Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
3666a048 3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
626ca2c0
CB
54static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
174static int
175svr4_same (struct so_list *gdb, struct so_list *inferior)
176{
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178}
179
a7961323 180static std::unique_ptr<lm_info_svr4>
3957565a 181lm_info_read (CORE_ADDR lm_addr)
13437d4b 182{
4b188b9f 183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 184 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 185
a7961323 186 gdb::byte_vector lm (lmo->link_map_size);
3957565a 187
a7961323
TT
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
3957565a
JK
191 else
192 {
f5656ead 193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 194
a7961323 195 lm_info.reset (new lm_info_svr4);
3957565a
JK
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
3957565a 209 return lm_info;
13437d4b
KB
210}
211
cc10cae3 212static int
b23518f0 213has_lm_dynamic_from_link_map (void)
cc10cae3
AO
214{
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
cfaefc65 217 return lmo->l_ld_offset >= 0;
cc10cae3
AO
218}
219
cc10cae3 220static CORE_ADDR
f65ce5fb 221lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 222{
d0e449a1
SM
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
cc10cae3
AO
226 {
227 struct bfd_section *dyninfo_sect;
28f34a8f 228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 229
d0e449a1 230 l_addr = li->l_addr_inferior;
cc10cae3 231
b23518f0 232 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
233 goto set_addr;
234
d0e449a1 235 l_dynaddr = li->l_ld;
cc10cae3
AO
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
fd361982 241 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
28f34a8f 245 CORE_ADDR align = 0x1000;
4e1fc9c9 246 CORE_ADDR minpagesize = align;
28f34a8f 247
cc10cae3
AO
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
4e1fc9c9
JK
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
5c0d192f
JK
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 288
02835898
JK
289 l_addr = l_dynaddr - dynaddr;
290
4e1fc9c9
JK
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 293 {
701ed6dc 294 if (info_verbose)
ccf26247
JK
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
f5656ead 297 paddress (target_gdbarch (), l_addr),
ccf26247 298 so->so_name);
cc10cae3 299 }
79d4c408 300 else
02835898
JK
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
cc10cae3
AO
315 }
316
317 set_addr:
d0e449a1
SM
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
cc10cae3
AO
320 }
321
d0e449a1 322 return li->l_addr;
cc10cae3
AO
323}
324
6c95b8df 325/* Per pspace SVR4 specific data. */
13437d4b 326
1a816a87
PA
327struct svr4_info
328{
09232438
TT
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
1a816a87
PA
334
335 /* Validity flag for debug_loader_offset. */
09232438 336 int debug_loader_offset_p = 0;
1a816a87
PA
337
338 /* Load address for the dynamic linker, inferred. */
09232438 339 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 342 char *debug_loader_name = nullptr;
1a816a87
PA
343
344 /* Load map address for the main executable. */
09232438 345 CORE_ADDR main_lm_addr = 0;
1a816a87 346
09232438
TT
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
09232438 354 int using_xfer = 0;
f9e14852
GB
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
935676c9 359 probe_and_action->prob->address. */
09232438 360 htab_up probes_table;
f9e14852
GB
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
09232438 364 struct so_list *solib_list = nullptr;
6c95b8df 365};
1a816a87 366
6c95b8df 367/* Per-program-space data key. */
09232438 368static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 369
f9e14852
GB
370/* Free the probes table. */
371
372static void
373free_probes_table (struct svr4_info *info)
374{
09232438 375 info->probes_table.reset (nullptr);
f9e14852
GB
376}
377
378/* Free the solib list. */
379
380static void
381free_solib_list (struct svr4_info *info)
382{
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385}
386
09232438 387svr4_info::~svr4_info ()
1a816a87 388{
09232438 389 free_solib_list (this);
1a816a87
PA
390}
391
d70cc3ba
SM
392/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
34439770 394
6c95b8df 395static struct svr4_info *
d70cc3ba 396get_svr4_info (program_space *pspace)
1a816a87 397{
09232438 398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 399
09232438
TT
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
34439770 402
6c95b8df 403 return info;
1a816a87 404}
93a57060 405
13437d4b
KB
406/* Local function prototypes */
407
bc043ef3 408static int match_main (const char *);
13437d4b 409
97ec2c2f 410/* Read program header TYPE from inferior memory. The header is found
17658d46 411 by scanning the OS auxiliary vector.
97ec2c2f 412
09919ac2
JK
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
17658d46
SM
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 420
17658d46
SM
421static gdb::optional<gdb::byte_vector>
422read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 423{
f5656ead 424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
43136979 428 int pt_phdr_p = 0;
97ec2c2f
UW
429
430 /* Get required auxv elements from target. */
328d42d8
SM
431 if (target_auxv_search (current_inferior ()->top_target (),
432 AT_PHDR, &at_phdr) <= 0)
17658d46 433 return {};
328d42d8
SM
434 if (target_auxv_search (current_inferior ()->top_target (),
435 AT_PHENT, &at_phent) <= 0)
17658d46 436 return {};
328d42d8
SM
437 if (target_auxv_search (current_inferior ()->top_target (),
438 AT_PHNUM, &at_phnum) <= 0)
17658d46 439 return {};
97ec2c2f 440 if (!at_phdr || !at_phnum)
17658d46 441 return {};
97ec2c2f
UW
442
443 /* Determine ELF architecture type. */
444 if (at_phent == sizeof (Elf32_External_Phdr))
445 arch_size = 32;
446 else if (at_phent == sizeof (Elf64_External_Phdr))
447 arch_size = 64;
448 else
17658d46 449 return {};
97ec2c2f 450
09919ac2
JK
451 /* Find the requested segment. */
452 if (type == -1)
453 {
454 sect_addr = at_phdr;
455 sect_size = at_phent * at_phnum;
456 }
457 else if (arch_size == 32)
97ec2c2f
UW
458 {
459 Elf32_External_Phdr phdr;
460 int i;
461
462 /* Search for requested PHDR. */
463 for (i = 0; i < at_phnum; i++)
464 {
43136979
AR
465 int p_type;
466
97ec2c2f
UW
467 if (target_read_memory (at_phdr + i * sizeof (phdr),
468 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 469 return {};
97ec2c2f 470
43136979
AR
471 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
472 4, byte_order);
473
474 if (p_type == PT_PHDR)
475 {
476 pt_phdr_p = 1;
477 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
478 4, byte_order);
479 }
480
481 if (p_type == type)
97ec2c2f
UW
482 break;
483 }
484
485 if (i == at_phnum)
17658d46 486 return {};
97ec2c2f
UW
487
488 /* Retrieve address and size. */
e17a4113
UW
489 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
490 4, byte_order);
491 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
492 4, byte_order);
97ec2c2f
UW
493 }
494 else
495 {
496 Elf64_External_Phdr phdr;
497 int i;
498
499 /* Search for requested PHDR. */
500 for (i = 0; i < at_phnum; i++)
501 {
43136979
AR
502 int p_type;
503
97ec2c2f
UW
504 if (target_read_memory (at_phdr + i * sizeof (phdr),
505 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 506 return {};
97ec2c2f 507
43136979
AR
508 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
509 4, byte_order);
510
511 if (p_type == PT_PHDR)
512 {
513 pt_phdr_p = 1;
514 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
515 8, byte_order);
516 }
517
518 if (p_type == type)
97ec2c2f
UW
519 break;
520 }
521
522 if (i == at_phnum)
17658d46 523 return {};
97ec2c2f
UW
524
525 /* Retrieve address and size. */
e17a4113
UW
526 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
527 8, byte_order);
528 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
529 8, byte_order);
97ec2c2f
UW
530 }
531
43136979
AR
532 /* PT_PHDR is optional, but we really need it
533 for PIE to make this work in general. */
534
535 if (pt_phdr_p)
536 {
537 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
538 Relocation offset is the difference between the two. */
539 sect_addr = sect_addr + (at_phdr - pt_phdr);
540 }
541
97ec2c2f 542 /* Read in requested program header. */
17658d46
SM
543 gdb::byte_vector buf (sect_size);
544 if (target_read_memory (sect_addr, buf.data (), sect_size))
545 return {};
97ec2c2f
UW
546
547 if (p_arch_size)
548 *p_arch_size = arch_size;
a738da3a
MF
549 if (base_addr)
550 *base_addr = sect_addr;
97ec2c2f
UW
551
552 return buf;
553}
554
555
556/* Return program interpreter string. */
17658d46 557static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
558find_program_interpreter (void)
559{
7e10abd1
TT
560 /* If we have a current exec_bfd, use its section table. */
561 if (current_program_space->exec_bfd ()
562 && (bfd_get_flavour (current_program_space->exec_bfd ())
563 == bfd_target_elf_flavour))
97ec2c2f
UW
564 {
565 struct bfd_section *interp_sect;
566
7e10abd1
TT
567 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
568 ".interp");
97ec2c2f
UW
569 if (interp_sect != NULL)
570 {
fd361982 571 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 572
17658d46 573 gdb::byte_vector buf (sect_size);
7e10abd1
TT
574 bfd_get_section_contents (current_program_space->exec_bfd (),
575 interp_sect, buf.data (), 0, sect_size);
17658d46 576 return buf;
97ec2c2f
UW
577 }
578 }
579
17658d46
SM
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
582}
583
584
b6d7a4bf
SM
585/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
587
588static int
a738da3a
MF
589scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
3a40aaa0
UW
591{
592 int arch_size, step, sect_size;
b6d7a4bf 593 long current_dyntag;
b381ea14 594 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 595 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
599
600 if (abfd == NULL)
601 return 0;
0763ab81
PA
602
603 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
604 return 0;
605
3a40aaa0
UW
606 arch_size = bfd_get_arch_size (abfd);
607 if (arch_size == -1)
0763ab81 608 return 0;
3a40aaa0
UW
609
610 /* Find the start address of the .dynamic section. */
611 sect = bfd_get_section_by_name (abfd, ".dynamic");
612 if (sect == NULL)
613 return 0;
61f0d762 614
bb2a6777 615 bool found = false;
19cf757a 616 for (const target_section &target_section
02f7d26b 617 : current_program_space->target_sections ())
bb2a6777
TT
618 if (sect == target_section.the_bfd_section)
619 {
620 dyn_addr = target_section.addr;
621 found = true;
622 break;
623 }
624 if (!found)
b381ea14
JK
625 {
626 /* ABFD may come from OBJFILE acting only as a symbol file without being
627 loaded into the target (see add_symbol_file_command). This case is
628 such fallback to the file VMA address without the possibility of
629 having the section relocated to its actual in-memory address. */
630
fd361982 631 dyn_addr = bfd_section_vma (sect);
b381ea14 632 }
3a40aaa0 633
65728c26
DJ
634 /* Read in .dynamic from the BFD. We will get the actual value
635 from memory later. */
fd361982 636 sect_size = bfd_section_size (sect);
224c3ddb 637 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
638 if (!bfd_get_section_contents (abfd, sect,
639 buf, 0, sect_size))
640 return 0;
3a40aaa0
UW
641
642 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
643 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
644 : sizeof (Elf64_External_Dyn);
645 for (bufend = buf + sect_size;
646 buf < bufend;
647 buf += step)
648 {
649 if (arch_size == 32)
650 {
651 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 652 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
653 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
654 }
65728c26 655 else
3a40aaa0
UW
656 {
657 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 658 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
659 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
660 }
b6d7a4bf 661 if (current_dyntag == DT_NULL)
3a40aaa0 662 return 0;
b6d7a4bf 663 if (current_dyntag == desired_dyntag)
3a40aaa0 664 {
65728c26
DJ
665 /* If requested, try to read the runtime value of this .dynamic
666 entry. */
3a40aaa0 667 if (ptr)
65728c26 668 {
b6da22b0 669 struct type *ptr_type;
65728c26 670 gdb_byte ptr_buf[8];
a738da3a 671 CORE_ADDR ptr_addr_1;
65728c26 672
f5656ead 673 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
674 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
675 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 676 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 677 *ptr = dyn_ptr;
a738da3a
MF
678 if (ptr_addr)
679 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
680 }
681 return 1;
3a40aaa0
UW
682 }
683 }
684
685 return 0;
686}
687
b6d7a4bf
SM
688/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
689 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
690 is returned and the corresponding PTR is set. */
97ec2c2f
UW
691
692static int
a738da3a
MF
693scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
694 CORE_ADDR *ptr_addr)
97ec2c2f 695{
f5656ead 696 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 697 int arch_size, step;
b6d7a4bf 698 long current_dyntag;
97ec2c2f 699 CORE_ADDR dyn_ptr;
a738da3a 700 CORE_ADDR base_addr;
97ec2c2f
UW
701
702 /* Read in .dynamic section. */
17658d46
SM
703 gdb::optional<gdb::byte_vector> ph_data
704 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
705 if (!ph_data)
97ec2c2f
UW
706 return 0;
707
708 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
709 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
710 : sizeof (Elf64_External_Dyn);
17658d46
SM
711 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
712 buf < bufend; buf += step)
97ec2c2f
UW
713 {
714 if (arch_size == 32)
715 {
716 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 717
b6d7a4bf 718 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
719 4, byte_order);
720 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
721 4, byte_order);
97ec2c2f
UW
722 }
723 else
724 {
725 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 726
b6d7a4bf 727 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
728 8, byte_order);
729 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
730 8, byte_order);
97ec2c2f 731 }
b6d7a4bf 732 if (current_dyntag == DT_NULL)
97ec2c2f
UW
733 break;
734
b6d7a4bf 735 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
736 {
737 if (ptr)
738 *ptr = dyn_ptr;
739
a738da3a 740 if (ptr_addr)
17658d46 741 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 742
97ec2c2f
UW
743 return 1;
744 }
745 }
746
97ec2c2f
UW
747 return 0;
748}
749
7f86f058
PA
750/* Locate the base address of dynamic linker structs for SVR4 elf
751 targets.
