gdb/
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
7b6bb8da
JB
2 Copyright (C) 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
c4d10515
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
19
20
21#include "defs.h"
22#include "gdb_string.h"
23#include "inferior.h"
24#include "gdbcore.h"
cb5c8c39 25#include "solib.h"
c4d10515
KB
26#include "solist.h"
27#include "frv-tdep.h"
28#include "objfiles.h"
29#include "symtab.h"
30#include "language.h"
31#include "command.h"
32#include "gdbcmd.h"
33#include "elf/frv.h"
f1838a98 34#include "exceptions.h"
c4d10515
KB
35
36/* Flag which indicates whether internal debug messages should be printed. */
37static int solib_frv_debug;
38
39/* FR-V pointers are four bytes wide. */
40enum { FRV_PTR_SIZE = 4 };
41
42/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43
44/* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
e2b7c966
KB
47typedef gdb_byte ext_Elf32_Half[2];
48typedef gdb_byte ext_Elf32_Addr[4];
49typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
50
51struct ext_elf32_fdpic_loadseg
52{
53 /* Core address to which the segment is mapped. */
54 ext_Elf32_Addr addr;
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
59};
60
61struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
65 ext_Elf32_Half nsegs;
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68};
69
70/* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73struct int_elf32_fdpic_loadseg
74{
75 /* Core address to which the segment is mapped. */
76 CORE_ADDR addr;
77 /* VMA recorded in the program header. */
78 CORE_ADDR p_vaddr;
79 /* Size of this segment in memory. */
80 long p_memsz;
81};
82
83struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
85 int version;
86 /* Number of segments in this map. */
87 int nsegs;
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90};
91
92/* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
97
98static struct int_elf32_fdpic_loadmap *
99fetch_loadmap (CORE_ADDR ldmaddr)
100{
e17a4113 101 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
102 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
103 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
104 struct int_elf32_fdpic_loadmap *int_ldmbuf;
105 int ext_ldmbuf_size, int_ldmbuf_size;
106 int version, seg, nsegs;
107
108 /* Fetch initial portion of the loadmap. */
e2b7c966 109 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
110 sizeof ext_ldmbuf_partial))
111 {
112 /* Problem reading the target's memory. */
113 return NULL;
114 }
115
116 /* Extract the version. */
e2b7c966 117 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
118 sizeof ext_ldmbuf_partial.version,
119 byte_order);
c4d10515
KB
120 if (version != 0)
121 {
122 /* We only handle version 0. */
123 return NULL;
124 }
125
126 /* Extract the number of segments. */
e2b7c966 127 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
128 sizeof ext_ldmbuf_partial.nsegs,
129 byte_order);
c4d10515 130
9bc7b6c6
KB
131 if (nsegs <= 0)
132 return NULL;
133
c4d10515
KB
134 /* Allocate space for the complete (external) loadmap. */
135 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
136 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
137 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
138
139 /* Copy over the portion of the loadmap that's already been read. */
140 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
141
142 /* Read the rest of the loadmap from the target. */
143 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 144 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
145 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
146 {
147 /* Couldn't read rest of the loadmap. */
148 xfree (ext_ldmbuf);
149 return NULL;
150 }
151
152 /* Allocate space into which to put information extract from the
153 external loadsegs. I.e, allocate the internal loadsegs. */
154 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
155 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
156 int_ldmbuf = xmalloc (int_ldmbuf_size);
157
158 /* Place extracted information in internal structs. */
159 int_ldmbuf->version = version;
160 int_ldmbuf->nsegs = nsegs;
161 for (seg = 0; seg < nsegs; seg++)
162 {
163 int_ldmbuf->segs[seg].addr
e2b7c966 164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
165 sizeof (ext_ldmbuf->segs[seg].addr),
166 byte_order);
c4d10515 167 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 168 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
169 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
170 byte_order);
c4d10515 171 int_ldmbuf->segs[seg].p_memsz
e2b7c966 172 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
173 sizeof (ext_ldmbuf->segs[seg].p_memsz),
174 byte_order);
c4d10515
KB
175 }
176
d5c560f7 177 xfree (ext_ldmbuf);
c4d10515
KB
178 return int_ldmbuf;
179}
180
181/* External link_map and elf32_fdpic_loadaddr struct definitions. */
182
e2b7c966 183typedef gdb_byte ext_ptr[4];
c4d10515
KB
184
185struct ext_elf32_fdpic_loadaddr
186{
187 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
188 ext_ptr got_value; /* void *got_value; */
189};
190
191struct ext_link_map
192{
193 struct ext_elf32_fdpic_loadaddr l_addr;
194
195 /* Absolute file name object was found in. */
196 ext_ptr l_name; /* char *l_name; */
197
198 /* Dynamic section of the shared object. */
199 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
200
201 /* Chain of loaded objects. */
202 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203};
204
c378eb4e 205/* Link map info to include in an allocated so_list entry. */
c4d10515
KB
206
207struct lm_info
208 {
209 /* The loadmap, digested into an easier to use form. */
210 struct int_elf32_fdpic_loadmap *map;
211 /* The GOT address for this link map entry. */
212 CORE_ADDR got_value;
186993b4
KB
213 /* The link map address, needed for frv_fetch_objfile_link_map(). */
214 CORE_ADDR lm_addr;
c4d10515
KB
215
216 /* Cached dynamic symbol table and dynamic relocs initialized and
217 used only by find_canonical_descriptor_in_load_object().
