Oops, really commit. Part of:
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
b6ba6518
KB
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
3 2001
13437d4b
KB
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
13437d4b
KB
23#include "defs.h"
24
13437d4b 25#include "elf/external.h"
21479ded 26#include "elf/common.h"
f7856c8f 27#include "elf/mips.h"
13437d4b
KB
28
29#include "symtab.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbcore.h"
13437d4b 34#include "target.h"
13437d4b 35#include "inferior.h"
13437d4b
KB
36
37#include "solist.h"
38#include "solib-svr4.h"
39
21479ded 40#ifndef SVR4_FETCH_LINK_MAP_OFFSETS
e5e2b9ff 41#define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets ()
21479ded
KB
42#endif
43
e5e2b9ff
KB
44static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
45static struct link_map_offsets *legacy_fetch_link_map_offsets (void);
d5a921c9 46static int svr4_have_link_map_offsets (void);
1c4dcb57 47
e5e2b9ff
KB
48/* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
49 architecture specific link map offsets fetching function. */
21479ded 50
e5e2b9ff 51static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data;
1c4dcb57 52
21479ded
KB
53/* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
54 which is used to fetch link map offsets. It will only be set
55 by solib-legacy.c, if at all. */
e5e2b9ff 56
21479ded
KB
57struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0;
58
13437d4b
KB
59/* Link map info to include in an allocated so_list entry */
60
61struct lm_info
62 {
63 /* Pointer to copy of link map from inferior. The type is char *
64 rather than void *, so that we may use byte offsets to find the
65 various fields without the need for a cast. */
66 char *lm;
67 };
68
69/* On SVR4 systems, a list of symbols in the dynamic linker where
70 GDB can try to place a breakpoint to monitor shared library
71 events.
72
73 If none of these symbols are found, or other errors occur, then
74 SVR4 systems will fall back to using a symbol as the "startup
75 mapping complete" breakpoint address. */
76
13437d4b
KB
77static char *solib_break_names[] =
78{
79 "r_debug_state",
80 "_r_debug_state",
81 "_dl_debug_state",
82 "rtld_db_dlactivity",
1f72e589 83 "_rtld_debug_state",
13437d4b
KB
84 NULL
85};
13437d4b
KB
86
87#define BKPT_AT_SYMBOL 1
88
ab31aa69 89#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
90static char *bkpt_names[] =
91{
92#ifdef SOLIB_BKPT_NAME
93 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
94#endif
95 "_start",
ad3dcc5c 96 "__start",
13437d4b
KB
97 "main",
98 NULL
99};
100#endif
101
13437d4b
KB
102static char *main_name_list[] =
103{
104 "main_$main",
105 NULL
106};
107
13437d4b
KB
108/* Macro to extract an address from a solib structure.
109 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
110 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
111 64 bits. We have to extract only the significant bits of addresses
112 to get the right address when accessing the core file BFD. */
113
114#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
115 extract_address (&(MEMBER), sizeof (MEMBER))
116
117/* local data declarations */
118
13437d4b
KB
119/* link map access functions */
120
121static CORE_ADDR
122LM_ADDR (struct so_list *so)
123{
124 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
125
58bc91c9
MH
126 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
127 lmo->l_addr_size);
13437d4b
KB
128}
129
130static CORE_ADDR
131LM_NEXT (struct so_list *so)
132{
133 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
134
135 return extract_address (so->lm_info->lm + lmo->l_next_offset, lmo->l_next_size);
136}
137
138static CORE_ADDR
139LM_NAME (struct so_list *so)
140{
141 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
142
143 return extract_address (so->lm_info->lm + lmo->l_name_offset, lmo->l_name_size);
144}
145
13437d4b
KB
146static int
147IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
148{
149 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
150
151 return extract_address (so->lm_info->lm + lmo->l_prev_offset,
152 lmo->l_prev_size) == 0;
153}
154
13437d4b
KB
155static CORE_ADDR debug_base; /* Base of dynamic linker structures */
156static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
157
158/* Local function prototypes */
159
160static int match_main (char *);
161
13437d4b
KB
162static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
163
164/*
165
166 LOCAL FUNCTION
167
168 bfd_lookup_symbol -- lookup the value for a specific symbol
169
170 SYNOPSIS
171
172 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
173
174 DESCRIPTION
175
176 An expensive way to lookup the value of a single symbol for
177 bfd's that are only temporary anyway. This is used by the
178 shared library support to find the address of the debugger
179 interface structures in the shared library.
180
181 Note that 0 is specifically allowed as an error return (no
182 such symbol).
183 */
184
185static CORE_ADDR
186bfd_lookup_symbol (bfd *abfd, char *symname)
187{
435b259c 188 long storage_needed;
13437d4b
KB
189 asymbol *sym;
190 asymbol **symbol_table;
191 unsigned int number_of_symbols;
192 unsigned int i;
193 struct cleanup *back_to;
194 CORE_ADDR symaddr = 0;
195
196 storage_needed = bfd_get_symtab_upper_bound (abfd);
197
198 if (storage_needed > 0)
199 {
200 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 201 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
202 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
203
204 for (i = 0; i < number_of_symbols; i++)
205 {
206 sym = *symbol_table++;
207 if (STREQ (sym->name, symname))
208 {
209 /* Bfd symbols are section relative. */
210 symaddr = sym->value + sym->section->vma;
211 break;
212 }
213 }
214 do_cleanups (back_to);
215 }
216
217 if (symaddr)
218 return symaddr;
219
220 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
221 have to check the dynamic string table too. */
222
223 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
224
225 if (storage_needed > 0)
226 {
227 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 228 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
229 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
230
231 for (i = 0; i < number_of_symbols; i++)
232 {
233 sym = *symbol_table++;
234 if (STREQ (sym->name, symname))
235 {
236 /* Bfd symbols are section relative. */
237 symaddr = sym->value + sym->section->vma;
238 break;
239 }
240 }
241 do_cleanups (back_to);
242 }
243
244 return symaddr;
245}
246
247#ifdef HANDLE_SVR4_EXEC_EMULATORS
248
249/*
250 Solaris BCP (the part of Solaris which allows it to run SunOS4
251 a.out files) throws in another wrinkle. Solaris does not fill
252 in the usual a.out link map structures when running BCP programs,
253 the only way to get at them is via groping around in the dynamic
254 linker.