13437d4b
KB
752
753 For SVR4 elf targets the address of the dynamic linker's runtime
754 structure is contained within the dynamic info section in the
755 executable file. The dynamic section is also mapped into the
756 inferior address space. Because the runtime loader fills in the
757 real address before starting the inferior, we have to read in the
758 dynamic info section from the inferior address space.
759 If there are any errors while trying to find the address, we
7f86f058 760 silently return 0, otherwise the found address is returned. */
13437d4b
KB
761
762static CORE_ADDR
763elf_locate_base (void)
764{
3b7344d5 765 struct bound_minimal_symbol msymbol;
a738da3a 766 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 767
65728c26
DJ
768 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
769 instead of DT_DEBUG, although they sometimes contain an unused
770 DT_DEBUG. */
7e10abd1
TT
771 if (scan_dyntag (DT_MIPS_RLD_MAP, current_program_space->exec_bfd (),
772 &dyn_ptr, NULL)
a738da3a 773 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 774 {
f5656ead 775 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 776 gdb_byte *pbuf;
b6da22b0 777 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 778
224c3ddb 779 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
780 /* DT_MIPS_RLD_MAP contains a pointer to the address
781 of the dynamic link structure. */
782 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 783 return 0;
b6da22b0 784 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
785 }
786
a738da3a
MF
787 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
788 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
789 in non-PIE. */
7e10abd1
TT
790 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, current_program_space->exec_bfd (),
791 &dyn_ptr, &dyn_ptr_addr)
a738da3a
MF
792 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
793 {
794 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
795 gdb_byte *pbuf;
796 int pbuf_size = TYPE_LENGTH (ptr_type);
797
224c3ddb 798 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
799 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
800 DT slot to the address of the dynamic link structure. */
801 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
802 return 0;
803 return extract_typed_address (pbuf, ptr_type);
804 }
805
65728c26 806 /* Find DT_DEBUG. */
7e10abd1 807 if (scan_dyntag (DT_DEBUG, current_program_space->exec_bfd (), &dyn_ptr, NULL)
a738da3a 808 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
809 return dyn_ptr;
810
3a40aaa0
UW
811 /* This may be a static executable. Look for the symbol
812 conventionally named _r_debug, as a last resort. */
a42d7dd8
TT
813 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
814 current_program_space->symfile_object_file);
3b7344d5 815 if (msymbol.minsym != NULL)
77e371c0 816 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
817
818 /* DT_DEBUG entry not found. */
819 return 0;
820}
821
7f86f058 822/* Locate the base address of dynamic linker structs.
13437d4b
KB
823
824 For both the SunOS and SVR4 shared library implementations, if the
825 inferior executable has been linked dynamically, there is a single
826 address somewhere in the inferior's data space which is the key to
827 locating all of the dynamic linker's runtime structures. This
828 address is the value of the debug base symbol. The job of this
829 function is to find and return that address, or to return 0 if there
830 is no such address (the executable is statically linked for example).
831
832 For SunOS, the job is almost trivial, since the dynamic linker and
833 all of it's structures are statically linked to the executable at
834 link time. Thus the symbol for the address we are looking for has
835 already been added to the minimal symbol table for the executable's
836 objfile at the time the symbol file's symbols were read, and all we
837 have to do is look it up there. Note that we explicitly do NOT want
838 to find the copies in the shared library.
839
840 The SVR4 version is a bit more complicated because the address
841 is contained somewhere in the dynamic info section. We have to go
842 to a lot more work to discover the address of the debug base symbol.
843 Because of this complexity, we cache the value we find and return that
844 value on subsequent invocations. Note there is no copy in the
7f86f058 845 executable symbol tables. */
13437d4b
KB
846
847static CORE_ADDR
1a816a87 848locate_base (struct svr4_info *info)
13437d4b 849{
13437d4b
KB
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
853 section for ELF executables. There's no point in doing any of this
854 though if we don't have some link map offsets to work with. */
13437d4b 855
1a816a87 856 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 857 info->debug_base = elf_locate_base ();
1a816a87 858 return info->debug_base;
13437d4b
KB
859}
860
e4cd0d6a 861/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
862 return its address in the inferior. Return zero if the address
863 could not be determined.
13437d4b 864
e4cd0d6a
MK
865 FIXME: Perhaps we should validate the info somehow, perhaps by
866 checking r_version for a known version number, or r_state for
867 RT_CONSISTENT. */
13437d4b
KB
868
869static CORE_ADDR
1a816a87 870solib_svr4_r_map (struct svr4_info *info)
13437d4b 871{
4b188b9f 872 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 873 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 874 CORE_ADDR addr = 0;
13437d4b 875
a70b8144 876 try
08597104
JB
877 {
878 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
dda83cd7 879 ptr_type);
08597104 880 }
230d2906 881 catch (const gdb_exception_error &ex)
492d29ea
PA
882 {
883 exception_print (gdb_stderr, ex);
884 }
492d29ea 885
08597104 886 return addr;
e4cd0d6a 887}
13437d4b 888
7cd25cfc
DJ
889/* Find r_brk from the inferior's debug base. */
890
891static CORE_ADDR
1a816a87 892solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
893{
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 895 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 896
1a816a87
PA
897 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
898 ptr_type);
7cd25cfc
DJ
899}
900
e4cd0d6a
MK
901/* Find the link map for the dynamic linker (if it is not in the
902 normal list of loaded shared objects). */
13437d4b 903
e4cd0d6a 904static CORE_ADDR
1a816a87 905solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
906{
907 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 908 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
34877895 909 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
910 ULONGEST version = 0;
911
a70b8144 912 try
416f679e
SDJ
913 {
914 /* Check version, and return zero if `struct r_debug' doesn't have
915 the r_ldsomap member. */
916 version
917 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
918 lmo->r_version_size, byte_order);
919 }
230d2906 920 catch (const gdb_exception_error &ex)
416f679e
SDJ
921 {
922 exception_print (gdb_stderr, ex);
923 }
13437d4b 924
e4cd0d6a
MK
925 if (version < 2 || lmo->r_ldsomap_offset == -1)
926 return 0;
13437d4b 927
1a816a87 928 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 929 ptr_type);
13437d4b
KB
930}
931
de18c1d8
JM
932/* On Solaris systems with some versions of the dynamic linker,
933 ld.so's l_name pointer points to the SONAME in the string table
934 rather than into writable memory. So that GDB can find shared
935 libraries when loading a core file generated by gcore, ensure that
936 memory areas containing the l_name string are saved in the core
937 file. */
938
939static int
940svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
941{
942 struct svr4_info *info;
943 CORE_ADDR ldsomap;
74de0234 944 CORE_ADDR name_lm;
de18c1d8 945
d70cc3ba 946 info = get_svr4_info (current_program_space);
de18c1d8
JM
947
948 info->debug_base = 0;
949 locate_base (info);
950 if (!info->debug_base)
951 return 0;
952
953 ldsomap = solib_svr4_r_ldsomap (info);
954 if (!ldsomap)
955 return 0;
956
a7961323 957 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 958 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 959
74de0234 960 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
961}
962
bf469271 963/* See solist.h. */
13437d4b
KB
964
965static int
bf469271 966open_symbol_file_object (int from_tty)
13437d4b
KB
967{
968 CORE_ADDR lm, l_name;
4b188b9f 969 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 970 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 971 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 972 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 973 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
974 symfile_add_flags add_flags = 0;
975
976 if (from_tty)
977 add_flags |= SYMFILE_VERBOSE;
13437d4b 978
a42d7dd8 979 if (current_program_space->symfile_object_file)
9e2f0ad4 980 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 981 return 0;
13437d4b 982
7cd25cfc 983 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
984 info->debug_base = 0;
985 if (locate_base (info) == 0)
a7961323 986 return 0; /* failed somehow... */
13437d4b
KB
987
988 /* First link map member should be the executable. */
1a816a87 989 lm = solib_svr4_r_map (info);
e4cd0d6a 990 if (lm == 0)
a7961323 991 return 0; /* failed somehow... */
13437d4b
KB
992
993 /* Read address of name from target memory to GDB. */
a7961323 994 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 995
cfaefc65 996 /* Convert the address to host format. */
a7961323 997 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 998
13437d4b 999 if (l_name == 0)
a7961323 1000 return 0; /* No filename. */
13437d4b
KB
1001
1002 /* Now fetch the filename from target memory. */
66920317
TT
1003 gdb::unique_xmalloc_ptr<char> filename
1004 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
13437d4b 1005
66920317 1006 if (filename == nullptr)
13437d4b 1007 {
66920317 1008 warning (_("failed to read exec filename from attached file"));
13437d4b
KB
1009 return 0;
1010 }
1011
13437d4b 1012 /* Have a pathname: read the symbol file. */
e83e4e24 1013 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1014
1015 return 1;
1016}
13437d4b 1017
2268b414
JK
1018/* Data exchange structure for the XML parser as returned by
1019 svr4_current_sos_via_xfer_libraries. */
1020
1021struct svr4_library_list
1022{
1023 struct so_list *head, **tailp;
1024
1025 /* Inferior address of struct link_map used for the main executable. It is
1026 NULL if not known. */
1027 CORE_ADDR main_lm;
1028};
1029
7905fc35
PA
1030/* This module's 'free_objfile' observer. */
1031
1032static void
1033svr4_free_objfile_observer (struct objfile *objfile)
1034{
1035 probes_table_remove_objfile_probes (objfile);
1036}
1037
93f2a35e
JK
1038/* Implementation for target_so_ops.free_so. */
1039
1040static void
1041svr4_free_so (struct so_list *so)
1042{
76e75227
SM
1043 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1044
1045 delete li;
93f2a35e
JK
1046}
1047
0892cb63
DE
1048/* Implement target_so_ops.clear_so. */
1049
1050static void
1051svr4_clear_so (struct so_list *so)
1052{
d0e449a1
SM
1053 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1054
1055 if (li != NULL)
1056 li->l_addr_p = 0;
0892cb63
DE
1057}
1058
93f2a35e
JK
1059/* Free so_list built so far (called via cleanup). */
1060
1061static void
1062svr4_free_library_list (void *p_list)
1063{
1064 struct so_list *list = *(struct so_list **) p_list;
1065
1066 while (list != NULL)
1067 {
1068 struct so_list *next = list->next;
1069
3756ef7e 1070 free_so (list);
93f2a35e
JK
1071 list = next;
1072 }
1073}
1074
f9e14852
GB
1075/* Copy library list. */
1076
1077static struct so_list *
1078svr4_copy_library_list (struct so_list *src)
1079{
1080 struct so_list *dst = NULL;
1081 struct so_list **link = &dst;
1082
1083 while (src != NULL)
1084 {
fe978cb0 1085 struct so_list *newobj;
f9e14852 1086
8d749320 1087 newobj = XNEW (struct so_list);
fe978cb0 1088 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1089
76e75227
SM
1090 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1091 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1092
fe978cb0
PA
1093 newobj->next = NULL;
1094 *link = newobj;
1095 link = &newobj->next;
f9e14852
GB
1096
1097 src = src->next;
1098 }
1099
1100 return dst;
1101}
1102
2268b414
JK
1103#ifdef HAVE_LIBEXPAT
1104
1105#include "xml-support.h"
1106
1107/* Handle the start of a <library> element. Note: new elements are added
1108 at the tail of the list, keeping the list in order. */
1109
1110static void
1111library_list_start_library (struct gdb_xml_parser *parser,
1112 const struct gdb_xml_element *element,
4d0fdd9b
SM
1113 void *user_data,
1114 std::vector<gdb_xml_value> &attributes)
2268b414 1115{
19ba03f4
SM
1116 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1117 const char *name
4d0fdd9b 1118 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1119 ULONGEST *lmp
4d0fdd9b 1120 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1121 ULONGEST *l_addrp
4d0fdd9b 1122 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1123 ULONGEST *l_ldp
4d0fdd9b 1124 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1125 struct so_list *new_elem;
1126
41bf6aca 1127 new_elem = XCNEW (struct so_list);
76e75227 1128 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1129 new_elem->lm_info = li;
1130 li->lm_addr = *lmp;
1131 li->l_addr_inferior = *l_addrp;
1132 li->l_ld = *l_ldp;
2268b414
JK
1133
1134 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1135 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1136 strcpy (new_elem->so_original_name, new_elem->so_name);
1137
1138 *list->tailp = new_elem;
1139 list->tailp = &new_elem->next;
1140}
1141
1142/* Handle the start of a <library-list-svr4> element. */
1143
1144static void
1145svr4_library_list_start_list (struct gdb_xml_parser *parser,
1146 const struct gdb_xml_element *element,
4d0fdd9b
SM
1147 void *user_data,
1148 std::vector<gdb_xml_value> &attributes)
2268b414 1149{
19ba03f4
SM
1150 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1151 const char *version
4d0fdd9b 1152 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1153 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1154
1155 if (strcmp (version, "1.0") != 0)
1156 gdb_xml_error (parser,
1157 _("SVR4 Library list has unsupported version \"%s\""),
1158 version);
1159
1160 if (main_lm)
4d0fdd9b 1161 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1162}
1163
1164/* The allowed elements and attributes for an XML library list.
