("frv_current_sos: Unable to read link map entry. "
480 "Shared object chain may be incomplete."));
c4d10515
KB
481 break;
482 }
483
484 got_addr
e2b7c966 485 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
486 sizeof (lm_buf.l_addr.got_value),
487 byte_order);
c4d10515
KB
488 /* If the got_addr is the same as mgotr, then we're looking at the
489 entry for the main executable. By convention, we don't include
490 this in the list of shared objects. */
491 if (got_addr != mgot)
492 {
493 int errcode;
494 char *name_buf;
495 struct int_elf32_fdpic_loadmap *loadmap;
496 struct so_list *sop;
497 CORE_ADDR addr;
498
499 /* Fetch the load map address. */
e2b7c966 500 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
501 sizeof lm_buf.l_addr.map,
502 byte_order);
c4d10515
KB
503 loadmap = fetch_loadmap (addr);
504 if (loadmap == NULL)
505 {
3e43a32a
MS
506 warning (_("frv_current_sos: Unable to fetch load map. "
507 "Shared object chain may be incomplete."));
c4d10515
KB
508 break;
509 }
510
511 sop = xcalloc (1, sizeof (struct so_list));
512 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
513 sop->lm_info->map = loadmap;
514 sop->lm_info->got_value = got_addr;
186993b4 515 sop->lm_info->lm_addr = lm_addr;
c4d10515 516 /* Fetch the name. */
e2b7c966 517 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
518 sizeof (lm_buf.l_name),
519 byte_order);
c4d10515
KB
520 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
521 &errcode);
522
523 if (solib_frv_debug)
524 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
525 name_buf);
526
527 if (errcode != 0)
8a3fe4f8
AC
528 warning (_("Can't read pathname for link map entry: %s."),
529 safe_strerror (errcode));
c4d10515
KB
530 else
531 {
532 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
533 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
534 xfree (name_buf);
535 strcpy (sop->so_original_name, sop->so_name);
536 }
537
538 *sos_next_ptr = sop;
539 sos_next_ptr = &sop->next;
540 }
186993b4
KB
541 else
542 {
543 main_lm_addr = lm_addr;
544 }
c4d10515 545
e17a4113
UW
546 lm_addr = extract_unsigned_integer (lm_buf.l_next,
547 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
548 }
549
550 enable_break2 ();
551
552 return sos_head;
553}
554
555
556/* Return 1 if PC lies in the dynamic symbol resolution code of the
557 run time loader. */
558
559static CORE_ADDR interp_text_sect_low;
560static CORE_ADDR interp_text_sect_high;
561static CORE_ADDR interp_plt_sect_low;
562static CORE_ADDR interp_plt_sect_high;
563
564static int
565frv_in_dynsym_resolve_code (CORE_ADDR pc)
566{
567 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
568 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
569 || in_plt_section (pc, NULL));
570}
571
572/* Given a loadmap and an address, return the displacement needed
573 to relocate the address. */
574
63807e1d 575static CORE_ADDR
c4d10515
KB
576displacement_from_map (struct int_elf32_fdpic_loadmap *map,
577 CORE_ADDR addr)
578{
579 int seg;
580
581 for (seg = 0; seg < map->nsegs; seg++)
582 {
583 if (map->segs[seg].p_vaddr <= addr
584 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
585 {
586 return map->segs[seg].addr - map->segs[seg].p_vaddr;
587 }
588 }
589
590 return 0;
591}
592
593/* Print a warning about being unable to set the dynamic linker
594 breakpoint. */
595
596static void
597enable_break_failure_warning (void)
598{
8a3fe4f8 599 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 600 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 601 "and track explicitly loaded dynamic code."));
c4d10515
KB
602}
603
604/*
605
606 LOCAL FUNCTION
607
608 enable_break -- arrange for dynamic linker to hit breakpoint
609
610 SYNOPSIS
611
612 int enable_break (void)
613
614 DESCRIPTION
615
616 The dynamic linkers has, as part of its debugger interface, support
617 for arranging for the inferior to hit a breakpoint after mapping in
618 the shared libraries. This function enables that breakpoint.