255 The dynamic linker and it's structures are located in the shared
256 C library, which gets run as the executable's "interpreter" by
257 the kernel.
258
259 Note that we can assume nothing about the process state at the time
260 we need to find these structures. We may be stopped on the first
261 instruction of the interpreter (C shared library), the first
262 instruction of the executable itself, or somewhere else entirely
263 (if we attached to the process for example).
264 */
265
266static char *debug_base_symbols[] =
267{
268 "r_debug", /* Solaris 2.3 */
269 "_r_debug", /* Solaris 2.1, 2.2 */
270 NULL
271};
272
273static int look_for_base (int, CORE_ADDR);
274
275/*
276
277 LOCAL FUNCTION
278
279 look_for_base -- examine file for each mapped address segment
280
281 SYNOPSYS
282
283 static int look_for_base (int fd, CORE_ADDR baseaddr)
284
285 DESCRIPTION
286
287 This function is passed to proc_iterate_over_mappings, which
288 causes it to get called once for each mapped address space, with
289 an open file descriptor for the file mapped to that space, and the
290 base address of that mapped space.
291
292 Our job is to find the debug base symbol in the file that this
293 fd is open on, if it exists, and if so, initialize the dynamic
294 linker structure base address debug_base.
295
296 Note that this is a computationally expensive proposition, since
297 we basically have to open a bfd on every call, so we specifically
298 avoid opening the exec file.
299 */
300
301static int
302look_for_base (int fd, CORE_ADDR baseaddr)
303{
304 bfd *interp_bfd;
305 CORE_ADDR address = 0;
306 char **symbolp;
307
308 /* If the fd is -1, then there is no file that corresponds to this
309 mapped memory segment, so skip it. Also, if the fd corresponds
310 to the exec file, skip it as well. */
311
312 if (fd == -1
313 || (exec_bfd != NULL
314 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
315 {
316 return (0);
317 }
318
319 /* Try to open whatever random file this fd corresponds to. Note that
320 we have no way currently to find the filename. Don't gripe about
321 any problems we might have, just fail. */
322
323 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
324 {
325 return (0);
326 }
327 if (!bfd_check_format (interp_bfd, bfd_object))
328 {
329 /* FIXME-leak: on failure, might not free all memory associated with
330 interp_bfd. */
331 bfd_close (interp_bfd);
332 return (0);
333 }
334
335 /* Now try to find our debug base symbol in this file, which we at
336 least know to be a valid ELF executable or shared library. */
337
338 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
339 {
340 address = bfd_lookup_symbol (interp_bfd, *symbolp);
341 if (address != 0)
342 {
343 break;
344 }
345 }
346 if (address == 0)
347 {
348 /* FIXME-leak: on failure, might not free all memory associated with
349 interp_bfd. */
350 bfd_close (interp_bfd);
351 return (0);
352 }
353
354 /* Eureka! We found the symbol. But now we may need to relocate it
355 by the base address. If the symbol's value is less than the base
356 address of the shared library, then it hasn't yet been relocated
357 by the dynamic linker, and we have to do it ourself. FIXME: Note
358 that we make the assumption that the first segment that corresponds
359 to the shared library has the base address to which the library
360 was relocated. */
361
362 if (address < baseaddr)
363 {
364 address += baseaddr;
365 }
366 debug_base = address;
367 /* FIXME-leak: on failure, might not free all memory associated with
368 interp_bfd. */
369 bfd_close (interp_bfd);
370 return (1);
371}
372#endif /* HANDLE_SVR4_EXEC_EMULATORS */
373
374/*
375
376 LOCAL FUNCTION
377
378 elf_locate_base -- locate the base address of dynamic linker structs
379 for SVR4 elf targets.
380
381 SYNOPSIS
382
383 CORE_ADDR elf_locate_base (void)
384
385 DESCRIPTION
386
387 For SVR4 elf targets the address of the dynamic linker's runtime
388 structure is contained within the dynamic info section in the
389 executable file. The dynamic section is also mapped into the
390 inferior address space. Because the runtime loader fills in the
391 real address before starting the inferior, we have to read in the
392 dynamic info section from the inferior address space.
393 If there are any errors while trying to find the address, we
394 silently return 0, otherwise the found address is returned.
395
396 */
397
398static CORE_ADDR
399elf_locate_base (void)
400{
401 sec_ptr dyninfo_sect;
402 int dyninfo_sect_size;
403 CORE_ADDR dyninfo_addr;
404 char *buf;
405 char *bufend;
406 int arch_size;
407
408 /* Find the start address of the .dynamic section. */
409 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
410 if (dyninfo_sect == NULL)
411 return 0;
412 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
413
414 /* Read in .dynamic section, silently ignore errors. */
415 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
416 buf = alloca (dyninfo_sect_size);
417 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
418 return 0;
419
420 /* Find the DT_DEBUG entry in the the .dynamic section.