1165 The root element is a <library-list>. */
1166
1167static const struct gdb_xml_attribute svr4_library_attributes[] =
1168{
1169 { "name", GDB_XML_AF_NONE, NULL, NULL },
1170 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1172 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1173 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1174};
1175
1176static const struct gdb_xml_element svr4_library_list_children[] =
1177{
1178 {
1179 "library", svr4_library_attributes, NULL,
1180 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1181 library_list_start_library, NULL
1182 },
1183 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1184};
1185
1186static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1187{
1188 { "version", GDB_XML_AF_NONE, NULL, NULL },
1189 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1190 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1191};
1192
1193static const struct gdb_xml_element svr4_library_list_elements[] =
1194{
1195 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1196 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1197 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1198};
1199
2268b414
JK
1200/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1201
1202 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1203 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1204 empty, caller is responsible for freeing all its entries. */
1205
1206static int
1207svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1208{
2b6ff1c0
TT
1209 auto cleanup = make_scope_exit ([&] ()
1210 {
1211 svr4_free_library_list (&list->head);
1212 });
2268b414
JK
1213
1214 memset (list, 0, sizeof (*list));
1215 list->tailp = &list->head;
2eca4a8d 1216 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1217 svr4_library_list_elements, document, list) == 0)
1218 {
1219 /* Parsed successfully, keep the result. */
2b6ff1c0 1220 cleanup.release ();
2268b414
JK
1221 return 1;
1222 }
1223
2268b414
JK
1224 return 0;
1225}
1226
f9e14852 1227/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1228
1229 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1230 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1231 empty, caller is responsible for freeing all its entries.
1232
1233 Note that ANNEX must be NULL if the remote does not explicitly allow
1234 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1235 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1236
1237static int
f9e14852
GB
1238svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1239 const char *annex)
2268b414 1240{
f9e14852
GB
1241 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1242
2268b414 1243 /* Fetch the list of shared libraries. */
9018be22 1244 gdb::optional<gdb::char_vector> svr4_library_document
328d42d8
SM
1245 = target_read_stralloc (current_inferior ()->top_target (),
1246 TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1247 annex);
9018be22 1248 if (!svr4_library_document)
2268b414
JK
1249 return 0;
1250
9018be22 1251 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1252}
1253
1254#else
1255
1256static int
f9e14852
GB
1257svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1258 const char *annex)
2268b414
JK
1259{
1260 return 0;
1261}
1262
1263#endif
1264
34439770
DJ
1265/* If no shared library information is available from the dynamic
1266 linker, build a fallback list from other sources. */
1267
1268static struct so_list *
d70cc3ba 1269svr4_default_sos (svr4_info *info)
34439770 1270{
fe978cb0 1271 struct so_list *newobj;
1a816a87 1272
8e5c319d
JK
1273 if (!info->debug_loader_offset_p)
1274 return NULL;
34439770 1275
fe978cb0 1276 newobj = XCNEW (struct so_list);
76e75227 1277 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1278 newobj->lm_info = li;
34439770 1279
3957565a 1280 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1281 li->l_addr = info->debug_loader_offset;
1282 li->l_addr_p = 1;
34439770 1283
fe978cb0
PA
1284 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1285 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1286 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1287
fe978cb0 1288 return newobj;
34439770
DJ
1289}
1290
f9e14852
GB
1291/* Read the whole inferior libraries chain starting at address LM.
1292 Expect the first entry in the chain's previous entry to be PREV_LM.
1293 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1294 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1295 to it. Returns nonzero upon success. If zero is returned the
1296 entries stored to LINK_PTR_PTR are still valid although they may
1297 represent only part of the inferior library list. */
13437d4b 1298
f9e14852 1299static int
d70cc3ba 1300svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1301 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1302{
c725e7b6 1303 CORE_ADDR first_l_name = 0;
f9e14852 1304 CORE_ADDR next_lm;
13437d4b 1305
cb08cc53 1306 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1307 {
b3bc8453 1308 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1309
a7961323 1310 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1311 newobj->lm_info = li;
1312 if (li == NULL)
b3bc8453 1313 return 0;
13437d4b 1314
d0e449a1 1315 next_lm = li->l_next;
492928e4 1316
d0e449a1 1317 if (li->l_prev != prev_lm)
492928e4 1318 {
2268b414 1319 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1320 paddress (target_gdbarch (), prev_lm),
d0e449a1 1321 paddress (target_gdbarch (), li->l_prev));
f9e14852 1322 return 0;
492928e4 1323 }
13437d4b
KB
1324
1325 /* For SVR4 versions, the first entry in the link map is for the
dda83cd7
SM
1326 inferior executable, so we must ignore it. For some versions of
1327 SVR4, it has no name. For others (Solaris 2.3 for example), it
1328 does have a name, so we can no longer use a missing name to
1329 decide when to ignore it. */
d0e449a1 1330 if (ignore_first && li->l_prev == 0)
93a57060 1331 {
d0e449a1
SM
1332 first_l_name = li->l_name;
1333 info->main_lm_addr = li->lm_addr;
cb08cc53 1334 continue;
93a57060 1335 }
13437d4b 1336
cb08cc53 1337 /* Extract this shared object's name. */
66920317
TT
1338 gdb::unique_xmalloc_ptr<char> buffer
1339 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1340 if (buffer == nullptr)
cb08cc53 1341 {
7d760051
UW
1342 /* If this entry's l_name address matches that of the
1343 inferior executable, then this is not a normal shared
1344 object, but (most likely) a vDSO. In this case, silently
1345 skip it; otherwise emit a warning. */
d0e449a1 1346 if (first_l_name == 0 || li->l_name != first_l_name)
66920317 1347 warning (_("Can't read pathname for load map."));
cb08cc53 1348 continue;
13437d4b
KB
1349 }
1350
e83e4e24 1351 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1352 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1353 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1354
cb08cc53
JK
1355 /* If this entry has no name, or its name matches the name
1356 for the main executable, don't include it in the list. */
fe978cb0 1357 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1358 continue;
e4cd0d6a 1359
fe978cb0 1360 newobj->next = 0;
b3bc8453
TT
1361 /* Don't free it now. */
1362 **link_ptr_ptr = newobj.release ();
1363 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1364 }
f9e14852
GB
1365
1366 return 1;
cb08cc53
JK
1367}
1368
f9e14852
GB
1369/* Read the full list of currently loaded shared objects directly
1370 from the inferior, without referring to any libraries read and
1371 stored by the probes interface. Handle special cases relating
1372 to the first elements of the list. */
cb08cc53
JK
1373
1374static struct so_list *
f9e14852 1375svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1376{
1377 CORE_ADDR lm;
1378 struct so_list *head = NULL;
1379 struct so_list **link_ptr = &head;
cb08cc53 1380 int ignore_first;
2268b414
JK
1381 struct svr4_library_list library_list;
1382
0c5bf5a9
JK
1383 /* Fall back to manual examination of the target if the packet is not
1384 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1385 tests a case where gdbserver cannot find the shared libraries list while
1386 GDB itself is able to find it via SYMFILE_OBJFILE.
1387
1388 Unfortunately statically linked inferiors will also fall back through this
1389 suboptimal code path. */
1390
f9e14852
GB
1391 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1392 NULL);
1393 if (info->using_xfer)
2268b414
JK
1394 {
1395 if (library_list.main_lm)
f9e14852 1396 info->main_lm_addr = library_list.main_lm;
2268b414 1397
d70cc3ba 1398 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1399 }
cb08cc53 1400
cb08cc53
JK
1401 /* Always locate the debug struct, in case it has moved. */
1402 info->debug_base = 0;
1403 locate_base (info);
1404
1405 /* If we can't find the dynamic linker's base structure, this
1406 must not be a dynamically linked executable. Hmm. */
1407 if (! info->debug_base)
d70cc3ba 1408 return svr4_default_sos (info);
cb08cc53
JK
1409
1410 /* Assume that everything is a library if the dynamic loader was loaded
1411 late by a static executable. */
7e10abd1
TT
1412 if (current_program_space->exec_bfd ()
1413 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1414 ".dynamic") == NULL)
cb08cc53
JK
1415 ignore_first = 0;
1416 else
1417 ignore_first = 1;
1418
2b6ff1c0
TT
1419 auto cleanup = make_scope_exit ([&] ()
1420 {
1421 svr4_free_library_list (&head);
1422 });
cb08cc53
JK
1423
1424 /* Walk the inferior's link map list, and build our list of
1425 `struct so_list' nodes. */
1426 lm = solib_svr4_r_map (info);
1427 if (lm)
d70cc3ba 1428 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1429
1430 /* On Solaris, the dynamic linker is not in the normal list of
1431 shared objects, so make sure we pick it up too. Having
1432 symbol information for the dynamic linker is quite crucial
1433 for skipping dynamic linker resolver code. */
1434 lm = solib_svr4_r_ldsomap (info);
1435 if (lm)
d70cc3ba 1436 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1437
2b6ff1c0 1438 cleanup.release ();
13437d4b 1439
34439770 1440 if (head == NULL)
d70cc3ba 1441 return svr4_default_sos (info);
34439770 1442
13437d4b
KB
1443 return head;
1444}
1445
8b9a549d
PA
1446/* Implement the main part of the "current_sos" target_so_ops
1447 method. */
f9e14852
GB
1448
1449static struct so_list *
d70cc3ba 1450svr4_current_sos_1 (svr4_info *info)
f9e14852 1451{
f9e14852
GB
1452 /* If the solib list has been read and stored by the probes
1453 interface then we return a copy of the stored list. */
1454 if (info->solib_list != NULL)
1455 return svr4_copy_library_list (info->solib_list);
1456
1457 /* Otherwise obtain the solib list directly from the inferior. */
1458 return svr4_current_sos_direct (info);
1459}
1460
8b9a549d
PA
1461/* Implement the "current_sos" target_so_ops method. */
1462
1463static struct so_list *
1464svr4_current_sos (void)
1465{
d70cc3ba
SM
1466 svr4_info *info = get_svr4_info (current_program_space);
1467 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1468 struct mem_range vsyscall_range;
1469
1470 /* Filter out the vDSO module, if present. Its symbol file would
1471 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1472 managed by symfile-mem.c:add_vsyscall_page. */
1473 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1474 && vsyscall_range.length != 0)
1475 {
1476 struct so_list **sop;
1477
1478 sop = &so_head;
1479 while (*sop != NULL)
1480 {
1481 struct so_list *so = *sop;
1482
1483 /* We can't simply match the vDSO by starting address alone,
1484 because lm_info->l_addr_inferior (and also l_addr) do not
1485 necessarily represent the real starting address of the
1486 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1487 field (the ".dynamic" section of the shared object)
1488 always points at the absolute/resolved address though.