218
219 Note: kevinb/2004-02-26: It appears that calls to
220 bfd_canonicalize_dynamic_reloc() will use the same symbols as
221 those supplied to the first call to this function. Therefore,
222 it's important to NOT free the asymbol ** data structure
223 supplied to the first call. Thus the caching of the dynamic
224 symbols (dyn_syms) is critical for correct operation. The
225 caching of the dynamic relocations could be dispensed with. */
226 asymbol **dyn_syms;
227 arelent **dyn_relocs;
c378eb4e 228 int dyn_reloc_count; /* Number of dynamic relocs. */
c4d10515
KB
229
230 };
231
232/* The load map, got value, etc. are not available from the chain
233 of loaded shared objects. ``main_executable_lm_info'' provides
234 a way to get at this information so that it doesn't need to be
235 frequently recomputed. Initialized by frv_relocate_main_executable(). */
236static struct lm_info *main_executable_lm_info;
237
238static void frv_relocate_main_executable (void);
239static CORE_ADDR main_got (void);
240static int enable_break2 (void);
241
7f86f058 242/* Lookup the value for a specific symbol.
c4d10515
KB
243
244 An expensive way to lookup the value of a single symbol for
245 bfd's that are only temporary anyway. This is used by the
246 shared library support to find the address of the debugger
247 interface structures in the shared library.
248
249 Note that 0 is specifically allowed as an error return (no
7f86f058 250 such symbol). */
c4d10515
KB
251
252static CORE_ADDR
253bfd_lookup_symbol (bfd *abfd, char *symname)
254{
255 long storage_needed;
256 asymbol *sym;
257 asymbol **symbol_table;
258 unsigned int number_of_symbols;
259 unsigned int i;
260 struct cleanup *back_to;
261 CORE_ADDR symaddr = 0;
262
263 storage_needed = bfd_get_symtab_upper_bound (abfd);
264
265 if (storage_needed > 0)
266 {
267 symbol_table = (asymbol **) xmalloc (storage_needed);
268 back_to = make_cleanup (xfree, symbol_table);
269 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
270
271 for (i = 0; i < number_of_symbols; i++)
272 {
273 sym = *symbol_table++;
274 if (strcmp (sym->name, symname) == 0)
275 {
c378eb4e 276 /* Bfd symbols are section relative. */
c4d10515
KB
277 symaddr = sym->value + sym->section->vma;
278 break;
279 }
280 }
281 do_cleanups (back_to);
282 }
283
284 if (symaddr)
285 return symaddr;
286
287 /* Look for the symbol in the dynamic string table too. */
288
289 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
290
291 if (storage_needed > 0)
292 {
293 symbol_table = (asymbol **) xmalloc (storage_needed);
294 back_to = make_cleanup (xfree, symbol_table);
295 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
296
297 for (i = 0; i < number_of_symbols; i++)
298 {
299 sym = *symbol_table++;
300 if (strcmp (sym->name, symname) == 0)
301 {
c378eb4e 302 /* Bfd symbols are section relative. */
c4d10515
KB
303 symaddr = sym->value + sym->section->vma;
304 break;
305 }
306 }
307 do_cleanups (back_to);
308 }
309
310 return symaddr;
311}
312
7f86f058 313/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
314
315static int
316open_symbol_file_object (void *from_ttyp)
317{
318 /* Unimplemented. */
319 return 0;
320}
321
322/* Cached value for lm_base(), below. */
323static CORE_ADDR lm_base_cache = 0;
324
186993b4
KB
325/* Link map address for main module. */
326static CORE_ADDR main_lm_addr = 0;
327
c4d10515
KB
328/* Return the address from which the link map chain may be found. On
329 the FR-V, this may be found in a number of ways. Assuming that the
330 main executable has already been relocated, the easiest way to find
331 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
332 pointer to the start of the link map will be located at the word found
333 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
334 reserve area mandated by the ABI.) */
335
336static CORE_ADDR
337lm_base (void)
338{
e17a4113 339 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
340 struct minimal_symbol *got_sym;
341 CORE_ADDR addr;
e2b7c966 342 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 343
89a7ee67
KB
344 /* One of our assumptions is that the main executable has been relocated.