421 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
422 no DT_DEBUG entries. */
423
424 arch_size = bfd_get_arch_size (exec_bfd);
425 if (arch_size == -1) /* failure */
426 return 0;
427
428 if (arch_size == 32)
429 { /* 32-bit elf */
430 for (bufend = buf + dyninfo_sect_size;
431 buf < bufend;
432 buf += sizeof (Elf32_External_Dyn))
433 {
434 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
435 long dyn_tag;
436 CORE_ADDR dyn_ptr;
437
438 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
439 if (dyn_tag == DT_NULL)
440 break;
441 else if (dyn_tag == DT_DEBUG)
442 {
443 dyn_ptr = bfd_h_get_32 (exec_bfd,
444 (bfd_byte *) x_dynp->d_un.d_ptr);
445 return dyn_ptr;
446 }
13437d4b
KB
447 else if (dyn_tag == DT_MIPS_RLD_MAP)
448 {
449 char *pbuf;
743b930b 450 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
13437d4b 451
743b930b 452 pbuf = alloca (pbuf_size);
13437d4b
KB
453 /* DT_MIPS_RLD_MAP contains a pointer to the address
454 of the dynamic link structure. */
455 dyn_ptr = bfd_h_get_32 (exec_bfd,
456 (bfd_byte *) x_dynp->d_un.d_ptr);
743b930b 457 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
13437d4b 458 return 0;
743b930b 459 return extract_unsigned_integer (pbuf, pbuf_size);
13437d4b 460 }
13437d4b
KB
461 }
462 }
463 else /* 64-bit elf */
464 {
465 for (bufend = buf + dyninfo_sect_size;
466 buf < bufend;
467 buf += sizeof (Elf64_External_Dyn))
468 {
469 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
470 long dyn_tag;
471 CORE_ADDR dyn_ptr;
472
473 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
474 if (dyn_tag == DT_NULL)
475 break;
476 else if (dyn_tag == DT_DEBUG)
477 {
478 dyn_ptr = bfd_h_get_64 (exec_bfd,
479 (bfd_byte *) x_dynp->d_un.d_ptr);
480 return dyn_ptr;
481 }
743b930b
KB
482 else if (dyn_tag == DT_MIPS_RLD_MAP)
483 {
484 char *pbuf;
485 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
486
487 pbuf = alloca (pbuf_size);
488 /* DT_MIPS_RLD_MAP contains a pointer to the address
489 of the dynamic link structure. */
490 dyn_ptr = bfd_h_get_64 (exec_bfd,
491 (bfd_byte *) x_dynp->d_un.d_ptr);
492 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
493 return 0;
494 return extract_unsigned_integer (pbuf, pbuf_size);
495 }
13437d4b
KB
496 }
497 }
498
499 /* DT_DEBUG entry not found. */
500 return 0;
501}
502
13437d4b
KB
503/*
504
505 LOCAL FUNCTION
506
507 locate_base -- locate the base address of dynamic linker structs
508
509 SYNOPSIS
510
511 CORE_ADDR locate_base (void)
512
513 DESCRIPTION
514
515 For both the SunOS and SVR4 shared library implementations, if the
516 inferior executable has been linked dynamically, there is a single
517 address somewhere in the inferior's data space which is the key to
518 locating all of the dynamic linker's runtime structures. This
519 address is the value of the debug base symbol. The job of this
520 function is to find and return that address, or to return 0 if there
521 is no such address (the executable is statically linked for example).
522
523 For SunOS, the job is almost trivial, since the dynamic linker and
524 all of it's structures are statically linked to the executable at
525 link time. Thus the symbol for the address we are looking for has
526 already been added to the minimal symbol table for the executable's
527 objfile at the time the symbol file's symbols were read, and all we
528 have to do is look it up there. Note that we explicitly do NOT want
529 to find the copies in the shared library.
530
531 The SVR4 version is a bit more complicated because the address
532 is contained somewhere in the dynamic info section. We have to go
533 to a lot more work to discover the address of the debug base symbol.
534 Because of this complexity, we cache the value we find and return that
535 value on subsequent invocations. Note there is no copy in the
536 executable symbol tables.
537
538 */
539
540static CORE_ADDR
541locate_base (void)
542{
13437d4b
KB
543 /* Check to see if we have a currently valid address, and if so, avoid
544 doing all this work again and just return the cached address. If
545 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
546 section for ELF executables. There's no point in doing any of this
547 though if we don't have some link map offsets to work with. */
13437d4b 548
d5a921c9 549 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
550 {
551 if (exec_bfd != NULL
552 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
553 debug_base = elf_locate_base ();
554#ifdef HANDLE_SVR4_EXEC_EMULATORS
555 /* Try it the hard way for emulated executables. */
39f77062 556 else if (!ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
13437d4b
KB
557 proc_iterate_over_mappings (look_for_base);
558#endif
559 }
560 return (debug_base);
13437d4b
KB
561}
562
563/*
564
565 LOCAL FUNCTION
566
567 first_link_map_member -- locate first member in dynamic linker's map
568
569 SYNOPSIS
570
571 static CORE_ADDR first_link_map_member (void)
572
573 DESCRIPTION
574
575 Find the first element in the inferior's dynamic link map, and
576 return its address in the inferior. This function doesn't copy the
577 link map entry itself into our address space; current_sos actually
578 does the reading. */
579
580static CORE_ADDR
581first_link_map_member (void)
582{
583 CORE_ADDR lm = 0;
13437d4b
KB
584 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
585 char *r_map_buf = xmalloc (lmo->r_map_size);
b8c9b27d 586 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
13437d4b
KB
587
588 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
589
590 lm = extract_address (r_map_buf, lmo->r_map_size);
591
592 /* FIXME: Perhaps we should validate the info somehow, perhaps by
593 checking r_version for a known version number, or r_state for
594 RT_CONSISTENT. */
595
596 do_cleanups (cleanups);
597
13437d4b
KB
598 return (lm);
599}
600
13437d4b
KB
601/*
602
603 LOCAL FUNCTION
604
605 open_symbol_file_object
606
607 SYNOPSIS
608
609 void open_symbol_file_object (void *from_tty)
610
611 DESCRIPTION
612
613 If no open symbol file, attempt to locate and open the main symbol
614 file. On SVR4 systems, this is the first link map entry. If its
615 name is here, we can open it. Useful when attaching to a process
616 without first loading its symbol file.
