Correct ChangeLog entry.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
13437d4b
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
13437d4b 22
13437d4b
KB
23#include "defs.h"
24
13437d4b 25#include "elf/external.h"
21479ded 26#include "elf/common.h"
f7856c8f 27#include "elf/mips.h"
13437d4b
KB
28
29#include "symtab.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbcore.h"
13437d4b 34#include "target.h"
13437d4b 35#include "inferior.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd
AC
45#include "exec.h"
46
e5e2b9ff 47static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 48static int svr4_have_link_map_offsets (void);
1c4dcb57 49
4b188b9f
MK
50/* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
21479ded 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
13437d4b
KB
69 };
70
71/* On SVR4 systems, a list of symbols in the dynamic linker where
72 GDB can try to place a breakpoint to monitor shared library
73 events.
74
75 If none of these symbols are found, or other errors occur, then
76 SVR4 systems will fall back to using a symbol as the "startup
77 mapping complete" breakpoint address. */
78
13437d4b
KB
79static char *solib_break_names[] =
80{
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
1f72e589 85 "_rtld_debug_state",
4c0122c8
JB
86
87 /* On the 64-bit PowerPC, the linker symbol with the same name as
88 the C function points to a function descriptor, not to the entry
89 point. The linker symbol whose name is the C function name
90 prefixed with a '.' points to the function's entry point. So
91 when we look through this table, we ignore symbols that point
92 into the data section (thus skipping the descriptor's symbol),
93 and eventually try this one, giving us the real entry point
94 address. */
95 "._dl_debug_state",
96
13437d4b
KB
97 NULL
98};
13437d4b
KB
99
100#define BKPT_AT_SYMBOL 1
101
ab31aa69 102#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
103static char *bkpt_names[] =
104{
105#ifdef SOLIB_BKPT_NAME
106 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
107#endif
108 "_start",
ad3dcc5c 109 "__start",
13437d4b
KB
110 "main",
111 NULL
112};
113#endif
114
13437d4b
KB
115static char *main_name_list[] =
116{
117 "main_$main",
118 NULL
119};
120
13437d4b
KB
121/* link map access functions */
122
123static CORE_ADDR
cc10cae3 124LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 125{
4b188b9f 126 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 127
cfaefc65
AS
128 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
129 builtin_type_void_data_ptr);
13437d4b
KB
130}
131
cc10cae3
AO
132static int
133HAS_LM_DYNAMIC_FROM_LINK_MAP ()
134{
135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
136
cfaefc65 137 return lmo->l_ld_offset >= 0;
cc10cae3
AO
138}
139
140static CORE_ADDR
141LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
142{
143 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
144
cfaefc65
AS
145 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
146 builtin_type_void_data_ptr);
cc10cae3
AO
147}
148
149static CORE_ADDR
150LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
151{
152 if (so->lm_info->l_addr == (CORE_ADDR)-1)
153 {
154 struct bfd_section *dyninfo_sect;
155 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
156
157 l_addr = LM_ADDR_FROM_LINK_MAP (so);
158
159 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
160 goto set_addr;
161
162 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
163
164 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
165 if (dyninfo_sect == NULL)
166 goto set_addr;
167
168 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
169
170 if (dynaddr + l_addr != l_dynaddr)
171 {
cc10cae3
AO
172 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
173 {
174 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
175 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
176 int i;
177
178 align = 1;
179
180 for (i = 0; i < ehdr->e_phnum; i++)
181 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
182 align = phdr[i].p_align;
183 }
184
185 /* Turn it into a mask. */
186 align--;
187
188 /* If the changes match the alignment requirements, we
189 assume we're using a core file that was generated by the
190 same binary, just prelinked with a different base offset.
191 If it doesn't match, we may have a different binary, the
192 same binary with the dynamic table loaded at an unrelated
193 location, or anything, really. To avoid regressions,
194 don't adjust the base offset in the latter case, although
195 odds are that, if things really changed, debugging won't
196 quite work. */
197 if ((l_addr & align) == 0 && ((dynaddr - l_dynaddr) & align) == 0)
198 {
199 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
200
201 warning (_(".dynamic section for \"%s\" "
202 "is not at the expected address"), so->so_name);
cc10cae3
AO
203 warning (_("difference appears to be caused by prelink, "
204 "adjusting expectations"));
205 }
79d4c408
DJ
206 else
207 warning (_(".dynamic section for \"%s\" "
208 "is not at the expected address "
209 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
210 }
211
212 set_addr:
213 so->lm_info->l_addr = l_addr;
214 }
215
216 return so->lm_info->l_addr;
217}
218
13437d4b
KB
219static CORE_ADDR
220LM_NEXT (struct so_list *so)
221{
4b188b9f 222 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 223
cfaefc65
AS
224 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
225 builtin_type_void_data_ptr);
13437d4b
KB
226}
227
228static CORE_ADDR
229LM_NAME (struct so_list *so)
230{
4b188b9f 231 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 232
cfaefc65
AS
233 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
234 builtin_type_void_data_ptr);
13437d4b
KB
235}
236
13437d4b
KB
237static int
238IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
239{
4b188b9f 240 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 241
e499d0f1
DJ
242 /* Assume that everything is a library if the dynamic loader was loaded
243 late by a static executable. */
244 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
245 return 0;
246
cfaefc65
AS
247 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
248 builtin_type_void_data_ptr) == 0;
13437d4b
KB
249}
250
13437d4b 251static CORE_ADDR debug_base; /* Base of dynamic linker structures */
13437d4b 252
34439770
DJ
253/* Validity flag for debug_loader_offset. */
254static int debug_loader_offset_p;
255
256/* Load address for the dynamic linker, inferred. */
257static CORE_ADDR debug_loader_offset;
258
259/* Name of the dynamic linker, valid if debug_loader_offset_p. */
260static char *debug_loader_name;
261
13437d4b
KB
262/* Local function prototypes */
263
264static int match_main (char *);
265
87f84c9d 266static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
13437d4b
KB
267
268/*
269
270 LOCAL FUNCTION
271
272 bfd_lookup_symbol -- lookup the value for a specific symbol
273
274 SYNOPSIS
275
87f84c9d 276 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b
KB
277
278 DESCRIPTION
279
280 An expensive way to lookup the value of a single symbol for
281 bfd's that are only temporary anyway. This is used by the
282 shared library support to find the address of the debugger
283 interface structures in the shared library.