619
620 On the FR-V, using the shared library (FDPIC) ABI, the symbol
621 _dl_debug_addr points to the r_debug struct which contains
622 a field called r_brk. r_brk is the address of the function
623 descriptor upon which a breakpoint must be placed. Being a
624 function descriptor, we must extract the entry point in order
625 to set the breakpoint.
626
627 Our strategy will be to get the .interp section from the
628 executable. This section will provide us with the name of the
629 interpreter. We'll open the interpreter and then look up
630 the address of _dl_debug_addr. We then relocate this address
631 using the interpreter's loadmap. Once the relocated address
632 is known, we fetch the value (address) corresponding to r_brk
633 and then use that value to fetch the entry point of the function
634 we're interested in.
635
636 */
637
c4d10515
KB
638static int enable_break2_done = 0;
639
640static int
641enable_break2 (void)
642{
e17a4113 643 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
644 int success = 0;
645 char **bkpt_namep;
646 asection *interp_sect;
647
cb7db0f2 648 if (enable_break2_done)
c4d10515
KB
649 return 1;
650
c4d10515
KB
651 interp_text_sect_low = interp_text_sect_high = 0;
652 interp_plt_sect_low = interp_plt_sect_high = 0;
653
654 /* Find the .interp section; if not found, warn the user and drop
655 into the old breakpoint at symbol code. */
656 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
657 if (interp_sect)
658 {
659 unsigned int interp_sect_size;
e2b7c966 660 gdb_byte *buf;
c4d10515 661 bfd *tmp_bfd = NULL;
c4d10515
KB
662 int status;
663 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 664 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515 665 struct int_elf32_fdpic_loadmap *ldm;
f1838a98 666 volatile struct gdb_exception ex;
c4d10515
KB
667
668 /* Read the contents of the .interp section into a local buffer;
669 the contents specify the dynamic linker this program uses. */
670 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
671 buf = alloca (interp_sect_size);
672 bfd_get_section_contents (exec_bfd, interp_sect,
673 buf, 0, interp_sect_size);
674
675 /* Now we need to figure out where the dynamic linker was
676 loaded so that we can load its symbols and place a breakpoint
677 in the dynamic linker itself.
678
679 This address is stored on the stack. However, I've been unable
680 to find any magic formula to find it for Solaris (appears to
681 be trivial on GNU/Linux). Therefore, we have to try an alternate
682 mechanism to find the dynamic linker's base address. */
683
f1838a98
UW
684 TRY_CATCH (ex, RETURN_MASK_ALL)
685 {
686 tmp_bfd = solib_bfd_open (buf);
687 }
c4d10515
KB
688 if (tmp_bfd == NULL)
689 {
690 enable_break_failure_warning ();
691 return 0;
692 }
693
1cf3db46 694 status = frv_fdpic_loadmap_addresses (target_gdbarch,
c4d10515
KB
695 &interp_loadmap_addr, 0);
696 if (status < 0)
697 {
8a3fe4f8 698 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515
KB
699 enable_break_failure_warning ();
700 bfd_close (tmp_bfd);
701 return 0;
702 }
703
704 if (solib_frv_debug)
705 fprintf_unfiltered (gdb_stdlog,
706 "enable_break: interp_loadmap_addr = %s\n",
bb599908 707 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
708
709 ldm = fetch_loadmap (interp_loadmap_addr);
710 if (ldm == NULL)
711 {
8a3fe4f8 712 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 713 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
714 enable_break_failure_warning ();
715 bfd_close (tmp_bfd);
716 return 0;
717 }
718
719 /* Record the relocated start and end address of the dynamic linker
720 text and plt section for svr4_in_dynsym_resolve_code. */
721 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
722 if (interp_sect)
723 {
724 interp_text_sect_low
725 = bfd_section_vma (tmp_bfd, interp_sect);
726 interp_text_sect_low
727 += displacement_from_map (ldm, interp_text_sect_low);