617
618 If FROM_TTYP dereferences to a non-zero integer, allow messages to
619 be printed. This parameter is a pointer rather than an int because
620 open_symbol_file_object() is called via catch_errors() and
621 catch_errors() requires a pointer argument. */
622
623static int
624open_symbol_file_object (void *from_ttyp)
625{
626 CORE_ADDR lm, l_name;
627 char *filename;
628 int errcode;
629 int from_tty = *(int *)from_ttyp;
630 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
631 char *l_name_buf = xmalloc (lmo->l_name_size);
b8c9b27d 632 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
633
634 if (symfile_objfile)
635 if (!query ("Attempt to reload symbols from process? "))
636 return 0;
637
638 if ((debug_base = locate_base ()) == 0)
639 return 0; /* failed somehow... */
640
641 /* First link map member should be the executable. */
642 if ((lm = first_link_map_member ()) == 0)
643 return 0; /* failed somehow... */
644
645 /* Read address of name from target memory to GDB. */
646 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
647
648 /* Convert the address to host format. */
649 l_name = extract_address (l_name_buf, lmo->l_name_size);
650
651 /* Free l_name_buf. */
652 do_cleanups (cleanups);
653
654 if (l_name == 0)
655 return 0; /* No filename. */
656
657 /* Now fetch the filename from target memory. */
658 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
659
660 if (errcode)
661 {
662 warning ("failed to read exec filename from attached file: %s",
663 safe_strerror (errcode));
664 return 0;
665 }
666
b8c9b27d 667 make_cleanup (xfree, filename);
13437d4b 668 /* Have a pathname: read the symbol file. */
1adeb98a 669 symbol_file_add_main (filename, from_tty);
13437d4b
KB
670
671 return 1;
672}
13437d4b
KB
673
674/* LOCAL FUNCTION
675
676 current_sos -- build a list of currently loaded shared objects
677
678 SYNOPSIS
679
680 struct so_list *current_sos ()
681
682 DESCRIPTION
683
684 Build a list of `struct so_list' objects describing the shared
685 objects currently loaded in the inferior. This list does not
686 include an entry for the main executable file.
687
688 Note that we only gather information directly available from the
689 inferior --- we don't examine any of the shared library files
690 themselves. The declaration of `struct so_list' says which fields
691 we provide values for. */
692
693static struct so_list *
694svr4_current_sos (void)
695{
696 CORE_ADDR lm;
697 struct so_list *head = 0;
698 struct so_list **link_ptr = &head;
699
700 /* Make sure we've looked up the inferior's dynamic linker's base
701 structure. */
702 if (! debug_base)
703 {
704 debug_base = locate_base ();
705
706 /* If we can't find the dynamic linker's base structure, this
707 must not be a dynamically linked executable. Hmm. */
708 if (! debug_base)
709 return 0;
710 }
711
712 /* Walk the inferior's link map list, and build our list of
713 `struct so_list' nodes. */
714 lm = first_link_map_member ();
715 while (lm)
716 {
717 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
718 struct so_list *new
719 = (struct so_list *) xmalloc (sizeof (struct so_list));
b8c9b27d 720 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b
KB
721
722 memset (new, 0, sizeof (*new));
723
724 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 725 make_cleanup (xfree, new->lm_info);
13437d4b
KB
726
727 new->lm_info->lm = xmalloc (lmo->link_map_size);
b8c9b27d 728 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
729 memset (new->lm_info->lm, 0, lmo->link_map_size);
730
731 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
732
733 lm = LM_NEXT (new);
734
735 /* For SVR4 versions, the first entry in the link map is for the
736 inferior executable, so we must ignore it. For some versions of
737 SVR4, it has no name. For others (Solaris 2.3 for example), it
738 does have a name, so we can no longer use a missing name to
739 decide when to ignore it. */
740 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
741 free_so (new);
742 else
743 {
744 int errcode;
745 char *buffer;
746
747 /* Extract this shared object's name. */
748 target_read_string (LM_NAME (new), &buffer,
749 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
750 if (errcode != 0)
751 {
752 warning ("current_sos: Can't read pathname for load map: %s\n",
753 safe_strerror (errcode));
754 }
755 else
756 {
757 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
758 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 759 xfree (buffer);
13437d4b
KB
760 strcpy (new->so_original_name, new->so_name);
761 }
762
763 /* If this entry has no name, or its name matches the name
764 for the main executable, don't include it in the list. */
765 if (! new->so_name[0]
766 || match_main (new->so_name))
767 free_so (new);
768 else
769 {
770 new->next = 0;
771 *link_ptr = new;
772 link_ptr = &new->next;
773 }
774 }
775
776 discard_cleanups (old_chain);
777 }
778
779 return head;
780}
781
bc4a16ae
EZ
782/* Get the address of the link_map for a given OBJFILE. Loop through
783 the link maps, and return the address of the one corresponding to
784 the given objfile. Note that this function takes into account that
785 objfile can be the main executable, not just a shared library. The
786 main executable has always an empty name field in the linkmap. */
787
788CORE_ADDR
789svr4_fetch_objfile_link_map (struct objfile *objfile)
790{
791 CORE_ADDR lm;
792
793 if ((debug_base = locate_base ()) == 0)
794 return 0; /* failed somehow... */
795
796 /* Position ourselves on the first link map. */
797 lm = first_link_map_member ();
798 while (lm)
799 {
800 /* Get info on the layout of the r_debug and link_map structures. */
801 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
802 int errcode;
803 char *buffer;
804 struct lm_info objfile_lm_info;
805 struct cleanup *old_chain;
806 CORE_ADDR name_address;
807 char *l_name_buf = xmalloc (lmo->l_name_size);
808 old_chain = make_cleanup (xfree, l_name_buf);
