ubsan: microblaze: left shift cannot be represented in type 'int'
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
626ca2c0
CB
54static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
174static int
175svr4_same (struct so_list *gdb, struct so_list *inferior)
176{
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178}
179
a7961323 180static std::unique_ptr<lm_info_svr4>
3957565a 181lm_info_read (CORE_ADDR lm_addr)
13437d4b 182{
4b188b9f 183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 184 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 185
a7961323 186 gdb::byte_vector lm (lmo->link_map_size);
3957565a 187
a7961323
TT
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
3957565a
JK
191 else
192 {
f5656ead 193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 194
a7961323 195 lm_info.reset (new lm_info_svr4);
3957565a
JK
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
3957565a 209 return lm_info;
13437d4b
KB
210}
211
cc10cae3 212static int
b23518f0 213has_lm_dynamic_from_link_map (void)
cc10cae3
AO
214{
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
cfaefc65 217 return lmo->l_ld_offset >= 0;
cc10cae3
AO
218}
219
cc10cae3 220static CORE_ADDR
f65ce5fb 221lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 222{
d0e449a1
SM
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
cc10cae3
AO
226 {
227 struct bfd_section *dyninfo_sect;
28f34a8f 228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 229
d0e449a1 230 l_addr = li->l_addr_inferior;
cc10cae3 231
b23518f0 232 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
233 goto set_addr;
234
d0e449a1 235 l_dynaddr = li->l_ld;
cc10cae3
AO
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
fd361982 241 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
28f34a8f 245 CORE_ADDR align = 0x1000;
4e1fc9c9 246 CORE_ADDR minpagesize = align;
28f34a8f 247
cc10cae3
AO
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
4e1fc9c9
JK
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
5c0d192f
JK
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 288
02835898
JK
289 l_addr = l_dynaddr - dynaddr;
290
4e1fc9c9
JK
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 293 {
701ed6dc 294 if (info_verbose)
ccf26247
JK
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
f5656ead 297 paddress (target_gdbarch (), l_addr),
ccf26247 298 so->so_name);
cc10cae3 299 }
79d4c408 300 else
02835898
JK
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
cc10cae3
AO
315 }
316
317 set_addr:
d0e449a1
SM
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
cc10cae3
AO
320 }
321
d0e449a1 322 return li->l_addr;
cc10cae3
AO
323}
324
6c95b8df 325/* Per pspace SVR4 specific data. */
13437d4b 326
1a816a87
PA
327struct svr4_info
328{
09232438
TT
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
1a816a87
PA
334
335 /* Validity flag for debug_loader_offset. */
09232438 336 int debug_loader_offset_p = 0;
1a816a87
PA
337
338 /* Load address for the dynamic linker, inferred. */
09232438 339 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 342 char *debug_loader_name = nullptr;
1a816a87
PA
343
344 /* Load map address for the main executable. */
09232438 345 CORE_ADDR main_lm_addr = 0;
1a816a87 346
09232438
TT
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
09232438 354 int using_xfer = 0;
f9e14852
GB
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
935676c9 359 probe_and_action->prob->address. */
09232438 360 htab_up probes_table;
f9e14852
GB
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
09232438 364 struct so_list *solib_list = nullptr;
6c95b8df 365};
1a816a87 366
6c95b8df 367/* Per-program-space data key. */
09232438 368static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 369
f9e14852
GB
370/* Free the probes table. */
371
372static void
373free_probes_table (struct svr4_info *info)
374{
09232438 375 info->probes_table.reset (nullptr);
f9e14852
GB
376}
377
378/* Free the solib list. */
379
380static void
381free_solib_list (struct svr4_info *info)
382{
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385}
386
09232438 387svr4_info::~svr4_info ()
1a816a87 388{
09232438 389 free_solib_list (this);
1a816a87
PA
390}
391
d70cc3ba
SM
392/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
34439770 394
6c95b8df 395static struct svr4_info *
d70cc3ba 396get_svr4_info (program_space *pspace)
1a816a87 397{
09232438 398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 399
09232438
TT
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
34439770 402
6c95b8df 403 return info;
1a816a87 404}
93a57060 405
13437d4b
KB
406/* Local function prototypes */
407
bc043ef3 408static int match_main (const char *);
13437d4b 409
97ec2c2f 410/* Read program header TYPE from inferior memory. The header is found
17658d46 411 by scanning the OS auxiliary vector.
97ec2c2f 412
09919ac2
JK
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
17658d46
SM
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 420
17658d46
SM
421static gdb::optional<gdb::byte_vector>
422read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 423{
f5656ead 424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
43136979 428 int pt_phdr_p = 0;
97ec2c2f
UW
429
430 /* Get required auxv elements from target. */
8b88a78e 431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 432 return {};
8b88a78e 433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 434 return {};
8b88a78e 435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 436 return {};
97ec2c2f 437 if (!at_phdr || !at_phnum)
17658d46 438 return {};
97ec2c2f
UW
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
17658d46 446 return {};
97ec2c2f 447
09919ac2
JK
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
97ec2c2f
UW
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
43136979
AR
462 int p_type;
463
97ec2c2f
UW
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 466 return {};
97ec2c2f 467
43136979
AR
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
97ec2c2f
UW
479 break;
480 }
481
482 if (i == at_phnum)
17658d46 483 return {};
97ec2c2f
UW
484
485 /* Retrieve address and size. */
e17a4113
UW
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
97ec2c2f
UW
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
43136979
AR
499 int p_type;
500
97ec2c2f
UW
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 503 return {};
97ec2c2f 504
43136979
AR
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
97ec2c2f
UW
516 break;
517 }
518
519 if (i == at_phnum)
17658d46 520 return {};
97ec2c2f
UW
521
522 /* Retrieve address and size. */
e17a4113
UW
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
97ec2c2f
UW
527 }
528
43136979
AR
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
97ec2c2f 539 /* Read in requested program header. */
17658d46
SM
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
97ec2c2f
UW
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
a738da3a
MF
546 if (base_addr)
547 *base_addr = sect_addr;
97ec2c2f
UW
548
549 return buf;
550}
551
552
553/* Return program interpreter string. */
17658d46 554static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
555find_program_interpreter (void)
556{
97ec2c2f
UW
557 /* If we have an exec_bfd, use its section table. */
558 if (exec_bfd
559 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
560 {
561 struct bfd_section *interp_sect;
562
563 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
564 if (interp_sect != NULL)
565 {
fd361982 566 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 567
17658d46
SM
568 gdb::byte_vector buf (sect_size);
569 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
570 sect_size);
571 return buf;
97ec2c2f
UW
572 }
573 }
574
17658d46
SM
575 /* If we didn't find it, use the target auxiliary vector. */
576 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
577}
578
579
b6d7a4bf
SM
580/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
581 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
582
583static int
a738da3a
MF
584scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
585 CORE_ADDR *ptr_addr)
3a40aaa0
UW
586{
587 int arch_size, step, sect_size;
b6d7a4bf 588 long current_dyntag;
b381ea14 589 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 590 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
591 Elf32_External_Dyn *x_dynp_32;
592 Elf64_External_Dyn *x_dynp_64;
593 struct bfd_section *sect;
61f0d762 594 struct target_section *target_section;
3a40aaa0
UW
595
596 if (abfd == NULL)
597 return 0;
0763ab81
PA
598
599 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
600 return 0;
601
3a40aaa0
UW
602 arch_size = bfd_get_arch_size (abfd);
603 if (arch_size == -1)
0763ab81 604 return 0;
3a40aaa0
UW
605
606 /* Find the start address of the .dynamic section. */
607 sect = bfd_get_section_by_name (abfd, ".dynamic");
608 if (sect == NULL)
609 return 0;
61f0d762
JK
610
611 for (target_section = current_target_sections->sections;
612 target_section < current_target_sections->sections_end;
613 target_section++)
614 if (sect == target_section->the_bfd_section)
615 break;
b381ea14
JK
616 if (target_section < current_target_sections->sections_end)
617 dyn_addr = target_section->addr;
618 else
619 {
620 /* ABFD may come from OBJFILE acting only as a symbol file without being
621 loaded into the target (see add_symbol_file_command). This case is
622 such fallback to the file VMA address without the possibility of
623 having the section relocated to its actual in-memory address. */
624
fd361982 625 dyn_addr = bfd_section_vma (sect);
b381ea14 626 }
3a40aaa0 627
65728c26
DJ
628 /* Read in .dynamic from the BFD. We will get the actual value
629 from memory later. */
fd361982 630 sect_size = bfd_section_size (sect);
224c3ddb 631 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
632 if (!bfd_get_section_contents (abfd, sect,
633 buf, 0, sect_size))
634 return 0;
3a40aaa0
UW
635
636 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
637 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
638 : sizeof (Elf64_External_Dyn);
639 for (bufend = buf + sect_size;
640 buf < bufend;
641 buf += step)
642 {
643 if (arch_size == 32)
644 {
645 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 646 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
647 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
648 }
65728c26 649 else
3a40aaa0
UW
650 {
651 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 652 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
653 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
654 }
b6d7a4bf 655 if (current_dyntag == DT_NULL)
3a40aaa0 656 return 0;
b6d7a4bf 657 if (current_dyntag == desired_dyntag)
3a40aaa0 658 {
65728c26
DJ
659 /* If requested, try to read the runtime value of this .dynamic
660 entry. */
3a40aaa0 661 if (ptr)
65728c26 662 {
b6da22b0 663 struct type *ptr_type;
65728c26 664 gdb_byte ptr_buf[8];
a738da3a 665 CORE_ADDR ptr_addr_1;
65728c26 666
f5656ead 667 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
668 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
669 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 670 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 671 *ptr = dyn_ptr;
a738da3a
MF
672 if (ptr_addr)
673 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
674 }
675 return 1;
3a40aaa0
UW
676 }
677 }
678
679 return 0;
680}
681
b6d7a4bf
SM
682/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
683 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
684 is returned and the corresponding PTR is set. */
97ec2c2f
UW
685
686static int
a738da3a
MF
687scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
688 CORE_ADDR *ptr_addr)
97ec2c2f 689{
f5656ead 690 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 691 int arch_size, step;
b6d7a4bf 692 long current_dyntag;
97ec2c2f 693 CORE_ADDR dyn_ptr;
a738da3a 694 CORE_ADDR base_addr;
97ec2c2f
UW
695
696 /* Read in .dynamic section. */
17658d46
SM
697 gdb::optional<gdb::byte_vector> ph_data
698 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
699 if (!ph_data)
97ec2c2f
UW
700 return 0;
701
702 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
703 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
704 : sizeof (Elf64_External_Dyn);
17658d46
SM
705 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
706 buf < bufend; buf += step)
97ec2c2f
UW
707 {
708 if (arch_size == 32)
709 {
710 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 711
b6d7a4bf 712 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
713 4, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 4, byte_order);
97ec2c2f
UW
716 }
717 else
718 {
719 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 720
b6d7a4bf 721 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
722 8, byte_order);
723 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
724 8, byte_order);
97ec2c2f 725 }
b6d7a4bf 726 if (current_dyntag == DT_NULL)
97ec2c2f
UW
727 break;
728
b6d7a4bf 729 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
730 {
731 if (ptr)
732 *ptr = dyn_ptr;
733
a738da3a 734 if (ptr_addr)
17658d46 735 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 736
97ec2c2f
UW
737 return 1;
738 }
739 }
740
97ec2c2f
UW
741 return 0;
742}
743
7f86f058
PA
744/* Locate the base address of dynamic linker structs for SVR4 elf
745 targets.