728 interp_text_sect_high
729 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
730 }
731 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
732 if (interp_sect)
733 {
734 interp_plt_sect_low =
735 bfd_section_vma (tmp_bfd, interp_sect);
736 interp_plt_sect_low
737 += displacement_from_map (ldm, interp_plt_sect_low);
738 interp_plt_sect_high =
739 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
740 }
741
742 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
743 if (addr == 0)
744 {
3e43a32a
MS
745 warning (_("Could not find symbol _dl_debug_addr "
746 "in dynamic linker"));
c4d10515
KB
747 enable_break_failure_warning ();
748 bfd_close (tmp_bfd);
749 return 0;
750 }
751
752 if (solib_frv_debug)
753 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
754 "enable_break: _dl_debug_addr "
755 "(prior to relocation) = %s\n",
bb599908 756 hex_string_custom (addr, 8));
c4d10515
KB
757
758 addr += displacement_from_map (ldm, addr);
759
760 if (solib_frv_debug)
761 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
762 "enable_break: _dl_debug_addr "
763 "(after relocation) = %s\n",
bb599908 764 hex_string_custom (addr, 8));
c4d10515
KB
765
766 /* Fetch the address of the r_debug struct. */
767 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
768 {
3e43a32a
MS
769 warning (_("Unable to fetch contents of _dl_debug_addr "
770 "(at address %s) from dynamic linker"),
bb599908 771 hex_string_custom (addr, 8));
c4d10515 772 }
e17a4113 773 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 774
cb7db0f2
MF
775 if (solib_frv_debug)
776 fprintf_unfiltered (gdb_stdlog,
777 "enable_break: _dl_debug_addr[0..3] = %s\n",
778 hex_string_custom (addr, 8));
779
780 /* If it's zero, then the ldso hasn't initialized yet, and so
781 there are no shared libs yet loaded. */
782 if (addr == 0)
783 {
784 if (solib_frv_debug)
785 fprintf_unfiltered (gdb_stdlog,
786 "enable_break: ldso not yet initialized\n");
787 /* Do not warn, but mark to run again. */
788 return 0;
789 }
790
c4d10515
KB
791 /* Fetch the r_brk field. It's 8 bytes from the start of
792 _dl_debug_addr. */
793 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
794 {
3e43a32a
MS
795 warning (_("Unable to fetch _dl_debug_addr->r_brk "
796 "(at address %s) from dynamic linker"),
bb599908 797 hex_string_custom (addr + 8, 8));
c4d10515
KB
798 enable_break_failure_warning ();
799 bfd_close (tmp_bfd);
800 return 0;
801 }
e17a4113 802 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
803
804 /* Now fetch the function entry point. */
805 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
806 {
3e43a32a
MS
807 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
808 "(at address %s) from dynamic linker"),
bb599908 809 hex_string_custom (addr, 8));
c4d10515
KB
810 enable_break_failure_warning ();
811 bfd_close (tmp_bfd);
812 return 0;
813 }
e17a4113 814 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
815
816 /* We're done with the temporary bfd. */
817 bfd_close (tmp_bfd);
818
819 /* We're also done with the loadmap. */
820 xfree (ldm);
821
cb7db0f2
MF
822 /* Remove all the solib event breakpoints. Their addresses
823 may have changed since the last time we ran the program. */
824 remove_solib_event_breakpoints ();
825
c4d10515 826 /* Now (finally!) create the solib breakpoint. */
a6d9a66e 827 create_solib_event_breakpoint (target_gdbarch, addr);
c4d10515 828
cb7db0f2
MF
829 enable_break2_done = 1;
830
c4d10515
KB
831 return 1;
832 }
833
834 /* Tell the user we couldn't set a dynamic linker breakpoint. */
835 enable_break_failure_warning ();
836
837 /* Failure return. */
838 return 0;
839}
840
841static int
842enable_break (void)
843{
844 asection *interp_sect;
845
abd0a5fa 846 if (symfile_objfile == NULL)
c4d10515 847 {
abd0a5fa
JK
848 if (solib_frv_debug)
849 fprintf_unfiltered (gdb_stdlog,
850 "enable_break: No symbol file found.\n");
851 return 0;
852 }