809
810 /* Set up the buffer to contain the portion of the link_map
811 structure that gdb cares about. Note that this is not the
812 whole link_map structure. */
813 objfile_lm_info.lm = xmalloc (lmo->link_map_size);
814 make_cleanup (xfree, objfile_lm_info.lm);
815 memset (objfile_lm_info.lm, 0, lmo->link_map_size);
816
817 /* Read the link map into our internal structure. */
818 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
819
820 /* Read address of name from target memory to GDB. */
821 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
822
823 /* Extract this object's name. */
824 name_address = extract_address (l_name_buf,
825 lmo->l_name_size);
826 target_read_string (name_address, &buffer,
827 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
828 make_cleanup (xfree, buffer);
829 if (errcode != 0)
830 {
831 warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n",
832 safe_strerror (errcode));
833 }
834 else
835 {
836 /* Is this the linkmap for the file we want? */
837 /* If the file is not a shared library and has no name,
838 we are sure it is the main executable, so we return that. */
839 if ((buffer && strcmp (buffer, objfile->name) == 0)
840 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
841 {
842 do_cleanups (old_chain);
843 return lm;
844 }
845 }
846 /* Not the file we wanted, continue checking. */
847 lm = extract_address (objfile_lm_info.lm + lmo->l_next_offset,
848 lmo->l_next_size);
849 do_cleanups (old_chain);
850 }
851 return 0;
852}
13437d4b
KB
853
854/* On some systems, the only way to recognize the link map entry for
855 the main executable file is by looking at its name. Return
856 non-zero iff SONAME matches one of the known main executable names. */
857
858static int
859match_main (char *soname)
860{
861 char **mainp;
862
863 for (mainp = main_name_list; *mainp != NULL; mainp++)
864 {
865 if (strcmp (soname, *mainp) == 0)
866 return (1);
867 }
868
869 return (0);
870}
871
13437d4b
KB
872/* Return 1 if PC lies in the dynamic symbol resolution code of the
873 SVR4 run time loader. */
13437d4b
KB
874static CORE_ADDR interp_text_sect_low;
875static CORE_ADDR interp_text_sect_high;
876static CORE_ADDR interp_plt_sect_low;
877static CORE_ADDR interp_plt_sect_high;
878
d7fa2ae2
KB
879static int
880svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
881{
882 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
883 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
884 || in_plt_section (pc, NULL));
885}
13437d4b 886
13437d4b
KB
887
888/*
889
890 LOCAL FUNCTION
891
892 enable_break -- arrange for dynamic linker to hit breakpoint
893
894 SYNOPSIS
895
896 int enable_break (void)
897
898 DESCRIPTION
899
900 Both the SunOS and the SVR4 dynamic linkers have, as part of their
901 debugger interface, support for arranging for the inferior to hit
902 a breakpoint after mapping in the shared libraries. This function
903 enables that breakpoint.
904
905 For SunOS, there is a special flag location (in_debugger) which we
906 set to 1. When the dynamic linker sees this flag set, it will set
907 a breakpoint at a location known only to itself, after saving the
908 original contents of that place and the breakpoint address itself,
909 in it's own internal structures. When we resume the inferior, it
910 will eventually take a SIGTRAP when it runs into the breakpoint.
911 We handle this (in a different place) by restoring the contents of
912 the breakpointed location (which is only known after it stops),
913 chasing around to locate the shared libraries that have been
914 loaded, then resuming.
915
916 For SVR4, the debugger interface structure contains a member (r_brk)
917 which is statically initialized at the time the shared library is
918 built, to the offset of a function (_r_debug_state) which is guaran-
919 teed to be called once before mapping in a library, and again when
920 the mapping is complete. At the time we are examining this member,
921 it contains only the unrelocated offset of the function, so we have
922 to do our own relocation. Later, when the dynamic linker actually
923 runs, it relocates r_brk to be the actual address of _r_debug_state().
924
925 The debugger interface structure also contains an enumeration which
926 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
927 depending upon whether or not the library is being mapped or unmapped,
928 and then set to RT_CONSISTENT after the library is mapped/unmapped.
929 */
930
931static int
932enable_break (void)
933{
934 int success = 0;
935
13437d4b
KB
936#ifdef BKPT_AT_SYMBOL
937
938 struct minimal_symbol *msymbol;
939 char **bkpt_namep;
940 asection *interp_sect;
941
942 /* First, remove all the solib event breakpoints. Their addresses
943 may have changed since the last time we ran the program. */
944 remove_solib_event_breakpoints ();
945
13437d4b
KB
946 interp_text_sect_low = interp_text_sect_high = 0;
947 interp_plt_sect_low = interp_plt_sect_high = 0;
948
949 /* Find the .interp section; if not found, warn the user and drop
950 into the old breakpoint at symbol code. */
951 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
952 if (interp_sect)
953 {
954 unsigned int interp_sect_size;
955 char *buf;
8ad2fcde
KB
956 CORE_ADDR load_addr = 0;
957 int load_addr_found = 0;
958 struct so_list *inferior_sos;
e4f7b8c8
MS
959 bfd *tmp_bfd = NULL;
960 int tmp_fd = -1;
961 char *tmp_pathname = NULL;
13437d4b
KB
962 CORE_ADDR sym_addr = 0;
963
964 /* Read the contents of the .interp section into a local buffer;
965 the contents specify the dynamic linker this program uses. */
966 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
967 buf = alloca (interp_sect_size);
968 bfd_get_section_contents (exec_bfd, interp_sect,
969 buf, 0, interp_sect_size);
970
971 /* Now we need to figure out where the dynamic linker was
972 loaded so that we can load its symbols and place a breakpoint
973 in the dynamic linker itself.