13437d4b
KB
746
747 For SVR4 elf targets the address of the dynamic linker's runtime
748 structure is contained within the dynamic info section in the
749 executable file. The dynamic section is also mapped into the
750 inferior address space. Because the runtime loader fills in the
751 real address before starting the inferior, we have to read in the
752 dynamic info section from the inferior address space.
753 If there are any errors while trying to find the address, we
7f86f058 754 silently return 0, otherwise the found address is returned. */
13437d4b
KB
755
756static CORE_ADDR
757elf_locate_base (void)
758{
3b7344d5 759 struct bound_minimal_symbol msymbol;
a738da3a 760 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 761
65728c26
DJ
762 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
763 instead of DT_DEBUG, although they sometimes contain an unused
764 DT_DEBUG. */
a738da3a
MF
765 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
766 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 767 {
f5656ead 768 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 769 gdb_byte *pbuf;
b6da22b0 770 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 771
224c3ddb 772 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
773 /* DT_MIPS_RLD_MAP contains a pointer to the address
774 of the dynamic link structure. */
775 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 776 return 0;
b6da22b0 777 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
778 }
779
a738da3a
MF
780 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
781 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
782 in non-PIE. */
783 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
784 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
785 {
786 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
787 gdb_byte *pbuf;
788 int pbuf_size = TYPE_LENGTH (ptr_type);
789
224c3ddb 790 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
791 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
792 DT slot to the address of the dynamic link structure. */
793 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
794 return 0;
795 return extract_typed_address (pbuf, ptr_type);
796 }
797
65728c26 798 /* Find DT_DEBUG. */
a738da3a
MF
799 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
800 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
801 return dyn_ptr;
802
3a40aaa0
UW
803 /* This may be a static executable. Look for the symbol
804 conventionally named _r_debug, as a last resort. */
805 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 806 if (msymbol.minsym != NULL)
77e371c0 807 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
808
809 /* DT_DEBUG entry not found. */
810 return 0;
811}
812
7f86f058 813/* Locate the base address of dynamic linker structs.
13437d4b
KB
814
815 For both the SunOS and SVR4 shared library implementations, if the
816 inferior executable has been linked dynamically, there is a single
817 address somewhere in the inferior's data space which is the key to
818 locating all of the dynamic linker's runtime structures. This
819 address is the value of the debug base symbol. The job of this
820 function is to find and return that address, or to return 0 if there
821 is no such address (the executable is statically linked for example).
822
823 For SunOS, the job is almost trivial, since the dynamic linker and
824 all of it's structures are statically linked to the executable at
825 link time. Thus the symbol for the address we are looking for has
826 already been added to the minimal symbol table for the executable's
827 objfile at the time the symbol file's symbols were read, and all we
828 have to do is look it up there. Note that we explicitly do NOT want
829 to find the copies in the shared library.
830
831 The SVR4 version is a bit more complicated because the address
832 is contained somewhere in the dynamic info section. We have to go
833 to a lot more work to discover the address of the debug base symbol.
834 Because of this complexity, we cache the value we find and return that
835 value on subsequent invocations. Note there is no copy in the
7f86f058 836 executable symbol tables. */
13437d4b
KB
837
838static CORE_ADDR
1a816a87 839locate_base (struct svr4_info *info)
13437d4b 840{
13437d4b
KB
841 /* Check to see if we have a currently valid address, and if so, avoid
842 doing all this work again and just return the cached address. If
843 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
844 section for ELF executables. There's no point in doing any of this
845 though if we don't have some link map offsets to work with. */
13437d4b 846
1a816a87 847 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 848 info->debug_base = elf_locate_base ();
1a816a87 849 return info->debug_base;
13437d4b
KB
850}
851
e4cd0d6a 852/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
853 return its address in the inferior. Return zero if the address
854 could not be determined.
13437d4b 855
e4cd0d6a
MK
856 FIXME: Perhaps we should validate the info somehow, perhaps by
857 checking r_version for a known version number, or r_state for
858 RT_CONSISTENT. */
13437d4b
KB
859
860static CORE_ADDR
1a816a87 861solib_svr4_r_map (struct svr4_info *info)
13437d4b 862{
4b188b9f 863 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 864 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 865 CORE_ADDR addr = 0;
13437d4b 866
a70b8144 867 try
08597104
JB
868 {
869 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
870 ptr_type);
871 }
230d2906 872 catch (const gdb_exception_error &ex)
492d29ea
PA
873 {
874 exception_print (gdb_stderr, ex);
875 }
492d29ea 876
08597104 877 return addr;
e4cd0d6a 878}
13437d4b 879
7cd25cfc
DJ
880/* Find r_brk from the inferior's debug base. */
881
882static CORE_ADDR
1a816a87 883solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
884{
885 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 886 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 887
1a816a87
PA
888 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
889 ptr_type);
7cd25cfc
DJ
890}
891
e4cd0d6a
MK
892/* Find the link map for the dynamic linker (if it is not in the
893 normal list of loaded shared objects). */
13437d4b 894
e4cd0d6a 895static CORE_ADDR
1a816a87 896solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
897{
898 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 899 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
34877895 900 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
901 ULONGEST version = 0;
902
a70b8144 903 try
416f679e
SDJ
904 {
905 /* Check version, and return zero if `struct r_debug' doesn't have
906 the r_ldsomap member. */
907 version
908 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
909 lmo->r_version_size, byte_order);
910 }
230d2906 911 catch (const gdb_exception_error &ex)
416f679e
SDJ
912 {
913 exception_print (gdb_stderr, ex);
914 }
13437d4b 915
e4cd0d6a
MK
916 if (version < 2 || lmo->r_ldsomap_offset == -1)
917 return 0;
13437d4b 918
1a816a87 919 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 920 ptr_type);
13437d4b
KB
921}
922
de18c1d8
JM
923/* On Solaris systems with some versions of the dynamic linker,
924 ld.so's l_name pointer points to the SONAME in the string table
925 rather than into writable memory. So that GDB can find shared
926 libraries when loading a core file generated by gcore, ensure that
927 memory areas containing the l_name string are saved in the core
928 file. */
929
930static int
931svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
932{
933 struct svr4_info *info;
934 CORE_ADDR ldsomap;
74de0234 935 CORE_ADDR name_lm;
de18c1d8 936
d70cc3ba 937 info = get_svr4_info (current_program_space);
de18c1d8
JM
938
939 info->debug_base = 0;
940 locate_base (info);
941 if (!info->debug_base)
942 return 0;
943
944 ldsomap = solib_svr4_r_ldsomap (info);
945 if (!ldsomap)
946 return 0;
947
a7961323 948 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 949 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 950
74de0234 951 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
952}
953
bf469271 954/* See solist.h. */
13437d4b
KB
955
956static int
bf469271 957open_symbol_file_object (int from_tty)
13437d4b
KB
958{
959 CORE_ADDR lm, l_name;
e83e4e24 960 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 961 int errcode;
4b188b9f 962 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 963 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 964 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 965 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 966 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
967 symfile_add_flags add_flags = 0;
968
969 if (from_tty)
970 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
971
972 if (symfile_objfile)
9e2f0ad4 973 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 974 return 0;
13437d4b 975
7cd25cfc 976 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
977 info->debug_base = 0;
978 if (locate_base (info) == 0)
a7961323 979 return 0; /* failed somehow... */
13437d4b
KB
980
981 /* First link map member should be the executable. */
1a816a87 982 lm = solib_svr4_r_map (info);
e4cd0d6a 983 if (lm == 0)
a7961323 984 return 0; /* failed somehow... */
13437d4b
KB
985
986 /* Read address of name from target memory to GDB. */
a7961323 987 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 988
cfaefc65 989 /* Convert the address to host format. */
a7961323 990 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 991
13437d4b 992 if (l_name == 0)
a7961323 993 return 0; /* No filename. */
13437d4b
KB
994
995 /* Now fetch the filename from target memory. */
996 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
997
998 if (errcode)
999 {
8a3fe4f8 1000 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1001 safe_strerror (errcode));
1002 return 0;
1003 }
1004
13437d4b 1005 /* Have a pathname: read the symbol file. */
e83e4e24 1006 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1007
1008 return 1;
1009}
13437d4b 1010
2268b414
JK
1011/* Data exchange structure for the XML parser as returned by
1012 svr4_current_sos_via_xfer_libraries. */
1013
1014struct svr4_library_list
1015{
1016 struct so_list *head, **tailp;
1017
1018 /* Inferior address of struct link_map used for the main executable. It is
1019 NULL if not known. */
1020 CORE_ADDR main_lm;
1021};
1022
7905fc35
PA
1023/* This module's 'free_objfile' observer. */
1024
1025static void
1026svr4_free_objfile_observer (struct objfile *objfile)
1027{
1028 probes_table_remove_objfile_probes (objfile);
1029}
1030
93f2a35e
JK
1031/* Implementation for target_so_ops.free_so. */
1032
1033static void
1034svr4_free_so (struct so_list *so)
1035{
76e75227
SM
1036 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1037
1038 delete li;
93f2a35e
JK
1039}
1040
0892cb63
DE
1041/* Implement target_so_ops.clear_so. */
1042
1043static void
1044svr4_clear_so (struct so_list *so)
1045{
d0e449a1
SM
1046 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1047
1048 if (li != NULL)
1049 li->l_addr_p = 0;
0892cb63
DE
1050}
1051
93f2a35e
JK
1052/* Free so_list built so far (called via cleanup). */
1053
1054static void
1055svr4_free_library_list (void *p_list)
1056{
1057 struct so_list *list = *(struct so_list **) p_list;
1058
1059 while (list != NULL)
1060 {
1061 struct so_list *next = list->next;
1062
3756ef7e 1063 free_so (list);
93f2a35e
JK
1064 list = next;
1065 }
1066}
1067
f9e14852
GB
1068/* Copy library list. */
1069
1070static struct so_list *
1071svr4_copy_library_list (struct so_list *src)
1072{
1073 struct so_list *dst = NULL;
1074 struct so_list **link = &dst;
1075
1076 while (src != NULL)
1077 {
fe978cb0 1078 struct so_list *newobj;
f9e14852 1079
8d749320 1080 newobj = XNEW (struct so_list);
fe978cb0 1081 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1082
76e75227
SM
1083 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1084 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1085
fe978cb0
PA
1086 newobj->next = NULL;
1087 *link = newobj;
1088 link = &newobj->next;
f9e14852
GB
1089
1090 src = src->next;
1091 }
1092
1093 return dst;
1094}
1095
2268b414
JK
1096#ifdef HAVE_LIBEXPAT
1097
1098#include "xml-support.h"
1099
1100/* Handle the start of a <library> element. Note: new elements are added
1101 at the tail of the list, keeping the list in order. */
1102
1103static void
1104library_list_start_library (struct gdb_xml_parser *parser,
1105 const struct gdb_xml_element *element,
4d0fdd9b
SM
1106 void *user_data,
1107 std::vector<gdb_xml_value> &attributes)
2268b414 1108{
19ba03f4
SM
1109 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1110 const char *name
4d0fdd9b 1111 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1112 ULONGEST *lmp
4d0fdd9b 1113 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1114 ULONGEST *l_addrp
4d0fdd9b 1115 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1116 ULONGEST *l_ldp
4d0fdd9b 1117 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1118 struct so_list *new_elem;
1119
41bf6aca 1120 new_elem = XCNEW (struct so_list);
76e75227 1121 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1122 new_elem->lm_info = li;
1123 li->lm_addr = *lmp;
1124 li->l_addr_inferior = *l_addrp;
1125 li->l_ld = *l_ldp;
2268b414
JK
1126
1127 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1128 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1129 strcpy (new_elem->so_original_name, new_elem->so_name);
1130
1131 *list->tailp = new_elem;
1132 list->tailp = &new_elem->next;
1133}
1134
1135/* Handle the start of a <library-list-svr4> element. */
1136
1137static void
1138svr4_library_list_start_list (struct gdb_xml_parser *parser,
1139 const struct gdb_xml_element *element,
4d0fdd9b
SM
1140 void *user_data,
1141 std::vector<gdb_xml_value> &attributes)
2268b414 1142{
19ba03f4
SM
1143 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1144 const char *version
4d0fdd9b 1145 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1146 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1147
1148 if (strcmp (version, "1.0") != 0)
1149 gdb_xml_error (parser,
1150 _("SVR4 Library list has unsupported version \"%s\""),
1151 version);
1152
1153 if (main_lm)
4d0fdd9b 1154 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1155}
1156
1157/* The allowed elements and attributes for an XML library list.