284
87f84c9d
JB
285 If SECT_FLAGS is non-zero, only match symbols in sections whose
286 flags include all those in SECT_FLAGS.
287
13437d4b
KB
288 Note that 0 is specifically allowed as an error return (no
289 such symbol).
290 */
291
292static CORE_ADDR
87f84c9d 293bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b 294{
435b259c 295 long storage_needed;
13437d4b
KB
296 asymbol *sym;
297 asymbol **symbol_table;
298 unsigned int number_of_symbols;
299 unsigned int i;
300 struct cleanup *back_to;
301 CORE_ADDR symaddr = 0;
302
303 storage_needed = bfd_get_symtab_upper_bound (abfd);
304
305 if (storage_needed > 0)
306 {
307 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 308 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
309 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
310
311 for (i = 0; i < number_of_symbols; i++)
312 {
313 sym = *symbol_table++;
6314a349 314 if (strcmp (sym->name, symname) == 0
87f84c9d 315 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
316 {
317 /* Bfd symbols are section relative. */
318 symaddr = sym->value + sym->section->vma;
319 break;
320 }
321 }
322 do_cleanups (back_to);
323 }
324
325 if (symaddr)
326 return symaddr;
327
328 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
329 have to check the dynamic string table too. */
330
331 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
332
333 if (storage_needed > 0)
334 {
335 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 336 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
337 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
338
339 for (i = 0; i < number_of_symbols; i++)
340 {
341 sym = *symbol_table++;
87f84c9d 342
6314a349 343 if (strcmp (sym->name, symname) == 0
87f84c9d 344 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
345 {
346 /* Bfd symbols are section relative. */
347 symaddr = sym->value + sym->section->vma;
348 break;
349 }
350 }
351 do_cleanups (back_to);
352 }
353
354 return symaddr;
355}
356
13437d4b
KB
357/*
358
359 LOCAL FUNCTION
360
361 elf_locate_base -- locate the base address of dynamic linker structs
362 for SVR4 elf targets.
363
364 SYNOPSIS
365
366 CORE_ADDR elf_locate_base (void)
367
368 DESCRIPTION
369
370 For SVR4 elf targets the address of the dynamic linker's runtime
371 structure is contained within the dynamic info section in the
372 executable file. The dynamic section is also mapped into the
373 inferior address space. Because the runtime loader fills in the
374 real address before starting the inferior, we have to read in the
375 dynamic info section from the inferior address space.
376 If there are any errors while trying to find the address, we
377 silently return 0, otherwise the found address is returned.
378
379 */
380
381static CORE_ADDR
382elf_locate_base (void)
383{
7be0c536 384 struct bfd_section *dyninfo_sect;
13437d4b
KB
385 int dyninfo_sect_size;
386 CORE_ADDR dyninfo_addr;
4066fc10
MI
387 gdb_byte *buf;
388 gdb_byte *bufend;
13437d4b
KB
389 int arch_size;
390
391 /* Find the start address of the .dynamic section. */
392 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
393 if (dyninfo_sect == NULL)
e499d0f1
DJ
394 {
395 /* This may be a static executable. Look for the symbol
396 conventionally named _r_debug, as a last resort. */
397 struct minimal_symbol *msymbol;
398
399 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
400 if (msymbol != NULL)
401 return SYMBOL_VALUE_ADDRESS (msymbol);
402 else
403 return 0;
404 }
405
13437d4b
KB
406 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
407
408 /* Read in .dynamic section, silently ignore errors. */
409 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
410 buf = alloca (dyninfo_sect_size);
411 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
412 return 0;
413
414 /* Find the DT_DEBUG entry in the the .dynamic section.
415 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
416 no DT_DEBUG entries. */
417
418 arch_size = bfd_get_arch_size (exec_bfd);
419 if (arch_size == -1) /* failure */
420 return 0;
421
422 if (arch_size == 32)
423 { /* 32-bit elf */
424 for (bufend = buf + dyninfo_sect_size;
425 buf < bufend;
426 buf += sizeof (Elf32_External_Dyn))
427 {
428 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
429 long dyn_tag;
430 CORE_ADDR dyn_ptr;
431
432 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
433 if (dyn_tag == DT_NULL)
434 break;
435 else if (dyn_tag == DT_DEBUG)
436 {
437 dyn_ptr = bfd_h_get_32 (exec_bfd,
438 (bfd_byte *) x_dynp->d_un.d_ptr);
439 return dyn_ptr;
440 }
13437d4b
KB
441 else if (dyn_tag == DT_MIPS_RLD_MAP)
442 {
4066fc10 443 gdb_byte *pbuf;
cfaefc65 444 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
13437d4b 445
743b930b 446 pbuf = alloca (pbuf_size);
13437d4b
KB
447 /* DT_MIPS_RLD_MAP contains a pointer to the address
448 of the dynamic link structure. */
449 dyn_ptr = bfd_h_get_32 (exec_bfd,
450 (bfd_byte *) x_dynp->d_un.d_ptr);
743b930b 451 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
13437d4b 452 return 0;
cfaefc65 453 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
13437d4b 454 }
13437d4b
KB
455 }
456 }
457 else /* 64-bit elf */
458 {
459 for (bufend = buf + dyninfo_sect_size;
460 buf < bufend;
461 buf += sizeof (Elf64_External_Dyn))
462 {
463 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
464 long dyn_tag;
465 CORE_ADDR dyn_ptr;
466
467 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
468 if (dyn_tag == DT_NULL)
469 break;
470 else if (dyn_tag == DT_DEBUG)
471 {
472 dyn_ptr = bfd_h_get_64 (exec_bfd,
473 (bfd_byte *) x_dynp->d_un.d_ptr);
474 return dyn_ptr;
475 }
743b930b
KB
476 else if (dyn_tag == DT_MIPS_RLD_MAP)
477 {
4066fc10 478 gdb_byte *pbuf;
cfaefc65 479 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
743b930b
KB
480
481 pbuf = alloca (pbuf_size);
482 /* DT_MIPS_RLD_MAP contains a pointer to the address
483 of the dynamic link structure. */
484 dyn_ptr = bfd_h_get_64 (exec_bfd,
485 (bfd_byte *) x_dynp->d_un.d_ptr);
486 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
487 return 0;
cfaefc65 488 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
743b930b 489 }
13437d4b
KB
490 }
491 }
492
493 /* DT_DEBUG entry not found. */
494 return 0;
495}
496
13437d4b
KB
497/*
498
499 LOCAL FUNCTION
500
501 locate_base -- locate the base address of dynamic linker structs
502
503 SYNOPSIS
504
505 CORE_ADDR locate_base (void)
506
507 DESCRIPTION
508
509 For both the SunOS and SVR4 shared library implementations, if the
510 inferior executable has been linked dynamically, there is a single
511 address somewhere in the inferior's data space which is the key to
512 locating all of the dynamic linker's runtime structures. This
513 address is the value of the debug base symbol. The job of this
514 function is to find and return that address, or to return 0 if there
515 is no such address (the executable is statically linked for example).