345 Bail out if this has not happened. (Note that post_create_inferior()
346 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
347 If we allow this to happen, lm_base_cache will be initialized with
348 a bogus value. */
349 if (main_executable_lm_info == 0)
350 return 0;
351
c4d10515
KB
352 /* If we already have a cached value, return it. */
353 if (lm_base_cache)
354 return lm_base_cache;
355
356 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
357 symfile_objfile);
358 if (got_sym == 0)
359 {
360 if (solib_frv_debug)
361 fprintf_unfiltered (gdb_stdlog,
362 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
363 return 0;
364 }
365
366 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
367
368 if (solib_frv_debug)
369 fprintf_unfiltered (gdb_stdlog,
370 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 371 hex_string_custom (addr, 8));
c4d10515
KB
372
373 if (target_read_memory (addr, buf, sizeof buf) != 0)
374 return 0;
e17a4113 375 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
376
377 if (solib_frv_debug)
378 fprintf_unfiltered (gdb_stdlog,
379 "lm_base: lm_base_cache = %s\n",
bb599908 380 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
381
382 return lm_base_cache;
383}
384
385
7f86f058 386/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
387
388static struct so_list *
389frv_current_sos (void)
390{
e17a4113 391 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
392 CORE_ADDR lm_addr, mgot;
393 struct so_list *sos_head = NULL;
394 struct so_list **sos_next_ptr = &sos_head;
395
7c699b81
KB
396 /* Make sure that the main executable has been relocated. This is
397 required in order to find the address of the global offset table,
398 which in turn is used to find the link map info. (See lm_base()
399 for details.)
400
401 Note that the relocation of the main executable is also performed
402 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
403 files, this hook is called too late in order to be of benefit to
404 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
405 frv_current_sos, and also precedes the call to
406 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
407 infcmd.c.) */
408 if (main_executable_lm_info == 0 && core_bfd != NULL)
409 frv_relocate_main_executable ();
410
411 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
412 mgot = main_got ();
413
414 /* Locate the address of the first link map struct. */
415 lm_addr = lm_base ();
416
b021a221 417 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
418 building the solist chain. */
419 while (lm_addr)
420 {
421 struct ext_link_map lm_buf;
422 CORE_ADDR got_addr;
423
424 if (solib_frv_debug)
425 fprintf_unfiltered (gdb_stdlog,
426 "current_sos: reading link_map entry at %s\n",
bb599908 427 hex_string_custom (lm_addr, 8));
c4d10515 428
3e43a32a
MS
429 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
430 sizeof (lm_buf)) != 0)
c4d10515 431 {
3e43a32a
MS
432 warning (_("frv_current_sos: Unable to read link map entry. "
433 "Shared object chain may be incomplete."));
c4d10515
KB
434 break;
435 }
436
437 got_addr
e2b7c966 438 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
439 sizeof (lm_buf.l_addr.got_value),
440 byte_order);
c4d10515
KB
441 /* If the got_addr is the same as mgotr, then we're looking at the
442 entry for the main executable. By convention, we don't include
443 this in the list of shared objects. */
444 if (got_addr != mgot)
445 {
446 int errcode;
447 char *name_buf;
448 struct int_elf32_fdpic_loadmap *loadmap;
449 struct so_list *sop;
450 CORE_ADDR addr;
451
452 /* Fetch the load map address. */
e2b7c966 453 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
454 sizeof lm_buf.l_addr.map,
455 byte_order);
c4d10515
KB
456 loadmap = fetch_loadmap (addr);
457 if (loadmap == NULL)
458 {
3e43a32a
MS
459 warning (_("frv_current_sos: Unable to fetch load map. "
460 "Shared object chain may be incomplete."));
c4d10515
KB
461 break;
462 }
463
464 sop = xcalloc (1, sizeof (struct so_list));
465 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
466 sop->lm_info->map = loadmap;
467 sop->lm_info->got_value = got_addr;
186993b4 468 sop->lm_info->lm_addr = lm_addr;
c4d10515 469 /* Fetch the name. */
e2b7c966 470 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
471 sizeof (lm_buf.l_name),
472 byte_order);
c4d10515
KB
473 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
474 &errcode);
475
476 if (solib_frv_debug)
477 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
478 name_buf);
479
480 if (errcode != 0)
8a3fe4f8
AC