1489 So check whether that address is inside the vDSO's
1490 mapping instead.
1491
1492 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1493 0-based ELF, and we see:
1494
1495 (gdb) info auxv
1496 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1497 (gdb) p/x *_r_debug.r_map.l_next
1498 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1499
1500 And on Linux 2.6.32 (x86_64) we see:
1501
1502 (gdb) info auxv
1503 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1504 (gdb) p/x *_r_debug.r_map.l_next
1505 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1506
1507 Dumping that vDSO shows:
1508
1509 (gdb) info proc mappings
1510 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1511 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1512 # readelf -Wa vdso.bin
1513 [...]
1514 Entry point address: 0xffffffffff700700
1515 [...]
1516 Section Headers:
1517 [Nr] Name Type Address Off Size
1518 [ 0] NULL 0000000000000000 000000 000000
1519 [ 1] .hash HASH ffffffffff700120 000120 000038
1520 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1521 [...]
1522 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1523 */
d0e449a1
SM
1524
1525 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1526
1527 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1528 {
1529 *sop = so->next;
1530 free_so (so);
1531 break;
1532 }
1533
1534 sop = &so->next;
1535 }
1536 }
1537
1538 return so_head;
1539}
1540
93a57060 1541/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1542
1543CORE_ADDR
1544svr4_fetch_objfile_link_map (struct objfile *objfile)
1545{
d70cc3ba 1546 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1547
93a57060 1548 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1549 if (info->main_lm_addr == 0)
e696b3ad 1550 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1551
93a57060 1552 /* svr4_current_sos() will set main_lm_addr for the main executable. */
a42d7dd8 1553 if (objfile == current_program_space->symfile_object_file)
1a816a87 1554 return info->main_lm_addr;
93a57060 1555
df22c1e5
JB
1556 /* If OBJFILE is a separate debug object file, look for the
1557 original object file. */
1558 if (objfile->separate_debug_objfile_backlink != NULL)
1559 objfile = objfile->separate_debug_objfile_backlink;
1560
93a57060
DJ
1561 /* The other link map addresses may be found by examining the list
1562 of shared libraries. */
a1fd1ac9 1563 for (struct so_list *so : current_program_space->solibs ())
93a57060 1564 if (so->objfile == objfile)
d0e449a1
SM
1565 {
1566 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1567
1568 return li->lm_addr;
1569 }
93a57060
DJ
1570
1571 /* Not found! */
bc4a16ae
EZ
1572 return 0;
1573}
13437d4b
KB
1574
1575/* On some systems, the only way to recognize the link map entry for
1576 the main executable file is by looking at its name. Return
1577 non-zero iff SONAME matches one of the known main executable names. */
1578
1579static int
bc043ef3 1580match_main (const char *soname)
13437d4b 1581{
bc043ef3 1582 const char * const *mainp;
13437d4b
KB
1583
1584 for (mainp = main_name_list; *mainp != NULL; mainp++)
1585 {
1586 if (strcmp (soname, *mainp) == 0)
1587 return (1);
1588 }
1589
1590 return (0);
1591}
1592
13437d4b
KB
1593/* Return 1 if PC lies in the dynamic symbol resolution code of the
1594 SVR4 run time loader. */
13437d4b 1595
7d522c90 1596int
d7fa2ae2 1597svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1598{
d70cc3ba 1599 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1600
1601 return ((pc >= info->interp_text_sect_low
1602 && pc < info->interp_text_sect_high)
1603 || (pc >= info->interp_plt_sect_low
1604 && pc < info->interp_plt_sect_high)
3e5d3a5a 1605 || in_plt_section (pc)
0875794a 1606 || in_gnu_ifunc_stub (pc));
13437d4b 1607}
13437d4b 1608
2f4950cd
AC
1609/* Given an executable's ABFD and target, compute the entry-point
1610 address. */
1611
1612static CORE_ADDR
1613exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1614{
8c2b9656
YQ
1615 CORE_ADDR addr;
1616
2f4950cd
AC
1617 /* KevinB wrote ... for most targets, the address returned by
1618 bfd_get_start_address() is the entry point for the start
1619 function. But, for some targets, bfd_get_start_address() returns
1620 the address of a function descriptor from which the entry point
1621 address may be extracted. This address is extracted by
1622 gdbarch_convert_from_func_ptr_addr(). The method
1623 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1624 function for targets which don't use function descriptors. */
8c2b9656 1625 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1626 bfd_get_start_address (abfd),
1627 targ);
8c2b9656 1628 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1629}
13437d4b 1630
f9e14852
GB
1631/* A probe and its associated action. */
1632
1633struct probe_and_action
1634{
1635 /* The probe. */
935676c9 1636 probe *prob;
f9e14852 1637
729662a5
TT
1638 /* The relocated address of the probe. */
1639 CORE_ADDR address;
1640
f9e14852
GB
1641 /* The action. */
1642 enum probe_action action;
7905fc35
PA
1643
1644 /* The objfile where this probe was found. */
1645 struct objfile *objfile;
f9e14852
GB
1646};
1647
1648/* Returns a hash code for the probe_and_action referenced by p. */
1649
1650static hashval_t
1651hash_probe_and_action (const void *p)
1652{
19ba03f4 1653 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1654
729662a5 1655 return (hashval_t) pa->address;
f9e14852
GB
1656}
1657
1658/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1659 are equal. */
1660
1661static int
1662equal_probe_and_action (const void *p1, const void *p2)
1663{
19ba03f4
SM
1664 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1665 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1666
729662a5 1667 return pa1->address == pa2->address;
f9e14852
GB
1668}
1669
7905fc35
PA
1670/* Traversal function for probes_table_remove_objfile_probes. */
1671
1672static int
1673probes_table_htab_remove_objfile_probes (void **slot, void *info)
1674{
1675 probe_and_action *pa = (probe_and_action *) *slot;
1676 struct objfile *objfile = (struct objfile *) info;
1677
1678 if (pa->objfile == objfile)
09232438
TT
1679 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1680 slot);
7905fc35
PA
1681
1682 return 1;
1683}
1684
1685/* Remove all probes that belong to OBJFILE from the probes table. */
1686
1687static void
1688probes_table_remove_objfile_probes (struct objfile *objfile)
1689{
d70cc3ba 1690 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1691 if (info->probes_table != nullptr)
09232438 1692 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1693 probes_table_htab_remove_objfile_probes, objfile);
1694}
1695
f9e14852
GB
1696/* Register a solib event probe and its associated action in the
1697 probes table. */
1698
1699static void
d70cc3ba 1700register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1701 probe *prob, CORE_ADDR address,
729662a5 1702 enum probe_action action)
f9e14852 1703{
f9e14852
GB
1704 struct probe_and_action lookup, *pa;
1705 void **slot;
1706
1707 /* Create the probes table, if necessary. */
1708 if (info->probes_table == NULL)
09232438
TT
1709 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1710 equal_probe_and_action,
1711 xfree, xcalloc, xfree));
f9e14852 1712
729662a5 1713 lookup.address = address;
09232438 1714 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1715 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1716
1717 pa = XCNEW (struct probe_and_action);
935676c9 1718 pa->prob = prob;
729662a5 1719 pa->address = address;
f9e14852 1720 pa->action = action;
7905fc35 1721 pa->objfile = objfile;
f9e14852
GB
1722
1723 *slot = pa;
1724}
1725
1726/* Get the solib event probe at the specified location, and the
1727 action associated with it. Returns NULL if no solib event probe
1728 was found. */
1729
1730static struct probe_and_action *
1731solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1732{
f9e14852
GB
1733 struct probe_and_action lookup;
1734 void **slot;
1735
729662a5 1736 lookup.address = address;
09232438 1737 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1738
1739 if (slot == NULL)
1740 return NULL;
1741
1742 return (struct probe_and_action *) *slot;
1743}
1744
1745/* Decide what action to take when the specified solib event probe is
1746 hit. */
1747
1748static enum probe_action
1749solib_event_probe_action (struct probe_and_action *pa)
1750{
1751 enum probe_action action;
73c6b475 1752 unsigned probe_argc = 0;
08a6411c 1753 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1754
1755 action = pa->action;
1756 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1757 return action;
1758
1759 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1760
1761 /* Check that an appropriate number of arguments has been supplied.
1762 We expect:
1763 arg0: Lmid_t lmid (mandatory)
1764 arg1: struct r_debug *debug_base (mandatory)
1765 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1766 try
3bd7e5b7 1767 {
fe01123e 1768 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1769 }
230d2906 1770 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1771 {
1772 exception_print (gdb_stderr, ex);
1773 probe_argc = 0;
1774 }
3bd7e5b7 1775
935676c9
SDJ
1776 /* If get_argument_count throws an exception, probe_argc will be set
1777 to zero. However, if pa->prob does not have arguments, then
1778 get_argument_count will succeed but probe_argc will also be zero.
1779 Both cases happen because of different things, but they are
1780 treated equally here: action will be set to
3bd7e5b7 1781 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1782 if (probe_argc == 2)
1783 action = FULL_RELOAD;
1784 else if (probe_argc < 2)
1785 action = PROBES_INTERFACE_FAILED;
1786
1787 return action;
1788}
1789
1790/* Populate the shared object list by reading the entire list of
1791 shared objects from the inferior. Handle special cases relating
1792 to the first elements of the list. Returns nonzero on success. */
1793
1794static int
1795solist_update_full (struct svr4_info *info)
1796{
1797 free_solib_list (info);
1798 info->solib_list = svr4_current_sos_direct (info);
1799
1800 return 1;
1801}
1802
1803/* Update the shared object list starting from the link-map entry
1804 passed by the linker in the probe's third argument. Returns
1805 nonzero if the list was successfully updated, or zero to indicate
1806 failure. */
1807
1808static int
1809solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1810{
1811 struct so_list *tail;
1812 CORE_ADDR prev_lm;
1813
1814 /* svr4_current_sos_direct contains logic to handle a number of
1815 special cases relating to the first elements of the list. To
1816 avoid duplicating this logic we defer to solist_update_full
1817 if the list is empty. */
1818 if (info->solib_list == NULL)
1819 return 0;
1820
1821 /* Fall back to a full update if we are using a remote target
1822 that does not support incremental transfers. */
1823 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1824 return 0;
1825
1826 /* Walk to the end of the list. */
1827 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1828 /* Nothing. */;
d0e449a1
SM
1829
1830 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1831 prev_lm = li->lm_addr;
f9e14852
GB
1832
1833 /* Read the new objects. */
1834 if (info->using_xfer)
1835 {
1836 struct svr4_library_list library_list;
1837 char annex[64];
1838
1839 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1840 phex_nz (lm, sizeof (lm)),
1841 phex_nz (prev_lm, sizeof (prev_lm)));
1842 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1843 return 0;
1844
1845 tail->next = library_list.head;
1846 }
1847 else
1848 {
1849 struct so_list **link = &tail->next;
1850
1851 /* IGNORE_FIRST may safely be set to zero here because the
1852 above check and deferral to solist_update_full ensures
1853 that this call to svr4_read_so_list will never see the
1854 first element. */
d70cc3ba 1855 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1856 return 0;
1857 }
1858
1859 return 1;
1860}
1861
1862/* Disable the probes-based linker interface and revert to the
1863 original interface. We don't reset the breakpoints as the
1864 ones set up for the probes-based interface are adequate. */
1865
1866static void
d70cc3ba 1867disable_probes_interface (svr4_info *info)
f9e14852 1868{
f9e14852 1869 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1870 "Reverting to original interface."));
f9e14852
GB
1871
1872 free_probes_table (info);
1873 free_solib_list (info);
1874}
1875
1876/* Update the solib list as appropriate when using the
1877 probes-based linker interface. Do nothing if using the
1878 standard interface. */
1879
1880static void
1881svr4_handle_solib_event (void)
1882{
d70cc3ba 1883 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1884 struct probe_and_action *pa;
1885 enum probe_action action;
ad1c917a 1886 struct value *val = NULL;
f9e14852 1887 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1888 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1889
1890 /* Do nothing if not using the probes interface. */
1891 if (info->probes_table == NULL)
1892 return;
1893
1894 /* If anything goes wrong we revert to the original linker
1895 interface. */
d70cc3ba
SM
1896 auto cleanup = make_scope_exit ([info] ()
1897 {
1898 disable_probes_interface (info);
1899 });
f9e14852
GB
1900
1901 pc = regcache_read_pc (get_current_regcache ());
1902 pa = solib_event_probe_at (info, pc);
1903 if (pa == NULL)
d01c5877 1904 return;
f9e14852
GB
1905
1906 action = solib_event_probe_action (pa);
1907 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1908 return;
f9e14852
GB
1909
1910 if (action == DO_NOTHING)
1911 {
d01c5877 1912 cleanup.release ();
f9e14852
GB
1913 return;
1914 }
1915
935676c9 1916 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1917 using find_pc_section. find_pc_section is accelerated by a cache
1918 called the section map. The section map is invalidated every
1919 time a shared library is loaded or unloaded, and if the inferior
1920 is generating a lot of shared library events then the section map
1921 will be updated every time svr4_handle_solib_event is called.