516
517 For SunOS, the job is almost trivial, since the dynamic linker and
518 all of it's structures are statically linked to the executable at
519 link time. Thus the symbol for the address we are looking for has
520 already been added to the minimal symbol table for the executable's
521 objfile at the time the symbol file's symbols were read, and all we
522 have to do is look it up there. Note that we explicitly do NOT want
523 to find the copies in the shared library.
524
525 The SVR4 version is a bit more complicated because the address
526 is contained somewhere in the dynamic info section. We have to go
527 to a lot more work to discover the address of the debug base symbol.
528 Because of this complexity, we cache the value we find and return that
529 value on subsequent invocations. Note there is no copy in the
530 executable symbol tables.
531
532 */
533
534static CORE_ADDR
535locate_base (void)
536{
13437d4b
KB
537 /* Check to see if we have a currently valid address, and if so, avoid
538 doing all this work again and just return the cached address. If
539 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
540 section for ELF executables. There's no point in doing any of this
541 though if we don't have some link map offsets to work with. */
13437d4b 542
d5a921c9 543 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
544 {
545 if (exec_bfd != NULL
546 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
547 debug_base = elf_locate_base ();
13437d4b
KB
548 }
549 return (debug_base);
13437d4b
KB
550}
551
e4cd0d6a
MK
552/* Find the first element in the inferior's dynamic link map, and
553 return its address in the inferior.
13437d4b 554
e4cd0d6a
MK
555 FIXME: Perhaps we should validate the info somehow, perhaps by
556 checking r_version for a known version number, or r_state for
557 RT_CONSISTENT. */
13437d4b
KB
558
559static CORE_ADDR
e4cd0d6a 560solib_svr4_r_map (void)
13437d4b 561{
4b188b9f 562 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 563
e4cd0d6a
MK
564 return read_memory_typed_address (debug_base + lmo->r_map_offset,
565 builtin_type_void_data_ptr);
566}
13437d4b 567
e4cd0d6a
MK
568/* Find the link map for the dynamic linker (if it is not in the
569 normal list of loaded shared objects). */
13437d4b 570
e4cd0d6a
MK
571static CORE_ADDR
572solib_svr4_r_ldsomap (void)
573{
574 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
575 ULONGEST version;
13437d4b 576
e4cd0d6a
MK
577 /* Check version, and return zero if `struct r_debug' doesn't have
578 the r_ldsomap member. */
579 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
580 lmo->r_version_size);
581 if (version < 2 || lmo->r_ldsomap_offset == -1)
582 return 0;
13437d4b 583
e4cd0d6a
MK
584 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
585 builtin_type_void_data_ptr);
13437d4b
KB
586}
587
13437d4b
KB
588/*
589
590 LOCAL FUNCTION
591
592 open_symbol_file_object
593
594 SYNOPSIS
595
596 void open_symbol_file_object (void *from_tty)
597
598 DESCRIPTION
599
600 If no open symbol file, attempt to locate and open the main symbol
601 file. On SVR4 systems, this is the first link map entry. If its
602 name is here, we can open it. Useful when attaching to a process
603 without first loading its symbol file.
604
605 If FROM_TTYP dereferences to a non-zero integer, allow messages to
606 be printed. This parameter is a pointer rather than an int because
607 open_symbol_file_object() is called via catch_errors() and
608 catch_errors() requires a pointer argument. */
609
610static int
611open_symbol_file_object (void *from_ttyp)
612{
613 CORE_ADDR lm, l_name;
614 char *filename;
615 int errcode;
616 int from_tty = *(int *)from_ttyp;
4b188b9f 617 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cfaefc65
AS
618 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
619 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 620 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
621
622 if (symfile_objfile)
623 if (!query ("Attempt to reload symbols from process? "))
624 return 0;
625
626 if ((debug_base = locate_base ()) == 0)
627 return 0; /* failed somehow... */
628
629 /* First link map member should be the executable. */
e4cd0d6a
MK
630 lm = solib_svr4_r_map ();
631 if (lm == 0)
13437d4b
KB
632 return 0; /* failed somehow... */
633
634 /* Read address of name from target memory to GDB. */
cfaefc65 635 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 636
cfaefc65
AS
637 /* Convert the address to host format. */
638 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
13437d4b
KB
639
640 /* Free l_name_buf. */
641 do_cleanups (cleanups);
642
643 if (l_name == 0)
644 return 0; /* No filename. */
645
646 /* Now fetch the filename from target memory. */
647 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
648
649 if (errcode)
650 {
8a3fe4f8 651 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
652 safe_strerror (errcode));
653 return 0;
654 }
655
b8c9b27d 656 make_cleanup (xfree, filename);
13437d4b 657 /* Have a pathname: read the symbol file. */
1adeb98a 658 symbol_file_add_main (filename, from_tty);
13437d4b
KB
659
660 return 1;
661}
13437d4b 662
34439770
DJ
663/* If no shared library information is available from the dynamic
664 linker, build a fallback list from other sources. */
665
666static struct so_list *
667svr4_default_sos (void)
668{
669 struct so_list *head = NULL;
670 struct so_list **link_ptr = &head;
671
672 if (debug_loader_offset_p)
673 {
674 struct so_list *new = XZALLOC (struct so_list);
675
676 new->lm_info = xmalloc (sizeof (struct lm_info));
677
678 /* Nothing will ever check the cached copy of the link
679 map if we set l_addr. */
680 new->lm_info->l_addr = debug_loader_offset;
681 new->lm_info->lm = NULL;
682
683 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
684 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
685 strcpy (new->so_original_name, new->so_name);
686
687 *link_ptr = new;
688 link_ptr = &new->next;
689 }
690
691 return head;
692}
693
13437d4b
KB
694/* LOCAL FUNCTION
695
696 current_sos -- build a list of currently loaded shared objects
697
698 SYNOPSIS
699
700 struct so_list *current_sos ()
701
702 DESCRIPTION
703
704 Build a list of `struct so_list' objects describing the shared
705 objects currently loaded in the inferior. This list does not
706 include an entry for the main executable file.