481 warning (_("Can't read pathname for link map entry: %s."),
482 safe_strerror (errcode));
c4d10515
KB
483 else
484 {
485 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
486 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
487 xfree (name_buf);
488 strcpy (sop->so_original_name, sop->so_name);
489 }
490
491 *sos_next_ptr = sop;
492 sos_next_ptr = &sop->next;
493 }
186993b4
KB
494 else
495 {
496 main_lm_addr = lm_addr;
497 }
c4d10515 498
e17a4113
UW
499 lm_addr = extract_unsigned_integer (lm_buf.l_next,
500 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
501 }
502
503 enable_break2 ();
504
505 return sos_head;
506}
507
508
509/* Return 1 if PC lies in the dynamic symbol resolution code of the
510 run time loader. */
511
512static CORE_ADDR interp_text_sect_low;
513static CORE_ADDR interp_text_sect_high;
514static CORE_ADDR interp_plt_sect_low;
515static CORE_ADDR interp_plt_sect_high;
516
517static int
518frv_in_dynsym_resolve_code (CORE_ADDR pc)
519{
520 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
521 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
522 || in_plt_section (pc, NULL));
523}
524
525/* Given a loadmap and an address, return the displacement needed
526 to relocate the address. */
527
63807e1d 528static CORE_ADDR
c4d10515
KB
529displacement_from_map (struct int_elf32_fdpic_loadmap *map,
530 CORE_ADDR addr)
531{
532 int seg;
533
534 for (seg = 0; seg < map->nsegs; seg++)
535 {
536 if (map->segs[seg].p_vaddr <= addr
537 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
538 {
539 return map->segs[seg].addr - map->segs[seg].p_vaddr;
540 }
541 }
542
543 return 0;
544}
545
546/* Print a warning about being unable to set the dynamic linker
547 breakpoint. */
548
549static void
550enable_break_failure_warning (void)
551{
8a3fe4f8 552 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 553 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 554 "and track explicitly loaded dynamic code."));
c4d10515
KB
555}
556
7f86f058 557/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
558
559 The dynamic linkers has, as part of its debugger interface, support
560 for arranging for the inferior to hit a breakpoint after mapping in
561 the shared libraries. This function enables that breakpoint.
562
563 On the FR-V, using the shared library (FDPIC) ABI, the symbol
564 _dl_debug_addr points to the r_debug struct which contains
565 a field called r_brk. r_brk is the address of the function
566 descriptor upon which a breakpoint must be placed. Being a
567 function descriptor, we must extract the entry point in order
568 to set the breakpoint.
569
570 Our strategy will be to get the .interp section from the
571 executable. This section will provide us with the name of the
572 interpreter. We'll open the interpreter and then look up
573 the address of _dl_debug_addr. We then relocate this address
574 using the interpreter's loadmap. Once the relocated address
575 is known, we fetch the value (address) corresponding to r_brk
576 and then use that value to fetch the entry point of the function
7f86f058 577 we're interested in. */
c4d10515 578
c4d10515
KB
579static int enable_break2_done = 0;
580
581static int
582enable_break2 (void)
583{
e17a4113 584 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
585 int success = 0;
586 char **bkpt_namep;
587 asection *interp_sect;
588
cb7db0f2 589 if (enable_break2_done)
c4d10515
KB
590 return 1;
591
c4d10515
KB
592 interp_text_sect_low = interp_text_sect_high = 0;
593 interp_plt_sect_low = interp_plt_sect_high = 0;
594
595 /* Find the .interp section; if not found, warn the user and drop
596 into the old breakpoint at symbol code. */
597 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
598 if (interp_sect)
599 {
600 unsigned int interp_sect_size;
e2b7c966 601 gdb_byte *buf;
c4d10515 602 bfd *tmp_bfd = NULL;
c4d10515
KB
603 int status;
604 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 605 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515 606 struct int_elf32_fdpic_loadmap *ldm;
f1838a98 607 volatile struct gdb_exception ex;
c4d10515
KB
608
609 /* Read the contents of the .interp section into a local buffer;
610 the contents specify the dynamic linker this program uses. */
611 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
612 buf = alloca (interp_sect_size);
613 bfd_get_section_contents (exec_bfd, interp_sect,
614 buf, 0, interp_sect_size);
615
616 /* Now we need to figure out where the dynamic linker was
617 loaded so that we can load its symbols and place a breakpoint
618 in the dynamic linker itself.