c4d10515 853
abd0a5fa
JK
854 if (!symfile_objfile->ei.entry_point_p)
855 {
c4d10515
KB
856 if (solib_frv_debug)
857 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
858 "enable_break: Symbol file has no entry point.\n");
859 return 0;
c4d10515 860 }
abd0a5fa
JK
861
862 /* Check for the presence of a .interp section. If there is no
863 such section, the executable is statically linked. */
864
865 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
866
867 if (interp_sect == NULL)
c4d10515
KB
868 {
869 if (solib_frv_debug)
870 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
871 "enable_break: No .interp section found.\n");
872 return 0;
c4d10515
KB
873 }
874
abd0a5fa
JK
875 create_solib_event_breakpoint (target_gdbarch,
876 symfile_objfile->ei.entry_point);
877
878 if (solib_frv_debug)
879 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
880 "enable_break: solib event breakpoint "
881 "placed at entry point: %s\n",
882 hex_string_custom (symfile_objfile->ei.entry_point,
883 8));
c4d10515
KB
884 return 1;
885}
886
887/*
888
889 LOCAL FUNCTION
890
891 special_symbol_handling -- additional shared library symbol handling
892
893 SYNOPSIS
894
895 void special_symbol_handling ()
896
897 DESCRIPTION
898
899 Once the symbols from a shared object have been loaded in the usual
900 way, we are called to do any system specific symbol handling that
901 is needed.
902
903 */
904
905static void
906frv_special_symbol_handling (void)
907{
908 /* Nothing needed (yet) for FRV. */
909}
910
911static void
912frv_relocate_main_executable (void)
913{
914 int status;
9bc7b6c6 915 CORE_ADDR exec_addr, interp_addr;
c4d10515
KB
916 struct int_elf32_fdpic_loadmap *ldm;
917 struct cleanup *old_chain;
918 struct section_offsets *new_offsets;
919 int changed;
920 struct obj_section *osect;
921
9bc7b6c6
KB
922 status = frv_fdpic_loadmap_addresses (target_gdbarch,
923 &interp_addr, &exec_addr);
c4d10515 924
9bc7b6c6 925 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
926 {
927 /* Not using FDPIC ABI, so do nothing. */
928 return;
929 }
930
931 /* Fetch the loadmap located at ``exec_addr''. */
932 ldm = fetch_loadmap (exec_addr);
933 if (ldm == NULL)
8a3fe4f8 934 error (_("Unable to load the executable's loadmap."));
c4d10515
KB
935
936 if (main_executable_lm_info)
937 xfree (main_executable_lm_info);
938 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
939 main_executable_lm_info->map = ldm;
940
941 new_offsets = xcalloc (symfile_objfile->num_sections,
942 sizeof (struct section_offsets));
943 old_chain = make_cleanup (xfree, new_offsets);
944 changed = 0;
945
946 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
947 {
948 CORE_ADDR orig_addr, addr, offset;
949 int osect_idx;
950 int seg;
951
952 osect_idx = osect->the_bfd_section->index;
953
954 /* Current address of section. */
aded6f54 955 addr = obj_section_addr (osect);
c4d10515
KB
956 /* Offset from where this section started. */
957 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
958 /* Original address prior to any past relocations. */
959 orig_addr = addr - offset;
960
961 for (seg = 0; seg < ldm->nsegs; seg++)
962 {
963 if (ldm->segs[seg].p_vaddr <= orig_addr
964 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
965 {
966 new_offsets->offsets[osect_idx]
967 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
968
969 if (new_offsets->offsets[osect_idx] != offset)
970 changed = 1;
971 break;
972 }
973 }
974 }
975
976 if (changed)
977 objfile_relocate (symfile_objfile, new_offsets);
978
979 do_cleanups (old_chain);
980
981 /* Now that symfile_objfile has been relocated, we can compute the
982 GOT value and stash it away. */
983 main_executable_lm_info->got_value = main_got ();
984}
985
986/*
987
988 GLOBAL FUNCTION
989
990 frv_solib_create_inferior_hook -- shared library startup support
991
992 SYNOPSIS
993
7095b863 994 void frv_solib_create_inferior_hook ()