707
708 Note that we only gather information directly available from the
709 inferior --- we don't examine any of the shared library files
710 themselves. The declaration of `struct so_list' says which fields
711 we provide values for. */
712
713static struct so_list *
714svr4_current_sos (void)
715{
716 CORE_ADDR lm;
717 struct so_list *head = 0;
718 struct so_list **link_ptr = &head;
e4cd0d6a 719 CORE_ADDR ldsomap = 0;
13437d4b
KB
720
721 /* Make sure we've looked up the inferior's dynamic linker's base
722 structure. */
723 if (! debug_base)
724 {
725 debug_base = locate_base ();
726
727 /* If we can't find the dynamic linker's base structure, this
728 must not be a dynamically linked executable. Hmm. */
729 if (! debug_base)
34439770 730 return svr4_default_sos ();
13437d4b
KB
731 }
732
733 /* Walk the inferior's link map list, and build our list of
734 `struct so_list' nodes. */
e4cd0d6a 735 lm = solib_svr4_r_map ();
34439770 736
13437d4b
KB
737 while (lm)
738 {
4b188b9f 739 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 740 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 741 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 742
13437d4b 743 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 744 make_cleanup (xfree, new->lm_info);
13437d4b 745
831004b7 746 new->lm_info->l_addr = (CORE_ADDR)-1;
f4456994 747 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 748 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
749
750 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
751
752 lm = LM_NEXT (new);
753
754 /* For SVR4 versions, the first entry in the link map is for the
755 inferior executable, so we must ignore it. For some versions of
756 SVR4, it has no name. For others (Solaris 2.3 for example), it
757 does have a name, so we can no longer use a missing name to
758 decide when to ignore it. */
e4cd0d6a 759 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
13437d4b
KB
760 free_so (new);
761 else
762 {
763 int errcode;
764 char *buffer;
765
766 /* Extract this shared object's name. */
767 target_read_string (LM_NAME (new), &buffer,
768 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
769 if (errcode != 0)
8a3fe4f8
AC
770 warning (_("Can't read pathname for load map: %s."),
771 safe_strerror (errcode));
13437d4b
KB
772 else
773 {
774 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
775 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 776 xfree (buffer);
13437d4b
KB
777 strcpy (new->so_original_name, new->so_name);
778 }
779
780 /* If this entry has no name, or its name matches the name
781 for the main executable, don't include it in the list. */
782 if (! new->so_name[0]
783 || match_main (new->so_name))
784 free_so (new);
785 else
786 {
787 new->next = 0;
788 *link_ptr = new;
789 link_ptr = &new->next;
790 }
791 }
792
e4cd0d6a
MK
793 /* On Solaris, the dynamic linker is not in the normal list of
794 shared objects, so make sure we pick it up too. Having
795 symbol information for the dynamic linker is quite crucial
796 for skipping dynamic linker resolver code. */
797 if (lm == 0 && ldsomap == 0)
798 lm = ldsomap = solib_svr4_r_ldsomap ();
799
13437d4b
KB
800 discard_cleanups (old_chain);
801 }
802
34439770
DJ
803 if (head == NULL)
804 return svr4_default_sos ();
805
13437d4b
KB
806 return head;
807}
808
bc4a16ae
EZ
809/* Get the address of the link_map for a given OBJFILE. Loop through
810 the link maps, and return the address of the one corresponding to
811 the given objfile. Note that this function takes into account that
812 objfile can be the main executable, not just a shared library. The
813 main executable has always an empty name field in the linkmap. */
814
815CORE_ADDR
816svr4_fetch_objfile_link_map (struct objfile *objfile)
817{
818 CORE_ADDR lm;
819
820 if ((debug_base = locate_base ()) == 0)
821 return 0; /* failed somehow... */
822
823 /* Position ourselves on the first link map. */
e4cd0d6a 824 lm = solib_svr4_r_map ();
bc4a16ae
EZ
825 while (lm)
826 {
827 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 828 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
829 int errcode;
830 char *buffer;
831 struct lm_info objfile_lm_info;
832 struct cleanup *old_chain;
833 CORE_ADDR name_address;
cfaefc65
AS
834 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
835 gdb_byte *l_name_buf = xmalloc (l_name_size);
bc4a16ae
EZ
836 old_chain = make_cleanup (xfree, l_name_buf);
837
838 /* Set up the buffer to contain the portion of the link_map
839 structure that gdb cares about. Note that this is not the
840 whole link_map structure. */
f4456994 841 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 842 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
843
844 /* Read the link map into our internal structure. */
845 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
846
847 /* Read address of name from target memory to GDB. */
cfaefc65 848 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
bc4a16ae 849
cfaefc65
AS
850 /* Extract this object's name. */
851 name_address = extract_typed_address (l_name_buf,
852 builtin_type_void_data_ptr);
bc4a16ae
EZ
853 target_read_string (name_address, &buffer,
854 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
855 make_cleanup (xfree, buffer);
856 if (errcode != 0)
8a3fe4f8
AC
857 warning (_("Can't read pathname for load map: %s."),
858 safe_strerror (errcode));
bc4a16ae
EZ
859 else
860 {
861 /* Is this the linkmap for the file we want? */
862 /* If the file is not a shared library and has no name,
863 we are sure it is the main executable, so we return that. */
864 if ((buffer && strcmp (buffer, objfile->name) == 0)