619
620 This address is stored on the stack. However, I've been unable
621 to find any magic formula to find it for Solaris (appears to
622 be trivial on GNU/Linux). Therefore, we have to try an alternate
623 mechanism to find the dynamic linker's base address. */
624
f1838a98
UW
625 TRY_CATCH (ex, RETURN_MASK_ALL)
626 {
627 tmp_bfd = solib_bfd_open (buf);
628 }
c4d10515
KB
629 if (tmp_bfd == NULL)
630 {
631 enable_break_failure_warning ();
632 return 0;
633 }
634
1cf3db46 635 status = frv_fdpic_loadmap_addresses (target_gdbarch,
c4d10515
KB
636 &interp_loadmap_addr, 0);
637 if (status < 0)
638 {
8a3fe4f8 639 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515
KB
640 enable_break_failure_warning ();
641 bfd_close (tmp_bfd);
642 return 0;
643 }
644
645 if (solib_frv_debug)
646 fprintf_unfiltered (gdb_stdlog,
647 "enable_break: interp_loadmap_addr = %s\n",
bb599908 648 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
649
650 ldm = fetch_loadmap (interp_loadmap_addr);
651 if (ldm == NULL)
652 {
8a3fe4f8 653 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 654 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
655 enable_break_failure_warning ();
656 bfd_close (tmp_bfd);
657 return 0;
658 }
659
660 /* Record the relocated start and end address of the dynamic linker
661 text and plt section for svr4_in_dynsym_resolve_code. */
662 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
663 if (interp_sect)
664 {
665 interp_text_sect_low
666 = bfd_section_vma (tmp_bfd, interp_sect);
667 interp_text_sect_low
668 += displacement_from_map (ldm, interp_text_sect_low);
669 interp_text_sect_high
670 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
671 }
672 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
673 if (interp_sect)
674 {
675 interp_plt_sect_low =
676 bfd_section_vma (tmp_bfd, interp_sect);
677 interp_plt_sect_low
678 += displacement_from_map (ldm, interp_plt_sect_low);
679 interp_plt_sect_high =
680 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
681 }
682
683 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
684 if (addr == 0)
685 {
3e43a32a
MS
686 warning (_("Could not find symbol _dl_debug_addr "
687 "in dynamic linker"));
c4d10515
KB
688 enable_break_failure_warning ();
689 bfd_close (tmp_bfd);
690 return 0;
691 }
692
693 if (solib_frv_debug)
694 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
695 "enable_break: _dl_debug_addr "
696 "(prior to relocation) = %s\n",
bb599908 697 hex_string_custom (addr, 8));
c4d10515
KB
698
699 addr += displacement_from_map (ldm, addr);
700
701 if (solib_frv_debug)
702 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
703 "enable_break: _dl_debug_addr "
704 "(after relocation) = %s\n",
bb599908 705 hex_string_custom (addr, 8));
c4d10515
KB
706
707 /* Fetch the address of the r_debug struct. */
708 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
709 {
3e43a32a
MS
710 warning (_("Unable to fetch contents of _dl_debug_addr "
711 "(at address %s) from dynamic linker"),
bb599908 712 hex_string_custom (addr, 8));
c4d10515 713 }
e17a4113 714 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 715
cb7db0f2
MF
716 if (solib_frv_debug)
717 fprintf_unfiltered (gdb_stdlog,
718 "enable_break: _dl_debug_addr[0..3] = %s\n",
719 hex_string_custom (addr, 8));
720
721 /* If it's zero, then the ldso hasn't initialized yet, and so
722 there are no shared libs yet loaded. */
723 if (addr == 0)
724 {
725 if (solib_frv_debug)
726 fprintf_unfiltered (gdb_stdlog,
727 "enable_break: ldso not yet initialized\n");
728 /* Do not warn, but mark to run again. */
729 return 0;
730 }
731
c4d10515
KB
732 /* Fetch the r_brk field. It's 8 bytes from the start of
733 _dl_debug_addr. */
734 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
735 {
3e43a32a
MS
736 warning (_("Unable to fetch _dl_debug_addr->r_brk "
737 "(at address %s) from dynamic linker"),
bb599908 738 hex_string_custom (addr + 8, 8));
c4d10515
KB
739 enable_break_failure_warning ();
740 bfd_close (tmp_bfd);
741 return 0;
742 }
e17a4113 743 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
744
745 /* Now fetch the function entry point. */
746 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
747 {
3e43a32a
MS
748 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
749 "(at address %s) from dynamic linker"),
bb599908 750 hex_string_custom (addr, 8));
c4d10515
KB
751 enable_break_failure_warning ();
752 bfd_close (tmp_bfd);
753 return 0;
754 }
e17a4113 755 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
756
757 /* We're done with the temporary bfd. */
758 bfd_close (tmp_bfd);
759
760 /* We're also done with the loadmap. */
761 xfree (ldm);
762
cb7db0f2
MF
763 /* Remove all the solib event breakpoints. Their addresses
764 may have changed since the last time we ran the program. */
765 remove_solib_event_breakpoints ();
766
c4d10515 767 /* Now (finally!) create the solib breakpoint. */
a6d9a66e 768 create_solib_event_breakpoint (target_gdbarch, addr);
c4d10515 769
cb7db0f2
MF
770 enable_break2_done = 1;
771
c4d10515
KB
772 return 1;
773 }
774
775 /* Tell the user we couldn't set a dynamic linker breakpoint. */
776 enable_break_failure_warning ();
777
778 /* Failure return. */
779 return 0;
780}
781
782static int
783enable_break (void)
784{
785 asection *interp_sect;