c4d10515
KB
995
996 DESCRIPTION
997
998 When gdb starts up the inferior, it nurses it along (through the
999 shell) until it is ready to execute it's first instruction. At this
1000 point, this function gets called via expansion of the macro
1001 SOLIB_CREATE_INFERIOR_HOOK.
1002
1003 For the FR-V shared library ABI (FDPIC), the main executable
1004 needs to be relocated. The shared library breakpoints also need
1005 to be enabled.
1006 */
1007
1008static void
268a4a75 1009frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
1010{
1011 /* Relocate main executable. */
1012 frv_relocate_main_executable ();
1013
1014 /* Enable shared library breakpoints. */
1015 if (!enable_break ())
1016 {
8a3fe4f8 1017 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
1018 return;
1019 }
1020}
1021
1022static void
1023frv_clear_solib (void)
1024{
1025 lm_base_cache = 0;
c4d10515 1026 enable_break2_done = 0;
186993b4 1027 main_lm_addr = 0;
7c699b81
KB
1028 if (main_executable_lm_info != 0)
1029 {
1030 xfree (main_executable_lm_info->map);
1031 xfree (main_executable_lm_info->dyn_syms);
1032 xfree (main_executable_lm_info->dyn_relocs);
1033 xfree (main_executable_lm_info);
1034 main_executable_lm_info = 0;
1035 }
c4d10515
KB
1036}
1037
1038static void
1039frv_free_so (struct so_list *so)
1040{
1041 xfree (so->lm_info->map);
1042 xfree (so->lm_info->dyn_syms);
1043 xfree (so->lm_info->dyn_relocs);
1044 xfree (so->lm_info);
1045}
1046
1047static void
1048frv_relocate_section_addresses (struct so_list *so,
0542c86d 1049 struct target_section *sec)
c4d10515
KB
1050{
1051 int seg;
1052 struct int_elf32_fdpic_loadmap *map;
1053
1054 map = so->lm_info->map;
1055
1056 for (seg = 0; seg < map->nsegs; seg++)
1057 {
1058 if (map->segs[seg].p_vaddr <= sec->addr
1059 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1060 {
1061 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 1062
c4d10515
KB
1063 sec->addr += displ;
1064 sec->endaddr += displ;
1065 break;
1066 }
1067 }
1068}
1069
1070/* Return the GOT address associated with the main executable. Return
1071 0 if it can't be found. */
1072
1073static CORE_ADDR
1074main_got (void)
1075{
1076 struct minimal_symbol *got_sym;
1077
3e43a32a
MS
1078 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
1079 NULL, symfile_objfile);
c4d10515
KB
1080 if (got_sym == 0)
1081 return 0;
1082
1083 return SYMBOL_VALUE_ADDRESS (got_sym);
1084}
1085
1086/* Find the global pointer for the given function address ADDR. */
1087
1088CORE_ADDR
1089frv_fdpic_find_global_pointer (CORE_ADDR addr)
1090{
1091 struct so_list *so;
1092
1093 so = master_so_list ();
1094 while (so)
1095 {
1096 int seg;
1097 struct int_elf32_fdpic_loadmap *map;
1098
1099 map = so->lm_info->map;
1100
1101 for (seg = 0; seg < map->nsegs; seg++)
1102 {
1103 if (map->segs[seg].addr <= addr
1104 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1105 return so->lm_info->got_value;
1106 }
1107
1108 so = so->next;
1109 }
1110
1111 /* Didn't find it it any of the shared objects. So assume it's in the
1112 main executable. */
1113 return main_got ();
1114}
1115
1116/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1117static CORE_ADDR find_canonical_descriptor_in_load_object
1118 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1119
1120/* Given a function entry point, attempt to find the canonical descriptor
1121 associated with that entry point. Return 0 if no canonical descriptor
1122 could be found. */
1123
1124CORE_ADDR
1125frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1126{
1127 char *name;
1128 CORE_ADDR addr;
1129 CORE_ADDR got_value;