974
975 This address is stored on the stack. However, I've been unable
976 to find any magic formula to find it for Solaris (appears to
977 be trivial on GNU/Linux). Therefore, we have to try an alternate
978 mechanism to find the dynamic linker's base address. */
e4f7b8c8
MS
979
980 tmp_fd = solib_open (buf, &tmp_pathname);
981 if (tmp_fd >= 0)
982 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
983
13437d4b
KB
984 if (tmp_bfd == NULL)
985 goto bkpt_at_symbol;
986
987 /* Make sure the dynamic linker's really a useful object. */
988 if (!bfd_check_format (tmp_bfd, bfd_object))
989 {
990 warning ("Unable to grok dynamic linker %s as an object file", buf);
991 bfd_close (tmp_bfd);
992 goto bkpt_at_symbol;
993 }
994
8ad2fcde
KB
995 /* If the entry in _DYNAMIC for the dynamic linker has already
996 been filled in, we can read its base address from there. */
997 inferior_sos = svr4_current_sos ();
998 if (inferior_sos)
999 {
1000 /* Connected to a running target. Update our shared library table. */
990f9fe3 1001 solib_add (NULL, 0, NULL, auto_solib_add);
8ad2fcde
KB
1002 }
1003 while (inferior_sos)
1004 {
1005 if (strcmp (buf, inferior_sos->so_original_name) == 0)
1006 {
1007 load_addr_found = 1;
1008 load_addr = LM_ADDR (inferior_sos);
1009 break;
1010 }
1011 inferior_sos = inferior_sos->next;
1012 }
1013
1014 /* Otherwise we find the dynamic linker's base address by examining
1015 the current pc (which should point at the entry point for the
1016 dynamic linker) and subtracting the offset of the entry point. */
1017 if (!load_addr_found)
1018 load_addr = read_pc () - tmp_bfd->start_address;
13437d4b
KB
1019
1020 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1021 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1022 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1023 if (interp_sect)
1024 {
1025 interp_text_sect_low =
1026 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1027 interp_text_sect_high =
1028 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1029 }
1030 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1031 if (interp_sect)
1032 {
1033 interp_plt_sect_low =
1034 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1035 interp_plt_sect_high =
1036 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1037 }
1038
1039 /* Now try to set a breakpoint in the dynamic linker. */
1040 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1041 {
1042 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1043 if (sym_addr != 0)
1044 break;
1045 }
1046
1047 /* We're done with the temporary bfd. */
1048 bfd_close (tmp_bfd);
1049
1050 if (sym_addr != 0)
1051 {
1052 create_solib_event_breakpoint (load_addr + sym_addr);
1053 return 1;
1054 }
1055
1056 /* For whatever reason we couldn't set a breakpoint in the dynamic
1057 linker. Warn and drop into the old code. */
1058 bkpt_at_symbol:
1059 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1060 }
13437d4b
KB
1061
1062 /* Scan through the list of symbols, trying to look up the symbol and
1063 set a breakpoint there. Terminate loop when we/if we succeed. */
1064
1065 breakpoint_addr = 0;
1066 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1067 {
1068 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1069 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1070 {
1071 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1072 return 1;
1073 }
1074 }
1075
1076 /* Nothing good happened. */
1077 success = 0;
1078
1079#endif /* BKPT_AT_SYMBOL */
1080
13437d4b
KB
1081 return (success);
1082}
1083
1084/*
1085
1086 LOCAL FUNCTION
1087
1088 special_symbol_handling -- additional shared library symbol handling
1089
1090 SYNOPSIS
1091
1092 void special_symbol_handling ()
1093
1094 DESCRIPTION
1095
1096 Once the symbols from a shared object have been loaded in the usual
1097 way, we are called to do any system specific symbol handling that
1098 is needed.
1099
ab31aa69 1100 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1101 linkers structures to find symbol definitions for "common" symbols
1102 and adding them to the minimal symbol table for the runtime common
1103 objfile.
1104
ab31aa69
KB
1105 However, for SVR4, there's nothing to do.
1106
13437d4b
KB
1107 */
1108
1109static void
1110svr4_special_symbol_handling (void)
1111{
13437d4b
KB
1112}
1113
e2a44558
KB
1114/* Relocate the main executable. This function should be called upon
1115 stopping the inferior process at the entry point to the program.
1116 The entry point from BFD is compared to the PC and if they are
1117 different, the main executable is relocated by the proper amount.
1118
1119 As written it will only attempt to relocate executables which
1120 lack interpreter sections. It seems likely that only dynamic
1121 linker executables will get relocated, though it should work
1122 properly for a position-independent static executable as well. */
1123
1124static void
1125svr4_relocate_main_executable (void)
1126{
1127 asection *interp_sect;
1128 CORE_ADDR pc = read_pc ();
1129
1130 /* Decide if the objfile needs to be relocated. As indicated above,
1131 we will only be here when execution is stopped at the beginning
1132 of the program. Relocation is necessary if the address at which
1133 we are presently stopped differs from the start address stored in
1134 the executable AND there's no interpreter section. The condition
1135 regarding the interpreter section is very important because if
1136 there *is* an interpreter section, execution will begin there
1137 instead. When there is an interpreter section, the start address
1138 is (presumably) used by the interpreter at some point to start
1139 execution of the program.
1140
1141 If there is an interpreter, it is normal for it to be set to an
1142 arbitrary address at the outset. The job of finding it is
1143 handled in enable_break().
1144
1145 So, to summarize, relocations are necessary when there is no
1146 interpreter section and the start address obtained from the
1147 executable is different from the address at which GDB is
1148 currently stopped.