1158 The root element is a <library-list>. */
1159
1160static const struct gdb_xml_attribute svr4_library_attributes[] =
1161{
1162 { "name", GDB_XML_AF_NONE, NULL, NULL },
1163 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1166 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1167};
1168
1169static const struct gdb_xml_element svr4_library_list_children[] =
1170{
1171 {
1172 "library", svr4_library_attributes, NULL,
1173 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1174 library_list_start_library, NULL
1175 },
1176 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1177};
1178
1179static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1180{
1181 { "version", GDB_XML_AF_NONE, NULL, NULL },
1182 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1183 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1184};
1185
1186static const struct gdb_xml_element svr4_library_list_elements[] =
1187{
1188 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1189 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1190 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1191};
1192
2268b414
JK
1193/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1194
1195 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1196 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1197 empty, caller is responsible for freeing all its entries. */
1198
1199static int
1200svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1201{
2b6ff1c0
TT
1202 auto cleanup = make_scope_exit ([&] ()
1203 {
1204 svr4_free_library_list (&list->head);
1205 });
2268b414
JK
1206
1207 memset (list, 0, sizeof (*list));
1208 list->tailp = &list->head;
2eca4a8d 1209 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1210 svr4_library_list_elements, document, list) == 0)
1211 {
1212 /* Parsed successfully, keep the result. */
2b6ff1c0 1213 cleanup.release ();
2268b414
JK
1214 return 1;
1215 }
1216
2268b414
JK
1217 return 0;
1218}
1219
f9e14852 1220/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1221
1222 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1223 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1224 empty, caller is responsible for freeing all its entries.
1225
1226 Note that ANNEX must be NULL if the remote does not explicitly allow
1227 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1228 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1229
1230static int
f9e14852
GB
1231svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1232 const char *annex)
2268b414 1233{
f9e14852
GB
1234 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1235
2268b414 1236 /* Fetch the list of shared libraries. */
9018be22 1237 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1238 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1239 annex);
9018be22 1240 if (!svr4_library_document)
2268b414
JK
1241 return 0;
1242
9018be22 1243 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1244}
1245
1246#else
1247
1248static int
f9e14852
GB
1249svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1250 const char *annex)
2268b414
JK
1251{
1252 return 0;
1253}
1254
1255#endif
1256
34439770
DJ
1257/* If no shared library information is available from the dynamic
1258 linker, build a fallback list from other sources. */
1259
1260static struct so_list *
d70cc3ba 1261svr4_default_sos (svr4_info *info)
34439770 1262{
fe978cb0 1263 struct so_list *newobj;
1a816a87 1264
8e5c319d
JK
1265 if (!info->debug_loader_offset_p)
1266 return NULL;
34439770 1267
fe978cb0 1268 newobj = XCNEW (struct so_list);
76e75227 1269 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1270 newobj->lm_info = li;
34439770 1271
3957565a 1272 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1273 li->l_addr = info->debug_loader_offset;
1274 li->l_addr_p = 1;
34439770 1275
fe978cb0
PA
1276 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1277 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1278 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1279
fe978cb0 1280 return newobj;
34439770
DJ
1281}
1282
f9e14852
GB
1283/* Read the whole inferior libraries chain starting at address LM.
1284 Expect the first entry in the chain's previous entry to be PREV_LM.
1285 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1286 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1287 to it. Returns nonzero upon success. If zero is returned the
1288 entries stored to LINK_PTR_PTR are still valid although they may
1289 represent only part of the inferior library list. */
13437d4b 1290
f9e14852 1291static int
d70cc3ba 1292svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1293 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1294{
c725e7b6 1295 CORE_ADDR first_l_name = 0;
f9e14852 1296 CORE_ADDR next_lm;
13437d4b 1297
cb08cc53 1298 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1299 {
cb08cc53 1300 int errcode;
e83e4e24 1301 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1302
b3bc8453 1303 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1304
a7961323 1305 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1306 newobj->lm_info = li;
1307 if (li == NULL)
b3bc8453 1308 return 0;
13437d4b 1309
d0e449a1 1310 next_lm = li->l_next;
492928e4 1311
d0e449a1 1312 if (li->l_prev != prev_lm)
492928e4 1313 {
2268b414 1314 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1315 paddress (target_gdbarch (), prev_lm),
d0e449a1 1316 paddress (target_gdbarch (), li->l_prev));
f9e14852 1317 return 0;
492928e4 1318 }
13437d4b
KB
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
c378eb4e 1324 decide when to ignore it. */
d0e449a1 1325 if (ignore_first && li->l_prev == 0)
93a57060 1326 {
d0e449a1
SM
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
cb08cc53 1329 continue;
93a57060 1330 }
13437d4b 1331
cb08cc53 1332 /* Extract this shared object's name. */
d0e449a1
SM
1333 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1334 &errcode);
cb08cc53
JK
1335 if (errcode != 0)
1336 {
7d760051
UW
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
d0e449a1 1341 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1342 warning (_("Can't read pathname for load map: %s."),
1343 safe_strerror (errcode));
cb08cc53 1344 continue;
13437d4b
KB
1345 }
1346
e83e4e24 1347 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1348 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1349 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1350
cb08cc53
JK
1351 /* If this entry has no name, or its name matches the name
1352 for the main executable, don't include it in the list. */
fe978cb0 1353 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1354 continue;
e4cd0d6a 1355
fe978cb0 1356 newobj->next = 0;
b3bc8453
TT
1357 /* Don't free it now. */
1358 **link_ptr_ptr = newobj.release ();
1359 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1360 }
f9e14852
GB
1361
1362 return 1;
cb08cc53
JK
1363}
1364
f9e14852
GB
1365/* Read the full list of currently loaded shared objects directly
1366 from the inferior, without referring to any libraries read and
1367 stored by the probes interface. Handle special cases relating
1368 to the first elements of the list. */
cb08cc53
JK
1369
1370static struct so_list *
f9e14852 1371svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1372{
1373 CORE_ADDR lm;
1374 struct so_list *head = NULL;
1375 struct so_list **link_ptr = &head;
cb08cc53 1376 int ignore_first;
2268b414
JK
1377 struct svr4_library_list library_list;
1378
0c5bf5a9
JK
1379 /* Fall back to manual examination of the target if the packet is not
1380 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1381 tests a case where gdbserver cannot find the shared libraries list while
1382 GDB itself is able to find it via SYMFILE_OBJFILE.
1383
1384 Unfortunately statically linked inferiors will also fall back through this
1385 suboptimal code path. */
1386
f9e14852
GB
1387 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1388 NULL);
1389 if (info->using_xfer)
2268b414
JK
1390 {
1391 if (library_list.main_lm)
f9e14852 1392 info->main_lm_addr = library_list.main_lm;
2268b414 1393
d70cc3ba 1394 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1395 }
cb08cc53 1396
cb08cc53
JK
1397 /* Always locate the debug struct, in case it has moved. */
1398 info->debug_base = 0;
1399 locate_base (info);
1400
1401 /* If we can't find the dynamic linker's base structure, this
1402 must not be a dynamically linked executable. Hmm. */
1403 if (! info->debug_base)
d70cc3ba 1404 return svr4_default_sos (info);
cb08cc53
JK
1405
1406 /* Assume that everything is a library if the dynamic loader was loaded
1407 late by a static executable. */
1408 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1409 ignore_first = 0;
1410 else
1411 ignore_first = 1;
1412
2b6ff1c0
TT
1413 auto cleanup = make_scope_exit ([&] ()
1414 {
1415 svr4_free_library_list (&head);
1416 });
cb08cc53
JK
1417
1418 /* Walk the inferior's link map list, and build our list of
1419 `struct so_list' nodes. */
1420 lm = solib_svr4_r_map (info);
1421 if (lm)
d70cc3ba 1422 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1423
1424 /* On Solaris, the dynamic linker is not in the normal list of
1425 shared objects, so make sure we pick it up too. Having
1426 symbol information for the dynamic linker is quite crucial
1427 for skipping dynamic linker resolver code. */
1428 lm = solib_svr4_r_ldsomap (info);
1429 if (lm)
d70cc3ba 1430 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1431
2b6ff1c0 1432 cleanup.release ();
13437d4b 1433
34439770 1434 if (head == NULL)
d70cc3ba 1435 return svr4_default_sos (info);
34439770 1436
13437d4b
KB
1437 return head;
1438}
1439
8b9a549d
PA
1440/* Implement the main part of the "current_sos" target_so_ops
1441 method. */
f9e14852
GB
1442
1443static struct so_list *
d70cc3ba 1444svr4_current_sos_1 (svr4_info *info)
f9e14852 1445{
f9e14852
GB
1446 /* If the solib list has been read and stored by the probes
1447 interface then we return a copy of the stored list. */
1448 if (info->solib_list != NULL)
1449 return svr4_copy_library_list (info->solib_list);
1450
1451 /* Otherwise obtain the solib list directly from the inferior. */
1452 return svr4_current_sos_direct (info);
1453}
1454
8b9a549d
PA
1455/* Implement the "current_sos" target_so_ops method. */
1456
1457static struct so_list *
1458svr4_current_sos (void)
1459{
d70cc3ba
SM
1460 svr4_info *info = get_svr4_info (current_program_space);
1461 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1462 struct mem_range vsyscall_range;
1463
1464 /* Filter out the vDSO module, if present. Its symbol file would
1465 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1466 managed by symfile-mem.c:add_vsyscall_page. */
1467 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1468 && vsyscall_range.length != 0)
1469 {
1470 struct so_list **sop;
1471
1472 sop = &so_head;
1473 while (*sop != NULL)
1474 {
1475 struct so_list *so = *sop;
1476
1477 /* We can't simply match the vDSO by starting address alone,
1478 because lm_info->l_addr_inferior (and also l_addr) do not
1479 necessarily represent the real starting address of the
1480 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1481 field (the ".dynamic" section of the shared object)
1482 always points at the absolute/resolved address though.
1483 So check whether that address is inside the vDSO's
1484 mapping instead.