1130 struct int_elf32_fdpic_loadmap *ldm = 0;
1131 struct symbol *sym;
1132 int status;
1133 CORE_ADDR exec_loadmap_addr;
1134
1135 /* Fetch the corresponding global pointer for the entry point. */
1136 got_value = frv_fdpic_find_global_pointer (entry_point);
1137
1138 /* Attempt to find the name of the function. If the name is available,
1139 it'll be used as an aid in finding matching functions in the dynamic
1140 symbol table. */
1141 sym = find_pc_function (entry_point);
1142 if (sym == 0)
1143 name = 0;
1144 else
1145 name = SYMBOL_LINKAGE_NAME (sym);
1146
1147 /* Check the main executable. */
1148 addr = find_canonical_descriptor_in_load_object
1149 (entry_point, got_value, name, symfile_objfile->obfd,
1150 main_executable_lm_info);
1151
1152 /* If descriptor not found via main executable, check each load object
1153 in list of shared objects. */
1154 if (addr == 0)
1155 {
1156 struct so_list *so;
1157
1158 so = master_so_list ();
1159 while (so)
1160 {
1161 addr = find_canonical_descriptor_in_load_object
1162 (entry_point, got_value, name, so->abfd, so->lm_info);
1163
1164 if (addr != 0)
1165 break;
1166
1167 so = so->next;
1168 }
1169 }
1170
1171 return addr;
1172}
1173
1174static CORE_ADDR
1175find_canonical_descriptor_in_load_object
1176 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1177 struct lm_info *lm)
1178{
e17a4113 1179 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
1180 arelent *rel;
1181 unsigned int i;
1182 CORE_ADDR addr = 0;
1183
1184 /* Nothing to do if no bfd. */
1185 if (abfd == 0)
1186 return 0;
1187
35e08e03
KB
1188 /* Nothing to do if no link map. */
1189 if (lm == 0)
1190 return 0;
1191
c4d10515
KB
1192 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1193 (More about this later.) But in order to fetch the relocs, we
1194 need to first fetch the dynamic symbols. These symbols need to
1195 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1196 works. (See the comments in the declaration of struct lm_info
1197 for more information.) */
1198 if (lm->dyn_syms == NULL)
1199 {
1200 long storage_needed;
1201 unsigned int number_of_symbols;
1202
1203 /* Determine amount of space needed to hold the dynamic symbol table. */
1204 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1205
1206 /* If there are no dynamic symbols, there's nothing to do. */
1207 if (storage_needed <= 0)
1208 return 0;
1209
1210 /* Allocate space for the dynamic symbol table. */
1211 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1212
1213 /* Fetch the dynamic symbol table. */
1214 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1215
1216 if (number_of_symbols == 0)
1217 return 0;
1218 }
1219
1220 /* Fetch the dynamic relocations if not already cached. */
1221 if (lm->dyn_relocs == NULL)
1222 {
1223 long storage_needed;
1224
1225 /* Determine amount of space needed to hold the dynamic relocs. */
1226 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1227
1228 /* Bail out if there are no dynamic relocs. */
1229 if (storage_needed <= 0)
1230 return 0;
1231
1232 /* Allocate space for the relocs. */
1233 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1234
1235 /* Fetch the dynamic relocs. */
1236 lm->dyn_reloc_count
1237 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1238 }
1239
1240 /* Search the dynamic relocs. */
1241 for (i = 0; i < lm->dyn_reloc_count; i++)
1242 {
1243 rel = lm->dyn_relocs[i];
1244
1245 /* Relocs of interest are those which meet the following
1246 criteria:
1247
1248 - the names match (assuming the caller could provide
1249 a name which matches ``entry_point'').