786
abd0a5fa 787 if (symfile_objfile == NULL)
c4d10515 788 {
abd0a5fa
JK
789 if (solib_frv_debug)
790 fprintf_unfiltered (gdb_stdlog,
791 "enable_break: No symbol file found.\n");
792 return 0;
793 }
c4d10515 794
abd0a5fa
JK
795 if (!symfile_objfile->ei.entry_point_p)
796 {
c4d10515
KB
797 if (solib_frv_debug)
798 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
799 "enable_break: Symbol file has no entry point.\n");
800 return 0;
c4d10515 801 }
abd0a5fa
JK
802
803 /* Check for the presence of a .interp section. If there is no
804 such section, the executable is statically linked. */
805
806 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
807
808 if (interp_sect == NULL)
c4d10515
KB
809 {
810 if (solib_frv_debug)
811 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
812 "enable_break: No .interp section found.\n");
813 return 0;
c4d10515
KB
814 }
815
abd0a5fa
JK
816 create_solib_event_breakpoint (target_gdbarch,
817 symfile_objfile->ei.entry_point);
818
819 if (solib_frv_debug)
820 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
821 "enable_break: solib event breakpoint "
822 "placed at entry point: %s\n",
823 hex_string_custom (symfile_objfile->ei.entry_point,
824 8));
c4d10515
KB
825 return 1;
826}
827
7f86f058 828/* Implement the "special_symbol_handling" target_so_ops method. */
c4d10515
KB
829
830static void
831frv_special_symbol_handling (void)
832{
7f86f058 833 /* Nothing needed for FRV. */
c4d10515
KB
834}
835
836static void
837frv_relocate_main_executable (void)
838{
839 int status;
9bc7b6c6 840 CORE_ADDR exec_addr, interp_addr;
c4d10515
KB
841 struct int_elf32_fdpic_loadmap *ldm;
842 struct cleanup *old_chain;
843 struct section_offsets *new_offsets;
844 int changed;
845 struct obj_section *osect;
846
9bc7b6c6
KB
847 status = frv_fdpic_loadmap_addresses (target_gdbarch,
848 &interp_addr, &exec_addr);
c4d10515 849
9bc7b6c6 850 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
851 {
852 /* Not using FDPIC ABI, so do nothing. */
853 return;
854 }
855
856 /* Fetch the loadmap located at ``exec_addr''. */
857 ldm = fetch_loadmap (exec_addr);
858 if (ldm == NULL)
8a3fe4f8 859 error (_("Unable to load the executable's loadmap."));
c4d10515
KB
860
861 if (main_executable_lm_info)
862 xfree (main_executable_lm_info);
863 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
864 main_executable_lm_info->map = ldm;
865
866 new_offsets = xcalloc (symfile_objfile->num_sections,
867 sizeof (struct section_offsets));
868 old_chain = make_cleanup (xfree, new_offsets);
869 changed = 0;
870
871 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
872 {
873 CORE_ADDR orig_addr, addr, offset;
874 int osect_idx;
875 int seg;
876
877 osect_idx = osect->the_bfd_section->index;
878
879 /* Current address of section. */
aded6f54 880 addr = obj_section_addr (osect);
c4d10515
KB
881 /* Offset from where this section started. */
882 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
883 /* Original address prior to any past relocations. */
884 orig_addr = addr - offset;
885
886 for (seg = 0; seg < ldm->nsegs; seg++)
887 {
888 if (ldm->segs[seg].p_vaddr <= orig_addr
889 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
890 {
891 new_offsets->offsets[osect_idx]
892 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
893
894 if (new_offsets->offsets[osect_idx] != offset)
895 changed = 1;
896 break;
897 }
898 }
899 }
900
901 if (changed)
902 objfile_relocate (symfile_objfile, new_offsets);
903
904 do_cleanups (old_chain);
905
906 /* Now that symfile_objfile has been relocated, we can compute the
907 GOT value and stash it away. */
908 main_executable_lm_info->got_value = main_got ();
909}
910
7f86f058 911/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 912
7f86f058
PA
913 For the FR-V shared library ABI (FDPIC), the main executable needs
914 to be relocated. The shared library breakpoints also need to be
915 enabled. */
c4d10515
KB
916
917static void
268a4a75 918frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
919{
920 /* Relocate main executable. */
921 frv_relocate_main_executable ();
922
923 /* Enable shared library breakpoints. */
924 if (!enable_break ())
925 {
8a3fe4f8 926 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
927 return;
928 }
929}
930
931static void
932frv_clear_solib (void)
933{
934 lm_base_cache = 0;
c4d10515 935 enable_break2_done = 0;
186993b4 936 main_lm_addr = 0;
7c699b81
KB
937 if (main_executable_lm_info != 0)
938 {
939 xfree (main_executable_lm_info->map);
940 xfree (main_executable_lm_info->dyn_syms);
941 xfree (main_executable_lm_info->dyn_relocs);
942 xfree (main_executable_lm_info);
943 main_executable_lm_info = 0;
944 }
c4d10515
KB
945}
946
947static void
948frv_free_so (struct so_list *so)
949{
950 xfree (so->lm_info->map);
951 xfree (so->lm_info->dyn_syms);
952 xfree (so->lm_info->dyn_relocs);
953 xfree (so->lm_info);
954}
955
956static void
957frv_relocate_section_addresses (struct so_list *so,
0542c86d 958 struct target_section *sec)
c4d10515
KB
959{
960 int seg;
961 struct int_elf32_fdpic_loadmap *map;
962
963 map = so->lm_info->map;
964
965 for (seg = 0; seg < map->nsegs; seg++)
966 {
967 if (map->segs[seg].p_vaddr <= sec->addr
968 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
969 {
970 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 971