1485
1486 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1487 0-based ELF, and we see:
1488
1489 (gdb) info auxv
1490 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1491 (gdb) p/x *_r_debug.r_map.l_next
1492 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1493
1494 And on Linux 2.6.32 (x86_64) we see:
1495
1496 (gdb) info auxv
1497 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1498 (gdb) p/x *_r_debug.r_map.l_next
1499 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1500
1501 Dumping that vDSO shows:
1502
1503 (gdb) info proc mappings
1504 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1505 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1506 # readelf -Wa vdso.bin
1507 [...]
1508 Entry point address: 0xffffffffff700700
1509 [...]
1510 Section Headers:
1511 [Nr] Name Type Address Off Size
1512 [ 0] NULL 0000000000000000 000000 000000
1513 [ 1] .hash HASH ffffffffff700120 000120 000038
1514 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1515 [...]
1516 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1517 */
d0e449a1
SM
1518
1519 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1520
1521 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1522 {
1523 *sop = so->next;
1524 free_so (so);
1525 break;
1526 }
1527
1528 sop = &so->next;
1529 }
1530 }
1531
1532 return so_head;
1533}
1534
93a57060 1535/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1536
1537CORE_ADDR
1538svr4_fetch_objfile_link_map (struct objfile *objfile)
1539{
93a57060 1540 struct so_list *so;
d70cc3ba 1541 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1542
93a57060 1543 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1544 if (info->main_lm_addr == 0)
e696b3ad 1545 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1546
93a57060
DJ
1547 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1548 if (objfile == symfile_objfile)
1a816a87 1549 return info->main_lm_addr;
93a57060 1550
df22c1e5
JB
1551 /* If OBJFILE is a separate debug object file, look for the
1552 original object file. */
1553 if (objfile->separate_debug_objfile_backlink != NULL)
1554 objfile = objfile->separate_debug_objfile_backlink;
1555
93a57060
DJ
1556 /* The other link map addresses may be found by examining the list
1557 of shared libraries. */
1558 for (so = master_so_list (); so; so = so->next)
1559 if (so->objfile == objfile)
d0e449a1
SM
1560 {
1561 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1562
1563 return li->lm_addr;
1564 }
93a57060
DJ
1565
1566 /* Not found! */
bc4a16ae
EZ
1567 return 0;
1568}
13437d4b
KB
1569
1570/* On some systems, the only way to recognize the link map entry for
1571 the main executable file is by looking at its name. Return
1572 non-zero iff SONAME matches one of the known main executable names. */
1573
1574static int
bc043ef3 1575match_main (const char *soname)
13437d4b 1576{
bc043ef3 1577 const char * const *mainp;
13437d4b
KB
1578
1579 for (mainp = main_name_list; *mainp != NULL; mainp++)
1580 {
1581 if (strcmp (soname, *mainp) == 0)
1582 return (1);
1583 }
1584
1585 return (0);
1586}
1587
13437d4b
KB
1588/* Return 1 if PC lies in the dynamic symbol resolution code of the
1589 SVR4 run time loader. */
13437d4b 1590
7d522c90 1591int
d7fa2ae2 1592svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1593{
d70cc3ba 1594 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1595
1596 return ((pc >= info->interp_text_sect_low
1597 && pc < info->interp_text_sect_high)
1598 || (pc >= info->interp_plt_sect_low
1599 && pc < info->interp_plt_sect_high)
3e5d3a5a 1600 || in_plt_section (pc)
0875794a 1601 || in_gnu_ifunc_stub (pc));
13437d4b 1602}
13437d4b 1603
2f4950cd
AC
1604/* Given an executable's ABFD and target, compute the entry-point
1605 address. */
1606
1607static CORE_ADDR
1608exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1609{
8c2b9656
YQ
1610 CORE_ADDR addr;
1611
2f4950cd
AC
1612 /* KevinB wrote ... for most targets, the address returned by
1613 bfd_get_start_address() is the entry point for the start
1614 function. But, for some targets, bfd_get_start_address() returns
1615 the address of a function descriptor from which the entry point
1616 address may be extracted. This address is extracted by
1617 gdbarch_convert_from_func_ptr_addr(). The method
1618 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1619 function for targets which don't use function descriptors. */
8c2b9656 1620 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1621 bfd_get_start_address (abfd),
1622 targ);
8c2b9656 1623 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1624}
13437d4b 1625
f9e14852
GB
1626/* A probe and its associated action. */
1627
1628struct probe_and_action
1629{
1630 /* The probe. */
935676c9 1631 probe *prob;
f9e14852 1632
729662a5
TT
1633 /* The relocated address of the probe. */
1634 CORE_ADDR address;
1635
f9e14852
GB
1636 /* The action. */
1637 enum probe_action action;
7905fc35
PA
1638
1639 /* The objfile where this probe was found. */
1640 struct objfile *objfile;
f9e14852
GB
1641};
1642
1643/* Returns a hash code for the probe_and_action referenced by p. */
1644
1645static hashval_t
1646hash_probe_and_action (const void *p)
1647{
19ba03f4 1648 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1649
729662a5 1650 return (hashval_t) pa->address;
f9e14852
GB
1651}
1652
1653/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1654 are equal. */
1655
1656static int
1657equal_probe_and_action (const void *p1, const void *p2)
1658{
19ba03f4
SM
1659 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1660 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1661
729662a5 1662 return pa1->address == pa2->address;
f9e14852
GB
1663}
1664
7905fc35
PA
1665/* Traversal function for probes_table_remove_objfile_probes. */
1666
1667static int
1668probes_table_htab_remove_objfile_probes (void **slot, void *info)
1669{
1670 probe_and_action *pa = (probe_and_action *) *slot;
1671 struct objfile *objfile = (struct objfile *) info;
1672
1673 if (pa->objfile == objfile)
09232438
TT
1674 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1675 slot);
7905fc35
PA
1676
1677 return 1;
1678}
1679
1680/* Remove all probes that belong to OBJFILE from the probes table. */
1681
1682static void
1683probes_table_remove_objfile_probes (struct objfile *objfile)
1684{
d70cc3ba 1685 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1686 if (info->probes_table != nullptr)
09232438 1687 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1688 probes_table_htab_remove_objfile_probes, objfile);
1689}
1690
f9e14852
GB
1691/* Register a solib event probe and its associated action in the
1692 probes table. */
1693
1694static void
d70cc3ba 1695register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1696 probe *prob, CORE_ADDR address,
729662a5 1697 enum probe_action action)
f9e14852 1698{
f9e14852
GB
1699 struct probe_and_action lookup, *pa;
1700 void **slot;
1701
1702 /* Create the probes table, if necessary. */
1703 if (info->probes_table == NULL)
09232438
TT
1704 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1705 equal_probe_and_action,
1706 xfree, xcalloc, xfree));
f9e14852 1707
729662a5 1708 lookup.address = address;
09232438 1709 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1710 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1711
1712 pa = XCNEW (struct probe_and_action);
935676c9 1713 pa->prob = prob;
729662a5 1714 pa->address = address;
f9e14852 1715 pa->action = action;
7905fc35 1716 pa->objfile = objfile;
f9e14852
GB
1717
1718 *slot = pa;
1719}
1720
1721/* Get the solib event probe at the specified location, and the
1722 action associated with it. Returns NULL if no solib event probe
1723 was found. */
1724
1725static struct probe_and_action *
1726solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1727{
f9e14852
GB
1728 struct probe_and_action lookup;
1729 void **slot;
1730
729662a5 1731 lookup.address = address;
09232438 1732 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1733
1734 if (slot == NULL)
1735 return NULL;
1736
1737 return (struct probe_and_action *) *slot;
1738}
1739
1740/* Decide what action to take when the specified solib event probe is
1741 hit. */
1742
1743static enum probe_action
1744solib_event_probe_action (struct probe_and_action *pa)
1745{
1746 enum probe_action action;
73c6b475 1747 unsigned probe_argc = 0;
08a6411c 1748 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1749
1750 action = pa->action;
1751 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1752 return action;
1753
1754 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1755
1756 /* Check that an appropriate number of arguments has been supplied.
1757 We expect:
1758 arg0: Lmid_t lmid (mandatory)
1759 arg1: struct r_debug *debug_base (mandatory)
1760 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1761 try
3bd7e5b7 1762 {
fe01123e 1763 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1764 }
230d2906 1765 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1766 {
1767 exception_print (gdb_stderr, ex);
1768 probe_argc = 0;
1769 }
3bd7e5b7 1770
935676c9
SDJ
1771 /* If get_argument_count throws an exception, probe_argc will be set
1772 to zero. However, if pa->prob does not have arguments, then
1773 get_argument_count will succeed but probe_argc will also be zero.
1774 Both cases happen because of different things, but they are
1775 treated equally here: action will be set to
3bd7e5b7 1776 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1777 if (probe_argc == 2)
1778 action = FULL_RELOAD;
1779 else if (probe_argc < 2)
1780 action = PROBES_INTERFACE_FAILED;
1781
1782 return action;
1783}
1784
1785/* Populate the shared object list by reading the entire list of
1786 shared objects from the inferior. Handle special cases relating
1787 to the first elements of the list. Returns nonzero on success. */
1788
1789static int
1790solist_update_full (struct svr4_info *info)
1791{
1792 free_solib_list (info);
1793 info->solib_list = svr4_current_sos_direct (info);
1794
1795 return 1;
1796}
1797
1798/* Update the shared object list starting from the link-map entry
1799 passed by the linker in the probe's third argument. Returns
1800 nonzero if the list was successfully updated, or zero to indicate
1801 failure. */
1802
1803static int
1804solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1805{
1806 struct so_list *tail;
1807 CORE_ADDR prev_lm;
1808
1809 /* svr4_current_sos_direct contains logic to handle a number of
1810 special cases relating to the first elements of the list. To
1811 avoid duplicating this logic we defer to solist_update_full
1812 if the list is empty. */
1813 if (info->solib_list == NULL)
1814 return 0;
1815
1816 /* Fall back to a full update if we are using a remote target
1817 that does not support incremental transfers. */
1818 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1819 return 0;
1820
1821 /* Walk to the end of the list. */
1822 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1823 /* Nothing. */;
d0e449a1
SM
1824
1825 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1826 prev_lm = li->lm_addr;
f9e14852
GB
1827
1828 /* Read the new objects. */
1829 if (info->using_xfer)
1830 {
1831 struct svr4_library_list library_list;
1832 char annex[64];
1833
1834 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1835 phex_nz (lm, sizeof (lm)),
1836 phex_nz (prev_lm, sizeof (prev_lm)));
1837 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1838 return 0;
1839
1840 tail->next = library_list.head;
1841 }
1842 else
1843 {
1844 struct so_list **link = &tail->next;
1845
1846 /* IGNORE_FIRST may safely be set to zero here because the
1847 above check and deferral to solist_update_full ensures
1848 that this call to svr4_read_so_list will never see the
1849 first element. */
d70cc3ba 1850 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1851 return 0;
1852 }
1853
1854 return 1;
1855}
1856
1857/* Disable the probes-based linker interface and revert to the
1858 original interface. We don't reset the breakpoints as the
1859 ones set up for the probes-based interface are adequate. */
1860
1861static void
d70cc3ba 1862disable_probes_interface (svr4_info *info)
f9e14852 1863{
f9e14852 1864 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1865 "Reverting to original interface."));
f9e14852
GB
1866
1867 free_probes_table (info);
1868 free_solib_list (info);
1869}
1870
1871/* Update the solib list as appropriate when using the
1872 probes-based linker interface. Do nothing if using the
1873 standard interface. */
1874
1875static void
1876svr4_handle_solib_event (void)
1877{
d70cc3ba 1878 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1879 struct probe_and_action *pa;
1880 enum probe_action action;
ad1c917a 1881 struct value *val = NULL;
f9e14852 1882 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1883 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1884
1885 /* Do nothing if not using the probes interface. */
1886 if (info->probes_table == NULL)
1887 return;
1888
1889 /* If anything goes wrong we revert to the original linker
1890 interface. */
d70cc3ba
SM
1891 auto cleanup = make_scope_exit ([info] ()
1892 {
1893 disable_probes_interface (info);
1894 });
f9e14852
GB
1895
1896 pc = regcache_read_pc (get_current_regcache ());
1897 pa = solib_event_probe_at (info, pc);
1898 if (pa == NULL)
d01c5877 1899 return;
f9e14852
GB
1900
1901 action = solib_event_probe_action (pa);
1902 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1903 return;
f9e14852
GB
1904
1905 if (action == DO_NOTHING)
1906 {
d01c5877 1907 cleanup.release ();
f9e14852
GB
1908 return;
1909 }
1910
935676c9 1911 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1912 using find_pc_section. find_pc_section is accelerated by a cache
1913 called the section map. The section map is invalidated every
1914 time a shared library is loaded or unloaded, and if the inferior
1915 is generating a lot of shared library events then the section map
1916 will be updated every time svr4_handle_solib_event is called.