865 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
866 {
867 do_cleanups (old_chain);
868 return lm;
869 }
870 }
cfaefc65
AS
871 /* Not the file we wanted, continue checking. */
872 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
873 builtin_type_void_data_ptr);
bc4a16ae
EZ
874 do_cleanups (old_chain);
875 }
876 return 0;
877}
13437d4b
KB
878
879/* On some systems, the only way to recognize the link map entry for
880 the main executable file is by looking at its name. Return
881 non-zero iff SONAME matches one of the known main executable names. */
882
883static int
884match_main (char *soname)
885{
886 char **mainp;
887
888 for (mainp = main_name_list; *mainp != NULL; mainp++)
889 {
890 if (strcmp (soname, *mainp) == 0)
891 return (1);
892 }
893
894 return (0);
895}
896
13437d4b
KB
897/* Return 1 if PC lies in the dynamic symbol resolution code of the
898 SVR4 run time loader. */
13437d4b
KB
899static CORE_ADDR interp_text_sect_low;
900static CORE_ADDR interp_text_sect_high;
901static CORE_ADDR interp_plt_sect_low;
902static CORE_ADDR interp_plt_sect_high;
903
7d522c90 904int
d7fa2ae2 905svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
906{
907 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
908 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
909 || in_plt_section (pc, NULL));
910}
13437d4b 911
2f4950cd
AC
912/* Given an executable's ABFD and target, compute the entry-point
913 address. */
914
915static CORE_ADDR
916exec_entry_point (struct bfd *abfd, struct target_ops *targ)
917{
918 /* KevinB wrote ... for most targets, the address returned by
919 bfd_get_start_address() is the entry point for the start
920 function. But, for some targets, bfd_get_start_address() returns
921 the address of a function descriptor from which the entry point
922 address may be extracted. This address is extracted by
923 gdbarch_convert_from_func_ptr_addr(). The method
924 gdbarch_convert_from_func_ptr_addr() is the merely the identify
925 function for targets which don't use function descriptors. */
926 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
927 bfd_get_start_address (abfd),
928 targ);
929}
13437d4b
KB
930
931/*
932
933 LOCAL FUNCTION
934
935 enable_break -- arrange for dynamic linker to hit breakpoint
936
937 SYNOPSIS
938
939 int enable_break (void)
940
941 DESCRIPTION
942
943 Both the SunOS and the SVR4 dynamic linkers have, as part of their
944 debugger interface, support for arranging for the inferior to hit
945 a breakpoint after mapping in the shared libraries. This function
946 enables that breakpoint.
947
948 For SunOS, there is a special flag location (in_debugger) which we
949 set to 1. When the dynamic linker sees this flag set, it will set
950 a breakpoint at a location known only to itself, after saving the
951 original contents of that place and the breakpoint address itself,
952 in it's own internal structures. When we resume the inferior, it
953 will eventually take a SIGTRAP when it runs into the breakpoint.
954 We handle this (in a different place) by restoring the contents of
955 the breakpointed location (which is only known after it stops),
956 chasing around to locate the shared libraries that have been
957 loaded, then resuming.
958
959 For SVR4, the debugger interface structure contains a member (r_brk)
960 which is statically initialized at the time the shared library is
961 built, to the offset of a function (_r_debug_state) which is guaran-
962 teed to be called once before mapping in a library, and again when
963 the mapping is complete. At the time we are examining this member,
964 it contains only the unrelocated offset of the function, so we have
965 to do our own relocation. Later, when the dynamic linker actually
966 runs, it relocates r_brk to be the actual address of _r_debug_state().
967
968 The debugger interface structure also contains an enumeration which
969 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
970 depending upon whether or not the library is being mapped or unmapped,
971 and then set to RT_CONSISTENT after the library is mapped/unmapped.
972 */
973
974static int
975enable_break (void)
976{
13437d4b
KB
977#ifdef BKPT_AT_SYMBOL
978
979 struct minimal_symbol *msymbol;
980 char **bkpt_namep;
981 asection *interp_sect;
982
983 /* First, remove all the solib event breakpoints. Their addresses
984 may have changed since the last time we ran the program. */
985 remove_solib_event_breakpoints ();
986
13437d4b
KB
987 interp_text_sect_low = interp_text_sect_high = 0;
988 interp_plt_sect_low = interp_plt_sect_high = 0;
989
990 /* Find the .interp section; if not found, warn the user and drop
991 into the old breakpoint at symbol code. */
992 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
993 if (interp_sect)
994 {
995 unsigned int interp_sect_size;
996 char *buf;
8ad2fcde
KB
997 CORE_ADDR load_addr = 0;
998 int load_addr_found = 0;
f8766ec1 999 struct so_list *so;
e4f7b8c8 1000 bfd *tmp_bfd = NULL;
2f4950cd 1001 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
1002 int tmp_fd = -1;
1003 char *tmp_pathname = NULL;
13437d4b
KB
1004 CORE_ADDR sym_addr = 0;
1005
1006 /* Read the contents of the .interp section into a local buffer;
1007 the contents specify the dynamic linker this program uses. */
1008 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1009 buf = alloca (interp_sect_size);
1010 bfd_get_section_contents (exec_bfd, interp_sect,
1011 buf, 0, interp_sect_size);
1012
1013 /* Now we need to figure out where the dynamic linker was
1014 loaded so that we can load its symbols and place a breakpoint
1015 in the dynamic linker itself.