1922 We called find_pc_section in svr4_create_solib_event_breakpoints,
1923 so we can guarantee that the dynamic linker's sections are in the
1924 section map. We can therefore inhibit section map updates across
935676c9 1925 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1926 {
1927 scoped_restore inhibit_updates
1928 = inhibit_section_map_updates (current_program_space);
f9e14852 1929
a70b8144 1930 try
06424eac
TT
1931 {
1932 val = pa->prob->evaluate_argument (1, frame);
1933 }
230d2906 1934 catch (const gdb_exception_error &ex)
06424eac
TT
1935 {
1936 exception_print (gdb_stderr, ex);
1937 val = NULL;
1938 }
f9e14852 1939
06424eac 1940 if (val == NULL)
d01c5877 1941 return;
f9e14852 1942
06424eac
TT
1943 debug_base = value_as_address (val);
1944 if (debug_base == 0)
d01c5877 1945 return;
f9e14852 1946
06424eac
TT
1947 /* Always locate the debug struct, in case it moved. */
1948 info->debug_base = 0;
1949 if (locate_base (info) == 0)
cb736441
GB
1950 {
1951 /* It's possible for the reloc_complete probe to be triggered before
1952 the linker has set the DT_DEBUG pointer (for example, when the
1953 linker has finished relocating an LD_AUDIT library or its
1954 dependencies). Since we can't yet handle libraries from other link
1955 namespaces, we don't lose anything by ignoring them here. */
1956 struct value *link_map_id_val;
1957 try
1958 {
1959 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1960 }
1961 catch (const gdb_exception_error)
1962 {
1963 link_map_id_val = NULL;
1964 }
1965 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1966 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1967 action = DO_NOTHING;
1968 else
1969 return;
1970 }
3bd7e5b7 1971
06424eac
TT
1972 /* GDB does not currently support libraries loaded via dlmopen
1973 into namespaces other than the initial one. We must ignore
1974 any namespace other than the initial namespace here until
1975 support for this is added to GDB. */
1976 if (debug_base != info->debug_base)
1977 action = DO_NOTHING;
f9e14852 1978
06424eac
TT
1979 if (action == UPDATE_OR_RELOAD)
1980 {
a70b8144 1981 try
06424eac
TT
1982 {
1983 val = pa->prob->evaluate_argument (2, frame);
1984 }
230d2906 1985 catch (const gdb_exception_error &ex)
06424eac
TT
1986 {
1987 exception_print (gdb_stderr, ex);
06424eac
TT
1988 return;
1989 }
06424eac
TT
1990
1991 if (val != NULL)
1992 lm = value_as_address (val);
1993
1994 if (lm == 0)
1995 action = FULL_RELOAD;
1996 }
f9e14852 1997
06424eac
TT
1998 /* Resume section map updates. Closing the scope is
1999 sufficient. */
2000 }
f9e14852
GB
2001
2002 if (action == UPDATE_OR_RELOAD)
2003 {
2004 if (!solist_update_incremental (info, lm))
2005 action = FULL_RELOAD;
2006 }
2007
2008 if (action == FULL_RELOAD)
2009 {
2010 if (!solist_update_full (info))
d01c5877 2011 return;
f9e14852
GB
2012 }
2013
d01c5877 2014 cleanup.release ();
f9e14852
GB
2015}
2016
2017/* Helper function for svr4_update_solib_event_breakpoints. */
2018
95da600f
CB
2019static bool
2020svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852 2021{
f9e14852
GB
2022 if (b->type != bp_shlib_event)
2023 {
2024 /* Continue iterating. */
95da600f 2025 return false;
f9e14852
GB
2026 }
2027
40cb8ca5 2028 for (bp_location *loc : b->locations ())
f9e14852
GB
2029 {
2030 struct svr4_info *info;
2031 struct probe_and_action *pa;
2032
09232438 2033 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
2034 if (info == NULL || info->probes_table == NULL)
2035 continue;
2036
2037 pa = solib_event_probe_at (info, loc->address);
2038 if (pa == NULL)
2039 continue;
2040
2041 if (pa->action == DO_NOTHING)
2042 {
2043 if (b->enable_state == bp_disabled && stop_on_solib_events)
2044 enable_breakpoint (b);
2045 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2046 disable_breakpoint (b);
2047 }
2048
2049 break;
2050 }
2051
2052 /* Continue iterating. */
95da600f 2053 return false;
f9e14852
GB
2054}
2055
2056/* Enable or disable optional solib event breakpoints as appropriate.
2057 Called whenever stop_on_solib_events is changed. */
2058
2059static void
2060svr4_update_solib_event_breakpoints (void)
2061{
240edef6
SM
2062 for (breakpoint *bp : all_breakpoints_safe ())
2063 svr4_update_solib_event_breakpoint (bp);
f9e14852
GB
2064}
2065
2066/* Create and register solib event breakpoints. PROBES is an array
2067 of NUM_PROBES elements, each of which is vector of probes. A
2068 solib event breakpoint will be created and registered for each
2069 probe. */
2070
2071static void
d70cc3ba 2072svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2073 const std::vector<probe *> *probes,
729662a5 2074 struct objfile *objfile)
f9e14852 2075{
45461e0d 2076 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2077 {
2078 enum probe_action action = probe_info[i].action;
f9e14852 2079
45461e0d 2080 for (probe *p : probes[i])
f9e14852 2081 {
935676c9 2082 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2083
2084 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2085 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2086 }
2087 }
2088
2089 svr4_update_solib_event_breakpoints ();
2090}
2091
e661ef01
AH
2092/* Find all the glibc named probes. Only if all of the probes are found, then
2093 create them and return true. Otherwise return false. If WITH_PREFIX is set
2094 then add "rtld" to the front of the probe names. */
2095static bool
2096svr4_find_and_create_probe_breakpoints (svr4_info *info,
2097 struct gdbarch *gdbarch,
2098 struct obj_section *os,
2099 bool with_prefix)
2100{
2101 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2102
2103 for (int i = 0; i < NUM_PROBES; i++)
2104 {
2105 const char *name = probe_info[i].name;
2106 char buf[32];
2107
2108 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2109 version of the probes code in which the probes' names were prefixed
2110 with "rtld_" and the "map_failed" probe did not exist. The locations
2111 of the probes are otherwise the same, so we check for probes with
2112 prefixed names if probes with unprefixed names are not present. */
2113 if (with_prefix)
2114 {
2115 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2116 name = buf;
2117 }
2118
2119 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2120
2121 /* The "map_failed" probe did not exist in early
2122 versions of the probes code in which the probes'
2123 names were prefixed with "rtld_". */
2124 if (with_prefix && streq (name, "rtld_map_failed"))
2125 continue;
2126
2127 /* Ensure at least one probe for the current name was found. */
2128 if (probes[i].empty ())
2129 return false;
2130
2131 /* Ensure probe arguments can be evaluated. */
d90b8f26 2132 for (probe *p : probes[i])
e661ef01 2133 {
e661ef01
AH
2134 if (!p->can_evaluate_arguments ())
2135 return false;
d90b8f26
AH
2136 /* This will fail if the probe is invalid. This has been seen on Arm
2137 due to references to symbols that have been resolved away. */
2138 try
2139 {
2140 p->get_argument_count (gdbarch);
2141 }
2142 catch (const gdb_exception_error &ex)
2143 {
2144 exception_print (gdb_stderr, ex);
2145 warning (_("Initializing probes-based dynamic linker interface "
2146 "failed.\nReverting to original interface."));
2147 return false;
2148 }
e661ef01
AH
2149 }
2150 }
2151
2152 /* All probes found. Now create them. */
2153 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2154 return true;
2155}
2156
f9e14852
GB
2157/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2158 before and after mapping and unmapping shared libraries. The sole
2159 purpose of this method is to allow debuggers to set a breakpoint so
2160 they can track these changes.
2161
2162 Some versions of the glibc dynamic linker contain named probes
2163 to allow more fine grained stopping. Given the address of the
2164 original marker function, this function attempts to find these
2165 probes, and if found, sets breakpoints on those instead. If the
2166 probes aren't found, a single breakpoint is set on the original
2167 marker function. */
2168
2169static void
d70cc3ba 2170svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2171 CORE_ADDR address)
2172{
e661ef01 2173 struct obj_section *os = find_pc_section (address);
f9e14852 2174
e661ef01
AH
2175 if (os == nullptr
2176 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2177 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2178 create_solib_event_breakpoint (gdbarch, address);
f9e14852
GB
2179}
2180
cb457ae2
YQ
2181/* Helper function for gdb_bfd_lookup_symbol. */
2182
2183static int
3953f15c 2184cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2185{
2186 return (strcmp (sym->name, (const char *) data) == 0
2187 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2188}
7f86f058 2189/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2190
2191 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2192 debugger interface, support for arranging for the inferior to hit
2193 a breakpoint after mapping in the shared libraries. This function
2194 enables that breakpoint.
2195
2196 For SunOS, there is a special flag location (in_debugger) which we
2197 set to 1. When the dynamic linker sees this flag set, it will set
2198 a breakpoint at a location known only to itself, after saving the
2199 original contents of that place and the breakpoint address itself,
2200 in it's own internal structures. When we resume the inferior, it
2201 will eventually take a SIGTRAP when it runs into the breakpoint.
2202 We handle this (in a different place) by restoring the contents of
2203 the breakpointed location (which is only known after it stops),
2204 chasing around to locate the shared libraries that have been
2205 loaded, then resuming.
2206
2207 For SVR4, the debugger interface structure contains a member (r_brk)
2208 which is statically initialized at the time the shared library is
2209 built, to the offset of a function (_r_debug_state) which is guaran-
2210 teed to be called once before mapping in a library, and again when
2211 the mapping is complete. At the time we are examining this member,
2212 it contains only the unrelocated offset of the function, so we have
2213 to do our own relocation. Later, when the dynamic linker actually
2214 runs, it relocates r_brk to be the actual address of _r_debug_state().
2215
2216 The debugger interface structure also contains an enumeration which
2217 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2218 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2219 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2220
2221static int
268a4a75 2222enable_break (struct svr4_info *info, int from_tty)
13437d4b 2223{
3b7344d5 2224 struct bound_minimal_symbol msymbol;
bc043ef3 2225 const char * const *bkpt_namep;
13437d4b 2226 asection *interp_sect;
7cd25cfc 2227 CORE_ADDR sym_addr;
13437d4b 2228
6c95b8df
PA
2229 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2230 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2231
7cd25cfc
DJ
2232 /* If we already have a shared library list in the target, and
2233 r_debug contains r_brk, set the breakpoint there - this should
2234 mean r_brk has already been relocated. Assume the dynamic linker
2235 is the object containing r_brk. */
2236
e696b3ad 2237 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2238 sym_addr = 0;
1a816a87
PA
2239 if (info->debug_base && solib_svr4_r_map (info) != 0)
2240 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2241
2242 if (sym_addr != 0)
2243 {
2244 struct obj_section *os;
2245
b36ec657 2246 sym_addr = gdbarch_addr_bits_remove
8b88a78e 2247 (target_gdbarch (),
328d42d8
SM
2248 gdbarch_convert_from_func_ptr_addr
2249 (target_gdbarch (), sym_addr, current_inferior ()->top_target ()));
b36ec657 2250
48379de6
DE
2251 /* On at least some versions of Solaris there's a dynamic relocation
2252 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2253 we get control before the dynamic linker has self-relocated.