1917 We called find_pc_section in svr4_create_solib_event_breakpoints,
1918 so we can guarantee that the dynamic linker's sections are in the
1919 section map. We can therefore inhibit section map updates across
935676c9 1920 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1921 {
1922 scoped_restore inhibit_updates
1923 = inhibit_section_map_updates (current_program_space);
f9e14852 1924
a70b8144 1925 try
06424eac
TT
1926 {
1927 val = pa->prob->evaluate_argument (1, frame);
1928 }
230d2906 1929 catch (const gdb_exception_error &ex)
06424eac
TT
1930 {
1931 exception_print (gdb_stderr, ex);
1932 val = NULL;
1933 }
f9e14852 1934
06424eac 1935 if (val == NULL)
d01c5877 1936 return;
f9e14852 1937
06424eac
TT
1938 debug_base = value_as_address (val);
1939 if (debug_base == 0)
d01c5877 1940 return;
f9e14852 1941
06424eac
TT
1942 /* Always locate the debug struct, in case it moved. */
1943 info->debug_base = 0;
1944 if (locate_base (info) == 0)
d01c5877 1945 return;
3bd7e5b7 1946
06424eac
TT
1947 /* GDB does not currently support libraries loaded via dlmopen
1948 into namespaces other than the initial one. We must ignore
1949 any namespace other than the initial namespace here until
1950 support for this is added to GDB. */
1951 if (debug_base != info->debug_base)
1952 action = DO_NOTHING;
f9e14852 1953
06424eac
TT
1954 if (action == UPDATE_OR_RELOAD)
1955 {
a70b8144 1956 try
06424eac
TT
1957 {
1958 val = pa->prob->evaluate_argument (2, frame);
1959 }
230d2906 1960 catch (const gdb_exception_error &ex)
06424eac
TT
1961 {
1962 exception_print (gdb_stderr, ex);
06424eac
TT
1963 return;
1964 }
06424eac
TT
1965
1966 if (val != NULL)
1967 lm = value_as_address (val);
1968
1969 if (lm == 0)
1970 action = FULL_RELOAD;
1971 }
f9e14852 1972
06424eac
TT
1973 /* Resume section map updates. Closing the scope is
1974 sufficient. */
1975 }
f9e14852
GB
1976
1977 if (action == UPDATE_OR_RELOAD)
1978 {
1979 if (!solist_update_incremental (info, lm))
1980 action = FULL_RELOAD;
1981 }
1982
1983 if (action == FULL_RELOAD)
1984 {
1985 if (!solist_update_full (info))
d01c5877 1986 return;
f9e14852
GB
1987 }
1988
d01c5877 1989 cleanup.release ();
f9e14852
GB
1990}
1991
1992/* Helper function for svr4_update_solib_event_breakpoints. */
1993
95da600f
CB
1994static bool
1995svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852
GB
1996{
1997 struct bp_location *loc;
1998
1999 if (b->type != bp_shlib_event)
2000 {
2001 /* Continue iterating. */
95da600f 2002 return false;
f9e14852
GB
2003 }
2004
2005 for (loc = b->loc; loc != NULL; loc = loc->next)
2006 {
2007 struct svr4_info *info;
2008 struct probe_and_action *pa;
2009
09232438 2010 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
2011 if (info == NULL || info->probes_table == NULL)
2012 continue;
2013
2014 pa = solib_event_probe_at (info, loc->address);
2015 if (pa == NULL)
2016 continue;
2017
2018 if (pa->action == DO_NOTHING)
2019 {
2020 if (b->enable_state == bp_disabled && stop_on_solib_events)
2021 enable_breakpoint (b);
2022 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2023 disable_breakpoint (b);
2024 }
2025
2026 break;
2027 }
2028
2029 /* Continue iterating. */
95da600f 2030 return false;
f9e14852
GB
2031}
2032
2033/* Enable or disable optional solib event breakpoints as appropriate.
2034 Called whenever stop_on_solib_events is changed. */
2035
2036static void
2037svr4_update_solib_event_breakpoints (void)
2038{
95da600f 2039 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
f9e14852
GB
2040}
2041
2042/* Create and register solib event breakpoints. PROBES is an array
2043 of NUM_PROBES elements, each of which is vector of probes. A
2044 solib event breakpoint will be created and registered for each
2045 probe. */
2046
2047static void
d70cc3ba 2048svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2049 const std::vector<probe *> *probes,
729662a5 2050 struct objfile *objfile)
f9e14852 2051{
45461e0d 2052 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2053 {
2054 enum probe_action action = probe_info[i].action;
f9e14852 2055
45461e0d 2056 for (probe *p : probes[i])
f9e14852 2057 {
935676c9 2058 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2059
2060 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2061 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2062 }
2063 }
2064
2065 svr4_update_solib_event_breakpoints ();
2066}
2067
e661ef01
AH
2068/* Find all the glibc named probes. Only if all of the probes are found, then
2069 create them and return true. Otherwise return false. If WITH_PREFIX is set
2070 then add "rtld" to the front of the probe names. */
2071static bool
2072svr4_find_and_create_probe_breakpoints (svr4_info *info,
2073 struct gdbarch *gdbarch,
2074 struct obj_section *os,
2075 bool with_prefix)
2076{
2077 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2078
2079 for (int i = 0; i < NUM_PROBES; i++)
2080 {
2081 const char *name = probe_info[i].name;
2082 char buf[32];
2083
2084 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2085 version of the probes code in which the probes' names were prefixed
2086 with "rtld_" and the "map_failed" probe did not exist. The locations
2087 of the probes are otherwise the same, so we check for probes with
2088 prefixed names if probes with unprefixed names are not present. */
2089 if (with_prefix)
2090 {
2091 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2092 name = buf;
2093 }
2094
2095 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2096
2097 /* The "map_failed" probe did not exist in early
2098 versions of the probes code in which the probes'
2099 names were prefixed with "rtld_". */
2100 if (with_prefix && streq (name, "rtld_map_failed"))
2101 continue;
2102
2103 /* Ensure at least one probe for the current name was found. */
2104 if (probes[i].empty ())
2105 return false;
2106
2107 /* Ensure probe arguments can be evaluated. */
d90b8f26 2108 for (probe *p : probes[i])
e661ef01 2109 {
e661ef01
AH
2110 if (!p->can_evaluate_arguments ())
2111 return false;
d90b8f26
AH
2112 /* This will fail if the probe is invalid. This has been seen on Arm
2113 due to references to symbols that have been resolved away. */
2114 try
2115 {
2116 p->get_argument_count (gdbarch);
2117 }
2118 catch (const gdb_exception_error &ex)
2119 {
2120 exception_print (gdb_stderr, ex);
2121 warning (_("Initializing probes-based dynamic linker interface "
2122 "failed.\nReverting to original interface."));
2123 return false;
2124 }
e661ef01
AH
2125 }
2126 }
2127
2128 /* All probes found. Now create them. */
2129 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2130 return true;
2131}
2132
f9e14852
GB
2133/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2134 before and after mapping and unmapping shared libraries. The sole
2135 purpose of this method is to allow debuggers to set a breakpoint so
2136 they can track these changes.
2137
2138 Some versions of the glibc dynamic linker contain named probes
2139 to allow more fine grained stopping. Given the address of the
2140 original marker function, this function attempts to find these
2141 probes, and if found, sets breakpoints on those instead. If the
2142 probes aren't found, a single breakpoint is set on the original
2143 marker function. */
2144
2145static void
d70cc3ba 2146svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2147 CORE_ADDR address)
2148{
e661ef01 2149 struct obj_section *os = find_pc_section (address);
f9e14852 2150
e661ef01
AH
2151 if (os == nullptr
2152 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2153 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2154 create_solib_event_breakpoint (gdbarch, address);
f9e14852
GB
2155}
2156
cb457ae2
YQ
2157/* Helper function for gdb_bfd_lookup_symbol. */
2158
2159static int
3953f15c 2160cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2161{
2162 return (strcmp (sym->name, (const char *) data) == 0
2163 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2164}
7f86f058 2165/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2166
2167 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2168 debugger interface, support for arranging for the inferior to hit
2169 a breakpoint after mapping in the shared libraries. This function
2170 enables that breakpoint.
2171
2172 For SunOS, there is a special flag location (in_debugger) which we
2173 set to 1. When the dynamic linker sees this flag set, it will set
2174 a breakpoint at a location known only to itself, after saving the
2175 original contents of that place and the breakpoint address itself,
2176 in it's own internal structures. When we resume the inferior, it
2177 will eventually take a SIGTRAP when it runs into the breakpoint.
2178 We handle this (in a different place) by restoring the contents of
2179 the breakpointed location (which is only known after it stops),
2180 chasing around to locate the shared libraries that have been
2181 loaded, then resuming.
2182
2183 For SVR4, the debugger interface structure contains a member (r_brk)
2184 which is statically initialized at the time the shared library is
2185 built, to the offset of a function (_r_debug_state) which is guaran-
2186 teed to be called once before mapping in a library, and again when
2187 the mapping is complete. At the time we are examining this member,
2188 it contains only the unrelocated offset of the function, so we have
2189 to do our own relocation. Later, when the dynamic linker actually
2190 runs, it relocates r_brk to be the actual address of _r_debug_state().
2191
2192 The debugger interface structure also contains an enumeration which
2193 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2194 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2195 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2196
2197static int
268a4a75 2198enable_break (struct svr4_info *info, int from_tty)
13437d4b 2199{
3b7344d5 2200 struct bound_minimal_symbol msymbol;
bc043ef3 2201 const char * const *bkpt_namep;
13437d4b 2202 asection *interp_sect;
7cd25cfc 2203 CORE_ADDR sym_addr;
13437d4b 2204
6c95b8df
PA
2205 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2206 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2207
7cd25cfc
DJ
2208 /* If we already have a shared library list in the target, and
2209 r_debug contains r_brk, set the breakpoint there - this should
2210 mean r_brk has already been relocated. Assume the dynamic linker
2211 is the object containing r_brk. */
2212
e696b3ad 2213 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2214 sym_addr = 0;
1a816a87
PA
2215 if (info->debug_base && solib_svr4_r_map (info) != 0)
2216 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2217
2218 if (sym_addr != 0)
2219 {
2220 struct obj_section *os;
2221
b36ec657 2222 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2223 (target_gdbarch (),
2224 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2225 sym_addr,
2226 current_top_target ()));
b36ec657 2227
48379de6
DE
2228 /* On at least some versions of Solaris there's a dynamic relocation
2229 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2230 we get control before the dynamic linker has self-relocated.