1149
1150 [ The astute reader will note that we also test to make sure that
1151 the executable in question has the DYNAMIC flag set. It is my
1152 opinion that this test is unnecessary (undesirable even). It
1153 was added to avoid inadvertent relocation of an executable
1154 whose e_type member in the ELF header is not ET_DYN. There may
1155 be a time in the future when it is desirable to do relocations
1156 on other types of files as well in which case this condition
1157 should either be removed or modified to accomodate the new file
1158 type. (E.g, an ET_EXEC executable which has been built to be
1159 position-independent could safely be relocated by the OS if
1160 desired. It is true that this violates the ABI, but the ABI
1161 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1162 */
1163
1164 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1165 if (interp_sect == NULL
1166 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1167 && bfd_get_start_address (exec_bfd) != pc)
1168 {
1169 struct cleanup *old_chain;
1170 struct section_offsets *new_offsets;
1171 int i, changed;
1172 CORE_ADDR displacement;
1173
1174 /* It is necessary to relocate the objfile. The amount to
1175 relocate by is simply the address at which we are stopped
1176 minus the starting address from the executable.
1177
1178 We relocate all of the sections by the same amount. This
1179 behavior is mandated by recent editions of the System V ABI.
1180 According to the System V Application Binary Interface,
1181 Edition 4.1, page 5-5:
1182
1183 ... Though the system chooses virtual addresses for
1184 individual processes, it maintains the segments' relative
1185 positions. Because position-independent code uses relative
1186 addressesing between segments, the difference between
1187 virtual addresses in memory must match the difference
1188 between virtual addresses in the file. The difference
1189 between the virtual address of any segment in memory and
1190 the corresponding virtual address in the file is thus a
1191 single constant value for any one executable or shared
1192 object in a given process. This difference is the base
1193 address. One use of the base address is to relocate the
1194 memory image of the program during dynamic linking.
1195
1196 The same language also appears in Edition 4.0 of the System V
1197 ABI and is left unspecified in some of the earlier editions. */
1198
1199 displacement = pc - bfd_get_start_address (exec_bfd);
1200 changed = 0;
1201
13fc0c2f
KB
1202 new_offsets = xcalloc (symfile_objfile->num_sections,
1203 sizeof (struct section_offsets));
b8c9b27d 1204 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1205
1206 for (i = 0; i < symfile_objfile->num_sections; i++)
1207 {
1208 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1209 changed = 1;
1210 new_offsets->offsets[i] = displacement;
1211 }
1212
1213 if (changed)
1214 objfile_relocate (symfile_objfile, new_offsets);
1215
1216 do_cleanups (old_chain);
1217 }
1218}
1219
13437d4b
KB
1220/*
1221
1222 GLOBAL FUNCTION
1223
1224 svr4_solib_create_inferior_hook -- shared library startup support
1225
1226 SYNOPSIS
1227
1228 void svr4_solib_create_inferior_hook()
1229
1230 DESCRIPTION
1231
1232 When gdb starts up the inferior, it nurses it along (through the
1233 shell) until it is ready to execute it's first instruction. At this
1234 point, this function gets called via expansion of the macro
1235 SOLIB_CREATE_INFERIOR_HOOK.
1236
1237 For SunOS executables, this first instruction is typically the
1238 one at "_start", or a similar text label, regardless of whether
1239 the executable is statically or dynamically linked. The runtime
1240 startup code takes care of dynamically linking in any shared
1241 libraries, once gdb allows the inferior to continue.
1242
1243 For SVR4 executables, this first instruction is either the first
1244 instruction in the dynamic linker (for dynamically linked
1245 executables) or the instruction at "start" for statically linked
1246 executables. For dynamically linked executables, the system
1247 first exec's /lib/libc.so.N, which contains the dynamic linker,
1248 and starts it running. The dynamic linker maps in any needed
1249 shared libraries, maps in the actual user executable, and then
1250 jumps to "start" in the user executable.
1251
1252 For both SunOS shared libraries, and SVR4 shared libraries, we
1253 can arrange to cooperate with the dynamic linker to discover the
1254 names of shared libraries that are dynamically linked, and the
1255 base addresses to which they are linked.
1256
1257 This function is responsible for discovering those names and
1258 addresses, and saving sufficient information about them to allow
1259 their symbols to be read at a later time.
1260
1261 FIXME
1262
1263 Between enable_break() and disable_break(), this code does not
1264 properly handle hitting breakpoints which the user might have
1265 set in the startup code or in the dynamic linker itself. Proper
1266 handling will probably have to wait until the implementation is
1267 changed to use the "breakpoint handler function" method.
1268
1269 Also, what if child has exit()ed? Must exit loop somehow.
1270 */
1271
e2a44558 1272static void
13437d4b
KB
1273svr4_solib_create_inferior_hook (void)
1274{
e2a44558
KB
1275 /* Relocate the main executable if necessary. */
1276 svr4_relocate_main_executable ();
1277
d5a921c9
KB
1278 if (!svr4_have_link_map_offsets ())
1279 {
1280 warning ("no shared library support for this OS / ABI");
1281 return;
1282
1283 }
1284
13437d4b
KB
1285 if (!enable_break ())
1286 {
1287 warning ("shared library handler failed to enable breakpoint");
1288 return;
1289 }
1290
ab31aa69
KB
1291#if defined(_SCO_DS)
1292 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1293 special shared library breakpoints and the shared library breakpoint
1294 service routine.