2254 Check if SYM_ADDR is in a known section, if it is assume we can
2255 trust its value. This is just a heuristic though, it could go away
2256 or be replaced if it's getting in the way.
2257
2258 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2259 however it's spelled in your particular system) is ARM or Thumb.
2260 That knowledge is encoded in the address, if it's Thumb the low bit
2261 is 1. However, we've stripped that info above and it's not clear
2262 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2263 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2264 find_pc_section verifies we know about the address and have some
2265 hope of computing the right kind of breakpoint to use (via
2266 symbol info). It does mean that GDB needs to be pointed at a
2267 non-stripped version of the dynamic linker in order to obtain
2268 information it already knows about. Sigh. */
2269
7cd25cfc
DJ
2270 os = find_pc_section (sym_addr);
2271 if (os != NULL)
2272 {
2273 /* Record the relocated start and end address of the dynamic linker
2274 text and plt section for svr4_in_dynsym_resolve_code. */
2275 bfd *tmp_bfd;
2276 CORE_ADDR load_addr;
2277
2278 tmp_bfd = os->objfile->obfd;
b3b3bada 2279 load_addr = os->objfile->text_section_offset ();
7cd25cfc
DJ
2280
2281 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2282 if (interp_sect)
2283 {
fd361982
AM
2284 info->interp_text_sect_low
2285 = bfd_section_vma (interp_sect) + load_addr;
2286 info->interp_text_sect_high
2287 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2288 }
2289 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2290 if (interp_sect)
2291 {
fd361982
AM
2292 info->interp_plt_sect_low
2293 = bfd_section_vma (interp_sect) + load_addr;
2294 info->interp_plt_sect_high
2295 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2296 }
2297
d70cc3ba 2298 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2299 return 1;
2300 }
2301 }
2302
97ec2c2f 2303 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2304 into the old breakpoint at symbol code. */
17658d46
SM
2305 gdb::optional<gdb::byte_vector> interp_name_holder
2306 = find_program_interpreter ();
2307 if (interp_name_holder)
13437d4b 2308 {
17658d46 2309 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2310 CORE_ADDR load_addr = 0;
2311 int load_addr_found = 0;
2ec9a4f8 2312 int loader_found_in_list = 0;
2f4950cd 2313 struct target_ops *tmp_bfd_target;
13437d4b 2314
7cd25cfc 2315 sym_addr = 0;
13437d4b
KB
2316
2317 /* Now we need to figure out where the dynamic linker was
dda83cd7
SM
2318 loaded so that we can load its symbols and place a breakpoint
2319 in the dynamic linker itself.
13437d4b 2320
dda83cd7
SM
2321 This address is stored on the stack. However, I've been unable
2322 to find any magic formula to find it for Solaris (appears to
2323 be trivial on GNU/Linux). Therefore, we have to try an alternate
2324 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2325
192b62ce 2326 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2327 try
dda83cd7 2328 {
97ec2c2f 2329 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2330 }
230d2906 2331 catch (const gdb_exception &ex)
492d29ea
PA
2332 {
2333 }
492d29ea 2334
13437d4b
KB
2335 if (tmp_bfd == NULL)
2336 goto bkpt_at_symbol;
2337
2f4950cd 2338 /* Now convert the TMP_BFD into a target. That way target, as
15908a11
TT
2339 well as BFD operations can be used. */
2340 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2f4950cd 2341
f8766ec1 2342 /* On a running target, we can get the dynamic linker's base
dda83cd7 2343 address from the shared library table. */
a1fd1ac9 2344 for (struct so_list *so : current_program_space->solibs ())
8ad2fcde 2345 {
97ec2c2f 2346 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2347 {
2348 load_addr_found = 1;
2ec9a4f8 2349 loader_found_in_list = 1;
192b62ce 2350 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2351 break;
2352 }
8ad2fcde
KB
2353 }
2354
8d4e36ba 2355 /* If we were not able to find the base address of the loader
dda83cd7 2356 from our so_list, then try using the AT_BASE auxilliary entry. */
8d4e36ba 2357 if (!load_addr_found)
328d42d8
SM
2358 if (target_auxv_search (current_inferior ()->top_target (),
2359 AT_BASE, &load_addr) > 0)
ad3a0e5b 2360 {
f5656ead 2361 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2362
2363 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2364 that `+ load_addr' will overflow CORE_ADDR width not creating
2365 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2366 GDB. */
2367
d182d057 2368 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2369 {
d182d057 2370 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2371 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2372 tmp_bfd_target);
2373
2374 gdb_assert (load_addr < space_size);
2375
2376 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2377 64bit ld.so with 32bit executable, it should not happen. */
2378
2379 if (tmp_entry_point < space_size
2380 && tmp_entry_point + load_addr >= space_size)
2381 load_addr -= space_size;
2382 }
2383
2384 load_addr_found = 1;
2385 }
8d4e36ba 2386
8ad2fcde
KB
2387 /* Otherwise we find the dynamic linker's base address by examining
2388 the current pc (which should point at the entry point for the
8d4e36ba
JB
2389 dynamic linker) and subtracting the offset of the entry point.
2390
dda83cd7
SM
2391 This is more fragile than the previous approaches, but is a good
2392 fallback method because it has actually been working well in
2393 most cases. */
8ad2fcde 2394 if (!load_addr_found)
fb14de7b 2395 {
c2250ad1 2396 struct regcache *regcache
5b6d1e4f
PA
2397 = get_thread_arch_regcache (current_inferior ()->process_target (),
2398 inferior_ptid, target_gdbarch ());
433759f7 2399
fb14de7b 2400 load_addr = (regcache_read_pc (regcache)
192b62ce 2401 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2402 }
2ec9a4f8
DJ
2403
2404 if (!loader_found_in_list)
34439770 2405 {
1a816a87
PA
2406 info->debug_loader_name = xstrdup (interp_name);
2407 info->debug_loader_offset_p = 1;
2408 info->debug_loader_offset = load_addr;
e696b3ad 2409 solib_add (NULL, from_tty, auto_solib_add);
34439770 2410 }
13437d4b
KB
2411
2412 /* Record the relocated start and end address of the dynamic linker
dda83cd7 2413 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2414 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2415 if (interp_sect)
2416 {
fd361982
AM
2417 info->interp_text_sect_low
2418 = bfd_section_vma (interp_sect) + load_addr;
2419 info->interp_text_sect_high
2420 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2421 }
192b62ce 2422 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2423 if (interp_sect)
2424 {
fd361982
AM
2425 info->interp_plt_sect_low
2426 = bfd_section_vma (interp_sect) + load_addr;
2427 info->interp_plt_sect_high
2428 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2429 }
2430
2431 /* Now try to set a breakpoint in the dynamic linker. */
2432 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2433 {
192b62ce
TT
2434 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2435 cmp_name_and_sec_flags,
3953f15c 2436 *bkpt_namep);
13437d4b
KB
2437 if (sym_addr != 0)
2438 break;
2439 }
2440
2bbe3cc1
DJ
2441 if (sym_addr != 0)
2442 /* Convert 'sym_addr' from a function pointer to an address.
2443 Because we pass tmp_bfd_target instead of the current
2444 target, this will always produce an unrelocated value. */
f5656ead 2445 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2446 sym_addr,
2447 tmp_bfd_target);
2448
695c3173 2449 /* We're done with both the temporary bfd and target. Closing
dda83cd7
SM
2450 the target closes the underlying bfd, because it holds the
2451 only remaining reference. */
460014f5 2452 target_close (tmp_bfd_target);
13437d4b
KB
2453
2454 if (sym_addr != 0)
2455 {
d70cc3ba 2456 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2457 load_addr + sym_addr);
13437d4b
KB
2458 return 1;
2459 }
2460
2461 /* For whatever reason we couldn't set a breakpoint in the dynamic
dda83cd7 2462 linker. Warn and drop into the old code. */
13437d4b 2463 bkpt_at_symbol:
82d03102 2464 warning (_("Unable to find dynamic linker breakpoint function.\n"
dda83cd7
SM
2465 "GDB will be unable to debug shared library initializers\n"
2466 "and track explicitly loaded dynamic code."));
13437d4b 2467 }
13437d4b 2468
e499d0f1
DJ
2469 /* Scan through the lists of symbols, trying to look up the symbol and
2470 set a breakpoint there. Terminate loop when we/if we succeed. */
2471
a42d7dd8 2472 objfile *objf = current_program_space->symfile_object_file;
e499d0f1
DJ
2473 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2474 {
a42d7dd8 2475 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2476 if ((msymbol.minsym != NULL)
77e371c0 2477 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2478 {
77e371c0 2479 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
328d42d8
SM
2480 sym_addr = gdbarch_convert_from_func_ptr_addr
2481 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
d70cc3ba
SM
2482 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2483 sym_addr);
e499d0f1
DJ
2484 return 1;
2485 }
2486 }
13437d4b 2487
17658d46 2488 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2489 {
c6490bf2 2490 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2491 {
a42d7dd8 2492 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
3b7344d5 2493 if ((msymbol.minsym != NULL)
77e371c0 2494 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2495 {
77e371c0 2496 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
328d42d8
SM
2497 sym_addr = gdbarch_convert_from_func_ptr_addr
2498 (target_gdbarch (), sym_addr,
2499 current_inferior ()->top_target ());
d70cc3ba
SM
2500 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2501 sym_addr);
c6490bf2
KB
2502 return 1;
2503 }
13437d4b
KB
2504 }
2505 }
542c95c2 2506 return 0;
13437d4b
KB
2507}
2508
d1012b8e 2509/* Read the ELF program headers from ABFD. */
e2a44558 2510
d1012b8e
SM
2511static gdb::optional<gdb::byte_vector>
2512read_program_headers_from_bfd (bfd *abfd)
e2a44558 2513{
d1012b8e
SM
2514 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2515 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2516 if (phdrs_size == 0)
2517 return {};
09919ac2 2518
d1012b8e 2519 gdb::byte_vector buf (phdrs_size);
09919ac2 2520 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2521 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2522 return {};
09919ac2
JK
2523
2524 return buf;
b8040f19
JK
2525}
2526
01c30d6e
JK
2527/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2528 exec_bfd. Otherwise return 0.
2529
2530 We relocate all of the sections by the same amount. This
c378eb4e 2531 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2532 According to the System V Application Binary Interface,
2533 Edition 4.1, page 5-5:
2534
2535 ... Though the system chooses virtual addresses for
2536 individual processes, it maintains the segments' relative
2537 positions. Because position-independent code uses relative
85102364 2538 addressing between segments, the difference between
b8040f19
JK
2539 virtual addresses in memory must match the difference
2540 between virtual addresses in the file. The difference
2541 between the virtual address of any segment in memory and
2542 the corresponding virtual address in the file is thus a
2543 single constant value for any one executable or shared
2544 object in a given process. This difference is the base
2545 address. One use of the base address is to relocate the
2546 memory image of the program during dynamic linking.
2547
2548 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2549 ABI and is left unspecified in some of the earlier editions.
2550
2551 Decide if the objfile needs to be relocated. As indicated above, we will
2552 only be here when execution is stopped. But during attachment PC can be at
2553 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2554 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2555 regcache_read_pc would point to the interpreter and not the main executable.