2231 Check if SYM_ADDR is in a known section, if it is assume we can
2232 trust its value. This is just a heuristic though, it could go away
2233 or be replaced if it's getting in the way.
2234
2235 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2236 however it's spelled in your particular system) is ARM or Thumb.
2237 That knowledge is encoded in the address, if it's Thumb the low bit
2238 is 1. However, we've stripped that info above and it's not clear
2239 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2240 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2241 find_pc_section verifies we know about the address and have some
2242 hope of computing the right kind of breakpoint to use (via
2243 symbol info). It does mean that GDB needs to be pointed at a
2244 non-stripped version of the dynamic linker in order to obtain
2245 information it already knows about. Sigh. */
2246
7cd25cfc
DJ
2247 os = find_pc_section (sym_addr);
2248 if (os != NULL)
2249 {
2250 /* Record the relocated start and end address of the dynamic linker
2251 text and plt section for svr4_in_dynsym_resolve_code. */
2252 bfd *tmp_bfd;
2253 CORE_ADDR load_addr;
2254
2255 tmp_bfd = os->objfile->obfd;
2256 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2257 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2258
2259 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2260 if (interp_sect)
2261 {
fd361982
AM
2262 info->interp_text_sect_low
2263 = bfd_section_vma (interp_sect) + load_addr;
2264 info->interp_text_sect_high
2265 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2266 }
2267 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2268 if (interp_sect)
2269 {
fd361982
AM
2270 info->interp_plt_sect_low
2271 = bfd_section_vma (interp_sect) + load_addr;
2272 info->interp_plt_sect_high
2273 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2274 }
2275
d70cc3ba 2276 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2277 return 1;
2278 }
2279 }
2280
97ec2c2f 2281 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2282 into the old breakpoint at symbol code. */
17658d46
SM
2283 gdb::optional<gdb::byte_vector> interp_name_holder
2284 = find_program_interpreter ();
2285 if (interp_name_holder)
13437d4b 2286 {
17658d46 2287 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2288 CORE_ADDR load_addr = 0;
2289 int load_addr_found = 0;
2ec9a4f8 2290 int loader_found_in_list = 0;
f8766ec1 2291 struct so_list *so;
2f4950cd 2292 struct target_ops *tmp_bfd_target;
13437d4b 2293
7cd25cfc 2294 sym_addr = 0;
13437d4b
KB
2295
2296 /* Now we need to figure out where the dynamic linker was
2297 loaded so that we can load its symbols and place a breakpoint
2298 in the dynamic linker itself.
2299
2300 This address is stored on the stack. However, I've been unable
2301 to find any magic formula to find it for Solaris (appears to
2302 be trivial on GNU/Linux). Therefore, we have to try an alternate
2303 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2304
192b62ce 2305 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2306 try
f1838a98 2307 {
97ec2c2f 2308 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2309 }
230d2906 2310 catch (const gdb_exception &ex)
492d29ea
PA
2311 {
2312 }
492d29ea 2313
13437d4b
KB
2314 if (tmp_bfd == NULL)
2315 goto bkpt_at_symbol;
2316
2f4950cd 2317 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2318 well as BFD operations can be used. target_bfd_reopen
2319 acquires its own reference. */
2320 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2321
f8766ec1
KB
2322 /* On a running target, we can get the dynamic linker's base
2323 address from the shared library table. */
f8766ec1
KB
2324 so = master_so_list ();
2325 while (so)
8ad2fcde 2326 {
97ec2c2f 2327 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2328 {
2329 load_addr_found = 1;
2ec9a4f8 2330 loader_found_in_list = 1;
192b62ce 2331 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2332 break;
2333 }
f8766ec1 2334 so = so->next;
8ad2fcde
KB
2335 }
2336
8d4e36ba
JB
2337 /* If we were not able to find the base address of the loader
2338 from our so_list, then try using the AT_BASE auxilliary entry. */
2339 if (!load_addr_found)
8b88a78e 2340 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2341 {
f5656ead 2342 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2343
2344 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2345 that `+ load_addr' will overflow CORE_ADDR width not creating
2346 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2347 GDB. */
2348
d182d057 2349 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2350 {
d182d057 2351 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2352 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2353 tmp_bfd_target);
2354
2355 gdb_assert (load_addr < space_size);
2356
2357 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2358 64bit ld.so with 32bit executable, it should not happen. */
2359
2360 if (tmp_entry_point < space_size
2361 && tmp_entry_point + load_addr >= space_size)
2362 load_addr -= space_size;
2363 }
2364
2365 load_addr_found = 1;
2366 }
8d4e36ba 2367
8ad2fcde
KB
2368 /* Otherwise we find the dynamic linker's base address by examining
2369 the current pc (which should point at the entry point for the
8d4e36ba
JB
2370 dynamic linker) and subtracting the offset of the entry point.
2371
2372 This is more fragile than the previous approaches, but is a good
2373 fallback method because it has actually been working well in
2374 most cases. */
8ad2fcde 2375 if (!load_addr_found)
fb14de7b 2376 {
c2250ad1 2377 struct regcache *regcache
f5656ead 2378 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2379
fb14de7b 2380 load_addr = (regcache_read_pc (regcache)
192b62ce 2381 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2382 }
2ec9a4f8
DJ
2383
2384 if (!loader_found_in_list)
34439770 2385 {
1a816a87
PA
2386 info->debug_loader_name = xstrdup (interp_name);
2387 info->debug_loader_offset_p = 1;
2388 info->debug_loader_offset = load_addr;
e696b3ad 2389 solib_add (NULL, from_tty, auto_solib_add);
34439770 2390 }
13437d4b
KB
2391
2392 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2393 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2394 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2395 if (interp_sect)
2396 {
fd361982
AM
2397 info->interp_text_sect_low
2398 = bfd_section_vma (interp_sect) + load_addr;
2399 info->interp_text_sect_high
2400 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2401 }
192b62ce 2402 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2403 if (interp_sect)
2404 {
fd361982
AM
2405 info->interp_plt_sect_low
2406 = bfd_section_vma (interp_sect) + load_addr;
2407 info->interp_plt_sect_high
2408 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2409 }
2410
2411 /* Now try to set a breakpoint in the dynamic linker. */
2412 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2413 {
192b62ce
TT
2414 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2415 cmp_name_and_sec_flags,
3953f15c 2416 *bkpt_namep);
13437d4b
KB
2417 if (sym_addr != 0)
2418 break;
2419 }
2420
2bbe3cc1
DJ
2421 if (sym_addr != 0)
2422 /* Convert 'sym_addr' from a function pointer to an address.
2423 Because we pass tmp_bfd_target instead of the current
2424 target, this will always produce an unrelocated value. */
f5656ead 2425 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2426 sym_addr,
2427 tmp_bfd_target);
2428
695c3173
TT
2429 /* We're done with both the temporary bfd and target. Closing
2430 the target closes the underlying bfd, because it holds the
2431 only remaining reference. */
460014f5 2432 target_close (tmp_bfd_target);
13437d4b
KB
2433
2434 if (sym_addr != 0)
2435 {
d70cc3ba 2436 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2437 load_addr + sym_addr);
13437d4b
KB
2438 return 1;
2439 }
2440
2441 /* For whatever reason we couldn't set a breakpoint in the dynamic
2442 linker. Warn and drop into the old code. */
2443 bkpt_at_symbol:
82d03102
PG
2444 warning (_("Unable to find dynamic linker breakpoint function.\n"
2445 "GDB will be unable to debug shared library initializers\n"
2446 "and track explicitly loaded dynamic code."));
13437d4b 2447 }
13437d4b 2448
e499d0f1
DJ
2449 /* Scan through the lists of symbols, trying to look up the symbol and
2450 set a breakpoint there. Terminate loop when we/if we succeed. */
2451
2452 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2453 {
2454 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2455 if ((msymbol.minsym != NULL)
77e371c0 2456 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2457 {
77e371c0 2458 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2459 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2460 sym_addr,
8b88a78e 2461 current_top_target ());
d70cc3ba
SM
2462 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2463 sym_addr);
e499d0f1
DJ
2464 return 1;
2465 }
2466 }
13437d4b 2467
17658d46 2468 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2469 {
c6490bf2 2470 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2471 {
c6490bf2 2472 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2473 if ((msymbol.minsym != NULL)
77e371c0 2474 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2475 {
77e371c0 2476 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2477 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2478 sym_addr,
8b88a78e 2479 current_top_target ());
d70cc3ba
SM
2480 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2481 sym_addr);
c6490bf2
KB
2482 return 1;
2483 }
13437d4b
KB
2484 }
2485 }
542c95c2 2486 return 0;
13437d4b
KB
2487}
2488
d1012b8e 2489/* Read the ELF program headers from ABFD. */
e2a44558 2490
d1012b8e
SM
2491static gdb::optional<gdb::byte_vector>
2492read_program_headers_from_bfd (bfd *abfd)
e2a44558 2493{
d1012b8e
SM
2494 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2495 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2496 if (phdrs_size == 0)
2497 return {};
09919ac2 2498
d1012b8e 2499 gdb::byte_vector buf (phdrs_size);
09919ac2 2500 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2501 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2502 return {};
09919ac2
JK
2503
2504 return buf;
b8040f19
JK
2505}
2506
01c30d6e
JK
2507/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2508 exec_bfd. Otherwise return 0.
2509
2510 We relocate all of the sections by the same amount. This
c378eb4e 2511 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2512 According to the System V Application Binary Interface,
2513 Edition 4.1, page 5-5:
2514
2515 ... Though the system chooses virtual addresses for
2516 individual processes, it maintains the segments' relative
2517 positions. Because position-independent code uses relative
85102364 2518 addressing between segments, the difference between
b8040f19
JK
2519 virtual addresses in memory must match the difference
2520 between virtual addresses in the file. The difference
2521 between the virtual address of any segment in memory and
2522 the corresponding virtual address in the file is thus a
2523 single constant value for any one executable or shared
2524 object in a given process. This difference is the base
2525 address. One use of the base address is to relocate the
2526 memory image of the program during dynamic linking.
2527
2528 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2529 ABI and is left unspecified in some of the earlier editions.
2530
2531 Decide if the objfile needs to be relocated. As indicated above, we will
2532 only be here when execution is stopped. But during attachment PC can be at
2533 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2534 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2535 regcache_read_pc would point to the interpreter and not the main executable.