1250 - the relocation type must be R_FRV_FUNCDESC. Relocs
1251 of this type are used (by the dynamic linker) to
1252 look up the address of a canonical descriptor (allocating
1253 it if need be) and initializing the GOT entry referred
1254 to by the offset to the address of the descriptor.
1255
1256 These relocs of interest may be used to obtain a
1257 candidate descriptor by first adjusting the reloc's
1258 address according to the link map and then dereferencing
1259 this address (which is a GOT entry) to obtain a descriptor
1260 address. */
1261 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1262 && rel->howto->type == R_FRV_FUNCDESC)
1263 {
e2b7c966 1264 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1265
1266 /* Compute address of address of candidate descriptor. */
1267 addr = rel->address + displacement_from_map (lm->map, rel->address);
1268
1269 /* Fetch address of candidate descriptor. */
1270 if (target_read_memory (addr, buf, sizeof buf) != 0)
1271 continue;
e17a4113 1272 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1273
1274 /* Check for matching entry point. */
1275 if (target_read_memory (addr, buf, sizeof buf) != 0)
1276 continue;
e17a4113
UW
1277 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1278 != entry_point)
c4d10515
KB
1279 continue;
1280
1281 /* Check for matching got value. */
1282 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1283 continue;
e17a4113
UW
1284 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1285 != got_value)
c4d10515
KB
1286 continue;
1287
1288 /* Match was successful! Exit loop. */
1289 break;
1290 }
1291 }
1292
1293 return addr;
1294}
1295
186993b4
KB
1296/* Given an objfile, return the address of its link map. This value is
1297 needed for TLS support. */
1298CORE_ADDR
1299frv_fetch_objfile_link_map (struct objfile *objfile)
1300{
1301 struct so_list *so;
1302
1303 /* Cause frv_current_sos() to be run if it hasn't been already. */
1304 if (main_lm_addr == 0)
1305 solib_add (0, 0, 0, 1);
1306
1307 /* frv_current_sos() will set main_lm_addr for the main executable. */
1308 if (objfile == symfile_objfile)
1309 return main_lm_addr;
1310
1311 /* The other link map addresses may be found by examining the list
1312 of shared libraries. */
1313 for (so = master_so_list (); so; so = so->next)
1314 {
1315 if (so->objfile == objfile)
1316 return so->lm_info->lm_addr;
1317 }
1318
1319 /* Not found! */
1320 return 0;
1321}
1322
917630e4 1323struct target_so_ops frv_so_ops;
c4d10515 1324
63807e1d
PA
1325/* Provide a prototype to silence -Wmissing-prototypes. */
1326extern initialize_file_ftype _initialize_frv_solib;
1327
c4d10515
KB
1328void
1329_initialize_frv_solib (void)
1330{
1331 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1332 frv_so_ops.free_so = frv_free_so;
1333 frv_so_ops.clear_solib = frv_clear_solib;
1334 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1335 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1336 frv_so_ops.current_sos = frv_current_sos;
1337 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1338 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1339 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1340
c4d10515 1341 /* Debug this file's internals. */
85c07804
AC
1342 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1343 &solib_frv_debug, _("\
1344Set internal debugging of shared library code for FR-V."), _("\
1345Show internal debugging of shared library code for FR-V."), _("\
1346When non-zero, FR-V solib specific internal debugging is enabled."),
1347 NULL,
1348 NULL, /* FIXME: i18n: */
1349 &setdebuglist, &showdebuglist);
c4d10515 1350}
This page took 0.738661 seconds and 4 git commands to generate.