2556
2557 So, to summarize, relocations are necessary when the start address obtained
2558 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2559
09919ac2
JK
2560 [ The astute reader will note that we also test to make sure that
2561 the executable in question has the DYNAMIC flag set. It is my
2562 opinion that this test is unnecessary (undesirable even). It
2563 was added to avoid inadvertent relocation of an executable
2564 whose e_type member in the ELF header is not ET_DYN. There may
2565 be a time in the future when it is desirable to do relocations
2566 on other types of files as well in which case this condition
2567 should either be removed or modified to accomodate the new file
2568 type. - Kevin, Nov 2000. ] */
b8040f19 2569
01c30d6e
JK
2570static int
2571svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2572{
41752192
JK
2573 /* ENTRY_POINT is a possible function descriptor - before
2574 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2575 CORE_ADDR entry_point, exec_displacement;
b8040f19 2576
7e10abd1 2577 if (current_program_space->exec_bfd () == NULL)
b8040f19
JK
2578 return 0;
2579
09919ac2
JK
2580 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2581 being executed themselves and PIE (Position Independent Executable)
2582 executables are ET_DYN. */
2583
7e10abd1 2584 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
09919ac2
JK
2585 return 0;
2586
328d42d8
SM
2587 if (target_auxv_search (current_inferior ()->top_target (),
2588 AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2589 return 0;
2590
7e10abd1
TT
2591 exec_displacement
2592 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
09919ac2 2593
8f61baf8 2594 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2595 alignment. It is cheaper than the program headers comparison below. */
2596
7e10abd1
TT
2597 if (bfd_get_flavour (current_program_space->exec_bfd ())
2598 == bfd_target_elf_flavour)
09919ac2 2599 {
7e10abd1
TT
2600 const struct elf_backend_data *elf
2601 = get_elf_backend_data (current_program_space->exec_bfd ());
09919ac2
JK
2602
2603 /* p_align of PT_LOAD segments does not specify any alignment but
2604 only congruency of addresses:
2605 p_offset % p_align == p_vaddr % p_align
2606 Kernel is free to load the executable with lower alignment. */
2607
8f61baf8 2608 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2609 return 0;
2610 }
2611
2612 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2613 comparing their program headers. If the program headers in the auxilliary
2614 vector do not match the program headers in the executable, then we are
2615 looking at a different file than the one used by the kernel - for
2616 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2617
7e10abd1
TT
2618 if (bfd_get_flavour (current_program_space->exec_bfd ())
2619 == bfd_target_elf_flavour)
09919ac2 2620 {
d1012b8e 2621 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2622 really do not match. */
0a1e94c7 2623 int arch_size;
09919ac2 2624
17658d46
SM
2625 gdb::optional<gdb::byte_vector> phdrs_target
2626 = read_program_header (-1, &arch_size, NULL);
d1012b8e 2627 gdb::optional<gdb::byte_vector> phdrs_binary
7e10abd1 2628 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
d1012b8e 2629 if (phdrs_target && phdrs_binary)
0a1e94c7 2630 {
f5656ead 2631 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2632
2633 /* We are dealing with three different addresses. EXEC_BFD
2634 represents current address in on-disk file. target memory content
2635 may be different from EXEC_BFD as the file may have been prelinked
2636 to a different address after the executable has been loaded.
2637 Moreover the address of placement in target memory can be
3e43a32a
MS
2638 different from what the program headers in target memory say -
2639 this is the goal of PIE.
0a1e94c7
JK
2640
2641 Detected DISPLACEMENT covers both the offsets of PIE placement and
2642 possible new prelink performed after start of the program. Here
2643 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2644 content offset for the verification purpose. */
2645
d1012b8e 2646 if (phdrs_target->size () != phdrs_binary->size ()
7e10abd1 2647 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
d1012b8e 2648 return 0;
3e43a32a 2649 else if (arch_size == 32
17658d46 2650 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
dda83cd7 2651 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7 2652 {
7e10abd1
TT
2653 Elf_Internal_Ehdr *ehdr2
2654 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2655 Elf_Internal_Phdr *phdr2
2656 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2657 CORE_ADDR displacement = 0;
2658 int i;
2659
2660 /* DISPLACEMENT could be found more easily by the difference of
2661 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2662 already have enough information to compute that displacement
2663 with what we've read. */
2664
2665 for (i = 0; i < ehdr2->e_phnum; i++)
2666 if (phdr2[i].p_type == PT_LOAD)
2667 {
2668 Elf32_External_Phdr *phdrp;
2669 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2670 CORE_ADDR vaddr, paddr;
2671 CORE_ADDR displacement_vaddr = 0;
2672 CORE_ADDR displacement_paddr = 0;
2673
17658d46 2674 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2675 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2676 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2677
2678 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2679 byte_order);
2680 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2681
2682 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2683 byte_order);
2684 displacement_paddr = paddr - phdr2[i].p_paddr;
2685
2686 if (displacement_vaddr == displacement_paddr)
2687 displacement = displacement_vaddr;
2688
2689 break;
2690 }
2691
17658d46 2692 /* Now compare program headers from the target and the binary
dda83cd7 2693 with optional DISPLACEMENT. */
0a1e94c7 2694
17658d46
SM
2695 for (i = 0;
2696 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2697 i++)
0a1e94c7
JK
2698 {
2699 Elf32_External_Phdr *phdrp;
2700 Elf32_External_Phdr *phdr2p;
2701 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2702 CORE_ADDR vaddr, paddr;
43b8e241 2703 asection *plt2_asect;
0a1e94c7 2704
17658d46 2705 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2706 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2707 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2708 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2709
2710 /* PT_GNU_STACK is an exception by being never relocated by
2711 prelink as its addresses are always zero. */
2712
2713 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2714 continue;
2715
2716 /* Check also other adjustment combinations - PR 11786. */
2717
3e43a32a
MS
2718 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2719 byte_order);
0a1e94c7
JK
2720 vaddr -= displacement;
2721 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2722
3e43a32a
MS
2723 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2724 byte_order);
0a1e94c7
JK
2725 paddr -= displacement;
2726 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2727
2728 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2729 continue;
2730
204b5331
DE
2731 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2732 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2733 Strip also modifies memsz of PT_TLS.
204b5331 2734 See PR 11786. */
c44deb73
SM
2735 if (phdr2[i].p_type == PT_GNU_RELRO
2736 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2737 {
2738 Elf32_External_Phdr tmp_phdr = *phdrp;
2739 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2740
2741 memset (tmp_phdr.p_filesz, 0, 4);
2742 memset (tmp_phdr.p_memsz, 0, 4);
2743 memset (tmp_phdr.p_flags, 0, 4);
2744 memset (tmp_phdr.p_align, 0, 4);
2745 memset (tmp_phdr2.p_filesz, 0, 4);
2746 memset (tmp_phdr2.p_memsz, 0, 4);
2747 memset (tmp_phdr2.p_flags, 0, 4);
2748 memset (tmp_phdr2.p_align, 0, 4);
2749
2750 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2751 == 0)
2752 continue;
2753 }
2754
43b8e241 2755 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1 2756 bfd *exec_bfd = current_program_space->exec_bfd ();
43b8e241
JK
2757 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2758 if (plt2_asect)
2759 {
2760 int content2;
2761 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2762 CORE_ADDR filesz;
2763
fd361982 2764 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2765 & SEC_HAS_CONTENTS) != 0;
2766
2767 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2768 byte_order);
2769
2770 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2771 FILESZ is from the in-memory image. */
2772 if (content2)
fd361982 2773 filesz += bfd_section_size (plt2_asect);
43b8e241 2774 else
fd361982 2775 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2776
2777 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2778 filesz);
2779
2780 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2781 continue;
2782 }
2783
d1012b8e 2784 return 0;
0a1e94c7
JK
2785 }
2786 }
3e43a32a 2787 else if (arch_size == 64
17658d46 2788 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
dda83cd7 2789 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7 2790 {
7e10abd1
TT
2791 Elf_Internal_Ehdr *ehdr2
2792 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2793 Elf_Internal_Phdr *phdr2
2794 = elf_tdata (current_program_space->exec_bfd ())->phdr;
0a1e94c7
JK
2795 CORE_ADDR displacement = 0;
2796 int i;
2797
2798 /* DISPLACEMENT could be found more easily by the difference of
2799 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2800 already have enough information to compute that displacement
2801 with what we've read. */
2802
2803 for (i = 0; i < ehdr2->e_phnum; i++)
2804 if (phdr2[i].p_type == PT_LOAD)
2805 {
2806 Elf64_External_Phdr *phdrp;
2807 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2808 CORE_ADDR vaddr, paddr;
2809 CORE_ADDR displacement_vaddr = 0;
2810 CORE_ADDR displacement_paddr = 0;
2811
17658d46 2812 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2813 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2814 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2815
2816 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2817 byte_order);
2818 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2819
2820 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2821 byte_order);
2822 displacement_paddr = paddr - phdr2[i].p_paddr;
2823
2824 if (displacement_vaddr == displacement_paddr)
2825 displacement = displacement_vaddr;
2826
2827 break;
2828 }
2829
2830 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2831
17658d46
SM
2832 for (i = 0;
2833 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2834 i++)
0a1e94c7
JK
2835 {
2836 Elf64_External_Phdr *phdrp;
2837 Elf64_External_Phdr *phdr2p;
2838 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2839 CORE_ADDR vaddr, paddr;
43b8e241 2840 asection *plt2_asect;
0a1e94c7 2841
17658d46 2842 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2843 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2844 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2845 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2846
2847 /* PT_GNU_STACK is an exception by being never relocated by
2848 prelink as its addresses are always zero. */
2849
2850 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2851 continue;
2852
2853 /* Check also other adjustment combinations - PR 11786. */
2854
3e43a32a
MS
2855 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2856 byte_order);
0a1e94c7
JK
2857 vaddr -= displacement;
2858 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2859
3e43a32a
MS
2860 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2861 byte_order);
0a1e94c7
JK
2862 paddr -= displacement;
2863 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2864
2865 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2866 continue;
2867
204b5331
DE
2868 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2869 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2870 Strip also modifies memsz of PT_TLS.
204b5331 2871 See PR 11786. */
c44deb73
SM
2872 if (phdr2[i].p_type == PT_GNU_RELRO
2873 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2874 {
2875 Elf64_External_Phdr tmp_phdr = *phdrp;
2876 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2877
2878 memset (tmp_phdr.p_filesz, 0, 8);
2879 memset (tmp_phdr.p_memsz, 0, 8);
2880 memset (tmp_phdr.p_flags, 0, 4);
2881 memset (tmp_phdr.p_align, 0, 8);
2882 memset (tmp_phdr2.p_filesz, 0, 8);
2883 memset (tmp_phdr2.p_memsz, 0, 8);
2884 memset (tmp_phdr2.p_flags, 0, 4);
2885 memset (tmp_phdr2.p_align, 0, 8);
2886
2887 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2888 == 0)
2889 continue;
2890 }
2891
43b8e241 2892 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
7e10abd1
TT
2893 plt2_asect
2894 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2895 ".plt");
43b8e241
JK
2896 if (plt2_asect)
2897 {
2898 int content2;
2899 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2900 CORE_ADDR filesz;
2901
fd361982 2902 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2903 & SEC_HAS_CONTENTS) != 0;
2904
2905 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2906 byte_order);
2907
7e10abd1
TT
2908 /* PLT2_ASECT is from on-disk file (current
2909 exec_bfd) while FILESZ is from the in-memory
2910 image. */
43b8e241 2911 if (content2)
fd361982 2912 filesz += bfd_section_size (plt2_asect);
43b8e241 2913 else
fd361982 2914 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2915
2916 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2917 filesz);
2918
2919 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2920 continue;
2921 }
2922
d1012b8e 2923 return 0;
0a1e94c7
JK
2924 }
2925 }
2926 else
d1012b8e 2927 return 0;
0a1e94c7 2928 }
09919ac2 2929 }
b8040f19 2930
ccf26247
JK
2931 if (info_verbose)
2932 {
2933 /* It can be printed repeatedly as there is no easy way to check
2934 the executable symbols/file has been already relocated to
2935 displacement. */
2936
2937 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2938 "displacement %s for \"%s\".\n"),
8f61baf8 2939 paddress (target_gdbarch (), exec_displacement),
7e10abd1 2940 bfd_get_filename (current_program_space->exec_bfd ()));
ccf26247
JK
2941 }
2942
8f61baf8 2943 *displacementp = exec_displacement;
01c30d6e 2944 return 1;
b8040f19
JK
2945}
2946
2947/* Relocate the main executable. This function should be called upon
c378eb4e 2948 stopping the inferior process at the entry point to the program.
b8040f19
JK
2949 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2950 different, the main executable is relocated by the proper amount. */
2951
2952static void
2953svr4_relocate_main_executable (void)
2954{
01c30d6e
JK
2955 CORE_ADDR displacement;
2956
4e5799b6
JK
2957 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2958 probably contains the offsets computed using the PIE displacement
2959 from the previous run, which of course are irrelevant for this run.