1295
1296 Now run the target. It will eventually hit the breakpoint, at
1297 which point all of the libraries will have been mapped in and we
1298 can go groveling around in the dynamic linker structures to find
1299 out what we need to know about them. */
1300
1301 clear_proceed_status ();
c0236d92 1302 stop_soon = STOP_QUIETLY;
13437d4b
KB
1303 stop_signal = TARGET_SIGNAL_0;
1304 do
1305 {
39f77062 1306 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1307 wait_for_inferior ();
1308 }
1309 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1310 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1311#endif /* defined(_SCO_DS) */
13437d4b
KB
1312}
1313
1314static void
1315svr4_clear_solib (void)
1316{
1317 debug_base = 0;
1318}
1319
1320static void
1321svr4_free_so (struct so_list *so)
1322{
b8c9b27d
KB
1323 xfree (so->lm_info->lm);
1324 xfree (so->lm_info);
13437d4b
KB
1325}
1326
6bb7be43
JB
1327
1328/* Clear any bits of ADDR that wouldn't fit in a target-format
1329 data pointer. "Data pointer" here refers to whatever sort of
1330 address the dynamic linker uses to manage its sections. At the
1331 moment, we don't support shared libraries on any processors where
1332 code and data pointers are different sizes.
1333
1334 This isn't really the right solution. What we really need here is
1335 a way to do arithmetic on CORE_ADDR values that respects the
1336 natural pointer/address correspondence. (For example, on the MIPS,
1337 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1338 sign-extend the value. There, simply truncating the bits above
1339 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1340 be a new gdbarch method or something. */
1341static CORE_ADDR
1342svr4_truncate_ptr (CORE_ADDR addr)
1343{
1344 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1345 /* We don't need to truncate anything, and the bit twiddling below
1346 will fail due to overflow problems. */
1347 return addr;
1348 else
1349 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1350}
1351
1352
749499cb
KB
1353static void
1354svr4_relocate_section_addresses (struct so_list *so,
1355 struct section_table *sec)
1356{
6bb7be43
JB
1357 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so));
1358 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
749499cb
KB
1359}
1360
6bb7be43 1361
e5e2b9ff
KB
1362/* Fetch a link_map_offsets structure for native targets using struct
1363 definitions from link.h. See solib-legacy.c for the function
1364 which does the actual work.
1365
1366 Note: For non-native targets (i.e. cross-debugging situations),
1367 a target specific fetch_link_map_offsets() function should be
1368 defined and registered via set_solib_svr4_fetch_link_map_offsets(). */
1369
1370static struct link_map_offsets *
1371legacy_fetch_link_map_offsets (void)
1372{
1373 if (legacy_svr4_fetch_link_map_offsets_hook)
1374 return legacy_svr4_fetch_link_map_offsets_hook ();
1375 else
1376 {
1377 internal_error (__FILE__, __LINE__,
1378 "legacy_fetch_link_map_offsets called without legacy "
1379 "link_map support enabled.");
1380 return 0;
1381 }
1382}
1383
1384/* Fetch a link_map_offsets structure using the method registered in the
1385 architecture vector. */
1386
1387static struct link_map_offsets *
1388svr4_fetch_link_map_offsets (void)
1389{
1390 struct link_map_offsets *(*flmo)(void) =
451fbdda 1391 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
e5e2b9ff
KB
1392
1393 if (flmo == NULL)
1394 {
1395 internal_error (__FILE__, __LINE__,
1396 "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1397 "method not defined for this architecture.");
1398 return 0;
1399 }
1400 else
1401 return (flmo ());
1402}
1403
d5a921c9
KB
1404/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1405static int
1406svr4_have_link_map_offsets (void)
1407{
1408 struct link_map_offsets *(*flmo)(void) =
1409 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1410 if (flmo == NULL
1411 || (flmo == legacy_fetch_link_map_offsets
1412 && legacy_svr4_fetch_link_map_offsets_hook == NULL))
1413 return 0;
1414 else
1415 return 1;
1416}
1417
1c4dcb57 1418/* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
e5e2b9ff
KB
1419 a <arch>_gdbarch_init() function. It is used to establish an
1420 architecture specific link_map_offsets fetcher for the architecture
1421 being defined. */
1c4dcb57 1422
21479ded 1423void
e5e2b9ff
KB
1424set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1425 struct link_map_offsets *(*flmo) (void))
21479ded 1426{
e5e2b9ff 1427 set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo);
21479ded
KB
1428}
1429
6ac5df3a
MK
1430/* Initialize the architecture-specific link_map_offsets fetcher.
1431 This is called after <arch>_gdbarch_init() has set up its `struct
1432 gdbarch' for the new architecture, and is only called if the
1433 link_map_offsets fetcher isn't already initialized (which is
1434 usually done by calling set_solib_svr4_fetch_link_map_offsets()
1435 above in <arch>_gdbarch_init()). Therefore we attempt to provide a
1436 reasonable alternative (for native targets anyway) if the
1437 <arch>_gdbarch_init() fails to call
e5e2b9ff 1438 set_solib_svr4_fetch_link_map_offsets(). */
1c4dcb57 1439
e5e2b9ff
KB
1440static void *
1441init_fetch_link_map_offsets (struct gdbarch *gdbarch)
21479ded 1442{
6ac5df3a 1443 return legacy_fetch_link_map_offsets;
21479ded
KB
1444}
1445
13437d4b
KB
1446static struct target_so_ops svr4_so_ops;
1447
1448void
1449_initialize_svr4_solib (void)
1450{
e5e2b9ff
KB
1451 fetch_link_map_offsets_gdbarch_data =
1452 register_gdbarch_data (init_fetch_link_map_offsets, 0);
21479ded 1453
749499cb 1454 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1455 svr4_so_ops.free_so = svr4_free_so;
1456 svr4_so_ops.clear_solib = svr4_clear_solib;
1457 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1458 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1459 svr4_so_ops.current_sos = svr4_current_sos;
1460 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1461 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
13437d4b
KB
1462
1463 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1464 current_target_so_ops = &svr4_so_ops;
1465}
This page took 0.395479 seconds and 4 git commands to generate.