c4d10515
KB
972 sec->addr += displ;
973 sec->endaddr += displ;
974 break;
975 }
976 }
977}
978
979/* Return the GOT address associated with the main executable. Return
980 0 if it can't be found. */
981
982static CORE_ADDR
983main_got (void)
984{
985 struct minimal_symbol *got_sym;
986
3e43a32a
MS
987 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
988 NULL, symfile_objfile);
c4d10515
KB
989 if (got_sym == 0)
990 return 0;
991
992 return SYMBOL_VALUE_ADDRESS (got_sym);
993}
994
995/* Find the global pointer for the given function address ADDR. */
996
997CORE_ADDR
998frv_fdpic_find_global_pointer (CORE_ADDR addr)
999{
1000 struct so_list *so;
1001
1002 so = master_so_list ();
1003 while (so)
1004 {
1005 int seg;
1006 struct int_elf32_fdpic_loadmap *map;
1007
1008 map = so->lm_info->map;
1009
1010 for (seg = 0; seg < map->nsegs; seg++)
1011 {
1012 if (map->segs[seg].addr <= addr
1013 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1014 return so->lm_info->got_value;
1015 }
1016
1017 so = so->next;
1018 }
1019
7a9dd1b2 1020 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
1021 main executable. */
1022 return main_got ();
1023}
1024
1025/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1026static CORE_ADDR find_canonical_descriptor_in_load_object
1027 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1028
1029/* Given a function entry point, attempt to find the canonical descriptor
1030 associated with that entry point. Return 0 if no canonical descriptor
1031 could be found. */
1032
1033CORE_ADDR
1034frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1035{
1036 char *name;
1037 CORE_ADDR addr;
1038 CORE_ADDR got_value;
1039 struct int_elf32_fdpic_loadmap *ldm = 0;
1040 struct symbol *sym;
1041 int status;
1042 CORE_ADDR exec_loadmap_addr;
1043
1044 /* Fetch the corresponding global pointer for the entry point. */
1045 got_value = frv_fdpic_find_global_pointer (entry_point);
1046
1047 /* Attempt to find the name of the function. If the name is available,
1048 it'll be used as an aid in finding matching functions in the dynamic
1049 symbol table. */
1050 sym = find_pc_function (entry_point);
1051 if (sym == 0)
1052 name = 0;
1053 else
1054 name = SYMBOL_LINKAGE_NAME (sym);
1055
1056 /* Check the main executable. */
1057 addr = find_canonical_descriptor_in_load_object
1058 (entry_point, got_value, name, symfile_objfile->obfd,
1059 main_executable_lm_info);
1060
1061 /* If descriptor not found via main executable, check each load object
1062 in list of shared objects. */
1063 if (addr == 0)
1064 {
1065 struct so_list *so;
1066
1067 so = master_so_list ();
1068 while (so)
1069 {
1070 addr = find_canonical_descriptor_in_load_object
1071 (entry_point, got_value, name, so->abfd, so->lm_info);
1072
1073 if (addr != 0)
1074 break;
1075
1076 so = so->next;
1077 }
1078 }
1079
1080 return addr;
1081}
1082
1083static CORE_ADDR
1084find_canonical_descriptor_in_load_object
1085 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1086 struct lm_info *lm)
1087{
e17a4113 1088 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
c4d10515
KB
1089 arelent *rel;
1090 unsigned int i;
1091 CORE_ADDR addr = 0;
1092
1093 /* Nothing to do if no bfd. */
1094 if (abfd == 0)
1095 return 0;
1096
35e08e03
KB
1097 /* Nothing to do if no link map. */
1098 if (lm == 0)
1099 return 0;
1100
c4d10515
KB
1101 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1102 (More about this later.) But in order to fetch the relocs, we
1103 need to first fetch the dynamic symbols. These symbols need to
1104 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1105 works. (See the comments in the declaration of struct lm_info
1106 for more information.) */
1107 if (lm->dyn_syms == NULL)
1108 {
1109 long storage_needed;
1110 unsigned int number_of_symbols;
1111
1112 /* Determine amount of space needed to hold the dynamic symbol table. */
1113 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1114
1115 /* If there are no dynamic symbols, there's nothing to do. */
1116 if (storage_needed <= 0)
1117 return 0;
1118
1119 /* Allocate space for the dynamic symbol table. */
1120 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1121
1122 /* Fetch the dynamic symbol table. */
1123 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1124
1125 if (number_of_symbols == 0)
1126 return 0;
1127 }
1128
1129 /* Fetch the dynamic relocations if not already cached. */
1130 if (lm->dyn_relocs == NULL)
1131 {
1132 long storage_needed;
1133
1134 /* Determine amount of space needed to hold the dynamic relocs. */
1135 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1136
1137 /* Bail out if there are no dynamic relocs. */
1138 if (storage_needed <= 0)
1139 return 0;
1140
1141 /* Allocate space for the relocs. */
1142 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1143
1144 /* Fetch the dynamic relocs. */
1145 lm->dyn_reloc_count
1146 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1147 }
1148
1149 /* Search the dynamic relocs. */
1150 for (i = 0; i < lm->dyn_reloc_count; i++)
1151 {
1152 rel = lm->dyn_relocs[i];
1153
1154 /* Relocs of interest are those which meet the following
1155 criteria:
1156
1157 - the names match (assuming the caller could provide
1158 a name which matches ``entry_point'').