2536
2537 So, to summarize, relocations are necessary when the start address obtained
2538 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2539
09919ac2
JK
2540 [ The astute reader will note that we also test to make sure that
2541 the executable in question has the DYNAMIC flag set. It is my
2542 opinion that this test is unnecessary (undesirable even). It
2543 was added to avoid inadvertent relocation of an executable
2544 whose e_type member in the ELF header is not ET_DYN. There may
2545 be a time in the future when it is desirable to do relocations
2546 on other types of files as well in which case this condition
2547 should either be removed or modified to accomodate the new file
2548 type. - Kevin, Nov 2000. ] */
b8040f19 2549
01c30d6e
JK
2550static int
2551svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2552{
41752192
JK
2553 /* ENTRY_POINT is a possible function descriptor - before
2554 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2555 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2556
2557 if (exec_bfd == NULL)
2558 return 0;
2559
09919ac2
JK
2560 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2561 being executed themselves and PIE (Position Independent Executable)
2562 executables are ET_DYN. */
2563
2564 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2565 return 0;
2566
8b88a78e 2567 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2568 return 0;
2569
8f61baf8 2570 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2571
8f61baf8 2572 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2573 alignment. It is cheaper than the program headers comparison below. */
2574
2575 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2576 {
2577 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2578
2579 /* p_align of PT_LOAD segments does not specify any alignment but
2580 only congruency of addresses:
2581 p_offset % p_align == p_vaddr % p_align
2582 Kernel is free to load the executable with lower alignment. */
2583
8f61baf8 2584 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2585 return 0;
2586 }
2587
2588 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2589 comparing their program headers. If the program headers in the auxilliary
2590 vector do not match the program headers in the executable, then we are
2591 looking at a different file than the one used by the kernel - for
2592 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2593
2594 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2595 {
d1012b8e 2596 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2597 really do not match. */
0a1e94c7 2598 int arch_size;
09919ac2 2599
17658d46
SM
2600 gdb::optional<gdb::byte_vector> phdrs_target
2601 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2602 gdb::optional<gdb::byte_vector> phdrs_binary
2603 = read_program_headers_from_bfd (exec_bfd);
2604 if (phdrs_target && phdrs_binary)
0a1e94c7 2605 {
f5656ead 2606 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2607
2608 /* We are dealing with three different addresses. EXEC_BFD
2609 represents current address in on-disk file. target memory content
2610 may be different from EXEC_BFD as the file may have been prelinked
2611 to a different address after the executable has been loaded.
2612 Moreover the address of placement in target memory can be
3e43a32a
MS
2613 different from what the program headers in target memory say -
2614 this is the goal of PIE.
0a1e94c7
JK
2615
2616 Detected DISPLACEMENT covers both the offsets of PIE placement and
2617 possible new prelink performed after start of the program. Here
2618 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2619 content offset for the verification purpose. */
2620
d1012b8e 2621 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2622 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2623 return 0;
3e43a32a 2624 else if (arch_size == 32
17658d46
SM
2625 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2626 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2627 {
2628 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2629 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2630 CORE_ADDR displacement = 0;
2631 int i;
2632
2633 /* DISPLACEMENT could be found more easily by the difference of
2634 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2635 already have enough information to compute that displacement
2636 with what we've read. */
2637
2638 for (i = 0; i < ehdr2->e_phnum; i++)
2639 if (phdr2[i].p_type == PT_LOAD)
2640 {
2641 Elf32_External_Phdr *phdrp;
2642 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2643 CORE_ADDR vaddr, paddr;
2644 CORE_ADDR displacement_vaddr = 0;
2645 CORE_ADDR displacement_paddr = 0;
2646
17658d46 2647 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2648 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2649 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2650
2651 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2652 byte_order);
2653 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2654
2655 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2656 byte_order);
2657 displacement_paddr = paddr - phdr2[i].p_paddr;
2658
2659 if (displacement_vaddr == displacement_paddr)
2660 displacement = displacement_vaddr;
2661
2662 break;
2663 }
2664
17658d46
SM
2665 /* Now compare program headers from the target and the binary
2666 with optional DISPLACEMENT. */
0a1e94c7 2667
17658d46
SM
2668 for (i = 0;
2669 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2670 i++)
0a1e94c7
JK
2671 {
2672 Elf32_External_Phdr *phdrp;
2673 Elf32_External_Phdr *phdr2p;
2674 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2675 CORE_ADDR vaddr, paddr;
43b8e241 2676 asection *plt2_asect;
0a1e94c7 2677
17658d46 2678 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2679 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2680 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2681 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2682
2683 /* PT_GNU_STACK is an exception by being never relocated by
2684 prelink as its addresses are always zero. */
2685
2686 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2687 continue;
2688
2689 /* Check also other adjustment combinations - PR 11786. */
2690
3e43a32a
MS
2691 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2692 byte_order);
0a1e94c7
JK
2693 vaddr -= displacement;
2694 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2695
3e43a32a
MS
2696 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2697 byte_order);
0a1e94c7
JK
2698 paddr -= displacement;
2699 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2700
2701 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2702 continue;
2703
204b5331
DE
2704 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2705 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2706 Strip also modifies memsz of PT_TLS.
204b5331 2707 See PR 11786. */
c44deb73
SM
2708 if (phdr2[i].p_type == PT_GNU_RELRO
2709 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2710 {
2711 Elf32_External_Phdr tmp_phdr = *phdrp;
2712 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2713
2714 memset (tmp_phdr.p_filesz, 0, 4);
2715 memset (tmp_phdr.p_memsz, 0, 4);
2716 memset (tmp_phdr.p_flags, 0, 4);
2717 memset (tmp_phdr.p_align, 0, 4);
2718 memset (tmp_phdr2.p_filesz, 0, 4);
2719 memset (tmp_phdr2.p_memsz, 0, 4);
2720 memset (tmp_phdr2.p_flags, 0, 4);
2721 memset (tmp_phdr2.p_align, 0, 4);
2722
2723 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2724 == 0)
2725 continue;
2726 }
2727
43b8e241
JK
2728 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2729 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2730 if (plt2_asect)
2731 {
2732 int content2;
2733 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2734 CORE_ADDR filesz;
2735
fd361982 2736 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2737 & SEC_HAS_CONTENTS) != 0;
2738
2739 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2740 byte_order);
2741
2742 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2743 FILESZ is from the in-memory image. */
2744 if (content2)
fd361982 2745 filesz += bfd_section_size (plt2_asect);
43b8e241 2746 else
fd361982 2747 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2748
2749 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2750 filesz);
2751
2752 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2753 continue;
2754 }
2755
d1012b8e 2756 return 0;
0a1e94c7
JK
2757 }
2758 }
3e43a32a 2759 else if (arch_size == 64
17658d46
SM
2760 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2761 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2762 {
2763 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2764 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2765 CORE_ADDR displacement = 0;
2766 int i;
2767
2768 /* DISPLACEMENT could be found more easily by the difference of
2769 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2770 already have enough information to compute that displacement
2771 with what we've read. */
2772
2773 for (i = 0; i < ehdr2->e_phnum; i++)
2774 if (phdr2[i].p_type == PT_LOAD)
2775 {
2776 Elf64_External_Phdr *phdrp;
2777 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2778 CORE_ADDR vaddr, paddr;
2779 CORE_ADDR displacement_vaddr = 0;
2780 CORE_ADDR displacement_paddr = 0;
2781
17658d46 2782 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2783 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2784 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2785
2786 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2787 byte_order);
2788 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2789
2790 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2791 byte_order);
2792 displacement_paddr = paddr - phdr2[i].p_paddr;
2793
2794 if (displacement_vaddr == displacement_paddr)
2795 displacement = displacement_vaddr;
2796
2797 break;
2798 }
2799
2800 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2801
17658d46
SM
2802 for (i = 0;
2803 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2804 i++)
0a1e94c7
JK
2805 {
2806 Elf64_External_Phdr *phdrp;
2807 Elf64_External_Phdr *phdr2p;
2808 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2809 CORE_ADDR vaddr, paddr;
43b8e241 2810 asection *plt2_asect;
0a1e94c7 2811
17658d46 2812 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2813 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2814 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2815 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2816
2817 /* PT_GNU_STACK is an exception by being never relocated by
2818 prelink as its addresses are always zero. */
2819
2820 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2821 continue;
2822
2823 /* Check also other adjustment combinations - PR 11786. */
2824
3e43a32a
MS
2825 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2826 byte_order);
0a1e94c7
JK
2827 vaddr -= displacement;
2828 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2829
3e43a32a
MS
2830 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2831 byte_order);
0a1e94c7
JK
2832 paddr -= displacement;
2833 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2834
2835 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2836 continue;
2837
204b5331
DE
2838 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2839 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2840 Strip also modifies memsz of PT_TLS.
204b5331 2841 See PR 11786. */
c44deb73
SM
2842 if (phdr2[i].p_type == PT_GNU_RELRO
2843 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2844 {
2845 Elf64_External_Phdr tmp_phdr = *phdrp;
2846 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2847
2848 memset (tmp_phdr.p_filesz, 0, 8);
2849 memset (tmp_phdr.p_memsz, 0, 8);
2850 memset (tmp_phdr.p_flags, 0, 4);
2851 memset (tmp_phdr.p_align, 0, 8);
2852 memset (tmp_phdr2.p_filesz, 0, 8);
2853 memset (tmp_phdr2.p_memsz, 0, 8);
2854 memset (tmp_phdr2.p_flags, 0, 4);
2855 memset (tmp_phdr2.p_align, 0, 8);
2856
2857 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2858 == 0)
2859 continue;
2860 }
2861
43b8e241
JK
2862 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2863 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2864 if (plt2_asect)
2865 {
2866 int content2;
2867 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2868 CORE_ADDR filesz;
2869
fd361982 2870 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2871 & SEC_HAS_CONTENTS) != 0;
2872
2873 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2874 byte_order);
2875
2876 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2877 FILESZ is from the in-memory image. */
2878 if (content2)
fd361982 2879 filesz += bfd_section_size (plt2_asect);
43b8e241 2880 else
fd361982 2881 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2882
2883 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2884 filesz);
2885
2886 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2887 continue;
2888 }
2889
d1012b8e 2890 return 0;
0a1e94c7
JK
2891 }
2892 }
2893 else
d1012b8e 2894 return 0;
0a1e94c7 2895 }
09919ac2 2896 }
b8040f19 2897
ccf26247
JK
2898 if (info_verbose)
2899 {
2900 /* It can be printed repeatedly as there is no easy way to check
2901 the executable symbols/file has been already relocated to
2902 displacement. */
2903
2904 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2905 "displacement %s for \"%s\".\n"),
8f61baf8 2906 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2907 bfd_get_filename (exec_bfd));
2908 }
2909
8f61baf8 2910 *displacementp = exec_displacement;
01c30d6e 2911 return 1;
b8040f19
JK
2912}
2913
2914/* Relocate the main executable. This function should be called upon
c378eb4e 2915 stopping the inferior process at the entry point to the program.
b8040f19
JK
2916 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2917 different, the main executable is relocated by the proper amount. */
2918
2919static void
2920svr4_relocate_main_executable (void)
2921{
01c30d6e
JK
2922 CORE_ADDR displacement;
2923
4e5799b6
JK
2924 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2925 probably contains the offsets computed using the PIE displacement
2926 from the previous run, which of course are irrelevant for this run.
2927 So we need to determine the new PIE displacement and recompute the
2928 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2929 already contains pre-computed offsets.
01c30d6e 2930
4e5799b6 2931 If we cannot compute the PIE displacement, either:
01c30d6e 2932
4e5799b6
JK
2933 - The executable is not PIE.
2934
2935 - SYMFILE_OBJFILE does not match the executable started in the target.
2936 This can happen for main executable symbols loaded at the host while
2937 `ld.so --ld-args main-executable' is loaded in the target.
2938
2939 Then we leave the section offsets untouched and use them as is for
2940 this run. Either:
2941
2942 - These section offsets were properly reset earlier, and thus
2943 already contain the correct values. This can happen for instance
2944 when reconnecting via the remote protocol to a target that supports
2945 the `qOffsets' packet.