1016
1017 This address is stored on the stack. However, I've been unable
1018 to find any magic formula to find it for Solaris (appears to
1019 be trivial on GNU/Linux). Therefore, we have to try an alternate
1020 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1021
34439770
DJ
1022 /* TODO drow/2006-09-12: This is somewhat fragile, because it
1023 relies on read_pc. On both Solaris and GNU/Linux we can use
1024 the AT_BASE auxilliary entry, which GDB now knows how to
1025 access, to find the base address. */
1026
1027 tmp_fd = solib_open (buf, &tmp_pathname);
e4f7b8c8 1028 if (tmp_fd >= 0)
9f76c2cd 1029 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 1030
13437d4b
KB
1031 if (tmp_bfd == NULL)
1032 goto bkpt_at_symbol;
1033
1034 /* Make sure the dynamic linker's really a useful object. */
1035 if (!bfd_check_format (tmp_bfd, bfd_object))
1036 {
8a3fe4f8 1037 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
1038 bfd_close (tmp_bfd);
1039 goto bkpt_at_symbol;
1040 }
1041
2f4950cd
AC
1042 /* Now convert the TMP_BFD into a target. That way target, as
1043 well as BFD operations can be used. Note that closing the
1044 target will also close the underlying bfd. */
1045 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1046
f8766ec1
KB
1047 /* On a running target, we can get the dynamic linker's base
1048 address from the shared library table. */
1049 solib_add (NULL, 0, NULL, auto_solib_add);
1050 so = master_so_list ();
1051 while (so)
8ad2fcde 1052 {
f8766ec1 1053 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
1054 {
1055 load_addr_found = 1;
cc10cae3 1056 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1057 break;
1058 }
f8766ec1 1059 so = so->next;
8ad2fcde
KB
1060 }
1061
1062 /* Otherwise we find the dynamic linker's base address by examining
1063 the current pc (which should point at the entry point for the
1064 dynamic linker) and subtracting the offset of the entry point. */
1065 if (!load_addr_found)
34439770
DJ
1066 {
1067 load_addr = (read_pc ()
1068 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1069 debug_loader_name = xstrdup (buf);
1070 debug_loader_offset_p = 1;
1071 debug_loader_offset = load_addr;
1072 solib_add (NULL, 0, NULL, auto_solib_add);
1073 }
13437d4b
KB
1074
1075 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1076 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1077 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1078 if (interp_sect)
1079 {
1080 interp_text_sect_low =
1081 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1082 interp_text_sect_high =
1083 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1084 }
1085 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1086 if (interp_sect)
1087 {
1088 interp_plt_sect_low =
1089 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1090 interp_plt_sect_high =
1091 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1092 }
1093
1094 /* Now try to set a breakpoint in the dynamic linker. */
1095 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1096 {
87f84c9d
JB
1097 /* On ABI's that use function descriptors, there are usually
1098 two linker symbols associated with each C function: one
1099 pointing at the actual entry point of the machine code,
1100 and one pointing at the function's descriptor. The
1101 latter symbol has the same name as the C function.
1102
1103 What we're looking for here is the machine code entry
1104 point, so we are only interested in symbols in code
1105 sections. */
1106 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
13437d4b
KB
1107 if (sym_addr != 0)
1108 break;
1109 }
1110
2f4950cd
AC
1111 /* We're done with both the temporary bfd and target. Remember,
1112 closing the target closes the underlying bfd. */
1113 target_close (tmp_bfd_target, 0);
13437d4b
KB
1114
1115 if (sym_addr != 0)
1116 {
1117 create_solib_event_breakpoint (load_addr + sym_addr);
1118 return 1;
1119 }
1120
1121 /* For whatever reason we couldn't set a breakpoint in the dynamic
1122 linker. Warn and drop into the old code. */
1123 bkpt_at_symbol:
82d03102
PG
1124 warning (_("Unable to find dynamic linker breakpoint function.\n"
1125 "GDB will be unable to debug shared library initializers\n"
1126 "and track explicitly loaded dynamic code."));
13437d4b 1127 }
13437d4b 1128
e499d0f1
DJ
1129 /* Scan through the lists of symbols, trying to look up the symbol and
1130 set a breakpoint there. Terminate loop when we/if we succeed. */
1131
1132 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1133 {
1134 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1135 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1136 {
1137 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1138 return 1;
1139 }
1140 }
13437d4b 1141
13437d4b
KB
1142 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1143 {
1144 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1145 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1146 {
1147 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1148 return 1;
1149 }
1150 }
13437d4b
KB
1151#endif /* BKPT_AT_SYMBOL */
1152
542c95c2 1153 return 0;
13437d4b
KB
1154}
1155
1156/*
1157
1158 LOCAL FUNCTION
1159
1160 special_symbol_handling -- additional shared library symbol handling
1161
1162 SYNOPSIS
1163
1164 void special_symbol_handling ()
1165
1166 DESCRIPTION
1167
1168 Once the symbols from a shared object have been loaded in the usual
1169 way, we are called to do any system specific symbol handling that
1170 is needed.
1171
ab31aa69 1172 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1173 linkers structures to find symbol definitions for "common" symbols
1174 and adding them to the minimal symbol table for the runtime common
1175 objfile.
1176
ab31aa69
KB
1177 However, for SVR4, there's nothing to do.
1178
13437d4b
KB
1179 */
1180
1181static void
1182svr4_special_symbol_handling (void)
1183{
13437d4b
KB
1184}
1185
e2a44558
KB
1186/* Relocate the main executable. This function should be called upon
1187 stopping the inferior process at the entry point to the program.
1188 The entry point from BFD is compared to the PC and if they are
1189 different, the main executable is relocated by the proper amount.
1190
1191 As written it will only attempt to relocate executables which
1192 lack interpreter sections. It seems likely that only dynamic
1193 linker executables will get relocated, though it should work
1194 properly for a position-independent static executable as well. */
1195
1196static void
1197svr4_relocate_main_executable (void)
1198{
1199 asection *interp_sect;
1200 CORE_ADDR pc = read_pc ();
1201
1202 /* Decide if the objfile needs to be relocated. As indicated above,
1203 we will only be here when execution is stopped at the beginning
1204 of the program. Relocation is necessary if the address at which
1205 we are presently stopped differs from the start address stored in
1206 the executable AND there's no interpreter section. The condition
1207 regarding the interpreter section is very important because if
1208 there *is* an interpreter section, execution will begin there
1209 instead. When there is an interpreter section, the start address
1210 is (presumably) used by the interpreter at some point to start
1211 execution of the program.
1212
1213 If there is an interpreter, it is normal for it to be set to an
1214 arbitrary address at the outset. The job of finding it is
1215 handled in enable_break().
1216
1217 So, to summarize, relocations are necessary when there is no
1218 interpreter section and the start address obtained from the
1219 executable is different from the address at which GDB is
1220 currently stopped.