1159 - the relocation type must be R_FRV_FUNCDESC. Relocs
1160 of this type are used (by the dynamic linker) to
1161 look up the address of a canonical descriptor (allocating
1162 it if need be) and initializing the GOT entry referred
1163 to by the offset to the address of the descriptor.
1164
1165 These relocs of interest may be used to obtain a
1166 candidate descriptor by first adjusting the reloc's
1167 address according to the link map and then dereferencing
1168 this address (which is a GOT entry) to obtain a descriptor
1169 address. */
1170 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1171 && rel->howto->type == R_FRV_FUNCDESC)
1172 {
e2b7c966 1173 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1174
1175 /* Compute address of address of candidate descriptor. */
1176 addr = rel->address + displacement_from_map (lm->map, rel->address);
1177
1178 /* Fetch address of candidate descriptor. */
1179 if (target_read_memory (addr, buf, sizeof buf) != 0)
1180 continue;
e17a4113 1181 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1182
1183 /* Check for matching entry point. */
1184 if (target_read_memory (addr, buf, sizeof buf) != 0)
1185 continue;
e17a4113
UW
1186 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1187 != entry_point)
c4d10515
KB
1188 continue;
1189
1190 /* Check for matching got value. */
1191 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1192 continue;
e17a4113
UW
1193 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1194 != got_value)
c4d10515
KB
1195 continue;
1196
1197 /* Match was successful! Exit loop. */
1198 break;
1199 }
1200 }
1201
1202 return addr;
1203}
1204
186993b4
KB
1205/* Given an objfile, return the address of its link map. This value is
1206 needed for TLS support. */
1207CORE_ADDR
1208frv_fetch_objfile_link_map (struct objfile *objfile)
1209{
1210 struct so_list *so;
1211
1212 /* Cause frv_current_sos() to be run if it hasn't been already. */
1213 if (main_lm_addr == 0)
1214 solib_add (0, 0, 0, 1);
1215
1216 /* frv_current_sos() will set main_lm_addr for the main executable. */
1217 if (objfile == symfile_objfile)
1218 return main_lm_addr;
1219
1220 /* The other link map addresses may be found by examining the list
1221 of shared libraries. */
1222 for (so = master_so_list (); so; so = so->next)
1223 {
1224 if (so->objfile == objfile)
1225 return so->lm_info->lm_addr;
1226 }
1227
1228 /* Not found! */
1229 return 0;
1230}
1231
917630e4 1232struct target_so_ops frv_so_ops;
c4d10515 1233
63807e1d
PA
1234/* Provide a prototype to silence -Wmissing-prototypes. */
1235extern initialize_file_ftype _initialize_frv_solib;
1236
c4d10515
KB
1237void
1238_initialize_frv_solib (void)
1239{
1240 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1241 frv_so_ops.free_so = frv_free_so;
1242 frv_so_ops.clear_solib = frv_clear_solib;
1243 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1244 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1245 frv_so_ops.current_sos = frv_current_sos;
1246 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1247 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1248 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1249
c4d10515 1250 /* Debug this file's internals. */
85c07804
AC
1251 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1252 &solib_frv_debug, _("\
1253Set internal debugging of shared library code for FR-V."), _("\
1254Show internal debugging of shared library code for FR-V."), _("\
1255When non-zero, FR-V solib specific internal debugging is enabled."),
1256 NULL,
1257 NULL, /* FIXME: i18n: */
1258 &setdebuglist, &showdebuglist);
c4d10515 1259}
This page took 0.93639 seconds and 4 git commands to generate.