2946
2947 - The section offsets were not reset earlier, and the best we can
c378eb4e 2948 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2949
2950 if (! svr4_exec_displacement (&displacement))
2951 return;
b8040f19 2952
01c30d6e
JK
2953 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2954 addresses. */
b8040f19
JK
2955
2956 if (symfile_objfile)
e2a44558 2957 {
e2a44558 2958 struct section_offsets *new_offsets;
b8040f19 2959 int i;
e2a44558 2960
224c3ddb
SM
2961 new_offsets = XALLOCAVEC (struct section_offsets,
2962 symfile_objfile->num_sections);
e2a44558 2963
b8040f19
JK
2964 for (i = 0; i < symfile_objfile->num_sections; i++)
2965 new_offsets->offsets[i] = displacement;
e2a44558 2966
b8040f19 2967 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2968 }
51bee8e9
JK
2969 else if (exec_bfd)
2970 {
2971 asection *asect;
2972
2973 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2974 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 2975 bfd_section_vma (asect) + displacement);
51bee8e9 2976 }
e2a44558
KB
2977}
2978
7f86f058 2979/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2980
2981 For SVR4 executables, this first instruction is either the first
2982 instruction in the dynamic linker (for dynamically linked
2983 executables) or the instruction at "start" for statically linked
2984 executables. For dynamically linked executables, the system
2985 first exec's /lib/libc.so.N, which contains the dynamic linker,
2986 and starts it running. The dynamic linker maps in any needed
2987 shared libraries, maps in the actual user executable, and then
2988 jumps to "start" in the user executable.
2989
7f86f058
PA
2990 We can arrange to cooperate with the dynamic linker to discover the
2991 names of shared libraries that are dynamically linked, and the base
2992 addresses to which they are linked.
13437d4b
KB
2993
2994 This function is responsible for discovering those names and
2995 addresses, and saving sufficient information about them to allow
d2e5c99a 2996 their symbols to be read at a later time. */
13437d4b 2997
e2a44558 2998static void
268a4a75 2999svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3000{
1a816a87
PA
3001 struct svr4_info *info;
3002
d70cc3ba 3003 info = get_svr4_info (current_program_space);
2020b7ab 3004
f9e14852
GB
3005 /* Clear the probes-based interface's state. */
3006 free_probes_table (info);
3007 free_solib_list (info);
3008
e2a44558 3009 /* Relocate the main executable if necessary. */
86e4bafc 3010 svr4_relocate_main_executable ();
e2a44558 3011
c91c8c16
PA
3012 /* No point setting a breakpoint in the dynamic linker if we can't
3013 hit it (e.g., a core file, or a trace file). */
3014 if (!target_has_execution)
3015 return;
3016
d5a921c9 3017 if (!svr4_have_link_map_offsets ())
513f5903 3018 return;
d5a921c9 3019
268a4a75 3020 if (!enable_break (info, from_tty))
542c95c2 3021 return;
13437d4b
KB
3022}
3023
3024static void
3025svr4_clear_solib (void)
3026{
6c95b8df
PA
3027 struct svr4_info *info;
3028
d70cc3ba 3029 info = get_svr4_info (current_program_space);
6c95b8df
PA
3030 info->debug_base = 0;
3031 info->debug_loader_offset_p = 0;
3032 info->debug_loader_offset = 0;
3033 xfree (info->debug_loader_name);
3034 info->debug_loader_name = NULL;
13437d4b
KB
3035}
3036
6bb7be43
JB
3037/* Clear any bits of ADDR that wouldn't fit in a target-format
3038 data pointer. "Data pointer" here refers to whatever sort of
3039 address the dynamic linker uses to manage its sections. At the
3040 moment, we don't support shared libraries on any processors where
3041 code and data pointers are different sizes.
3042
3043 This isn't really the right solution. What we really need here is
3044 a way to do arithmetic on CORE_ADDR values that respects the
3045 natural pointer/address correspondence. (For example, on the MIPS,
3046 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3047 sign-extend the value. There, simply truncating the bits above
819844ad 3048 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3049 be a new gdbarch method or something. */
3050static CORE_ADDR
3051svr4_truncate_ptr (CORE_ADDR addr)
3052{
f5656ead 3053 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3054 /* We don't need to truncate anything, and the bit twiddling below
3055 will fail due to overflow problems. */
3056 return addr;
3057 else
f5656ead 3058 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3059}
3060
3061
749499cb
KB
3062static void
3063svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3064 struct target_section *sec)
749499cb 3065{
2b2848e2
DE
3066 bfd *abfd = sec->the_bfd_section->owner;
3067
3068 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3069 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3070}
4b188b9f 3071\f
749499cb 3072
4b188b9f 3073/* Architecture-specific operations. */
6bb7be43 3074
4b188b9f
MK
3075/* Per-architecture data key. */
3076static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3077
4b188b9f 3078struct solib_svr4_ops
e5e2b9ff 3079{
4b188b9f
MK
3080 /* Return a description of the layout of `struct link_map'. */
3081 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3082};
e5e2b9ff 3083
4b188b9f 3084/* Return a default for the architecture-specific operations. */
e5e2b9ff 3085
4b188b9f
MK
3086static void *
3087solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3088{
4b188b9f 3089 struct solib_svr4_ops *ops;
e5e2b9ff 3090
4b188b9f 3091 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3092 ops->fetch_link_map_offsets = NULL;
4b188b9f 3093 return ops;
e5e2b9ff
KB
3094}
3095
4b188b9f 3096/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3097 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3098
21479ded 3099void
e5e2b9ff
KB
3100set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3101 struct link_map_offsets *(*flmo) (void))
21479ded 3102{
19ba03f4
SM
3103 struct solib_svr4_ops *ops
3104 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3105
3106 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3107
3108 set_solib_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3109 set_gdbarch_iterate_over_objfiles_in_search_order
3110 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3111}
3112
4b188b9f
MK
3113/* Fetch a link_map_offsets structure using the architecture-specific
3114 `struct link_map_offsets' fetcher. */
1c4dcb57 3115
4b188b9f
MK
3116static struct link_map_offsets *
3117svr4_fetch_link_map_offsets (void)
21479ded 3118{
19ba03f4
SM
3119 struct solib_svr4_ops *ops
3120 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3121 solib_svr4_data);
4b188b9f
MK
3122
3123 gdb_assert (ops->fetch_link_map_offsets);
3124 return ops->fetch_link_map_offsets ();
21479ded
KB
3125}
3126
4b188b9f
MK
3127/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3128
3129static int
3130svr4_have_link_map_offsets (void)
3131{
19ba03f4
SM
3132 struct solib_svr4_ops *ops
3133 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3134 solib_svr4_data);
433759f7 3135
4b188b9f
MK
3136 return (ops->fetch_link_map_offsets != NULL);
3137}
3138\f
3139
e4bbbda8
MK
3140/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3141 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3142 with the original SVR4 implementation. */
e4bbbda8
MK
3143
3144/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3145 for an ILP32 SVR4 system. */
d989b283 3146
e4bbbda8
MK
3147struct link_map_offsets *
3148svr4_ilp32_fetch_link_map_offsets (void)
3149{
3150 static struct link_map_offsets lmo;
3151 static struct link_map_offsets *lmp = NULL;
3152
3153 if (lmp == NULL)
3154 {
3155 lmp = &lmo;
3156
e4cd0d6a
MK
3157 lmo.r_version_offset = 0;
3158 lmo.r_version_size = 4;
e4bbbda8 3159 lmo.r_map_offset = 4;
7cd25cfc 3160 lmo.r_brk_offset = 8;
e4cd0d6a 3161 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3162
3163 /* Everything we need is in the first 20 bytes. */
3164 lmo.link_map_size = 20;
3165 lmo.l_addr_offset = 0;
e4bbbda8 3166 lmo.l_name_offset = 4;
cc10cae3 3167 lmo.l_ld_offset = 8;
e4bbbda8 3168 lmo.l_next_offset = 12;
e4bbbda8 3169 lmo.l_prev_offset = 16;
e4bbbda8
MK
3170 }
3171
3172 return lmp;
3173}
3174
3175/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3176 for an LP64 SVR4 system. */
d989b283 3177
e4bbbda8
MK
3178struct link_map_offsets *
3179svr4_lp64_fetch_link_map_offsets (void)
3180{
3181 static struct link_map_offsets lmo;
3182 static struct link_map_offsets *lmp = NULL;
3183
3184 if (lmp == NULL)
3185 {
3186 lmp = &lmo;
3187
e4cd0d6a
MK
3188 lmo.r_version_offset = 0;
3189 lmo.r_version_size = 4;
e4bbbda8 3190 lmo.r_map_offset = 8;
7cd25cfc 3191 lmo.r_brk_offset = 16;
e4cd0d6a 3192 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3193
3194 /* Everything we need is in the first 40 bytes. */
3195 lmo.link_map_size = 40;
3196 lmo.l_addr_offset = 0;
e4bbbda8 3197 lmo.l_name_offset = 8;
cc10cae3 3198 lmo.l_ld_offset = 16;
e4bbbda8 3199 lmo.l_next_offset = 24;
e4bbbda8 3200 lmo.l_prev_offset = 32;
e4bbbda8
MK
3201 }
3202
3203 return lmp;
3204}
3205\f
3206
7d522c90 3207struct target_so_ops svr4_so_ops;
13437d4b 3208
626ca2c0 3209/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3210 different rule for symbol lookup. The lookup begins here in the DSO, not in
3211 the main executable. */
3212
626ca2c0
CB
3213static void
3214svr4_iterate_over_objfiles_in_search_order
3215 (struct gdbarch *gdbarch,
3216 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3217 void *cb_data, struct objfile *current_objfile)
3a40aaa0 3218{
626ca2c0
CB
3219 bool checked_current_objfile = false;
3220 if (current_objfile != nullptr)
61f0d762 3221 {
626ca2c0 3222 bfd *abfd;
61f0d762 3223
626ca2c0
CB
3224 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3225 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3226
626ca2c0
CB
3227 if (current_objfile == symfile_objfile)
3228 abfd = exec_bfd;
3229 else
3230 abfd = current_objfile->obfd;
3231
7ab78ccb
SM
3232 if (abfd != nullptr
3233 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3234 {
3235 checked_current_objfile = true;
3236 if (cb (current_objfile, cb_data) != 0)
3237 return;
3238 }
3239 }
3a40aaa0 3240
626ca2c0
CB
3241 for (objfile *objfile : current_program_space->objfiles ())
3242 {
3243 if (checked_current_objfile && objfile == current_objfile)
3244 continue;
3245 if (cb (objfile, cb_data) != 0)
3246 return;
3247 }
3a40aaa0
UW
3248}
3249
13437d4b
KB
3250void
3251_initialize_svr4_solib (void)
3252{
4b188b9f
MK
3253 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3254
749499cb 3255 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3256 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3257 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3258 svr4_so_ops.clear_solib = svr4_clear_solib;
3259 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3260 svr4_so_ops.current_sos = svr4_current_sos;
3261 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3262 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3263 svr4_so_ops.bfd_open = solib_bfd_open;
a7c02bc8 3264 svr4_so_ops.same = svr4_same;
de18c1d8 3265 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3266 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3267 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35
PA
3268
3269 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
13437d4b 3270}
This page took 2.257012 seconds and 4 git commands to generate.