1221
1222 [ The astute reader will note that we also test to make sure that
1223 the executable in question has the DYNAMIC flag set. It is my
1224 opinion that this test is unnecessary (undesirable even). It
1225 was added to avoid inadvertent relocation of an executable
1226 whose e_type member in the ELF header is not ET_DYN. There may
1227 be a time in the future when it is desirable to do relocations
1228 on other types of files as well in which case this condition
1229 should either be removed or modified to accomodate the new file
1230 type. (E.g, an ET_EXEC executable which has been built to be
1231 position-independent could safely be relocated by the OS if
1232 desired. It is true that this violates the ABI, but the ABI
1233 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1234 */
1235
1236 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1237 if (interp_sect == NULL
1238 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1239 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1240 {
1241 struct cleanup *old_chain;
1242 struct section_offsets *new_offsets;
1243 int i, changed;
1244 CORE_ADDR displacement;
1245
1246 /* It is necessary to relocate the objfile. The amount to
1247 relocate by is simply the address at which we are stopped
1248 minus the starting address from the executable.
1249
1250 We relocate all of the sections by the same amount. This
1251 behavior is mandated by recent editions of the System V ABI.
1252 According to the System V Application Binary Interface,
1253 Edition 4.1, page 5-5:
1254
1255 ... Though the system chooses virtual addresses for
1256 individual processes, it maintains the segments' relative
1257 positions. Because position-independent code uses relative
1258 addressesing between segments, the difference between
1259 virtual addresses in memory must match the difference
1260 between virtual addresses in the file. The difference
1261 between the virtual address of any segment in memory and
1262 the corresponding virtual address in the file is thus a
1263 single constant value for any one executable or shared
1264 object in a given process. This difference is the base
1265 address. One use of the base address is to relocate the
1266 memory image of the program during dynamic linking.
1267
1268 The same language also appears in Edition 4.0 of the System V
1269 ABI and is left unspecified in some of the earlier editions. */
1270
2f4950cd 1271 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1272 changed = 0;
1273
13fc0c2f
KB
1274 new_offsets = xcalloc (symfile_objfile->num_sections,
1275 sizeof (struct section_offsets));
b8c9b27d 1276 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1277
1278 for (i = 0; i < symfile_objfile->num_sections; i++)
1279 {
1280 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1281 changed = 1;
1282 new_offsets->offsets[i] = displacement;
1283 }
1284
1285 if (changed)
1286 objfile_relocate (symfile_objfile, new_offsets);
1287
1288 do_cleanups (old_chain);
1289 }
1290}
1291
13437d4b
KB
1292/*
1293
1294 GLOBAL FUNCTION
1295
1296 svr4_solib_create_inferior_hook -- shared library startup support
1297
1298 SYNOPSIS
1299
7095b863 1300 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1301
1302 DESCRIPTION
1303
1304 When gdb starts up the inferior, it nurses it along (through the
1305 shell) until it is ready to execute it's first instruction. At this
1306 point, this function gets called via expansion of the macro
1307 SOLIB_CREATE_INFERIOR_HOOK.
1308
1309 For SunOS executables, this first instruction is typically the
1310 one at "_start", or a similar text label, regardless of whether
1311 the executable is statically or dynamically linked. The runtime
1312 startup code takes care of dynamically linking in any shared
1313 libraries, once gdb allows the inferior to continue.
1314
1315 For SVR4 executables, this first instruction is either the first
1316 instruction in the dynamic linker (for dynamically linked
1317 executables) or the instruction at "start" for statically linked
1318 executables. For dynamically linked executables, the system
1319 first exec's /lib/libc.so.N, which contains the dynamic linker,
1320 and starts it running. The dynamic linker maps in any needed
1321 shared libraries, maps in the actual user executable, and then
1322 jumps to "start" in the user executable.
1323
1324 For both SunOS shared libraries, and SVR4 shared libraries, we
1325 can arrange to cooperate with the dynamic linker to discover the
1326 names of shared libraries that are dynamically linked, and the
1327 base addresses to which they are linked.
1328
1329 This function is responsible for discovering those names and
1330 addresses, and saving sufficient information about them to allow
1331 their symbols to be read at a later time.
1332
1333 FIXME
1334
1335 Between enable_break() and disable_break(), this code does not
1336 properly handle hitting breakpoints which the user might have
1337 set in the startup code or in the dynamic linker itself. Proper
1338 handling will probably have to wait until the implementation is
1339 changed to use the "breakpoint handler function" method.
1340
1341 Also, what if child has exit()ed? Must exit loop somehow.
1342 */
1343
e2a44558 1344static void
13437d4b
KB
1345svr4_solib_create_inferior_hook (void)
1346{
e2a44558
KB
1347 /* Relocate the main executable if necessary. */
1348 svr4_relocate_main_executable ();
1349
d5a921c9
KB
1350 if (!svr4_have_link_map_offsets ())
1351 {
8a3fe4f8 1352 warning (_("no shared library support for this OS / ABI"));
d5a921c9
KB
1353 return;
1354
1355 }
1356
13437d4b 1357 if (!enable_break ())
542c95c2 1358 return;
13437d4b 1359
ab31aa69
KB
1360#if defined(_SCO_DS)
1361 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1362 special shared library breakpoints and the shared library breakpoint
1363 service routine.
1364
1365 Now run the target. It will eventually hit the breakpoint, at
1366 which point all of the libraries will have been mapped in and we
1367 can go groveling around in the dynamic linker structures to find
1368 out what we need to know about them. */
1369
1370 clear_proceed_status ();
c0236d92 1371 stop_soon = STOP_QUIETLY;
13437d4b
KB
1372 stop_signal = TARGET_SIGNAL_0;
1373 do
1374 {
39f77062 1375 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1376 wait_for_inferior ();
1377 }
1378 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1379 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1380#endif /* defined(_SCO_DS) */
13437d4b
KB
1381}
1382
1383static void
1384svr4_clear_solib (void)
1385{
1386 debug_base = 0;
34439770
DJ
1387 debug_loader_offset_p = 0;
1388 debug_loader_offset = 0;
1389 xfree (debug_loader_name);
1390 debug_loader_name = NULL;
13437d4b
KB
1391}
1392
1393static void
1394svr4_free_so (struct so_list *so)
1395{
b8c9b27d
KB
1396 xfree (so->lm_info->lm);
1397 xfree (so->lm_info);
13437d4b
KB
1398}
1399
6bb7be43
JB
1400
1401/* Clear any bits of ADDR that wouldn't fit in a target-format
1402 data pointer. "Data pointer" here refers to whatever sort of
1403 address the dynamic linker uses to manage its sections. At the
1404 moment, we don't support shared libraries on any processors where
1405 code and data pointers are different sizes.