2960 So we need to determine the new PIE displacement and recompute the
2961 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2962 already contains pre-computed offsets.
01c30d6e 2963
4e5799b6 2964 If we cannot compute the PIE displacement, either:
01c30d6e 2965
4e5799b6
JK
2966 - The executable is not PIE.
2967
2968 - SYMFILE_OBJFILE does not match the executable started in the target.
2969 This can happen for main executable symbols loaded at the host while
2970 `ld.so --ld-args main-executable' is loaded in the target.
2971
2972 Then we leave the section offsets untouched and use them as is for
2973 this run. Either:
2974
2975 - These section offsets were properly reset earlier, and thus
2976 already contain the correct values. This can happen for instance
2977 when reconnecting via the remote protocol to a target that supports
2978 the `qOffsets' packet.
2979
2980 - The section offsets were not reset earlier, and the best we can
c378eb4e 2981 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2982
2983 if (! svr4_exec_displacement (&displacement))
2984 return;
b8040f19 2985
01c30d6e
JK
2986 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2987 addresses. */
b8040f19 2988
a42d7dd8
TT
2989 objfile *objf = current_program_space->symfile_object_file;
2990 if (objf)
e2a44558 2991 {
a42d7dd8 2992 section_offsets new_offsets (objf->section_offsets.size (),
6a053cb1 2993 displacement);
a42d7dd8 2994 objfile_relocate (objf, new_offsets);
e2a44558 2995 }
7e10abd1 2996 else if (current_program_space->exec_bfd ())
51bee8e9
JK
2997 {
2998 asection *asect;
2999
7e10abd1 3000 bfd *exec_bfd = current_program_space->exec_bfd ();
51bee8e9
JK
3001 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3002 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 3003 bfd_section_vma (asect) + displacement);
51bee8e9 3004 }
e2a44558
KB
3005}
3006
7f86f058 3007/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3008
3009 For SVR4 executables, this first instruction is either the first
3010 instruction in the dynamic linker (for dynamically linked
3011 executables) or the instruction at "start" for statically linked
3012 executables. For dynamically linked executables, the system
3013 first exec's /lib/libc.so.N, which contains the dynamic linker,
3014 and starts it running. The dynamic linker maps in any needed
3015 shared libraries, maps in the actual user executable, and then
3016 jumps to "start" in the user executable.
3017
7f86f058
PA
3018 We can arrange to cooperate with the dynamic linker to discover the
3019 names of shared libraries that are dynamically linked, and the base
3020 addresses to which they are linked.
13437d4b
KB
3021
3022 This function is responsible for discovering those names and
3023 addresses, and saving sufficient information about them to allow
d2e5c99a 3024 their symbols to be read at a later time. */
13437d4b 3025
e2a44558 3026static void
268a4a75 3027svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3028{
1a816a87
PA
3029 struct svr4_info *info;
3030
d70cc3ba 3031 info = get_svr4_info (current_program_space);
2020b7ab 3032
f9e14852
GB
3033 /* Clear the probes-based interface's state. */
3034 free_probes_table (info);
3035 free_solib_list (info);
3036
e2a44558 3037 /* Relocate the main executable if necessary. */
86e4bafc 3038 svr4_relocate_main_executable ();
e2a44558 3039
c91c8c16
PA
3040 /* No point setting a breakpoint in the dynamic linker if we can't
3041 hit it (e.g., a core file, or a trace file). */
55f6301a 3042 if (!target_has_execution ())
c91c8c16
PA
3043 return;
3044
d5a921c9 3045 if (!svr4_have_link_map_offsets ())
513f5903 3046 return;
d5a921c9 3047
268a4a75 3048 if (!enable_break (info, from_tty))
542c95c2 3049 return;
13437d4b
KB
3050}
3051
3052static void
3053svr4_clear_solib (void)
3054{
6c95b8df
PA
3055 struct svr4_info *info;
3056
d70cc3ba 3057 info = get_svr4_info (current_program_space);
6c95b8df
PA
3058 info->debug_base = 0;
3059 info->debug_loader_offset_p = 0;
3060 info->debug_loader_offset = 0;
3061 xfree (info->debug_loader_name);
3062 info->debug_loader_name = NULL;
13437d4b
KB
3063}
3064
6bb7be43
JB
3065/* Clear any bits of ADDR that wouldn't fit in a target-format
3066 data pointer. "Data pointer" here refers to whatever sort of
3067 address the dynamic linker uses to manage its sections. At the
3068 moment, we don't support shared libraries on any processors where
3069 code and data pointers are different sizes.
3070
3071 This isn't really the right solution. What we really need here is
3072 a way to do arithmetic on CORE_ADDR values that respects the
3073 natural pointer/address correspondence. (For example, on the MIPS,
3074 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3075 sign-extend the value. There, simply truncating the bits above
819844ad 3076 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3077 be a new gdbarch method or something. */
3078static CORE_ADDR
3079svr4_truncate_ptr (CORE_ADDR addr)
3080{
f5656ead 3081 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3082 /* We don't need to truncate anything, and the bit twiddling below
3083 will fail due to overflow problems. */
3084 return addr;
3085 else
f5656ead 3086 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3087}
3088
3089
749499cb
KB
3090static void
3091svr4_relocate_section_addresses (struct so_list *so,
dda83cd7 3092 struct target_section *sec)
749499cb 3093{
2b2848e2
DE
3094 bfd *abfd = sec->the_bfd_section->owner;
3095
3096 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3097 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3098}
4b188b9f 3099\f
749499cb 3100
4b188b9f 3101/* Architecture-specific operations. */
6bb7be43 3102
4b188b9f
MK
3103/* Per-architecture data key. */
3104static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3105
4b188b9f 3106struct solib_svr4_ops
e5e2b9ff 3107{
4b188b9f
MK
3108 /* Return a description of the layout of `struct link_map'. */
3109 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3110};
e5e2b9ff 3111
4b188b9f 3112/* Return a default for the architecture-specific operations. */
e5e2b9ff 3113
4b188b9f
MK
3114static void *
3115solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3116{
4b188b9f 3117 struct solib_svr4_ops *ops;
e5e2b9ff 3118
4b188b9f 3119 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3120 ops->fetch_link_map_offsets = NULL;
4b188b9f 3121 return ops;
e5e2b9ff
KB
3122}
3123
4b188b9f 3124/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3125 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3126
21479ded 3127void
e5e2b9ff 3128set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
dda83cd7 3129 struct link_map_offsets *(*flmo) (void))
21479ded 3130{
19ba03f4
SM
3131 struct solib_svr4_ops *ops
3132 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3133
3134 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3135
3136 set_solib_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3137 set_gdbarch_iterate_over_objfiles_in_search_order
3138 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3139}
3140
4b188b9f
MK
3141/* Fetch a link_map_offsets structure using the architecture-specific
3142 `struct link_map_offsets' fetcher. */
1c4dcb57 3143
4b188b9f
MK
3144static struct link_map_offsets *
3145svr4_fetch_link_map_offsets (void)
21479ded 3146{
19ba03f4
SM
3147 struct solib_svr4_ops *ops
3148 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3149 solib_svr4_data);
4b188b9f
MK
3150
3151 gdb_assert (ops->fetch_link_map_offsets);
3152 return ops->fetch_link_map_offsets ();
21479ded
KB
3153}
3154
4b188b9f
MK
3155/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3156
3157static int
3158svr4_have_link_map_offsets (void)
3159{
19ba03f4
SM
3160 struct solib_svr4_ops *ops
3161 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3162 solib_svr4_data);
433759f7 3163
4b188b9f
MK
3164 return (ops->fetch_link_map_offsets != NULL);
3165}
3166\f
3167
e4bbbda8
MK
3168/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3169 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3170 with the original SVR4 implementation. */
e4bbbda8
MK
3171
3172/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3173 for an ILP32 SVR4 system. */
d989b283 3174
e4bbbda8
MK
3175struct link_map_offsets *
3176svr4_ilp32_fetch_link_map_offsets (void)
3177{
3178 static struct link_map_offsets lmo;
3179 static struct link_map_offsets *lmp = NULL;
3180
3181 if (lmp == NULL)
3182 {
3183 lmp = &lmo;
3184
e4cd0d6a
MK
3185 lmo.r_version_offset = 0;
3186 lmo.r_version_size = 4;
e4bbbda8 3187 lmo.r_map_offset = 4;
7cd25cfc 3188 lmo.r_brk_offset = 8;
e4cd0d6a 3189 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3190
3191 /* Everything we need is in the first 20 bytes. */
3192 lmo.link_map_size = 20;
3193 lmo.l_addr_offset = 0;
e4bbbda8 3194 lmo.l_name_offset = 4;
cc10cae3 3195 lmo.l_ld_offset = 8;
e4bbbda8 3196 lmo.l_next_offset = 12;
e4bbbda8 3197 lmo.l_prev_offset = 16;
e4bbbda8
MK
3198 }
3199
3200 return lmp;
3201}
3202
3203/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3204 for an LP64 SVR4 system. */
d989b283 3205
e4bbbda8
MK
3206struct link_map_offsets *
3207svr4_lp64_fetch_link_map_offsets (void)
3208{
3209 static struct link_map_offsets lmo;
3210 static struct link_map_offsets *lmp = NULL;
3211
3212 if (lmp == NULL)
3213 {
3214 lmp = &lmo;
3215
e4cd0d6a
MK
3216 lmo.r_version_offset = 0;
3217 lmo.r_version_size = 4;
e4bbbda8 3218 lmo.r_map_offset = 8;
7cd25cfc 3219 lmo.r_brk_offset = 16;
e4cd0d6a 3220 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3221
3222 /* Everything we need is in the first 40 bytes. */
3223 lmo.link_map_size = 40;
3224 lmo.l_addr_offset = 0;
e4bbbda8 3225 lmo.l_name_offset = 8;
cc10cae3 3226 lmo.l_ld_offset = 16;
e4bbbda8 3227 lmo.l_next_offset = 24;
e4bbbda8 3228 lmo.l_prev_offset = 32;
e4bbbda8
MK
3229 }
3230
3231 return lmp;
3232}
3233\f
3234
7d522c90 3235struct target_so_ops svr4_so_ops;
13437d4b 3236
626ca2c0 3237/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3238 different rule for symbol lookup. The lookup begins here in the DSO, not in
3239 the main executable. */
3240
626ca2c0
CB
3241static void
3242svr4_iterate_over_objfiles_in_search_order
3243 (struct gdbarch *gdbarch,
3244 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3245 void *cb_data, struct objfile *current_objfile)
3a40aaa0 3246{
626ca2c0
CB
3247 bool checked_current_objfile = false;
3248 if (current_objfile != nullptr)
61f0d762 3249 {
626ca2c0 3250 bfd *abfd;
61f0d762 3251
626ca2c0 3252 if (current_objfile->separate_debug_objfile_backlink != nullptr)
dda83cd7 3253 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3254
a42d7dd8 3255 if (current_objfile == current_program_space->symfile_object_file)
7e10abd1 3256 abfd = current_program_space->exec_bfd ();
626ca2c0
CB
3257 else
3258 abfd = current_objfile->obfd;
3259
7ab78ccb
SM
3260 if (abfd != nullptr
3261 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3262 {
3263 checked_current_objfile = true;
3264 if (cb (current_objfile, cb_data) != 0)
3265 return;
3266 }
3267 }
3a40aaa0 3268
626ca2c0
CB
3269 for (objfile *objfile : current_program_space->objfiles ())
3270 {
3271 if (checked_current_objfile && objfile == current_objfile)
3272 continue;
3273 if (cb (objfile, cb_data) != 0)
3274 return;
3275 }
3a40aaa0
UW
3276}
3277
6c265988 3278void _initialize_svr4_solib ();
13437d4b 3279void
6c265988 3280_initialize_svr4_solib ()
13437d4b 3281{
4b188b9f
MK
3282 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3283
749499cb 3284 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3285 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3286 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3287 svr4_so_ops.clear_solib = svr4_clear_solib;
3288 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3289 svr4_so_ops.current_sos = svr4_current_sos;
3290 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3291 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3292 svr4_so_ops.bfd_open = solib_bfd_open;
a7c02bc8 3293 svr4_so_ops.same = svr4_same;
de18c1d8 3294 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3295 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3296 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35 3297
c90e7d63
SM
3298 gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
3299 "solib-svr4");
13437d4b 3300}
This page took 2.532138 seconds and 4 git commands to generate.