1406
1407 This isn't really the right solution. What we really need here is
1408 a way to do arithmetic on CORE_ADDR values that respects the
1409 natural pointer/address correspondence. (For example, on the MIPS,
1410 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1411 sign-extend the value. There, simply truncating the bits above
1412 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1413 be a new gdbarch method or something. */
1414static CORE_ADDR
1415svr4_truncate_ptr (CORE_ADDR addr)
1416{
1417 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1418 /* We don't need to truncate anything, and the bit twiddling below
1419 will fail due to overflow problems. */
1420 return addr;
1421 else
1422 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1423}
1424
1425
749499cb
KB
1426static void
1427svr4_relocate_section_addresses (struct so_list *so,
1428 struct section_table *sec)
1429{
cc10cae3
AO
1430 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1431 sec->bfd));
1432 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1433 sec->bfd));
749499cb 1434}
4b188b9f 1435\f
749499cb 1436
4b188b9f 1437/* Architecture-specific operations. */
6bb7be43 1438
4b188b9f
MK
1439/* Per-architecture data key. */
1440static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1441
4b188b9f 1442struct solib_svr4_ops
e5e2b9ff 1443{
4b188b9f
MK
1444 /* Return a description of the layout of `struct link_map'. */
1445 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1446};
e5e2b9ff 1447
4b188b9f 1448/* Return a default for the architecture-specific operations. */
e5e2b9ff 1449
4b188b9f
MK
1450static void *
1451solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1452{
4b188b9f 1453 struct solib_svr4_ops *ops;
e5e2b9ff 1454
4b188b9f
MK
1455 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1456 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1457 return ops;
e5e2b9ff
KB
1458}
1459
4b188b9f
MK
1460/* Set the architecture-specific `struct link_map_offsets' fetcher for
1461 GDBARCH to FLMO. */
1c4dcb57 1462
21479ded 1463void
e5e2b9ff
KB
1464set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1465 struct link_map_offsets *(*flmo) (void))
21479ded 1466{
4b188b9f
MK
1467 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1468
1469 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1470}
1471
4b188b9f
MK
1472/* Fetch a link_map_offsets structure using the architecture-specific
1473 `struct link_map_offsets' fetcher. */
1c4dcb57 1474
4b188b9f
MK
1475static struct link_map_offsets *
1476svr4_fetch_link_map_offsets (void)
21479ded 1477{
4b188b9f
MK
1478 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1479
1480 gdb_assert (ops->fetch_link_map_offsets);
1481 return ops->fetch_link_map_offsets ();
21479ded
KB
1482}
1483
4b188b9f
MK
1484/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1485
1486static int
1487svr4_have_link_map_offsets (void)
1488{
1489 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1490 return (ops->fetch_link_map_offsets != NULL);
1491}
1492\f
1493
e4bbbda8
MK
1494/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1495 `struct r_debug' and a `struct link_map' that are binary compatible
1496 with the origional SVR4 implementation. */
1497
1498/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1499 for an ILP32 SVR4 system. */
1500
1501struct link_map_offsets *
1502svr4_ilp32_fetch_link_map_offsets (void)
1503{
1504 static struct link_map_offsets lmo;
1505 static struct link_map_offsets *lmp = NULL;
1506
1507 if (lmp == NULL)
1508 {
1509 lmp = &lmo;
1510
e4cd0d6a
MK
1511 lmo.r_version_offset = 0;
1512 lmo.r_version_size = 4;
e4bbbda8 1513 lmo.r_map_offset = 4;
e4cd0d6a 1514 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1515
1516 /* Everything we need is in the first 20 bytes. */
1517 lmo.link_map_size = 20;
1518 lmo.l_addr_offset = 0;
e4bbbda8 1519 lmo.l_name_offset = 4;
cc10cae3 1520 lmo.l_ld_offset = 8;
e4bbbda8 1521 lmo.l_next_offset = 12;
e4bbbda8 1522 lmo.l_prev_offset = 16;
e4bbbda8
MK
1523 }
1524
1525 return lmp;
1526}
1527
1528/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1529 for an LP64 SVR4 system. */
1530
1531struct link_map_offsets *
1532svr4_lp64_fetch_link_map_offsets (void)
1533{
1534 static struct link_map_offsets lmo;
1535 static struct link_map_offsets *lmp = NULL;
1536
1537 if (lmp == NULL)
1538 {
1539 lmp = &lmo;
1540
e4cd0d6a
MK
1541 lmo.r_version_offset = 0;
1542 lmo.r_version_size = 4;
e4bbbda8 1543 lmo.r_map_offset = 8;
e4cd0d6a 1544 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1545
1546 /* Everything we need is in the first 40 bytes. */
1547 lmo.link_map_size = 40;
1548 lmo.l_addr_offset = 0;
e4bbbda8 1549 lmo.l_name_offset = 8;
cc10cae3 1550 lmo.l_ld_offset = 16;
e4bbbda8 1551 lmo.l_next_offset = 24;
e4bbbda8 1552 lmo.l_prev_offset = 32;
e4bbbda8
MK
1553 }
1554
1555 return lmp;
1556}
1557\f
1558
7d522c90 1559struct target_so_ops svr4_so_ops;
13437d4b 1560
a78f21af
AC
1561extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1562
13437d4b
KB
1563void
1564_initialize_svr4_solib (void)
1565{
4b188b9f
MK
1566 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1567
749499cb 1568 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1569 svr4_so_ops.free_so = svr4_free_so;
1570 svr4_so_ops.clear_solib = svr4_clear_solib;
1571 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1572 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1573 svr4_so_ops.current_sos = svr4_current_sos;
1574 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1575 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
13437d4b
KB
1576
1577 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1578 current_target_so_ops = &svr4_so_ops;
1579}
This page took 1.093638 seconds and 4 git commands to generate.